Sample records for include central nervous

  1. Glossary

    MedlinePlus

    ... effective, directed treatments. Central Nervous System The "central command system" of the body, it includes the brain, ... The central nervous system (CNS) is the "central command system" of the body, and includes the brain, ...

  2. The central nervous system phenotype of X-linked Charcot-Marie-Tooth disease: a transient disorder of children and young adults.

    PubMed

    Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F

    2014-03-01

    We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.

  3. Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 ...

    MedlinePlus

    ... Emergency Department Visits Involving Nonmedical Use of Central Nervous System Stimulants among Adults Aged 18 to 34 Increased between 2005 and 2011 Central nervous system (CNS) stimulants include prescription drugs, like those used ...

  4. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  5. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  6. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  7. 42 CFR 102.21 - Smallpox (Vaccinia) Vaccine Injury Table.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of the Table, an autoimmune central nervous system injury. In rare cases, the vaccinia virus is isolated from the central nervous system. Manifestations usually occur abruptly and may include fever... spinal cord (myelitis) such as paralysis or meningismus. Long term central nervous system impairments...

  8. 21 CFR 1308.11 - Schedule I.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...

  9. 21 CFR 1308.11 - Schedule I.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...

  10. 21 CFR 1308.11 - Schedule I.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...

  11. 21 CFR 1308.11 - Schedule I.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... following substances having a stimulant effect on the central nervous system, including its salts, isomers...

  12. Recent Understanding on Diagnosis and Management of Central Nervous System Vasculitis in Children

    PubMed Central

    Iannetti, Ludovico; Zito, Roberta; Bruschi, Simone; Papetti, Laura; Ulgiati, Fiorenza; Nicita, Francesco; Del Balzo, Francesca; Spalice, Alberto

    2012-01-01

    Central nervous system vasculitides in children may develop as a primary condition or secondary to an underlying systemic disease. Many vasculitides affect both adults and children, while some others occur almost exclusively in childhood. Patients usually present with systemic symptoms with single or multiorgan dysfunction. The involvement of central nervous system in childhood is not frequent and it occurs more often as a feature of subtypes like childhood polyarteritis nodosa, Kawasaki disease, Henoch Schönlein purpura, and Bechet disease. Primary angiitis of the central nervous system of childhood is a reversible cause of severe neurological impairment, including acute ischemic stroke, intractable seizures, and cognitive decline. The first line therapy of CNS vasculitides is mainly based on corticosteroids and immunosuppressor drugs. Other strategies include plasmapheresis, immunoglobulins, and biologic drugs. This paper discusses on current understanding of most frequent primary and secondary central nervous system vasculitides in children including a tailored-diagnostic approach and new evidence regarding treatment. PMID:23008735

  13. Vorinostat and Bortezomib in Treating Young Patients With Refractory or Recurrent Solid Tumors, Including Central Nervous System Tumors and Lymphoma

    ClinicalTrials.gov

    2013-07-01

    Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific

  14. Stages of AIDS-Related Lymphoma

    MedlinePlus

    ... trials is also available. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: External radiation therapy . ...

  15. Treatment Options for AIDS-Related Lymphoma

    MedlinePlus

    ... trials is also available. AIDS-Related Primary Central Nervous System Lymphoma Treatment of AIDS-related primary central nervous system lymphoma may include the following: External radiation therapy . ...

  16. 21 CFR 1308.13 - Schedule III.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... any quantity of the following substances having a depressant effect on the central nervous system: (1... a stimulant effect on the central nervous sxstem, including its salts, isomers (whether optical...

  17. 21 CFR 1308.13 - Schedule III.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... a stimulant effect on the central nervous system, including its salts, isomers (whether optical... any quantity of the following substances having a depressant effect on the central nervous system: (1...

  18. 21 CFR 1308.13 - Schedule III.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a stimulant effect on the central nervous system, including its salts, isomers (whether optical... any quantity of the following substances having a depressant effect on the central nervous system: (1...

  19. 21 CFR 1308.13 - Schedule III.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... any quantity of the following substances having a depressant effect on the central nervous system: (1... a stimulant effect on the central nervous sxstem, including its salts, isomers (whether optical...

  20. 21 CFR 1308.13 - Schedule III.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... a stimulant effect on the central nervous system, including its salts, isomers (whether optical... any quantity of the following substances having a depressant effect on the central nervous system: (1...

  1. 21 CFR 1308.15 - Schedule V.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... depressant effect on the central nervous system, including its salts: (1) Lacosamide [(R)-2-acetoamido-N... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Pyrovalerone 1485. (2) [Reserved] (e...

  2. 21 CFR 1308.15 - Schedule V.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... depressant effect on the central nervous system, including its salts: (1) Lacosamide [(R)-2-acetoamido-N... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Pyrovalerone 1485. (2) [Reserved] (e...

  3. 21 CFR 1308.15 - Schedule V.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... depressant effect on the central nervous system, including its salts: (1) Ezogabine [N-[2-amino-4-(4... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Pyrovalerone 1485. (2) [Reserved] (e...

  4. 21 CFR 1308.15 - Schedule V.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... depressant effect on the central nervous system, including its salts: (1) Ezogabine [N-[2-amino-4-(4... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Pyrovalerone 1485. (2) [Reserved] (e...

  5. 21 CFR 1308.15 - Schedule V.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... depressant effect on the central nervous system, including its salts: (1) Ezogabine [N-[2-amino-4-(4... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Pyrovalerone 1485. (2) [Reserved] (e...

  6. Sunitinib in Treating Young Patients With Refractory Solid Tumors

    ClinicalTrials.gov

    2014-01-27

    Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  7. Central nervous system complications after liver transplantation.

    PubMed

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors

    ClinicalTrials.gov

    2013-05-01

    Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific

  9. Adult Central Nervous System Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Adult central nervous system tumor treatment may include surgery, radiosurgery, radiation therapy, chemotherapy, surveillance, and targeted therapy. Treatment depends on the tumor type. Learn more about brain and spinal tumor treatment in this expert-reviewed summary.

  10. Adult Central Nervous System Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Adult central nervous system tumor treatment options include surgery, radiosurgery, radiation therapy, chemotherapy, surveillance, and supportive care. Get detailed information about the types and treatment of newly diagnosed and recurrent brain and spinal tumors in this clinician summary.

  11. Pazopanib Hydrochloride in Treating Young Patients With Solid Tumors That Have Relapsed or Not Responded to Treatment

    ClinicalTrials.gov

    2013-09-27

    Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific

  12. [Process in menstrual blood-derived mesenchymal stem cells for treatment of central nervous system diseases].

    PubMed

    Liu, Mengmeng; Cheng, Xinran; Li, Kaikai; Xu, Mingrui; Wu, Yongji; Wang, Mengli; Zhang, Qianru; Yan, Wenyong; Luo, Chang; Zhao, Shanting

    2018-05-25

    Stem cell research has become a frontier in the field of life sciences, and provides an ideal model for exploring developmental biology problems such as embryogenesis, histiocytosis, and gene expression regulation, as well as opens up new doors for clinical tissue defective and inheritance diseases. Among them, menstrual blood-derived stem cells (MenSCs) are characterized by wide source, multi-directional differentiation potential, low immune rejection characteristics. Thus, MenSCs can achieve individual treatment and have the most advantage of the clinical application. The central nervous system, including brain and spinal cord, is susceptible to injury. And lethality and morbidity of them tops the list of all types of trauma. Compared to peripheral nervous system, recovery of central nervous system after damage remains extremely hard. However, the treatment of stem cells, especially MenSCs, is expected to solve this problem. Therefore, biological characteristics of MenSCs and their treatment in the respect of central nervous system diseases have been reviewed at home and abroad in recent years, so as to provide reference for the treatment of central nervous system diseases.

  13. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects

    PubMed Central

    Darwazeh, Rami; Yan, Yi

    2013-01-01

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study. PMID:25206579

  14. Mild hypothermia as a treatment for central nervous system injuries: Positive or negative effects.

    PubMed

    Darwazeh, Rami; Yan, Yi

    2013-10-05

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure following traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever following brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as well as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.

  15. Hypotonia

    MedlinePlus

    ... will include a detailed examination of the nervous system and muscle function. In most cases, a neurologist (specialist in ... require ongoing care and support. Alternative Names Decreased muscle tone; Floppy infant ... Central nervous system and peripheral nervous system References Burnette WB. Hypotonic ( ...

  16. 21 CFR 1308.11 - Schedule I.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... on the central nervous system, including its salts, isomers, and salts of isomers: (1) Aminorex (Some...

  17. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Treatment for children with central nervous system germ cell tumors (GCT) depend upon the specific tumor type. Options include radiation therapy, chemotherapy, surgery (in various combinations) and stem cell rescue. Get detailed information about GCTs in this clinician summary.

  18. 77 FR 43605 - Prospective Grant of Exclusive License: Use of Glucocerebrosidase Activators for the Treatment of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... Nervous System Proteinopathies, Including Parkinson's Disease AGENCY: National Institutes of Health... limited to ``Treatment of Gaucher disease and human central nervous system proteinopathies, including...

  19. The Central Nervous System Sites Mediating the Orexigenic Actions of Ghrelin

    PubMed Central

    Mason, B.L.; Wang, Q.; Zigman, J.M.

    2014-01-01

    The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557

  20. Neuropsychiatric lupus erythematosus, cerebral infarctions, and anticardiolipin antibodies.

    PubMed Central

    Fields, R A; Sibbitt, W L; Toubbeh, H; Bankhurst, A D

    1990-01-01

    Anticardiolipin antibody (aCL) has been associated with thromboembolic phenomena, including stroke, in certain patients with systemic lupus erythematosus (SLE); however, the relation between this antibody and the central nervous system manifestations of SLE is unknown. Serum samples and cerebrospinal fluid from five patients with SLE and acute central nervous system manifestations were assayed for the presence of aCL. Anticardiolipin antibody was identified in sera from four of the five patients but in none of the cerebrospinal fluid samples. Nuclear magnetic resonance imaging showed 'infarct-like' lesions in these four patients. This preliminary study suggests that a correlation between serum aCL and cerebral infarcts in central nervous system lupus may potentially exist. From this limited study it seems unlikely that aCL has a direct pathogenic role in the diffuse encephalopathy of acute central nervous system lupus. Images PMID:2317112

  1. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    PubMed

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-05-26

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.

  2. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  3. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  4. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  5. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  6. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...

  7. Central diabetes insipidus in children with acute brain insult.

    PubMed

    Yang, Yun-Hsuan; Lin, Jainn-Jim; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong; Hung, Po-Cheng; Chou, Min-Liang; Hsieh, Meng-Ying; Lin, Kuang-Lin

    2011-12-01

    Central diabetes insipidus occurs in patients with overwhelming central nervous system injuries, and may be associated with brain death. The clinical picture of children with acquired central diabetes insipidus after acute brain insult is seldom reported. We retrospectively reviewed cases dating from January 2000-February 2008 at a tertiary pediatric intensive care unit. Fifty-four patients (28 girls, 26 boys), aged 3 months to 18 years, were enrolled. Etiologies included severe central nervous system infection (35.2%), hypoxic-ischemic events (31.5%), head injury (18.5%), and vascular lesions (14.8%). In 39 (72.2%) patients, diabetes insipidus was diagnosed during the first 2 days after acute central nervous system injury, and 40 (74.0%) developed maximum serum sodium concentrations of >160 mEq/L. In 16, sequential cerebral salt wasting syndrome developed after their initial diabetes insipidus presentation. Overall mortality at 2 months after admission was 77.8%. Our results demonstrate that patients who develop central diabetes insipidus after acute central nervous system injury manifest high mortality. Development of central diabetes insipidus within the first 2 days and a maximum plasma sodium >160 mEq/L were significant predictors of outcomes. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Convection-Enhanced Delivery for the Treatment of Pediatric Neurologic Disorders

    PubMed Central

    Song, Debbie K.; Lonser, Russell R.

    2013-01-01

    Direct perfusion of specific regions of the central nervous system by convection-enhanced delivery is becoming more widely used for the delivery of compounds in the research and treatment of various neural disorders. In contrast to other currently available central nervous system delivery techniques, convection-enhanced delivery relies on bulk flow for distribution of solute. This allows for safe, targeted, reliable, and homogeneous delivery of small- and large-molecular-weight substances over clinically relevant volumes in a manner that bypasses the blood-central nervous system barrier. Recent studies have also shown that coinfused imaging surrogate tracers can be used to monitor and control the convective distribution of therapeutic agents in vivo. The unique features of convection-enhanced delivery, including the ability to monitor distribution in real-time, provide an opportunity to develop new research and treatment paradigms for pediatric patients with a variety of intrinsic central nervous system disorders. PMID:18952590

  9. Central Nervous System Vasculitis

    MedlinePlus

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  10. Radon exposure and tumors of the central nervous system.

    PubMed

    Ruano-Ravina, Alberto; Dacosta-Urbieta, Ana; Barros-Dios, Juan Miguel; Kelsey, Karl T

    2017-03-15

    To review the published evidence of links between radon exposure and central nervous system tumors through a systematic review of the scientific literature. We performed a thorough bibliographic search in Medline (PubMed) and EMBASE. We combined MeSH (Medical Subject Heading) terms and free text. We developed a purpose-designed scale to assess the quality of the included manuscripts. We have included 18 studies, 8 performed on miners, 3 on the general population and 7 on children, and the results have been structured using this classification. The results are inconclusive. An association between radon exposure and central nervous system tumors has been observed in some studies on miners, but not in others. The results observed in the general adult population and in children are also mixed, with some research evincing a statistically significant association and others showing no effect. We cannot conclude that there is a relationship between radon exposure and central nervous system tumors. The available studies are extremely heterogeneous in terms of design and populations studied. Further research is needed in this topic, particularly in the general population residing in areas with high levels of radon. Copyright © 2017 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Hemophagocytic lymphohistiocytosis associated with Epstein-Barr virus in the central nervous system.

    PubMed

    Magaki, Shino; Ostrzega, Nora; Ho, Elliot; Yim, Catherine; Wu, Phillis; Vinters, Harry V

    2017-01-01

    Hemophagocytic lymphohistiocytosis (HLH) is a rare immune hyperactivation syndrome which may be primary (genetic) or secondary to various immune-related conditions including infection, immunodeficiency, and malignancies. Rapid diagnosis and treatment are essential because it can be associated with significant morbidity and mortality. Epstein-Barr virus (EBV) is a known infectious cause of acquired HLH, but EBV-associated HLH involving the central nervous system is rare and not well characterized neuropathologically. We report a case of fatal EBV-associated HLH with severe involvement of the central nervous system showing florid hemophagocytosis in the choroid plexus, with extensive neuron loss and gliosis in the cerebrum, cerebellum, and brainstem. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Central nervous system magnesium deficiency.

    PubMed

    Langley, W F; Mann, D

    1991-03-01

    The central nervous system concentration of magnesium (Mg++) appears to have a critical level below which neurologic dysfunction occurs. Observations presented suggest that the interchange of the Mg++ ion between the cerebrospinal fluid, extracellular fluid, and bone is more rapid and dynamic than is usually believed. This is especially so when the hypertrophied parathyroid gland is associated with significant skeletal depletion of Mg++ as judged by history rather than serum level. Magnesium, much like calcium, has a large presence in bone and has a negative feedback relationship with the parathyroid gland. A decline in central nervous system Mg++ may occur when the skeletal buffer system orchestrated largely by the parathyroid glands is activated by an increase in serum calcium. Observations in veterinary medicine and obstetrics suggest that the transfer of Mg++ from the extracellular fluid into bone during mineralization processes may be extensive. If the inhibition of the hypertrophied parathyroid gland is prolonged and the skeletal depletion of Mg++ extreme, serious neurologic symptoms, including seizures, coma, and death, may occur. Noise, excitement, and bodily contact appear to precipitate neurologic symptoms in Mg+(+)-deficient human subjects as it has been documented to occur in Mg+(+)-deficient experimental animals. The similarity of the acute central nervous system demyelinating syndromes with reactive central nervous system Mg++ deficiency is reviewed.

  13. Patients with primary diffuse large B-cell lymphoma of female genital tract have high risk of central nervous system relapse.

    PubMed

    Cao, Xin-xin; Li, Jian; Zhang, Wei; Duan, Ming-hui; Shen, Ti; Zhou, Dao-bin

    2014-06-01

    The objective of this study was to evaluate retrospectively the clinical characteristics, treatments, and outcomes of patients with primary diffuse large B-cell lymphoma (DLBCL) of the female genital tract. The basic characteristics, treatments, and outcomes of six patients diagnosed with primary DLBCL of the female genital tract, including the ovary, uterine cervix, and vagina, treated in our hospital between 2000 and 2012, were analyzed retrospectively. Seven of 323 (2.2 %) newly diagnosed DLBCLs were diagnosed as primary female genital tract DLBCL. Six patients with complete medical data were included in the analysis. The median age at diagnosis was 52.5 years (range 20-65). The presenting symptoms included abnormal vaginal bleeding, increased vaginal discharge, abdominal fullness, and abdominal pain. Two patients had stage IE disease and four patients had stage IIE disease. Treatment included chemotherapy only in five patients, and combined chemotherapy and localized radiation in one patient. After a median follow-up of 58 months, four patients showed relapse in the central nervous system and two had died from progressive disease. The median progression-free survival was 27 months and the median overall survival for this group has not been reached. Patients with primary female genital tract DLBCL may have poor outcomes and a high risk of central nervous system relapse. Central nervous system prophylaxis might be considered in addition to systemic chemotherapy for DLBCL of the female genital tract.

  14. Central nervous system medication use in older adults with intellectual disability: Results from the successful ageing in intellectual disability study.

    PubMed

    Chitty, Kate M; Evans, Elizabeth; Torr, Jennifer J; Iacono, Teresa; Brodaty, Henry; Sachdev, Perminder; Trollor, Julian N

    2016-04-01

    Information on the rates and predictors of polypharmacy of central nervous system medication in older people with intellectual disability is limited, despite the increased life expectancy of this group. This study examined central nervous system medication use in an older sample of people with intellectual disability. Data regarding demographics, psychiatric diagnoses and current medications were collected as part of a larger survey completed by carers of people with intellectual disability over the age of 40 years. Recruitment occurred predominantly via disability services across different urban and rural locations in New South Wales and Victoria. Medications were coded according to the Monthly Index of Medical Specialties central nervous system medication categories, including sedatives/hypnotics, anti-anxiety agents, antipsychotics, antidepressants, central nervous system stimulants, movement disorder medications and anticonvulsants. The Developmental Behaviour Checklist for Adults was used to assess behaviour. Data were available for 114 people with intellectual disability. In all, 62.3% of the sample was prescribed a central nervous system medication, with 47.4% taking more than one. Of those who were medicated, 46.5% had a neurological diagnosis (a seizure disorder or Parkinson's disease) and 45.1% had a psychiatric diagnosis (an affective or psychotic disorder). Linear regression revealed that polypharmacy was predicted by the presence of neurological and psychiatric diagnosis, higher Developmental Behaviour Checklist for Adults scores and male gender. This study is the first to focus on central nervous system medication in an older sample with intellectual disability. The findings are in line with the wider literature in younger people, showing a high degree of prescription and polypharmacy. Within the sample, there seems to be adequate rationale for central nervous system medication prescription. Although these data do not indicate non-adherence to guidelines for prescribing in intellectual disability, the high rate of polypharmacy and its relationship to Developmental Behaviour Checklist for Adults scores reiterate the importance of continued medication review in older people with intellectual disability. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  15. Primary central nervous system lymphoma can be histologically diagnosed after previous corticosteroid use: a pilot study to determine whether corticosteroids prevent the diagnosis of primary central nervous system lymphoma.

    PubMed

    Porter, Alyx B; Giannini, Caterina; Kaufmann, Timothy; Lucchinetti, Claudia F; Wu, Wenting; Decker, Paul A; Atkinson, John L D; O'Neill, Brian Patrick

    2008-05-01

    The objective is to determine whether corticosteroid administration before biopsy prevents histopathological diagnosis of primary central nervous system lymphoma (PCNSL). A retrospective review was performed of immunocompetent PCNSL patients from 1985 to 2005. A total of 109 patients was identified. Sixty-eight (63.6%) patients received corticosteroids before diagnosis. Thirteen patients (of 109; 12%) had undergone repeat brain biopsy to confirm PCNSL. These included 8 (of 68) patients who had received corticosteroids (12%), and 5 (of 39) who had not (13%) (p = 1.0). The majority of PCNSL patients who received corticosteroids before diagnosis did not experience significant radiographic change or require second biopsy for diagnosis.

  16. [Late sequelae of central nervous system prophylaxis in children with acute lymphoblastic leukemia: high doses of intravenous methotrexate versus radiotherapy of the central nervous system--review of literature].

    PubMed

    Zając-Spychała, Olga; Wachowiak, Jacek

    2012-01-01

    Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in combination with high doses of intravenous methotrexate.

  17. Classification of neural tumors in laboratory rodents, emphasizing the rat.

    PubMed

    Weber, Klaus; Garman, Robert H; Germann, Paul-Georg; Hardisty, Jerry F; Krinke, Georg; Millar, Peter; Pardo, Ingrid D

    2011-01-01

    Neoplasms of the nervous system, whether spontaneous or induced, are infrequent in laboratory rodents and very rare in other laboratory animal species. The morphology of neural tumors depends on the intrinsic functions and properties of the cell type, the interactions between the neoplasm and surrounding normal tissue, and regressive changes. The incidence of neural neoplasms varies with sex, location, and age of tumor onset. Although the onset of spontaneous tumor development cannot be established in routine oncogenicity studies, calculations using the time of diagnosis (day of death) have revealed significant differences in tumor biology among different rat strains. In the central nervous system, granular cell tumors (a meningioma variant), followed by glial tumors, are the most common neoplasms in rats, whereas glial cell tumors are observed most frequently in mice. Central nervous system tumors usually affect the brain rather than the spinal cord. Other than adrenal gland pheochromocytomas, the most common neoplasms of the peripheral nervous system are schwannomas. Neural tumors may develop in the central nervous system and peripheral nervous system from other cell lineages (including extraneural elements like adipose tissue and lymphocytes), but such lesions are very rare in laboratory animals.

  18. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study.

    PubMed

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-11-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.

  19. Highly elevated serum lactate dehydrogenase is associated with central nervous system relapse in patients with diffuse large B-cell lymphoma: Results of a multicenter prospective cohort study

    PubMed Central

    Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon

    2016-01-01

    Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132

  20. Central nervous system considerations in the use of beta-blockers, angiotensin-converting enzyme inhibitors, and thiazide diuretics in managing essential hypertension.

    PubMed

    Gengo, F M; Gabos, C

    1988-07-01

    The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.

  1. MORPHOLOGICAL PATTERN AND FREQUENCY OF CENTRAL NERVOUS SYSTEM TUMOURS IN CHILDREN.

    PubMed

    Bilqees, Fatima; Samina, Khaleeq; Mohammad, Tahir; Khaleeq-uz-Zamaan

    2016-01-01

    Recent studies, including a comprehensive study by National Cancer Institute, have shown that a significant increase in the incidence of childhood brain tumours makes them the most common paediatric tumour. The objectives of this study were to determine the frequency of central nervous system tumours in paediatric age group (0-12 years), and to segregate various morphologic types according to WHO classification. The study included consecutive cases of central nervous system tumours diagnosed in children in the histopathology department at Federal Government Polyclinic, PGMI, Islamabad, during a period of 4.8 years (Jan 2009-Aug 2013). The initial histopathological evaluation of these lesions was performed on H&E stained sections of paraffin embedded tissues. Special stains and immunohistochemistry were performed whenever indicated. Out of 75 cases, 34 (45.3%) were astrocytic tumours, including 16 (47.1%) Pilocytic astrocytomas (WHO Grade-I), 1 (2.9%) diffuse fibrillary astrocytoma (WHO Grade-II), 1 (2.9%) anaplastic astrocytoma (WHO Grade-III) and 16(47.1%) glioblastoma multiforme (WHO Grade-IV); 18 (24%) were embryonal tumours including 17 (94.4%) medulloblastoma (WHO Grade-IV) and 1 (5.6%) neuroblastoma (WHO Grade IV); 10 (13.3%) were craniopharyngiomas (WHO Grade-I) and 5 (6.7%) were ependymal tumours including 1 (20%) myxopapillary ependymoma (WHO Grade-I) and 4 (80%) ependymomas (WHO Grade-II). Miscellaneous entities included 3 (4%) choroid plexus tumours; 1 (2%) anaplastic oligodendroglioma (WHO Grade-III); 1 (2%) atypical meningioma (WHO Grade-II); 1 (2%) schwannoma (WHO Grade-I); 1 (2%) neurofibroma (WHO Grade-I) and 1 (2%) lipoma (WHO Grade-I). Astrocytic tumours are the most common central nervous system tumours in paediatric age group and high grade lesions (WHO Grade-IV) constitute the largest category (45.3%).

  2. Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors

    ClinicalTrials.gov

    2013-05-01

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma

  3. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    NASA Astrophysics Data System (ADS)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  4. Central Fibroblast Growth Factor 21 Browns White Fat via Sympathetic Action in Male Mice.

    PubMed

    Douris, Nicholas; Stevanovic, Darko M; Fisher, Ffolliott M; Cisu, Theodore I; Chee, Melissa J; Nguyen, Ngoc L; Zarebidaki, Eleen; Adams, Andrew C; Kharitonenkov, Alexei; Flier, Jeffrey S; Bartness, Timothy J; Maratos-Flier, Eleftheria

    2015-07-01

    Fibroblast growth factor 21 (FGF21) has multiple metabolic actions, including the induction of browning in white adipose tissue. Although FGF21 stimulated browning results from a direct interaction between FGF21 and the adipocyte, browning is typically associated with activation of the sympathetic nervous system through cold exposure. We tested the hypothesis that FGF21 can act via the brain, to increase sympathetic activity and induce browning, independent of cell-autonomous actions. We administered FGF21 into the central nervous system via lateral ventricle infusion into male mice and found that the central treatment increased norepinephrine turnover in target tissues that include the inguinal white adipose tissue and brown adipose tissue. Central FGF21 stimulated browning as assessed by histology, expression of uncoupling protein 1, and the induction of gene expression associated with browning. These effects were markedly attenuated when mice were treated with a β-blocker. Additionally, neither centrally nor peripherally administered FGF21 initiated browning in mice lacking β-adrenoceptors, demonstrating that an intact adrenergic system is necessary for FGF21 action. These data indicate that FGF21 can signal in the brain to activate the sympathetic nervous system and induce adipose tissue thermogenesis.

  5. Acute Central Nervous System Complications in Pediatric Acute Lymphoblastic Leukemia.

    PubMed

    Baytan, Birol; Evim, Melike Sezgin; Güler, Salih; Güneş, Adalet Meral; Okan, Mehmet

    2015-10-01

    The outcome of childhood acute lymphoblastic leukemia has improved because of intensive chemotherapy and supportive care. The frequency of adverse events has also increased, but the data related to acute central nervous system complications during acute lymphoblastic leukemia treatment are sparse. The purpose of this study is to evaluate these complications and to determine their long term outcome. We retrospectively analyzed the hospital reports of 323 children with de novo acute lymphoblastic leukemia from a 13-year period for acute neurological complications. The central nervous system complications of leukemic involvement, peripheral neuropathy, and post-treatment late-onset encephalopathy, and neurocognitive defects were excluded. Twenty-three of 323 children (7.1%) suffered from central nervous system complications during acute lymphoblastic leukemia treatment. The majority of these complications (n = 13/23; 56.5%) developed during the induction period. The complications included posterior reversible encephalopathy (n = 6), fungal abscess (n = 5), cerebrovascular lesions (n = 5), syndrome of inappropriate secretion of antidiuretic hormone (n = 4), and methotrexate encephalopathy (n = 3). Three of these 23 children (13%) died of central nervous system complications, one from an intracranial fungal abscess and the others from intracranial thrombosis. Seven of the survivors (n = 7/20; 35%) became epileptic and three of them had also developed mental and motor retardation. Acute central neurological complications are varied and require an urgent approach for proper diagnosis and treatment. Collaboration among the hematologist, radiologist, neurologist, microbiologist, and neurosurgeon is essential to prevent fatal outcome and serious morbidity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Concordance of Time-of-Flight MRA and Digital Subtraction Angiography in Adult Primary Central Nervous System Vasculitis.

    PubMed

    de Boysson, H; Boulouis, G; Parienti, J-J; Touzé, E; Zuber, M; Arquizan, C; Dequatre, N; Detante, O; Bienvenu, B; Aouba, A; Guillevin, L; Pagnoux, C; Naggara, O

    2017-10-01

    3D-TOF-MRA and DSA are 2 available tools to demonstrate neurovascular involvement in primary central nervous system vasculitis. We aimed to compare the diagnostic concordance of vessel imaging using 3D-TOF-MRA and DSA in patients with primary central nervous system vasculitis. We retrospectively identified all patients included in the French primary central nervous system vasculitis cohort of 85 patients who underwent, at baseline, both intracranial 3D-TOF-MRA and DSA in an interval of no more than 2 weeks and before treatment initiation. Two neuroradiologists independently reviewed all 3D-TOF-MRA and DSA imaging. Brain vasculature was divided into 25 arterial segments. Concordance between 3D-TOF-MRA and DSA for the identification of arterial stenosis was assessed by the Cohen κ Index. Thirty-one patients met the inclusion criteria, including 20 imaged with a 1.5T MR unit and 11 with a 3T MR unit. Among the 25 patients (81%) with abnormal DSA findings, 24 demonstrated abnormal 3D-TOF-MRA findings, whereas all 6 remaining patients with normal DSA findings had normal 3D-TOF-MRA findings. In the per-segment analysis, concordance between 1.5T 3D-TOF-MRA and DSA was 0.82 (95% CI, 0.75-0.93), and between 3T 3D-TOF-MRA and DSA, it was 0.87 (95% CI, 0.78-0.91). 3D-TOF-MRA shows a high concordance with DSA in diagnostic performance when analyzing brain vasculature in patients with primary central nervous system vasculitis. In patients with negative 3T 3D-TOF-MRA findings, the added diagnostic value of DSA is limited. © 2017 by American Journal of Neuroradiology.

  7. Primary Angiitis of the Central Nervous System: Magnetic Resonance Imaging Spectrum of Parenchymal, Meningeal, and Vascular Lesions at Baseline.

    PubMed

    Boulouis, Grégoire; de Boysson, Hubert; Zuber, Mathieu; Guillevin, Loïc; Meary, Eric; Costalat, Vincent; Pagnoux, Christian; Naggara, Olivier

    2017-05-01

    Primary angiitis of the central nervous system remains challenging. To report an overview and pictorial review of brain magnetic resonance imaging findings in adult primary angiitis of the central nervous system and to determine the distribution of parenchymal, meningeal, and vascular lesions in a large multicentric cohort. Adult patients from the French COVAC cohort (Cohort of Patients With Primary Vasculitis of the Central Nervous System), with biopsy or angiographically proven primary angiitis of the central nervous system and brain magnetic resonance imaging available at the time of diagnosis were included. A systematic imaging review was performed blinded to clinical data. Sixty patients met inclusion criteria. Mean age was 45 years (±12.9). Patients initially presented focal deficit(s) (83%), headaches (53%), cognitive disorder (40%), and seizures (38.3%). The most common magnetic resonance imaging finding observed in 42% of patients was multiterritorial, bilateral, distal acute stroke lesions after small to medium artery distribution, with a predominant carotid circulation distribution. Hemorrhagic infarctions and parenchymal hemorrhages were also frequently found in the cohort (55%). Acute convexity subarachnoid hemorrhage was found in 26% of patients and 42% demonstrated pre-eminent leptomeningeal enhancement, which is found to be significantly more prevalent in biopsy-proven patients (60% versus 28%; P =0.04). Seven patients had tumor-like presentations. Seventy-seven percent of magnetic resonance angiographic studies were abnormal, revealing proximal/distal stenoses in 57% and 61% of patients, respectively. Adult primary angiitis of the central nervous system is a heterogenous disease, with multiterritorial, distal, and bilateral acute stroke being the most common pattern of parenchymal lesions found on magnetic resonance imaging. Our findings suggest a higher than previously thought prevalence of hemorrhagic transformation and other hemorrhagic manifestations. © 2017 American Heart Association, Inc.

  8. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia

    PubMed Central

    2011-01-01

    Pain is a key component of most rheumatologic diseases. In fibromyalgia, the importance of central nervous system pain mechanisms (for example, loss of descending analgesic activity and central sensitization) is well documented. A few studies have also noted alterations in central pain processing in osteoarthritis, and some data, including the observation of widespread pain sensitivity, suggest that central pain-processing defects may alter the pain response in rheumatoid arthritis patients. When central pain is identified, different classes of analgesics (for example, serotonin-norepinephrine reuptake inhibitors, α2δ ligands) may be more effective than drugs that treat peripheral or nociceptive pain (for example, nonsteroidal anti-inflammatory drugs and opioids). PMID:21542893

  9. Role of endothelial-to-mesenchymal transition in the pathogenesis of central nervous system hemangioblastomas.

    PubMed

    Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu

    2018-06-07

    Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A 3-year-old boy with Guillain-Barré syndrome and encephalitis associated with Mycoplasma pneumoniae infection.

    PubMed

    Hanzawa, Fumie; Fuchigami, Tatsuo; Ishii, Wakako; Nakajima, Sonoko; Kawamura, Yuki; Endo, Ayumi; Arakawa, Chikako; Kohira, Ryutaro; Fujita, Yukihiko; Takahashi, Shori

    2014-02-01

    Mycoplasma pneumoniae is a common cause of respiratory tract illness in children. Among the most common extrapulmonary manifestations are disorders of the central nervous system, including meningitis, meningoencephalitis, cerebellitis, polyneuropathy, acute disseminated encephalomyelitis, and Guillain-Barré syndrome. Guillain-Barré syndrome, also known as acute inflammatory demyelinating polyradiculoneuropathy, is an acute-onset, immune-mediated disorder of the peripheral nervous system. The central nervous system is usually intact in patients with Guillain-Barré syndrome. However, there have been some reports of an association of Guillain-Barré syndrome with central nervous system involvement in children. We report a 3-year-old boy with M. pneumoniae infection associated with Guillain-Barré syndrome and encephalitis. Both serum anti-GM1 ganglioside (IgG and IgM) and anti-galactocerebroside IgG antibodies were detected in our patient: the former in the earlier stage of the disease, and the latter in the later stage. We speculate that anti-GM1 ganglioside was associated more with encephalitis, and anti-galactocerebroside antibody was associated more with GBS in our case. Our patient is the youngest report of Guillain-Barré syndrome with central nervous system involvement, and the first report of a pediatric patient with associated M. pneumoniae infection. Such cases are rarely reported, but highlight the need for awareness of the association of the infection with Guillain-Barré syndrome with central nervous system involvement. Copyright © 2013 Japanese Society of Chemotherapy and The Japanese Association for Infectious Disease. Published by Elsevier Ltd. All rights reserved.

  11. Central nervous system infection by Listeria monocytogenes in patients with systemic lupus erythematosus: analysis of 26 cases, including the report of a new case.

    PubMed

    Horta-Baas, Gabriel; Guerrero-Soto, Omar; Barile-Fabris, Leonor

    2013-01-01

    Infections in patients with systemic lupus erythematosus cause significant morbidity. Infection due to Listeria monocytogenes (LM) is considered an opportunistic disease, and has been published on rare occasions in patients with SLE. To review the presentation of listeria infections in the central nervous system (CNS) in SLE patients. We conducted a literature review, selecting cases with central nervous system infection and confirmation of LM infection through culture. Twenty six cases are described. The most common presentation was meningitis, with meningoencephalitis and brain abscesses being less frequent. The predisposing factors are: use of glucocorticoids, immunosuppressants, renal replacement therapy and the activity flares. CNS infection by listeria is rare and sometimes fatal. The atypical presentation may lead to a delay in diagnosis and appropriate treatment. L. monocytogenes should be included in the differential diagnosis of patients with SLE with neurological manifestations. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  12. APOPTOSIS DURING DEVELOPMENT AND AGING AND IN RESPONSE TO MERCURY EXPOSURE.

    EPA Science Inventory


    In the central nervous system from embryogenesis through senescence, cell number is regulated, in part, by apoptosis. Each region of the nervous system has a characteristic temporal pattern of programmed cell death, which includes far greater numbers of cells undergoing apop...

  13. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  14. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  15. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  16. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  17. 21 CFR 1308.12 - Schedule II.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... nervous system, including its salts, isomers, and salts of isomers whenever the existence of such salts... which contains any quantity of the following substances having a stimulant effect on the central nervous system: (1) Amphetamine, its salts, optical isomers, and salts of its optical isomers 1100 (2...

  18. The Role of Neuropeptides in Persistent Virus Infections of the Central Nervous System

    DTIC Science & Technology

    1990-05-10

    5000 61153N RR04108 441f722 11. TITLE (include Security Classification) (U) The role of neuropeptides in persistent virus infections of the central...identify by block number) FIELD GROUP SUB-GROUP opioids, lymphocytes, infections , nervous system, virus, immunity, neuropeptides 19 ABSTRACT (Continue on...endorphin, 24 h after reconstitution of nude mice with splenocytes and 24 h prior to infection with virus, re- sulted in 74% survival; and 39% of the

  19. Subacute combined degeneration

    MedlinePlus

    ... SCD Images Central nervous system and peripheral nervous system Central nervous system References Pytel P, Anthony DC. Peripheral nerves and ... chap 27. So YT. Deficiency diseases of the nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...

  20. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also

  1. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  2. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  3. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  4. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  5. 40 CFR 721.72 - Hazard communication program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...

  6. Using Ferumoxytol-Enhanced MRI to Measure Inflammation in Patients With Brain Tumors or Other Conditions of the CNS

    ClinicalTrials.gov

    2017-08-30

    Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors

  7. Ultrasound diagnosis of central nervous system anomalies (bifid choroid plexus, ventriculomegaly, Dandy-Walker malformation) associated with multicystic dysplastic kidney disease in a trisomy 9 fetus: case report with literature review.

    PubMed

    Tonni, Gabriele; Grisolia, Giampaolo

    2013-09-01

    Trisomy 9 is a lethal chromosomal abnormality that rarely progresses beyond the second trimester of pregnancy. Multiple central nervous system anomalies, including bifid choroid plexus, ventriculomegaly, and Dandy-Walker malformation, associated with multicystic dysplastic kidney disease in a trisomy 9 fetus are reported. The prenatal ultrasound diagnosis has been aided by novel three-dimensional ultrasound software. Copyright © 2012 Wiley Periodicals, Inc.

  8. Rituximab treatment in primary angiitis of the central nervous system.

    PubMed

    Patel, Shreeya; Ross, Laura; Oon, Shereen; Nikpour, Mandana

    2018-06-01

    Primary angiitis of the central nervous system (PACNS) is a rare autoimmune vasculitis affecting the brain and spinal cord. Treatment with biological agents has revolutionised the treatment of many rheumatic conditions but there is scant literature regarding the use of biological agents in PACNS. We present three cases of PACNS treated with rituximab, including two cases of relapsed disease, and a literature review suggesting a role for rituximab in this condition. © 2018 Royal Australasian College of Physicians.

  9. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system

    NASA Technical Reports Server (NTRS)

    Lowe, Christopher J.; Wu, Mike; Salic, Adrian; Evans, Louise; Lander, Eric; Stange-Thomann, Nicole; Gruber, Christian E.; Gerhart, John; Kirschner, Marc

    2003-01-01

    The chordate central nervous system has been hypothesized to originate from either a dorsal centralized, or a ventral centralized, or a noncentralized nervous system of a deuterostome ancestor. In an effort to resolve these issues, we examined the hemichordate Saccoglossus kowalevskii and studied the expression of orthologs of genes that are involved in patterning the chordate central nervous system. All 22 orthologs studied are expressed in the ectoderm in an anteroposterior arrangement nearly identical to that found in chordates. Domain topography is conserved between hemichordates and chordates despite the fact that hemichordates have a diffuse nerve net, whereas chordates have a centralized system. We propose that the deuterostome ancestor may have had a diffuse nervous system, which was later centralized during the evolution of the chordate lineage.

  10. Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients?

    PubMed

    Nijs, Jo; Loggia, Marco L; Polli, Andrea; Moens, Maarten; Huysmans, Eva; Goudman, Lisa; Meeus, Mira; Vanderweeën, Luc; Ickmans, Kelly; Clauw, Daniel

    2017-08-01

    The mechanism of sensitization of the central nervous system partly explains the chronic pain experience in many patients, but the etiological mechanisms of this central nervous system dysfunction are poorly understood. Recently, an increasing number of studies suggest that aberrant glial activation takes part in the establishment and/or maintenance of central sensitization. Areas covered: This review focused on preclinical work and mostly on the neurobiochemistry studied in animals, with limited human studies available. Glial overactivation results in a low-grade neuroinflammatory state, characterized by high levels of BDNF, IL-1β, TNF-α, which in turn increases the excitability of the central nervous system neurons through mechanisms like long-term potentiation and increased synaptic efficiency. Aberrant glial activity in chronic pain might have been triggered by severe stress exposure, and/or sleeping disturbances, each of which are established initiating factors for chronic pain development. Expert opinion: Potential treatment avenues include several pharmacological options for diminishing glial activity, as well as conservative interventions like sleep management, stress management and exercise therapy. Pharmacological options include propentofylline, minocycline, β -adrenergic receptor antagonists, and cannabidiol. Before translating these findings from basic science to clinical settings, more human studies exploring the outlined mechanisms in chronic pain patients are needed.

  11. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  12. Central and peripheral nervous systems: master controllers in cancer metastasis.

    PubMed

    Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning

    2013-12-01

    Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.

  13. [Thyroid hormones and the development of the nervous system].

