Sample records for include charge transfer

  1. Charge transfer in TATB and HMX under extreme conditions.

    PubMed

    Zhang, Chaoyang; Ma, Yu; Jiang, Daojian

    2012-11-01

    Charge transfer is usually accompanied by structural changes in materials under different conditions. However, the charge transfer in energetic materials that are subjected to extreme conditions has seldom been explored by researchers. In the work described here, the charge transfer in single molecules and unit cells of the explosives TATB and HMX under high temperatures and high pressures was investigated by performing static and dynamic calculations using three DFT methods, including the PWC functional of LDA, and the BLYP and PBE functionals of GGA. The results showed that negative charge is transferred from the nitro groups of molecular or crystalline TATB and HMX when they are heated. All DFT calculations for the compressed TATB unit cell indicate that, generally, negative charge transfer occurs to its nitro groups as the compression increases. PWC and PBE calculations for crystalline HMX show that negative charge is first transferred to the nitro groups but, as the compression increases, the negative charge is transferred from the nitro groups. However, the BLYP calculations indicated that there was gradual negative charge transfer to the nitro groups of HMX, similar to the case for TATB. The unrelaxed state of the uniformly compressed TATB causes negative charge to be transferred from its nitro groups, in contrast to what is seen in the relaxed state. Charge transfer in TATB is predicted to occur much more easily than in HMX.

  2. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xin; Parrish, Robert M.; Liu, Fang

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  3. An Ab Initio Exciton Model Including Charge-Transfer Excited States

    DOE PAGES

    Li, Xin; Parrish, Robert M.; Liu, Fang; ...

    2017-06-15

    Here, the Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited statesmore » and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.« less

  4. An Ab Initio Exciton Model Including Charge-Transfer Excited States.

    PubMed

    Li, Xin; Parrish, Robert M; Liu, Fang; Kokkila Schumacher, Sara I L; Martínez, Todd J

    2017-08-08

    The Frenkel exciton model is a useful tool for theoretical studies of multichromophore systems. We recently showed that the exciton model could be used to coarse-grain electronic structure in multichromophoric systems, focusing on singly excited exciton states [ Acc. Chem. Res. 2014 , 47 , 2857 - 2866 ]. However, our previous implementation excluded charge-transfer excited states, which can play an important role in light-harvesting systems and near-infrared optoelectronic materials. Recent studies have also emphasized the significance of charge-transfer in singlet fission, which mediates the coupling between the locally excited states and the multiexcitonic states. In this work, we report on an ab initio exciton model that incorporates charge-transfer excited states and demonstrate that the model provides correct charge-transfer excitation energies and asymptotic behavior. Comparison with TDDFT and EOM-CC2 calculations shows that our exciton model is robust with respect to system size, screening parameter, and different density functionals. Inclusion of charge-transfer excited states makes the exciton model more useful for studies of singly excited states and provides a starting point for future construction of a model that also includes double-exciton states.

  5. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1996-01-01

    Charge transfer at electron-volt energies between multiply charged atomic ions and neutral atoms and molecules is of considerable importance in astrophysics, plasma physics, and in particular, fusion plasmas. In the year covered by this report, several major tasks were completed. These include: (1) the re-calibration of the ion gauge to measure the absolute particle densities of H2, He, N2, and CO for our current measurements; (2) the analysis of data for charge transfer reactions of N(exp 2 plus) ion and He, H2, N2, and CO; (3) measurement and data analysis of the charge transfer reaction of (Fe(exp 2 plus) ion and H2; (4) charge transfer measurement of Fe(exp 2 plus) ion and H2; and (5) redesign and modification of the ion detection and data acquisition system for the low energy beam facility (reflection time of flight mass spectrometer) dedicated to the study of state select charge transfer.

  6. Charge-transfer cross sections in collisions of ground-state Ca and H+

    NASA Astrophysics Data System (ADS)

    Dutta, C. M.; Oubre, C.; Nordlander, P.; Kimura, M.; Dalgarno, A.

    2006-03-01

    We have investigated collisions of Ca(4s2) with H+ in the energy range of 200eV/u-10keV/u using the semiclassical molecular-orbital close-coupling (MOCC) method with 18 coupled molecular states ( 11Σ+1 and seven Π+1 states) to determine charge-transfer cross sections. Except for the incoming channel 6Σ+1 , the molecular states all correspond to charge-transfer channels. Inclusion of Ca2+-H- is crucial in the configuration-interaction calculation for generating the molecular wave functions and potentials. Because of the Coulomb attraction, the state separating to Ca2+-H- creates many avoided crossings, even though at infinite separation it lies energetically above all other states that we included. Because of the avoided crossings between the incoming channel 6Σ+1 and the energetically close charge-transfer channel 7Σ+1 the charge-transfer interaction occurs at long range. This makes calculations of charge-transfer cross sections by the MOCC method very challenging. The total charge-transfer cross sections increase monotonically from 3.4×10-15cm2 at 200eV/u to 4.5×10-15cm2 at 10keV/u . Charge transfer occurs mostly to the excited Ca+(5p) state in the entire energy range, which is the sum of the charge transfer to 7Σ+1 and 4Π+1 . It accounts for ˜47% of the total charge transfer cross sections at 200eV/u . However, as the energy increases, transfer to Ca+(4d) increases, and at 10keV/u the charge-transfer cross sections for Ca+(5p) and Ca+(4d) become comparable, each giving ˜38% of the total cross section.

  7. Creating and optimizing interfaces for electric-field and photon-induced charge transfer.

    PubMed

    Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa

    2012-11-27

    We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.

  8. Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Hestand, Nicholas J.

    The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. (Abstract shortened by ProQuest.).

  9. Absorption spectrometric study of charge transfer complex formation between 4-acetamidophenol (paracetamol) and a series of quinones including Vitamin K 3

    NASA Astrophysics Data System (ADS)

    Saha, Avijit; Mukherjee, Asok K.

    2004-07-01

    The formation of charge transfer (CT) complexes of 4-acetamidophenol (commonly called 'paracetamol') and a series of quinones (including Vitamin K 3) has been studied spectrophotometrically in ethanol medium. The vertical ionisation potential of paracetamol and the degrees of charge transfer of the complexes in their ground state has been estimated from the trends in the charge transfer bands. The oscillator and transition dipole strengths of the complexes have been determined from the CT absorption spectra at 298 K. The complexes have been found by Job's method of continuous variation to have the uncommon 2:1 (paracetamol:quinone) stoichiometry in each case. The enthalpies and entropies of formation of the complexes have been obtained by determining their formation constants at five different temperatures.

  10. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    1995-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  11. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  12. Active pixel sensor with intra-pixel charge transfer

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2004-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  13. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions

    NASA Astrophysics Data System (ADS)

    Polkehn, M.; Tamura, H.; Burghardt, I.

    2018-01-01

    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  14. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  15. Theoretical Investigation of Charge Transfer in Metal Organic Frameworks for Electrochemical Device Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Sameer; Schatz, George C.

    For electrochemical device applications metal organic frameworks (MOFs) must exhibit suitable conduction properties. To this end, we have performed computational studies of intermolecular charge transfer in MOFs consisting of hexa-ZrIV nodes and tetratopic carboxylate linkers. This includes an examination of the electronic structure of linkers that are derived from tetraphenyl benzene 1, tetraphenyl pyrene 2, and tetraphenyl porphyrin 3 molecules. These results are used to determine charge transfer propensities in MOFs, within the framework of Marcus theory, including an analysis of the key parameters (charge transfer integral t, reorganization energy λ, and free energy change ΔG0) and evaluation of figuresmore » of merit for charge transfer based on the chemical structures of the linkers. This qualitative analysis indicates that delocalization of the HOMO/LUMO on terminal substituents increases t and decreases λ, while weaker binding to counterions decreases ΔG0, leading to better charge transfer propensity. Subsequently, we study hole transfer in the linker 2 containing MOFs, NU-901 and NU-1000, in detail and describe mechanisms (hopping and superexchange) that may be operative under different electrochemical conditions. Comparisons with experiment are provided where available. On the basis of the redox and catalytic activity of nodes and linkers, we propose three possible schemes for constructing electrochemical devices for catalysis. We believe that the results of this study will lay the foundation for future experimental work on this topic.« less

  16. Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state.

    PubMed

    Sukhomlinov, Sergey V; Müser, Martin H

    2015-12-14

    In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, P(C) ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.

  17. Charge-transfer potentials for ionic crystals: Cauchy violation, LO-TO splitting, and the necessity of an ionic reference state

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, Sergey V.; Müser, Martin H.

    2015-12-01

    In this work, we study how including charge transfer into force fields affects the predicted elastic and vibrational Γ-point properties of ionic crystals, in particular those of rock salt. In both analytical and numerical calculations, we find that charge transfer generally leads to a negative contribution to the Cauchy pressure, PC ≡ C12 - C66, where C12 and C66 are elements of the elastic tensor. This contribution increases in magnitude with pressure for different charge-transfer approaches in agreement with results obtained with density functional theory (DFT). However, details of the charge-transfer models determine the pressure dependence of the longitudinal optical-transverse optical splitting and that for partial charges. These last two quantities increase with density as long as the chemical hardness depends at most weakly on the environment while experiments and DFT find a decrease. In order to reflect the correct trends, the charge-transfer expansion has to be made around ions and the chemical (bond) hardness has to increase roughly exponentially with inverse density or bond lengths. Finally, the adjustable force-field parameters only turn out meaningful, when the expansion is made around ions.

  18. A quantum mechanical-Poisson-Boltzmann equation approach for studying charge flow between ions and a dielectric continuum

    NASA Astrophysics Data System (ADS)

    Gogonea, Valentin; Merz, Kenneth M.

    2000-02-01

    This paper presents a theoretical model for the investigation of charge transfer between ions and a solvent treated as a dielectric continuum media. The method is a combination of a semiempirical effective Hamiltonian with a modified Poisson-Boltzmann equation which includes charge transfer in the form of a surface charge density positioned at the dielectric interface. The new Poisson-Boltzmann equation together with new boundary conditions results in a new set of equations for the electrostatic potential (or polarization charge densities). Charge transfer adds a new free energy component to the solvation free energy term, which accounts for all interactions between the transferred charge at the dielectric interface, the solute wave function and the solvent polarization charges. Practical calculations on a set of 19 anions and 17 cations demonstrate that charge exchange with a dielectric is present and it is in the range of 0.06-0.4 eu. Furthermore, the pattern of the magnitudes of charge transfer can be related to the acid-base properties of the ions in many cases, but exceptions are also found. Finally, we show that the method leads to an energy decomposition scheme of the total electrostatic energy, which can be used in mechanistic studies on protein and DNA interaction with water.

  19. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.

    PubMed

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G

    2011-08-28

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics

  20. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory

    PubMed Central

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.

    2011-01-01

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159

  1. Larry car for a coking oven battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corry, D.B.

    A larry car (3) for transporting a charge of pre-heated coal along the top of a battery of coke ovens, from a storage installation including a group of metering bins (1) at one or more filling stations above the battery, to a corresponding group of charge holes for the oven chamber to be charged, the car including a corresponding group of coal transfer hoppers (4) each having valved inlet and discharge apertures (5,21), a sealed connection (2) between each metering bin and transfer hopper, an inert gas reservoir (10) connectable via a valved manifold (13,14) to each transfer hopper, amore » valved connection (7,8,9) for charging the reservoir, and a valved connection (15,16,17) to permit dusty gas to be displaced into the storage bunkers, and control means for the various valved connections to maintain continuous isolation of the interior of each transfer hopper from the atmosphere, to permit dust-laden gases to escape into the storage installation, and to cause inert medium to displace coal discharged from the transfer hoppers.« less

  2. Charge transfer and adsorption-desorption kinetics in carbon nanotube and graphene gas sensing

    NASA Astrophysics Data System (ADS)

    Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik; Cole, Milton; Sofo, Jorge

    2014-03-01

    Detection of molecules in the gas phase by carbon nanotube and graphene has great application potentials due to the high sensitivity and surface-to-volume ratio. In chemiresistor, the conductance of the materials has been proposed to change as a result of charge transfer from the adsorbed molecules. Due to self-interaction errors, calculations using LDA or GGA density functionals have an innate disadvantage in dealing with charge transfer situations. A model which takes into consideration the dielectric interaction between the graphene surface and the molecule is employed to estimate the distance where charge transfer becomes favorable. Adsorption-desorption kinetics is studied with a modified Langmuir model, including sites from which the molecules do not desorb within the experimental time. Assuming a constant mobility, the model reproduces existing experimental conductance data. Its parameters provide information about the microscopic process during the detection and varying them allows optimization of aspects of sensor performance, including sensitivity, detection limit and response time. This work is supported by Honda Research Institute USA, Inc.

  3. Theoretical study on naphthobischalcogenadiazole conjugated polymer systems and C61 derivative as organic photovoltaic semiconductors

    NASA Astrophysics Data System (ADS)

    Fujita, Takehiro; Matsui, Toru; Sumita, Masato; Imamura, Yutaka; Morihashi, Kenji

    2018-02-01

    We investigated the charge-transfer reactions of solar cells including a quaterthiophene copolymer with naphtho-bis-thiadiazole (PNTz4T) and naphtho-bis-oxadiazole (PNOz4T) using constrained density functional theory (CDFT). According to our calculations, the high electron-transfer rate results in a highly efficient solar cell, and the stable charge-transfer state results in low energy loss. Our computations imply that the following three factors are crucial to improve the performance of semiconducting polymers: (i) large structural changes following charge-transfer, (ii) narrow band gap, and (iii) spatially delocalized lowest unoccupied molecular orbital (LUMO) of the ground state.

  4. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2003-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  5. Active pixel sensor having intra-pixel charge transfer with analog-to-digital converter

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra K. (Inventor); Pain, Bedabrata (Inventor); Nixon, Robert H. (Inventor); Zhou, Zhimin (Inventor)

    2000-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor Integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node and an analog-to-digital converter formed in the substrate connected to the output of the readout circuit.