    PubMed

    Mussa, G C; Zaffaroni, M; Mussa, F

    1990-09-01

    The growth and differentiation of the central nervous system are closely related to the presence of iodine and thyroid hormones. During the first trimester of human pregnancy the development of the nervous system depends entirely on the availability of iodine; after 12 week of pregnancy it depends on the initial secretion of iodothyronine by the fetal thyroid gland. During the early stages of the development of the nervous system a thyroid hormone deficit may provoke alterations in the maturation of both noble nervous cells (cortical pyramidal cells, Purkinje cells) and glial cells. Hypothyroidism may lead to cellular hypoplasia and reduced dendritic ramification, gemmules and interneuronal connections. Experimental studies in hypothyroid rats have also shown alterations in the content and organization of neuronal intracytoplasmatic microtubules, the biochemical maturation of synaptosomes and the maturation of nuclear and cytoplasmatic T3 receptors. Excess thyroid hormones during the early stages of development may also cause permanent damage to the central nervous system. Hyperthyroidism may initially induce an acceleration of the maturation processes, including the migration and differentiation of cells, the extension of the dendritic processes and synaptogenesis. An excess of thyroid hormones therefore causes neuronal proliferation to end precociously leading to a reduction of the total number of gemmules. Experimental research and clinical studies have partially clarified the correlation between the maturation of the nervous system and thyroid function during the early stages of development; both a deficit and excess of thyroid hormones may lead to permanent anatomo-functional damage to the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Immunotherapeutics in Pediatric Autoimmune Central Nervous System Disease: Agents and Mechanisms.

    PubMed

    Nosadini, Margherita; Sartori, Stefano; Sharma, Suvasini; Dale, Russell C

    2017-08-01

    Beyond the major advances produced by careful clinical-radiological phenotyping and biomarker development in autoimmune central nervous system disorders, a comprehensive knowledge of the range of available immune therapies and a deeper understanding of their action should benefit therapeutic decision-making. This review discusses the agents used in neuroimmunology and their mechanisms of action. First-line treatments typically include corticosteroids, intravenous immunoglobulin, and plasmapheresis, while for severe disease second-line "induction" agents such as rituximab or cyclophosphamide are used. Steroid-sparing agents such as mycophenolate, azathioprine, or methotrexate are often used in potentially relapsing or corticosteroid-dependent diseases. Lessons from adult neuroimmunology and rheumatology could be translated into pediatric autoimmune central nervous system disease in the future, including the potential utility of monoclonal antibodies targeting lymphocytes, adhesion molecules for lymphocytic migration, cytokines or their receptors, or complement. Finally, many agents used in other fields have multiple mechanisms of action, including immunomodulation, with potential usefulness in neuroimmunology, such as antibiotics, psychotropic drugs, probiotics, gut health, and ketogenic diet. All currently accepted and future potential agents have adverse effects, which can be severe; therefore, a "risk-versus-benefit" determination should guide therapeutic decision-making. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Glioblastoma Multiforme and Lipid Nanocapsules: A Review.

    PubMed

    Aparicio-Blanco, Juan; Torres-Suárez, Ana-Isabel

    2015-08-01

    Epidemiological data on central nervous system disorders call for a focus on the major hindrance to brain drug delivery, blood-central nervous system barriers. Otherwise, there is little chance of improving the short-term survival of patients with diseases such as glioblastoma multiforme, which is one of the brain disorders associated with many years of life lost. Targetable nanocarriers for treating malignant gliomas are a unique way to overcome low chemotherapeutic levels at target sites devoid of systemic toxicity. This review describes the currently available targetable nanocarriers, focusing particularly on one of the newest nanocarriers, lipid nanocapsules. All of the strategies that are likely to be exploited by lipid nanocapsules to bypass blood-central nervous system barriers, including the most recent targeting approaches (mesenchymal cells), and novel administration routes (convection enhanced delivery) are discussed, together with their most remarkable achievements in glioma-implanted animal models. Although these systems are promising, much research remains to be done in this field.

  16. Tumors of the central nervous system: clinical aspects, molecular mechanisms, unanswered questions, and future research directions.

    PubMed

    Babcock, Michael A; Kostova, Felina V; Guha, Abhijit; Packer, Roger J; Pollack, Ian F; Maria, Bernard L

    2008-10-01

    Central nervous system tumors are the most common solid tumors in children. Many histological subtypes and biological variants exist. The 2007 Neurobiology of Disease in Children Symposium, held in conjunction with the 36th annual meeting of the Child Neurology Society, aimed to define current knowledge in the field and to develop specific aims for future clinical, translational, and fundamental science. Because of advances in structural and metabolic imaging, surgical technique, and combination therapies, the life expectancy of children with some of the most common tumors, such as cerebellar astrocytomas and medulloblastomas, has improved. Other common tumor types, including diffuse pontine gliomas and malignant embryonal tumors, still have a dismal prognosis. As novel therapies are identified for pediatric central nervous system tumors, long-term survival may be associated with considerable disability. A cooperative effort is crucial to early diagnosis and to translating basic research findings into safe, effective new treatments.

  17. 78 FR 9311 - Hazard Communication; Corrections and Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-08

    ... Column for Standard No. 1910.1051. ``Cancer; eye and respiratory tract irritation; center nervous system... irritation; central nervous system effects; and flammability.'' The following table contains a summary of the... (l)(1)(ii) ``center nervous system effects'' is paragraph. corrected to ``central nervous system...

  18. Differentiation of Enhancing Glioma and Primary Central Nervous System Lymphoma by Texture-Based Machine Learning.

    PubMed

    Alcaide-Leon, P; Dufort, P; Geraldo, A F; Alshafai, L; Maralani, P J; Spears, J; Bharatha, A

    2017-06-01

    Accurate preoperative differentiation of primary central nervous system lymphoma and enhancing glioma is essential to avoid unnecessary neurosurgical resection in patients with primary central nervous system lymphoma. The purpose of the study was to evaluate the diagnostic performance of a machine-learning algorithm by using texture analysis of contrast-enhanced T1-weighted images for differentiation of primary central nervous system lymphoma and enhancing glioma. Seventy-one adult patients with enhancing gliomas and 35 adult patients with primary central nervous system lymphomas were included. The tumors were manually contoured on contrast-enhanced T1WI, and the resulting volumes of interest were mined for textural features and subjected to a support vector machine-based machine-learning protocol. Three readers classified the tumors independently on contrast-enhanced T1WI. Areas under the receiver operating characteristic curves were estimated for each reader and for the support vector machine classifier. A noninferiority test for diagnostic accuracy based on paired areas under the receiver operating characteristic curve was performed with a noninferiority margin of 0.15. The mean areas under the receiver operating characteristic curve were 0.877 (95% CI, 0.798-0.955) for the support vector machine classifier; 0.878 (95% CI, 0.807-0.949) for reader 1; 0.899 (95% CI, 0.833-0.966) for reader 2; and 0.845 (95% CI, 0.757-0.933) for reader 3. The mean area under the receiver operating characteristic curve of the support vector machine classifier was significantly noninferior to the mean area under the curve of reader 1 ( P = .021), reader 2 ( P = .035), and reader 3 ( P = .007). Support vector machine classification based on textural features of contrast-enhanced T1WI is noninferior to expert human evaluation in the differentiation of primary central nervous system lymphoma and enhancing glioma. © 2017 by American Journal of Neuroradiology.

  19. Fanconi anemia: correlating central nervous system malformations and genetic complementation groups.

    PubMed

    Johnson-Tesch, Benjamin A; Gawande, Rakhee S; Zhang, Lei; MacMillan, Margaret L; Nascene, David R

    2017-06-01

    Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations.

  20. Novel Roles for Immune Molecules in Neural Development: Implications for Neurodevelopmental Disorders

    PubMed Central

    Garay, Paula A.; McAllister, A. Kimberley

    2010-01-01

    Although the brain has classically been considered “immune-privileged”, current research suggests an extensive communication between the immune and nervous systems in both health and disease. Recent studies demonstrate that immune molecules are present at the right place and time to modulate the development and function of the healthy and diseased central nervous system (CNS). Indeed, immune molecules play integral roles in the CNS throughout neural development, including affecting neurogenesis, neuronal migration, axon guidance, synapse formation, activity-dependent refinement of circuits, and synaptic plasticity. Moreover, the roles of individual immune molecules in the nervous system may change over development. This review focuses on the effects of immune molecules on neuronal connections in the mammalian central nervous system – specifically the roles for MHCI and its receptors, complement, and cytokines on the function, refinement, and plasticity of geniculate, cortical and hippocampal synapses, and their relationship to neurodevelopmental disorders. These functions for immune molecules during neural development suggest that they could also mediate pathological responses to chronic elevations of cytokines in neurodevelopmental disorders, including autism spectrum disorders (ASD) and schizophrenia. PMID:21423522

  1. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review

    PubMed Central

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-01-01

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum, B. breve, and B. infantis) and Lactobacillus (eg, L. helveticus, and L. rhamnosus), with doses between 109 and 1010 colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future. PMID:27413138

  2. Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review.

    PubMed

    Wang, Huiying; Lee, In-Seon; Braun, Christoph; Enck, Paul

    2016-10-30

    To systematically review the effects of probiotics on central nervous system function in animals and humans, to summarize effective interventions (species of probiotic, dose, duration), and to analyze the possibility of translating preclinical studies. Literature searches were conducted in Pubmed, Medline, Embase, and the Cochrane Library. Only randomized controlled trials were included. In total, 38 studies were included: 25 in animals and 15 in humans (2 studies were conducted in both). Most studies used Bifidobacterium (eg, B. longum , B. breve , and B. infantis ) and Lactobacillus (eg, L. helveticus , and L. rhamnosus ), with doses between 10⁸ and 10¹⁰ colony-forming units for 2 weeks in animals and 4 weeks in humans. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. Translating animal studies to human studies has obvious limitations but also suggests possibilities. Here, we provide several suggestions for the translation of animal studies. More experimental designs with both behavioral and neuroimaging measures in healthy volunteers and patients are needed in the future.

  3. Blood-brain barrier-on-a-chip: Microphysiological systems that capture the complexity of the blood-central nervous system interface.

    PubMed

    Phan, Duc Tt; Bender, R Hugh F; Andrejecsk, Jillian W; Sobrino, Agua; Hachey, Stephanie J; George, Steven C; Hughes, Christopher Cw

    2017-11-01

    The blood-brain barrier is a dynamic and highly organized structure that strictly regulates the molecules allowed to cross the brain vasculature into the central nervous system. The blood-brain barrier pathology has been associated with a number of central nervous system diseases, including vascular malformations, stroke/vascular dementia, Alzheimer's disease, multiple sclerosis, and various neurological tumors including glioblastoma multiforme. There is a compelling need for representative models of this critical interface. Current research relies heavily on animal models (mostly mice) or on two-dimensional (2D) in vitro models, neither of which fully capture the complexities of the human blood-brain barrier. Physiological differences between humans and mice make translation to the clinic problematic, while monolayer cultures cannot capture the inherently three-dimensional (3D) nature of the blood-brain barrier, which includes close association of the abluminal side of the endothelium with astrocyte foot-processes and pericytes. Here we discuss the central nervous system diseases associated with blood-brain barrier pathology, recent advances in the development of novel 3D blood-brain barrier -on-a-chip systems that better mimic the physiological complexity and structure of human blood-brain barrier, and provide an outlook on how these blood-brain barrier-on-a-chip systems can be used for central nervous system disease modeling. Impact statement The field of microphysiological systems is rapidly evolving as new technologies are introduced and our understanding of organ physiology develops. In this review, we focus on Blood-Brain Barrier (BBB) models, with a particular emphasis on how they relate to neurological disorders such as Alzheimer's disease, multiple sclerosis, stroke, cancer, and vascular malformations. We emphasize the importance of capturing the three-dimensional nature of the brain and the unique architecture of the BBB - something that until recently had not been well modeled by in vitro systems. Our hope is that this review will provide a launch pad for new ideas and methodologies that can provide us with truly physiological BBB models capable of yielding new insights into the function of this critical interface.

  4. 75 FR 37301 - Exempt Chemical Mixtures Containing Gamma-Butyrolactone

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... their central nervous system (CNS) depressant effect. An overdose from GBL or GHB may result in... the central nervous system that is substantially similar to or greater than the stimulant, depressant, or hallucinogenic effect on the central nervous system of a controlled substance in schedule I or II...

  5. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ..., Central Nervous System Research Unit (Currently Known as Neuroscience Research Unit), Global External... as Warner Lambert Company, Central Nervous System Research Unit, Global External Supply Department... Central Nervous System Research Unit was renamed the Neuroscience Research Unit. In order to ensure proper...

  6. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug... Committee: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee...

  7. Mutations in spalt cause a severe but reversible neurodegenerative phenotype in the embryonic central nervous system of Drosophila melanogaster.

    PubMed

    Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M

    2002-12-01

    The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.

  8. Central nervous system

    MedlinePlus

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  9. The role of ZAP70 kinase in acute lymphoblastic leukemia infiltration into the central nervous system.

    PubMed

    Alsadeq, Ameera; Fedders, Henning; Vokuhl, Christian; Belau, Nele M; Zimmermann, Martin; Wirbelauer, Tim; Spielberg, Steffi; Vossen-Gajcy, Michaela; Cario, Gunnar; Schrappe, Martin; Schewe, Denis M

    2017-02-01

    Central nervous system infiltration and relapse are poorly understood in childhood acute lymphoblastic leukemia. We examined the role of zeta-chain-associated protein kinase 70 in preclinical models of central nervous system leukemia and performed correlative studies in patients. Zeta-chain-associated protein kinase 70 expression in acute lymphoblastic leukemia cells was modulated using short hairpin ribonucleic acid-mediated knockdown or ectopic expression. We show that zeta-chain-associated protein kinase 70 regulates CCR7/CXCR4 via activation of extracellular signal-regulated kinases. High expression of zeta-chain-associated protein kinase 70 in acute lymphoblastic leukemia cells resulted in a higher proportion of central nervous system leukemia in xenografts as compared to zeta-chain-associated protein kinase 70 low expressing counterparts. High zeta-chain-associated protein kinase 70 also enhanced the migration potential towards CCL19/CXCL12 gradients in vitro CCR7 blockade almost abrogated homing of acute lymphoblastic leukemia cells to the central nervous system in xenografts. In 130 B-cell precursor acute lymphoblastic leukemia and 117 T-cell acute lymphoblastic leukemia patients, zeta-chain-associated protein kinase 70 and CCR7/CXCR4 expression levels were significantly correlated. Zeta-chain-associated protein kinase 70 expression correlated with central nervous system disease in B-cell precursor acute lymphoblastic leukemia, and CCR7/CXCR4 correlated with central nervous system involvement in T-cell acute lymphoblastic leukemia patients. In multivariate analysis, zeta-chain-associated protein kinase 70 expression levels in the upper third and fourth quartiles were associated with central nervous system involvement in B-cell precursor acute lymphoblastic leukemia (odds ratio=7.48, 95% confidence interval, 2.06-27.17; odds ratio=6.86, 95% confidence interval, 1.86-25.26, respectively). CCR7 expression in the upper fourth quartile correlated with central nervous system positivity in T-cell acute lymphoblastic leukemia (odds ratio=11.00, 95% confidence interval, 2.00-60.62). We propose zeta-chain-associated protein kinase 70, CCR7 and CXCR4 as markers of central nervous system infiltration in acute lymphoblastic leukemia warranting prospective investigation. Copyright© Ferrata Storti Foundation.

  10. Femoral-facial syndrome with malformations in the central nervous system.

    PubMed

    Leal, Evelia; Macías-Gómez, Nelly; Rodríguez, Lisa; Mercado, F Miguel; Barros-Núñez, Patricio

    2003-01-01

    The femoral hypoplasia-unusual facies syndrome (FFS) is a very rare association of femoral and facial abnormalities. Maternal diabetes mellitus has been mainly involved as the causal agent. We report the second case of FFS with anomalies in the central nervous system (CNS) including corticosubcortical atrophy, colpocephaly, partial agenesis of corpus callosum, hypoplasia of the falx cerebri and absent septum pellucidum. The psychomotor development has been normal. We propose that the CNS defects observed in these patients are part of the spectrum of abnormalities in the FFS.

  11. Innate immune interactions within the central nervous system modulate pathogenesis of viral infections

    PubMed Central

    Nair, Sharmila; Diamond, Michael S.

    2015-01-01

    The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762

  12. A Case of the Cauda Equina Syndrome Associated With the Intrathecal Chemotherapy in a Patient With Primary Central Nervous System Lymphoma

    PubMed Central

    Park, Seunglee; Kang, Jung-Il; Bang, Hyun; Kim, Bo-Ram

    2013-01-01

    The intrathecal chemotherapy with methotrexate and cytarabine arabinoside is used for the treatment and prophylaxis of the primary central nervous system lymphoma. The therapy may induce neurotoxicity including the cauda equina syndrome. We report a case of a 58-year-old man with the diffuse large B-cell lymphoma, who developed the cauda equina syndrome after the administration of intrathecal methotrexate and cytarabine arabinoside, as diagnosed by the electrodiagnostic, urodynamic, and radiologic approaches. PMID:23869341

  13. An overview of travel-associated central nervous system infectious diseases: risk assessment, general considerations and future directions.

    PubMed

    Izadi, Morteza; Is'haqi, Arman; Is'haqi, Mohammad Ali; Jonaidi Jafari, Nematollah; Rahamaty, Fatemeh; Banki, Abdolali

    2014-08-01

    Nervous system infections are among the most important diseases in travellers. Healthy travellers might be exposed to infectious agents of central nervous system, which may require in-patient care. Progressive course is not uncommon in this family of disorders and requires swift diagnosis. An overview of the available evidence in the field is, therefore, urgent to pave the way to increase the awareness of travel-medicine practitioners and highlights dark areas for future research. In November 2013, data were collected from PubMed, Scopus, and Web of Knowledge (1980 to 2013) including books, reviews, and peer-reviewed literature. Works pertained to pre-travel care, interventions, vaccinations related neurological infections were retrieved. Here we provide information on pre-travel care, vaccination, chronic nervous system disorders, and post-travel complications. Recommendations with regard to knowledge gaps, and state-of-the-art research are made. Given an increasing number of international travellers, novel dynamic ways are available for physicians to monitor spread of central nervous system infections. Newer research has made great progresses in developing newer medications, detecting the spread of infections and the public awareness. Despite an ongoing scientific discussion in the field of travel medicine, further research is required for vaccine development, state-of-the-art laboratory tests, and genetic engineering of vectors.

  14. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  15. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  16. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  17. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2012-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  18. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  19. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2011-N-0002] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  20. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting AGENCY: Food and Drug...: Peripheral and Central Nervous System Drugs Advisory Committee. General Function of the Committee: To provide...

  1. Characteristics of Rosai-Dorfman Disease Primarily Involved in the Central Nervous System: 3 Case Reports and Review of Literature.

    PubMed

    Luo, Zhengxiang; Zhang, Yansong; Zhao, Penglai; Lu, Hucheng; Yang, Kun; Zhang, Yuhai; Zeng, Yanjun

    2017-01-01

    This study aimed to summarize the clinical characteristics of Rosai-Dorfman disease primarily involving the central nervous system and to explore diagnosis and treatment. We analyzed the clinical, imaging, and pathologic characteristics; treatment; and prognosis in 3 cases of Rosai-Dorfman disease primarily involving the central nervous system. We also performed a literature review. The largest of multiple intracranial lesions was totally resected, and steroid administration and radiotherapy were performed in phases for the remaining lesions. During the 1-year follow-up period, the excised lesion did not recur, and no obvious variations were observed in the other lesions. Subtotal resection was performed of the largest of another group of multiple intracranial lesions, and the residual did not show any obvious variations during the 1-year follow-up period. The isolated lesion was totally resected and did not recur during a 2-year follow-up period. Rosai-Dorfman disease with multiple lesions primarily involving the central nervous system is rare. Imaging characteristics are similar to meningiomas, and the pathological features include lymphocytes and plasma cells reaching tissue cells with large volume and abundant cytoplasm. Surgery is the preferred treatment, as the effects of steroid administration and radiotherapy are not apparent. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [The Role of Imaging in Central Nervous System Infections].

    PubMed

    Yokota, Hajime; Tazoe, Jun; Yamada, Kei

    2015-07-01

    Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.

  3. Novel Eye Movement Disorders in Whipple's Disease-Staircase Horizontal Saccades, Gaze-Evoked Nystagmus, and Esotropia.

    PubMed

    Shaikh, Aasef G; Ghasia, Fatema F

    2017-01-01

    Whipple's disease, a rare systemic infectious disorder, is complicated by the involvement of the central nervous system in about 5% of cases. Oscillations of the eyes and the jaw, called oculo-masticatory myorhythmia, are pathognomonic of the central nervous system involvement but are often absent. Typical manifestations of the central nervous system Whipple's disease are cognitive impairment, parkinsonism mimicking progressive supranuclear palsy with vertical saccade slowing, and up-gaze range limitation. We describe a unique patient with the central nervous system Whipple's disease who had typical features, including parkinsonism, cognitive impairment, and up-gaze limitation; but also had diplopia, esotropia with mild horizontal (abduction more than adduction) limitation, and vertigo. The patient also had gaze-evoked nystagmus and staircase horizontal saccades. Latter were thought to be due to mal-programmed small saccades followed by a series of corrective saccades. The saccades were disconjugate due to the concurrent strabismus. Also, we noted disconjugacy in the slow phase of gaze-evoked nystagmus. The disconjugacy of the slow phase of gaze-evoked nystagmus was larger during monocular viewing condition. We propose that interaction of the strabismic drifts of the covered eyes and the nystagmus drift, putatively at the final common pathway might lead to such disconjugacy.

  4. Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue

  5. Prevalence and characteristics of central nervous system involvement by chronic lymphocytic leukemia.

    PubMed

    Strati, Paolo; Uhm, Joon H; Kaufmann, Timothy J; Nabhan, Chadi; Parikh, Sameer A; Hanson, Curtis A; Chaffee, Kari G; Call, Timothy G; Shanafelt, Tait D

    2016-04-01

    Abroad array of conditions can lead to neurological symptoms in chronic lymphocytic leukemia patients and distinguishing between clinically significant involvement of the central nervous system by chronic lymphocytic leukemia and symptoms due to other etiologies can be challenging. Between January 1999 and November 2014, 172 (4%) of the 4174 patients with chronic lymphocytic leukemia followed at our center had a magnetic resonance imaging of the central nervous system and/or a lumbar puncture to evaluate neurological symptoms. After comprehensive evaluation, the etiology of neurological symptoms was: central nervous system chronic lymphocytic leukemia in 18 patients (10% evaluated by imaging and/or lumbar puncture, 0.4% overall cohort); central nervous system Richter Syndrome in 15 (9% evaluated, 0.3% overall); infection in 40 (23% evaluated, 1% overall); autoimmune/inflammatory conditions in 28 (16% evaluated, 0.7% overall); other cancer in 8 (5% evaluated, 0.2% overall); and another etiology in 63 (37% evaluated, 1.5% overall). Although the sensitivity of cerebrospinal fluid analysis to detect central nervous system disease was 89%, the specificity was only 42% due to the frequent presence of leukemic cells in the cerebrospinal fluid in other conditions. No parameter on cerebrospinal fluid analysis (e.g. total nucleated cells, total lymphocyte count, chronic lymphocytic leukemia cell percentage) were able to offer a reliable discrimination between patients whose neurological symptoms were due to clinically significant central nervous system involvement by chronic lymphocytic leukemia and another etiology. Median overall survival among patients with clinically significant central nervous system chronic lymphocytic leukemia and Richter syndrome was 12 and 11 months, respectively. In conclusion, clinically significant central nervous system involvement by chronic lymphocytic leukemia is a rare condition, and neurological symptoms in patients with chronic lymphocytic leukemia are due to other etiologies in approximately 80% of cases. Analysis of the cerebrospinal fluid has high sensitivity but limited specificity to distinguish clinically significant chronic lymphocytic leukemia involvement from other etiologies. Copyright© Ferrata Storti Foundation.

  6. Combined central diabetes insipidus and cerebral salt wasting syndrome in children.

    PubMed

    Lin, Jainn-Jim; Lin, Kuang-Lin; Hsia, Shao-Hsuan; Wu, Chang-Teng; Wang, Huei-Shyong

    2009-02-01

    Central diabetes insipidus, a common consequence of acute central nervous system injury, causes hypernatremia; cerebral salt wasting syndrome can cause hyponatremia. The two conditions occurring simultaneous are rarely described in pediatric patients. Pediatric cases of combined diabetes insipidus and cerebral salt wasting after acute central nervous system injury between January 2000 and December 2007 were retrospectively reviewed, and clinical characteristics were systemically assessed. Sixteen patients, aged 3 months to 18 years, met study criteria: 11 girls and 5 boys. The most common etiologies were severe central nervous system infection (n = 7, 44%) and hypoxic-ischemic event (n = 4, 25%). In 15 patients, diabetes insipidus was diagnosed during the first 3 days after acute central nervous system injury. Onset of cerebral salt wasting syndrome occurred 2-8 days after the onset of diabetes insipidus. In terms of outcome, 13 patients died (81%) and 3 survived under vegetative status (19%). Central diabetes insipidus and cerebral salt wasting syndrome may occur after acute central nervous system injury. A combination of both may impede accurate diagnosis. Proper differential diagnoses are critical, because the treatment strategy for each entity is different.

  7. Postnatal testosterone may be an important mediator of the association between prematurity and male neurodevelopmental disorders: a hypothesis.

    PubMed

    Rice, Timothy R

    2017-04-01

    Children born premature are at risk for neurodevelopmental disorders, including autism and schizophrenia. This piece advances the hypothesis that altered androgen exposure observed in premature infants is an important mediator of the neurodevelopmental risk in males associated with prematurity. Specifically, the alterations of normative physiologic postnatal activations of the hypothalamic-pituitary-gonadal axis that occur in preterm males are hypothesized to contribute to the risk of neuropsychiatric pathology of prematurity through altered androgen-mediated organizational effects on the developing brain. The physiology of testosterone and male central nervous system development in full-term births is reviewed and compared to the developmental processes of prematurity. The effects of the altered testosterone physiology observed within prematurity outside of the central nervous system are reviewed as a segue into a discussion of the effects within the nervous system, with a special focus on autism spectrum disorders and attention deficit hyperactivity disorder. The explanatory power of this model is reviewed as a supplement to the preexisting models of prematurity and neurodevelopmental risk, including infection and other perinatal central nervous system insults. The emphasis is placed on altered androgen exposure as serving as just one among many mediators of neurodevelopmental risk that may be of interest for further research and evidence-based investigation. Implications for diagnosis, management and preventative treatments conclude the piece.

  8. Ketamine in the treatment of acute pain.

    PubMed

    Brinck, Elina; Kontinen, Vesa

    2017-01-01

    Ketamine is an old anesthetic agent that relieves pain by reducing central sensitization in the central nervous system. This is advantageous for patients suffering from severe pain prior to surgery or are using a strong opioid. The S enantiomer of ketamine used for anesthesia is more powerful than racemic ketamine. The ideal dose of ketamine for pain relief is not yet known, and its adverse effects on the central nervous system, including hallucinations, sedation, and diplopia have limited its use in pain management. The significance of these effects at low doses is probably less than expected, particularly if benzodiazepines or an alpha-2 agonist, such as dexmedetomidine, are administered in addition to ketamine.

  9. Pomalidomide and Dexamethasone in Treating Patients With Relapsed or Refractory Primary Central Nervous System Lymphoma or Newly Diagnosed or Relapsed or Refractory Intraocular Lymphoma

    ClinicalTrials.gov

    2017-08-28

    B-Cell Lymphoma, Unclassifiable, With Features Intermediate Between Diffuse Large B-Cell Lymphoma and Burkitt Lymphoma; Central Nervous System Lymphoma; Intraocular Lymphoma; Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System; Recurrent Adult Diffuse Large Cell Lymphoma; Retinal Lymphoma

  10. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0001] Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug Safety... and Central Nervous System Drugs Advisory Committee and the Drug Safety and Risk Management Advisory...

  11. Viral Oncolytic Therapeutics for Neoplastic Meningitis

    DTIC Science & Technology

    2012-07-01

    the central nervous system (CNS). While several novel molecular approaches are being developed, many of them require delivery of macromolecu- lar or...nonhuman primates. Keywords PET Imaging . Pharmacokinetics . Biopharmaceuticals . Macromolecules . Brain . Central nervous system . Drug delivery...Iodine-124 Introduction The leptomeningeal route to the central nervous system (CNS) starts from drug administration (injection or in- fusion) into the

  12. Pharmacotherapy for Adults with Tumors of the Central Nervous System

    PubMed Central

    Schor, Nina F.

    2009-01-01

    Tumors of the adult central nervous system are among the most common and most chemoresistant neoplasms. Malignant tumors of the brain and spinal cord collectively account for approximately 1.3% of all cancers and 2.2% of all cancer-related deaths. Novel pharmacological approaches to nervous system tumors are urgently needed. This review presents the current approaches and challenges to successful pharmacotherapy of adults with malignant tumors of the central nervous system and discusses novel approaches aimed at overcoming these challenges. PMID:19091301

  13. Similar chemokine receptor profiles in lymphomas with central nervous system involvement - possible biomarkers for patient selection for central nervous system prophylaxis, a retrospective study.

    PubMed

    Lemma, Siria A; Pasanen, Anna Kaisa; Haapasaari, Kirsi-Maria; Sippola, Antti; Sormunen, Raija; Soini, Ylermi; Jantunen, Esa; Koivunen, Petri; Salokorpi, Niina; Bloigu, Risto; Turpeenniemi-Hujanen, Taina; Kuittinen, Outi

    2016-05-01

    Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Current neurology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appel, S.H.

    1988-01-01

    The topics covered in this book include: Duchenne muscular dystrophy: DNA diagnosis in practice; Central nervous system magnetic resonance imaging; and Magnetic resonance spectroscopy of neurologic diseases.

  15. Incidence and risk factors for central nervous system relapse in children and adolescents with acute lymphoblastic leukemia

    PubMed Central

    Cancela, Camila Silva Peres; Murao, Mitiko; Viana, Marcos Borato; de Oliveira, Benigna Maria

    2012-01-01

    Background Despite all the advances in the treatment of childhood acute lymphoblastic leukemia, central nervous system relapse remains an important obstacle to curing these patients. This study analyzed the incidence of central nervous system relapse and the risk factors for its occurrence in children and adolescents with acute lymphoblastic leukemia. Methods This study has a retrospective cohort design. The studied population comprised 199 children and adolescents with a diagnosis of acute lymphoblastic leukemia followed up at Hospital das Clinicas, Universidade Federal de Minas Gerais (HC-UFMG) between March 2001 and August 2009 and submitted to the Grupo Brasileiro de Tratamento de Leucemia da Infância - acute lymphoblastic leukemia (GBTLI-LLA-99) treatment protocol. Results The estimated probabilities of overall survival and event free survival at 5 years were 69.5% (± 3.6%) and 58.8% (± 4.0%), respectively. The cumulative incidence of central nervous system (isolated or combined) relapse was 11.0% at 8 years. The estimated rate of isolated central nervous system relapse at 8 years was 6.8%. In patients with a blood leukocyte count at diagnosis ≥ 50 x 109/L, the estimated rate of isolated or combined central nervous system relapse was higher than in the group with a count < 50 x 109/L (p-value = 0.0008). There was no difference in cumulative central nervous system relapse (isolated or combined) for the other analyzed variables: immunophenotype, traumatic lumbar puncture, interval between diagnosis and first lumbar puncture and place where the procedure was performed. Conclusions These results suggest that a leukocyte count > 50 x 109/L at diagnosis seems to be a significant prognostic factor for a higher incidence of central nervous system relapse in childhood acute lymphoblastic leukemia. PMID:23323068

  16. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis

    PubMed Central

    Lovato, Laura; Willis, Simon N.; Rodig, Scott J.; Caron, Tyler; Almendinger, Stefany E.; Howell, Owain W.; Reynolds, Richard; Hafler, David A.

    2011-01-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis. PMID:21216828

  17. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis.

    PubMed

    Lovato, Laura; Willis, Simon N; Rodig, Scott J; Caron, Tyler; Almendinger, Stefany E; Howell, Owain W; Reynolds, Richard; O'Connor, Kevin C; Hafler, David A

    2011-02-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.

  18. Central sympathoexcitatory actions of angiotensin II: role of type 1 angiotensin II receptors.

    PubMed

    DiBona, G F

    1999-01-01

    The role of the renin-angiotensin system in the control of sympathetic nerve activity is reviewed. Two general mechanisms are considered, one that involves the effects of circulating angiotensin II (AngII) on the central nervous system and a second that involves the central nervous system effects of AngII that originates within the central nervous system. The role of type 1 AngII receptors in discrete brain sites that mediate the sympathoexcitatory actions of AngII of either circulating or central nervous system origin is examined. AngII of circulating origin has ready access to the subfornical organ and area postrema, where it can bind to type 1 AngII receptors on neurons whose connections to the nucleus tractus solitarius and rostral ventrolateral medulla result in sympathoexcitation. In the rostral ventrolateral medulla, angiotensin peptides of central nervous system origin, likely involving angiotensin species in addition to AngII and binding to receptors other than type 1 or 2 AngII receptors, tonically support sympathetic nerve activity.

  19. The complex simplicity of the brittle star nervous system.

    PubMed

    Zueva, Olga; Khoury, Maleana; Heinzeller, Thomas; Mashanova, Daria; Mashanov, Vladimir

    2018-01-01

    Brittle stars (Ophiuroidea, Echinodermata) have been increasingly used in studies of animal behavior, locomotion, regeneration, physiology, and bioluminescence. The success of these studies directly depends on good working knowledge of the ophiuroid nervous system. Here, we describe the arm nervous system at different levels of organization, including the microanatomy of the radial nerve cord and peripheral nerves, ultrastructure of the neural tissue, and localization of different cell types using specific antibody markers. We standardize the nomenclature of nerves and ganglia, and provide an anatomically accurate digital 3D model of the arm nervous system as a reference for future studies. Our results helped identify several general features characteristic to the adult echinoderm nervous system, including the extensive anatomical interconnections between the ectoneural and hyponeural components, neuroepithelial organization of the central nervous system, and the supporting scaffold of the neuroepithelium formed by radial glial cells. In addition, we provide further support to the notion that the echinoderm radial glia is a complex and diverse cell population. We also tested the suitability of a range of specific cell-type markers for studies of the brittle star nervous system and established that the radial glial cells are reliably labeled with the ERG1 antibodies, whereas the best neuronal markers are acetylated tubulin, ELAV, and synaptotagmin B. The transcription factor Brn1/2/4 - a marker of neuronal progenitors - is expressed not only in neurons, but also in a subpopulation of radial glia. For the first time, we describe putative ophiuroid proprioceptors associated with the hyponeural part of the central nervous system. Together, our data help establish both the general principles of neural architecture common to the phylum Echinodermata and the specific ophiuroid features.

  20. Localization of rem2 in the central nervous system of the adult rainbow trout (Oncorhynchus mykiss).

    PubMed

    Downs, Anna G; Scholles, Katie R; Hollis, David M

    2016-12-01

    Rem2 is member of the RGK (Rem, Rad, and Gem/Kir) subfamily of the Ras superfamily of GTP binding proteins known to influence Ca 2+ entry into the cell. In addition, Rem2, which is found at high levels in the vertebrate brain, is also implicated in cell proliferation and synapse formation. Though the specific, regional localization of Rem2 in the adult mammalian central nervous system has been well-described, such information is lacking in other vertebrates. Rem2 is involved in neuronal processes where the capacities between adults of different vertebrate classes vary. Thus, we sought to localize the rem2 gene in the central nervous system of an adult anamniotic vertebrate, the rainbow trout (Oncorhynchus mykiss). In situ hybridization using a digoxigenin (DIG)-labeled RNA probe was used to identify the regional distribution of rem2 expression throughout the trout central nervous system, while real-time polymerase chain reaction (rtPCR) further supported these findings. Based on in situ hybridization, the regional distribution of rem2 occurred within each major subdivision of the brain and included large populations of rem2 expressing cells in the dorsal telencephalon of the cerebrum, the internal cellular layer of the olfactory bulb, and the optic tectum of the midbrain. In contrast, no rem2 expressing cells were resolved within the cerebellum. These results were corroborated by rtPCR, where differential rem2 expression occurred between the major subdivisions assayed with the highest levels being found in the cerebrum, while it was nearly absent in the cerebellum. These data indicate that rem2 gene expression is broadly distributed and likely influences diverse functions in the adult fish central nervous system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Immunosenescence of microglia and macrophages: impact on the ageing central nervous system.

    PubMed

    Rawji, Khalil S; Mishra, Manoj K; Michaels, Nathan J; Rivest, Serge; Stys, Peter K; Yong, V Wee

    2016-03-01

    Ageing of the central nervous system results in a loss of both grey and white matter, leading to cognitive decline. Additional injury to both the grey and white matter is documented in many neurological disorders with ageing, including Alzheimer's disease, traumatic brain and spinal cord injury, stroke, and multiple sclerosis. Accompanying neuronal and glial damage is an inflammatory response consisting of activated macrophages and microglia, innate immune cells demonstrated to be both beneficial and detrimental in neurological repair. This article will propose the following: (i) infiltrating macrophages age differently from central nervous system-intrinsic microglia; (ii) several mechanisms underlie the differential ageing process of these two distinct cell types; and (iii) therapeutic strategies that selectively target these diverse mechanisms may rejuvenate macrophages and microglia for repair in the ageing central nervous system. Most responses of macrophages are diminished with senescence, but activated microglia increase their expression of pro-inflammatory cytokines while diminishing chemotactic and phagocytic activities. The senescence of macrophages and microglia has a negative impact on several neurological diseases, and the mechanisms underlying their age-dependent phenotypic changes vary from extrinsic microenvironmental changes to intrinsic changes in genomic integrity. We discuss the negative effects of age on neurological diseases, examine the response of senescent macrophages and microglia in these conditions, and propose a theoretical framework of therapeutic strategies that target the different mechanisms contributing to the ageing phenotype in these two distinct cell types. Rejuvenation of ageing macrophage/microglia may preserve neurological integrity and promote regeneration in the ageing central nervous system. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses.

    PubMed

    Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan

    2006-11-01

    For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.

  3. Primary central nervous system B-cell lymphoma in a young dog

    PubMed Central

    Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H.; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2012-01-01

    This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog. PMID:23115372

  4. Misdiagnosis of acute peripheral vestibulopathy in central nervous ischemic infarction.

    PubMed

    Braun, Eva Maria; Tomazic, Peter Valentin; Ropposch, Thorsten; Nemetz, Ulrike; Lackner, Andreas; Walch, Christian

    2011-12-01

    Vertigo is a very common symptom at otorhinolaryngology (ENT), neurological, and emergency units, but often, it is difficult to distinguish between vertigo of peripheral and central origin. We conducted a retrospective analysis of a hospital database, including all patients admitted to the ENT University Hospital Graz after neurological examination, with a diagnosis of peripheral vestibular vertigo and subsequent diagnosis of central nervous infarction as the actual cause for the vertigo. Twelve patients were included in this study. All patients with acute spinning vertigo after a thorough neurological examination and with uneventful computed tomographic scans were referred to our ENT department. Nine of them presented with horizontal nystagmus. Only 1 woman experienced additional hearing loss. The mean diagnostic delay to the definite diagnosis of a central infarction through magnetic resonance imaging was 4 days (SD, 2.3 d). A careful otologic and neurological examination, including the head impulse test and caloric testing, is mandatory. Because ischemic events cannot be diagnosed in computed tomographic scans at an early stage, we strongly recommend to perform cranial magnetic resonance imaging within 48 hours from admission if vertigo has not improved under conservative treatment.

  5. Application of Targeted Mass Spectrometry for the Quantification of Sirtuins in the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Jayasena, T.; Poljak, A.; Braidy, N.; Zhong, L.; Rowlands, B.; Muenchhoff, J.; Grant, R.; Smythe, G.; Teo, C.; Raftery, M.; Sachdev, P.

    2016-10-01

    Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies.

  6. Natural History Study of Children With Metachromatic Leukodystrophy

    ClinicalTrials.gov

    2016-04-19

    Lipid Metabolism Disorders; Metachromatic Leukodystrophy (MLD); Nervous System Diseases; Brain Diseases; Central Nervous System Diseases; Demyelinating Diseases; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Sphingolipidoses; Hereditary Central Nervous System Demyelinating Diseases; Metabolic Inborn Brain Diseases; Lysosomal Storage Diseases; Metabolic Diseases; Sulfatidosis

  7. Improving Care in Pediatric Neuro-oncology Patients: An Overview of the Unique Needs of Children With Brain Tumors.

    PubMed

    Fischer, Cheryl; Petriccione, Mary; Donzelli, Maria; Pottenger, Elaine

    2016-03-01

    Brain tumors represent the most common solid tumors in childhood, accounting for almost 25% of all childhood cancer, second only to leukemia. Pediatric central nervous system tumors encompass a wide variety of diagnoses, from benign to malignant. Any brain tumor can be associated with significant morbidity, even when low grade, and mortality from pediatric central nervous system tumors is disproportionately high compared to other childhood malignancies. Management of children with central nervous system tumors requires knowledge of the unique aspects of care associated with this particular patient population, beyond general oncology care. Pediatric brain tumor patients have unique needs during treatment, as cancer survivors, and at end of life. A multidisciplinary team approach, including advanced practice nurses with a specialty in neuro-oncology, allows for better supportive care. Knowledge of the unique aspects of care for children with brain tumors, and the appropriate interventions required, allows for improved quality of life. © The Author(s) 2015.

  8. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    PubMed

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  9. Magnetic resonance imaging characteristics in four dogs with central nervous system neosporosis.

    PubMed

    Parzefall, Birgit; Driver, Colin J; Benigni, Livia; Davies, Emma

    2014-01-01

    Neosporosis is a polysystemic disease that can affect dogs of any age and can cause inflammation of the central nervous system. Antemortem diagnosis can be challenging, as clinical and conventional laboratory test findings are often nonspecific. A previous report described cerebellar lesions in brain MRI studies of seven dogs and proposed that these may be characteristic for central nervous system Neosporosis. The purpose of this retrospective study was to describe MRI characteristics in another group of dogs with confirmed central nervous system neosporosis and compare them with the previous report. The hospital's database was searched for dogs with confirmed central nervous system neosporosis and four observers recorded findings from each dog's MRI studies. A total of four dogs met inclusion criteria. Neurologic examination was indicative of a forebrain and cerebellar lesion in dog 2 and multifocal central nervous system disease in dogs 1, 3, and 4. Magnetic resonance imaging showed mild bilateral and symmetrical cerebellar atrophy in three of four dogs (dogs 2, 3, 4), intramedullary spinal cord changes in two dogs (dogs 3, 4) and a mesencephalic and metencephalic lesion in one dog (dog 2). Multifocal brain lesions were recognized in two dogs (dogs 1, 4) and were present in the thalamus, lentiform nucleus, centrum semiovale, internal capsule, brainstem and cortical gray matter of the frontal, parietal or temporal lobe. Findings indicated that central nervous system neosporosis may be characterized by multifocal MRI lesions as well as cerebellar involvement in dogs. © 2014 American College of Veterinary Radiology.

  10. A Drosophila In Vivo Injury Model for Studying Neuroregeneration in the Peripheral and Central Nervous System.

    PubMed

    Li, Dan; Li, Feng; Guttipatti, Pavithran; Song, Yuanquan

    2018-05-05

    The regrowth capacity of damaged neurons governs neuroregeneration and functional recovery after nervous system trauma. Over the past few decades, various intrinsic and extrinsic inhibitory factors involved in the restriction of axon regeneration have been identified. However, simply removing these inhibitory cues is insufficient for successful regeneration, indicating the existence of additional regulatory machinery. Drosophila melanogaster, the fruit fly, shares evolutionarily conserved genes and signaling pathways with vertebrates, including humans. Combining the powerful genetic toolbox of flies with two-photon laser axotomy/dendriotomy, we describe here the Drosophila sensory neuron - dendritic arborization (da) neuron injury model as a platform for systematically screening for novel regeneration regulators. Briefly, this paradigm includes a) the preparation of larvae, b) lesion induction to dendrite(s) or axon(s) using a two-photon laser, c) live confocal imaging post-injury and d) data analysis. Our model enables highly reproducible injury of single labeled neurons, axons, and dendrites of well-defined neuronal subtypes, in both the peripheral and central nervous system.

  11. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    NASA Astrophysics Data System (ADS)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  12. Potential Side Effect of Inadvertent Intravascular Administration of Liposomal Bupivacaine

    DTIC Science & Technology

    2017-06-01

    treat and is potentially fatal. LAST can impair function of the central nervous system and cause cardiovascular collapse, with potentially...in the reversal of cardiovascular and central nervous system symptoms of local anesthetic and other lipophilic drug overdoses. ILE is gaining...to the sites of toxic action in the central nervous system and the heart. However, liposomal formulations of local anesthetics (EXPAREL in

  13. Functionalized carbon nanotubes for potential medicinal applications.

    PubMed

    Zhang, Yi; Bai, Yuhong; Yan, Bing

    2010-06-01

    Functionalized carbon nanotubes display unique properties that enable a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. High aspect ratio, unique optical property and the likeness as small molecule make carbon nanotubes an unusual allotrope of element carbon. After functionalization, carbon nanotubes display potentials for a variety of medicinal applications, including the diagnosis and treatment of cancer, infectious diseases and central nervous system disorders, and applications in tissue engineering. These potential applications are particularly encouraged by their ability to penetrate biological membranes and relatively low toxicity. (c) 2010 Elsevier Ltd. All rights reserved.

  14. B-cell posttransplant lymphoproliferative disorder isolated to the central nervous system is Epstein-Barr virus positive and lacks p53 and Myc expression by immunohistochemistry.

    PubMed

    Sundin, Andrew; Grzywacz, Bartosz J; Yohe, Sophia; Linden, Michael A; Courville, Elizabeth L

    2017-03-01

    In this retrospective study from one institution, we performed a clinicopathological study of a cohort of patients with posttransplant lymphoproliferative disorder (PTLD) confined to the central nervous system. We also identified a comparison cohort of patients with de novo primary diffuse large B-cell lymphoma of the central nervous system. We performed a detailed morphologic review, evaluated Epstein-Barr virus (EBV) by in situ hybridization, and interpreted a panel of immunohistochemical stains in a subset of cases including Hans classification markers (CD10, BCL6, MUM1), p53, CD30, Myc, and BCL2. All 17 of the posttransplant and none of 11 de novo cases were EBV positive (P < .005). Morphologic patterns identified in the PTLD cases were monomorphic diffuse large B-cell lymphoma pattern (10 patients) and "T-cell-rich" pattern (7 patients). The monomorphic posttransplant cases were more likely to be Myc negative (P = .015) and CD30 positive (P < .005) than the de novo cases, and showed a similarly low rate of p53 positivity by immunohistochemistry. No prognostic factors for overall survival were identified. Central nervous system PTLD is EBV positive, typically lacks p53 and Myc expression by immunohistochemistry, and can present with numerous background T lymphocytes. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Central voice production and pathophysiology of spasmodic dysphonia.

    PubMed

    Mor, Niv; Simonyan, Kristina; Blitzer, Andrew

    2018-01-01

    Our ability to speak is complex, and the role of the central nervous system in controlling speech production is often overlooked in the field of otolaryngology. In this brief review, we present an integrated overview of speech production with a focus on the role of central nervous system. The role of central control of voice production is then further discussed in relation to the potential pathophysiology of spasmodic dysphonia (SD). Peer-review articles on central laryngeal control and SD were identified from PUBMED search. Selected articles were augmented with designated relevant publications. Publications that discussed central and peripheral nervous system control of voice production and the central pathophysiology of laryngeal dystonia were chosen. Our ability to speak is regulated by specialized complex mechanisms coordinated by high-level cortical signaling, brainstem reflexes, peripheral nerves, muscles, and mucosal actions. Recent studies suggest that SD results from a primary central disturbance associated with dysfunction at our highest levels of central voice control. The efficacy of botulinum toxin in treating SD may not be limited solely to its local effect on laryngeal muscles and also may modulate the disorder at the level of the central nervous system. Future therapeutic options that target the central nervous system may help modulate the underlying disorder in SD and allow clinicians to better understand the principal pathophysiology. NA.Laryngoscope, 128:177-183, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Central Nervous System Infections in Denmark

    ClinicalTrials.gov

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  17. Risk of central nervous system defects in offspring of women with and without mental illness.

    PubMed

    Ayoub, Aimina; Fraser, William D; Low, Nancy; Arbour, Laura; Healy-Profitós, Jessica; Auger, Nathalie

    2018-02-22

    We sought to determine the relationship between maternal mental illness and the risk of having an infant with a central nervous system defect. We analyzed a cohort of 654,882 women aged less than 20 years between 1989 and 2013 who later delivered a live born infant in any hospital in Quebec, Canada. The primary exposure was mental illness during pregnancy or hospitalization for mental illness before pregnancy. The outcomes were neural and non-neural tube defects of the central nervous system in any offspring. We computed risk ratios (RR) and 95% confidence intervals (CI) for the association between mental disorders and risk of central nervous system defects in log-binomial regression models adjusted for age at delivery, total parity, comorbidity, socioeconomic deprivation, place of residence, and time period. Maternal mental illness was associated with an increased risk of nervous system defects in offspring (RR 1.76, 95% CI 1.64-1.89). Hospitalization for any mental disorder was more strongly associated with non-neural tube (RR 1.84, 95% CI 1.71-1.99) than neural tube defects (RR 1.31, 95% CI 1.08-1.59). Women at greater risk of nervous system defects in offspring tended to be diagnosed with multiple mental disorders, have more than one hospitalization for mental disease, or be 17 or older at first hospitalization. A history of mental illness is associated with central nervous system defects in offspring. Women hospitalized for mental illness may merit counseling at first symptoms to prevent central nervous system defects at pregnancy.

  18. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    ERIC Educational Resources Information Center

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  19. 46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  20. 46 CFR Appendix C to Subpart C to... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  1. 46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  2. 46 CFR Appendix C to Subpart C of... - Medical Surveillance Guidelines for Benzene

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... depression of the hematopoietic system, pancytopenia, aplastic anemia, and leukemia. Inhalation of high concentrations may affect the functioning of the central nervous system. Aspiration of small amounts of liquid... an initial stimulatory effect on the central nervous system characterized by exhilaration, nervous...

  3. Plasticity and Activation of Spared Intraspinal Respiratory Circuits Following Spinal Cord Injury

    DTIC Science & Technology

    2016-10-01

    fluorescent immunohistochemistry (IHC) procedures. Accordingly, we performed IHC with two markers commonly used in the central nervous system (GFAP and...immunohistochemistry (IHC) procedures. Accordingly, we performed IHC with two 365 markers commonly used in the central nervous system (GFAP and NeuN) either...905 mammalian central nervous system . J Neurosci Methods 1: 107-132, 1979. 906 Kirkwood PA, Munson JB, Sears TA, and Westgaard RH. Respiratory

  4. Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia

    ClinicalTrials.gov

    2014-11-04

    Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood Infratentorial Ependymoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Gonadotroph Adenoma; Pituitary Basophilic Adenoma; Pituitary Chromophobe Adenoma; Pituitary Eosinophilic Adenoma; Prolactin Secreting Adenoma; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent Pituitary Tumor; Recurrent/Refractory Childhood Hodgkin Lymphoma; T-cell Childhood Acute Lymphoblastic Leukemia; T-cell Large Granular Lymphocyte Leukemia; TSH Secreting Adenoma; Unspecified Childhood Solid Tumor, Protocol Specific

  5. Bone mineral density in subjects using central nervous system-active medications.

    PubMed

    Kinjo, Mitsuyo; Setoguchi, Soko; Schneeweiss, Sebastian; Solomon, Daniel H

    2005-12-01

    Decreased bone mineral density defines osteoporosis according to the World Health Organization and is an important predictor of future fractures. The use of several types of central nervous system-active drugs, including benzodiazepines, anticonvulsants, antidepressants, and opioids, have all been associated with increased risk of fracture. However, it is unclear whether such an increase in risk is related to an effect of bone mineral density or to other factors, such as increased risk of falls. We sought to examine the relationship between bone mineral density and the use of benzodiazepines, anticonvulsants, antidepressants, and opioids in a representative US population-based sample. We analyzed data on adults aged 17 years and older from the Third National Health and Nutrition Examination Survey (NHANES III, 1988-1994). Total femoral bone mineral density of 7114 male and 7532 female participants was measured by dual-energy x-ray absorptiometry. Multivariable linear regression models were used to quantify the relation between central nervous system medication exposure and total femoral bone mineral density. Models controlled for relevant covariates, including age, sex, and body mass index. In linear regression models, significantly reduced bone mineral density was found in subjects taking anticonvulsants (0.92 g/cm2; 95% confidence interval [CI]: 0.89 to 0.94) and opioids (0.92 g/cm2; 95% CI: 0.88 to 0.95) compared with nonusers (0.95 g/cm2; 95% CI: 0.95 to 0.95) after adjusting for several potential confounders. The other central nervous system-active drugs--benzodiazepines or antidepressants--were not associated with significantly reduced bone mineral density. In cross-sectional analysis of NHANES III, anticonvulsants and opioids (but not benzodiazepines or antidepressants) were associated with significantly reduced bone mineral density. These findings have implications for fracture-prevention strategies.

  6. Gut commensalism, cytokines, and central nervous system demyelination.

    PubMed

    Telesford, Kiel; Ochoa-Repáraz, Javier; Kasper, Lloyd H

    2014-08-01

    There is increasing support for the importance of risk factors such as genetic makeup, obesity, smoking, vitamin D insufficiency, and antibiotic exposure contributing to the development of autoimmune diseases, including human multiple sclerosis (MS). Perhaps the greatest environmental risk factor associated with the development of immune-mediated conditions is the gut microbiome. Microbial and helminthic agents are active participants in shaping the immune systems of their hosts. This concept is continually reinforced by studies in the burgeoning area of commensal-mediated immunomodulation. The clinical importance of these findings for MS is suggested by both their participation in disease and, perhaps of greater clinical importance, attenuation of disease severity. Observations made in murine models of central nervous system demyelinating disease and a limited number of small studies in human MS suggest that immune homeostasis within the gut microbiome may be of paramount importance in maintaining a disease-free state. This review describes three immunological factors associated with the gut microbiome that are central to cytokine network activities in MS pathogenesis: T helper cell polarization, T regulatory cell function, and B cell activity. Comparisons are drawn between the regulatory mechanisms attributed to first-line therapies and those described in commensal-mediated amelioration of central nervous system demyelination.

  7. Radiation-Induced Central Nervous System Death - A study of the Pathologic Findings in Monkeys Irradiated with Massive Doses of Cobalt-60 (Gamma) Radiation

    DTIC Science & Technology

    1959-04-01

    U.S. DEPARTMENT OF COMMERCE National Technical Information Service AD-AO36 168 RADIATION-INDUCED CENTRAL NERVOUS SYSTEM DEATH - A STUDY OF THE...ý." - ý " . :..’ýý.ý-. .. , . ý 4 ý .. -- ’ý.- -!:;:ý’,. 1,ý,-: WJiAUOK4KOUED CENTRAL NERVOUS SYSTEM NT A Study of the Pathologic Findings in...University SCHOOL OF AVIATION MEDICINE, USAF Randolph AFB, Texas April 1959 7757-. AdIAIONH-INDUCED CENTRAL NEVOUS $Y$194 DUTH A Study of the Pathologic

  8. Chondroitin sulfates and their binding molecules in the central nervous system.

    PubMed

    Djerbal, L; Lortat-Jacob, H; Kwok, Jcf

    2017-06-01

    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.

  9. 21 CFR 1308.14 - Schedule IV.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Cathine ((+)-norpseudoephedrine) 1230 (2...

  10. 21 CFR 1308.14 - Schedule IV.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... which contains any quantity of the following substances having a stimulant effect on the central nervous system, including its salts, isomers and salts of isomers: (1) Cathine ((+)-norpseudoephedrine) 1230 (2...

  11. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...

  12. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...

  13. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...

  14. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...

  15. 21 CFR 520.600 - Dichlorvos.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... administration of muscle relaxant drugs, phenothiazine derived tranquilizers or central nervous system depressant..., phenothiazine derived tranquilizers, or central nervous system depressants. (4) Do not use in horses which are...

  16. Season of birth and primary central nervous system tumors: a systematic review of the literature with critical appraisal of underlying mechanisms.

    PubMed

    Georgakis, Marios K; Ntinopoulou, Erato; Chatzopoulou, Despoina; Petridou, Eleni Th

    2017-09-01

    Season of birth has been considered a proxy of seasonally varying exposures around perinatal period, potentially implicated in the etiology of several health outcomes, including malignancies. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, we have systematically reviewed published literature on the association of birth seasonality with risk of central nervous system tumors in children and adults. Seventeen eligible studies using various methodologies were identified, encompassing 20,523 cases. Eight of 10 studies in children versus four of eight in adults showed some statistically significant associations between birth seasonality and central nervous system tumor or tumor subtype occurrence, pointing to a clustering of births mostly in fall and winter months, albeit no consistent pattern was identified by histologic subtype. A plethora of perinatal factors might underlie or confound the associations, such as variations in birth weight, maternal diet during pregnancy, perinatal vitamin D levels, pesticides, infectious agents, immune system maturity, and epigenetic modifications. Inherent methodological weaknesses of to-date published individual investigations, including mainly underpowered size to explore the hypothesis by histological subtype, call for more elegant concerted actions using primary data of large datasets taking also into account the interplay between the potential underlying etiologic factors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  18. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  19. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  20. 76 FR 77895 - Schedules of Controlled Substances: Placement of Ezogabine Into Schedule V

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... ester, is a new chemical substance with central nervous system depressant properties and is classified... nervous system as an anticonvulsant and the potential side effects of the drug therein, warrant closer... the central nervous system is alone not enough to merit its inclusion into Schedule IV of the CSA, nor...

  1. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  2. 38 CFR 4.88b - Schedule of ratings-infectious diseases, immune disorders and nutritional deficiencies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... disease 100 Thereafter rate residuals such as liver or spleen damage or central nervous system involvement... complications of nervous system, vascular system, eyes or ears. (See DC 7004, syphilitic heart disease, DC 8013... associated with central nervous system syphilis) 6311Tuberculosis, miliary: As active disease 100 Inactive...

  3. A gamma-secretase inhibitor decreases amyloid-beta production in the central nervous system

    PubMed Central

    Bateman, Randall J.; Siemers, Eric R.; Mawuenyega, Kwasi G.; Wen, Guolin; Browning, Karen R.; Sigurdson, Wendy C.; Yarasheski, Kevin E.; Friedrich, Stuart W.; DeMattos, Ronald B.; May, Patrick C.; Paul, Steven M.; Holtzman, David M.

    2009-01-01

    Objective Accumulation of amyloid-β (Aβ) by over-production or under-clearance in the central nervous system is hypothesized to be a necessary event in the pathogenesis of Alzheimer Disease. However, previously there has not been a method to determine drug effects on Aβ production or clearance in the human central nervous system. The objective of this study was to determine the effects of a gamma-secretase inhibitor on the production of Aβ in the human CNS. Methods We utilized a recently developed method of stable-isotope labeling combined with cerebrospinal fluid sampling to directly measure Aβ production during treatment of a gamma-secretase inhibitor, LY450139. We assessed whether this drug could decrease central nervous system Aβ production in healthy men (age 21–50) at single oral doses of 100mg, 140mg, or 280mg (N=5 per group). Results LY450139 significantly decreased the production of central nervous system Aβ in a dose-dependent fashion, with inhibition of Aβ generation of 47%, 52%, and 84% over a 12 hour period with doses of 100 mg, 140, and 280 mg respectively. There was no difference in Aβ clearance. Interpretation Stable isotope labeling of central nervous system proteins can be utilized to assess the effects of drugs on the production and clearance rates of proteins targeted as potential disease modifying treatments for Alzheimer Disease and other central nervous system disorders. Results from this approach can assist in making decisions about drug dosing and frequency in the design of larger and longer clinical trials for diseases such as Alzheimer Disease, and may accelerate effective drug validation. PMID:19360898

  4. Central Nervous System Oxygen Toxicity in Closed-Circuit Scuba Divers

    DTIC Science & Technology

    1986-03-01

    CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA DIVERS III By F. K. Butler, Jr., LCDR, MC, USN NAVY EXPERIMENTAL DIVING UNIT DTIC...PANAMA CITY. FLORIDA 321407 IN. aLV OMW Vol NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 5-86 CENTRAL NERVOUS SYSTEM OXYGEN TOXICITY IN CLOSED -CIRCUIT SCUBA...BUTLER, Jr. J . .d.M. HAMILTON LCDR, MC, USK CDR, MC, USK CDR, USKN Medical Research Officer Senior Medical Officer Comanding Officer UNCLASSIFIED 4

  5. IκB kinase 2 determines oligodendrocyte loss by non-cell-autonomous activation of NF-κB in the central nervous system

    PubMed Central

    Raasch, Jenni; Zeller, Nicolas; van Loo, Geert; Merkler, Doron; Mildner, Alexander; Erny, Daniel; Knobeloch, Klaus-Peter; Bethea, John R.; Waisman, Ari; Knust, Markus; Del Turco, Domenico; Deller, Thomas; Blank, Thomas; Priller, Josef; Brück, Wolfgang

    2011-01-01

    The IκB kinase complex induces nuclear factor kappa B activation and has recently been recognized as a key player of autoimmunity in the central nervous system. Notably, IκB kinase/nuclear factor kappa B signalling regulates peripheral myelin formation by Schwann cells, however, its role in myelin formation in the central nervous system during health and disease is largely unknown. Surprisingly, we found that brain-specific IκB kinase 2 expression is dispensable for proper myelin assembly and repair in the central nervous system, but instead plays a fundamental role for the loss of myelin in the cuprizone model. During toxic demyelination, inhibition of nuclear factor kappa B activation by conditional ablation of IκB kinase 2 resulted in strong preservation of central nervous system myelin, reduced expression of proinflammatory mediators and a significantly attenuated glial response. Importantly, IκB kinase 2 depletion in astrocytes, but not in oligodendrocytes, was sufficient to protect mice from myelin loss. Our results reveal a crucial role of glial cell-specific IκB kinase 2/nuclear factor kappa B signalling for oligodendrocyte damage during toxic demyelination. Thus, therapies targeting IκB kinase 2 function in non-neuronal cells may represent a promising strategy for the treatment of distinct demyelinating central nervous system diseases. PMID:21310728

  6. Review of dextromethorphan administration in 18 patients with subacute methotrexate central nervous system toxicity.

    PubMed

    Afshar, Maryam; Birnbaum, Daniel; Golden, Carla

    2014-06-01

    The pathogenesis of methotrexate central nervous system toxicity is multifactorial, but it is likely related to central nervous system folate homeostasis. The use of folinate rescue has been described to decrease toxicity in patients who had received intrathecal methotrexate. It has also been described in previous studies that there is an elevated level of homocysteine in plasma and cerebrospinal fluid of patients who had received intrathecal methotrexate. Homocysteine is an N-methyl-D-aspartate receptor agonist. The use of dextromethorphan, noncompetitive N-methyl-D-aspartate receptor receptor antagonist, has been used in the treatment of sudden onset of neurological dysfunction associated with methotrexate toxicity. It remains unclear whether the dextromethorphan impacted the speed of recovery, and its use remains controversial. This study reviews the use of dextromethorphan in the setting of subacute methotrexate central nervous system toxicity. Charts of 18 patients who had sudden onset of neurological impairments after receiving methotrexate and were treated with dextromethorphan were reviewed. The use of dextromethorphan in most of our patients resulted in symptomatic improvement. In this patient population, earlier administration of dextromethorphan resulted in faster improvement of impairments and led to prevention of recurrence of seizure activity induced by methotrexate central nervous system toxicity. Our study provides support for the use of dextromethorphan in patients with subacute methotrexate central nervous system toxicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. [The role of recombinant activated factor VII in neuro- surgical and neurocritical patients].

    PubMed

    Rama-Maceiras, P; Ingelmo-Ingelmo, I; Fábregas-Juliá, N; Hernández-Palazón, J

    2011-06-01

    Central nervous system haemorrhage is a severe pathology, as a small amount of bleeding inside the brain can result in devastating consequences. Haemostatic agents might decrease the consequences of intra- cranial bleeding, whichever spontaneous, traumatic, or anticoagulation treatment etiology. Proacogulant recombinant activated factor VII (rFVIIa) has been given after central nervous system bleeding, with an off-label indication. In this update, we go over the drug mechanism of action, its role in the treatment of central nervous system haemorrhage and the published evidences regarding this subject. We carried out a literature review concerning the treatment with rFVIIa in central nervous system haemorrhage, neurocritical pathologies and neurosurgical procedures, searching in MEDLINE and in clinical trials registry: http://clinicaltrials.gov (last review September 2010), as well as performing a manual analysis of collected articles, looking for aditional references. The results of randomized clinical trials do not support the systematic administration of rFVIIa for spontaneous intracranial cerebral haemorrhage. In other central nervous system related haemorrhages, the current available data consist on retrospective studies, expert opinion or isolated case reports.

  8. Biological restoration of central nervous system architecture and function: part 3-stem cell- and cell-based applications and realities in the biological management of central nervous system disorders: traumatic, vascular, and epilepsy disorders.

    PubMed

    Farin, Azadeh; Liu, Charles Y; Langmoen, Iver A; Apuzzo, Michael L J

    2009-11-01

    STEM CELL THERAPY has emerged as a promising novel therapeutic endeavor for traumatic brain injury, spinal cord injury, stroke, and epilepsy in experimental studies. A few preliminary clinical trials have further supported its safety and early efficacy after transplantation into humans. Although not yet clinically available for central nervous system disorders, stem cell technology is expected to evolve into one of the most powerful tools in the biological management of complex central nervous system disorders, many of which currently have limited treatment modalities. The identification of stem cells, discovery of neurogenesis, and application of stem cells to treat central nervous system disorders represent a dramatic evolution and expansion of the neurosurgeon's capabilities into the neurorestoration and neuroregeneration realms. In Part 3 of a 5-part series on stem cells, we discuss the theory, experimental evidence, and clinical data pertaining to the use of stem cells for the treatment of traumatic, vascular, and epileptic disorders.

  9. Apoptotic cell death in the central nervous system of Bufo arenarum tadpoles induced by cypermethrin.

    PubMed

    Casco, V H; Izaguirre, M F; Marín, L; Vergara, M N; Lajmanovich, R C; Peltzer, P; Soler, A Peralta

    2006-05-01

    Tadpoles of the toad Bufo arenarum treated with cypermethrin (CY) at concentrations above 39 mug CY/L showed dose-dependent apoptotic cell death in immature cells of the central nervous system as demonstrated by morphometric analysis, the TUNEL method, and DNA fragmentation assay. Light-and electron-microscopic studies showed structural alterations in the intermediate and marginal layers of the brain. Immature cerebral tissue showed cellular shrinkage, nuclear fragmentation and increase of intercellular spaces. In this study we demonstrated high toxicity of CY to larval stages of Bufo arenarum. Our results show that doses lower than those used in routine insecticide applications can cause massive apoptosis in the immature cells of the central nervous system. These results coincide with our previous studies in Physalaemus biligonigerus, confirming the severe toxic effects of CY to the central nervous system of anuran species from Argentina. This may increase the mortality index in wild animals and contribute to the loss of biodiversity in our agroecosystems. We postulate that CY induces apoptosis in central nervous system cells of Bufo arenarum tadpoles by specific neurotoxic mechanisms.

  10. Sex and Stress Hormone Influences on the Expression and Activity of Brain-Derived Neurotrophic Factor

    PubMed Central

    Carbone, David L.; Handa, Robert J.

    2012-01-01

    The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562

  11. Cortical neuronal cytoskeletal changes associated with FIV infection

    NASA Technical Reports Server (NTRS)

    Jacobson, S.; Henriksen, S. J.; Prospero-Garcia, O.; Phillips, T. R.; Elder, J. H.; Young, W. G.; Bloom, F. E.; Fox, H. S.

    1997-01-01

    HIV-1 infection is often complicated by central nervous system (CNS) dysfunction. Degenerative neuronal changes as well as neuronal loss have been documented in individuals with AIDS. Feline immunodeficiency virus (FIV) infection of cats provides a model for both the immune and the central nervous system manifestations of HIV infection of humans. In this study we have examined neurons in the frontal cortex of feline immunodeficiency virus-infected cats and controls for immunoreactivity with SMI 32, an antibody recognizing a non-phosphorylated epitope on neurofilaments. We noted a significant increase in the number of immunoreactive pyramidal cells in infected animals compared to controls. The changes seen in the neuronal cytoskeleton as a consequence of the inoculation with FIV were similar to those seen in humans undergoing the normal aging process as well as those suffering from neurological diseases, including Alzheimer's and dementia pugilistica. The changes we noted in the feline brain were also similar to that reported in animals with traumatic injuries or with spontaneously occurring or induced motor neuron diseases, suggesting that the increase in reactivity represents a deleterious effect of FIV on the central nervous system.

  12. Evaluation of central and peripheral neuropathy in patients with chronic obstructive pulmonary disease.

    PubMed

    Aras, Yeşim Güzey; Aydemir, Yusuf; Güngen, Belma Doğan; Güngen, Adil Can

    2018-01-01

    The aim of the study was to investigate the frequency and characteristics of peripheral nervous system (PNS) and central nervous system (CNS) involvement in COPD. The study included 41 COPD patients and 41 healthy volunteers. Electrophysiological studies were carried out: electromyography (EMG) and visual evoked potentials (VEPs). The median nerve, ulnar nerve, common peroneal nerve, and tibial nerve were evaluated for latency, amplitude, and conduction velocity. The mean age of patients with COPD was 61.8 years and disease duration 10.3 years. There was no difference between patient and control groups in terms of age, BMI, smoking status, or biochemical parameters. Upon VEP examination, latencies were significantly prolonged and amplitudes shortened in the patient group compared to the control group. In EMG measurements, conduction velocity and amplitudes in all nerves were low in the patient group. Similarly, latencies in all nerves were higher in patients with COPD. Central and peripheral nervous system involvement could develop in patients with moderate-severe COPD, and these patients should be monitored for neuropathic changes in combination with neurological examination.

  13. Farber's Disease

    MedlinePlus

    ... of these disorders. Additional studies will emphasize the quantitative analysis of the central nervous system structure and ... of these disorders. Additional studies will emphasize the quantitative analysis of the central nervous system structure and ...

  14. Central nervous system tissue heterotopia of the nose: case report and review of the literature

    PubMed Central

    Altissimi, G; Ascani, S; Falcetti, S; Cazzato, C; Bravi, I

    2009-01-01

    Summary The Authors present a case of heterotopic central nervous system tissue observed in an 81-year-old male in the form of an ethmoidal polyp. A review of the literature indicates that this is a rare condition characterised by a connective tissue lesion with astrocytic and oligodendrocytic glial cells, which may be located outside the nasal pyramid in some cases and inside the nasal cavity in others. The most important diagnostic aspect involves differentiating these from meningoencephalocele, which maintains an anatomical connection with central nervous system tissue. Contrast-enhanced imaging is essential for diagnosis, as in cases of heterotopic central nervous system tissue, it will demonstrate that there are no connections with intra-cranial tissue. Endoscopic excision is the treatment of choice. PMID:20161881

  15. Nervous system disorders in dialysis patients.

    PubMed

    Bansal, Vinod K; Bansal, Seema

    2014-01-01

    Neurologic complications are frequently encountered in dialysis patients. These may be due to the uremic state or to dialysis therapy, and require careful assessment. With longer survival of dialysis patients, these neurologic complications may significantly affect morbidity, mortality, and patients' well-being. Central nervous system involvement includes uremic encephalopathy as well as dialysis disequilibrium disorder. Both are rarely seen because of current improved understanding of their pathogenesis and treatment. Manifestations of atherosclerosis, stroke, and other neuropathies are present in this population and are not significantly altered by dialysis therapy. In recent years, increasing numbers of sleep disorders are being recognized. Peripheral nervous system involvement is also noted, including myopathy and related categories. In this chapter, we address clinical and pathophysiologic aspects of nervous system disorders in dialysis patients while discussing available therapeutic options to address the neurologic involvement. © 2014 Elsevier B.V. All rights reserved.

  16. Autonomous requirements of the Menkes disease protein in the nervous system.

    PubMed

    Hodgkinson, Victoria L; Zhu, Sha; Wang, Yanfang; Ladomersky, Erik; Nickelson, Karen; Weisman, Gary A; Lee, Jaekwon; Gitlin, Jonathan D; Petris, Michael J

    2015-11-15

    Menkes disease is a fatal neurodegenerative disorder arising from a systemic copper deficiency caused by loss-of-function mutations in a ubiquitously expressed copper transporter, ATP7A. Although this disorder reveals an essential role for copper in the developing human nervous system, the role of ATP7A in the pathogenesis of signs and symptoms in affected patients, including severe mental retardation, ataxia, and excitotoxic seizures, remains unknown. To directly examine the role of ATP7A within the central nervous system, we generated Atp7a(Nes) mice, in which the Atp7a gene was specifically deleted within neural and glial cell precursors without impairing systemic copper homeostasis, and compared these mice with the mottled brindle (mo-br) mutant, a murine model of Menkes disease in which Atp7a is defective in all cells. Whereas mo-br mice displayed neurodegeneration, demyelination, and 100% mortality prior to weaning, the Atp7a(Nes) mice showed none of these phenotypes, exhibiting only mild sensorimotor deficits, increased anxiety, and susceptibility to NMDA-induced seizure. Our results indicate that the pathophysiology of severe neurological signs and symptoms in Menkes disease is the result of copper deficiency within the central nervous system secondary to impaired systemic copper homeostasis and does not arise from an intrinsic lack of ATP7A within the developing brain. Furthermore, the sensorimotor deficits, hypophagia, anxiety, and sensitivity to NMDA-induced seizure in the Atp7a(Nes) mice reveal unique autonomous requirements for ATP7A in the nervous system. Taken together, these data reveal essential roles for copper acquisition in the central nervous system in early development and suggest novel therapeutic approaches in affected patients. Copyright © 2015 the American Physiological Society.

  17. Nervous System Sensitization as a Predictor of Outcome in the Treatment of Peripheral Musculoskeletal Conditions: A Systematic Review.

    PubMed

    O'Leary, Helen; Smart, Keith M; Moloney, Niamh A; Doody, Catherine M

    2017-02-01

    Research suggests that peripheral and central nervous system sensitization can contribute to the overall pain experience in peripheral musculoskeletal (MSK) conditions. It is unclear, however, whether sensitization of the nervous system results in poorer outcomes following the treatment. This systematic review investigated whether nervous system sensitization in peripheral MSK conditions predicts poorer clinical outcomes in response to a surgical or conservative intervention. Four electronic databases were searched to identify the relevant studies. Eligible studies had a prospective design, with a follow-up assessing the outcome in terms of pain or disability. Studies that used baseline indices of nervous system sensitization were included, such as quantitative sensory testing (QST) or questionnaires that measured centrally mediated symptoms. Thirteen studies met the inclusion criteria, of which six were at a high risk of bias. The peripheral MSK conditions investigated were knee and hip osteoarthritis, shoulder pain, and elbow tendinopathy. QST parameters indicative of sensitization (lower electrical pain thresholds, cold hyperalgesia, enhanced temporal summation, lower punctate sharpness thresholds) were associated with negative outcome (more pain or disability) in 5 small exploratory studies. Larger studies that accounted for multiple confounders in design and analysis did not support a predictive relationship between QST parameters and outcome. Two studies used self-report measures to capture comorbid centrally mediated symptoms, and found higher questionnaire scores were independently predictive of more persistent pain following a total joint arthroplasty. This systematic review found insufficient evidence to support an independent predictive relationship between QST measures of nervous system sensitization and treatment outcome. Self-report measures demonstrated better predictive ability. Further high-quality prognostic research is warranted. © 2016 World Institute of Pain.

  18. Hyperactivity

    MedlinePlus

    ... Causes Conditions that may lead to hyperactivity include: Attention deficit hyperactivity disorder (ADHD) Brain or central nervous system ... and the A.D.A.M. Editorial team. Attention Deficit Hyperactivity Disorder Read more NIH MedlinePlus Magazine Read ...

  19. Retinal Oximetry Discovers Novel Biomarkers in Retinal and Brain Diseases.

    PubMed

    Stefánsson, Einar; Olafsdottir, Olof Birna; Einarsdottir, Anna Bryndis; Eliasdottir, Thorunn Scheving; Eysteinsson, Thor; Vehmeijer, Wouter; Vandewalle, Evelien; Bek, Toke; Hardarson, Sveinn Hakon

    2017-05-01

    Biomarkers for several eye and brain diseases are reviewed, where retinal oximetry may help confirm diagnosis or measure severity of disease. These include diabetic retinopathy, central retinal vein occlusion (CRVO), retinitis pigmentosa, glaucoma, and Alzheimer's disease. Retinal oximetry is based on spectrophotometric fundus imaging and measures oxygen saturation in retinal arterioles and venules in a noninvasive, quick, safe manner. Retinal oximetry detects changes in oxygen metabolism, including those that result from ischemia or atrophy. In diabetic retinopathy, venous oxygen saturation increases and arteriovenous difference decreases. Both correlate with diabetic retinopathy severity as conventionally classified on fundus photographs. In CRVO, vein occlusion causes hypoxia, which is measured directly by retinal oximetry to confirm the diagnosis and measure severity. In both diseases, the change in oxygen levels is a consequence of disturbed blood flow with resulting tissue hypoxia and vascular endothelial growth factor (VEGF) production. In atrophic diseases, such as retinitis pigmentosa and glaucoma, retinal oxygen consumption is reduced and this is detected by retinal oximetry. Retinal oximetry correlates with visual field damage and retinal atrophy. It is an objective metabolic measure of the degree of retinal atrophy. Finally, the retina is part of the central nervous system tissue and reflects central nervous system diseases. In Alzheimer's disease, a change in retinal oxygen metabolism has been discovered. Retinal oximetry is a novel, noninvasive technology that opens the field of metabolic imaging of the retina. Biomarkers in metabolic, ischemic, and atrophic diseases of the retina and central nervous system have been discovered.

  20. Neurological diseases and pain

    PubMed Central

    2012-01-01

    Chronic pain is a frequent component of many neurological disorders, affecting 20–40% of patients for many primary neurological diseases. These diseases result from a wide range of pathophysiologies including traumatic injury to the central nervous system, neurodegeneration and neuroinflammation, and exploring the aetiology of pain in these disorders is an opportunity to achieve new insight into pain processing. Whether pain originates in the central or peripheral nervous system, it frequently becomes centralized through maladaptive responses within the central nervous system that can profoundly alter brain systems and thereby behaviour (e.g. depression). Chronic pain should thus be considered a brain disease in which alterations in neural networks affect multiple aspects of brain function, structure and chemistry. The study and treatment of this disease is greatly complicated by the lack of objective measures for either the symptoms or the underlying mechanisms of chronic pain. In pain associated with neurological disease, it is sometimes difficult to obtain even a subjective evaluation of pain, as is the case for patients in a vegetative state or end-stage Alzheimer's disease. It is critical that neurologists become more involved in chronic pain treatment and research (already significant in the fields of migraine and peripheral neuropathies). To achieve this goal, greater efforts are needed to enhance training for neurologists in pain treatment and promote greater interest in the field. This review describes examples of pain in different neurological diseases including primary neurological pain conditions, discusses the therapeutic potential of brain-targeted therapies and highlights the need for objective measures of pain. PMID:22067541

  1. Rare Primary Central Nervous System Tumors

    PubMed Central

    Kubicky, Charlotte Dai; Sahgal, Arjun; Chang, Eric L.; Lo, Simon S.

    2014-01-01

    There are close to 70,000 new cases of primary central nervous system tumors diagnosed annually in the United States. Meningiomas, gliomas, nerve sheath tumors and pituitary tumors account for 85% of them. There is abundant literature on these commonly occurring tumors but data from the literature on infrequently encountered tumors such as atypical teratoid/rhabdoid tumor, choroid plexus carcinoma, ganglioglioma, hemangiopericytoma, and pleomorphic xanthoastrocytoma are limited. This review provides an overview of the clinicopathologic and therapeutic aspects of these rare primary central nervous system tumors. PMID:25276324

  2. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System.

    PubMed

    Tseng, Ting-Chen; Tao, Lei; Hsieh, Fu-Yu; Wei, Yen; Chiu, Ing-Ming; Hsu, Shan-hui

    2015-06-17

    An injectable, self-healing hydrogel (≈1.5 kPa) is developed for healing nerve-system deficits. Neurosphere-like progenitors proliferate in the hydrogel and differentiate into neuron-like cells. In the zebrafish injury model, the central nervous system function is partially rescued by injection of the hydrogel and significantly rescued by injection of the neurosphere-laden hydrogel. The self-healing hydrogel may thus potentially repair the central nervous system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A pediatric renal lymphoma case presenting with central nervous system findings.

    PubMed

    Baran, Ahmet; Küpeli, Serhan; Doğru, Omer

    2013-06-01

    In pediatric patients renal lymphoma frequently presents in the form of multiple, bilateral mass lesions, infrequently as a single or retroperitoneal mass, and rarely as diffuse infiltrative lesions. In patients with apparent central nervous system involvement close attention to other physical and laboratory findings are essential for preventing a delay in the final diagnosis. Herein we present a pediatric patient with renal lymphoma that presented with central nervous system findings that caused a delay in diagnosis. None declared.

  4. Childhood Astrocytomas Treatment

    MedlinePlus

    ... symptoms and almost all need treatment. The central nervous system controls many important body functions. Astrocytomas are most common in these parts of the central nervous system (CNS): Cerebrum : The largest part of the brain, ...

  5. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    PubMed

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system.

  6. Entinostat in Treating Pediatric Patients With Recurrent or Refractory Solid Tumors

    ClinicalTrials.gov

    2018-05-23

    Childhood Brain Stem Neoplasm; Childhood Lymphoma; Childhood Solid Neoplasm; Pineal Region Neoplasm; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Childhood Visual Pathway Glioma; Refractory Central Nervous System Neoplasm

  7. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  8. [Pharmacological correction of central nervous system function in exposure to Coriolis acceleration].

    PubMed

    Karkishchenko, N N; Dimitriadi, N A; Molchanovskiĭ, V V

    1986-01-01

    Healthy volunteers with a low vestibular tolerance were exposed to Coriolis acceleration. Potassium orotate, pyracetame and riboxine were used as prophylactic measures against disorders in the function of the vestibular apparatus and higher compartments of the higher nervous system. The central nervous function was assessed with respect to the spectral power of electroencephalograms, short-term memory and mental performance. Potassium orotate given at a dose of 40 mg/kg body weight/day during 12-14 days as well as pyracetame given at a dose of 30 mg/kg body weight/day during 3 or 7 days increased significantly statokinetic tolerance and produced a protective effect on the central nervous function against Coriolis acceleration.

  9. [A case of primary central nervous system anaplastic lymphoma kinase positive anaplastic large cell lymphoma manifested as a unilateral pachymeningits].