  6. Advanced investigation of two-phase charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    The performance of experimental two phase, charge-coupled shift registers constructed using polysilicon gates overlapped by aluminum gates was studied. Shift registers with 64, 128, and 500 stages were built and operated. Devices were operated at the maximum clock frequency of 20 MHz. Loss per transfer of less than .0001 was demonstrated for fat zero operation. The effect upon transfer efficiency of various structural and materials parameters was investigated including substrate orientation, resistivity, and conductivity type; channel width and channel length; and method of channel confinement. Operation of the devices with and without fat zero was studied as well as operation in the complete charge transfer mode and the bias charge, or bucket brigade mode.

  7. Tunable electrical conductivity in metal-organic framework thin film devices

    DOEpatents

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-08-30

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  8. Tunable electrical conductivity in metal-organic framework thin film devices

    DOEpatents

    Talin, Albert Alec; Allendorf, Mark D.; Stavila, Vitalie; Leonard, Francois

    2016-05-24

    A composition including a porous metal organic framework (MOF) including an open metal site and a guest species capable of charge transfer that can coordinate with the open metal site, wherein the composition is electrically conductive. A method including infiltrating a porous metal organic framework (MOF) including an open metal site with a guest species that is capable of charge transfer; and coordinating the guest species to the open metal site to form a composition including an electrical conductivity greater than an electrical conductivity of the MOF.

  9. A multi-state fragment charge difference approach for diabatic states in electron transfer: Extension and automation

    NASA Astrophysics Data System (ADS)

    Yang, Chou-Hsun; Hsu, Chao-Ping

    2013-10-01

    The electron transfer (ET) rate prediction requires the electronic coupling values. The Generalized Mulliken-Hush (GMH) and Fragment Charge Difference (FCD) schemes have been useful approaches to calculate ET coupling from an excited state calculation. In their typical form, both methods use two eigenstates in forming the target charge-localized diabatic states. For problems involve three or four states, a direct generalization is possible, but it is necessary to pick and assign the locally excited or charge-transfer states involved. In this work, we generalize the 3-state scheme for a multi-state FCD without the need of manual pick or assignment for the states. In this scheme, the diabatic states are obtained separately in the charge-transfer or neutral excited subspaces, defined by their eigenvalues in the fragment charge-difference matrix. In each subspace, the Hamiltonians are diagonalized, and there exist off-diagonal Hamiltonian matrix elements between different subspaces, particularly the charge-transfer and neutral excited diabatic states. The ET coupling values are obtained as the corresponding off-diagonal Hamiltonian matrix elements. A similar multi-state GMH scheme can also be developed. We test the new multi-state schemes for the performance in systems that have been studied using more than two states with FCD or GMH. We found that the multi-state approach yields much better charge-localized states in these systems. We further test for the dependence on the number of state included in the calculation of ET couplings. The final coupling values are converged when the number of state included is increased. In one system where experimental value is available, the multi-state FCD coupling value agrees better with the previous experimental result. We found that the multi-state GMH and FCD are useful when the original two-state approach fails.

  10. Resolving the excited state equilibrium of peridinin in solution.

    PubMed

    Papagiannakis, Emmanouil; Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; Hiller, Roger G; van Grondelle, Rienk

    2004-12-14

    The carotenoid peridinin is abundant in the biosphere, as it is the main pigment bound by the light-harvesting complexes of dinoflagellates, where it collects blue and green sunlight and transfers energy to chlorophyll a with high efficiency. Its molecular structure is particularly complex, giving rise to an intricate excited state manifold, which includes a state with charge-transfer character. To disentangle the excited states of peridinin and understand their function in vivo, we applied dispersed pump-probe and pump-dump-probe spectroscopy. The preferential depletion of population from the intramolecular charge transfer state by the dump pulse demonstrates that the S(1) and this charge transfer state are distinct entities. The ensuing dump-induced dynamics illustrates the equilibration of the two states which occurs on the time scale of a few picoseconds. Additionally, the dump pulse populates a short-lived ground state intermediate, which is suggestive of a complex relaxation pathway, probably including structural reorientation or solvation of the ground state. These findings indicate that the unique intramolecular charge transfer state of peridinin is an efficient energy donor to chlorophyll a in the peridinin-chlorophyll-protein complex and thus plays a significant role in global light harvesting.

  11. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalisation in Metal-Organic Frameworks.

    PubMed

    Hua, Carol; Doheny, Patrick William; Ding, Bowen; Chan, Bun; Yu, Michelle; Kepert, Cameron J; D'Alessandro, Deanna M

    2018-05-04

    Understanding the nature of charge transfer mechanisms in 3-dimensional Metal-Organic Frameworks (MOFs) is an important goal owing to the possibility of harnessing this knowledge to design conductive frameworks. These materials have been implicated as the basis for the next generation of technological devices for applications in energy storage and conversion, including electrochromic devices, electrocatalysts, and battery materials. After nearly two decades of intense research into MOFs, the mechanisms of charge transfer remain relatively poorly understood, and new strategies to achieve charge mobility remain elusive and challenging to experimentally explore, validate and model. We now demonstrate that aromatic stacking interactions in Zn(II) frameworks containing cofacial thiazolo[5,4-d]thiazole units lead to a mixed-valence state upon electrochemical or chemical reduction. This through-space Intervalence Charge Transfer (IVCT) phenomenon represents a new mechanism for charge delocalisation in MOFs. Computational modelling of the optical data combined with application of Marcus-Hush theory to the IVCT bands for the mixed-valence framework has enabled quantification of the degree of delocalisation using both in situ and ex situ electro- and spectro-electrochemical methods. A distance dependence for the through-space electron transfer has also been identified on the basis of experimental studies and computational calculations. This work provides a new window into electron transfer phenomena in 3-dimensional coordination space, of relevance to electroactive MOFs where new mechanisms for charge transfer are highly sought after, and to understanding biological light harvesting systems where through-space mixed-valence interactions are operative.

  12. Electron Transfer Dissociation: Effects of Cation Charge State on Product Partitioning in Ion/Ion Electron Transfer to Multiply Protonated Polypeptides

    PubMed Central

    Liu, Jian; McLuckey, Scott A.

    2012-01-01

    The effect of cation charge state on product partitioning in the gas-phase ion/ion electron transfer reactions of multiply protonated tryptic peptides, model peptides, and relatively large peptides with singly charged radical anions has been examined. In particular, partitioning into various competing channels, such as proton transfer (PT) versus electron transfer (ET), electron transfer with subsequent dissociation (ETD) versus electron transfer with no dissociation (ET,noD), and fragmentation of backbone bonds versus fragmentation of side chains, was measured quantitatively as a function of peptide charge state to allow insights to be drawn about the fundamental aspects of ion/ion reactions that lead to ETD. The ET channel increases relative to the PT channel, ETD increases relative to ET,noD, and fragmentation at backbone bonds increases relative to side-chain cleavages as cation charge state increases. The increase in ET versus PT with charge state is consistent with a Landau-Zener based curve-crossing model. An optimum charge state for ET is predicted by the model for the ground state-to-ground state reaction. However, when the population of excited product ion states is considered, it is possible that a decrease in ET efficiency as charge state increases will not be observed due to the possibility of the population of excited electronic states of the products. Several factors can contribute to the increase in ETD versus ET,noD and backbone cleavage versus side-chain losses. These factors include an increase in reaction exothermicity and charge state dependent differences in precursor and product ion structures, stabilities, and sites of protonation. PMID:23264749

  13. The effect of charge transfer fluctuation on superconductivity in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Liu, Yihsuan; Wu, Huan-Kuang; Lee, Ting-Kuo

    H i g h - Tc Cuprates have been studied quite often as an effective one band t - J model that neglects charge fluctuation between oxygen 2p6 band and copper 3d10 band, and Zhang-Rice singlet is just a hole in the model. However, recent Scanning Tunneling Spectra(STS) measurement on underdoped Cuprate shows that charge transfer gap is only of order 12 eV. This small gap necessitates a re-examination of the charge transfer fluctuation. Here we modify the t-J model by including charge transfer fluctuation allowing the formation of doubly occupied sites. For certain parameters it is similar with the t-J-U model. This model is studied via variational Monte Carlo method(VMC). Our result shows that this model can give a unified behavior of superconducting dome with different long rang hopping parameters. The anti-correlation between charge transfer gap and pairing is also confirmed. More interestingly the charge fluctuation is found to affect pairing order parameter in different ways in underdoped and overdoped regions. This work is partially supported by Taiwan Ministry of Science and Technology with Grant. MOST 105-2112-M-001-008 and calculation was supported by a National Center of High Performance Computing in Taiwan.

  14. Interfacial characteristics and leakage current transfer mechanisms in organometal trihalide perovskite gate-controlled devices via doping of PCBM

    NASA Astrophysics Data System (ADS)

    Wang, Yucheng; Zhang, Yuming; Liu, Yintao; Pang, Tiqiang; Hu, Ziyang; Zhu, Yuejin; Luan, Suzhen; Jia, Renxu

    2017-11-01

    Two types of perovskite (with and without doping of PCBM) based metal-oxide-semiconductor (MOS) gate-controlled devices were fabricated and characterized. The study of the interfacial characteristics and charge transfer mechanisms by doping of PCBM were analyzed by material and electrical measurements. Doping of PCBM does not affect the size and crystallinity of perovskite films, but has an impact on carrier extraction in perovskite MOS devices. The electrical hysteresis observed in capacitance-voltage and current-voltage measurements can be alleviated by doping of PCBM. Experimental results demonstrate that extremely low trap densities are found for the perovskite device without doping, while the doped sample leads to higher density of interface state. Three mechanisms including Ohm’s law, trap-filled-limit (TFL) emission, and child’s law were used to analyze possible charge transfer mechanisms. Ohm’s law mechanism is well suitable for charge transfer of both the perovskite MOS devices under light condition at large voltage, while TFL emission well addresses the behavior of charge transfer under dark at small voltage. This change of charge transfer mechanism is attributed to the impact of the ion drift within perovskites.

  15. Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system

    NASA Astrophysics Data System (ADS)

    Kong, Fantai; Longo, Roberto C.; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae

    2017-11-01

    To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO2. A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li2CoO2 and Li-deficient LiCo2O4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

  16. Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.

    PubMed

    Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae

    2017-11-29

    To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

  17. Typical effects of laser dazzling CCD camera

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  18. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanden Bout, David A.

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling themore » CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.« less

  19. Open-Circuit Voltage Losses in Selenium-Substituted Organic Photovoltaic Devices from Increased Density of Charge-Transfer States

    DOE PAGES

    Sulas, Dana B.; Yao, Kai; Intemann, Jeremy J.; ...

    2015-09-12

    Using an analysis based on Marcus theory, we characterize losses in open-circuit voltage (V OC) due to changes in charge-transfer state energy, electronic coupling, and spatial density of charge-transfer states in a series of polymer/fullerene solar cells. Here, we use a series of indacenodithiophene polymers and their selenium-substituted analogs as electron donor materials and fullerenes as the acceptors. By combining device measurements and spectroscopic studies (including subgap photocurrent, electroluminescence, and, importantly, time-resolved photoluminescence of the charge-transfer state) we are able to isolate the values for electronic coupling and the density of charge-transfer states (NCT), rather than the more commonly measuredmore » product of these values. We find values for NCT that are surprisingly large (~4.5 × 10 21–6.2 × 10 22 cm -3), and we find that a significant increase in N CT upon selenium substitution in donor polymers correlates with lower VOC for bulk heterojunction photovoltaic devices. The increase in N CT upon selenium substitution is also consistent with nanoscale morphological characterization. Using transmission electron microscopy, selected area electron diffraction, and grazing incidence wide-angle X-ray scattering, we find evidence of more intermixed polymer and fullerene domains in the selenophene blends, which have higher densities of polymer/fullerene interfacial charge-transfer states. Our results provide an important step toward understanding the spatial nature of charge-transfer states and their effect on the open-circuit voltage of polymer/fullerene solar cells« less

  20. Dielectric spectroscopy on organic charge-transfer salts

    NASA Astrophysics Data System (ADS)

    Lunkenheimer, P.; Loidl, A.

    2015-09-01

    This topical review provides an overview of the dielectric properties of a variety of organic charge-transfer salts, based on both, data reported in literature and our own experimental results. Moreover, we discuss in detail the different processes that can contribute to the dielectric response of these materials. We concentrate on the family of the 1D (TMTTF)2 X systems and the 2D BEDT-TTF-based charge-transfer salts, which in recent years have attracted considerable interest due to their often intriguing dielectric properties. We will mainly focus on the occurrence of electronic ferroelectricity in these systems, which also includes examples of multiferroicity.

  1. Dielectric spectroscopy on organic charge-transfer salts.

    PubMed

    Lunkenheimer, P; Loidl, A

    2015-09-23

    This topical review provides an overview of the dielectric properties of a variety of organic charge-transfer salts, based on both, data reported in literature and our own experimental results. Moreover, we discuss in detail the different processes that can contribute to the dielectric response of these materials. We concentrate on the family of the 1D (TMTTF)2 X systems and the 2D BEDT-TTF-based charge-transfer salts, which in recent years have attracted considerable interest due to their often intriguing dielectric properties. We will mainly focus on the occurrence of electronic ferroelectricity in these systems, which also includes examples of multiferroicity.

  2. 12 CFR 1228.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... continuing basis each time a property is transferred (except for transfers specifically excepted) for a period of time or indefinitely. A private transfer fee does not include fees, charges, payments, or other... SECURITY INTERESTS IN, MORTGAGES ON PROPERTIES ENCUMBERED BY CERTAIN PRIVATE TRANSFER FEE COVENANTS AND...

  3. Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer.

    PubMed

    Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim

    2016-09-15

    The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.

  4. Long-lived, charge-shift states in heterometallic, porphyrin-based dendrimers formed via click chemistry.

    PubMed

    Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Harriman, Anthony

    2011-05-26

    A series of multiporphyrin clusters has been synthesized and characterized in which there exists a logical gradient for either energy or electron transfer between the porphyrins. A central free-base porphyrin (FbP), for example, is equipped with peripheral zinc(II) porphyrins (ZnP) which act as ancillary light harvesters and transfer excitation energy to the FbP under visible light illumination. Additional energy-transfer steps occur at the triplet level, and the series is expanded by including magnesium(II) porphyrins and/or tin(IV) porphyrins as chromophores. Light-induced electron transfer is made possible by incorporating a gold(III) porphyrin (AuP(+)) into the array. Although interesting by themselves, these clusters serve as control compounds by which to understand the photophysical processes occurring within a three-stage dendrimer comprising an AuP(+) core, a second layer formed from four FbP units, and an outer layer containing 12 ZnP residues. Here, illumination into a peripheral ZnP leads to highly efficient electronic energy transfer to FbP, followed by charge transfer to the central AuP(+). Charge recombination within the resultant charge-shift state is intercepted by secondary hole transfer to the ZnP, which occurs with a quantum yield of around 20%. The final charge-shift state survives for some microseconds in fluid solution at room temperature.