    PubMed

    Fujisawa, Etsuco; Shibayama, Hidehiro; Mitobe, Fumi; Katada, Fumiaki; Sato, Susumu; Fukutake, Toshio

    2017-11-25

    There have been 23 reports of primary central nervous system anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma in the literature. Here we report the 24th case of a 40-year-old man who presented with occipital headache for one month. His contrast-enhanced brain MRI showed enhancement around the right temporal lobe, which suggested a diagnosis of hypertrophic pachymeningitis. He improved with steroid therapy. After discharge, however, he was readmitted with generalized convulsive seizures. Finally, he was diagnosed as primary central nervous system ALK-positive anaplastic large cell lymphoma by brain biopsy. Primary central nervous system lymphoma invading dura matter can rarely manifests as a unilateral pachymeningitis. Therefore, in case of pachymeningitis, we should pay attention to the possibility of infiltration of lymophoma with meticulous clinical follow-up.

  10. Hydrogels for central nervous system therapeutic strategies.

    PubMed

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  11. Effects of Brazilian scorpion venoms on the central nervous system.

    PubMed

    Nencioni, Ana Leonor Abrahão; Neto, Emidio Beraldo; de Freitas, Lucas Alves; Dorce, Valquiria Abrão Coronado

    2018-01-01

    In Brazil, the scorpion species responsible for most severe incidents belong to the Tityus genus and, among this group, T. serrulatus , T. bahiensis , T. stigmurus and T. obscurus are the most dangerous ones. Other species such as T. metuendus , T. silvestres, T. brazilae , T. confluens , T. costatus , T. fasciolatus and T. neglectus are also found in the country, but the incidence and severity of accidents caused by them are lower. The main effects caused by scorpion venoms - such as myocardial damage, cardiac arrhythmias, pulmonary edema and shock - are mainly due to the release of mediators from the autonomic nervous system. On the other hand, some evidence show the participation of the central nervous system and inflammatory response in the process. The participation of the central nervous system in envenoming has always been questioned. Some authors claim that the central effects would be a consequence of peripheral stimulation and would be the result, not the cause, of the envenoming process. Because, they say, at least in adult individuals, the venom would be unable to cross the blood-brain barrier. In contrast, there is some evidence showing the direct participation of the central nervous system in the envenoming process. This review summarizes the major findings on the effects of Brazilian scorpion venoms on the central nervous system, both clinically and experimentally. Most of the studies have been performed with T. serrulatus and T. bahiensis . Little information is available regarding the other Brazilian Tityus species.

  12. Lactate overrides central nervous but not beta-cell glucose sensing in humans.

    PubMed

    Schmid, Sebastian M; Jauch-Chara, Kamila; Hallschmid, Manfred; Oltmanns, Kerstin M; Peters, Achim; Born, Jan; Schultes, Bernd

    2008-12-01

    Lactate has been shown to serve as an alternative energy substrate in the central nervous system and to interact with hypothalamic glucose sensors. On the background of marked similarities between central nervous and beta-cell glucose sensing, we examined whether lactate also interacts with pancreatic glucose-sensing mechanisms in vivo. The effects of intravenously infused lactate vs placebo (saline) on central nervous and pancreatic glucose sensing were assessed during euglycemic and hypoglycemic clamp experiments in 10 healthy men. The release of neuroendocrine counterregulatory hormones during hypoglycemia was considered to reflect central nervous glucose sensing, whereas endogenous insulin secretion as assessed by serum C-peptide levels served as an indicator of pancreatic beta-cell glucose sensing. Lactate infusion blunted the counterregulatory hormonal responses to hypoglycemia, in particular, the release of epinephrine (P = .007) and growth hormone (P = .004), so that higher glucose infusion rates (P = .012) were required to maintain the target blood glucose levels. In contrast, the decrease in C-peptide concentrations during the hypoglycemic clamp remained completely unaffected by lactate (P = .60). During euglycemic clamp conditions, lactate infusion did not affect the concentrations of C-peptide and of counterregulatory hormones, with the exception of norepinephrine levels that were lower during lactate than saline infusion (P = .049) independently of the glycemic condition. Data indicate that glucose sensing of beta-cells is specific to glucose, whereas glucose sensing at the central nervous level can be overridden by lactate, reflecting the brain's ability to rely on lactate as an alternative major energy source.

  13. Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders?

    PubMed

    Hallschmid, M; Schultes, B

    2009-11-01

    Research on functions and signalling pathways of insulin has traditionally focused on peripheral tissues such as muscle, fat and liver, while the brain was commonly believed to be insensitive to the effects of this hormone secreted by pancreatic beta cells. However, since the discovery some 30 years ago that insulin receptors are ubiquitously found in the central nervous system, an ever-growing research effort has conclusively shown that circulating insulin accesses the brain, which itself does not synthesise insulin, and exerts pivotal functions in central nervous networks. As an adiposity signal reflecting the amount of body fat, insulin provides direct negative feedback to hypothalamic nuclei that control whole-body energy and glucose homeostasis. Moreover, insulin affects distinct cognitive processes, e.g. by triggering the formation of psychological memory contents. Accordingly, metabolic and cognitive disorders such as obesity, type 2 diabetes mellitus and Alzheimer's disease are associated with resistance of central nervous structures to the effects of insulin, which may derive from genetic polymorphisms as well as from long-term exposure to excess amounts of circulating insulin due to peripheral insulin resistance. Thus, overcoming central nervous insulin resistance, e.g. by pharmacological interventions, appears to be an attractive strategy in the treatment and prevention of these disorders. Enhancement of central nervous insulin signalling by administration of intranasal insulin, insulin analogues and insulin sensitisers in basic research approaches has yielded encouraging results that bode well for the successful translation of these effects into future clinical practice.

  14. Primary CNS Lymphoma Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    Primary central nervous system (CNS) lymphoma treatment options include radiation, chemotherapy, and corticosteroids. Get detailed information about the treatment of newly diagnosed and recurrent primary CNS lymphoma cancer in this clinician summary.

  15. The Orphan Nuclear Receptor TLX/NR2E1 in Neural Stem Cells and Diseases.

    PubMed

    Wang, Tao; Xiong, Jian-Qiong

    2016-02-01

    The human TLX gene encodes an orphan nuclear receptor predominantly expressed in the central nervous system. Tailess and Tlx, the TLX homologues in Drosophila and mouse, play essential roles in body-pattern formation and neurogenesis during early embryogenesis and perform crucial functions in maintaining stemness and controlling the differentiation of adult neural stem cells in the central nervous system, especially the visual system. Multiple target genes and signaling pathways are regulated by TLX and its homologues in specific tissues during various developmental stages. This review aims to summarize previous studies including many recent updates from different aspects concerning TLX and its homologues in Drosophila and mouse.

  16. [Liposomal cytarabine for the treatment of leptomeningeal dissemination of central nervous system tumours in children and adolescents].

    PubMed

    Moreno, Lucas; García Ariza, Miguel Angel; Cruz, Ofelia; Calvo, Carlota; Fuster, Jose Luis; Salinas, Jose Antonio; Moscardo, Cristina; Portugal, Raquel; Merino, Jose Manuel; Madero, Luis

    2016-11-01

    Leptomeningeal dissemination in paediatric central nervous system (CNS) tumours is associated with a poor outcome, and new therapeutic strategies are desperately needed. One of the main difficulties in the treatment of CNS tumours is blood brain barrier penetration. Intrathecal therapy has shown to be effective in several paediatric tumours. The aim of this article is to review the data available on the use of liposomal cytarabine for paediatric patients with leptomeningeal dissemination of CNS tumours, including the pharmacology, administration route, safety and efficacy data. Copyright © 2016 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Challenges and new strategies for therapeutic peptide delivery to the CNS.

    PubMed

    McGowan, Jeremy Wd; Bidwell, Gene L; Vig, Parminder Js

    2015-07-01

    Therapeutic peptides represent a largely untapped resource in medicine today, especially in the central nervous system. Despite their ease of design and remarkably high target specificity, it is difficult to deliver them beyond the blood-brain barrier or into the required intracellular compartments. In addition, the instability of these peptides in vivo precludes their use to combat the symptoms of numerous neurological disorders including Alzheimer's disease and spinocerebellar ataxia. In this review, we aim to characterize recent advances in the delivery of therapeutic peptides to the central nervous system past the blood-brain barrier and discuss the advantages and disadvantages of the examined methods as well as explore new potential directions.

  18. Effects of low-dose prenatal irradiation on the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolvingmore » uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.« less

  19. Effects of low-dose prenatal irradiation on the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Scientists are in general agreement about the effects of prenatal irradiation, including those affecting the central nervous system (CNS). Differing concepts and research approaches have resulted in some uncertainties about some quantitative relationships, underlying interpretations, and conclusions. Examples of uncertainties include the existence of a threshold, the quantitative relationships between prenatal radiation doses and resulting physical and functional lesions, and processes by which lesions originate and develop. A workshop was convened in which scientists with varying backgrounds and viewpoints discussed these relationships and explored ways in which various disciplines could coordinate concepts and methodologies to suggest research directions for resolvingmore » uncertainties. This Workshop Report summarizes, in an extended fashion, salient features of the presentations on the current status of our knowledge about the radiobiology and neuroscience of prenatal irradiation and the relationships between them.« less

  20. Modern concepts of treatment and prevention of lightning injuries.

    PubMed

    Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B

    2005-01-01

    Lightning is the second most common cause of weather-related death in the United States. Lightning is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of lightning, including streak lightning, sheet lightning, ribbon lightning, bead lightning, and ball lightning. Lightning causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by lightning show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in lightning victims. Immediate resuscitation of people struck by lightning greatly affects the prognosis. Electrocardiographic changes observed following lightning accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. Lightning induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from lightning include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by lightning include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of lightning injuries is prevention. The Lightning Safety Guidelines devised by the Lightning Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.

  1. Dependence of palmar sweating response and central nervous system activity on the frequency of whole-body vibration.

    PubMed

    Ando, Hideo; Noguchi, Ryo

    2003-06-01

    This study was carried out to determine the effects of the frequency of whole-body vibration on palmar sweating response and the activity of the central sympathetic nervous system. Palmar sweating volume was measured on the right palm of six healthy men before and during 3 minutes of exposure to sinusoidal whole-body vibration at three different frequencies (16, 31.5, and 63 Hz). The whole-body vibration had a frequency-weighted, root mean square (rms) acceleration magnitude of 2.0 m/s2. As the index of the activated central sympathetic nervous system, saliva level of 3-methoxy-4-hydroxyphenylglycol (MHPG) was analyzed before and immediately after each vibration exposure. Each vibration frequency induced a palmar sweating response, that of 31.5 Hz being the largest. However, no significant difference was found between the three vibration conditions. Saliva MHPG increased in all the vibration exposures, and the largest change was observed at 31.5 Hz, the difference being significant. Acute exposure to whole-body vibration induced a palmar sweating response and activated the central sympathetic nervous system. The effects on the central nervous system were found to be dependent on the frequency of the vibration.

  2. Modulatory Effects of Gut Microbiota on the Central Nervous System: How Gut Could Play a Role in Neuropsychiatric Health and Diseases.

    PubMed

    Yarandi, Shadi S; Peterson, Daniel A; Treisman, Glen J; Moran, Timothy H; Pasricha, Pankaj J

    2016-04-30

    Gut microbiome is an integral part of the Gut-Brain axis. It is becoming increasingly recognized that the presence of a healthy and diverse gut microbiota is important to normal cognitive and emotional processing. It was known that altered emotional state and chronic stress can change the composition of gut microbiome, but it is becoming more evident that interaction between gut microbiome and central nervous system is bidirectional. Alteration in the composition of the gut microbiome can potentially lead to increased intestinal permeability and impair the function of the intestinal barrier. Subsequently, neuro-active compounds and metabolites can gain access to the areas within the central nervous system that regulate cognition and emotional responses. Deregulated inflammatory response, promoted by harmful microbiota, can activate the vagal system and impact neuropsychological functions. Some bacteria can produce peptides or short chain fatty acids that can affect gene expression and inflammation within the central nervous system. In this review, we summarize the evidence supporting the role of gut microbiota in modulating neuropsychological functions of the central nervous system and exploring the potential underlying mechanisms.

  3. Melanoma central nervous system metastases: current approaches, challenges, and opportunities

    PubMed Central

    Cohen, Justine V.; Tawbi, Hussain; Margolin, Kim A.; Amravadi, Ravi; Bosenberg, Marcus; Brastianos, Priscilla K.; Chiang, Veronica L.; de Groot, John; Glitza, Isabella C.; Herlyn, Meenhard; Holmen, Sheri L.; Jilaveanu, Lucia B.; Lassman, Andrew; Moschos, Stergios; Postow, Michael A.; Thomas, Reena; Tsiouris, John A.; Wen, Patrick; White, Richard M.; Turnham, Timothy; Davies, Michael A.; Kluger, Harriet M.

    2017-01-01

    Summary Melanoma central nervous system metastases are increasing, and the challenges presented by this patient population remain complex. In December 2015, the Melanoma Research Foundation and the Wistar Institute hosted the First Summit on Melanoma Central Nervous System (CNS) Metastases in Philadelphia, Pennsylvania. Here, we provide a review of the current status of the field of melanoma brain metastasis research; identify key challenges and opportunities for improving the outcomes in patients with melanoma brain metastases; and set a framework to optimize future research in this critical area. PMID:27615400

  4. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    DTIC Science & Technology

    2017-08-01

    AWARD NUMBER: W81XWH-12-1-0051 TITLE: Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System ...Central Nervous System Following Neural Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0051 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Robert...induces re- growth of dopaminergic axons at 3 to 6 weeks after destruction by a neurotoxin. However, this approach cannot be used in humans because

  5. Structural characterization of a novel neuropeptide from the central nervous system of the leech Erpobdella octoculata. The leech osmoregulator factor.

    PubMed

    Salzet, M; Bulet, P; Weber, W M; Clauss, W; Verger-Bocquet, M; Malecha, J

    1996-03-22

    Purification of a material immunoreactive to an antiserum against the C-terminal part of the oxytocin (Pro-Leu-Gly-amide) and present in the central nervous system of the Pharyngobdellid leech Erpobdella octoculata was performed by reversed-phase high performance liquid chromatography combined with both enzyme-linked immunosorbent and dot immunobinding assays for oxytocin. The amino acid sequence of the purified peptide (Ile-Pro-Glu-Pro-Tyr-Val-Trp-Asp) was established by Edman degradation and confirmed by electrospray mass spectrometry measurement. When injected in leeches, purified or synthetic peptides exert an anti-diuretic effect, the most effective ranged between 10 pmol and 1 nmol. They provoked an uptake of water 1-2 h post-injection. Furthermore, electrophysiological experiments conducted in the leech Hirudo medicinalis revealed an inhibition of the potency of Na+ conductances of leech skin by this peptide. Immunocytochemical studies with an antiserum against synthetic oxytocin-like molecule provided the cytological basis for existence of a neuropeptide, since large amounts of immunoreactive neurons were detected in the central nervous systems of E. octoculata. The purified molecule is both different to peptides of the oxytocin/vasopressin family and is a novel neuropeptide in the animal kingdom. It was named the leech osmoregulator factor (LORF). An identification of the proteins immunoreactive to an antiserum against oxytocin performed at the level of both central nervous systems extracts and in vitro central nervous system-translated RNA products indicated that in the two cases, a single protein was detected. These proteins with a molecular masses of, respectively, approximately 34 kDa (homodimer of 17 kDa) for the central nervous systems extracts and approximately 19 kDa for in vitro central nervous system-translated RNA products were not recognized by the antiserum against MSEL- and VLDV-neurophysin (proteins associated to oxytocin and vasopressin), confirming that LORF did not belong to the oxytocin/vasopressin family.

  6. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...

  7. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...

  8. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...

  9. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...

  10. 21 CFR 866.3870 - Trypanosoma spp. serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... by fever, chills, headache, and vomiting. Central nervous system involvement produces typical.... Chagas disease, an acute form of trypanosomiasis in children, most seriously affects the central nervous system and heart muscle. (b) Classification. Class I (general controls). ...

  11. Childhood Central Nervous System Embryonal Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system embryonal tumors and pineal tumors are treated with surgery, radiation therapy, chemotherapy, high-dose chemotherapy with stem cell rescue and targeted therapy. Learn more in this expert-reviewed summary.

  12. American Society of Neuroradiology

    MedlinePlus

    ... Tumors of the Central Nervous System: A Practical Approach for Gliomas, Part 1. Basic Tumor Genetics The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A Practical Approach for Gliomas, Part 2. Isocitrate Dehydrogenase Status—Imaging ...

  13. The Effects of Psychotropic Drugs.

    ERIC Educational Resources Information Center

    Bonnardeaux, Jef-Louis

    1984-01-01

    Presents information on psychotropic drugs for individuals who are not specialists in pharmacology. Discusses: alcohol and barbituates; dependence and withdrawal; central nervous system depressors (anaesthetics, narcotic analgesics, sedatives and hypnotic drugs, tranquilizers), central nervous stimulants (amphetamines, cocaine, tobacco, caffeine),…

  14. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    NASA Astrophysics Data System (ADS)

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  15. [Primary malignant melanoma of the central nervous system: A diagnostic challenge].

    PubMed

    Quillo-Olvera, Javier; Uribe-Olalde, Juan Salvador; Alcántara-Gómez, Leopoldo Alberto; Rejón-Pérez, Jorge Dax; Palomera-Gómez, Héctor Guillermo

    2015-01-01

    The rare incidence of primary malignant melanoma of the central nervous system and its ability to mimic other melanocytic tumors on images makes it a diagnostic challenge for the neurosurgeon. A 51-year-old patient, with a tumor located in the right forniceal callosum area. Total surgical excision was performed. Histopathological result was consistent with the diagnosis of primary malignant melanoma of the central nervous system, after ruling out extra cranial and extra spinal melanocytic lesions. The primary malignant melanoma of the central nervous system is extremely rare. There are features in magnetic resonance imaging that increase the diagnostic suspicion; nevertheless there are other tumors with more prevalence that share some of these features through image. Since there is not an established therapeutic standard its prognosis is discouraging. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  16. Cost Effectiveness of Alectinib vs. Crizotinib in First-Line Anaplastic Lymphoma Kinase-Positive Advanced Non-Small-Cell Lung Cancer.

    PubMed

    Carlson, Josh J; Suh, Kangho; Orfanos, Panos; Wong, William

    2018-04-01

    The recently completed ALEX trial demonstrated that alectinib improved progression-free survival, and delayed time to central nervous system progression compared with crizotinib in patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer. However, the long-term clinical and economic impact of using alectinib vs. crizotinib has not been evaluated. The objective of this study was to determine the potential cost utility of alectinib vs. crizotinib from a US payer perspective. A cost-utility model was developed using partition survival methods and three health states: progression-free, post-progression, and death. ALEX trial data informed the progression-free and overall survival estimates. Costs included drug treatments and supportive care (central nervous system and non-central nervous system). Utility values were obtained from trial data and literature. Sensitivity analyses included one-way and probabilistic sensitivity analyses. Treatment with alectinib vs. crizotinib resulted in a gain of 0.91 life-years, 0.87 quality-adjusted life-years, and incremental costs of US$34,151, resulting in an incremental cost-effectiveness ratio of US$39,312/quality-adjusted life-year. Drug costs and utilities in the progression-free health state were the main drivers of the model in the one-way sensitivity analysis. From the probabilistic sensitivity analysis, alectinib had a 64% probability of being cost effective at a willingness-to-pay threshold of US$100,000/quality adjusted life-year. Alectinib increased time in the progression-free state and quality-adjusted life-years vs. crizotinib. The marginal cost increase was reflective of longer treatment durations in the progression-free state. Central nervous system-related costs were considerably lower with alectinib. Our results suggest that compared with crizotinib, alectinib may be a cost-effective therapy for treatment-naïve patients with anaplastic lymphoma kinase-positive non-small-cell lung cancer.

  17. Teleost fish as a model system to study successful regeneration of the central nervous system.

    PubMed

    Zupanc, Günther K H; Sîrbulescu, Ruxandra F

    2013-01-01

    Traumatic brain injury and spinal cord injury are devastating conditions that may result in death or long-term disability. A promising strategy for the development of effective cell replacement therapies involves the study of regeneration-competent organisms. Among this group, teleost fish are distinguished by their excellent potential to regenerate nervous tissue and to regain function after injury to the central nervous system. In this chapter, we summarize our current understanding of the cellular processes that mediate this regenerative potential, and we show that several of these processes are shared with the normal development of the intact central nervous system; we describe how the spontaneous self-repair of the teleostean central nervous system leads to functional recovery, at physiological and behavioral levels; we discuss the possible function of molecular factors associated with the degenerative and regenerative processes after injury; and, finally, we speculate on evolutionary aspects of adult neurogenesis and neuronal regeneration, and on how a better understanding of these aspects could catalyze the development of therapeutic strategies to overcome the regenerative limits of the mammalian CNS.

  18. [Confirmation of West Nile virus seroreactivity in central nervous system infections of unknown etiology from Ankara Province, Central Anatolia, Turkey].

    PubMed

    Ergünay, Koray; Özkul, Aykut

    2011-04-01

    West Nile virus (WNV) infections may trigger febrile conditions and/or neuroinvasive disease in a portion of the exposed individuals. Serosurveillance data from various regions of Turkey indicate WNV activity. The aim of this study was to confirm the antibody specificity of the serum samples via virus neutralization assay, previously reported to be reactive for WNV IgM. The samples originated from two individuals with the preliminary diagnosis of aseptic meningitis/encephalitis of unknown etiology in 2009 and had been classified as probable WNV infections. Cerebrospinal fluid and sera samples of these patients had been evaluated as negative for WNV RNA and IgG antibodies. Only one serum sample could be included in the neutralization assay due to the limited amounts in the current investigation. The sample was observed as positive in dilutions of 1/20 and 1/40, thus confirming the diagnosis of WNV-related central nervous system infection in a 62 year-old female patient from Ankara, Central Anatolia, Turkey.

  19. Contraindications to Athletic Participation. Cardiac, Respiratory, and Central Nervous System Conditions.

    ERIC Educational Resources Information Center

    Moeller, James L.

    1996-01-01

    Discusses contraindications to athletic participation, examining the cardiac, respiratory, and central nervous system conditions that warrant activity disqualification. Provides guidelines about when it is safe for individuals to participate, and discusses the physician's responsibility. (SM)

  20. The Role of Gap Junction Channels During Physiologic and Pathologic Conditions of the Human Central Nervous System

    PubMed Central

    Basilio, Daniel; Sáez, Juan C.; Orellana, Juan A.; Raine, Cedric S.; Bukauskas, Feliksas; Bennett, Michael V. L.; Berman, Joan W.

    2013-01-01

    Gap junctions (GJs) are expressed in most cell types of the nervous system, including neuronal stem cells, neurons, astrocytes, oligodendrocytes, cells of the blood brain barrier (endothelial cells and astrocytes) and under inflammatory conditions in microglia/macrophages. GJs connect cells by the docking of two hemichannels, one from each cell with each hemichannel being formed by 6 proteins named connexins (Cx). Unapposed hemichannels (uHC) also can be open on the surface of the cells allowing the release of different intracellular factors to the extracellular space. GJs provide a mechanism of cell-to-cell communication between adjacent cells that enables the direct exchange of intracellular messengers, such as calcium, nucleotides, IP3, and diverse metabolites, as well as electrical signals that ultimately coordinate tissue homeostasis, proliferation, differentiation, metabolism, cell survival and death. Despite their essential functions in physiological conditions, relatively little is known about the role of GJs and uHC in human diseases, especially within the nervous system. The focus of this review is to summarize recent findings related to the role of GJs and uHC in physiologic and pathologic conditions of the central nervous system. PMID:22438035

  1. A review of Heinrich Obersteiner's 1888 textbook on the central nervous system by the neurologist Sigmund Freud.

    PubMed

    Hatzigiannakoglou, Paul D; Triarhou, Lazaros C

    2011-06-01

    In 1888, the Austrian neuroanatomist Heinrich Obersteiner, founder of Vienna's Neurological Institute, published his "Introduction to the Study of the Structure of the Central Nervous Organs in Health and Disease", a fundamental textbook in which he summarised the state-of-the-art knowledge available then on the normal and pathological anatomy of the human nervous system, incorporating many of his original research findings. The book became "the Bible for generations of budding neurologists" worldwide and was crucial for the eventual development of neurology as an independent medical discipline. In his early career as a neuroanatomist, Sigmund Freud wrote a review of Obersteiner's book for the Wiener Medizinische Wochenschrift. That review was not included in the "Standard Edition of the Complete Psychological Works". The present article provides an English translation of Freud's review and further discusses its historical context, especially regarding the influence of Theodor Meynert on his two illustrious students, Freud and Obersteiner.

  2. Toxic Effects of Mercury on the Cardiovascular and Central Nervous Systems

    PubMed Central

    Fernandes Azevedo, Bruna; Barros Furieri, Lorena; Peçanha, Franck Maciel; Wiggers, Giulia Alessandra; Frizera Vassallo, Paula; Ronacher Simões, Maylla; Fiorim, Jonaina; Rossi de Batista, Priscila; Fioresi, Mirian; Rossoni, Luciana; Stefanon, Ivanita; Alonso, María Jesus; Salaices, Mercedes; Valentim Vassallo, Dalton

    2012-01-01

    Environmental contamination has exposed humans to various metal agents, including mercury. This exposure is more common than expected, and the health consequences of such exposure remain unclear. For many years, mercury was used in a wide variety of human activities, and now, exposure to this metal from both natural and artificial sources is significantly increasing. Many studies show that high exposure to mercury induces changes in the central nervous system, potentially resulting in irritability, fatigue, behavioral changes, tremors, headaches, hearing and cognitive loss, dysarthria, incoordination, hallucinations, and death. In the cardiovascular system, mercury induces hypertension in humans and animals that has wide-ranging consequences, including alterations in endothelial function. The results described in this paper indicate that mercury exposure, even at low doses, affects endothelial and cardiovascular function. As a result, the reference values defining the limits for the absence of danger should be reduced. PMID:22811600

  3. Research advances on potential neurotoxicity of quantum dots.

    PubMed

    Wu, Tianshu; Zhang, Ting; Chen, Yilu; Tang, Meng

    2016-03-01

    With rapid development of nanotechnology, quantum dots (QDs) as advanced nanotechnology products have been widely used in biological and biomedical studies, including neuroscience, due to their superior optical properties. In recent years, there has been intense concern regarding the toxicity of QDs with a growing number of studies. However, the knowledge of neurotoxic consequences of QDs applied in living organisms is lagging behind their development, while a potential risk of neurotoxicity arises if mass production of QDs leads to increased exposure and distribution in the nervous system. Owing to the quantum size effect of QDs, they are capable of crossing the blood-brain barrier or moving along neural pathways and entering the brain. Nevertheless, the interactions of QDs with cells and tissues in the central nervous system are not well understood. This review highlighted research advances on the neurotoxicity of QDs in the central nervous system, including oxidative stress injury, elevated cytoplasmic Ca(2+) levels and autophagy to damage in vitro neural cells, and impairments of synaptic transmission and plasticity as well as brain functions in tested animals, with the hope of throwing light on future research directions of QD neurotoxicity, which is a demanding topic that requires further exploration. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Chemokine receptor binding and signal transduction in native cells of the central nervous system.

    PubMed

    Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K

    2003-04-01

    Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.

  5. Innate immune responses in central nervous system inflammation.

    PubMed

    Finsen, Bente; Owens, Trevor

    2011-12-01

    In autoimmune diseases of the central nervous system (CNS), innate glial cell responses play a key role in determining the outcome of leukocyte infiltration. Access of leukocytes is controlled via complex interactions with glial components of the blood-brain barrier that include angiotensin II receptors on astrocytes and immunoregulatory mediators such as Type I interferons which regulate cellular traffic. Myeloid cells at the blood-brain barrier present antigen to T cells and influence cytokine effector function. Myelin-specific T cells interact with microglia and promote differentiation of oligodendrocyte precursor cells in response to axonal injury. These innate responses offer potential targets for immunomodulatory therapy. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Diagnostics and Discovery in Viral Central Nervous System Infections.

    PubMed

    Lipkin, Walter Ian; Hornig, Mady

    2015-09-01

    The range of viruses implicated in central nervous system disease continues to grow with globalization of travel and trade, emergence and reemergence of zoonoses and investments in discovery science. Diagnosis of viral central nervous system infections is challenging in that brain tissue, where the pathogen concentration is likely to be highest, is not readily obtained and sensitive methods for molecular and serological detection of infection are not available in most clinical microbiology laboratories. Here we review these challenges and discuss how they may be addressed using advances in molecular, proteomic and immunological methods. © 2015 International Society of Neuropathology.

  7. Common multifractality in the heart rate variability and brain activity of healthy humans

    NASA Astrophysics Data System (ADS)

    Lin, D. C.; Sharif, A.

    2010-06-01

    The influence from the central nervous system on the human multifractal heart rate variability (HRV) is examined under the autonomic nervous system perturbation induced by the head-up-tilt body maneuver. We conducted the multifractal factorization analysis to factor out the common multifractal factor in the joint fluctuation of the beat-to-beat heart rate and electroencephalography data. Evidence of a central link in the multifractal HRV was found, where the transition towards increased (decreased) HRV multifractal complexity is associated with a stronger (weaker) multifractal correlation between the central and autonomic nervous systems.

  8. Central Nervous System Cancers, Version 2.2014

    PubMed Central

    Nabors, Louis Burt; Portnow, Jana; Ammirati, Mario; Brem, Henry; Brown, Paul; Butowski, Nicholas; Chamberlain, Marc C.; DeAngelis, Lisa M.; Fenstermaker, Robert A.; Friedman, Allan; Gilbert, Mark R.; Hattangadi-Gluth, Jona; Hesser, Deneen; Holdhoff, Matthias; Junck, Larry; Lawson, Ronald; Loeffler, Jay S.; Moots, Paul L.; Mrugala, Maciej M.; Newton, Herbert B.; Raizer, Jeffrey J.; Recht, Lawrence; Shonka, Nicole; Shrieve, Dennis C.; Sills, Allen K.; Swinnen, Lode J.; Tran, David; Tran, Nam; Vrionis, Frank D.; Wen, Patrick Yung; McMillian, Nicole R.; Ho, Maria

    2015-01-01

    The NCCN Guidelines for Central Nervous System Cancers provide multidisciplinary recommendations for the clinical management of patients with cancers of the central nervous system. These NCCN Guidelines Insights highlight recent updates regarding the management of metastatic brain tumors using radiation therapy. Use of stereotactic radiosurgery (SRS) is no longer limited to patients with 3 or fewer lesions, because data suggest that total disease burden, rather than number of lesions, is predictive of survival benefits associated with the technique. SRS is increasingly becoming an integral part of management of patients with controlled, low-volume brain metastases. PMID:25361798

  9. The Gut Microbiome as Therapeutic Target in Central Nervous System Diseases: Implications for Stroke.

    PubMed

    Winek, Katarzyna; Dirnagl, Ulrich; Meisel, Andreas

    2016-10-01

    Research on commensal microbiota and its contribution to health and disease is a new and very dynamically developing field of biology and medicine. Recent experimental and clinical investigations underscore the importance of gut microbiota in the pathogenesis and course of stroke. Importantly, microbiota may influence the outcome of cerebral ischemia by modulating central nervous system antigen-specific immune responses. In this review we summarize studies linking gut microbiota with physiological function and disorders of the central nervous system. Based on these insights we speculate about targeting the gut microbiome in order to treat stroke.

  10. Melphalan, Carboplatin, Mannitol, and Sodium Thiosulfate in Treating Patients With Recurrent or Progressive CNS Embryonal or Germ Cell Tumors

    ClinicalTrials.gov

    2018-05-02

    Adult Central Nervous System Germ Cell Tumor; Adult Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Adult Medulloblastoma; Adult Pineoblastoma; Adult Supratentorial Embryonal Tumor, Not Otherwise Specified; Atypical Teratoid/Rhabdoid Tumor; Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Embryonal Tumor With Multilayered Rosettes, C19MC-Altered; Medulloepithelioma; Ototoxicity; Recurrent Adult Brain Neoplasm; Recurrent Childhood Central Nervous System Embryonal Neoplasm; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Supratentorial Embryonal Tumor, Not Otherwise Specified

  11. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    PubMed

    Weekamp, H H; Huygen, P L M; Merx, J L; Kremer, H P H; Cremers, Cor W R J; Longridge, Neil S

    2003-09-01

    To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chronic recurrent subarachnoidal hemorrhage with bleeding into the cerebrospinal fluid is the cause of deposition of hemosiderin in leptomeningeal and subpial tissue, cranial nerves, and spinal cord. Removing the cause of bleeding can prevent irreversible damage to these structures. Because this is the only effective treatment, an early diagnosis is crucial. Retrospective case review. Tertiary referral center. A 72-year-old woman with superficial hemosiderosis of the central nervous system that developed when she was age 39. Neurologic and imaging diagnostic examinations and longitudinal evaluation of cochleovestibular features were performed. Neurosurgery was not performed. Progressive bilateral sensorineural hearing loss and severe vestibular hyporeflexia developed within 15 years, which can be attributed to lesions in the cochleovestibular system. Additional pathology of the central nervous system developed later. The patient demonstrated cochlear and vestibular findings that are typical of this pathologic condition. It is the first documented case with extensive serial audiometry used to precisely outline the degree of hearing deterioration during the course of the disease.

  12. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    PubMed

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  13. The Nervous System and Gastrointestinal Function

    ERIC Educational Resources Information Center

    Altaf, Muhammad A.; Sood, Manu R.

    2008-01-01

    The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…

  14. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways.

    PubMed

    Maduna, Tando; Lelievre, Vincent

    2016-12-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. 9 CFR 55.1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of any signs of central nervous system disease in herd animals; maintaining records of the... State or APHIS representative of any clinical signs of a central nervous system disease or chronic... identification number (AIN). A numbering system for the official identification of individual animals in the...

  16. 9 CFR 55.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of any signs of central nervous system disease in herd animals; maintaining records of the... State or APHIS representative of any clinical signs of a central nervous system disease or chronic... identification number (AIN). A numbering system for the official identification of individual animals in the...

  17. 9 CFR 55.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of any signs of central nervous system disease in herd animals; maintaining records of the... State or APHIS representative of any clinical signs of a central nervous system disease or chronic... identification number (AIN). A numbering system for the official identification of individual animals in the...

  18. Central Auditory Nervous System Dysfunction in Echolalic Autistic Individuals.

    ERIC Educational Resources Information Center

    Wetherby, Amy Miller; And Others

    1981-01-01

    The results showed that all the Ss had normal hearing on the monaural speech tests; however, there was indication of central auditory nervous system dysfunction in the language dominant hemisphere, inferred from the dichotic tests, for those Ss displaying echolalia. (Author)

  19. Talazoparib and Temozolomide in Treating Younger Patients With Refractory or Recurrent Malignancies

    ClinicalTrials.gov

    2018-03-02

    Adult Solid Neoplasm; Childhood Solid Neoplasm; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Central Nervous System Neoplasm; Recurrent Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Recurrent Malignant Solid Neoplasm; Refractory Central Nervous System Neoplasm

  20. Childhood Central Nervous System Atypical Teratoid/Rhabdoid Tumor Treatment

    MedlinePlus

    ... information about the treatment of childhood central nervous system atypical teratoid and rhabdoid tumor. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care. Reviewers and ...

  1. Fifth Symposium on the Role of the Vestibular Organs in Space Exploration

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Vestibular problems of manned space flight are investigated for weightlessness and reduced gravity conditions with emphasis on space station development. Intensive morphological studies on the vestibular system and its central nervous system connections are included.

  2. Testosterone Plus Finasteride Treatment After Spinal Cord Injury

    ClinicalTrials.gov

    2018-05-16

    Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male

  3. Interrelationships between the heart and central nervous system: localization of neuro-transmitters and imaging of their associated nuclei, including the raphe nuclei & the locus coeruleus, as well as the imaging of the heart and its representation areas in slices of the human central nervous system using the "Bi-Digital O-Ring Test" imaging method.

    PubMed

    Omura, Y

    1987-01-01

    Using microscopic slides of specific tissues from the human body or pure substances including neuro-transmitters such as serotonin, dopamine, norepinephrine, etc., as reference control substances in the Bi-Digital O-Ring Test Molecular Identification Method, the author was able to localize and image normal and abnormal internal organs, and to localize and trace the distribution of neurotransmitters in the different parts of the central nervous system. Using microscopic slides of different parts of the heart, we were able to image the outline of the heart as well as the SA node, AV node, tricuspid valve, mitral valve, aortic valve, pulmonary valve, coronary arteries, and aorta and its branches, including the vertebral arteries, without using any bulky or expensive imaging instruments. Using serotonin as a reference control substance on the different parts of the central nervous system, it was possible to demonstrate the 6 well-known raphe nuclei and the locus coeruleus (which contains serotonin & norepinephrine), as well as the distribution of serotonin in the cerebrum and the cerebellum, all of which closely resembled previously published well-known neuroanatomical structures and distributions of neurotransmitters. As an extension of this work, possible representations of different internal organs on the central nervous system were examined using microscopic slides of different internal organs as reference control substances. The results indicated that the entire heart is represented primarily in the medulla oblongata, and that the SA node and the upper half of the left atrium are represented in the caudal end of the pons; the right side of the heart (i.e. R-atrium, AV node, tricuspid valve, R-ventricle) is represented on the right side of the medulla oblongata, and the left side of the heart (i.e. lower half of the L-atrium, mitral valve, L-ventricle) is represented on the left side of the medulla oblongata, and the upper half of the left atrium is represented in the caudal end of the left side of the pons. The bottoms of the ventricles are located near the spinal cord. Furthermore, the right and the left sides of the heart are represented in specific areas of each side of the right and left hemispheres of the cerebral cortex, and there are connecting pathways between the representation areas of identical parts of the heart, through the corpus callosum and other neuro-pathways.

  4. [The role of neurotrophic factors in regeneration of the nervous system].

    PubMed

    Machaliński, Bogusław; Lażewski-Banaszak, Piotr; Dąbkowska, Elżbieta; Paczkowska, Edyta; Gołąb-Janowska, Monika; Nowacki, Przemysław

    2012-01-01

    Neurotrophic factors regulate survival, development, and function of nervous tissue. They act via two different classes of receptors and activation of various signaling pathways in the target cells. Illumination of their physiological role in the maintenance of central nervous system homeostasis as well as regeneration of damaged tissue have ignited expectations to heal neurodegenerative diseases, including amyotrophic late-ral sclerosis and Parkinson disease. Advances in pharmaco-therapy, gene therapy, and stem cell biology have enabled development of novel therapies with application of regenerating cell transplantation. In the foreseeable future, it may lead to the establishment of safe and effective ways of treatment of these severe and currently incurable diseases.

  5. KSC-98pc270

    NASA Image and Video Library

    1998-02-05

    KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload is lowered into its payload canister in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  6. KSC-98pc292

    NASA Image and Video Library

    1998-02-12

    The STS-90 Neurolab payload is positioned into the cargo bay of Space Shuttle Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  7. KSC-98pc269

    NASA Image and Video Library

    1998-02-05

    KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload is lowered into its payload canister in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  8. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions

    PubMed Central

    Eller-Smith, Olivia C.; Nicol, Andrea L.; Christianson, Julie A.

    2018-01-01

    Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA) axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC) infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional connectivity and magnetic resonance spectroscopy and are shown to contribute to the widespreadness of pain and poor mood in patients with fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including exercise and cognitive behavioral therapy (CBT), have shown great promise in treating symptoms of centralized pain. PMID:29487504

  9. Incidence and Predictive Factors of Central Nervous System Dysfunction in Patients Consulting for Dengue Fever in Cayenne Hospital, French Guiana.

    PubMed

    Djossou, Félix; Vesin, Guillaume; Bidaud, Bastien; Mosnier, Emilie; Simonnet, Christine; Matheus, Séverine; Prince, Christelle; Balcaen, John; Donutil, Gerd; Egmann, Gérald; Okandze, Antoine; Malvy, Denis; Nacher, Mathieu

    2016-01-01

    The frequency, the clinical characteristics, and the prognosis of dengue is highly variable. Dengue fever is associated with a range of neurological manifestations. The objective of the present study was to determine the incidence of neurological signs and their predictive factors using data from cases of dengue seen and followed in Cayenne Hospital during the Dengue 2 epidemic in 2013. In 2013, a longitudinal study using data from all cases of dengue seen in Cayenne hospital was collected. Medical records used a standardized form to collect demographic information, clinical signs and biological results and the date at which they were present. The analysis used Cox proportional modeling to obtain adjusted Hazard ratios. A total of 1574 patients were included 221 of whom developed central nervous system signs. These signs were spontaneously resolutive. There were 9298person days of follow-up and the overall incidence rate for central nervous system signs was 2.37 per 100 person-days. The variables independently associated with central nervous system anomalies were headache, Adjusted Hazard ratio (AHR) = 1.9(95%CI = 1.4-2.6), bleeding AHR = 2 ((95%CI = 1.3-3.1), P = 0.001, abdominal pain AHR = 1.9 ((95%CI = 1.4-2.6), P<0.001, aches AHR = 2.1 ((95%CI = 1.5-2.9), P<0.001, and fatigue AHR = 1.5 ((95%CI = 1.3-1.7), P<0.001. Overall, the present study suggests that neurological signs of dengue are not exceptional even in patients without the most severe features of dengue. These manifestations were spontaneously resolutive. Here it was not possible to distinguish between encephalitis or encephalopathy. Further studies would require more in depth exploration of the patients.

  10. The p38α mitogen-activated protein kinase as a central nervous system drug discovery target

    PubMed Central

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-01-01

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985

  11. The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.

    PubMed

    Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin

    2008-12-03

    Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.

  12. Nervous system development in lecithotrophic larval and juvenile stages of the annelid Capitella teleta.

    PubMed

    Meyer, Néva P; Carrillo-Baltodano, Allan; Moore, Richard E; Seaver, Elaine C

    2015-01-01

    Reconstructing the evolutionary history of nervous systems requires an understanding of their architecture and development across diverse taxa. The spiralians encompass diverse body plans and organ systems, and within the spiralians, annelids exhibit a variety of morphologies, life histories, feeding modes and associated nervous systems, making them an ideal group for studying evolution of nervous systems. We describe nervous system development in the annelid Capitella teleta (Blake JA, Grassle JP, Eckelbarger KJ. Capitella teleta, a new species designation for the opportunistic and experimental Capitella sp. I, with a review of the literature for confirmed records. Zoosymposia. 2009;2:25-53) using whole-mount in situ hybridization for a synaptotagmin 1 homolog, nuclear stains, and cross-reactive antibodies against acetylated α-tubulin, 5-HT and FMRFamide. Capitella teleta is member of the Sedentaria (Struck TH, Paul C, Hill N, Hartmann S, Hosel C, Kube M, et al. Phylogenomic analyses unravel annelid evolution. Nature. 2011;471:95-8) and has an indirectly-developing, lecithotrophic larva. The nervous system of C. teleta shares many features with other annelids, including a brain and a ladder-like ventral nerve cord with five connectives, reiterated commissures, and pairs of peripheral nerves. Development of the nervous system begins with the first neurons differentiating in the brain, and follows a temporal order from central to peripheral and from anterior to posterior. Similar to other annelids, neurons with serotonin-like-immunoreactivity (5HT-LIR) and FMRFamide-like-immunoreactivity (FMRF-LIR) are found throughout the brain and ventral nerve cord. A small number of larval-specific neurons and neurites are present, but are visible only after the central nervous system begins to form. These larval neurons are not visible after metamorphosis while the rest of the nervous system is largely unchanged in juveniles. Most of the nervous system that forms during larvogenesis in C. teleta persists into the juvenile stage. The first neurons differentiate in the brain, which contrasts with the early formation of peripheral, larval-specific neurons found in some spiralian taxa with planktotrophic larvae. Our study provides a clear indication that certain shared features among annelids - e.g., five connectives in the ventral nerve cord - are only visible during larval stages in particular species, emphasizing the need to include developmental data in ancestral character state reconstructions. The data provided in this paper will serve as an important comparative reference for understanding evolution of nervous systems, and as a framework for future molecular studies of development.

  13. HIV-1 Viral Escape in Cerebrospinal Fluid of Subjects on Suppressive Antiretroviral Treatment

    PubMed Central

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W.; Gisslén, Magnus

    2010-01-01

    Background. Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Methods. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Results. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54–213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Conclusions. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice. PMID:21050119

  14. HIV-1 viral escape in cerebrospinal fluid of subjects on suppressive antiretroviral treatment.

    PubMed

    Edén, Arvid; Fuchs, Dietmar; Hagberg, Lars; Nilsson, Staffan; Spudich, Serena; Svennerholm, Bo; Price, Richard W; Gisslén, Magnus

    2010-12-15

    Occasional cases of viral escape in cerebrospinal fluid (CSF) despite suppression of plasma human immunodeficiency virus type 1 (HIV-1) RNA have been reported. We investigated CSF viral escape in subjects treated with commonly used antiretroviral therapy regimens in relation to intrathecal immune activation and central nervous system penetration effectiveness (CPE) rank. Sixty-nine neurologically asymptomatic subjects treated with antiretroviral therapy >6 months and plasma HIV-1 RNA <50 copies/mL were cross-sectionally included in the analysis. Antiretroviral therapy regimens included efavirenz, lopinavir/ritonavir or atazanavir/ritonavir combined with tenofovir, abacavir, or zidovudine and emtricitabine or lamivudine. HIV-1 RNA was analyzed with real-time polymerase chain reaction assays. Neopterin was analyzed by enzyme-linked immunosorbent assay. Seven (10%) of the 69 subjects had detectable CSF HIV-1 RNA, in median 121 copies/mL (interquartile range, 54-213 copies/mL). Subjects with detectable CSF virus had significantly higher CSF neopterin and longer duration of treatment. Previous treatment interruptions were more common in subjects with CSF escape. Central nervous system penetration effectiveness rank was not a significant predictor of detectable CSF virus or CSF neopterin levels. Viral escape in CSF is more common than previously reported, suggesting that low-grade central nervous system infection may continue in treated patients. Although these findings need extension in longitudinal studies, they suggest the utility of monitoring CSF responses, as new treatment combinations and strategies modify clinical practice.

  15. Central nervous system manifestations of Angiostrongylus cantonensis infection.

    PubMed

    Martins, Yuri C; Tanowitz, Herbert B; Kazacos, Kevin R

    2015-01-01

    Over 20 species of Angiostrongylus have been described from around the world, but only Angiostrongylus cantonensis has been confirmed to cause central nervous system disease in humans. A neurotropic parasite that matures in the pulmonary arteries of rats, A. cantonensis is the most common cause of eosinophilic meningitis in southern Asia and the Pacific and Caribbean islands. The parasite can also cause encephalitis/encephalomyelitis and rarely ocular angiostrongyliasis. The present paper reviews the life cycle, epidemiology, pathogenesis, clinical features, diagnosis, treatment, prevention and prognosis of A. cantonesis infection. Emphasis is given on the spectrum of central nervous system manifestations and disease pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Central nervous system cancers, version 2.2014. Featured updates to the NCCN Guidelines.

    PubMed

    Nabors, Louis Burt; Portnow, Jana; Ammirati, Mario; Brem, Henry; Brown, Paul; Butowski, Nicholas; Chamberlain, Marc C; DeAngelis, Lisa M; Fenstermaker, Robert A; Friedman, Allan; Gilbert, Mark R; Hattangadi-Gluth, Jona; Hesser, Deneen; Holdhoff, Matthias; Junck, Larry; Lawson, Ronald; Loeffler, Jay S; Moots, Paul L; Mrugala, Maciej M; Newton, Herbert B; Raizer, Jeffrey J; Recht, Lawrence; Shonka, Nicole; Shrieve, Dennis C; Sills, Allen K; Swinnen, Lode J; Tran, David; Tran, Nam; Vrionis, Frank D; Wen, Patrick Yung; McMillian, Nicole R; Ho, Maria

    2014-11-01

    The NCCN Guidelines for Central Nervous System Cancers provide multidisciplinary recommendations for the clinical management of patients with cancers of the central nervous system. These NCCN Guidelines Insights highlight recent updates regarding the management of metastatic brain tumors using radiation therapy. Use of stereotactic radiosurgery (SRS) is no longer limited to patients with 3 or fewer lesions, because data suggest that total disease burden, rather than number of lesions, is predictive of survival benefits associated with the technique. SRS is increasingly becoming an integral part of management of patients with controlled, low-volume brain metastases. Copyright © 2014 by the National Comprehensive Cancer Network.

  17. Growing evidence for human health benefits of boron

    USDA-ARS?s Scientific Manuscript database

    Growing evidence from numerous laboratories using a variety of experimental models shows that boron is a bioactive beneficial, perhaps essential, element for humans. Reported beneficial actions of boron include arthritis alleviation or risk reduction; bone growth and maintenance; central nervous sys...

  18. Childhood Atypical Teratoid/Rhabdoid Tumor Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system atypical teratoid/rhabdoid tumor treatment may include surgery, radiation therapy, chemotherapy, and high-dose chemotherapy with stem cell rescue. Learn more about newly diagnosed and recurrent childhood AT/RT in this expert-reviewed summary.

  19. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor

  20. Klippel-Feil syndrome and Dandy-Walker malformation.

    PubMed

    Karaman, A; Kahveci, H

    2011-01-01

    The Klippel-Feil deformity is a complex of osseous and visceral anomalies, which include low hairline, platybasia, fused cervical vertebrae with a short neck, and deafness. Associated central nervous system abnormalities include occipital cephalocele, Chiari I malformation, syrinx, microcephaly, and hydrocephalus. Herein, we report a case with Klippel-Feil syndrome and Dandy-Walker malformation.

  1. School Reentry for Children with Acquired Central Nervous Systems Injuries

    ERIC Educational Resources Information Center

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  2. Endothelial β-Catenin Signaling Is Required for Maintaining Adult Blood-Brain Barrier Integrity and Central Nervous System Homeostasis.

    PubMed

    Tran, Khiem A; Zhang, Xianming; Predescu, Dan; Huang, Xiaojia; Machado, Roberto F; Göthert, Joachim R; Malik, Asrar B; Valyi-Nagy, Tibor; Zhao, You-Yang

    2016-01-12

    The blood-brain barrier (BBB) formed by brain endothelial cells interconnected by tight junctions is essential for the homeostasis of the central nervous system. Although studies have shown the importance of various signaling molecules in BBB formation during development, little is known about the molecular basis regulating the integrity of the adult BBB. Using a mouse model with tamoxifen-inducible endothelial cell-restricted disruption of ctnnb1 (iCKO), we show here that endothelial β-catenin signaling is essential for maintaining BBB integrity and central nervous system homeostasis in adult mice. The iCKO mice developed severe seizures accompanied by neuronal injury, multiple brain petechial hemorrhages, and central nervous system inflammation, and all had postictal death. Disruption of endothelial β-catenin induced BBB breakdown and downregulation of the specific tight junction proteins claudin-1 and -3 in adult brain endothelial cells. The clinical relevance of the data is indicated by the observation of decreased expression of claudin-1 and nuclear β-catenin in brain endothelial cells of hemorrhagic lesions of hemorrhagic stroke patients. These results demonstrate the prerequisite role of endothelial β-catenin in maintaining the integrity of adult BBB. The results suggest that BBB dysfunction secondary to defective β-catenin transcription activity is a key pathogenic factor in hemorrhagic stroke, seizure activity, and central nervous system inflammation. © 2015 American Heart Association, Inc.

  3. Neurovascular patterning cues and implications for central and peripheral neurological disease

    PubMed Central

    Gamboa, Nicholas T.; Taussky, Philipp; Park, Min S.; Couldwell, William T.; Mahan, Mark A.; Kalani, M. Yashar S.

    2017-01-01

    The highly branched nervous and vascular systems run along parallel trajectories throughout the human body. This stereotyped pattern of branching shared by the nervous and vascular systems stems from a common reliance on specific cues critical to both neurogenesis and angiogenesis. Continually emerging evidence supports the notion of later-evolving vascular networks co-opting neural molecular mechanisms to ensure close proximity and adequate delivery of oxygen and nutrients to nervous tissue. As our understanding of these biologic pathways and their phenotypic manifestations continues to advance, identification of where pathways go awry will provide critical insight into central and peripheral nervous system pathology. PMID:28966815

  4. Optimized optical clearing method for imaging central nervous system

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  5. The pharmacological effects of Salvia species on the central nervous system.

    PubMed

    Imanshahidi, Mohsen; Hosseinzadeh, Hossein

    2006-06-01

    Salvia is an important genus consisting of about 900 species in the family Lamiaceae. Some species of Salvia have been cultivated world wide for use in folk medicine and for culinary purposes. The dried root of Salvia miltiorrhiza, for example, has been used extensively for the treatment of coronary and cerebrovascular disease, sleep disorders, hepatitis, hepatocirrhosis, chronic renal failure, dysmenorrhea, amenorrhea, carbuncles and ulcers. S. officinalis, S. leriifolia, S. haematodes, S. triloba and S. divinorum are other species with important pharmacological effects. In this review, the pharmacological effects of Salvia species on the central nervous system will be reviewed. These include sedative and hypnotic, hallucinogenic, skeletal muscle relaxant, analgesic, memory enhancing, anticonvulsant, neuroprotective and antiparkinsonian activity, as well as the inhibition of ethanol and morphine withdrawal syndrome.

  6. Mind-body hypnotic imagery in the treatment of auto-immune disorders.

    PubMed

    Torem, Moshe S

    2007-10-01

    For many years Western Medicine has considered the immune system to be separate and independent from the central nervous system. However, significant scientific advances and research discoveries that occurred during the past 50 years have presented additional facts that the immune system does interact with the central nervous system with mutual influence. This article provides a systematic review of the literature on the connection between the brain and the immune system and its clinical implications. It then provides a rational foundation for the role of using hypnosis and imagery to therapeutically influence the immune system. Five case examples are provided with illustrated instructions for clinicians on how hypnosis and imagery may be utilized in the treatment of patients with auto-immune disorders. Suggestions for future research in this field are included.

  7. Regulation of Body Temperature by the Nervous System.

    PubMed

    Tan, Chan Lek; Knight, Zachary A

    2018-04-04

    The regulation of body temperature is one of the most critical functions of the nervous system. Here we review our current understanding of thermoregulation in mammals. We outline the molecules and cells that measure body temperature in the periphery, the neural pathways that communicate this information to the brain, and the central circuits that coordinate the homeostatic response. We also discuss some of the key unresolved issues in this field, including the following: the role of temperature sensing in the brain, the molecular identity of the warm sensor, the central representation of the labeled line for cold, and the neural substrates of thermoregulatory behavior. We suggest that approaches for molecularly defined circuit analysis will provide new insight into these topics in the near future. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Magnetic resonance imaging of the central nervous system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-02-26

    This report reviews the current applications of magnetic resonance imaging of the central nervous system. Since its introduction into the clinical environment in the early 1980's, this technology has had a major impact on the practice of neurology. It has proved to be superior to computed tomography for imaging many diseases of the brain and spine. In some instances it has clearly replaced computed tomography. It is likely that it will replace myelography for the assessment of cervicomedullary junction and spinal regions. The magnetic field strengths currently used appear to be entirely safe for clinical application in neurology except inmore » patients with cardiac pacemakers or vascular metallic clips. Some shortcomings of magnetic resonance imaging include its expense, the time required for scanning, and poor visualization of cortical bone.« less

  9. Immunostaining to visualize murine enteric nervous system development.

    PubMed

    Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush

    2015-04-29

    The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.

  10. [Systemic paracoccidioidomycosis with central nervous system involvement].

    PubMed

    Duarte, A L; Baruffa, G; Terra, H B; Renck, D V; de Moura, D; Petrucci, C

    1999-01-01

    A clinical case of a patient bearing systemic paracoccidioidomycosis with regional ganglionic and oral exposure and later pulmonary involvement is presented. The patient was treated with specific drugs (amphotericin B, itraconazole, sulfamethoxazole-trimethoprim) and followed throughout a 6-year period and eventually died showing an extensive involvement of the central nervous system.

  11. The Role of Central Nervous System Plasticity in Tinnitus

    ERIC Educational Resources Information Center

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  12. Complex Cognitive Performance and Antihistamine Use

    DTIC Science & Technology

    1990-04-01

    22 Antihistamine Use and Sedation ...........................................24 Antihistamine Use and Physiological Measures...Reactivity and Sedation in Healthy Volunteers after Administration of Hismanal, Alone or in Combination with Central Nervous System Depressants...cross the blood-brain barrier easily, resulting in central nervous system effects such as sedation , drowsiness, and altered psychomotor performance

  13. Borrelia miyamotoi-Associated Neuroborreliosis in Immunocompromised Person.

    PubMed

    Boden, Katharina; Lobenstein, Sabine; Hermann, Beate; Margos, Gabriele; Fingerle, Volker

    2016-09-01

    Borrelia miyamotoi is a newly recognized human pathogen in the relapsing fever group of spirochetes. We investigated a case of B. miyamotoi infection of the central nervous system resembling B. burgdorferi-induced Lyme neuroborreliosis and determined that this emergent agent of central nervous system infection can be diagnosed with existing methods.

  14. In vitro Alternative Methodologies for Central Nervous System Assessment: A Critique using Nanoscale Materials as an Example.

    EPA Science Inventory

    Identifying the potential health hazards to the central nervous system of a new family of materials presents many challenges. Whole-animal toxicity testing has been the tradition, but in vitro methods have been steadily gaining popularity. There are numerous challenges in testing...

  15. The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.

    PubMed

    Maurer, Laura L; Philbert, Martin A

    2015-01-01

    The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.

  16. Seasonal meningoencephalitis in Holstein cattle caused by Naegleria fowleri.

    PubMed

    Daft, Barbara M; Visvesvara, Govinda S; Read, Deryck H; Kinde, Hailu; Uzal, Francisco A; Manzer, Michael D

    2005-11-01

    Primary amoebic meningoencephalitis is a fulminant infection of the human central nervous system caused by Naegleria fowleri, a free-living amoeba that thrives in artificially or naturally heated water. The infection usually is acquired while bathing or swimming in such waters. The portal of entry is the olfactory neuroepithelium. This report describes fatal meningoencephalitis caused by N. fowleri in Holstein cattle that consumed untreated surface water in an area of California where summer temperatures at times exceed 42 degrees C. In the summers of 1998 and 1999, severe multifocal necrosuppurative hemorrhagic meningoencephalitis was observed in brain samples from nine 10-20-month-old heifers with clinical histories of acute central nervous system disease. Olfactory lobes and cerebella were most severely affected. Lesions were also evident in periventricular and submeningeal neuropil as well as olfactory nerves. Naegleria fowleri was demonstrated by immunohistochemistry in brain and olfactory nerve lesions and was isolated from one brain. Even though cultures of drinking water did not yield N. fowleri, drinking water was the likely source of the amoeba. The disease in cattle closely resembles primary amoebic meningoencephalitis in humans. Naegleria meningoencephalitis should be included among differential diagnoses of central nervous system disease in cattle during the summer season in areas with high ambient temperatures.

  17. Sigma receptors: biology and therapeutic potential.

    PubMed

    Guitart, Xavier; Codony, Xavier; Monroy, Xavier

    2004-07-01

    More than 20 years after the identification of the sigma receptors as a unique binding site in the brain and in the peripheral organs, several questions regarding this receptor are still open. Only one of the subtypes of the receptor has been cloned to date, but the endogenous ligand still remains unknown, and the possible association of the receptor with a conventional second messenger system is controversial. From the very beginning, the sigma receptors were associated with various central nervous system disorders such as schizophrenia or movement disorders. Today, after hundreds of papers dealing with the importance of sigma receptors in brain function, it is widely accepted that sigma receptors represent a new and different avenue in the possible pharmacological treatment of several brain-related disorders. In this review, what is known about the biology of the sigma receptor regarding its putative structure and its distribution in the central nervous system is summarized first. The role of sigma receptors regulating cellular functions and other neurotransmitter systems is also addressed, as well as a short overview of the possible endogenous ligands. Finally, although no specific sigma ligand has reached the market, different pharmacological approaches to the alleviation and treatment of several central nervous system disorders and deficits, including schizophrenia, pain, memory deficits, etc., are discussed, with an overview of different compounds and their potential therapeutic use.

  18. Neuroanatomical Correlates of Heterotypic Comorbidity in Externalizing Male Adolescents

    ERIC Educational Resources Information Center

    Sauder, Colin L.; Beauchaine, Theodore P.; Gatzke-Kopp, Lisa M.; Shannon, Katherine E.; Aylward, Elizabeth

    2012-01-01

    Children and adolescents with externalizing behavior disorders including attention-deficit/hyperactivity disorder (ADHD) and conduct disorder (CD) often present with symptoms of comorbid internalizing psychopathology. However, few studies have examined central nervous system correlates of such comorbidity. We evaluated interactions between…

  19. Test Pool Questions, Area III.

    ERIC Educational Resources Information Center

    Sloan, Jamee Reid

    This manual contains multiple choice questions to be used in testing students on nurse training objectives. Each test includes several questions covering each concept. The concepts in section A, medical surgical nursing, are diseases of the following systems: musculoskeletal; central nervous; cardiovascular; gastrointestinal; urinary and male…

  20. Tourette--and Teachers.

    ERIC Educational Resources Information Center

    Teitelbaum, Blanche R.

    1979-01-01

    Describes the Gilles de la Tourette Syndrome, a little-known disorder of the central nervous system whose symptoms include involuntary movements, such as facial tics, and the production of involuntary sounds, such as grunts and obscenities. Suggests ways teachers can help a child afflicted with this disorder. (SJL)

  1. The CHARGE Association: Implications for Teachers.

    ERIC Educational Resources Information Center

    Jones, Thomas W.; Dunne, Michele T.

    1988-01-01

    CHARGE association is described as a diagnostic label for a group of congenital malformations, including coloboma, heart defects, atresia choanae, retarded postnatal growth/central nervous system defects, genital hypoplasia, and ear deformities. Etiology and characteristics of the CHARGE association are discussed, along with implications for…

  2. Predictors of Outcome following Acquired Brain Injury in Children

    ERIC Educational Resources Information Center

    Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.

    2009-01-01

    Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…

  3. Psychology in Action: Psychology in China

    ERIC Educational Resources Information Center

    Hsiao, Sigmund

    1977-01-01

    "Psychologists in the People's Republic of China are engaged in research concerning theory, Chinese language, child development, vision, audition, and areas of physiological psychology including acupuncture, pain, memory, and central nervous system functioning. The Institute of Psychology within the Chinese Academy of Sciences represents the…

  4. Systematic mechanism-orientated approach to chronic pancreatitis pain.

    PubMed

    Bouwense, Stefan A W; de Vries, Marjan; Schreuder, Luuk T W; Olesen, Søren S; Frøkjær, Jens B; Drewes, Asbjørn M; van Goor, Harry; Wilder-Smith, Oliver H G

    2015-01-07

    Pain in chronic pancreatitis (CP) shows similarities with other visceral pain syndromes (i.e., inflammatory bowel disease and esophagitis), which should thus be managed in a similar fashion. Typical causes of CP pain include increased intrapancreatic pressure, pancreatic inflammation and pancreatic/extrapancreatic complications. Unfortunately, CP pain continues to be a major clinical challenge. It is recognized that ongoing pain may induce altered central pain processing, e.g., central sensitization or pro-nociceptive pain modulation. When this is present conventional pain treatment targeting the nociceptive focus, e.g., opioid analgesia or surgical/endoscopic intervention, often fails even if technically successful. If central nervous system pain processing is altered, specific treatment targeting these changes should be instituted (e.g., gabapentinoids, ketamine or tricyclic antidepressants). Suitable tools are now available to make altered central processing visible, including quantitative sensory testing, electroencephalograpy and (functional) magnetic resonance imaging. These techniques are potentially clinically useful diagnostic tools to analyze central pain processing and thus define optimum management approaches for pain in CP and other visceral pain syndromes. The present review proposes a systematic mechanism-orientated approach to pain management in CP based on a holistic view of the mechanisms involved. Future research should address the circumstances under which central nervous system pain processing changes in CP, and how this is influenced by ongoing nociceptive input and therapies. Thus we hope to predict which patients are at risk for developing chronic pain or not responding to therapy, leading to improved treatment of chronic pain in CP and other visceral pain disorders.

  5. Neural models on temperature regulation for cold-stressed animals

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.

    1975-01-01

    The present review evaluates several assumptions common to a variety of current models for thermoregulation in cold-stressed animals. Three areas covered by the models are discussed: signals to and from the central nervous system (CNS), portions of the CNS involved, and the arrangement of neurons within networks. Assumptions in each of these categories are considered. The evaluation of the models is based on the experimental foundations of the assumptions. Regions of the nervous system concerned here include the hypothalamus, the skin, the spinal cord, the hippocampus, and the septal area of the brain.

  6. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system.

    PubMed

    van Riel, Debby; Verdijk, Rob; Kuiken, Thijs

    2015-01-01

    The olfactory nerve consists mainly of olfactory receptor neurons and directly connects the nasal cavity with the central nervous system (CNS). Each olfactory receptor neuron projects a dendrite into the nasal cavity on the apical side, and on the basal side extends its axon through the cribriform plate into the olfactory bulb of the brain. Viruses that can use the olfactory nerve as a shortcut into the CNS include influenza A virus, herpesviruses, poliovirus, paramyxoviruses, vesicular stomatitis virus, rabies virus, parainfluenza virus, adenoviruses, Japanese encephalitis virus, West Nile virus, chikungunya virus, La Crosse virus, mouse hepatitis virus, and bunyaviruses. However, mechanisms of transport via the olfactory nerve and subsequent spread through the CNS are poorly understood. Proposed mechanisms are either infection of olfactory receptor neurons themselves or diffusion through channels formed by olfactory ensheathing cells. Subsequent virus spread through the CNS could occur by multiple mechanisms, including trans-synaptic transport and microfusion. Viral infection of the CNS can lead to damage from infection of nerve cells per se, from the immune response, or from a combination of both. Clinical consequences range from nervous dysfunction in the absence of histopathological changes to severe meningoencephalitis and neurodegenerative disease. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Acute urinary retention due to benign inflammatory nervous diseases.

    PubMed

    Sakakibara, Ryuji; Yamanishi, Tomonori; Uchiyama, Tomoyuki; Hattori, Takamichi

    2006-08-01

    Both neurologists and urologists might encounter patients with acute urinary retention due to benign inflammatory nervous diseases. Based on the mechanism of urinary retention, these disorders can be divided into two subgroups: disorders of the peripheral nervous system (e.g., sacral herpes) or the central nervous system (e.g., meningitis-retention syndrome [MRS]). Laboratory abnormalities include increased herpes virus titers in sacral herpes, and increased myelin basic protein in the cerebrospinal fluid (CSF) in some cases with MRS. Urodynamic abnormality in both conditions is detrusor areflexia; the putative mechanism of it is direct involvement of the pelvic nerves in sacral herpes; and acute spinal shock in MRS. There are few cases with CSF abnormality alone. Although these cases have a benign course, management of the acute urinary retention is necessary to avoid bladder injury due to overdistension. Clinical features of sacral herpes or MRS differ markedly from those of the original "Elsberg syndrome" cases.

  8. Estimating the Global Incidence of Aneurysmal Subarachnoid Hemorrhage: A Systematic Review for Central Nervous System Vascular Lesions and Meta-Analysis of Ruptured Aneurysms.

    PubMed

    Hughes, Joshua D; Bond, Kamila M; Mekary, Rania A; Dewan, Michael C; Rattani, Abbas; Baticulon, Ronnie; Kato, Yoko; Azevedo-Filho, Hildo; Morcos, Jacques J; Park, Kee B

    2018-04-09

    There is increasing acknowledgement that surgical care is important in global health initiatives. In particular, neurosurgical care is as limited as 1 per 10 million people in parts of the world. We performed a systematic literature review to examine the worldwide incidence of central nervous system vascular lesions and a meta-analysis of aneurysmal subarachnoid hemorrhage (aSAH) to define the disease burden and inform neurosurgical global health efforts. A systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to estimate the global epidemiology of central nervous system vascular lesions, including unruptured and ruptured aneurysms, arteriovenous malformations, cavernous malformations, dural arteriovenous fistulas, developmental venous anomalies, and vein of Galen malformations. Results were organized by World Health Organization regions. After literature review, because of a lack of data from particular World Health Organization regions, we determined we could only provide an estimate of aSAH. Using data from studies with aSAH and 12 high-quality stroke studies from regions lacking data, we meta-analyzed the yearly crude incidence of aSAH per 100,000 persons. Estimates were generated via random-effects models. From an initial yield of 1492 studies, 46 manuscripts on aSAH incidence were included. The final meta-analysis included 58 studies from 31 different countries. We estimated the global crude incidence for aSAH to be 6.67 per 100,000 persons with a wide variation across WHO regions from 0.71 to 12.38 per 100,000 persons. Worldwide, almost 500,000 individuals will suffer from aSAH each year, with almost two-thirds in low- and middle-income countries. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. KSC-97PC1813

    NASA Image and Video Library

    1997-12-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  10. KSC-97PC1815

    NASA Image and Video Library

    1997-12-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  11. KSC-98pc290

    NASA Image and Video Library

    1998-02-12

    The STS-90 Neurolab payload is lowered into position into the cargo bay of Space Shuttle Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  12. KSC-97PC1812

    NASA Image and Video Library

    1997-12-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  13. KSC-98pc343

    NASA Image and Video Library

    1998-03-09

    KENNEDY SPACE CENTER, FLA. -- The STS-90 Neurolab payload and four Getaway Specials (GAS) await payload bay door closure in the orbiter Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  14. KSC-97PC1714

    NASA Image and Video Library

    1997-11-11

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  15. KSC-98pc267

    NASA Image and Video Library

    1998-02-05

    KENNEDY SPACE CENTER, FLA. -- A technician looks at the STS-90 Neurolab payload as it is moved from its test stand in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  16. KSC-98pc291

    NASA Image and Video Library

    1998-02-12

    The STS-90 Neurolab payload is lowered into position into the cargo bay of Space Shuttle Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  17. KSC-97PC1814

    NASA Image and Video Library

    1997-12-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, undergoes further processing in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  18. KSC-98pc289

    NASA Image and Video Library

    1998-02-12

    The STS-90 Neurolab payload is prepared to be positioned into the cargo bay of Space Shuttle Columbia today in Orbiter Processing Facility bay 3. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  19. KSC-98pc268

    NASA Image and Video Library

    1998-02-05

    KENNEDY SPACE CENTER, FLA. -- Technicians gather around the STS-90 Neurolab payload during weight and center-of-gravity measurements in KSC's Operations and Checkout Building. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch in April, will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  20. KSC-97PC1713

    NASA Image and Video Library

    1997-11-11

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  1. KSC-97PC1715

    NASA Image and Video Library

    1997-11-11

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is moved to its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  2. Psychoneuroimmunology - psyche and autoimmunity.

    PubMed

    Ziemssen, Tjalf

    2012-01-01

    Psychoneuroimmunology is a relatively young field of research that investigates interactions between central nervous and immune system. The brain modulates the immune system by the endocrine and autonomic nervous system. Vice versa, the immune system modulates brain activity including sleep and body temperature. Based on a close functional and anatomical link, the immune and nervous systems act in a highly reciprocal manner. From fever to stress, the influence of one system on the other has evolved in an intricate manner to help sense danger and to mount an appropriate adaptive response. Over recent decades, reasonable evidence has emerged that these brain-to-immune interactions are highly modulated by psychological factors which influence immunity and autoimmune disease. For several diseases, the relevance of psychoneuroimmunological findings has already been demonstrated.

  3. Central nervous system granulomastous phlebitis with limited extracranial involvement of the heart and lungs: An autopsy case.

    PubMed

    Mlakar, Jernej; Zorman, Jerneja Videčnik; Matičič, Mojca; Vrabec, Matej; Alibegović, Armin; Popović, Mara

    2016-02-01

    Primary angiitis of the central nervous system is a rare condition, usually with an insidious onset. There is a wide variety of histological types (granulomatous, lymphocytic or necrotizing vasculitis) and types of vessel involved (arteries, veins or both). Most cases are idiopathic. We describe a first case of idiopathic granulomatous central nervous system phlebitis with additional limited involvement of the heart and lung, exclusively affecting small and medium sized veins in a 22-year-old woman, presenting as a sub acute headache. The reasons for this peculiar limitation of inflammation to the veins and the involvement of the heart and lungs are unknown. © 2015 Japanese Society of Neuropathology.

  4. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    NASA Astrophysics Data System (ADS)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  5. Axonal sprouting and laminin appearance after destruction of glial sheaths.

    PubMed Central

    Masuda-Nakagawa, L M; Muller, K J; Nicholls, J G

    1993-01-01

    Laminin, a large extracellular matrix molecule, is associated with axonal outgrowth during development and regeneration of the nervous system in a variety of animals. In the leech central nervous system, laminin immunoreactivity appears after axon injury in advance of the regenerating axons. Although studies of vertebrate nervous system in culture have implicated glial and Schwann cells as possible sources, the cells that deposit laminin at sites crucial for regeneration in the living animal are not known. We have made a direct test to determine whether, in the central nervous system of the leech, cells other than ensheathing glial cells can produce laminin. Ensheathing glial cells of adult leeches were ablated selectively by intracellular injection of a protease. As a result, leech laminin accumulated within 10 days in regions of the central nervous system where it is not normally found, and undamaged, intact axons began to sprout extensively. In normal leeches laminin immunoreactivity is situated only in the basement membrane that surrounds the central nervous system, whereas after ablation of ensheathing glia it appeared in spaces through which neurons grew. Within days of ablation of the glial cell, small mobile phagocytes, or microglia, accumulated in the spaces formerly occupied by the glial cell. Microglia were concentrated at precisely the sites of new laminin appearance and axon sprouting. These results suggest that in the animal, as in culture, leech laminin promotes sprouting and that microglia may be responsible for its appearance. Images Fig. 1 Fig. 2 Fig. 3 PMID:8506343

  6. Hyperthyroidism complicating asthma treatment.

    PubMed

    Zacharisen, M C; Fink, J N

    2000-01-01

    Asthma is one of the most common chronic medical conditions. The usual treatment includes quick relief bronchodilator medications of the sympathomimetic class and controller medications that may include the long-acting inhaled bronchodilator salmeterol. Mild adverse cardiac and central nervous system effects are common with these medications, requiring modifications in dose or occasionally switching to a different medication. Both asthma and thyroid disease are common disorders that occasionally occur together. Hyperthyroidism may exacerbate asthma. Many symptoms of hyperthyroidism are identical to the adverse effects of the commonly used inhaled bronchodilators and include tremor, nervousness, tachycardia, wide pulse pressure, palpitations, emotional lability, agitation, nightmares, aggressive behavior, and diarrhea. In this report we describe a patient with hyperthyroidism whose symptoms initially were thought to be adverse effects of the inhaled bronchodilator medications.

  7. Space, Time, and Dyslexia: Central Nervous System Factors in Reading Disability.

    ERIC Educational Resources Information Center

    Krippner, Stanley

    Developmental and post-traumatic dyslexia are discussed in terms of a dysfunction of the central nervous system resulting in reading disabilities. The relationship of reading to other language functions is considered, with emphasis on the temporal aspects of speech and reading. An interdisciplinary approach is held necessary for the diagnosis of…

  8. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  9. Borrelia miyamotoi–Associated Neuroborreliosis in Immunocompromised Person

    PubMed Central

    Lobenstein, Sabine; Hermann, Beate; Margos, Gabriele; Fingerle, Volker

    2016-01-01

    Borrelia miyamotoi is a newly recognized human pathogen in the relapsing fever group of spirochetes. We investigated a case of B. miyamotoi infection of the central nervous system resembling B. burgdorferi–induced Lyme neuroborreliosis and determined that this emergent agent of central nervous system infection can be diagnosed with existing methods. PMID:27533748

  10. A Comparison of the Anorexic Effects of Chicken, Porcine, Human and Bovine Insulin on the Central Nervous System of Chicks

    USDA-ARS?s Scientific Manuscript database

    The aim of the present study was to determine if some naturally-occurring substitutions of amino acid residues of insulin could act differentially within the central nervous system (CNS) of neonatal chicks to control ingestive behavior. Intracerebroventricular (ICV) administration of chicken insuli...

  11. Diagnostic Challenges of Central Nervous System Tuberculosis

    PubMed Central

    Loeffler, Ann M.; Honarmand, Somayeh; Flood, Jennifer M.; Baxter, Roger; Jacobson, Susan; Alexander, Rick; Glaser, Carol A.

    2008-01-01

    Central nervous system tuberculosis (TB) was identified in 20 cases of unexplained encephalitis referred to the California Encephalitis Project. Atypical features (encephalitic symptoms, rapid onset, age) and diagnostic challenges (insensitive cerebrospinal fluid [CSF] TB PCR result, elevated CSF glucose levels in patients with diabetes, negative result for tuberculin skin test) complicated diagnosis. PMID:18760024

  12. Pazopanib efficacy in recurrent central nervous system hemangiopericytomas.

    PubMed

    Apra, Caroline; Alentorn, Agusti; Mokhtari, Karima; Kalamarides, Michel; Sanson, Marc

    2018-04-26

    There is currently no treatment for solitary fibrous tumors/hemangiopericytomas (SFT/H) of the central nervous system recurring after multiple surgeries and radiotherapies. The NAB2-STAT6 gene fusion is the hallmark of these tumors, and upregulates Early Growth Factor, activating several growth pathways. We treated two patients presenting pluri-recurrent meningeal SFT/H with Pazopanib, a broad-spectrum tyrosine kinase inhibitor. We analyzed the exome and RNA sequencing data of one of them and, in addition to another meningeal SFT/H, compared it to the transcriptomic profiling of 5 systemic SFT/H. A dramatic clinical and radiological response was observed in both cases, respectively 84 and 43% decrease after 3 months. As a comparison, Pazopanib has only a stabilizing effect in systemic SFT/H. Indeed, central nervous system SFT/H show overexpression of different tyrosine kinases targeted by Pazopanib. Two consecutive patients with untreatable central nervous system SFT/H showed a spectacular partial response to Pazopanib, an unprecedented result in SFT/H. This result could be explained by differences in expression profiles and calls for a confirmation in a larger cohort of patients.

  13. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4βl integrin

    NASA Astrophysics Data System (ADS)

    Yednock, Ted A.; Cannon, Catherine; Fritz, Lawrence C.; Sanchez-Madrid, Francisco; Steinman, Lawrence; Karin, Nathan

    1992-03-01

    EXPERIMENTAL autoimmune encephalomyelitis (EAE) is an inflammatory condition of the central nervous system with similarities to multiple sclerosis1,2. In both diseases, circulating leukocytes penetrate the blood-brain barrier and damage myelin, resulting in impaired nerve conduction and paralysis3-5. We sought to identify the adhesion receptors that mediate the attachment of circulating leukocytes to inflamed brain endothelium in EAE, because this interaction is the first step in leukocyte entry into the central nervous system. Using an in vitro adhesion assay on tissue sections, we found that lymphocytes and monocytes bound selectively to inflamed EAE brain vessels. Binding was inhibited by antibodies against the integrin molecule α4βl, but not by antibodies against numerous other adhesion receptors. When tested in vivo, anti-α4 integrin effectively prevented the accumulation of leukocytes in the central nervous system and the development of EAE. Thus, therapies designed to interfere with α4βl integrin may be useful in treating inflammatory diseases of the central nervous system, such as multiple sclerosis.

  14. Neonatal hypoglycemia.

    PubMed

    Straussman, Sharon; Levitsky, Lynne L

    2010-02-01

    Hypoglycemia in the newborn may be associated with both acute decompensation and long-term neuronal loss. Studies of the cause of hypoglycemic brain damage and the relationship of hypoglycemia to disorders associated with hyperinsulinism have aided in our understanding of this common clinical finding. A recent consensus workshop concluded that there has been little progress toward a precise numerical definition of neonatal hypoglycemia. Nonetheless, newer brain imaging modalities have provided insight into the relationship between neuronal energy deficiency and central nervous system damage. Laboratory studies have begun to reveal the mechanism of hypoglycemic damage. In addition, there is new information about hyperinsulinemic hypoglycemia of genetic, environmental, and iatrogenic origin. The quantitative definition of hypoglycemia in the newborn remains elusive because it is a surrogate marker for central nervous system energy deficiency. Nonetheless, the recognition that hyperinsulinemic hypoglycemia, which produces profound central nervous system energy deficiency, is most likely to lead to long-term central nervous system damage, has altered management of children with hypoglycemia. In addition, imaging studies on neonates and laboratory evaluation in animal models have provided insight into the mechanism of neuronal damage.

  15. 76 FR 5711 - Bispyribac-sodium; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-02

    ...- sodium has shown no indications of central or peripheral nervous system toxicity in any study and does not appear to be structurally related to any other chemical that causes adverse nervous system effects... the nervous system is a target for [[Page 5715

  16. The Central Nervous System and Bone Metabolism: An Evolving Story.

    PubMed

    Dimitri, Paul; Rosen, Cliff

    2017-05-01

    Our understanding of the control of skeletal metabolism has undergone a dynamic shift in the last two decades, primarily driven by our understanding of energy metabolism. Evidence demonstrating that leptin not only influences bone cells directly, but that it also plays a pivotal role in controlling bone mass centrally, opened up an investigative process that has changed the way in which skeletal metabolism is now perceived. Other central regulators of bone metabolism have since been identified including neuropeptide Y (NPY), serotonin, endocannabinoids, cocaine- and amphetamine-regulated transcript (CART), adiponectin, melatonin and neuromedin U, controlling osteoblast and osteoclast differentiation, proliferation and function. The sympathetic nervous system was originally identified as the predominant efferent pathway mediating central signalling to control skeleton metabolism, in part regulated through circadian genes. More recent evidence points to a role of the parasympathetic nervous system in the control of skeletal metabolism either through muscarinic influence of sympathetic nerves in the brain or directly via nicotinic receptors on osteoclasts, thus providing evidence for broader autonomic skeletal regulation. Sensory innervation of bone has also received focus again widening our understanding of the complex neuronal regulation of bone mass. Whilst scientific advance in this field of bone metabolism has been rapid, progress is still required to understand how these model systems work in relation to the multiple confounders influencing skeletal metabolism, and the relative balance in these neuronal systems required for skeletal growth and development in childhood and maintaining skeletal integrity in adulthood.

  17. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia

    PubMed Central

    Powell, Frank L.; Bisgard, Gerald E.; Blain, Gregory M.; Poulin, Marc J.; Smith, Curtis A.

    2013-01-01

    During sojourn to high altitudes, progressive time-dependent increases occur in ventilation and in sympathetic nerve activity over several days, and these increases persist upon acute restoration of normoxia. We discuss evidence concerning potential mediators of these changes, including the following: 1) correction of alkalinity in cerebrospinal fluid; 2) increased sensitivity of carotid chemoreceptors; and 3) augmented translation of carotid chemoreceptor input (at the level of the central nervous system) into increased respiratory motor output via sensitization of hypoxic sensitive neurons in the central nervous system and/or an interdependence of central chemoreceptor responsiveness on peripheral chemoreceptor sensory input. The pros and cons of chemoreceptor sensitization and cardiorespiratory acclimatization to hypoxia and intermittent hypoxemia are also discussed in terms of their influences on arterial oxygenation, the work of breathing, sympathoexcitation, systemic blood pressure, and exercise performance. We propose that these adaptive processes may have negative implications for the cardiovascular health of patients with sleep apnea and perhaps even for athletes undergoing regimens of “sleep high-train low”! PMID:24371017

  18. Role of chemoreception in cardiorespiratory acclimatization to, and deacclimatization from, hypoxia.

    PubMed

    Dempsey, Jerome A; Powell, Frank L; Bisgard, Gerald E; Blain, Gregory M; Poulin, Marc J; Smith, Curtis A

    2014-04-01

    During sojourn to high altitudes, progressive time-dependent increases occur in ventilation and in sympathetic nerve activity over several days, and these increases persist upon acute restoration of normoxia. We discuss evidence concerning potential mediators of these changes, including the following: 1) correction of alkalinity in cerebrospinal fluid; 2) increased sensitivity of carotid chemoreceptors; and 3) augmented translation of carotid chemoreceptor input (at the level of the central nervous system) into increased respiratory motor output via sensitization of hypoxic sensitive neurons in the central nervous system and/or an interdependence of central chemoreceptor responsiveness on peripheral chemoreceptor sensory input. The pros and cons of chemoreceptor sensitization and cardiorespiratory acclimatization to hypoxia and intermittent hypoxemia are also discussed in terms of their influences on arterial oxygenation, the work of breathing, sympathoexcitation, systemic blood pressure, and exercise performance. We propose that these adaptive processes may have negative implications for the cardiovascular health of patients with sleep apnea and perhaps even for athletes undergoing regimens of "sleep high-train low"!