  5. Physical stage of photosynthesis charge separation

    NASA Astrophysics Data System (ADS)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  6. Interaction and charge transfer between dielectric spheres: Exact and approximate analytical solutions.

    PubMed

    Lindén, Fredrik; Cederquist, Henrik; Zettergren, Henning

    2016-11-21

    We present exact analytical solutions for charge transfer reactions between two arbitrarily charged hard dielectric spheres. These solutions, and the corresponding exact ones for sphere-sphere interaction energies, include sums that describe polarization effects to infinite orders in the inverse of the distance between the sphere centers. In addition, we show that these exact solutions may be approximated by much simpler analytical expressions that are useful for many practical applications. This is exemplified through calculations of Langevin type cross sections for forming a compound system of two colliding spheres and through calculations of electron transfer cross sections. We find that it is important to account for dielectric properties and finite sphere sizes in such calculations, which for example may be useful for describing the evolution, growth, and dynamics of nanometer sized dielectric objects such as molecular clusters or dust grains in different environments including astrophysical ones.

  7. Electronic and Vibrational Coherence in Charge-Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Scherer, Norbert

    1996-03-01

    The ultrafast dynamics associated with optically-induced intervalence charge-transfer reactions in solution and protein environments are reported. These studies include the Fe^(II)-Fe^(III) MMCT complex Prussian blue and the mixed valence dimer (CN)_5Ru^(II)CNRuRu^(III)(NH_3)_5. The protein systems include blue copper proteins and the bacterial photosynthetic reaction center. The experimental approaches include photon echo, wavelength-resolved pump-probe and anisotropy measurements performed with 12-16fs duration optical pulses. Complicated time-domain waveforms reflect the several different p[rocesses and time scales for relaxation of coherences (both electronic and vibrational) and populations within these systems. The photon echo and anisotropy results probe electronic coherence and dephasing prior to back electron transfer. Wavelength-resolved pump-probe results reveal vibrational modes coupled to the CT-coordinate as well as formation of new product states or vibrational cooling in the ground state following back electron transfer.

  8. Molecular control of pentacene/ZnO photoinduced charge transfer

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Paoprasert, Peerasak; Franking, Ryan; Hamers, Robert J.; Gopalan, Padma; Evans, Paul G.

    2011-03-01

    Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors (FETs) incorporating ZnO quantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnO quantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.

  9. Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes

    DOE PAGES

    Wang, Bo; Li, Shaohong L.; Truhlar, Donald G.

    2014-10-30

    Partial atomic charges are widely used for the description of charge distributions of molecules and solids. These charges are useful to indicate the extent of charge transfer and charge flow during chemical reactions in batteries, fuel cells, and catalysts and to characterize charge distributions in capacitors, liquid-phase electrolytes, and solids and at electrochemical interfaces. However, partial atomic charges given by various charge models differ significantly, especially for systems containing metal atoms. In the present study, we have compared various charge models on both molecular systems and extended systems, including Hirshfeld, CM5, MK, ChElPG, Mulliken, MBS, NPA, DDEC, LoProp, and Badermore » charges. Their merits and drawbacks are compared. The CM5 charge model is found to perform well on the molecular systems, with a mean unsigned percentage deviation of only 9% for the dipole moments. We therefore formulated it for extended systems and applied it to study charge flow during the delithiation process in lithium-containing oxides used as cathodes. Our calculations show that the charges given by the CM5 charge model are reasonable and that during the delithiation process, the charge flow can occur not only on the transition metal but also on the anions. The oxygen atoms can lose a significant density of electrons, especially for deeply delithiated materials. We also discuss other methods in current use to analyze the charge transfer and charge flow in batteries, in particular the use of formal charge, spin density, and orbital occupancy. Here, we conclude that CM5 charges provide useful information in describing charge distributions in various materials and are very promising for the study of charge transfer and charge flows in both molecules and solids.« less

  10. Modeling the Partial Atomic Charges in Inorganometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes.

    PubMed

    Wang, Bo; Li, Shaohong L; Truhlar, Donald G

    2014-12-09

    Partial atomic charges are widely used for the description of charge distributions of molecules and solids. These charges are useful to indicate the extent of charge transfer and charge flow during chemical reactions in batteries, fuel cells, and catalysts and to characterize charge distributions in capacitors, liquid-phase electrolytes, and solids and at electrochemical interfaces. However, partial atomic charges given by various charge models differ significantly, especially for systems containing metal atoms. In the present study, we have compared various charge models on both molecular systems and extended systems, including Hirshfeld, CM5, MK, ChElPG, Mulliken, MBS, NPA, DDEC, LoProp, and Bader charges. Their merits and drawbacks are compared. The CM5 charge model is found to perform well on the molecular systems, with a mean unsigned percentage deviation of only 9% for the dipole moments. We therefore formulated it for extended systems and applied it to study charge flow during the delithiation process in lithium-containing oxides used as cathodes. Our calculations show that the charges given by the CM5 charge model are reasonable and that during the delithiation process, the charge flow can occur not only on the transition metal but also on the anions. The oxygen atoms can lose a significant density of electrons, especially for deeply delithiated materials. We also discuss other methods in current use to analyze the charge transfer and charge flow in batteries, in particular the use of formal charge, spin density, and orbital occupancy. We conclude that CM5 charges provide useful information in describing charge distributions in various materials and are very promising for the study of charge transfer and charge flows in both molecules and solids.

  11. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  12. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  13. Dynamics of charge-transfer excitons in type-II semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.

    2018-03-01

    The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.

  14. Experimental Investigation of Piston Heat Transfer in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition, and Reactivity Controlled Compression Ignition Combustion Regimes

    DTIC Science & Technology

    2014-01-15

    in a Light Duty Engine Under Conventional Diesel, Homogeneous Charge Compression Ignition , and Reactivity Controlled Compression Ignition ...Conventional Diesel (CDC), Homogeneous Charge Compression Ignition (HCCI), and Reactivity Controlled Compression Ignition (RCCI) combustion...LTC) regimes, including reactivity controlled compression ignition (RCCI), partially premixed combustion (PPC), and homogenous charge compression

  15. Ligand-induced dependence of charge transfer in nanotube–quantum dot heterostructures

    DOE PAGES

    Wang, Lei; Han, Jinkyu; Sundahl, Bryan; ...

    2016-07-01

    As a model system to probe ligand-dependent charge transfer in complex composite heterostructures, we fabricated double-walled carbon nanotube (DWNT) – CdSe quantum dot (QD) composites. Whereas the average diameter of the QDs probed was kept fixed at ~4.1 nm and the nanotubes analyzed were similarly oxidatively processed, by contrast, the ligands used to mediate the covalent attachment between the QDs and DWNTs were systematically varied to include p-phenylenediamine (PPD), 2-aminoethanethiol (AET), and 4-aminothiophenol (ATP). Herein, we have put forth a unique compilation of complementary data from experiment and theory, including results from transmission electron microscopy (TEM), near-edge X-ray absorption finemore » structure (NEXAFS) spectroscopy, Raman spectroscopy, electrical transport measurements, and theoretical modeling studies, in order to fundamentally assess the nature of the charge transfer between CdSe QDs and DWNTs, as a function of the structure of various, intervening bridging ligand molecules. Specifically, we correlated evidence of charge transfer as manifested by changes and shifts associated with NEXAFS intensities, Raman peak positions, and threshold voltages both before and after CdSe QD deposition onto the underlying DWNT surface. Importantly, for the first time ever in these types of nanoscale composite systems, we have sought to use theoretical modeling to justify and account for our experimental results. Finally, our overall data suggest that (i) QD coverage density on the DWNTs varies, based upon the different ligand pendant groups used and that (ii) the presence of a π-conjugated carbon framework within the ligands themselves and the electron affinity of the pendant groups collectively play important roles in the resulting charge transfer from QDs to the underlying CNTs.« less

  16. Analytical Electrochemistry: Theory and Instrumentation of Dynamic Techniques.

    ERIC Educational Resources Information Center

    Johnson, Dennis C.

    1980-01-01

    Emphasizes trends in the development of six topics concerning analytical electrochemistry, including books and reviews (34 references cited), mass transfer (59), charge transfer (25), surface effects (33), homogeneous reactions (21), and instrumentation (31). (CS)

  17. Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures

    DOE PAGES

    Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud; ...

    2016-10-18

    We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure formore » optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS 2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.« less

  18. Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulesbaa, Abdelaziz; Wang, Kai; Mahjouri-Samani, Masoud

    We report that photoinduced interfacial charge transfer is at the heart of many applications, including photovoltaics, photocatalysis, and photodetection. With the emergence of a new class of semiconductors such as monolayer two-dimensional transition metal dichalcogenides (2D-TMDs), charge transfer at the 2D/2D heterojunctions attracted several efforts due to the remarkable optical and electrical properties of 2D-TMDs. Unfortunately, in 2D/2D heterojunctions, for a given combination of two materials, the relative energy band alignment and the charge transfer efficiency are locked. Due to their large variety and broad size tunability, semiconductor quantum dots (0D-QDs) interfaced with 2D-TMDs may become an attractive heterostructure formore » optoelectronic applications. Here, we incorporate femtosecond pump-probe spectroscopy to reveal the sub-45 fs charge transfer at a 2D/0D heterostructure composed of tungsten disulfide monolayers (2D-WS 2) and a single layer of cadmium selenide (CdSe)/zinc sulfide (ZnS) core/shell 0D-QDs. Furthermore, ultrafast dynamics and steady-state measurements suggested that following electron transfer from the 2D to the 0D, hybrid excitons (HXs), wherein the electron resides in the 0D and hole resides in the 2D-TMD monolayer, are formed with a binding energy on the order of ~140 meV, which is several times lower than that of tightly bound excitons in 2D-TMDs.« less

  19. Active pixel sensor array with electronic shuttering

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor)

    2002-01-01

    An active pixel cell includes electronic shuttering capability. The cell can be shuttered to prevent additional charge accumulation. One mode transfers the current charge to a storage node that is blocked against accumulation of optical radiation. The charge is sampled from a floating node. Since the charge is stored, the node can be sampled at the beginning and the end of every cycle. Another aspect allows charge to spill out of the well whenever the charge amount gets higher than some amount, thereby providing anti blooming.

  20. Consideration of Cost of Care in Pediatric Emergency Transfer-An Opportunity for Improvement.

    PubMed

    Gattu, Rajender K; De Fee, Ann-Sophie; Lichenstein, Richard; Teshome, Getachew

    2017-05-01

    Pediatric interhospital transfers are an economic burden to the health care, especially when deemed unnecessary. Physicians may be unaware of the cost implications of pediatric emergency transfers. A cost analysis may be relevant to reduce cost. To characterize children transferred from outlying emergency departments (EDs) to pediatric ED (PED) with a specific focus on transfers who were discharged home in 12 hours or less after transfer without intervention in PED and analyze charges associated with them. Charts of 352 patients (age, 0-18 years) transferred from 31 outlying EDs to PED during July 2009 to June 2010 were reviewed. Data were collected on the range, unit charge and volume of services provided in PED, length of stay, and final disposition. The average charge per patient transfer is calculated based on unit charge times total service units per 1000 patients per year and divided by 1000. Hospital charges were divided into fixed and variable. Of 352 patients transferred, 108 (30.7%) were admitted to pediatric inpatient service, 42 (11.9%) to intensive care; 36 (10.2%) went to the operating room, and 166 (47.2%) were discharged home. The average hospital charge per transfer was US $4843. Most (89%) of the charges were fixed, and 11% were variable. One hundred one (28.7%) patients were discharged home from PED in 12 hours or less without intervention. The hospital charges for these transfers were US $489,143. Significant number of transfers was discharged 12 hours or less without any additional intervention in PED. Fixed charges contribute to majority of total charges. Cost saving can be achieved by preventing unnecessary transfer.

  1. Quantum Theory of Atoms in Molecules Charge-Charge Transfer-Dipolar Polarization Classification of Infrared Intensities.

    PubMed

    Duarte, Leonardo J; Richter, Wagner E; Silva, Arnaldo F; Bruns, Roy E

    2017-10-26

    Fundamental infrared vibrational transition intensities of gas-phase molecules are sensitive probes of changes in electronic structure accompanying small molecular distortions. Models containing charge, charge transfer, and dipolar polarization effects are necessary for a successful classification of the C-H, C-F, and C-Cl stretching and bending intensities. C-H stretching and in-plane bending vibrations involving sp 3 carbon atoms have small equilibrium charge contributions and are accurately modeled by the charge transfer-counterpolarization contribution and its interaction with equilibrium charge movement. Large C-F and C═O stretching intensities have dominant equilibrium charge movement contributions compared to their charge transfer-dipolar polarization ones and are accurately estimated by equilibrium charge and the interaction contribution. The C-F and C-Cl bending modes have charge and charge transfer-dipolar polarization contribution sums that are of similar size but opposite sign to their interaction values resulting in small intensities. Experimental in-plane C-H bends have small average intensities of 12.6 ± 10.4 km mol -1 owing to negligible charge contributions and charge transfer-counterpolarization cancellations, whereas their average out-of-plane experimental intensities are much larger, 65.7 ± 20.0 km mol -1 , as charge transfer is zero and only dipolar polarization takes place. The C-F bending intensities have large charge contributions but very small intensities. Their average experimental out-of-plane intensity of 9.9 ± 12.6 km mol -1 arises from the cancellation of large charge contributions by dipolar polarization contributions. The experimental average in-plane C-F bending intensity, 5.8 ± 7.3 km mol -1 , is also small owing to charge and charge transfer-counterpolarization sums being canceled by their interaction contributions. Models containing only atomic charges and their fluxes are incapable of describing electronic structure changes for simple molecular distortions that are of interest in classifying infrared intensities. One can expect dipolar polarization effects to also be important for larger distortions of chemical interest.

  2. Electron Transfer Dissociation with Supplemental Activation to Differentiate Aspartic and Isoaspartic Residues in Doubly Charged Peptide Cations

    PubMed Central

    Chan, Wai Yi Kelly; Chan, T. W. Dominic; O’Connor, Peter B.

    2011-01-01

    Electron-transfer dissociation (ETD) with supplemental activation of the doubly charged deamidated tryptic digested peptide ions allows differentiation of isoaspartic acid and aspartic acid residues using c + 57 or z• − 57 peaks. The diagnostic peak clearly localizes and characterizes the isoaspartic acid residue. Supplemental activation in ETD of the doubly charged peptide ions involves resonant excitation of the charge reduced precursor radical cations and leads to further dissociation, including extra backbone cleavages and secondary fragmentation. Supplemental activation is essential to obtain a high quality ETD spectrum (especially for doubly charged peptide ions) with sequence information. Unfortunately, the low-resolution of the ion trap mass spectrometer makes detection of the diagnostic peak for the aspartic acid residue difficult due to interference with side-chain loss from arginine and glutamic acid residues. PMID:20304674

  3. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    NASA Astrophysics Data System (ADS)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  4. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou

    2018-06-01

    In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.

  5. Lightning Channel Corona Formation Treated as a Large System of Streamers

    NASA Astrophysics Data System (ADS)

    Carlson, B.; Lehtinen, N. G.; Kochkin, P.

    2017-12-01

    Transfer of charge along a lightning channel leads to strong electric fields that drive such charge outward. This charge flow is nonuniform, breaking up into millimeter-scale discharge structures called streamers. The motion of such streamers can carry charge many meters outward from the channel, but each individual streamer only carries a small amount of charge. Transfer of macroscopic charge outward thus requires a large population of streamers that are expected to interact and exhibit interesting collective behaviors. We attempt to simulate such collective behaviors by approximating the behavior of each streamer but retaining streamer interactions and overall electrodynamic effects and apply this simulation to a few key scenarios. For the case of flow of charge off a lightning channel, we simulate a continually growing population of streamers injected near a charged conducting channel. Further, motivated by lightning initiation, we simulate the growth of a population of streamers from a single seed streamer as might initiate from a hydrometeor. For all cases considered, we characterize the charges and currents involved, compare to observations where possible, and characterize the collective effects including spatial and temporal non-uniformity.

  6. Charge Transfer Inefficiency in Pinned Photodiode CMOS image sensors: Simple Montecarlo modeling and experimental measurement based on a pulsed storage-gate method

    NASA Astrophysics Data System (ADS)

    Pelamatti, Alice; Goiffon, Vincent; Chabane, Aziouz; Magnan, Pierre; Virmontois, Cédric; Saint-Pé, Olivier; de Boisanger, Michel Breart

    2016-11-01

    The charge transfer time represents the bottleneck in terms of temporal resolution in Pinned Photodiode (PPD) CMOS image sensors. This work focuses on the modeling and estimation of this key parameter. A simple numerical model of charge transfer in PPDs is presented. The model is based on a Montecarlo simulation and takes into account both charge diffusion in the PPD and the effect of potential obstacles along the charge transfer path. This work also presents a new experimental approach for the estimation of the charge transfer time, called pulsed Storage Gate (SG) method. This method, which allows reproduction of a ;worst-case; transfer condition, is based on dedicated SG pixel structures and is particularly suitable to compare transfer efficiency performances for different pixel geometries.

  7. Influence of Coherent Tunneling and Incoherent Hopping on the Charge Transfer Mechanism in Linear Donor-Bridge-Acceptor Systems.

    PubMed

    Li, Guangqi; Govind, Niranjan; Ratner, Mark A; Cramer, Christopher J; Gagliardi, Laura

    2015-12-17

    The mechanism of charge transfer has been observed to change from tunneling to hopping with increasing numbers of DNA base pairs in polynucleotides and with the length of molecular wires. The aim of this paper is to investigate this transition by examining the population dynamics using a tight-binding Hamiltonian with model parameters to describe a linear donor-bridge-acceptor (D-B-A) system. The model includes a primary vibration and an electron-vibration coupling at each site. A further coupling of the primary vibration with a secondary phonon bath allows the system to dissipate energy to the environment and reach a steady state. We apply the quantum master equation (QME) approach, based on second-order perturbation theory in a quantum dissipative system, to examine the dynamical processes involved in charge-transfer and follow the population transfer rate at the acceptor, ka, to shed light on the transition from tunneling to hopping. With a small tunneling parameter, V, the on-site population tends to localize and form polarons, and the hopping mechanism dominates the transfer process. With increasing V, the population tends to be delocalized and the tunneling mechanism dominates. The competition between incoherent hopping and coherent tunneling governs the mechanism of charge transfer. By varying V and the total number of sites, we also examine the onset of the transition from tunneling to hopping with increasing length.

  8. Charge transfer efficiency improvement of 4T pixel for high speed CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Jin, Xiangliang; Liu, Weihui; Yang, Hongjiao; Tang, Lizhen; Yang, Jia

    2015-03-01

    The charge transfer efficiency improvement method is proposed by optimizing the electrical potential distribution along the transfer path from the PPD to the FD. In this work, we present a non-uniform doped transfer transistor channel, with the adjustments to the overlap length between the CPIA layer and the transfer gate, and the overlap length between the SEN layer and transfer gate. Theory analysis and TCAD simulation results show that the density of the residual charge reduces from 1e11 /cm3 to 1e9 /cm3, and the transfer time reduces from 500 ns to 143 ns, and the charge transfer efficiency is about 77 e-/ns. This optimizing design effectively improves the charge transfer efficiency of 4T pixel and the performance of 4T high speed CMOS image sensor.

  9. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE PAGES

    Wang, Han; Bang, Junhyeok; Sun, Yiyang; ...

    2016-05-10

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  10. The role of collective motion in the ultrafast charge transfer in van der Waals heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Han; Bang, Junhyeok; Sun, Yiyang

    Here, the success of van der Waals (vdW) heterostructures, made of graphene, metal dichalcogenides, and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that vdW heterostructues can exhibit ultra-fast charge transfer despite the weak binding of the heterostructure. Using time-dependent density functional theory molecular dynamics, we identify a strong dynamic coupling between the vdW layers associated with charge transfer. This dynamic coupling results in rapid nonlinear coherentmore » charge oscillations which constitute a purely electronic phenomenon and are shown to be a general feature of vdW heterostructures provided they have a critical minimum dipole coupling. Application to MoS2/WS2 heterostructure yields good agreement with experiment, indicating near complete charge transfer within a timescale of 100 fs.The success of van der Waals heterostructures made of graphene, metal dichalcogenides and other layered materials, hinges on the understanding of charge transfer across the interface as the foundation for new device concepts and applications. In contrast to conventional heterostructures, where a strong interfacial coupling is essential to charge transfer, recent experimental findings indicate that van der Waals heterostructues can exhibit ultrafast charge transfer despite the weak binding of these heterostructures. Here we find, using time-dependent density functional theory molecular dynamics, that the collective motion of excitons at the interface leads to plasma oscillations associated with optical excitation. By constructing a simple model of the van der Waals heterostructure, we show that there exists an unexpected criticality of the oscillations, yielding rapid charge transfer across the interface. Application to the MoS2/WS2 heterostructure yields good agreement with experiments, indicating near complete charge transfer within a timescale of 100 fs.« less

  11. Global and Local Partitioning of the Charge Transferred in the Parr-Pearson Model.

    PubMed

    Orozco-Valencia, Angel Ulises; Gázquez, José L; Vela, Alberto

    2017-05-25

    Through a simple proposal, the charge transfer obtained from the cornerstone theory of Parr and Pearson is partitioned, for each reactant, in two channels: an electrophilic, through which the species accepts electrons, and the other, a nucleophilic, where the species donates electrons. It is shown that this global model allows us to determine unambiguously the charge-transfer mechanism prevailing in a given reaction. The partitioning is extended to include local effects through the Fukui functions of the reactants. This local model is applied to several emblematic reactions in organic and inorganic chemistry, and we show that besides improving the correlations obtained with the global model it provides valuable information concerning the atoms in the reactants playing the most important roles in the reaction and thus improving our understanding of the reaction under study.

  12. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  13. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.

    1992-01-01

    In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.

  14. Charge migration and charge transfer in molecular systems

    PubMed Central

    Wörner, Hans Jakob; Arrell, Christopher A.; Banerji, Natalie; Cannizzo, Andrea; Chergui, Majed; Das, Akshaya K.; Hamm, Peter; Keller, Ursula; Kraus, Peter M.; Liberatore, Elisa; Lopez-Tarifa, Pablo; Lucchini, Matteo; Meuwly, Markus; Milne, Chris; Moser, Jacques-E.; Rothlisberger, Ursula; Smolentsev, Grigory; Teuscher, Joël; van Bokhoven, Jeroen A.; Wenger, Oliver

    2017-01-01

    The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review. PMID:29333473

  15. Numerical study on electronic and optical properties of organic light emitting diodes.

    PubMed

    Kim, Kwangsik; Hwang, Youngwook; Won, Taeyoung

    2013-08-01

    In this paper, we present a finite element method (FEM) study of space charge effects in organic light emitting diodes. Our model includes a Gaussian density of states to account for the energetic disorder in organic semiconductors and the Fermi-Dirac statistics to account for the charge hopping process between uncorrelated sites. The physical model cover all the key physical processes in OLEDs, namely charge injection, transport and recombination, exciton diffusion, transfer and decay as well as light coupling, and thin-film-optics. The exciton model includes generation, diffusion, and energy transfer as well as annihilation. We assumed that the light emission originates from oscillating and thus embodied as excitons and embedded in a stack of multilayer. The out-coupled emission spectrum has been numerically calculated as a function of viewing angle, polarization, and dipole orientation. We discuss the accumulation of charges at internal interfaces and their signature in the transient response as well as the electric field distribution.

  16. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface.

    PubMed

    Lian, Zichao; Sakamoto, Masanori; Matsunaga, Hironori; Vequizo, Junie Jhon M; Yamakata, Akira; Haruta, Mitsutaka; Kurata, Hiroki; Ota, Wataru; Sato, Tohru; Teranishi, Toshiharu

    2018-06-13

    Localized surface plasmon resonance (LSPR)-induced hot-carrier transfer is a key mechanism for achieving artificial photosynthesis using the whole solar spectrum, even including the infrared (IR) region. In contrast to the explosive development of photocatalysts based on the plasmon-induced hot electron transfer, the hole transfer system is still quite immature regardless of its importance, because the mechanism of plasmon-induced hole transfer has remained unclear. Herein, we elucidate LSPR-induced hot hole transfer in CdS/CuS heterostructured nanocrystals (HNCs) using time-resolved IR (TR-IR) spectroscopy. TR-IR spectroscopy enables the direct observation of carrier in a LSPR-excited CdS/CuS HNC. The spectroscopic results provide insight into the novel hole transfer mechanism, named plasmon-induced transit carrier transfer (PITCT), with high quantum yields (19%) and long-lived charge separations (9.2 μs). As an ultrafast charge recombination is a major drawback of all plasmonic energy conversion systems, we anticipate that PITCT will break the limit of conventional plasmon-induced energy conversion.

  17. The impact of symmetric modes on intramolecular electron transfer: A semi-classical approach

    NASA Astrophysics Data System (ADS)

    Coropceanu, Veaceslav; Boldyrev, Sergei I.; Risko, Chad; Brédas, Jean-Luc

    2006-07-01

    We have generalized the Hush equations developed for the analysis of intervalence charge-transfer bands by including into the model the interaction with symmetric vibrations. Our results indicate that in symmetric class-II systems the maximum of the intervalence charge-transfer band is equal to the reorganization energy λ related to the antisymmetric vibrations as is the case in the conventional Hush model. In contrast, the corresponding transition dipole moment and the activation barrier for thermal electron transfer, in addition to their dependence on λ, also depend on the reorganization energy L related to symmetric vibrational modes. We show that the interaction with symmetric vibrational modes reduces the activation barrier and that the thermal electron-transfer rates derived on the basis of a Hush-type analysis of the optical data are generally underestimated.

  18. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  19. InSb charge coupled infrared imaging device: The 20 element linear imager

    NASA Technical Reports Server (NTRS)

    Thom, R. D.; Koch, T. L.; Parrish, W. J.; Langan, J. D.; Chase, S. C.

    1980-01-01

    The design and fabrication of the 8585 InSb charge coupled infrared imaging device (CCIRID) chip are reported. The InSb material characteristics are described along with mask and process modifications. Test results for the 2- and 20-element CCIRID's are discussed, including gate oxide characteristics, charge transfer efficiency, optical mode of operation, and development of the surface potential diagram.

  20. Spontaneous charged lipid transfer between lipid vesicles.

    PubMed

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  1. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  2. Effect of dynamic disorder on charge transport along a pentacene chain

    NASA Astrophysics Data System (ADS)

    Böhlin, J.; Linares, M.; Stafström, S.

    2011-02-01

    The lattice equation of motion and a numerical solution of the time-dependent Schrödinger equation provide us with a microscopic picture of charge transport in highly ordered molecular crystals. We have chosen the pentacene single crystal as a model system, and we study charge transport as a function of phonon-mode time-dependent fluctuations in the intermolecular electron transfer integral. For comparison, we include similar fluctuations also in the intramolecular potentials. The variance in these energy quantities is closely related to the temperature of the system. The pentacene system is shown to be very sensitive to fluctuation in the intermolecular transfer integral, revealing a transition from adiabatic to nonadiabatic polaron transport for increasing temperatures. The extension of the polaron at temperatures above 200 K is limited by the electron localization length rather than the interplay between the electron transfer integral and the electron-phonon coupling strength.

  3. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, A.; Gosztola, D.; Schiller, T.

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less

  4. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajh, T.; Musumeci, A.; Gosztola, D.