  19. The presumed central nervous system effects of rocuronium in a neonate and its reversal with sugammadex.

    PubMed

    Langley, Ross J; McFadzean, Jillian; McCormack, Jon

    2016-01-01

    We describe a 2-day-old male infant who received rocuronium as part of general anesthesia for a tracheal esophageal fistula repair. Postoperatively, he had prolonged central and peripheral neuromuscular blockade despite cessation of the rocuronium infusion several hours previously. This case discusses the presumed central nervous system effects of rocuronium in a neonate and its effective reversal with sugammadex. © 2015 John Wiley & Sons Ltd.

  20. Determining Optimal Post-Stroke Exercise (DOSE)

    ClinicalTrials.gov

    2018-02-13

    Cerebrovascular Accident; Stroke; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases

  1. Microbiota-gut-brain axis and the central nervous system.

    PubMed

    Zhu, Xiqun; Han, Yong; Du, Jing; Liu, Renzhong; Jin, Ketao; Yi, Wei

    2017-08-08

    The gut and brain form the gut-brain axis through bidirectional nervous, endocrine, and immune communications. Changes in one of the organs will affect the other organs. Disorders in the composition and quantity of gut microorganisms can affect both the enteric nervous system and the central nervous system (CNS), thereby indicating the existence of a microbiota-gut-brain axis. Due to the intricate interactions between the gut and the brain, gut symbiotic microorganisms are closely associated with various CNS diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia, and multiple sclerosis. In this paper, we will review the latest advances of studies on the correlation between gut microorganisms and CNS functions & diseases.

  2. [Molecular genetics of familial tumour syndromes of the central nervous system].

    PubMed

    Murnyák, Balázs; Szepesi, Rita; Hortobágyi, Tibor

    2015-02-01

    Although most of the central nervous system tumours are sporadic, rarely they are associated with familial tumour syndromes. These disorders usually present with an autosomal dominant inheritance and neoplasia develops at younger age than in sporadic cases. Most of these tumours are bilateral, multiplex or multifocal. The causative mutations occur in genes involved in cell cycle regulation, cell growth, differentiation and DNA repair. Studying these hereditary cancer predisposition syndromes associated with nervous system tumours can facilitate the deeper understanding of the molecular background of sporadic tumours and the development of novel therapeutic agents. This review is an update on hereditary tumour syndromes with nervous system involvement with emphasis on molecular genetic characteristics and their clinical implications.

  3. 21 CFR 1300.01 - Definitions relating to controlled substances.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... paragraph. Automated dispensing system means a mechanical system that performs operations or activities... 1305.06. Readily retrievable means that certain records are kept by automatic data processing systems...

  4. Neuronopathic Lysosomal Storage Diseases: Clinical and Pathologic Findings

    ERIC Educational Resources Information Center

    Prada, Carlos E.; Grabowski, Gregory A.

    2013-01-01

    Background: The lysosomal--autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. Methods: Literature review provided insight into the current clinical neurological findings,…

  5. 21 CFR 1300.01 - Definitions relating to controlled substances.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... paragraph. Automated dispensing system means a mechanical system that performs operations or activities... 1305.06. Readily retrievable means that certain records are kept by automatic data processing systems...

  6. 21 CFR 1300.01 - Definitions relating to controlled substances.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... substances having a depressant effect on the central nervous system, including its salts, isomers, and salts... paragraph. Automated dispensing system means a mechanical system that performs operations or activities... 1305.06. Readily retrievable means that certain records are kept by automatic data processing systems...

  7. Environmental Complexity and Central Nervous System Development and Function

    ERIC Educational Resources Information Center

    Lewis, Mark H.

    2004-01-01

    Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching,…

  8. Applications of DNA-Based Liquid Biopsy for Central Nervous System Neoplasms.

    PubMed

    Wang, Joanna; Bettegowda, Chetan

    2017-01-01

    The management of central nervous system malignancies remains reliant on histopathological analysis and neuroimaging, despite their complex genetic profile. The intratumoral heterogeneity displayed by these tumors necessitates a more sophisticated method of tumor analysis and monitoring, with the ability to assess tumors over space and time. Circulating biomarkers, including circulating tumor cells, circulating tumor DNA, and extracellular vesicles, hold promise as a type of real-time liquid biopsy able to provide dynamic information not only regarding tumor burden to monitor disease progression and treatment response, but also regarding genetic profile to enable changes in management to match a constantly evolving tumor. In numerous cancer types, including glioma, they have demonstrated their clinical utility as a minimally invasive means for diagnosis, prognostication, and prediction. In addition, they can be used in the laboratory to probe mechanisms of acquired drug resistance and tumor invasion and dissemination. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  9. Descriptive epidemiology of childhood central nervous system tumours in Tunisia. experience of a single institution over a 15-year period (1990-2004).

    PubMed

    Bellil, Salma; Limaiem, Faten; Mahfoudhi, Houaïda; Bellil, Khadija; Chelly, Inès; Mekni, Amina; Jemel, Hafedh; Khaldi, Moncef; Haouet, Slim; Zitouna, Moncef; Kchir, Nidhameddine

    2008-01-01

    Central nervous system tumours represent 20% of all childhood cancers, and are the second most common group of neoplasms after leukaemias. To describe epidemiological characteristics of central nervous system tumours in a paediatric Tunisian population. A retrospective study of 492 childhood central nervous system tumours operated between 1990 and 2004 was undertaken. We investigated the age-related location, gender distribution and the histology of all tumours, and adopted the latest WHO classification (2007) in grouping all the tumours. There were 488 primary and 4 secondary tumours; 426 (86.6%) were intracranial and 66 (13.4%) were intraspinal. Of the 426 intracranial tumours, 214 (50.24%) were supratentorial and 212 (49.76%) were infratentorial. The median age at diagnosis was 8 years, with a male:female ratio of 1.14:1. Low-grade tumours (WHO I/II) constituted 67.3% of all lesions and the rest (32.7%) were high-grade tumours (WHO III/IV). The most common tumour found in our series was astrocytoma (38%), followed by medulloblastoma (16.2%), then ependymoma (6.9%), cystic tumours (6.3%) and craniopharyngioma (5.3%). The overall 5-year survival rate was 45% with a mean follow-up period of 36 months. In our patient population, the incidence and distribution of central nervous system tumours were similar to those reported in literature. Overall survival rates varied according to tumour location and histopathology. (c) 2008 S. Karger AG, Basel.

  10. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies

    PubMed Central

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P.; Alder, Hansjuerg; Carosi, Mariantonia A.; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M.

    2015-01-01

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application. The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies. CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization. Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies. This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications. PMID:26246487

  11. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies.

    PubMed

    Drusco, Alessandra; Bottoni, Arianna; Laganà, Alessandro; Acunzo, Mario; Fassan, Matteo; Cascione, Luciano; Antenucci, Anna; Kumchala, Prasanthi; Vicentini, Caterina; Gardiman, Marina P; Alder, Hansjuerg; Carosi, Mariantonia A; Ammirati, Mario; Gherardi, Stefano; Luscrì, Marilena; Carapella, Carmine; Zanesi, Nicola; Croce, Carlo M

    2015-08-28

    Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.

  12. Central nervous system regulation of hepatic lipid and lipoprotein metabolism.

    PubMed

    Taher, Jennifer; Farr, Sarah; Adeli, Khosrow

    2017-02-01

    Hepatic lipid and lipoprotein metabolism is an important determinant of fasting dyslipidemia and the development of fatty liver disease. Although endocrine factors like insulin have known effects on hepatic lipid homeostasis, emerging evidence also supports a regulatory role for the central nervous system (CNS) and neuronal networks. This review summarizes evidence implicating a bidirectional liver-brain axis in maintaining metabolic lipid homeostasis, and discusses clinical implications in insulin-resistant states. The liver utilizes sympathetic and parasympathetic afferent and efferent fibers to communicate with key regulatory centers in the brain including the hypothalamus. Hypothalamic anorexigenic and orexigenic peptides signal to the liver via neuronal networks to modulate lipid content and VLDL production. In addition, peripheral hormones such as insulin, leptin, and glucagon-like-peptide-1 exert control over hepatic lipid by acting directly within the CNS or via peripheral nerves. Central regulation of lipid metabolism in other organs including white and brown adipose tissue may also contribute to hepatic lipid content indirectly via free fatty acid release and changes in lipoprotein clearance. The CNS communicates with the liver in a bidirectional manner to regulate hepatic lipid metabolism and lipoprotein production. Impairments in these pathways may contribute to dyslipidemia and hepatic steatosis in insulin-resistant states.

  13. Primary central nervous system diffuse large B-cell lymphoma shows an activated B-cell-like phenotype with co-expression of C-MYC, BCL-2, and BCL-6.

    PubMed

    Li, Xiaomei; Huang, Ying; Bi, Chengfeng; Yuan, Ji; He, Hong; Zhang, Hong; Yu, QiuBo; Fu, Kai; Li, Dan

    2017-06-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma, whose main prognostic factor is closely related to germinal center B-cell-like subtype (GCB- DLBCL) or activated B-cell-like type (non-GCB-DLBCL). The most common type of primary central nervous system lymphoma is diffuse large B-cell type with poor prognosis and the reason is unclear. This study aims to stratify primary central nervous system diffuse large B-cell lymphoma (PCNS-DLBCL) according to the cell-of-origin (COO) and to investigate the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53, further to elucidate the reason why primary central nervous system diffuse large B-cell lymphoma possesses a poor clinical outcome as well. Nineteen cases of primary central nervous system DLBCL were stratified according to immunostaining algorithms of Hans, Choi and Meyer (Tally) and we investigated the multiple proteins expression of C-MYC, BCL-6, BCL-2, TP53. The Epstein-Barr virus and Borna disease virus infection were also detected. Among nineteen cases, most (15-17 cases) were assigned to the activated B-cell-like subtype, highly expression of C-MYC (15 cases, 78.9%), BCL-2 (10 cases, 52.6%), BCL-6 (15 cases, 78.9%). Unfortunately, two cases were positive for PD-L1 while PD-L2 was not expressed in any case. Two cases infected with BDV but no one infected with EBV. In conclusion, most primary central nervous system DLBCLs show an activated B-cell-like subtype characteristic and have multiple expressions of C-MYC, BCL-2, BCL-6 protein, these features might be significant factor to predict the outcome and guide treatment of PCNS-DLBCLs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Your brain on drugs: imaging of drug-related changes in the central nervous system.

    PubMed

    Tamrazi, Benita; Almast, Jeevak

    2012-01-01

    Drug abuse is a substantial problem in society today and is associated with significant morbidity and mortality. Various drugs are associated with serious complications affecting the brain, and it is critical to recognize the imaging findings of these complications to provide prompt medical management. The central nervous system (CNS) is a target organ for drugs of abuse as well as specific prescribed medications. Drugs of abuse affecting the CNS include cocaine, heroin, alcohol, amphetamines, toluene, and cannabis. Prescribed medications or medical therapies that can affect the CNS include immunosuppressants, antiepileptics, nitrous oxide, and total parenteral nutrition. The CNS complications of these drugs include neurovascular complications, encephalopathy, atrophy, infection, changes in the corpus callosum, and other miscellaneous changes. Imaging abnormalities indicative of these complications can be appreciated at both magnetic resonance (MR) imaging and computed tomography (CT). It is critical for radiologists to recognize complications related to drugs of abuse as well as iatrogenic effects of various medications. Therefore, diagnostic imaging modalities such as MR imaging and CT can play a pivotal role in the recognition and timely management of drug-related complications in the CNS.

  15. Essential tremor

    MedlinePlus

    ... Tremor - familial; Benign essential tremor; Shaking - essential tremor Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...

  16. Olivopontocerebellar atrophy

    MedlinePlus

    ... degeneration; Multiple system atrophy cerebellar predominance; MSA-C Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...

  17. Secondary parkinsonism

    MedlinePlus

    ... developing. Alternative Names Parkinsonism - secondary; Atypical Parkinson disease Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...

  18. Movement - uncontrollable

    MedlinePlus

    ... movements; Body movements - uncontrollable; Dyskinesia; Athetosis; Myoclonus; Ballismus Images Central nervous system and peripheral nervous system References Jankovic J, Lang AE. Diagnosis and assessment of Parkinson disease ...

  19. Dendrimer advances for the central nervous system delivery of therapeutics.

    PubMed

    Xu, Leyuan; Zhang, Hao; Wu, Yue

    2014-01-15

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included.

  20. Methods for Gene Transfer to the Central Nervous System

    PubMed Central

    Kantor, Boris; Bailey, Rachel M.; Wimberly, Keon; Kalburgi, Sahana N.; Gray, Steven J.

    2015-01-01

    Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed. PMID:25311922

  1. Central nervous system vasculitis caused by propylthiouracil therapy: a case report and literature review.

    PubMed

    Vanek, C; Samuels, M H

    2005-01-01

    Antineutrophil cytoplasmic antibodies (ANCA) are associated with vasculitis, including vasculitis induced by drugs such as the thionamides. The affected organ systems in thionamide-induced vasculitis have been primarily renal, musculoskeletal, and dermatologic. We describe the first case of thionamide-induced central nervous system vasculitis presenting as confusion, with complete resolution after discontinuation of propylthiouracil. We review the literature and summarize 42 additional cases of thionamide-induced ANCA-positive vasculitis since 1992. Propylthiouracil was responsible in 93% of cases and the predominant ANCA pattern on immunofluorescent staining was perinuclear (p-ANCA). Clinical improvement occurred after drug discontinuation in 93%, steroid therapy was used in some cases. The mean duration of treatment with thionamides was 35 months prior to presentation. Long-term medical treatment with thionamides for hyperthyroidism may increase the risk of this severe side effect.

  2. Pathology of fungal infections of the central nervous system: 17 years' experience from Southern India.

    PubMed

    Sundaram, C; Umabala, P; Laxmi, V; Purohit, A K; Prasad, V S S V; Panigrahi, M; Sahu, B P; Sarathi, M V; Kaul, S; Borghain, R; Meena, A K; Jayalakshmi, S S; Suvarna, A; Mohandas, S; Murthy, J M K

    2006-10-01

    To describe the pathology of central nervous system (CNS) fungal infections with particular reference to India. This was a retrospective study from 1988 to 2004 constituting 130 cases. The diagnosis was based on morphology of biopsy/autopsy material. These included aspergillosis (n=73), zygomycosis (n=40), cryptococcosis (n=2), rhodotorulosis (n=1), candidiasis (n=5), maduramycosis (n=1), pheohyphomycosis (n=3) and mixed infections (n=5). Predisposing risk factors were present in 49 (38%) patients only. The majority of the patients were immunocompetent. The commonest risk factor was diabetes mellitus, the commonest route of infection was from a contiguous site and the commonest pathology was granuloma. Culture positivity was seen in only 31%. Environmental factors in tropical countries such as India play a significant role in the pathogenesis of CNS fungal infections.

  3. Strategies for drug delivery to the central nervous system by systemic route.

    PubMed

    Kasinathan, Narayanan; Jagani, Hitesh V; Alex, Angel Treasa; Volety, Subrahmanyam M; Rao, J Venkata

    2015-05-01

    Delivery of a drug into the central nervous system (CNS) is considered difficult. Most of the drugs discovered over the past decade are biological, which are high in molecular weight and polar in nature. The delivery of such drugs across the blood-brain barrier presents problems. This review discusses some of the options available to reach the CNS by systemic route. The focus is mainly on the recent developments in systemic delivery of a drug to the CNS. Databases such as Scopus, Google scholar, Science Direct, SciFinder and online journals were referred for preparing this article including 89 references. There are at least nine strategies that could be adopted to achieve the required drug concentration in the CNS. The recent developments in drug delivery are very promising to deliver biologicals into the CNS.

  4. Clinical characteristics and predictors of mortality for Cryptococcus gattii infection in dogs and cats of southwestern British Columbia

    PubMed Central

    Duncan, Colleen; Stephen, Craig; Campbell, John

    2006-01-01

    Since 1999, Cryptococcus gattii has emerged as an important pathogen of humans and animals in southwestern British Columbia. Historically thought to be restricted to the tropics and subtropics, C. gattii has posed new diagnostic and treatment challenges to veterinary practitioners working within the recently identified endemic region. Clinical reports of canine and feline cryptococcosis caused by C. gattii diagnosed between January 1999 and December 2003 were included in this case series. The most common manifestations of disease were respiratory and central nervous system signs. Multivariate survival analysis revealed that the only significant predictor of mortality was the presence of central nervous system signs upon presentation or during therapy. Case fatality rates in both species were high. Further investigation into effective treatment regimes is warranted. PMID:17078248

  5. Dendrimer Advances for the Central Nervous System Delivery of Therapeutics

    PubMed Central

    2013-01-01

    The effectiveness of noninvasive treatment for central nervous system (CNS) diseases is generally limited by the poor access of therapeutic agents into the CNS. Most CNS drugs cannot permeate into the brain parenchyma because of the blood-brain barrier (BBB), and overcoming this has become one of the most significant challenges in the development of CNS therapeutics. Rapid advances in nanotechnology have provided promising solutions to this challenge. This review discusses the latest applications of dendrimers in the treatment of CNS diseases with an emphasis on brain tumors. Dendrimer-mediated drug delivery, imaging, and diagnosis are also reviewed. The toxicity, biodistribution, and transport mechanisms in dendrimer-mediated delivery of CNS therapeutic agents bypassing or crossing the BBB are also discussed. Future directions and major challenges of dendrimer-mediated delivery of CNS therapeutic agents are included. PMID:24274162

  6. Progressive supranuclear palsy

    MedlinePlus

    ... dystonia; Richardson-Steele-Olszewski syndrome; Palsy - progressive supranuclear Images Central nervous system and peripheral nervous system References Jankovic J. Parkinson disease and other movement disorders. In: Daroff ...

  7. [New concepts on the role of cytokines in the central nervous system].

    PubMed

    Jacque, C; Tchélingérian, J L

    1994-11-01

    Initially described as modulatory molecules in the peripheral immune system and during haematopoiesis, several cytokines also play a role in the brain. Their synthesis in the central nervous system (CNS) is not due solely to glial cell activation or invading immune cells. On the one hand, several functions of central neurons are modulated by cytokines such as IL-1, TNF alpha, IL-2 and IL-6. Thus, IL-1 and TNF alpha modulate the synthesis of several neuromediators and modify ion influxes. IL-2 regulates the effects of central dopaminergic neurons on cholinergic, noradrenergic, serotoninergic and glutamatergic functions. On the other hand, neurons have recently been shown to be able to synthesize some of these cytokines under specific traumatic conditions. For example, a lesion to the hippocampus induces neuronal synthesis of IL-1 alpha and TNF alpha. This induction through neuronal circuits may operate at a distance in contrast to the glial reaction operating only locally. The recent demonstration of the expression by central neurons of receptors specific for these cytokines support a potentially crucial role for these molecules in brain function. Some data emerge in the literature demonstrating a potent expression of cytokines in the central nervous system in numerous pathological situations. Then, it appears that, at the interface between nervous and immune systems, cytokines may bear a pivotal role in the development of specific symptoms in neuroimmune diseases.

  8. Phylogenetic clades of ovine progressive pneumonia virus (OPPV) associate with sheep TMEM154 genotypes

    USDA-ARS?s Scientific Manuscript database

    Ovine progressive pneumonia virus (OPPV) is a lentivirus within the Retroviridae family that infects sheep. OPPV-induced clinical disease progresses slowly over time and manifests primarily in the lungs and central nervous system. Symptoms include weight loss, respiratory distress, and inevitably ...

  9. COMBINED EFFECTS OF METALS AND STRESS ON CENTRAL NERVOUS SYSTEM FUNCTION

    EPA Science Inventory

    Chemical exposures do not occur in isolation but concurrently with other risk factors for human diseases and disorders, including host, genetic and lifestyle risk factors. This application asks two crucial questions in relation to the inclusion of non-chemical stressors in cum...

  10. A case of primary hypothyroidism causing central nervous system atherosclerosis in a dog.

    PubMed

    Blois, Shauna L; Poma, Roberto; Stalker, Margaret J; Allen, Dana G

    2008-08-01

    A 2-year-old, castrated male, Australian shepherd was presented with a history of chronic mild ataxia, obesity, and lethargy. The dog was treated with levothyroxine, but the ataxia worsened. Cranial nerve abnormalities developed and the dog was euthanized. Postmortem examination revealed marked thyroid gland atrophy and widespread, severe central nervous system atherosclerosis.

  11. Aberrant nerve fibres within the central nervous system.

    PubMed

    Moffie, D

    1992-01-01

    Three cases of aberrant nerve fibres in the spinal cord and medulla oblongata are described. The literature on these fibres is discussed and their possible role in regeneration. Different views on the possibility of regeneration or functional recovery of the central nervous system are mentioned in the light of recent publications, which are more optimistic than before.

  12. Novel Dissection of the Central Nervous System to Bridge Gross Anatomy and Neuroscience for an Integrated Medical Curriculum

    ERIC Educational Resources Information Center

    Hlavac, Rebecca J.; Klaus, Rachel; Betts, Kourtney; Smith, Shilo M.; Stabio, Maureen E.

    2018-01-01

    Medical schools in the United States continue to undergo curricular change, reorganization, and reformation as more schools transition to an integrated curriculum. Anatomy educators must find novel approaches to teach in a way that will bridge multiple disciplines. The cadaveric extraction of the central nervous system (CNS) provides an…

  13. Conventional external beam radiotherapy for central nervous system malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halperin, E.C.; Burger, P.C.

    1985-11-01

    Fractionated external beam photon radiotherapy is an important component of the clinical management of malignant disease of the central nervous system. The practicing neurologist or neurosurgeon frequently relies on the consultative and treatment skills of a radiotherapist. This article provides a review for the nonradiotherapist of the place of conventional external beam radiotherapy in neuro-oncology. 23 references.

  14. National Training Course. Emergency Medical Technician. Paramedic. Instructor's Lesson Plans. Module VII. Central Nervous System.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This instructor's lesson plan guide on the central nervous system is one of fifteen modules designed for use in the training of emergency medical technicians. Four units of study are presented: (1) anatomy and physiology; (2) assessment of patients with neurological problems; (3) pathophysiology and management of neurological problems; (4)…

  15. Disseminated Cryptococcosis With Brain Involvement in Patients With Chronic Lymphoid Malignancies on Ibrutinib.

    PubMed

    Messina, Julia A; Maziarz, Eileen K; Spec, Andrej; Kontoyiannis, Dimitrios P; Perfect, John R

    2017-01-01

    We report 2 cases of disseminated cryptococcosis with central nervous system involvement in patients with chronic lymphoid malignancies occurring within 1 month of starting on ibrutinib. Characteristically, in both cases, no inflammation was seen in the cerebrospinal fluid. Central nervous system mycoses should be considered as a potential complication of ibrutinib.

  16. Video Views and Reviews: Neurulation and the Fashioning of the Vertebrate Central Nervous System

    ERIC Educational Resources Information Center

    Watters, Christopher

    2006-01-01

    The central nervous system (CNS) is the first adult organ system to appear during vertebrate development, and the process of its emergence is commonly called neurulation. Such biological "urgency" is perhaps not surprising given the structural and functional complexity of the CNS and the importance of neural function to adaptive behavior and…

  17. Effects of Gentiana lutea ssp. symphyandra on the central nervous system in mice.

    PubMed

    Oztürk, Nilgün; Başer, K Hüsnü Can; Aydin, Süleyman; Oztürk, Yusuf; Caliş, Ihsan

    2002-11-01

    A methanolic extact of Gentiana lutea ssp. symphyandra roots has been investigated for its possible effects on the central nervous system of mice. At doses of 250 and 500 mg/kg (i.p.), the methanol extract of Gentiana roots caused a significant increase in the swimming endurance test and exhibited slight analgesic activity, but no lethality in mice suggesting some activity on the central nervous system. However, there was no indication of sedation or muscular fatigue at the doses employed. HPLC analysis showed that three secoiridoid compounds, gentiopicroside, swertiamarine and sweroside were present and may have been responsible for the CNS effects of the methanol extract of Gentiana lutea ssp. symphyandra roots. Copyright 2002 John Wiley & Sons, Ltd.

  18. Intravascular lymphoma involving the central and peripheral nervous systems in a dog.

    PubMed

    Bush, William W; Throop, Juliene L; McManus, Patricia M; Kapatkin, Amy S; Vite, Charles H; Van Winkle, Tom J

    2003-01-01

    A 5-year-old, castrated male mixed-breed dog was presented for paraparesis, ataxia, hyperesthesia, and thrombocytopenia of 5 months' duration and recurrent seizures during the preceding 2 weeks. Multifocal neurological, ophthalmological, pulmonary, and cardiac diseases were identified. Magnetic resonance imaging and cerebrospinal fluid analysis supported a tentative diagnosis of neoplastic or inflammatory disease. A computed tomography-guided biopsy provided both cytopathological and histopathological evidence of intravascular lymphoma. The disease progressed despite chemotherapy with prednisone, L-asparginase, and vincristine. Postmortem histopathological examinations suggested intravascular lymphoma in the central and peripheral nervous systems as well as in multiple other organ systems. This is the first description of an antemortem diagnosis and treatment of intravascular lymphoma involving the central nervous system of a dog.

  19. [Central nervous system dysgerminoma: a clinicopathological study of 3 cases].

    PubMed

    Bellil, Selma; Braham, Emna; Limaiem, Faten; Bellil, Khadija; Chelly, Ines; Mekni, Amina; Haouet, Slim; Zitouna, Moncef; Jemel, Hafedh; Khaldi, Moncef; Kchir, Nidhameddine

    2009-03-01

    Intracranial germ cell tumors are rarely seen and typically localize in the pineal or suprasellar region. The largest category of germ cell tumors is dysgerminoma. to describe clinicopathological features and immunohistochemical profile of dysgerminomas. We report three cases of central nervous system dysgerminomas. There were two young women and a man who were 6, 11 and 23-year-old. They presented with symptoms of insipidus diabetes (n=3) with association to visual field defects in the third case. Radiological findings showed a supra seller lesion in two cases. Double localization in the pineal and suprasellar regions was seen in the third case. Histologic examination and immunohistochemical study of surgical specimen were consistent with primary central nervous system dysgerminoma.

  20. Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system

    PubMed Central

    Gang, Lin; Yao, Yu-chen; Liu, Ying-fu; Li, Yi-peng; Yang, Kai; Lu, Lei; Cheng, Yuan-chi; Chen, Xu-yi; Tu, Yue

    2015-01-01

    We present a novel in vitro model in which to investigate the efficacy of experimental drugs for the promotion of axon regeneration in the central nervous system. We co-cultured rat hippocampal neurons and cerebral cortical oligodendrocytes, and tested the co-culture system using a Nogo-66 receptor antagonist peptide (NEP1–40), which promotes axonal growth. Primary cultured oligodendrocytes suppressed axonal growth in the rat hippocampus, but NEP1–40 stimulated axonal growth in the co-culture system. Our results confirm the validity of the neuron-oligodendrocyte co-culture system as an assay for the evaluation of drugs for axon regeneration in the central nervous system. PMID:26692858

  1. Fluoxetine Opens Window to Improve Motor Recovery After Stroke

    ClinicalTrials.gov

    2018-05-01

    Stroke; Cerebrovascular Accident; Cerebral Infarction; Brain Infarction; Brain Ischemia; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Vascular Diseases

  2. Pick disease

    MedlinePlus

    ... Frontotemporal dementia; FTD; Arnold Pick disease; 3R tauopathy Images Central nervous system and peripheral nervous system References Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet . 2015;386( ...

  3. [Central nervous system control of energy homeostasis].

    PubMed

    Machleidt, F; Lehnert, H

    2011-03-01

    The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed Central

    Cabral, Agustina; López Soto, Eduardo J.; Epelbaum, Jacques; Perelló, Mario

    2017-01-01

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals. PMID:28294994

  5. Is Ghrelin Synthesized in the Central Nervous System?

    PubMed

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  6. AMX0035 in Patients With Amyotrophic Lateral Sclerosis (ALS)

    ClinicalTrials.gov

    2018-05-21

    Amyotrophic Lateral Sclerosis; Motor Neuron Disease; Neuromuscular Diseases; Neurodegenerative Diseases; Spinal Cord Diseases; TDP-43 Proteinopathies; Nervous System Diseases; Central Nervous System Diseases

  7. Radio-frequency and microwave energies, magnetic and electric fields

    NASA Technical Reports Server (NTRS)

    Michaelson, S. M.

    1975-01-01

    The biological effects of radio frequency, including microwave, radiation are considered. Effects on body temperature, the eye, reproductive systems, internal organs, blood cells, the cardiovascular system, and the central nervous system are included. Generalized effects of electric and magnetic fields are also discussed. Experimentation with animals and clinical studies on humans are cited, and possible mechanisms of the effects observed are suggested.

  8. KSC-97PC1716

    NASA Image and Video Library

    1997-11-11

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  9. KSC-97PC1720

    NASA Image and Video Library

    1997-11-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is installed in the Spacelab module by Boeing technicians in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  10. KSC-97PC1717

    NASA Image and Video Library

    1997-11-11

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is ready for processing after being placed in its workstand in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  11. KSC-97PC1719

    NASA Image and Video Library

    1997-11-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is installed in the Spacelab module by Boeing technicians in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  12. KSC-97PC1718

    NASA Image and Video Library

    1997-11-12

    The Neurolab payload for STS-90, scheduled to launch aboard the Shuttle Columbia from Kennedy Space Center (KSC) on April 2, 1998, is installed in the Spacelab module by Boeing technicians in the Operations and Checkout Building at KSC. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90 will include Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  13. Interoceptive inference: From computational neuroscience to clinic.

    PubMed

    Owens, Andrew P; Allen, Micah; Ondobaka, Sasha; Friston, Karl J

    2018-04-22

    The central and autonomic nervous systems can be defined by their anatomical, functional and neurochemical characteristics, but neither functions in isolation. For example, fundamental components of autonomically mediated homeostatic processes are afferent interoceptive signals reporting the internal state of the body and efferent signals acting on interoceptive feedback assimilated by the brain. Recent predictive coding (interoceptive inference) models formulate interoception in terms of embodied predictive processes that support emotion and selfhood. We propose interoception may serve as a way to investigate holistic nervous system function and dysfunction in disorders of brain, body and behaviour. We appeal to predictive coding and (active) interoceptive inference, to describe the homeostatic functions of the central and autonomic nervous systems. We do so by (i) reviewing the active inference formulation of interoceptive and autonomic function, (ii) survey clinical applications of this formulation and (iii) describe how it offers an integrative approach to human physiology; particularly, interactions between the central and peripheral nervous systems in health and disease. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  14. Systematic mechanism-orientated approach to chronic pancreatitis pain

    PubMed Central

    Bouwense, Stefan AW; de Vries, Marjan; Schreuder, Luuk TW; Olesen, Søren S; Frøkjær, Jens B; Drewes, Asbjørn M; van Goor, Harry; Wilder-Smith, Oliver HG

    2015-01-01

    Pain in chronic pancreatitis (CP) shows similarities with other visceral pain syndromes (i.e., inflammatory bowel disease and esophagitis), which should thus be managed in a similar fashion. Typical causes of CP pain include increased intrapancreatic pressure, pancreatic inflammation and pancreatic/extrapancreatic complications. Unfortunately, CP pain continues to be a major clinical challenge. It is recognized that ongoing pain may induce altered central pain processing, e.g., central sensitization or pro-nociceptive pain modulation. When this is present conventional pain treatment targeting the nociceptive focus, e.g., opioid analgesia or surgical/endoscopic intervention, often fails even if technically successful. If central nervous system pain processing is altered, specific treatment targeting these changes should be instituted (e.g., gabapentinoids, ketamine or tricyclic antidepressants). Suitable tools are now available to make altered central processing visible, including quantitative sensory testing, electroencephalograpy and (functional) magnetic resonance imaging. These techniques are potentially clinically useful diagnostic tools to analyze central pain processing and thus define optimum management approaches for pain in CP and other visceral pain syndromes. The present review proposes a systematic mechanism-orientated approach to pain management in CP based on a holistic view of the mechanisms involved. Future research should address the circumstances under which central nervous system pain processing changes in CP, and how this is influenced by ongoing nociceptive input and therapies. Thus we hope to predict which patients are at risk for developing chronic pain or not responding to therapy, leading to improved treatment of chronic pain in CP and other visceral pain disorders. PMID:25574079

  15. Unimpaired Autoreactive T-Cell Traffic Within the Central Nervous System During Tumor Necrosis Factor Receptor-Mediated inhibition of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Korner, Heinrich; Goodsall, Anna L.; Lemckert, Frances A.; Scallon, Bernard J.; Ghrayeb, John; Ford, Andrew L.; Sedgwick, Jonathon D.

    1995-11-01

    The critical role of tumor necrosis factor (TNF) as a mediator in autoimmune inflammatory processes is evident from in vivo studies with TNF-blocking agents. However, the mechanisms by which TNF, and possibly also its homologue lymphotoxin α, contributes to development of pathology in rheumatoid arthritis and Crohn disease and in animal models like experimental autoimmune encephalomyelitis is unclear. Possibilities include regulation of vascular adhesion molecules enabling leukocyte movement into tissues or direct cytokine-mediated effector functions such as mediation of tissue damage. Here we show that administration of a TNF receptor (55 kDa)-IgG fusion protein prevented clinical signs of actively induced experimental autoimmune encephalomyelitis. Significantly, the total number of CD4^+ T lymphocytes isolated from the central nervous system of clinically healthy treated versus diseased control animals was comparable. By using a CD45 congenic model of passively transferred experimental autoimmune encephalomyelitis to enable tracking of myelin basic protein-specific effector T lymphocytes, prevention of clinical signs of disease was again demonstrated in treated animals but without quantitative or qualitative impediment to the movement of autoreactive T lymphocytes to and within the central nervous system. Thus, despite the uninterrupted movement of specific T lymphocytes into the target tissue, subsequent disease development was blocked. This provides compelling evidence for a direct effector role of TNF/lymphotoxin α in autoimmune tissue damage.

  16. Manipulating central nervous mechanisms of food intake and body weight regulation by intranasal administration of neuropeptides in man.

    PubMed

    Hallschmid, Manfred; Benedict, Christian; Born, Jan; Fehm, Horst-Lorenz; Kern, Werner

    2004-10-30

    Maintaining a stable body weight set-point is assumed to rely on a homeostatic central nervous system (CNS) regulation of body fat with the particular involvement of hypothalamic pathways. The peripheral adiposity signals insulin and leptin convey information on the amount of energy stored as body fat to the arcuate nucleus of the hypothalamus, where anabolic/orexigenic and catabolic/anorexigenic pathways interact to regulate food intake and energy expenditure. One of the most prominent orexigenic messengers is neuropeptide Y (NPY), whereas melanocortins, including alpha-melanocyte-stimulating hormone (alpha-MSH), are essential for inducing anorexigenic effects. The melanocortin receptor 4 (MC4-R) plays the most important role in mediating catabolic effects of alpha-MSH. In this review, we present a series of own studies on NPY, insulin and MSH/ACTH4-10, an MC4-R agonist. The studies were all based on the intranasal route of administration which enables a direct access of the peptides to hypothalamic functions. NPY acutely attenuated electrocortical signs of meal-related satiety. Prolonged intranasal administration of insulin as well as of MSH induced weight loss in healthy human subjects. However, overweight subjects did not lose body fat after MSH administration. The results corroborate in humans the significance of all three messengers for the central nervous regulation of adiposity and might contribute to the future development of medical strategies against body-weight-related disorders.

  17. Use and abuse of prescribed opioids, central nervous system depressants, and stimulants among U.S. active duty military personnel in FY 2010.

    PubMed

    Jeffery, Diana D; May, Laurie; Luckey, Bill; Balison, Barbara M; Klette, Kevin L

    2014-10-01

    This study establishes rates of use/abuse of Schedule II-IV prescription medications in U.S. active duty military personnel, and characterizes correlates of such use/abuse. All active duty personnel serving for 12 months during fiscal year 2010 were included. Data were obtained from medical and pharmacy claims and drug screening results. Logistic regression models were used to examine predictors of drug use, along with bivariate analyses to compare abuse of prescribed and illegal drugs. Nearly one-third of active duty service members received at least one prescription for opioids, central nervous system depressants, or stimulants, with 26.4% having received at least one prescription for opioids. About 0.7%, 1.4%, and 0.6% of the total force received >90-day prescriptions for opioids, central nervous system depressants, or stimulants, respectively. Battlefield injury, receipt of psychotropic medications, and substance abuse adverse events were predictive of >90-day supply of opioids. About 0.7% of the total force had documented known drug abuse for prescribed drugs compared to 0.4% for illegal drug abuse. We recommend systematic monitoring of prescriptions for controlled substances which may carry serious consequences, evaluation of the impact of controlled substances on military readiness, and examination of the rationale for prescribing controlled drugs. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  18. Hierarchy of evidence referring to the central nervous system in a high-impact radiation oncology journal: a 10-year assessment. Descriptive critical appraisal study.

    PubMed

    Moraes, Fabio Ynoe; Bonifacio, Lorine Arias; Marta, Gustavo Nader; Hanna, Samir Abdallah; Atallah, Álvaro Nagib; Moraes, Vinícius Ynoe; Silva, João Luis Fernandes; Carvalho, Heloísa Andrade

    2015-01-01

    To the best of our knowledge, there has been no systematic assessment of the classification of scientific production within the scope of radiation oncology relating to central nervous system tumors. The aim of this study was to systematically assess the status of evidence relating to the central nervous system and to evaluate the geographic origins and major content of these published data. Descriptive critical appraisal study conducted at a private hospital in São Paulo, Brazil. We evaluated all of the central nervous system studies published in the journal Radiotherapy & Oncology between 2003 and 2012. The studies identified were classified according to their methodological design and level of evidence. Information regarding the geographical location of the study, the institutions and authors involved in the publication, main condition or disease investigated and time of publication was also obtained. We identified 3,004 studies published over the 10-year period. Of these, 125 (4.2%) were considered eligible, and 66% of them were case series. Systematic reviews and randomized clinical trials accounted for approximately 10% of all the published papers. We observed an increase in high-quality evidence and a decrease in low-quality published papers over this period (P = 0.036). The inter-rater reliability demonstrated significant agreement between observers in terms of the level of evidence. Increases in high-level evidence and in the total number of central nervous system papers were clearly demonstrated, although the overall number of such studies remained relatively small.

  19. Cancer Seeding Risk from an Epidural Blood Patch in Patients with Leukemia or Lymphoma.

    PubMed

    Demaree, Christopher J; Soliz, Jose M; Gebhardt, Rodolfo

    2017-04-01

    Lumber punctures are a common procedure in patients with cancer. However, a potential complication of a lumbar puncture is a postdural puncture headache. The risk of neoplastic seeding to the central nervous system has led to concern over performing epidural blood patches (EBPs) for the treatment of postdural puncture headaches in patients with cancer. The goal of this retrospective study was to evaluate cancer seeding in the central nervous system in patients diagnosed with leukemia or lymphoma. Institutional electronic records were queried over a 13-year period from 2000 to 2013 for patients with leukemia and/or lymphoma and who received at least one EBP. Demographic and procedural data, cancer treatments, and mortality were all examined. Patient records were reviewed for evidence of new-onset neoplastic central nervous system seeding after an epidural blood patch. A total of 80 patients were identified for review. Eighteen patients had a diagnosis of leukemia, and 62 had lymphoma. Following an EBP, none of the patients experienced new cancer or cancer seeding in the central nervous system following an epidural blood patch at a median follow-up of 3.74 years. Though the risks of EBP in the cancer patient population have been hypothesized, no previous studies have assessed the risk of seeding cancer to the central nervous system. Based on our results, an epidural blood patch bears low risk of cancer seeding when used to treat postdural puncture headache that is unresponsive to conservative treatments. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  20. [Prevalence of central nervous system tumours and histological identification in the operated patient: 20 years of experience].

    PubMed

    Anaya-Delgadillo, Gustavo; de Juambelz-Cisneros, Pedro Pablo; Fernández-Alvarado, Basilio; Pazos-Gómez, Fernando; Velasco-Torre, Andrea; Revuelta-Gutiérrez, Rogelio

    Central nervous system tumours comprise a heterogeneous group of neoplasms with great histological diversity. Despite the rising prevalence of these tumours in developing countries, some places like Mexico and Latin America have no representative studies that show the real impact of these tumours in our population. To describe the characteristics of the primary and secondary tumours of the central nervous system in the last 20 years in a Mexican institution. Patients with histopathological diagnosis from 1993 to 2013 in our institution, grouping them according to WHO classification 2007, characterising them by age group, gender, and anatomical location. There were a total of 511 tumours of the central nervous system. Of those, 292 were women and 219 men, with a ratio 1.3: 1, and a mean age of 49.3 years. Tumours with higher prevalence were: Meningeal tumours, 171 (33%), followed by neuroepithelial, 121 (24%). Astrocytoma had the highest prevalence in paediatric patients, whereas in those older than 20 years it was the meningioma. The supratentorial location was the most involved. This is the first study of a series of cases in Mexico that is performed by taking into account benign and malignant tumours of the central nervous system, with patients of all age groups with a range of 20 years. While this work only represents a retrospective analysis of an institution, it can be a strong indication of the epidemiology of these tumours in our environment. Copyright © 2016. Publicado por Masson Doyma México S.A.