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules thatmore » lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.« less

  5. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals - II. Application to Fe2+ --> Ti4+ charge transfer transitions in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    A molecular orbital description, based on Xα-Scattered wave calculations on a (FeTiO10)14− cluster, is given for Fe2+ → Ti4+ charge transfer transitions in minerals. The calculated energy for the lowest Fe2+ → Ti4+ metal-metal charge transfer transition is 18040 cm−1 in reasonable agreement with energies observed in the optical spectra of Fe-Ti oxides and silicates. As in the case of Fe2+ → Fe3+ charge transfer in mixed-valence iron oxides and silicates, Fe2+ → Ti4+ charge transfer is associated with Fe-Ti bonding across shared polyhedral edges. Such bonding results from the overlap of the Fe(t 2g ) and Ti(t 2g ) 3d orbitals.

  6. Charge transfer transitions in optical spectra of NicMg1-cO oxides

    NASA Astrophysics Data System (ADS)

    Churmanov, V. N.; Sokolov, V. I.; Pustovarov, V. A.; Gruzdev, N. B.; Uimin, M. A.; Byzov, I. V.; Druzhinin, A. V.; Korolyov, A. V.; Kim, G. A.; Zatsepin, A. F.; Kuznetsova, J. A.

    2017-04-01

    Radiative recombination with charge transfer was observed in NicMg1-cO (c = 0.008) oxides over the 8-300 K temperature range. This recombination occurs as a result of strong hybridization of the Ni2+ ion 3d-states and the band states. The charge transfer radiation excitation spectrum shows vibrational LO repeats of two exciton lines having charge transfer energy intervals of about 35 meV. The NiO nanocrystal absorption spectrum shows two weak peaks with energies of 3.510 and 3.543 eV, which are highly dependent on temperature. They are interpreted as charge transfer excitons at the edge of NiO fundamental absorption. The distance between the charge transfer exciton lines in the NicMg1-cO oxide spectra are caused by spin-orbit splitting of the valence band peak that was formed by the p-states of the oxygen ion.

  7. Calculation of rates of exciton dissociation into hot charge-transfer states in model organic photovoltaic interfaces

    NASA Astrophysics Data System (ADS)

    Vázquez, Héctor; Troisi, Alessandro

    2013-11-01

    We investigate the process of exciton dissociation in ordered and disordered model donor/acceptor systems and describe a method to calculate exciton dissociation rates. We consider a one-dimensional system with Frenkel states in the donor material and states where charge transfer has taken place between donor and acceptor. We introduce a Green's function approach to calculate the generation rates of charge-transfer states. For disorder in the Frenkel states we find a clear exponential dependence of charge dissociation rates with exciton-interface distance, with a distance decay constant β that increases linearly with the amount of disorder. Disorder in the parameters that describe (final) charge-transfer states has little effect on the rates. Exciton dissociation invariably leads to partially separated charges. In all cases final states are “hot” charge-transfer states, with electron and hole located far from the interface.

  8. Modeling hole transport in wet and dry DNA.

    PubMed

    Pavanello, Michele; Adamowicz, Ludwik; Volobuyev, Maksym; Mennucci, Benedetta

    2010-04-08

    We present a DFT/classical molecular dynamics model of DNA charge conductivity. The model involves a temperature-driven, hole-hopping charge transfer and includes the time-dependent nonequilibrium interaction of DNA with its molecular environment. We validate our method against a variety of hole transport experiments. The method predicts a significant hole-transfer slowdown of approximately 35% from dry to wet DNA with and without electric field bias. In addition, in agreement with experiments, it also predicts an insulating behavior of (GC)(N) oligomers for 40 < N < 1000, depending on the experimental setup.

  9. Capillary electrophoresis electrospray ionization mass spectrometry interface

    DOEpatents

    Smith, Richard D.; Severs, Joanne C.

    1999-01-01

    The present invention is an interface between a capillary electrophoresis separation capillary end and an electrospray ionization mass spectrometry emitter capillary end, for transporting an anolyte sample from a capillary electrophoresis separation capillary to a electrospray ionization mass spectrometry emitter capillary. The interface of the present invention has: (a) a charge transfer fitting enclosing both of the capillary electrophoresis capillary end and the electrospray ionization mass spectrometry emitter capillary end; (b) a reservoir containing an electrolyte surrounding the charge transfer fitting; and (c) an electrode immersed into the electrolyte, the electrode closing a capillary electrophoresis circuit and providing charge transfer across the charge transfer fitting while avoiding substantial bulk fluid transfer across the charge transfer fitting. Advantages of the present invention have been demonstrated as effective in providing high sensitivity and efficient analyses.

  10. Molecular-Scale Investigation of Heavy Metal Ions at a Charged Langmuir Monolayer

    NASA Astrophysics Data System (ADS)

    Rock, William; Qiao, Baofu; Uysal, Ahmet; Bu, Wei; Lin, Binhua

    Solvent extraction - the surfactant-aided preferential transfer of a species from an aqueous to an organic phase - is an important technique used in heavy and precious metal refining and reprocessing. Solvent extraction requires transfer through an oil/water interface, and interfacial interactions are expected to control transfer kinetics and phase stability, yet these key interactions are poorly understood. Langmuir monolayers with charged headgroups atop concentrated salt solutions containing heavy metal ions act as a model of solvent extraction interfaces; studies of ions at a charged surface are also fundamentally important to many other phenomena including protein solvation, mineral surface chemistry, and electrochemistry. We probe these charged interfaces using a variety of surface-sensitive techniques - vibrational sum frequency generation (VSFG) spectroscopy, x-ray reflectivity (XRR), x-ray fluorescence near total reflection (XFNTR), and grazing incidence diffraction (GID). We integrate experiments with Molecular Dynamics (MD) simulations to uncover the molecular-level interfacial structure. This work is supported by the U.S. DOE, BES, Contract DE-AC02-06CH11357. ChemMatCARS is supported by NSF/CHE-1346572.

  11. Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten

    2018-04-01

    The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.

  12. Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll f-Containing Photosystem I.

    PubMed

    Kaucikas, Marius; Nürnberg, Dennis; Dorlhiac, Gabriel; Rutherford, A William; van Thor, Jasper J

    2017-01-24

    Photosystem I (PSI) from Chroococcidiopsis thermalis PCC 7203 grown under far-red light (FRL; >725 nm) contains both chlorophyll a and a small proportion of chlorophyll f. Here, we investigated excitation energy transfer and charge separation using this FRL-grown form of PSI (FRL-PSI). We compared femtosecond transient visible absorption changes of normal, white-light (WL)-grown PSI (WL-PSI) with those of FRL-PSI using excitation at 670 nm, 700 nm, and (in the case of FRL-PSI) 740 nm. The possibility that chlorophyll f participates in energy transfer or charge separation is discussed on the basis of spectral assignments. With selective pumping of chlorophyll f at 740 nm, we observe a final ∼150 ps decay assigned to trapping by charge separation, and the amplitude of the resulting P700 +• A 1 -• charge-separated state indicates that the yield is directly comparable to that of WL-PSI. The kinetics shows a rapid 2 ps time constant for almost complete transfer to chlorophyll f if chlorophyll a is pumped with a wavelength of 670 nm or 700 nm. Although the physical role of chlorophyll f is best supported as a low-energy radiative trap, the physical location should be close to or potentially within the charge-separating pigments to allow efficient transfer for charge separation on the 150 ps timescale. Target models can be developed that include a branching in the formation of the charge separation for either WL-PSI or FRL-PSI. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Site energies and charge transfer rates near pentacene grain boundaries from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hajime; Tokita, Yuichi

    2015-03-01

    Charge transfer rates near pentacene grain boundaries are derived by calculating the site energies and transfer integrals of 37 pentacene molecules using first-principles calculations. The site energies decrease considerably near the grain boundaries, and electron traps of up to 300 meV and hole barriers of up to 400 meV are generated. The charge transfer rates across the grain boundaries are found to be reduced by three to five orders of magnitude with a grain boundary gap of 4 Å because of the reduction in the transfer integrals. The electron traps and hole barriers also reduce the electron and hole transfer rates by factors of up to 10 and 50, respectively. It is essential to take the site energies into consideration to determine charge transport near the grain boundaries. We show that the complex site energy distributions near the grain boundaries can be represented by an equivalent site energy difference, which is a constant for any charge transfer pass. When equivalent site energy differences are obtained for various grain boundary structures by first-principles calculations, the effects of the grain boundaries on the charge transfer rates are introduced exactly into charge transport simulations, such as the kinetic Monte Carlo method.

  14. Wireless power transfer electric vehicle supply equipment installation and validation tool

    DOEpatents

    Jones, Perry T.; Miller, John M.

    2015-05-19

    A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.

  15. Method of acquiring an image from an optical structure having pixels with dedicated readout circuits

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)

    2006-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.

  16. Charge Transfer and Orbital Level Alignment at Inorganic/Organic Interfaces: The Role of Dielectric Interlayers.

    PubMed

    Hollerer, Michael; Lüftner, Daniel; Hurdax, Philipp; Ules, Thomas; Soubatch, Serguei; Tautz, Frank Stefan; Koller, Georg; Puschnig, Peter; Sterrer, Martin; Ramsey, Michael G

    2017-06-27

    It is becoming accepted that ultrathin dielectric layers on metals are not merely passive decoupling layers, but can actively influence orbital energy level alignment and charge transfer at interfaces. As such, they can be important in applications ranging from catalysis to organic electronics. However, the details at the molecular level are still under debate. In this study, we present a comprehensive analysis of the phenomenon of charge transfer promoted by a dielectric interlayer with a comparative study of pentacene adsorbed on Ag(001) with and without an ultrathin MgO interlayer. Using scanning tunneling microscopy and photoemission tomography supported by density functional theory, we are able to identify the orbitals involved and quantify the degree of charge transfer in both cases. Fractional charge transfer occurs for pentacene adsorbed on Ag(001), while the presence of the ultrathin MgO interlayer promotes integer charge transfer with the lowest unoccupied molecular orbital transforming into a singly occupied and singly unoccupied state separated by a large gap around the Fermi energy. Our experimental approach allows a direct access to the individual factors governing the energy level alignment and charge-transfer processes for molecular adsorbates on inorganic substrates.

  17. Band Alignment and Charge Transfer in Complex Oxide Interfaces

    NASA Astrophysics Data System (ADS)

    Zhong, Zhicheng; Hansmann, Philipp

    2017-01-01

    The synthesis of transition metal heterostructures is currently one of the most vivid fields in the design of novel functional materials. In this paper, we propose a simple scheme to predict band alignment and charge transfer in complex oxide interfaces. For semiconductor heterostructures, band-alignment rules like the well-known Anderson or Schottky-Mott rule are based on comparison of the work function or electron affinity of the bulk components. This scheme breaks down for oxides because of the invalidity of a single work-function approximation as recently shown in [Phys. Rev. B 93, 235116 (2016), 10.1103/PhysRevB.93.235116; Adv. Funct. Mater. 26, 5471 (2016), 10.1002/adfm.201600243]. Here, we propose a new scheme that is built on a continuity condition of valence states originating in the compounds' shared network of oxygen. It allows for the prediction of sign and relative amplitude of the intrinsic charge transfer, taking as input only information about the bulk properties of the components. We support our claims by numerical density functional theory simulations as well as (where available) experimental evidence. Specific applications include (i) controlled doping of SrTiO3 layers with the use of 4 d and 5 d transition metal oxides and (ii) the control of magnetic ordering in manganites through tuned charge transfer.

  18. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  19. Review on charge transfer and chemical activity of TiO2: Mechanism and applications

    NASA Astrophysics Data System (ADS)

    Cai, Yongqing; Feng, Yuan Ping

    2016-12-01

    Charge separation and transfer at the interface between two materials play a significant role in various atomic-scale processes and energy conversion systems. In this review, we present the mechanism and outcome of charge transfer in TiO2, which is extensively explored for photocatalytic applications in the field of environmental science. We list several experimental and computational methods to estimate the amount of charge transfer. The effects of the work function, defects and doping, and employment of external electric field on modulating the charge transfer are presented. The interplay between the band bending and carrier transport across the surface and interface consisting of TiO2 is discussed. We show that the charge transfer can also strongly affect the behavior of deposited nanoparticles on TiO2 through built-in electric field that it creates. This review encompasses several advances of composite materials where TiO2 is combined with two-dimensional materials like graphene, MoS2, phosphorene, etc. The charge transport in the TiO2-organohalide perovskite with respect to the electron-hole separation at the interface is also discussed.

  20. What Controls the Rate of Ultrafast Charge Transfer and Charge Separation Efficiency in Organic Photovoltaic Blends.

    PubMed

    Jakowetz, Andreas C; Böhm, Marcus L; Zhang, Jiangbin; Sadhanala, Aditya; Huettner, Sven; Bakulin, Artem A; Rao, Akshay; Friend, Richard H

    2016-09-14

    In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

  1. Optical properties, excitation energy and primary charge transfer in photosystem II: theory meets experiment.

    PubMed

    Renger, Thomas; Schlodder, Eberhard

    2011-01-01

    In this review we discuss structure-function relationships of the core complex of photosystem II, as uncovered from analysis of optical spectra of the complex and its subunits. Based on descriptions of optical difference spectra including site directed mutagenesis we propose a revision of the multimer model of the symmetrically arranged reaction center pigments, described by an asymmetric exciton Hamiltonian. Evidence is provided for the location of the triplet state, the identity of the primary electron donor, the localization of the cation and the secondary electron transfer pathway in the reaction center. We also discuss the stationary and time-dependent optical properties of the CP43 and CP47 subunits and the excitation energy transfer and trapping-by-charge-transfer kinetics in the core complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Performing the Millikan experiment at the molecular scale: Determination of atomic Millikan-Thomson charges by computationally measuring atomic forces.

    PubMed

    Rogers, T Ryan; Wang, Feng

    2017-10-28

    An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.

  3. Observation of excited state charge transfer with fs/ps-CARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blom, Alex Jason

    2009-01-01

    Excited state charge transfer processes are studied using the fs/ps-CARS probe technique. This probe allows for multiplexed detection of Raman active vibrational modes. Systems studied include Michler's Ketone, Coumarin 120, 4-dimethylamino-4'-nitrostilbene, and several others. The vibrational spectrum of the para di-substituted benzophenone Michler's Ketone in the first excited singlet state is studied for the first time. It is found that there are several vibrational modes indicative of structural changes of the excited molecule. A combined experimental and theoretical approach is used to study the simplest 7-amino-4-methylcoumarin, Coumarin 120. Vibrations observed in FTIR and spontaneous Raman spectra are assigned using densitymore » functional calculations and a continuum solvation model is used to predict how observed modes are affected upon inclusion of a solvent. The low frequency modes of the excited state charge transfer species 4-dimethylamino-4{prime}-nitrostilbene are studied in acetonitrile. Results are compared to previous work on this molecule in the fingerprint region. Finally, several partially completed projects and their implications are discussed. These include the two photon absorption of Coumarin 120, nanoconfinement in cyclodextrin cavities and sensitization of titania nanoparticles.« less

  4. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral oxygen

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.

    2018-02-01

    Excitation and charge transfer in low-energy O+H collisions is studied; it is a problem of importance for modelling stellar spectra and obtaining accurate oxygen abundances in late-type stars including the Sun. The collisions have been studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals (LCAO) model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multichannel Landau-Zener model. The method has been extended to include configurations involving excited states of hydrogen using an estimate for the two-electron transition coupling, but this extension was found to not lead to any remarkably high rates. Rate coefficients are calculated for temperatures in the range 1000-20 000 K, and charge transfer and (de)excitation processes involving the first excited S-states, 4s.5So and 4s.3So, are found to have the highest rates. Data are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/vizbin/qcat?J/A+A/610/A57. The data are also available at http://https://github.com/barklem/public-data

  5. Diffuse charge and Faradaic reactions in porous electrodes

    NASA Astrophysics Data System (ADS)

    Biesheuvel, P. M.; Fu, Yeqing; Bazant, Martin Z.

    2011-06-01

    Porous electrodes instead of flat electrodes are widely used in electrochemical systems to boost storage capacities for ions and electrons, to improve the transport of mass and charge, and to enhance reaction rates. Existing porous electrode theories make a number of simplifying assumptions: (i) The charge-transfer rate is assumed to depend only on the local electrostatic potential difference between the electrode matrix and the pore solution, without considering the structure of the double layer (DL) formed in between; (ii) the charge-transfer rate is generally equated with the salt-transfer rate not only at the nanoscale of the matrix-pore interface, but also at the macroscopic scale of transport through the electrode pores. In this paper, we extend porous electrode theory by including the generalized Frumkin-Butler-Volmer model of Faradaic reaction kinetics, which postulates charge transfer across the molecular Stern layer located in between the electron-conducting matrix phase and the plane of closest approach for the ions in the diffuse part of the DL. This is an elegant and purely local description of the charge-transfer rate, which self-consistently determines the surface charge and does not require consideration of reference electrodes or comparison with a global equilibrium. For the description of the DLs, we consider the two natural limits: (i) the classical Gouy-Chapman-Stern model for thin DLs compared to the macroscopic pore dimensions, e.g., for high-porosity metallic foams (macropores >50 nm) and (ii) a modified Donnan model for strongly overlapping DLs, e.g., for porous activated carbon particles (micropores <2 nm). Our theory is valid for electrolytes where both ions are mobile, and it accounts for voltage and concentration differences not only on the macroscopic scale of the full electrode, but also on the local scale of the DL. The model is simple enough to allow us to derive analytical approximations for the steady-state and early transients. We also present numerical solutions to validate the analysis and to illustrate the evolution of ion densities, pore potential, surface charge, and reaction rates in response to an applied voltage.

  6. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, B.T.; Yates, G.J.

    1992-06-09

    An electronic method for eliminating artifacts in a video camera employing a charge coupled device (CCD) as an image sensor is disclosed. The method comprises the step of initializing the camera prior to normal read out and includes a first dump cycle period for transferring radiation generated charge into the horizontal register while the decaying image on the phosphor being imaged is being integrated in the photosites, and a second dump cycle period, occurring after the phosphor image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers. Image charge is then transferred from the photosites and to the vertical registers and read out in conventional fashion. The inventive method allows the video camera to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers and, and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites. 3 figs.

  7. Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers.

    PubMed

    Ji, Ziheng; Hong, Hao; Zhang, Jin; Zhang, Qi; Huang, Wei; Cao, Ting; Qiao, Ruixi; Liu, Can; Liang, Jing; Jin, Chuanhong; Jiao, Liying; Shi, Kebin; Meng, Sheng; Liu, Kaihui

    2017-12-26

    Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS 2 /WS 2 bilayer with various stacking configurations, by optical two-color ultrafast pump-probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.

  8. Supramolecular networks with electron transfer in two dimensions

    DOEpatents

    Stupp, Samuel I.; Stoddart, J. Fraser; Shveyd, Alexander K.; Tayi, Alok S.; Sue, Chi-Hau; Narayanan, Ashwin

    2016-09-13

    Organic charge-transfer (CT) co-crystals in a crossed stack system are disclosed. The co-crystals exhibit bidirectional charge transfer interactions where one donor molecule shares electrons with two different acceptors, one acceptor face-to-face and the other edge-to-face. The assembly and charge transfer interaction results in a pleochroic material whereby the optical absorption continuously changes depending on the polarization angle of incident light.

  9. Charge transfer polarisation wave and carrier pairing in the high T(sub c) copper oxides

    NASA Technical Reports Server (NTRS)

    Chakraverty, B. K.

    1990-01-01

    The High T(sub c) oxides are highly polarizable materials and are charge transfer insulators. The charge transfer polarization wave formalism is developed in these oxides. The dispersion relationships due to long range dipole-dipole interaction of a charge transfer dipole lattice are obtained in 3-D and 2-D. These are high frequency bosons and their coupling with carriers is weak and antiadiabatic in nature. As a result, the mass renormalization of the carriers is negligible in complete contrast to conventional electron-phonon interaction, that give polarons and bipolarons. Both bound and superconducting pairing is discussed for a model Hamiltonian valid in the antiadiabatic regime, both in 3-D and 2-D. The stability of the charge transfer dipole lattice has interesting consequences that are discussed.

  10. Describing long-range charge-separation processes with subsystem density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Neugebauer, Johannes, E-mail: j.neugebauer@uni-muenster.de; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2014-04-28

    Long-range charge-transfer processes in extended systems are difficult to describe with quantum chemical methods. In particular, cost-effective (non-hybrid) approximations within time-dependent density functional theory (DFT) are not applicable unless special precautions are taken. Here, we show that the efficient subsystem DFT can be employed as a constrained DFT variant to describe the energetics of long-range charge-separation processes. A formal analysis of the energy components in subsystem DFT for such excitation energies is presented, which demonstrates that both the distance dependence and the long-range limit are correctly described. In addition, electronic couplings for these processes as needed for rate constants inmore » Marcus theory can be obtained from this method. It is shown that the electronic structure of charge-separated states constructed by a positively charged subsystem interacting with a negatively charged one is difficult to converge — charge leaking from the negative subsystem to the positive one can occur. This problem is related to the delocalization error in DFT and can be overcome with asymptotically correct exchange–correlation (XC) potentials or XC potentials including a sufficiently large amount of exact exchange. We also outline an approximate way to obtain charge-transfer couplings between locally excited and charge-separated states.« less

  11. Two-phase charge-coupled device

    NASA Technical Reports Server (NTRS)

    Kosonocky, W. F.; Carnes, J. E.

    1973-01-01

    A charge-transfer efficiency of 99.99% per stage was achieved in the fat-zero mode of operation of 64- and 128-stage two-phase charge-coupled shift registers at 1.0-MHz clock frequency. The experimental two-phase charge-coupled shift registers were constructed in the form of polysilicon gates overlapped by aluminum gates. The unidirectional signal flow was accomplished by using n-type substrates with 0.5 to 1.0 ohm-cm resistivity in conjunction with a channel oxide thickness of 1000 A for the polysilicon gates and 3000 A for the aluminum gates. The operation of the tested shift registers with fat zero is in good agreement with the free-charge transfer characteristics expected for the tested structures. The charge-transfer losses observed when operating the experimental shift registers without the fat zero are attributed to fast interface state trapping. The analytical part of the report contains a review backed up by an extensive appendix of the free-charge transfer characteristics of CCD's in terms of thermal diffusion, self-induced drift, and fringing field drift. Also, a model was developed for the charge-transfer losses resulting from charge trapping by fast interface states. The proposed model was verified by the operation of the experimental two-phase charge-coupled shift registers.

  12. Dipole-modified graphene with ultrahigh gas sensibility

    NASA Astrophysics Data System (ADS)

    Jia, Ruokun; Xie, Peng; Feng, Yancong; Chen, Zhuo; Umar, Ahmad; Wang, Yao

    2018-05-01

    This study reports the supramolecular assembly of functional graphene-based materials with ultrahigh gas sensing performances which are induced by charge transfer enhancement. Two typical Donor-π-Accepter (D-π-A) structure molecules 4-aminoquinoline (4AQ, μ = 3.17 Debye) and 4-hydroxyquinoline (4HQ, μ = 1.98 Debye), with different charge transfer enhancing effects, were selected to modify reduce oxide graphene (rGO) via supramolecular assembly. Notably, compared to the 4HQ-rGO, the 4AQ-rGO exhibits more significant increase of gas response (Ra/Rg = 3.79) toward 10 ppm NO2, which is ascribed to the larger dipole moment (μ) of 4AQ and hence the more intensive enhancing effect of charge transfer on the interface of rGO. Meanwhile, 4AQ-rGO sensors also reveal superior comprehensive gas sensing performances, including excellent gas sensing selectivity, linearity, repeatability and stability. It is believed that the present work demonstrates an effective supramolecular approach of modifying rGO with strong dipoles to significantly improve gas sensing properties of graphene-based materials.

  13. Charge Transfer from n-Doped Nanocrystals: Mimicking Intermediate Events in Multielectron Photocatalysis.

    PubMed

    Wang, Junhui; Ding, Tao; Wu, Kaifeng

    2018-06-12

    In multielectron photocatalytic reactions, an absorbed photon triggers charge transfer from the light-harvester to the attached catalyst, leaving behind a charge of the opposite sign in the light-harvester. If this charge is not scavenged before the absorption of the following photons, photoexcitation generates not neutral but charged excitons from which the extraction of charges should become more difficult. This is potentially an efficiency-limiting intermediate event in multielectron photocatalysis. To study the charge dynamics in this event, we doped CdS nanocrystal quantum dots (QDs) with an extra electron and measured hole transfer from n-doped QDs to attached acceptors. We find that the Auger decay of charged excitons lowers the charge separation yield to 68.6% from 98.4% for neutral excitons. In addition, the hole transfer rate in the presence of two electrons (1290 ps) is slower than that in the presence one electron (776 ps), and the recombination rate of charge separated states is about 2 times faster in the former case. This model study provides important insights into possible efficiency-limiting intermediate events involved in photocatalysis.

  14. Artificial Neural Network with Hardware Training and Hardware Refresh

    NASA Technical Reports Server (NTRS)

    Duong, Tuan A. (Inventor)

    2003-01-01

    A neural network circuit is provided having a plurality of circuits capable of charge storage. Also provided is a plurality of circuits each coupled to at least one of the plurality of charge storage circuits and constructed to generate an output in accordance with a neuron transfer function. Each of a plurality of circuits is coupled to one of the plurality of neuron transfer function circuits and constructed to generate a derivative of the output. A weight update circuit updates the charge storage circuits based upon output from the plurality of transfer function circuits and output from the plurality of derivative circuits. In preferred embodiments, separate training and validation networks share the same set of charge storage circuits and may operate concurrently. The validation network has a separate transfer function circuits each being coupled to the charge storage circuits so as to replicate the training network s coupling of the plurality of charge storage to the plurality of transfer function circuits. The plurality of transfer function circuits may be constructed each having a transconductance amplifier providing differential currents combined to provide an output in accordance with a transfer function. The derivative circuits may have a circuit constructed to generate a biased differential currents combined so as to provide the derivative of the transfer function.

  15. Tuning charge transfer in the LaTiO3/RO/LaNiO3 (R = rare-earth) superlattices by the rare-earth oxides interfaces from a first-principles calculation

    NASA Astrophysics Data System (ADS)

    Yao, Fen; Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Zhang, Xiong; Zhang, Wenwen; Meng, Jian; Zhang, Hongjie

    2018-03-01

    We investigate the internal charge transfer at the isopolar interfaces in LaTiO3/RO/LaNiO3 (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu) superlattices by means of density functional theory calculations. The charge transfer from Ti sites to Ni sites in all superlattices is induced by the electronegativity difference between the elements Ti and Ni, and the lanthanide oxides interfaces can modulate the amount of charge transfer. Comparison of the perovskite heterostructures with the different rare-earth interfaces shows that increasing the deviations of bond angles from 180.0° and the oxygen motions near the interfaces enhance charge transfer. The 4f electrons themselves of rare-earth elements have faint influences on charge transfer. In addition, the reasons why our calculated 4f states of Sm and Tm elements disagree with the experimental systems have been provided. It is hoped that all the calculated results could be used to design new functional nanoelectronic devices in perovskite oxides.

  16. Interlayer‐State‐Coupling Dependent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

    PubMed Central

    Zhang, Jin; Hong, Hao; Lian, Chao; Ma, Wei; Xu, Xiaozhi; Zhou, Xu; Fu, Huixia

    2017-01-01

    Light‐induced interlayer ultrafast charge transfer in 2D heterostructures provides a new platform for optoelectronic and photovoltaic applications. The charge separation process is generally hypothesized to be dependent on the interlayer stackings and interactions, however, the quantitative characteristic and detailed mechanism remain elusive. Here, a systematical study on the interlayer charge transfer in model MoS2/WS2 bilayer system with variable stacking configurations by time‐dependent density functional theory methods is demonstrated. The results show that the slight change of interlayer geometry can significantly modulate the charge transfer time from 100 fs to 1 ps scale. Detailed analysis further reveals that the transfer rate in MoS2/WS2 bilayers is governed by the electronic coupling between specific interlayer states, rather than the interlayer distances, and follows a universal dependence on the state‐coupling strength. The results establish the interlayer stacking as an effective freedom to control ultrafast charge transfer dynamics in 2D heterostructures and facilitate their future applications in optoelectronics and light harvesting. PMID:28932669

  17. Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: contact injection versus triboelectrification.