  1. Protein profiles of Taenia solium cysts obtained from skeletal muscles and the central nervous system of pigs: Search for tissue-specific proteins.

    PubMed

    Navarrete-Perea, José; Moguel, Bárbara; Bobes, Raúl José; Villalobos, Nelly; Carrero, Julio César; Sciutto, Edda; Soberón, Xavier; Laclette, Juan Pedro

    2017-01-01

    Taeniasis/cysticercosis caused by the tapeworm Taenia solium is a parasite disease transmitted among humans and pigs, the main intermediate host. The larvae/cysts can lodge in several tissues of the pig, i.e. skeletal muscles and different locations of the central nervous system. The molecular mechanisms associated to tissue preferences of the cysts remain poorly understood. The major public health concern about this zoonosis is due to the human infections by the larval form in the central nervous system, causing a highly pleomorphic and debilitating disease known as neurocysticercosis. This study was aimed to explore the 2DE protein maps of T. solium cysts obtained from skeletal muscles and central nervous system of naturally infected pigs. The gel images were analyzed through a combination of PDQuest™ and multivariate analysis. Results showed that differences in the protein patterns of cysts obtained from both tissues were remarkably discrete. Only 7 protein spots were found specifically associated to the skeletal muscle localization of the cysts; none was found significantly associated to the central nervous system. The use of distinct protein fractions of cysts allowed preliminary identification of several tissue-specific antigenic bands. The implications of these findings are discussed, as well as several strategies directed to achieve the complete characterization of this parasite's proteome, in order to extend our understanding of the molecular mechanisms underlying tissue localization of the cysts and to open avenues for the development of immunological tissue-specific diagnosis of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Prescription Drugs: Abuse and Addiction. National Institute on Drug Abuse Research Report Series.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This publication answers questions about the consequences of abusing commonly prescribed medications including opioids, central nervous system depressants, and stimulants. In addition to offering information on what research says about how certain medications affect the brain and body, this publication also discusses treatment options. It examines…

  3. Planning Ahead Can Save the Life of a Child with Epilepsy

    ERIC Educational Resources Information Center

    Apel, Laura; Hollingsworth, Jan Carter

    2008-01-01

    Three million Americans have epilepsy, a chronic neurological condition characterized by recurrent epileptic seizures unprovoked by any known cause. Those at risk for epilepsy include individuals with mental retardation, cerebral palsy, autism, stroke, major head trauma, central nervous system (CNS) hemorrhage, CNS infection, dementia, and brain…

  4. Neuroimaging of Lipid Storage Disorders

    ERIC Educational Resources Information Center

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  5. Reduced lentivirus susceptibility in sheep with TMEM154 mutations

    USDA-ARS?s Scientific Manuscript database

    Visna/Maedi, or ovine progressive pneumonia (OPP) as it is known in the U.S., is an incurable slow-acting disease of sheep caused by persistent lentivirus infection. This disease affects multiple tissues, including those of the respiratory and central nervous systems. Our aim was to identify ovine g...

  6. 21 CFR 1308.14 - Schedule IV.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Schedule IV. 1308.14 Section 1308.14 Food and... isomers is possible: (1) Fenfluramine 1670 (e) Stimulants. Unless specifically excepted or unless listed... the following substances having a stimulant effect on the central nervous system, including its salts...

  7. Early Malnutrition and Central Nervous System Function

    ERIC Educational Resources Information Center

    Scrimshaw, Nevin S.

    1969-01-01

    Discusses the consequences of severe malnutrition in young experimental animals. Development of the brain is permanently impaired. Studies of the effects of malnutrition on children are included. (This paper was presented at the Eighth Annual Lecture of the Merrill-Palmer Historical Library in Child Development and Family Life, October 25, 1968.)…

  8. 75 FR 71033 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    .... These include damage to the central nervous system, cardiovascular function, kidneys, immune system, and... growth); (5) Meteorology (weather/transport patterns); (6) Geography/topography (mountain ranges or other... Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards AGENCY...

  9. Childhood Cancer: A Medical, Psychosocial and Educational Approach.

    ERIC Educational Resources Information Center

    Moffitt, Karen

    The paper examines the psychological and educational needs of children with cancer. The importance of cooperation among the home, hospital, and school is stressed. Potential effects of cancer and treatment include decreased school attention, drops in IQ scores, and diminished abilities of the central nervous system resulting in impaired perceptual…

  10. Primitive neuroectodermal tumors of the central nervous system.

    PubMed

    Becker, L E; Hinton, D

    1983-06-01

    Primitive neuroectodermal tumors are morphologically similar malignant tumors arising in intracranial and peripheral sites of the nervous system, showing varying degrees of cellular differentiation with a tendency to disseminate along cerebrospinal fluid pathways. They occur primarily in children and young adults. Under the designation primitive neuroectodermal tumors are included medulloblastomas and tumors that may differentiate in other directions, such as medulloepithelioma, neuroblastoma, polar spongioblastoma, pineoblastoma, ependymoblastoma, retinoblastoma, and olfactory neuroblastoma. From a practical, histologic point of view, these tumors are often indistinguishable from one another and are best thought of as primitive neuroectodermal tumors with or without differentiating features.

  11. Progressive dysphagia in an elderly male.

    PubMed

    Chen, Po-Shao; Ju, Da-Tong; Lee, Jih-Chin

    2011-11-01

    Dysphagia can result from a variety of causes, including central nervous and peripheral nervous system, myogenic, and structural disorders. A 76-year-old man underwent anterior cervical disketomy and fusion 10 years ago, with progressive dysphagia noted 2 years ago. Endoscopy showed an oropharyngeal tumor, and lateral plain film evaluation of the neck revealed a cervical plate extrusion. Removal of the instrumentation and tumor with primary closure of the pharyngeal perforation was performed, and dysphagia was resolved postoperatively. We report the case of an unusual presentation in the pharynx. We should not neglect this rare diagnosis, because it can progress to a life-threatening outcome.

  12. Tuberculous otitis media with mastoiditis and central nervous system involvement.

    PubMed

    Mongkolrattanothai, Kanokporn; Oram, Ronda; Redleaf, Miriam; Bova, Judy; Englund, Janet A

    2003-05-01

    Tuberculosis of the middle ear and mastoid is currently a rare disease in developed countries, but this disease still occurs and may cause serious consequences. We report a case of disseminated tuberculosis involving the middle ear, mastoid, lung and central nervous system. Tuberculosis should be considered in the differential diagnosis of chronic ear drainage, especially in young children.

  13. Microgliomatosis in a Schnauzer dog.

    PubMed

    Willard, M D; Delahunta, A

    1982-04-01

    Microgliomatosis was found in the central nervous system of a 7-year-old male Standard Schnauzer. History, neurologic examination, laboratory tests and electrodiagnostics could not localize the disease process in the central nervous system. The animal was not treated, continued to deteriorate, and was euthanatized approximately 8 weeks after clinical signs were first detected. Diagnosis was made upon histologic examination of the brain.

  14. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Patient Version

    Cancer.gov

    Childhood central nervous system (CNS) germ cell tumors form from germ cells (a type of cell that forms as a fetus develops and later becomes sperm in the testicles or eggs in the ovaries). Learn about the signs, tests to diagnose, and treatment of pediatric germ cell tumors in the brain in this expert-reviewed summary.

  15. Clinical trial aims to study immunotherapy for central nervous system tumors | Center for Cancer Research

    Cancer.gov

    A new clinical trial aims to determine whether nivolumab, an immune checkpoint inhibitor, can improve control of cancer for patients with several types of tumors of the central nervous system (CNS). The CNS is composed of the brain and spinal cord and the cause of most CNS tumors in adults is unknown. Learn more...

  16. A case of primary hypothyroidism causing central nervous system atherosclerosis in a dog

    PubMed Central

    Blois, Shauna L.; Poma, Roberto; Stalker, Margaret J.; Allen, Dana G.

    2008-01-01

    A 2-year-old, castrated male, Australian shepherd was presented with a history of chronic mild ataxia, obesity, and lethargy. The dog was treated with levothyroxine, but the ataxia worsened. Cranial nerve abnormalities developed and the dog was euthanized. Postmortem examination revealed marked thyroid gland atrophy and widespread, severe central nervous system atherosclerosis. PMID:18978973

  17. Development of primary central nervous system lymphoma in a systemic lupus erythematosus patient after treatment with mycophenolate mofetil and review of the literature.

    PubMed

    Balci, M A; Pamuk, G E; Unlu, E; Usta, U; Pamuk, O N

    2017-10-01

    Primary central nervous system lymphoma (PCNSL) is a rare form of extranodal non-Hodgkin lymphoma and four cases of PCNSL have previously been described in association with mycophenolate mofetil. We report the fifth case of PCNSL in a patient with lupus nephropathy while on mycophenolate mofetil treatment.

  18. KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.

    PubMed

    Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud

    2016-09-01

    Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.

  19. Electromagnetic Fields for the Regulation of Neural Stem Cells

    PubMed Central

    Cui, Mengchu; Ge, Hongfei; Zhao, Hengli; Zou, Yongjie

    2017-01-01

    Localized magnetic fields (MFs) could easily penetrate the scalp, skull, and meninges, thus inducing an electrical current in both the central and peripheral nervous systems, which is primarily used in transcranial magnetic stimulation (TMS) for inducing specific effects on different regions or cells that play roles in various brain activities. Studies of repetitive transcranial magnetic stimulation (rTMS) have led to novel attractive therapeutic approaches. Neural stem cells (NSCs) in adult human brain are able to self-renew and possess multidifferential ability to maintain homeostasis and repair damage after acute central nervous system. In the present review, we summarized the electrical activity of NSCs and the fundamental mechanism of electromagnetic fields and their effects on regulating NSC proliferation, differentiation, migration, and maturation. Although it was authorized for the rTMS use in resistant depression patients by US FDA, there are still unveiling mechanism and limitations for rTMS in clinical applications of acute central nervous system injury, especially on NSC regulation as a rehabilitation strategy. More in-depth studies should be performed to provide detailed parameters and mechanisms of rTMS in further studies, making it a powerful tool to treat people who are surviving with acute central nervous system injuries. PMID:28932245

  20. Mechlorethamine-based drug structures for intervention of central nervous system tumors.

    PubMed

    Bartzatt, Ronald

    2013-06-01

    Tumors of the central nervous system are the third most common type of childhood cancers. Brain tumors occur in children and adults; however pediatric patients require a different treatment process. Thirteen drugs similar to mechlorethamine are analyzed in this study. These drugs possess molecular properties enabling substantial and successful access to tumors of the central nervous system. All drugs exhibit zero violations of the Rule of 5, which indicate favorable bioavailability. Ranges in Log P, formula weight, and polar surface area for these drugs are: 1.554 to 3.52, 156.06 to 460.45, and 3.238 Angstroms(2) to 45.471 Angstroms(2), respectively. Hierarchical cluster analysis determined that agents 7 and 12 are most similar to the parent compound mechlorethamine. The mean values of Log P, formula weight, polar surface area, and molecular volume are 2.25, 268.51, 16.57 Angstroms(2), and 227.01 Angstroms(3), respectively. Principal component analysis indicates that agents 7 and 12 are most similar to mechlorethamine and multiple regression analysis of molecular properties produced a model to enable the design of similar alkylating agents. Values of Log (Cbrain/Cblood) indicate these agents will have very high permeation into the central nervous system.

  1. [Neurological disorders and the blood-brain barrier. Strategies and limitations for drug delivery to the brain].

    PubMed

    Domínguez, Alazne; Álvarez, Antonia; Suárez-Merino, Blanca; Goñi-de-Cerio, Felipe

    2014-03-01

    The incidence in the central nervous system diseases has increased with a growing elderly population. Unfortunately, conventional treatments used to treat the mentioned diseases are frequently ineffective due to the presence of the blood brain barrier. To illustrate the blood-brain barrier properties that limit drug transport into the brain and the main strategies employed to treat neurologic disorders. The blood-brain barrier is mainly composed of a specialized microvascular endothelium and of glial cells. It constitutes a valuable tool to separate the central nervous system from the rest of the body. Nevertheless, it also represents an obstacle to the delivery of therapeutic drugs to the brain. To be effective, drugs must reach their target in the brain. On one hand, therapeutic agents could be designed to be able to cross the blood brain barrier. On the other hand, drug delivery systems could be employed to facilitate the therapeutic agents' entry into the central nervous system. In vivo models of neurological diseases, in addition to in vitro models of the blood brain barrier, have been widely employed for the evaluation of drugs utilized to treat central nervous system diseases.

  2. The blood-brain barrier: an engineering perspective

    PubMed Central

    Wong, Andrew D.; Ye, Mao; Levy, Amanda F.; Rothstein, Jeffrey D.; Bergles, Dwight E.; Searson, Peter C.

    2013-01-01

    It has been more than 100 years since Paul Ehrlich reported that various water-soluble dyes injected into the circulation did not enter the brain. Since Ehrlich's first experiments, only a small number of molecules, such as alcohol and caffeine have been found to cross the blood-brain barrier, and this selective permeability remains the major roadblock to treatment of many central nervous system diseases. At the same time, many central nervous system diseases are associated with disruption of the blood-brain barrier that can lead to changes in permeability, modulation of immune cell transport, and trafficking of pathogens into the brain. Therefore, advances in our understanding of the structure and function of the blood-brain barrier are key to developing effective treatments for a wide range of central nervous system diseases. Over the past 10 years it has become recognized that the blood-brain barrier is a complex, dynamic system that involves biomechanical and biochemical signaling between the vascular system and the brain. Here we reconstruct the structure, function, and transport properties of the blood-brain barrier from an engineering perspective. New insight into the physics of the blood-brain barrier could ultimately lead to clinical advances in the treatment of central nervous system diseases. PMID:24009582

  3. Graded Positive Feedback in Elasmobranch Ampullae of Lorenzini

    NASA Astrophysics Data System (ADS)

    Kalmijn, Ad. J.

    2003-05-01

    The acute electrical sensitivity of marine sharks and rays is the greatest known in the Animal Kingdom. I investigate the possibility that the underlying biophysical principles are the very same as those encountered in the central nervous system of animal and man. The elasmobranch ampullae of Lorenzini detect the weak electric fields originating from the oceanic environment, whereas the nerve cells of the brain detect the electric fields arising, well, from the central nervous system. In responding to electrical signals, the cell membranes of excitable cells behave in different regions of the cell as negative or positive conductors. The negative and positive conductances in series, loaded by the cell's electrolytic environment, constitute a positive feedback circuit. The result may be of an all-or-none nature, as in peripheral nerve conduction, or of a graded nature, as in central processing. In this respect, the operation of the elasmobranch ampullae of Lorenzini is more akin to the graded, integrative processes of higher brain centers than to the conduction of nerve action potentials. Hence, the positive-feedback ampullary circuit promises to help elucidate the functioning of the central nervous system as profoundly as the squid giant axon has served to reveal the process of nervous conduction.

  4. Comparison of intermediate-dose methotrexate with cranial irradiation for the post-induction treatment of acute lymphocytic leukemia in children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, A.I.; Weinberg, V.; Brecher, M.L.

    1983-03-03

    The authors compared two regimens with respect to their ability to prolong disease-free survival in 506 children and adolescents with acute lymphocytic leukemia. All responders to induction therapy were randomized to treatment with 2400 rad of cranial irradiation plus intrathecal methotrexate or to treatment with intermediate-dose methotrexate plus intrathecal methotrexate, as prophylaxis for involvement of the central nervous system and other sanctuary areas. Complete responders were stratified into either standard-risk or increased-risk groups on the basis of age and white-cell count at presentation. Among patients with standard risk, hematologic relapses occurred in 9 of 117 given methotrexate and 24 ofmore » 120 given irradiation. The rate of central-nervous-system relapse was higher in the methotrexate group (23 of 117) than in the irradiation group. Among patients with increased risk, radiation offered greater protection to the central nervous system than methotrexate; there was no difference in the rate of hematologic relapse. Methotrexate offered better protection against systemic relapse in standard-risk patients and better protection against testicular relapse overall, but it offered less protection against relapses in the central nervous system than cranial irradiation.« less

  5. 75 FR 10867 - Determinations Concerning Illnesses Discussed in the Institute of Medicine Report on Gulf War and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... cancer; nervous system disease; reproductive or developmental dysfunction; non-malignant respiratory... nervous system cancers, stomach cancer, prostatic cancer and testicular cancer. The non-malignant diseases... and bladder cancer exists. G. Brain and Other Central Nervous System Cancers Of the 20 published...

  6. Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system.

    PubMed

    Cornide-Petronio, María Eugenia; Anadón, Ramón; Barreiro-Iglesias, Antón; Rodicio, María Celina

    2013-09-01

    Serotonergic cells are among the earliest neurons to be born in the developing central nervous system and serotonin is known to regulate the development of the nervous system. One of the major targets of the activity of serotonergic cells is the serotonin 1A receptor (5-HT1A), an ancestral archetypical serotonin receptor. In this study, we cloned and characterized the 3D structure of the sea lamprey 5-HT1A, and studied the expression of its transcript in the central nervous system by means of in situ hybridization. In phylogenetic analyses, the sea lamprey 5-HT1A sequence clustered together with 5-HT1A sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. In situ hybridization analysis during prolarval, larval and adult stages showed a widespread expression of the lamprey 5-ht1a transcript. In P1 prolarvae 5-ht1a mRNA expression was observed in diencephalic nuclei, the rhombencephalon and rostral spinal cord. At P2 prolarval stage the 5-ht1a expression extended to other brain areas including telencephalic regions. 5-ht1a expression in larvae was observed throughout almost all the main brain regions with the strongest expression in the olfactory bulbs, lateral pallium, striatum, preoptic region, habenula, prethalamus, thalamus, pretectum, hypothalamus, rhombencephalic reticular area, dorsal column nucleus and rostral spinal cord. In adults, the 5-ht1a transcript was also observed in cells of the subcommissural organ. Comparison of the expression of 5-ht1a between the sea lamprey and other vertebrates reveals a conserved pattern in most of the brain regions, likely reflecting the ancestral vertebrate condition.

  7. Pressure wave injuries to the nervous system caused by high-energy missile extremity impact: Part II. Distant effects on the central nervous system--a light and electron microscopic study on pigs.

    PubMed

    Suneson, A; Hansson, H A; Seeman, T

    1990-03-01

    The aim of the present study was to investigate if distant effects could be detected within the central nervous system after impact of a high-energy missile in the left thigh of young pigs. Pressure transducers implanted in various parts of the body of the animal, including the brain, recorded a short-lasting burst of oscillating pressure waves with high frequencies and large amplitudes, traversing the body tissue with a velocity of about that of sound in water (1,460 m/s). The distance between the point of impact and the brain and cervical spinal cord is in the range of 0.5 m. Macroscopic examination revealed that there was no gross brain tissue disruption or visible blood-brain barrier dysfunction. Light microscopic examination demonstrated myelin invaginations in the largest axons and shrinkage of axoplasm. Electron microscopic examination revealed a reduction in the number of microtubules, especially in the larger axons in the brainstem. Disintegration of Nissl substance, i.e., chromatolysis, was noticed after 48 hr in many Purkinje nerve cells in the cerebellum, concomitantly with the appearance of an increased frequency of association between lamellar bodies and mitochondria. Changes could also be observed in the cervical spinal cord and, at reduced frequency and extent, in the optic nerve and in other parts of the brain. These effects were evident within a few minutes after the trauma and persisted even 48 hr after the extremity injury. It is concluded that distant effects, likely to be caused by the oscillating high-frequency pressure waves, appear in the central nervous system after a high-energy missile extremity impact.

  8. [Cellular mechanisms of neuroplasticity].

    PubMed

    Bergado-Rosado, J A; Almaguer-Melian, W

    To present a unified vision of the principal known mechanisms of neuroplasticity, emphasizing their universality. The concept of the central nervous system as an immutable entity has been considerably modified during the second half of the 20th century. Neuroplasticity, that is the ability of the brain regarding change and repair is expressed in different ways, from functional modifications of existing structures to the formation, by growth and proliferation, of new structures and neurons. This study considers the molecular and cellular mechanisms of neuroplastic phenomena and classifies them into two main groups: plasticity due to growth, including the mechanisms of axonal regeneration, collateralization and reactive synaptogenesis; and functional plasticity, which includes changes in the efficacy of synaptic transmission such as long-term potentiation and the activation of silent synapses. We also describe some of the relations of neuroplastic phenomena with disease of the central nervous system, together with examples of physiological, physical and pharmacological factors which may be used in future as therapeutic tools to stimulate and modulate neuroplasticity. Neuroplastic mechanisms show a high degree of phylogenetic and ontogenetic conservation. They are important both in the genesis of disorders and disease of the nervous system and for its repair after different types of damage and trauma. Modulation of neuroplastic mechanisms by physical and chemical agents would appear to be one of the most powerful therapeutic tools of restorative neurology.

  9. Interfacing with the nervous system: a review of current bioelectric technologies.

    PubMed

    Sahyouni, Ronald; Mahmoodi, Amin; Chen, Jefferson W; Chang, David T; Moshtaghi, Omid; Djalilian, Hamid R; Lin, Harrison W

    2017-10-23

    The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.

  10. Prions spread via the autonomic nervous system from the gut to the central nervous system in cattle incubating bovine spongiform encephalopathy.

    PubMed

    Hoffmann, Christine; Ziegler, Ute; Buschmann, Anne; Weber, Artur; Kupfer, Leila; Oelschlegel, Anja; Hammerschmidt, Baerbel; Groschup, Martin H

    2007-03-01

    To elucidate the still-unknown pathogenesis of bovine spongiform encephalopathy (BSE), an oral BSE challenge and sequential kill study was carried out on 56 calves. Relevant tissues belonging to the peripheral and central nervous system, as well as to the lymphoreticular tract, from necropsied animals were analysed by highly sensitive immunohistochemistry and immunoblotting techniques to reveal the presence of BSE-associated pathological prion protein (PrPSc) depositions. Our results demonstrate two routes involving the autonomic nervous system through which BSE prions spread by anterograde pathways from the gastrointestinal tract (GIT) to the central nervous system (CNS): (i) via the coeliac and mesenteric ganglion complex, splanchnic nerves and the lumbal/caudal thoracic spinal cord (representing the sympathetic GIT innervation); and (ii) via the Nervus vagus (parasympathetic GIT innervation). The dorsal root ganglia seem to be subsequently affected, so it is likely that BSE prion invasion of the non-autonomic peripheral nervous system (e.g. sciatic nerve) is a secondary retrograde event following prion replication in the CNS. Moreover, BSE-associated PrPSc was already detected in the brainstem of an animal 24 months post-infection, which is 8 months earlier than reported previously. These findings are important for the understanding of BSE pathogenesis and for the development of new diagnostic strategies for this infectious disease.

  11. [Electromagnetic radiation of non-thermal intensity and short exposition as a sub-threshold irritant for the central nervous system].

    PubMed

    Luk'ianova, S N

    2013-01-01

    This work represents generalization and the analysis of the long-term own materials characterizing reaction of the brain on electromagnetic radiation of low intensity (energy flow density in the continuous regime or in the impulse approximately 500 microW/sm2) and a short exposition (approximately 30 min). A set of the experimental results received on separate neurons, formations and brain as a whole give an idea about the reaction of the central nervous system to the studied influence. Comparison of these data with the corresponding responses to the known incentives (light, sound, electric current) testifies to the electromagnetic radiation of low energy flow density and a short exposition as a sub-threshold irritant for the central nervous system.

  12. Applications of fluorescence spectroscopy to problems of food safety: detection of fecal contamination and of the presence of central nervous system tissue and diagnosis of neurological disease

    NASA Astrophysics Data System (ADS)

    Adhikary, Ramkrishna; Bose, Sayantan; Casey, Thomas A.; Gapsch, Al; Rasmussen, Mark A.; Petrich, Jacob W.

    2010-02-01

    Applications of fluorescence spectroscopy that enable the real-time or rapid detection of fecal contamination on beef carcasses and the presence of central nervous system tissue in meat products are discussed. The former is achieved by employing spectroscopic signatures of chlorophyll metabolites; the latter, by exploiting the characteristic structure and intensity of lipofuscin in central nervous system tissue. The success of these techniques has led us to investigate the possibility of diagnosing scrapie in sheep by obtaining fluorescence spectra of the retina. Crucial to this diagnosis is the ability to obtain baseline correlations of lipofuscin fluorescence with age. A murine model was employed as a proof of principle of this correlation.

  13. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    PubMed Central

    Ishihara, Yasuhiro; Takemoto, Takuya; Yamazaki, Takeshi

    2015-01-01

    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury. PMID:25815107

  14. Neurotropic Enterovirus Infections in the Central Nervous System.

    PubMed

    Huang, Hsing-I; Shih, Shin-Ru

    2015-11-24

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  15. Neurotropic Enterovirus Infections in the Central Nervous System

    PubMed Central

    Huang, Hsing-I; Shih, Shin-Ru

    2015-01-01

    Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS) and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells. PMID:26610549

  16. The familial dysautonomia disease gene IKBKAP is required in the developing and adult mouse central nervous system

    PubMed Central

    Chaverra, Marta; George, Lynn; Thorne, Julian; Grindeland, Andrea; Ueki, Yumi; Eiger, Steven; Cusick, Cassie; Babcock, A. Michael; Carlson, George A.

    2017-01-01

    ABSTRACT Hereditary sensory and autonomic neuropathies (HSANs) are a genetically and clinically diverse group of disorders defined by peripheral nervous system (PNS) dysfunction. HSAN type III, known as familial dysautonomia (FD), results from a single base mutation in the gene IKBKAP that encodes a scaffolding unit (ELP1) for a multi-subunit complex known as Elongator. Since mutations in other Elongator subunits (ELP2 to ELP4) are associated with central nervous system (CNS) disorders, the goal of this study was to investigate a potential requirement for Ikbkap in the CNS of mice. The sensory and autonomic pathophysiology of FD is fatal, with the majority of patients dying by age 40. While signs and pathology of FD have been noted in the CNS, the clinical and research focus has been on the sensory and autonomic dysfunction, and no genetic model studies have investigated the requirement for Ikbkap in the CNS. Here, we report, using a novel mouse line in which Ikbkap is deleted solely in the nervous system, that not only is Ikbkap widely expressed in the embryonic and adult CNS, but its deletion perturbs both the development of cortical neurons and their survival in adulthood. Primary cilia in embryonic cortical apical progenitors and motile cilia in adult ependymal cells are reduced in number and disorganized. Furthermore, we report that, in the adult CNS, both autonomic and non-autonomic neuronal populations require Ikbkap for survival, including spinal motor and cortical neurons. In addition, the mice developed kyphoscoliosis, an FD hallmark, indicating its neuropathic etiology. Ultimately, these perturbations manifest in a developmental and progressive neurodegenerative condition that includes impairments in learning and memory. Collectively, these data reveal an essential function for Ikbkap that extends beyond the peripheral nervous system to CNS development and function. With the identification of discrete CNS cell types and structures that depend on Ikbkap, novel strategies to thwart the progressive demise of CNS neurons in FD can be developed. PMID:28167615

  17. Safety and Efficacy Study of VY-AADC01 for Advanced Parkinson's Disease

    ClinicalTrials.gov

    2018-02-27

    Idiopathic Parkinson's Disease; Parkinson's Disease; Basal Ganglia Disease; Brain Diseases; Central Nervous System Diseases; Movement Disorders; Nervous System Diseases; Neurodegenerative Diseases; Parkinsonian Disorders

  18. Central nervous system toxicity of metallic nanoparticles

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials (NMs) are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP)-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS) diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano-neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. PMID:26170667

  19. Current research and prospects for health effects of nanoparticles on offspring

    NASA Astrophysics Data System (ADS)

    Umezawa, Masakazu; Takeda, Ken

    2011-10-01

    Caution in handling ceramic nanoparticles is required by workers and consumers if they are to be used safely and profitably. The small size of nanoparticles can bestow high reactivity and unique translocational properties. Studies have shown that exposure to some types of nanoparticles affects the respiratory, cardiovascular and central nervous systems and various organs. When pregnant mice were exposed to nanoparticles, various organs of offspring are also affected. Our recent studies showed that prenatal exposure to nanoparticles (carbon black and titanium dioxide) causes long-term adverse effects on the reproductive, respiratory and central nervous systems of offspring. The effects of nanoparticles on fetuses and children and the possibility of them leading to the onset of diseases in adulthood are of concern. Thus, it is important to research the risk of unintentional exposure to nanoparticles, including ceramic nanoparticles, from the environment and to attempt to identify methods to protect against their toxicity.

  20. Characterization of individual mouse cerebrospinal fluid proteomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jeffrey S.; Angel, Thomas E.; Chavkin, Charles

    2014-03-20

    Analysis of cerebrospinal fluid (CSF) offers key insight into the status of the central nervous system. Characterization of murine CSF proteomes can provide a valuable resource for studying central nervous system injury and disease in animal models. However, the small volume of CSF in mice has thus far limited individual mouse proteome characterization. Through non-terminal CSF extractions in C57Bl/6 mice and high-resolution liquid chromatography-mass spectrometry analysis of individual murine samples, we report the most comprehensive proteome characterization of individual murine CSF to date. Utilizing stringent protein inclusion criteria that required the identification of at least two unique peptides (1% falsemore » discovery rate at the peptide level) we identified a total of 566 unique proteins, including 128 proteins from three individual CSF samples that have been previously identified in brain tissue. Our methods and analysis provide a mechanism for individual murine CSF proteome analysis.« less

  1. Zinc Signal in Brain Diseases.

    PubMed

    Portbury, Stuart D; Adlard, Paul A

    2017-11-23

    The divalent cation zinc is an integral requirement for optimal cellular processes, whereby it contributes to the function of over 300 enzymes, regulates intracellular signal transduction, and contributes to efficient synaptic transmission in the central nervous system. Given the critical role of zinc in a breadth of cellular processes, its cellular distribution and local tissue level concentrations remain tightly regulated via a series of proteins, primarily including zinc transporter and zinc import proteins. A loss of function of these regulatory pathways, or dietary alterations that result in a change in zinc homeostasis in the brain, can all lead to a myriad of pathological conditions with both acute and chronic effects on function. This review aims to highlight the role of zinc signaling in the central nervous system, where it may precipitate or potentiate diverse issues such as age-related cognitive decline, depression, Alzheimer's disease or negative outcomes following brain injury.

  2. Risk of defeats in the central nervous system during deep space missions.

    PubMed

    Kokhan, Viktor S; Matveeva, Marina I; Mukhametov, Azat; Shtemberg, Andrey S

    2016-12-01

    Space flight factors (SFF) significantly affect the operating activity of astronauts during deep space missions. Gravitational overloads, hypo-magnetic field and ionizing radiation are the main SFF that perturb the normal activity of the central nervous system (CNS). Acute and chronic CNS risks include alterations in cognitive abilities, reduction of motor functions and behavioural changes. Multiple experimental works have been devoted to the SFF effects on integrative functional activity of the brain; however, the model parameters utilized have not always been ideal and consistent. Even less is known regarding the combined effects of these SFF in a real interplanetary mission, for example to Mars. Our review aims to systemize and analyse the last advancements in astrobiology, with a focus on the combined effects of SFF; as well as to discuss on unification of the parameters for ground-based models of deep space missions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Four novel connexin 32 mutations in X-linked Charcot-Marie-Tooth disease. Phenotypic variability and central nervous system involvement.

    PubMed

    Karadima, Georgia; Koutsis, Georgios; Raftopoulou, Maria; Floroskufi, Paraskewi; Karletidi, Karolina-Maria; Panas, Marios

    2014-06-15

    Charcot-Marie-Tooth (CMT) disease, the most common hereditary neuropathy, is clinically and genetically heterogeneous. X-linked CMT (CMTX) is usually caused by mutations in the gap junction protein b 1 gene (GJB1) coding for connexin 32 (Cx32). The clinical manifestations of CMTX are characterized by significant variability, with some patients exhibiting central nervous system (CNS) involvement. We report four novel mutations in GJB1, c.191G>A (p.Cys64Tyr), c.508G>T (p.Val170Phe), c.778A>G (p.Lys260Glu) and c.300C>G (p.His100Gln) identified in four unrelated Greek families. These mutations were characterized by variable phenotypic expression, including a family with the Roussy-Lévy syndrome, and three of them were associated with mild clinical CNS manifestations. Copyright © 2014. Published by Elsevier B.V.

  4. Molecular Magnetic Resonance Imaging of Endothelial Activation in the Central Nervous System

    PubMed Central

    Gauberti, Maxime; Fournier, Antoine P.; Docagne, Fabian; Vivien, Denis; Martinez de Lizarrondo, Sara

    2018-01-01

    Endothelial cells of the central nervous system over-express surface proteins during neurological disorders, either as a cause, or a consequence, of the disease. Since the cerebral vasculature is easily accessible by large contrast-carrying particles, it constitutes a target of choice for molecular magnetic resonance imaging (MRI). In this review, we highlight the most recent advances in molecular MRI of brain endothelial activation and focus on the development of micro-sized particles of iron oxide (MPIO) targeting adhesion molecules including intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), P-Selectin and E-Selectin. We also discuss the perspectives and challenges for the clinical application of this technology in neurovascular disorders (ischemic stroke, intracranial hemorrhage, subarachnoid hemorrhage, diabetes mellitus), neuroinflammatory disorders (multiple sclerosis, brain infectious diseases, sepsis), neurodegenerative disorders (Alzheimer's disease, vascular dementia, aging) and brain cancers (primitive neoplasms, metastasis). PMID:29507614

  5. Neuronal Vacuolization in Feline Panleukopenia Virus Infection.

    PubMed

    Pfankuche, Vanessa M; Jo, Wendy K; van der Vries, Erhard; Jungwirth, Nicole; Lorenzen, Stephan; Osterhaus, Albert D M E; Baumgärtner, Wolfgang; Puff, Christina

    2018-03-01

    Feline panleukopenia virus (FPV) infections are typically associated with anorexia, vomiting, diarrhea, neutropenia, and lymphopenia. In cases of late prenatal or early neonatal infections, cerebellar hypoplasia is reported in kittens. In addition, single cases of encephalitis are described. FPV replication was recently identified in neurons, although it is mainly found in cells with high mitotic activity. A female cat, 2 months old, was submitted to necropsy after it died with neurologic deficits. Besides typical FPV intestinal tract changes, multifocal, randomly distributed intracytoplasmic vacuoles within neurons of the thoracic spinal cord were found histologically. Next-generation sequencing identified FPV-specific sequences within the central nervous system. FPV antigen was detected within central nervous system cells, including the vacuolated neurons, via immunohistochemistry. In situ hybridization confirmed the presence of FPV DNA within the vacuolated neurons. Thus, FPV should be considered a cause for neuronal vacuolization in cats presenting with ataxia.

  6. Elevated prostacyclin biosynthesis in mice impacts memory and anxiety-like behavior.

    PubMed

    Vollert, Craig; Ohia, Odochi; Akasaka, Hironari; Berridge, Casey; Ruan, Ke-He; Eriksen, Jason L

    2014-01-01

    Prostacyclin is an endogenous lipid metabolite with properties of vasodilation and anti-platelet aggregation. While the effects of prostacyclin on the vascular protection have been well-documented, the role of this eicosanoid in the central nervous system has not been extensively studied. Recently, a transgenic mouse containing a hybrid enzyme, of cyclooxygenase-1 linked to prostacyclin synthase, was developed that produces elevated levels of prostacyclin in vivo. The goal of this study was to investigate whether increased prostacyclin biosynthesis could affect behavioral phenotypes in mice. Our results uncovered that elevated levels of prostacyclin broadly affect both cognitive and non-cognitive behaviors, including decreased anxiety-like behavior and improved learning in the fear-conditioning memory test. This study demonstrates that prostacyclin plays an important, but previously unrecognized, role in central nervous system function and behavior. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Ultrasound-mediated blood-brain barrier disruption for targeted drug delivery in the central nervous system

    PubMed Central

    Aryal, Muna; Arvanitis, Costas D.; Alexander, Phillip M.; McDannold, Nathan

    2014-01-01

    The physiology of the vasculature in the central nervous system (CNS), which includes the blood-brain barrier (BBB) and other factors, complicates the delivery of most drugs to the brain. Different methods have been used to bypass the BBB, but they have limitations such as being invasive, non-targeted or requiring the formulation of new drugs. Focused ultrasound (FUS), when combined with circulating microbubbles, is a noninvasive method to locally and transiently disrupt the BBB at discrete targets. This review provides insight on the current status of this unique drug delivery technique, experience in preclinical models, and potential for clinical translation. If translated to humans, this method would offer a flexible means to target therapeutics to desired points or volumes in the brain, and enable the whole arsenal of drugs in the CNS that are currently prevented by the BBB. PMID:24462453

  8. Review: Tauopathy in the retina and optic nerve: does it shadow pathological changes in the brain?

    PubMed Central

    Ho, Wing-Lau; Leung, Yen; Tsang, Andrea Wing-Ting; So, Kwok-Fai; Chiu, Kin

    2012-01-01

    Tau protein’s versatility lies in its functions within the central nervous system, including protein scaffolding and intracellular signaling. Tauopathy has been one of the most extensively studied neuropathologies among the neurodegenerative diseases. Because the retina and optic nerve are parts of the central nervous system, we hypothesize that tauopathy also plays a role in various eye diseases. However, little is known about tauopathy in the retina and optic nerve. Here, we summarize the findings from histopathological studies on animal models and human specimens with distinct neurodegenerative diseases. Similar pathological changes of tau protein can be found in Alzheimer’s disease, frontotemporal lobe dementia, and glaucoma. In view of the important roles of tauopathy in the brain, it is hoped that this review can stimulate research on eye diseases of the retina and optic nerve. PMID:23170062

  9. Evolving Character of Chronic Central Nervous System HIV Infection

    PubMed Central

    Price, Richard W.; Spudich, Serena S.; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. PMID:24715483

  10. Analytical and Biological Methods for Probing the Blood-Brain Barrier

    PubMed Central

    Sloan, Courtney D. Kuhnline; Nandi, Pradyot; Linz, Thomas H.; Aldrich, Jane V.; Audus, Kenneth L.; Lunte, Susan M.

    2013-01-01

    The blood-brain barrier (BBB) is an important interface between the peripheral and central nervous systems. It protects the brain against the infiltration of harmful substances and regulates the permeation of beneficial endogenous substances from the blood into the extracellular fluid of the brain. It can also present a major obstacle in the development of drugs that are targeted for the central nervous system. Several methods have been developed to investigate the transport and metabolism of drugs, peptides, and endogenous compounds at the BBB. In vivo methods include intravenous injection, brain perfusion, positron emission tomography, and microdialysis sampling. Researchers have also developed in vitro cell-culture models that can be employed to investigate transport and metabolism at the BBB without the complication of systemic involvement. All these methods require sensitive and selective analytical methods to monitor the transport and metabolism of the compounds of interest at the BBB. PMID:22708905

  11. Neuronal intrinsic regenerative capacity: The impact of microtubule organization and axonal transport.

    PubMed

    Murillo, Blanca; Sousa, Mónica Mendes

    2018-05-08

    In the adult vertebrate central nervous system, axons generally fail to regenerate. In contrast, peripheral nervous system axons are able to form a growth cone and regenerate upon lesion. Among the multiple intrinsic mechanisms leading to the formation of a new growth cone and to successful axon regrowth, cytoskeleton organization and dynamics is central. Here we discuss how multiple pathways that define the regenerative capacity converge into the regulation of the axonal microtubule cytoskeleton and transport. We further explore the use of dorsal root ganglion neurons as a model to study the neuronal regenerative ability. Finally, we address some of the unanswered questions in the field, including the mechanisms by which axonal transport might be modulated by injury, and the relationship between microtubule organization, dynamics, and axonal transport. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  12. Cell-based therapeutic strategies for multiple sclerosis

    PubMed Central

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A; Atkins, Harold; Banwell, Brenda; Bar-Or, Amit; Bebo, Bruce; Bowen, James; Burt, Richard; Calabresi, Peter; Cohen, Jeffrey; Comi, Giancarlo; Connick, Peter; Cross, Anne; Cutter, Gary; Derfuss, Tobias; Ffrench-Constant, Charles; Freedman, Mark; Galipeau, Jacques; Goldman, Myla; Goldman, Steven; Goodman, Andrew; Green, Ari; Griffith, Linda; Hartung, Hans-Peter; Hemmer, Bernhard; Hyun, Insoo; Iacobaeus, Ellen; Inglese, Matilde; Jubelt, Burk; Karussis, Dimitrios; Küry, Patrick; Landsman, Douglas; Laule, Cornelia; Liblau, Roland; Mancardi, Giovanni; Ann Marrie, Ruth; Miller, Aaron; Miller, Robert; Miller, David; Mowry, Ellen; Muraro, Paolo; Nash, Richard; Ontaneda, Daniel; Pasquini, Marcelo; Pelletier, Daniel; Peruzzotti-Jametti, Luca; Pluchino, Stefano; Racke, Michael; Reingold, Stephen; Rice, Claire; Ringdén, Olle; Rovira, Alex; Saccardi, Riccardo; Sadiq, Saud; Sarantopoulos, Stefanie; Savitz, Sean; Scolding, Neil; Soelberg Sorensen, Per; Pia Sormani, Maria; Stuve, Olaf; Tesar, Paul; Thompson, Alan; Trojano, Maria; Uccelli, Antonio; Uitdehaag, Bernard; Utz, Ursula; Vukusic, Sandra; Waubant, Emmanuelle; Wilkins, Alastair

    2017-01-01

    Abstract The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. PMID:29053779

  13. The Glymphatic System in Central Nervous System Health and Disease: Past, Present, and Future.

    PubMed

    Plog, Benjamin A; Nedergaard, Maiken

    2018-01-24

    The central nervous system (CNS) is unique in being the only organ system lacking lymphatic vessels to assist in the removal of interstitial metabolic waste products. Recent work has led to the discovery of the glymphatic system, a glial-dependent perivascular network that subserves a pseudolymphatic function in the brain. Within the glymphatic pathway, cerebrospinal fluid (CSF) enters the brain via periarterial spaces, passes into the interstitium via perivascular astrocytic aquaporin-4, and then drives the perivenous drainage of interstitial fluid (ISF) and its solute. Here, we review the role of the glymphatic pathway in CNS physiology, the factors known to regulate glymphatic flow, and the pathologic processes in which a breakdown of glymphatic CSF-ISF exchange has been implicated in disease initiation and progression. Important areas of future research, including manipulation of glymphatic activity aiming to improve waste clearance and therapeutic agent delivery, are also discussed.