    PubMed

    Xu, Rui; Ye, Shili; Xu, Kunqi; Lei, Le; Hussain, Sabir; Zheng, Zhiyue; Pang, Fei; Xing, Shuya; Liu, Xinmeng; Ji, Wei; Cheng, Zhihai

    2018-08-31

    Understanding the process of charge generation, transfer, and diffusion between two-dimensional (2D) materials and their supporting substrates is very important for potential applications of 2D materials. Compared with the systematic studies of triboelectric charging in a bulk sample, a fundamental understanding of the triboelectrification of the 2D material/insulator system is rather limited. Here, the charge transfer and diffusion of both the SiO 2 surface and MoS 2 /SiO 2 interface through contact electrification and frictional electrification are investigated systematically in situ by scanning Kelvin probe microscopy and dual-harmonic electrostatic force microscopy. Different from the simple static charge transfer between SiO 2 and the PtSi alloy atomic force microscope (AFM) tip, the charge transfer between the tip and the MoS 2 /SiO 2 system is complicated. Triboelectric charges, generated by contact or frictional electrification with the AFM tip, are trapped at the MoS 2 /SiO 2 interface and act as floating gates. The local charge discharge processes can be obtained by monitoring the surface potential. The charge decay time (τ) of the MoS 2 /SiO 2 interface is one (or two) orders of magnitude larger than the decay time τ of the SiO 2 surface. This work facilitates an understanding of the triboelectric and de-electrification of the interface between 2D materials and substrates. In addition to the charge transfer and diffusion, we demonstrate the nanopatterns of surface and interfacial charges, which have great potential for the application of self-assembly of charged nanostructures.

  18. The mechanisms of delayed fluorescence in charge-transfer crystal of tetracyanobenzene-hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Kozankiewicz, B.; Prochorow, J.

    1989-08-01

    Fluorescence, phosphorescence and delayed fluorescence emission characteristics of tetracyanobenzene-hexamethylbenzene (TCNB-HMB) charge-transfer crystal have been studied in the 1.7-340 K temperature range. Delayed fluorescence, originating from heterogeneous triplet-triplet annihilation indicates the presence of mobile charge-transfer triplet excitons at a temperature as low as 1.7 K. However, the behaviour of triplet excitons in TCNB-HMB crystal is strongly controlled by a very efficient trapping process in the whole temperature range investigated. It was found that thermally activated delayed fluorescence, which is a dominating emission of the crystal at elevated temperatures (>60 K), has a different origin (a different initial state) at different temperatures. These observations were analysed and interpreted in terms of a photokinetic model, which is considered to be typical for charge-transfer crystals with high charge-transfer character of triplet excitons.

  19. Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice

    NASA Astrophysics Data System (ADS)

    Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.

    2016-11-01

    We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.

  20. Experimental and theoretical studies of the He(2+)-He system - Differential cross sections for direct, single-, and double-charge-transfer scattering at keV energies

    NASA Technical Reports Server (NTRS)

    Gao, R. S.; Dutta, C. M.; Lane, N. F.; Smith, K. A.; Stebbings, R. F.; Kimura, M.

    1992-01-01

    Measurements and calculations of differential cross sections for direct scattering, single-charge transfer, and double-charge transfer in collisions of 1.5-, 2.0-, 6.0-, and 10.0-keV (He-3)2+ with an He-4 target are reported. The measurements cover laboratory scattering angles below 1.5 deg with an angular resolution of about 0.03 deg. A quantum-mechanical molecular-state representation is employed in the calculations; in the case of single-charge transfer a two-state close-coupling calculation is carried out taking into account electron-translation effects. The theoretical calculations agree well with the experimental results for direct scattering and double-charge transfer. The present calculation identifies the origins of oscillatory structures observed in the differential cross sections.

  1. A statewide teleradiology system reduces radiation exposure and charges in transferred trauma patients.

    PubMed

    Watson, Justin J J; Moren, Alexis; Diggs, Brian; Houser, Ben; Eastes, Lynn; Brand, Dawn; Bilyeu, Pamela; Schreiber, Martin; Kiraly, Laszlo

    2016-05-01

    Trauma transfer patients routinely undergo repeat imaging because of inefficiencies within the radiology system. In 2009, the virtual private network (VPN) telemedicine system was adopted throughout Oregon allowing virtual image transfer between hospitals. The startup cost was a nominal $3,000 per hospital. A retrospective review from 2007 to 2012 included 400 randomly selected adult trauma transfer patients based on a power analysis (200 pre/200 post). The primary outcome evaluated was reduction in repeat computed tomography (CT) scans. Secondary outcomes included cost savings, emergency department (ED) length of stay (LOS), and spared radiation. All data were analyzed using Mann-Whitney U and chi-square tests. P less than .05 indicated significance. Spared radiation was calculated as a weighted average per body region, and savings was calculated using charges obtained from Oregon Health and Science University radiology current procedural terminology codes. Four-hundred patients were included. Injury Severity Score, age, ED and overall LOS, mortality, trauma type, and gender were not statistically different between groups. The percentage of patients with repeat CT scans decreased after VPN implementation: CT abdomen (13.2% vs 2.8%, P < .01) and cervical spine (34.4% vs 18.2%, P < .01). Post-VPN, the total charges saved in 2012 for trauma transfer patients was $333,500, whereas the average radiation dose spared per person was 1.8 mSV. Length of stay in the ED for patients with Injury Severity Score less than 15 transferring to the ICU was decreased (P < .05). Implementation of a statewide teleradiology network resulted in fewer total repeat CT scans, significant savings, decrease in radiation exposure, and decreased LOS in the ED for patients with less complex injuries. The potential for health care savings by widespread adoption of a VPN is significant. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. 33 CFR 156.115 - Person in charge: Limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transfer operations on more than one vessel at a time during transfers between vessels or between two or... (CONTINUED) POLLUTION OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Oil and Hazardous Material Transfer... charge of both a vessel and a facility during transfer operations unless authorized by the COTP. [CGD 75...

  3. 33 CFR 156.115 - Person in charge: Limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transfer operations on more than one vessel at a time during transfers between vessels or between two or... (CONTINUED) POLLUTION OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Oil and Hazardous Material Transfer... charge of both a vessel and a facility during transfer operations unless authorized by the COTP. [CGD 75...

  4. 33 CFR 156.115 - Person in charge: Limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transfer operations on more than one vessel at a time during transfers between vessels or between two or... (CONTINUED) POLLUTION OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Oil and Hazardous Material Transfer... charge of both a vessel and a facility during transfer operations unless authorized by the COTP. [CGD 75...

  5. 33 CFR 156.115 - Person in charge: Limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... transfer operations on more than one vessel at a time during transfers between vessels or between two or... (CONTINUED) POLLUTION OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Oil and Hazardous Material Transfer... charge of both a vessel and a facility during transfer operations unless authorized by the COTP. [CGD 75...

  6. 33 CFR 156.115 - Person in charge: Limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... transfer operations on more than one vessel at a time during transfers between vessels or between two or... (CONTINUED) POLLUTION OIL AND HAZARDOUS MATERIAL TRANSFER OPERATIONS Oil and Hazardous Material Transfer... charge of both a vessel and a facility during transfer operations unless authorized by the COTP. [CGD 75...

  7. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  8. Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Sung; Rolczynski, Brian S.; Xu, Tao

    2015-06-18

    Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast,more » P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.« less

  9. Solution Phase Exciton Diffusion Dynamics of a Charge-Transfer Copolymer PTB7 and a Homopolymer P3HT.

    PubMed

    Cho, Sung; Rolczynski, Brian S; Xu, Tao; Yu, Luping; Chen, Lin X

    2015-06-18

    Using ultrafast polarization-controlled transient absorption (TA) measurements, dynamics of the initial exciton states were investigated on the time scale of tens of femtoseconds to about 80 ps in two different types of conjugated polymers extensively used in active layers of organic photovoltaic devices. These polymers are poly(3-fluorothienothiophenebenzodithiophene) (PTB7) and poly-3-hexylthiophene (P3HT), which are charge-transfer polymers and homopolymers, respectively. In PTB7, the initial excitons with excess vibrational energy display two observable ultrafast time constants, corresponding to coherent exciton diffusion before the vibrational relaxation, and followed by incoherent exciton diffusion processes to a neighboring local state after the vibrational relaxation. In contrast, P3HT shows only one exciton diffusion or conformational motion time constant of 34 ps, even though its exciton decay kinetics are multiexponential. Based on the experimental results, an exciton dynamics mechanism is conceived taking into account the excitation energy and structural dependence in coherent and incoherent exciton diffusion processes, as well as other possible deactivation processes including the formation of the pseudo-charge-transfer and charge separate states, as well as interchain exciton hopping or coherent diffusion.

  10. Investigations on the charge transfer mechanism at donor/acceptor interfaces in the quest for descriptors of organic solar cell performance.

    PubMed

    Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi

    2018-05-07

    Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.

  11. Reduced Charge Transfer Exciton Recombination in Organic Semiconductor Heterojunctions by Molecular Doping

    NASA Astrophysics Data System (ADS)

    Deschler, Felix; da Como, Enrico; Limmer, Thomas; Tautz, Raphael; Godde, Tillmann; Bayer, Manfred; von Hauff, Elizabeth; Yilmaz, Seyfullah; Allard, Sybille; Scherf, Ullrich; Feldmann, Jochen

    2011-09-01

    We investigate the effect of molecular doping on the recombination of electrons and holes localized at conjugated-polymer-fullerene interfaces. We demonstrate that a low concentration of p-type dopant molecules (<4% weight) reduces the interfacial recombination via charge transfer excitons and results in a favored formation of separated carriers. This is observed by the ultrafast quenching of photoluminescence from charge transfer excitons and the increase in photoinduced polaron density by ˜70%. The results are consistent with a reduced formation of emissive charge transfer excitons, induced by state filling of tail states.

  12. Theoretical Investigation of OCN(-) Charge Transfer Complexes in Condensed Phase Media: Spectroscopic Properties in Amorphous Ice

    NASA Technical Reports Server (NTRS)

    Park, Jin-Young; Woon, David E.

    2004-01-01

    Density functional theory (DFT) calculations of cyanate (OCN(-)) charge-transfer complexes were performed to model the "XCN" feature observed in interstellar icy grain mantles. OCN(-) charge-transfer complexes were formed from precursor combinations of HNCO or HOCN with either NH3 or H2O. Three different solvation strategies for realistically modeling the ice matrix environment were explored, including (1) continuum solvation, (2) pure DFT cluster calculations, and (3) an ONIOM DFT/PM3 cluster calculation. The model complexes were evaluated by their ability to reproduce seven spectroscopic measurements associated with XCN: the band origin of the OCN(-) asymmetric stretching mode, shifts in that frequency due to isotopic substitutions of C, N, O, and H, plus two weak features. The continuum solvent field method produced results consistent with some of the experimental data but failed to account for other behavior due to its limited capacity to describe molecular interactions with solvent. DFT cluster calculations successfully reproduced the available spectroscopic measurements very well. In particular, the deuterium shift showed excellent agreement in complexes where OCN(-) was fully solvated. Detailed studies of representative complexes including from two to twelve water molecules allowed the exploration of various possible solvation structures and provided insights into solvation trends. Moreover, complexes arising from cyanic or isocyanic acid in pure water suggested an alternative mechanism for the formation of OCN(-) charge-transfer complexes without the need for a strong base such as NH3 to be present. An extended ONIOM (B3LYP/PM3) cluster calculation was also performed to assess the impact of a more realistic environment on HNCO dissociation in pure water.

  13. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  14. Topological Effects of Charge Transfer in Telomere G-Quadruplex Mechanism on Telomerase Activation and Inhibition

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liang, Shi-Dong

    2013-02-01

    We explore the charge transfer in the telomere G-Quadruplex (TG4) DNA theoretically by the nonequilibrium Green's function method, and reveal the topological effect of the charge transport in TG4 DNA. The consecutive TG4 (CTG4) is semiconducting with 0.2 0.3 eV energy gap. Charges transfer favorably in the CTG4, but are trapped in the nonconsecutive TG4 (NCTG4). The global conductance is inversely proportional to the local conductance for NCTG4. The topological structure transition from NCTG4 to CTG4 induces abruptly 3nA charge current, which provide a microscopic clue to understand the telomerase activated or inhibited by TG4. Our findings reveal the fundamental property of charge transfer in TG4 and its relationship with the topological structure of TG4.

  15. 78 FR 63268 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Transfer Transaction Fees Charged by One Member to Another Member October 17, 2013. Pursuant to Section 19... Facility (the ``FINRA/NYSE TRF'') to transfer transaction fees charged by one member to another member on... agree in advance to transfer a transaction fee charged by one member to another member on over-the...

  16. 33 CFR 155.710 - Qualifications of person in charge.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... available to the PIC on the tankship at all times during the transfer or cargo-tank cleaning; and (iii) Is... Transfer Personnel, Procedures, Equipment, and Records § 155.710 Qualifications of person in charge. (a) On... the vessel, or the person who arranges and hires a person to be in charge either of a transfer of...

  17. Charge transfer in model peptides: obtaining Marcus parameters from molecular simulation.

    PubMed

    Heck, Alexander; Woiczikowski, P Benjamin; Kubař, Tomáš; Giese, Bernd; Elstner, Marcus; Steinbrecher, Thomas B

    2012-02-23

    Charge transfer within and between biomolecules remains a highly active field of biophysics. Due to the complexities of real systems, model compounds are a useful alternative to study the mechanistic fundamentals of charge transfer. In recent years, such model experiments have been underpinned by molecular simulation methods as well. In this work, we study electron hole transfer in helical model peptides by means of molecular dynamics simulations. A theoretical framework to extract Marcus parameters of charge transfer from simulations is presented. We find that the peptides form stable helical structures with sequence dependent small deviations from ideal PPII helices. We identify direct exposure of charged side chains to solvent as a cause of high reorganization energies, significantly larger than typical for electron transfer in proteins. This, together with small direct couplings, makes long-range superexchange electron transport in this system very slow. In good agreement with experiment, direct transfer between the terminal amino acid side chains can be dicounted in favor of a two-step hopping process if appropriate bridging groups exist. © 2012 American Chemical Society

  18. Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.