  14. Evolving character of chronic central nervous system HIV infection.

    PubMed

    Price, Richard W; Spudich, Serena S; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-02-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  15. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair.

    PubMed

    Mead, Ben; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2017-01-01

    Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67. © 2016 AlphaMed Press.

  16. Biomarkers of adult and developmental neurotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slikker, William; Bowyer, John F.

    2005-08-07

    Neurotoxicity may be defined as any adverse effect on the structure or function of the central and/or peripheral nervous system by a biological, chemical, or physical agent. A multidisciplinary approach is necessary to assess adult and developmental neurotoxicity due to the complex and diverse functions of the nervous system. The overall strategy for understanding developmental neurotoxicity is based on two assumptions: (1) significant differences in the adult versus the developing nervous system susceptibility to neurotoxicity exist and they are often developmental stage dependent; (2) a multidisciplinary approach using neurobiological, including gene expression assays, neurophysiological, neuropathological, and behavioral function is necessarymore » for a precise assessment of neurotoxicity. Application of genomic approaches to developmental studies must use the same criteria for evaluating microarray studies as those in adults including consideration of reproducibility, statistical analysis, homogenous cell populations, and confirmation with non-array methods. A study using amphetamine to induce neurotoxicity supports the following: (1) gene expression data can help define neurotoxic mechanism(s) (2) gene expression changes can be useful biomarkers of effect, and (3) the site-selective nature of gene expression in the nervous system may mandate assessment of selective cell populations.« less

  17. Mind-altering with the gut: Modulation of the gut-brain axis with probiotics.

    PubMed

    Kim, Namhee; Yun, Misun; Oh, Young Joon; Choi, Hak-Jong

    2018-03-01

    It is increasingly evident that bidirectional interactions exist among the gastrointestinal tract, the enteric nervous system, and the central nervous system. Recent preclinical and clinical trials have shown that gut microbiota plays an important role in these gut-brain interactions. Furthermore, alterations in gut microbiota composition may be associated with pathogenesis of various neurological disorders, including stress, autism, depression, Parkinson's disease, and Alzheimer's disease. Therefore, the concepts of the microbiota-gut-brain axis is emerging. Here, we review the role of gut microbiota in bidirectional interactions between the gut and the brain, including neural, immune-mediated, and metabolic mechanisms. We highlight recent advances in the understanding of probiotic modulation of neurological and neuropsychiatric disorders via the gut-brain axis.

  18. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis.

    PubMed

    Fargali, Samira; Sadahiro, Masato; Jiang, Cheng; Frick, Amy L; Indall, Tricia; Cogliani, Valeria; Welagen, Jelle; Lin, Wei-Jye; Salton, Stephen R

    2012-11-01

    Members of the neurotrophin family, including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5, and other neurotrophic growth factors such as ciliary neurotrophic factor and artemin, regulate peripheral and central nervous system development and function. A subset of the neurotrophin-dependent pathways in the hypothalamus, brainstem, and spinal cord, and those that project via the sympathetic nervous system to peripheral metabolic tissues including brown and white adipose tissue, muscle and liver, regulate feeding, energy storage, and energy expenditure. We briefly review the role that neurotrophic growth factors play in energy balance, as regulators of neuronal survival and differentiation, neurogenesis, and circuit formation and function, and as inducers of critical gene products that control energy homeostasis.

  19. [The role of neurotrophic factors in adaptational processes in the nervous system].

    PubMed

    Akoev, G N; Chalisova, N I

    1995-08-01

    Many of neurotrophic factors (NTF) promote the survival during development, growth and neurite differentiation of neurons. The most known NTF are nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophins-3,4,5. These factors increase the survival of peripheral sensory neurons and some central neurons. The NTF are produced by the target of neuronal proections including brain tissues. So the process of adaptation in the nervous system may be also connected with level of the NTF. Recently it is shown that the NTF level in the brain is changed by central nervous system deseases--epilepsy, Parcinson and Alcgeimer deseases. In this conditions NGF and BDNF mRNC expression and their receptors mRNC are increased. So NTF diffusion in intracellular space can provide the brain function regulation in normal and pathological conditions. Model of chronic epileptogenesis was in vitro. The organotypic coculture was used--the rat newborn hippocampus and chick embryo dorsal root ganglia. Veratridine (30 nM) added in culture media induced neuronal activity in hippocampus explants and the level of NTF in media cosequently rised. It was shown that neurite-stimulating effect was mediated by veratridine. This action was blocked by NGF-antybody treatment and due to NGF activity.

  20. Neurobiology of fibromyalgia and chronic widespread pain.

    PubMed

    Sluka, Kathleen A; Clauw, Daniel J

    2016-12-03

    Fibromyalgia is the current term for chronic widespread musculoskeletal pain for which no alternative cause can be identified. The underlying mechanisms, in both human and animal studies, for the continued pain in individuals with fibromyalgia will be explored in this review. There is a substantial amount of support for alterations of central nervous system nociceptive processing in people with fibromyalgia, and that psychological factors such as stress can enhance the pain experience. Emerging evidence has begun exploring other potential mechanisms including a peripheral nervous system component to the generation of pain and the role of systemic inflammation. We will explore the data and neurobiology related to the role of the CNS in nociceptive processing, followed by a short review of studies examining potential peripheral nervous system changes and cytokine involvement. We will not only explore the data from human subjects with fibromyalgia but will relate this to findings from animal models of fibromyalgia. We conclude that fibromyalgia and related disorders are heterogenous conditions with a complicated pathobiology with patients falling along a continuum with one end a purely peripherally driven painful condition and the other end of the continuum is when pain is purely centrally driven. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. [Neural control of somatic muscle function in the earthworm, Allobophora longa, and in the leech, Hirudo medicinalis].

    PubMed

    David, O F

    1978-01-01

    Studies have been made on the electrical activity of the segmentary nerves and connectives of the abdominal nervous chain in the earthworm and leech. It was shown that the electrical activity of the isolated piece of the abdominal chain of the leech is manifested of periodic outbursts of impulsation. Presumably this central periodicity accounts for the discharge-like pattern of muscle rhythmic activity which was revealed in our earlier investigations. The electrical activity in the central nervous system of the earthworm depends on afferent influences which pass to the ganglia from the peripheral sensory nervous cells. Stimulation of the abdominal nervous chain did not result in extra discharges of muscle activity, but only affected some of the parameters of the latter.

  2. Central nervous system Aspergillus infection after epidural analgesia: diagnosis, therapeutic challenges, and literature review

    PubMed Central

    Genzen, Jonathan R.; Kenney, Barton

    2009-01-01

    Aspergillus terreus was identified in an intra-dural spinal biopsy specimen from an African female with recurrent headache and hydrocephalus. Prior laboratory testing of cerebrospinal fluid (CSF) was non-diagnostic, despite extensive central nervous system (CNS) involvement. CNS Aspergillus infection presents a diagnostic and therapeutic challenge and is reviewed in the context of this particularly instructive and difficult case. PMID:19717262

  3. Central nervous system infection due to Mycobacterium haemophilum in a patient with acquired immunodeficiency syndrome.

    PubMed

    Buppajarntham, Aubonphan; Apisarnthanarak, Anucha; Rutjanawech, Sasinuj; Khawcharoenporn, Thana

    2015-03-01

    Mycobacterium haemophilum is an environmental organism that rarely causes infections in humans. We report a patient with acquired immunodeficiency syndrome who had central nervous system infection due to M. haemophilum. The diagnosis required brain tissue procurement and molecular identification method while the treatment outcome was unfavourable. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  4. Potential Clinical Impact of The Filmarray Meningitis Encephalitis Panel In Children With Suspected Central Nervous System Infections

    PubMed Central

    Messacar, Kevin; Breazeale, Garrett; Robinson, Christine C.; Dominguez, Samuel R.

    2016-01-01

    The FilmArray Meningitis Encephalitis Panel, a multiplex PCR for testing of cerebrospinal fluid, was compared to conventional diagnostic methods in children with suspected central nervous system infections. The panel had comparable diagnostic yield (96% agreement) and improved time-to-diagnosis by 10.3 hours with potential for more judicious antimicrobial use, particularly acyclovir. PMID:27342782

  5. CENTRAL NERVOUS SYSTEM INFECTION DURING IMMUNOSUPPRESSION

    PubMed Central

    Zunt, Joseph R.

    2009-01-01

    The central nervous system (CNS) is susceptible to bacterial, viral, and fungal infections. Suppression of the immune system by human immunodeficiency virus (HIV) infection or immunosuppressive therapy after transplantation increases susceptibility to CNS infection and modifies the presentation, diagnosis, and recommended treatment of various CNS infections. This chapter discusses how suppression of the host immune status modifies the presentation, diagnosis, and treatment of selected CNS infections. PMID:11754299

  6. Social Interactions between Children with Cancer or Sickle Cell Disease and Their Peers: Teacher Ratings.

    ERIC Educational Resources Information Center

    Noll, Robert B.; And Others

    This study compared the social reputation of: (1) children with a cancer which did not involve the central nervous system (N=26); (2) children with a primary malignancy involving the central nervous system (N=15); and (3) children with sickle cell disease (N=33) to matched, same classroom peers using a measure of social reputation, the Revised…

  7. Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.

    PubMed

    Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J

    2014-09-16

    Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors, increase the risk of downstream disorders including type 2 diabetes and Alzheimer's disease.

  8. Cancer and central nervous system disorders: protocol for an umbrella review of systematic reviews and updated meta-analyses of observational studies.

    PubMed

    Catalá-López, Ferrán; Hutton, Brian; Driver, Jane A; Page, Matthew J; Ridao, Manuel; Valderas, José M; Alonso-Arroyo, Adolfo; Forés-Martos, Jaume; Martínez, Salvador; Gènova-Maleras, Ricard; Macías-Saint-Gerons, Diego; Crespo-Facorro, Benedicto; Vieta, Eduard; Valencia, Alfonso; Tabarés-Seisdedos, Rafael

    2017-04-04

    The objective of this study will be to synthesize the epidemiological evidence and evaluate the validity of the associations between central nervous system disorders and the risk of developing or dying from cancer. We will perform an umbrella review of systematic reviews and conduct updated meta-analyses of observational studies (cohort and case-control) investigating the association between central nervous system disorders and the risk of developing or dying from any cancer or specific types of cancer. Searches involving PubMed/MEDLINE, EMBASE, SCOPUS and Web of Science will be used to identify systematic reviews and meta-analyses of observational studies. In addition, online databases will be checked for observational studies published outside the time frames of previous reviews. Eligible central nervous system disorders will be Alzheimer's disease, anorexia nervosa, amyotrophic lateral sclerosis, autism spectrum disorders, bipolar disorder, depression, Down's syndrome, epilepsy, Huntington's disease, multiple sclerosis, Parkinson's disease and schizophrenia. The primary outcomes will be cancer incidence and cancer mortality in association with a central nervous system disorder. Secondary outcome measures will be site-specific cancer incidence and mortality, respectively. Two reviewers will independently screen references identified by the literature search, as well as potentially relevant full-text articles. Data will be abstracted, and study quality/risk of bias will be appraised by two reviewers independently. Conflicts at all levels of screening and abstraction will be resolved through discussion. Random-effects meta-analyses of primary observational studies will be conducted where appropriate. Parameters for exploring statistical heterogeneity are pre-specified. The World Cancer Research Fund (WCRF)/American Institute for Cancer Research (AICR) criteria and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach will be used for determining the quality of evidence for cancer outcomes. Our study will establish the extent of the epidemiological evidence underlying the associations between central nervous system disorders and cancer and will provide a rigorous and updated synthesis of a range of important site-specific cancer outcomes. PROSPERO CRD42016052762.

  9. Phase I Trial Using Proteasome Inhibitor Bortezomib and Concurrent Temozolomide and Radiotherapy for Central Nervous System Malignancies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicek, Gregory J.; Werner-Wasik, Maria; Machtay, Mitchell

    Purpose: To evaluate the toxicity and response rate of bortezomib with concurrent radiotherapy and temozolomide in the treatment of patients with central nervous system malignancies. Patients and Methods: This open-label, dose-escalation, Phase I clinical study evaluated the safety of three dose levels of intravenously administered bortezomib (0.7, 1.0, and 1.3 mg/m{sup 2}/dose) on Days 1, 4, 8, and 11 of a 21-day cycle, in addition to concurrent radiotherapy and temozolomide at a daily dose of 75 mg/m{sup 2} starting on Day 1. The primary endpoint was dose-limiting toxicity, defined as any Grade 4-5 toxicity or Grade 3 toxicity directly attributablemore » to protocol treatment, requiring hospitalization and/or radiotherapy interruption. The secondary endpoints included feasibility, non-dose-limiting toxicity, and treatment response. Results: A total of 27 patients were enrolled, 23 of whom had high-grade glioma (10 recurrent and 13 newly diagnosed). No dose-limiting toxicities were noted in any dose group, including the highest (1.3 mg/m{sup 2}/dose). The most frequent toxicities were Grade 1 and 2 stomatitis, erythema, and alopecia. All 27 patients were evaluable for response. At a median follow-up of 15.0 months, 9 patients were still alive, with a median survival of 17.4 months for all patients and 15.0 months for patients with high-grade glioma. Conclusion: Bortezomib administered at its typical 'systemic' dose (1.3 mg/m{sup 2}) is well tolerated and safe combined with temozolomide and radiotherapy when used in the treatment of central nervous system malignancies. A Phase II study to characterize efficacy is warranted.« less

  10. Central nervous system involvement in eosinophilic granulomatosis with polyangiitis (Churg-Strauss): Report of 26 patients and review of the literature.

    PubMed

    André, Raphaël; Cottin, Vincent; Saraux, Jean-Luc; Blaison, Gilles; Bienvenu, Boris; Cathebras, Pascal; Dhote, Robin; Foucher, Aurélie; Gil, Helder; Lapoirie, Joëlle; Launay, David; Loustau, Valentine; Maurier, François; Pertuiset, Edouard; Zénone, Thierry; Seebach, Jörg; Costedoat-Chalumeau, Nathalie; Puéchal, Xavier; Mouthon, Luc; Guillevin, Loïc; Terrier, Benjamin

    2017-09-01

    Although peripheral nervous system involvement is common in eosinophilic granulomatosis with polyangiitis (EGPA), central nervous system (CNS) manifestations are poorly described. This study aimed to describe CNS involvement in EGPA. This retrospective, observational, multicenter study included patients with EGPA and CNS involvement affecting cranial nerves, brain and/or spinal cord. We also undertook a systematic literature review. We analyzed 26 personal cases and 62 previously reported cases. At EGPA diagnosis, asthma was noted in 97%, eosinophilia in 98%, peripheral neuropathy in 55% and cardiac involvement in 41%. 38/71 (54%) were ANCA-positive, with a perinuclear-labeling pattern and/or anti-MPO specificity. CNS was involved in 86% at EGPA diagnosis, preceded EGPA in 2%, and occurred during follow-up in 12% after a median of 24months. Main neurological manifestations were ischemic cerebrovascular lesions in 46 (52%), intracerebral hemorrhage and/or subarachnoid hemorrhage in 21 (24%), loss of visual acuity in 28 (33%) (15 with optic neuritis, 9 with central retinal artery occlusion, 4 with cortical blindness), and cranial nerves palsies in 18 (21%), with 25 patients having ≥1 of these clinical CNS manifestations. Among the 81 patients with assessable neurological responses, 43% had complete responses without sequelae, 43% had partial responses with long-term sequelae and 14% refractory disease. After a mean follow-up of 36months, 11 patients died including 5 from intracerebral hemorrhages. EGPA-related CNS manifestations form 4 distinct neurological pictures: ischemic lesions, intracerebral hemorrhages, cranial nerve palsies and loss of visual acuity. Such manifestation should prompt practitioners to consider EGPA in such conditions. Long-term neurological sequelae were common, and intracerebral hemorrhages had the worst prognostic impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. STP Position Paper: Recommended Practices for Sampling and Processing the Nervous System (Brain, Spinal Cord, Nerve, and Eye) during Nonclinical General Toxicity Studies

    EPA Science Inventory

    The Society of Toxicologic Pathology charged a Nervous System Sampling Working Group with devising recommended practices to routinely screen the central and peripheral nervous systems in Good Laboratory Practice-type nonclinical general toxicity studies. Brains should be trimmed ...

  12. Learning and Memory... and the Immune System

    ERIC Educational Resources Information Center

    Marin, Ioana; Kipnis, Jonathan

    2013-01-01

    The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…

  13. Cough reflex hypersensitivity: A role for neurotrophins.

    PubMed

    El-Hashim, Ahmed Z; Jaffal, Sahar M

    2017-03-01

    Cough is one of the most common complaints for which sufferers seek medical assistance. However, currently available drugs are not very effective in treating cough, particularly that which follows an upper respiratory tract infection. Nonetheless, there has been a significant increase in our understanding of the mechanisms and pathways of the defensive cough as well as the hypersensitive/pathophysiological cough, both at airway and central nervous system (CNS) levels. Numerous molecules and signaling pathways have been identified as potential targets for antitussive drugs, including neurotrophins (NTs). NTs belong to a family of trophic factors and are critical for the development and maintenance of neurons in the central and peripheral nervous system including sympathetic efferents, sensory neuron afferents, and immune cells. Nerve growth factor (NGF) was the first member of the NT family to be discovered, with wide ranging actions associated with synapse formation, survival, proliferation, apoptosis, axonal and dendritic outgrowth, expression and activity of functionally important proteins such as ion channels, receptors, and neurotransmitters. In addition, NGF has been implicated in several disease states particularly neuropathic pain and most recently in the sensitization of the cough reflex. This review will briefly address the peripheral and central sensitization mechanisms of airway neurons and will then focus on NGF signaling and its role in cough hypersensitivity.

  14. KSC-98pc389

    NASA Image and Video Library

    1998-03-23

    KENNEDY SPACE CENTER, Fla. -- The Space Shuttle Columbia continues its morning rollout from the Vehicle Assembly Building to Launch Pad 39B in preparation for the STS-90 mission. The Neurolab experiments are primary payload on this nearly 17-day space flight. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  15. KSC-98pc388

    NASA Image and Video Library

    1998-03-23

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia continues its rollout from the Vehicle Assembly Building to Launch Pad 39B in preparation for the STS-90 mission. The Neurolab experiments are the primary payload on this nearly 17-day space flight. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  16. KSC-98pc387

    NASA Image and Video Library

    1998-03-23

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia begins its rollout from the Vehicle Assembly Building to Launch Pad 39B in preparation for the STS-90 mission. The Neurolab experiments are the primary payload on this nearly 17-day space flight. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Specifically, experiments will study the adaptation of the vestibular system, the central nervous system, and the pathways that control the ability to sense location in the absence of gravity, as well as the effect of microgravity on a developing nervous system. The crew of STS-90, slated for launch April 16 at 2:19 p.m. EDT, includes Commander Richard Searfoss, Pilot Scott Altman, Mission Specialists Richard Linnehan, Dafydd (Dave) Williams, M.D., and Kathryn (Kay) Hire, and Payload Specialists Jay Buckey, M.D., and James Pawelczyk, Ph.D

  17. GORE Flow Reversal System and GORE Embolic Filter Extension Study

    ClinicalTrials.gov

    2016-01-22

    Carotid Stenosis; Constriction, Pathologic; Carotid Artery Diseases; Cerebrovascular Disorders; Brain Diseases; Central Nervous System Diseases; Nervous System Diseases; Arterial Occlusive Diseases; Vascular Diseases; Cardiovascular Diseases; Pathological Conditions, Anatomical

  18. AB0 blood types: impact on development of prosthetic mechanical valve thrombosis

    PubMed Central

    Astarcıoğlu, Mehmet Ali; Kalçık, Macit; Yesin, Mahmut; Gürsoy, Mustafa Ozan; Şen, Taner; Karakoyun, Süleyman; Gündüz, Sabahattin; Özkan, Mehmet

    2016-01-01

    Objective: The non-O alleles of the ABO genotype have been associated with an increased risk of thrombosis. We aimed to assess the association between blood group status and prosthetic valve thrombosis. Methods: The association between AB0 blood group status and prosthetic valve thrombosis was assessed in this retrospective study. Transesophageal echocardiography was performed in 149 patients with a diagnosis of prosthetic valve thrombosis and in 192 control subjects. Results: Non-0 blood group type (p<0.001), presence of NYHA class III-IV status (p<0.001), and central nervous system (p<0.001) and non-central nervous system (p<0.001) emboli were significantly more prevalent in prosthetic valve thrombosis patients than in the control subjects. The incidence of ineffective anticoagulation was higher in patients with prosthetic valve thrombosis than in controls (p<0.001), as was the presence of moderate to severe left atrial spontaneous echo contrast (p<0.001). The non-0 blood prosthetic valve thrombosis subgroup had a higher incidence of obstructive thrombi and central nervous system thrombotic events than having 0 blood prosthetic valve thrombosis subgroup. Non-0 blood group, ineffective anticoagulation, left atrial spontaneous echo contrast, and a poor NYHA functional capacity were identified to be the predictors of prosthetic valve thrombosis. Conclusion: Our data demonstrate that patients with non-0 compared with 0 blood groups have higher incidence of prosthetic valve thrombosis and central nervous system embolism and similar rates of non-central nervous system embolism at presentation compared with 0 blood group type. Thus, non-O blood group may be a risk factor that may be prone to the development of prosthetic valve thrombosis in patients with prosthetic heart valves. PMID:27488753

  19. Brain Damage in School Age Children.

    ERIC Educational Resources Information Center

    Haywood, H. Carl, Ed.

    The product of a professional workshop, 10 papers discuss brain damage. An introduction to clinical neuropsychology is presented by H. Carl Haywood. A section on neurological foundations includes papers on the organization of the central nervous system by Jack T. Tapp and Lance L. Simpson, on epilepsy by Angela T. Folsom, and on organic language…

  20. Methods of treating Parkinson's disease using viral vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bankiewicz, Krystof; Cunningham, Janet

    Methods of delivering viral vectors, particularly recombinant adeno-associated virus (rAAV) virions, to the central nervous system (CNS) using convection enhanced delivery (CED) are provided. The rAAV virions include a nucleic acid sequence encoding a therapeutic polypeptide. The methods can be used for treating CNS disorders such as for treating Parkinson's Disease.

  1. Childhood Central Nervous System Germ Cell Tumors Treatment (PDQ®)—Health Professional Version

    Cancer.gov

    CNS germ cell tumors can be diagnosed and classified based on histology, tumor markers, or a combination of both. Get detailed information about newly diagnosed and recurrent childhood CNS germ cell tumors including molecular features and clinical features, diagnostic and staging evaluation, and treatment in this summary for clinicians.

  2. 76 FR 72097 - Air Quality Designations for the 2008 Lead (Pb) National Ambient Air Quality Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-22

    ... broad range of adverse health effects. These may include damage to the central nervous system...) Meteorology (weather/transport patterns); (6) Geography/topography (mountain ranges or other air basin... to the EPA's Air Quality System (AQS), or otherwise available to the EPA, and meeting the...

  3. Extensive Aspartoacylase Expression in the Rat Central Nervous System

    DTIC Science & Technology

    2011-01-01

    pathways are shown in panel (A) including the corpus callosum (cc), anterior com- missure (see also C; aco), and fornix ( fx ). The subfornical organ (sfo...14 MOFFETT ET AL. GLIA protein. That antibody and the one used in the current study both stained the same cellular elements. Astro - cytes were the

  4. Bovine neuronal vesicular glutamate transporter activity is inhibited by ergovaline and other ergopeptines

    USDA-ARS?s Scientific Manuscript database

    L-Glutamate (Glu) is the major excitatory neurotransmitter responsible for neurotransmission in the vertebrate central nervous system, including the gastrointestinal tract (GIT) of cattle. Vesicular Glu transporters VGLUT1 and VGLUT2 concentrate (50 mM) Glu (Km = 1 to 4 mM) into synaptic vesicles (S...

  5. The Cognitive and Academic Impact of Sickle Cell Disease

    ERIC Educational Resources Information Center

    Day, Sara; Chismark, Elisabeth

    2006-01-01

    Sickle cell disease (SCD) affects over 30,000 students in the United States. Central nervous system complications are widespread among students with SCD and include stroke, silent cerebral infarction, and cognitive impairment. The effects of these complications may lead to academic failure, limited career options, and for some, total disability.…

  6. Innate immunity in the pathogenesis of polytropic retrovirus infection in the central nervous system.

    PubMed

    Peterson, Karin E; Du, Min

    2009-01-01

    Neuroinflammation, including astrogliosis, microgliosis, and the production of proinflammatory cytokines and chemokines is a common response in the central nervous system (CNS) to virus infection, including retrovirus infection. However, the contribution of this innate immune response in disease pathogenesis remains unresolved. Analysis of the neuroinflammatory response to polytropic retrovirus infection in the mouse has provided insight into the potential contribution of the innate immune response to retrovirus-induced neurologic disease. In this model, retroviral pathogenesis correlates with the induction of neuroinflammatory responses including the activation of astrocytes and microglia, as well as the production of proinflammatory cytokines and chemokines. Studies of the neurovirulent determinants of the polytropic envelope protein as well as studies with knockout mice suggest that retroviral pathogenesis in the brain is multifaceted and that cytokine and chemokine production may be only one mechanism of disease pathogenesis. Analysis of the activation of the innate immune response to retrovirus infection in the CNS indicates that toll-like receptor 7 (TLR7) is a contributing factor to retrovirus-induced neuroinflammation, but that other factors can compensate for the lack of TLR7 in inducing both neuroinflammation and neurologic disease.

  7. Cognitive impairment and memory loss associated with histoplasmosis: a case study.

    PubMed

    Loughan, Ashlee R; Perna, Robert; Hertza, Jeremy

    2014-01-01

    Histoplasmosis is a rare disease caused by inhalation of the fungus Histoplasma capsulatum. It can spread via cerebral circulation to the central nervous system as a manifestation of a disseminated infection; particularly in patients with immune suppression, which can result in isolated ring-enhancing lesions and inflammation in the brain. Of the reported disseminated histoplasmosis cases (approximately 1 in 2000 per year), only 5-20% have evidence of central nervous system involvement. This paper reviews a single case study of a 57-year-old female diagnosed with disseminated CNS histoplasmosis. Patient's complaints included reduced short-term memory, word-finding problems, and difficulty organizing, making decisions, getting lost while driving, recalling names, retaining information while reading, and slowed processing speed. There was also a history of mild depression and anxiety. Direct testing revealed deficits in multiple cognitive domains including complex attention, processing speed, semantic fluency, visual scanning, motor speed, set-shifting, naming, nonverbal memory, and verbal memory. Neuropsychological deficits suggest cortical and subcortical brain dysfunction, including anterior, temporal, and mesial-temporal regions. This case illustrates the need for neuropsychologists to understand histoplasmosis, the related pathophysiology, and the neuropsychological impact; particularly with the potential for delayed progression.

  8. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures.

    PubMed

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2016-01-01

    There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes.

  9. A Review on Central Nervous System Effects of Gastrodin

    PubMed Central

    Liu, Yuan; Gao, Jialiang; Peng, Min; Meng, Hongyan; Ma, Hongbo; Cai, Pingping; Xu, Yuan; Zhao, Qiong; Si, Guomin

    2018-01-01

    Rhizoma Gastrodiae (also known as Tian ma), the dried rhizome of Gastrodia elata Blume, is a famous Chinese herb that has been traditionally used for the treatment of headache, dizziness, spasm, epilepsy, stoke, amnesia and other disorders for centuries. Gastrodin, a phenolic glycoside, is the main bioactive constituent of Rhizoma Gastrodiae. Since identified in 1978, gastrodin has been extensively investigated on its pharmacological properties. In this article, we reviewed the central nervous system (CNS) effects of gastrodin in preclinical models of CNS disorders including epilepsy, Alzheimer's disease, Parkinson's disease, affective disorders, cerebral ischemia/reperfusion, cognitive impairment as well as the underlying mechanisms involved and, where possible, clinical data that support the pharmacological activities. The sources and pharmacokinetics of gastrodin were also reviewed here. As a result, gastrodin possesses a broad range of beneficial effects on the above-mentioned CNS diseases, and the mechanisms of actions include modulating neurotransmitters, antioxidative, anti-inflammatory, suppressing microglial activation, regulating mitochondrial cascades, up-regulating neurotrophins, etc. However, more detailed clinical trials are still in need for positioning it in the treatment of neurological disorders. PMID:29456504

  10. Peptidomics of prolyl endopeptidase in the central nervous system

    PubMed Central

    Nolte, Whitney M.; Tagore, Debarati M.; Lane, William S.; Saghatelian, Alan

    2009-01-01

    Prolyl endopeptidase (Prep) is a member of the prolyl peptidase family and is of interest due to its unique biochemistry and connections to cognitive function. Using an unbiased mass spectrometry (MS)-based peptidomics platform, we identified Prep regulated peptides in the central nervous system (CNS) of mice by measuring changes in the peptidome as a function of Prep activity. This approach was validated by the identification of known Prep substrates, such as the neuropeptide substance P and thymosin-β4, the precursor to the bioactive peptide Ac-SDKP. In addition to these known substrates, we also discovered that Prep regulates many additional peptides, including additional bioactive peptides and proline rich peptides (PRPs). Biochemical experiments confirmed that some of these Prep regulated peptides are indeed substrates of the enzyme. Moreover, these experiments also supported the known preference of Prep for shorter peptides, while revealing a previously unknown cleavage site specificity of Prep when processing certain multi-proline containing peptides, including PRPs. The discovery of Prep regulated peptides implicates Prep in new biological pathways and provides insights into the biochemistry of this enzyme. PMID:19911840

  11. Does Autoimmunity have a Role in Myoclonic Astatic Epilepsy? A Case Report of Voltage Gated Potassium Channel Mediated Seizures

    PubMed Central

    Sirsi, Deepa; Dolce, Alison; Greenberg, Benjamin M; Thodeson, Drew

    2017-01-01

    Background There is expanding knowledge about the phenotypic variability of patients with voltage gated potassium channel complex (VGKC) antibody mediated neurologic disorders. The phenotypes are diverse and involve disorders of the central and peripheral nervous systems. The central nervous system manifestations described in the literature include limbic encephalitis, status epilepticus, and acute encephalitis. Patient Description We report a 4.5 year-old boy who presented with intractable Myoclonic Astatic Epilepsy (MAE) or Doose syndrome and positive VGKC antibodies in serum. Treatment with steroids led to resolution of seizures and electrographic normalization. Conclusion This case widens the spectrum of etiologies for MAE to include autoimmunity, in particular VGKC auto-antibodies and CNS inflammation, as a primary or contributing factor. There is an evolving understanding of voltage gated potassium channel complex mediated autoimmunity in children and the role of inflammation and autoimmunity in MAE and other intractable pediatric epilepsy syndromes remains to be fully defined. A high index of suspicion is required for diagnosis and appropriate management of antibody mediated epilepsy syndromes. PMID:29308451

  12. Neurognathostomiasis, a neglected parasitosis of the central nervous system.

    PubMed

    Katchanov, Juri; Sawanyawisuth, Kittisak; Chotmongkoi, Verajit; Nawa, Yukifumi

    2011-07-01

    Gnathostomiasis is a foodborne zoonotic helminthic infection caused by the third-stage larvae of Gnathostoma spp. nematodes. The most severe manifestation involves infection of the central nervous system, neurognathostomiasis. Although gnathostomiasis is endemic to Asia and Latin America, almost all neurognathostomiasis cases are reported from Thailand. Despite high rates of illness and death, neurognathostomiasis has received less attention than the more common cutaneous form of gnathostomiasis, possibly because of the apparent geographic confinement of the neurologic infection to 1 country. Recently, however, the disease has been reported in returned travelers in Europe. We reviewed the English-language literature on neurognathostomiasis and analyzed epidemiology and geographic distribution, mode of central nervous system invasion, pathophysiology, clinical features, neuroimaging data, and treatment options. On the basis of epidemiologic data, clinical signs, neuroimaging, and laboratory findings, we propose diagnostic criteria for neurognathostomiasis.

  13. [Primary lymphoma of the central nervous system: 20 years' experience in a referral hospital].

    PubMed

    Calderón-Garcidueñas, A L; Pacheco-Calleros, J; Castelán-Maldonado, E; Nocedal-Rustrián, F C

    Primary central nervous system lymphomas (PCNSL) are rare neoplasms. AIM. To study the clinical aspects and the immuno-phenotype of all cases of PCNSL in a 20 years lapse in a referral hospital in Northeastern Mexico. From January 1986 to December 2005 all PCNSL histologically confirmed were studied. The primary lymphomas were 1% of malignant central nervous system neoplasms. 21 cases were studied (ages from 9-70 years) with male predominance (2:1). 24% patients had immuno-suppression. The more frequent clinical data were: papilledema (71%), headache (62%), paresis (48%) and seizures (33%). 33% of patients died during the first six months after diagnosis. The T lymphomas were 19% of cases and corresponded to small cell type. PCNSL are still a diagnostic challenge. Multicenter studies are required in order to determine the best treatment protocol.

  14. [Micro/nano-engineering to control growth of neuronal cells and tissue engineering applied to the central nervous system].

    PubMed

    Béduer, Amélie; Vaysse, Laurence; Loubinoux, Isabelle; Vieu, Christophe

    2013-01-01

    Central nervous system pathologies are often characterized by the loss of cell populations. A promising therapy now being developed consists in using bioactive materials, associating grafted cells to biopolymers which provide a scaffold for the in vitro building of new tissues, to be implanted in vivo. In the present article, the state of the art of this field, at crossroads between microtechnology and neuroscience, is described in detail; thereafter our own approach and results about interactions between adult human neural stem cells and microstructured polymers are summarized and discussed. In a second part, some central nervous system repair strategies, based on cerebral tissue engineering, are presented. We will report the main results of our studies to work out and characterize in vivo a cerebral bioprosthesis. © Société de Biologie, 2014.

  15. Central nervous system complications and neuroradiological findings in children with chronic active Epstein-Barr virus infection.

    PubMed

    Ishikawa, Nobutsune; Kawaguchi, Hiroshi; Nakamura, Kazuhiro; Kobayashi, Masao

    2013-02-01

    Although many neurological complications have been described in acute Epstein-Barr virus infection, few reports have discussed the central nervous system complications in chronic active Epstein-Barr virus (CAEBV) infection. We retrospectively surveyed the medical records of 14 patients with CAEBV infection in our institute. Neuroradiological studies were performed in 10 of these patients. Five had no neurological symptoms, whereas two presented with posterior reversible encephalopathy syndrome, one presented with basal ganglia calcification, and one presented with falx cerebri hemorrhage. Although both of the posterior reversible encephalopathy syndrome cases developed epilepsy several years after recovering from prolonged neurological deterioration, the others had no neurological sequelae. This study revealed that various central nervous system complications may occur during the clinical course in pediatric CAEBV patients. © 2012 The Authors. Pediatrics International © 2012 Japan Pediatric Society.

  16. Imaging the fetal central nervous system

    PubMed Central

    De Keersmaecker, B.; Claus, F.; De Catte, L.

    2011-01-01

    The low prevalence of fetal central nervous system anomalies results in a restricted level of exposure and limited experience for most of the obstetricians involved in prenatal ultrasound. Sonographic guidelines for screening the fetal brain in a systematic way will probably increase the detection rate and enhance a correct referral to a tertiary care center, offering the patient a multidisciplinary approach of the condition. This paper aims to elaborate on prenatal sonographic and magnetic resonance imaging (MRI) diagnosis and outcome of various central nervous system malformations. Detailed neurosonographic investigation has become available through high resolution vaginal ultrasound probes and the development of a variety of 3D ultrasound modalities e.g. ultrasound tomographic imaging. In addition, fetal MRI is particularly helpful in the detection of gyration and neurulation anomalies and disorders of the gray and white matter. PMID:24753859

  17. Dextromethorphan and Quinidine

    MedlinePlus

    ... is in a class of medications called central nervous system agents. The way it works in the brain ... ever had myasthenia gravis (a disorder of the nervous system that causes muscle weakness), a history of street ...

  18. Increased intracranial pressure

    MedlinePlus

    ... the membranes covering the brain and spinal cord) Subdural hematoma (bleeding between the covering of the brain and ... intracranial pressure Patient Instructions Ventriculoperitoneal shunt - discharge Images Subdural hematoma Central nervous system and peripheral nervous system References ...

  19. Screening Criteria for Ophthalmic Manifestations of Congenital Zika Virus Infection.

    PubMed

    Zin, Andrea A; Tsui, Irena; Rossetto, Julia; Vasconcelos, Zilton; Adachi, Kristina; Valderramos, Stephanie; Halai, Umme-Aiman; Pone, Marcos Vinicius da Silva; Pone, Sheila Moura; Silveira Filho, Joel Carlos Barros; Aibe, Mitsue S; da Costa, Ana Carolina C; Zin, Olivia A; Belfort, Rubens; Brasil, Patricia; Nielsen-Saines, Karin; Moreira, Maria Elisabeth Lopes

    2017-09-01

    Current guidelines recommend screening eye examinations for infants with microcephaly or laboratory-confirmed Zika virus infection but not for all infants potentially exposed to Zika virus in utero. To evaluate eye findings in a cohort of infants whose mothers had polymerase chain reaction-confirmed Zika virus infection during pregnancy. In this descriptive case series performed from January 2 through October 30, 2016, infants were examined from birth to 1 year of age by a multidisciplinary medical team, including a pediatric ophthalmologist, from Fernandes Figueira Institute, a Ministry of Health referral center for high-risk pregnancies and infectious diseases in children in Rio de Janeiro, Brazil. Mother-infant pairs from Rio de Janeiro, Brazil, who presented with suspected Zika virus infection during pregnancy were referred to our institution and had serum, urine, amniotic fluid, or placenta samples tested by real-time polymerase chain reaction for Zika virus. Description of eye findings, presence of microcephaly or other central nervous system abnormalities, and timing of infection in infants with confirmed Zika virus during pregnancy. Eye abnormalities were correlated with central nervous system findings, microcephaly, and the timing of maternal infection. Of the 112 with polymerase chain reaction-confirmed Zika virus infection in maternal specimens, 24 infants (21.4%) examined had eye abnormalities (median age at first eye examination, 31 days; range, 0-305 days). Ten infants (41.7%) with eye abnormalities did not have microcephaly, and 8 (33.3%) did not have any central nervous system findings. Fourteen infants with eye abnormalities (58.3%) were born to women infected in the first trimester, 8 (33.3%) in the second trimester, and 2 (8.3%) in the third trimester. Optic nerve and retinal abnormalities were the most frequent findings. Eye abnormalities were statistically associated with microcephaly (odds ratio [OR], 19.1; 95% CI, 6.0-61.0), other central nervous system abnormalities (OR, 4.3; 95% CI, 1.6-11.2), arthrogryposis (OR, 29.0; 95% CI, 3.3-255.8), and maternal trimester of infection (first trimester OR, 5.1; 95% CI, 1.9-13.2; second trimester OR, 0.5; 95% CI, 0.2-1.2; and third trimester OR, 0.3; 95% CI, 0.1-1.2). Eye abnormalities may be the only initial finding in congenital Zika virus infection. All infants with potential maternal Zika virus exposure at any time during pregnancy should undergo screening eye examinations regardless of the presence or absence of central nervous system abnormalities.

  20. Centralization of the deuterostome nervous system predates chordates.

    PubMed

    Nomaksteinsky, Marc; Röttinger, Eric; Dufour, Héloïse D; Chettouh, Zoubida; Lowe, Chris J; Martindale, Mark Q; Brunet, Jean-François

    2009-08-11

    The origin of the chordate central nervous system (CNS) is unknown. One theory is that a CNS was present in the first bilaterian and that it gave rise to both the ventral cord of protostomes and the dorsal cord of deuterostomes. Another theory proposes that the chordate CNS arose by a dramatic process of dorsalization and internalization from a diffuse nerve net coextensive with the skin of the animal, such as enteropneust worms (Hemichordata, Ambulacraria) are supposed to have. We show here that juvenile and adult enteropneust worms in fact have a bona fide CNS, i.e., dense agglomerations of neurons associated with a neuropil, forming two cords, ventral and dorsal. The latter is internalized in the collar as a chordate-like neural tube. Contrary to previous assumptions, the greater part of the adult enteropneust skin is nonneural, although elements of the peripheral nervous system (PNS) are found there. We use molecular markers to show that several neuronal types are anatomically segregated in the CNS and PNS. These neuroanatomical features, whatever their homologies with the chordate CNS, imply that nervous system centralization predates the evolutionary separation of chordate and hemichordate lineages.

Top