    2018-05-01

    Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90

  19. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  20. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  1. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, Gregory C.; Barinaga, Charles J.; Koppenaal, David W.

    1998-01-01

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer.

  2. Method for reduction of selected ion intensities in confined ion beams

    DOEpatents

    Eiden, G.C.; Barinaga, C.J.; Koppenaal, D.W.

    1998-06-16

    A method for producing an ion beam having an increased proportion of analyte ions compared to carrier gas ions is disclosed. Specifically, the method has the step of addition of a charge transfer gas to the carrier analyte combination that accepts charge from the carrier gas ions yet minimally accepts charge from the analyte ions thereby selectively neutralizing the carrier gas ions. Also disclosed is the method as employed in various analytical instruments including an inductively coupled plasma mass spectrometer. 7 figs.

  3. Charge transfer induced by MoO3 at boron subphthalocyanine chloride/α-sexithiophene heterojunction interface

    NASA Astrophysics Data System (ADS)

    Foggiatto, Alexandre L.; Sakurai, Takeaki

    2018-03-01

    The energy-level alignment of boron subphthalocyanine chloride (SubPc)/α-sexithiophene (6T) grown on MoO3 was investigated using ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS). We demonstrated that the p-doping effect generated by the MoO3 layer can induce charge transfer at the organic-organic heterojunction interface. After the deposition of 6T on MoO3, the fermi level becomes pinned close to the 6T highest occupied molecular orbital (HOMO) level and when SubPc is deposited, owing to its tail states, charge transfer occurs in order to achieve thermodynamic equilibrium. We also demonstrated that the charge transfer can be reduced by annealing the film. We suggested that the reduction of the misalignment on the film induces a reduction in the density of gap states, which controls the charge transfer.

  4. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changwon; Atalla, Viktor; Smith, Sean

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  5. Interfacial charge transfer absorption: Application to metal molecule assemblies

    NASA Astrophysics Data System (ADS)

    Creutz, Carol; Brunschwig, Bruce S.; Sutin, Norman

    2006-05-01

    Optically induced charge transfer between adsorbed molecules and a metal electrode was predicted by Hush to lead to new electronic absorption features, but has been only rarely observed experimentally. Interfacial charge transfer absorption (IFCTA) provides information concerning the barriers to charge transfer between molecules and the metal/semiconductor and the magnitude of the electronic coupling and could thus provide a powerful tool for understanding interfacial charge-transfer kinetics. Here, we utilize a previously published model [C. Creutz, B.S. Brunschwig, N. Sutin, J. Phys. Chem. B 109 (2005) 10251] to predict IFCTA spectra of metal-molecule assemblies and compare the literature observations to these predictions. We conclude that, in general, the electronic coupling between molecular adsorbates and the metal levels is so small that IFCTA is not detectable. However, few experiments designed to detect IFCTA have been done. We suggest approaches to optimizing the conditions for observing the process.

  6. Understanding the Charge Transfer at the Interface of Electron Donors and Acceptors: TTF–TCNQ as an Example

    DOE PAGES

    Park, Changwon; Atalla, Viktor; Smith, Sean; ...

    2017-06-16

    Charge transfer between an electron donor and an electron acceptor is widely accepted as being independent of their relative configurations if the interaction between them is weak; however, the limit of this concept for an interacting system has not yet been well established. Our study of prototypical electron donor–acceptor molecules, tetrathiafulvalene–tetracyanoquinodimethane, using density functional theory based on an advanced functional, clearly demonstrates that for interacting molecules, their configurational arrangement is as important as their individual electronic properties in the asymptotic limit to determine the charge transfer direction. For the first time, we demonstrate that by changing their relative orientation, onemore » can reverse the charge transfer direction of the pair, causing the molecules to exchange roles as donor and acceptor. In conclusion, our theory has important implications for understanding the interfacial charge-transfer mechanism of hybrid systems and related phenomena.« less

  7. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    NASA Astrophysics Data System (ADS)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  8. Wireless Power Transfer

    ScienceCinema

    None

    2018-01-16

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  9. Wireless Power Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forgetmore » to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.« less

  10. Proton transfer complexes based on some π-acceptors having acidic protons with 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one donor: Synthesis and spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-05-01

    Charge transfer complexes based on 3-amino-6-[2-(2-thienyl)vinyl]-1,2,4-triazin-5(4 H)-one (ArNH 2) organic basic donor and pi-acceptors having acidic protons such as picric acid (PiA), hydroquinone (Q(OH) 2) and 3,5-dinitrobenzene (DNB) have been synthesized and spectroscopically studied. The sbnd NH3+ ammonium ion was formed under the acid-base theory through proton transfer from an acidic to basic centers in all charge transfer complexes resulted. The values of formation constant ( KCT) and molar extinction coefficient ( ɛCT) which were estimated from the spectrophotometric studies have a dramatic effect for the charge transfer complexes with differentiation of pi-acceptors. For further studies the vibrational spectroscopy of the [( ArNH3+)(PiA -)] (1), [( ArNH3+)(Q (OH)2-)] (2) and [( ArNH3+)(DNB -)] (3) of (1:1) charge transfer complexes of (donor: acceptor) were characterized by elemental analysis, infrared spectra, Raman spectra, 1H and 13CNMR spectra. The experimental data of elemental analyses of the charge transfer complexes (1), (2) and (3) were in agreement with calculated data. The IR and Raman spectra of (1), (2) and (3) are indicated to the presence of bands around 3100 and 1600 cm -1 distinguish to sbnd NH3+. The thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about thermal stability behavior of the synthesized charge transfer complexes. The morphological features of start materials and charge transfer complexes were investigated using scanning electron microscopy (SEM) and optical microscopy.

  11. Charge transfer complex between 2,3-diaminopyridine with chloranilic acid. Synthesis, characterization and DFT, TD-DFT computational studies

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2018-05-01

    New charge transfer complex (CTC) between the electron donor 2,3-diaminopyridine (DAP) with the electron acceptor chloranilic (CLA) acid has been synthesized and characterized experimentally and theoretically using a variety of physicochemical techniques. The experimental work included the use of elemental analysis, UV-vis, IR and 1H NMR studies to characterize the complex. Electronic spectra have been carried out in different hydrogen bonded solvents, methanol (MeOH), acetonitrile (AN) and 1:1 mixture from AN-MeOH. The molecular composition of the complex was identified to be 1:1 from Jobs and molar ratio methods. The stability constant was determined using minimum-maximum absorbances method where it recorded high values confirming the high stability of the formed complex. The solid complex was prepared and characterized by elemental analysis that confirmed its formation in 1:1 stoichiometric ratio. Both IR and NMR studies asserted the existence of proton and charge transfers in the formed complex. For supporting the experimental results, DFT computations were carried out using B3LYP/6-31G(d,p) method to compute the optimized structures of the reactants and complex, their geometrical parameters, reactivity parameters, molecular electrostatic potential map and frontier molecular orbitals. The analysis of DFT results strongly confirmed the high stability of the formed complex based on existing charge transfer beside proton transfer hydrogen bonding concordant with experimental results. The origin of electronic spectra was analyzed using TD-DFT method where the observed λmax are strongly consisted with the computed ones. TD-DFT showed the contributed states for various electronic transitions.

  12. NiO: correlated band structure of a charge-transfer insulator.

    PubMed

    Kunes, J; Anisimov, V I; Skornyakov, S L; Lukoyanov, A V; Vollhardt, D

    2007-10-12

    The band structure of the prototypical charge-transfer insulator NiO is computed by using a combination of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.

  13. Double ionization of helium by ion impact: second Born order treatment at the fully differential level

    NASA Astrophysics Data System (ADS)

    López, S. D.; Otranto, S.; Garibotti, C. R.

    2015-01-01

    In this work, a theoretical study of the double ionization of He by ion impact at the fully differential level is presented. Emphasis is made in the role played by the projectile in the double emission process depending on its charge and the amount of momentum transferred to the target. A Born-CDW model including a second-order term in the projectile charge is introduced and evaluated within an on-shell treatment. We find that emission geometries for which the second-order term dominates lead to asymmetric structures around the momentum transfer direction, a typical characteristic of higher order transitions.

  14. Multiconfiguration Pair-Density Functional Theory Is as Accurate as CASPT2 for Electronic Excitation.

    PubMed

    Hoyer, Chad E; Ghosh, Soumen; Truhlar, Donald G; Gagliardi, Laura

    2016-02-04

    A correct description of electronically excited states is critical to the interpretation of visible-ultraviolet spectra, photochemical reactions, and excited-state charge-transfer processes in chemical systems. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory and a new kind of density functional called an on-top density functional. Here, we show that MC-PDFT with a first-generation on-top density functional performs as well as CASPT2 for an organic chemistry database including valence, Rydberg, and charge-transfer excitations. The results are very encouraging for practical applications.

  15. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  16. Photoinduced electron transfer in a molecular dyad by nanosecond pump-pump-probe spectroscopy.

    PubMed

    Ha-Thi, M-H; Pham, V-T; Pino, T; Maslova, V; Quaranta, A; Lefumeux, C; Leibl, W; Aukauloo, A

    2018-06-01

    The design of robust and inexpensive molecular photocatalysts for the conversion of abundant stable molecules like H2O and CO2 into an energetic carrier is one of the major fundamental questions for scientists nowadays. The outstanding challenge is to couple single photoinduced charge separation events with the sequential accumulation of redox equivalents at the catalytic unit for performing multielectronic catalytic reactions. Herein, double excitation by nanosecond pump-pump-probe experiments was used to interrogate the photoinduced charge transfer and charge accumulation on a molecular dyad composed of a porphyrin chromophore and a ruthenium-based catalyst in the presence of a reversible electron acceptor. An accumulative charge transfer state is unattainable because of rapid reverse electron transfer to the photosensitizer upon the second excitation and the low driving force of the forward photodriven electron transfer reaction. Such a method allows the fundamental understanding of the relaxation mechanism after two sequential photon absorptions, deciphering the undesired electron transfer reactions that limit the charge accumulation efficiency. This study is a step toward the improvement of synthetic strategies of molecular photocatalysts for light-induced charge accumulation and more generally, for solar energy conversion.

  17. Efficient wireless power charging of electric vehicle by modifying the magnetic characteristics of the medium

    NASA Astrophysics Data System (ADS)

    Mahmud, Mohammad Hazzaz

    There is a developing enthusiasm for electric vehicle (EV) innovations as a result of their lessened fuel utilization and greenhouse emission especially through wireless power transfer (WPT) due to the convenience and continuous charging. Numerous research initiatives target on wireless power transfer (WPT) system in the attempt to improve the transportation for last few decades. But several problems like less efficiency, high frequency, long distance energy transfer etc. were always been occupied by the wireless power transfer system. Two ideas have been developed in this research to resolve the two main problems of WPT for electric vehicles which are low efficiency due to large distance between the two coils and slow charging time. As the first phase of study, a proper model, including the coils and cores were required. The selected model was a finite element (FE) modeling. Another part of this study was to create a modified cement that will act as a semi-conductive material for covering the transmitting antenna area. A high frequency wide band gap switch will be used for transferring high amount of power in a very short time. More over this research also proves that, if cores could be added with the transmitter coil and receiver coil then the output efficiency dramatically increased comparing with without core model of transmitter and receiver. The wireless charging is not restricted to parking lot, since it's planned to be embedded into parking space concrete or roadway concrete or asphalt. Therefore, it can also be installed at junctions (behind red lights), stop signs or any spot that the vehicle might stop for several moments. This technology will become more feasible, if the charging time decreases. Therefore, a new model of for wireless power transfer has been proposed in this study which has shown significant improvement. Another motive of this study was to improve the conductivity and permeability in such a way that the medium that is on the top of the transmitting antenna can transfer the power efficiently to the receiving antenna. The best efficiency of 83% was achieved by using this model and the medium.

  18. Method for eliminating artifacts in CCD imagers

    DOEpatents

    Turko, Bojan T.; Yates, George J.

    1992-01-01

    An electronic method for eliminating artifacts in a video camera (10) employing a charge coupled device (CCD) (12) as an image sensor. The method comprises the step of initializing the camera (10) prior to normal read out and includes a first dump cycle period (76) for transferring radiation generated charge into the horizontal register (28) while the decaying image on the phosphor (39) being imaged is being integrated in the photosites, and a second dump cycle period (78), occurring after the phosphor (39) image has decayed, for rapidly dumping unwanted smear charge which has been generated in the vertical registers (32). Image charge is then transferred from the photosites (36) and (38) to the vertical registers (32) and read out in conventional fashion. The inventive method allows the video camera (10) to be used in environments having high ionizing radiation content, and to capture images of events of very short duration and occurring either within or outside the normal visual wavelength spectrum. Resultant images are free from ghost, smear and smear phenomena caused by insufficient opacity of the registers (28) and (32), and are also free from random damage caused by ionization charges which exceed the charge limit capacity of the photosites (36) and (37).

  19. Modeling the impact of preflushing on CTE in proton irradiated CCD-based detectors

    NASA Astrophysics Data System (ADS)

    Philbrick, R. H.

    2002-04-01

    A software model is described that performs a "real world" simulation of the operation of several types of charge-coupled device (CCD)-based detectors in order to accurately predict the impact that high-energy proton radiation has on image distortion and modulation transfer function (MTF). The model was written primarily to predict the effectiveness of vertical preflushing on the custom full frame CCD-based detectors intended for use on the proposed Kepler Discovery mission, but it is capable of simulating many other types of CCD detectors and operating modes as well. The model keeps track of the occupancy of all phosphorous-silicon (P-V), divacancy (V-V) and oxygen-silicon (O-V) defect centers under every CCD electrode over the entire detector area. The integrated image is read out by simulating every electrode-to-electrode charge transfer in both the vertical and horizontal CCD registers. A signal level dependency on the capture and emission of signal is included and the current state of each electrode (e.g., barrier or storage) is considered when distributing integrated and emitted signal. Options for performing preflushing, preflashing, and including mini-channels are available on both the vertical and horizontal CCD registers. In addition, dark signal generation and image transfer smear can be selectively enabled or disabled. A comparison of the charge transfer efficiency (CTE) data measured on the Hubble space telescope imaging spectrometer (STIS) CCD with the CTE extracted from model simulations of the STIS CCD show good agreement.

  20. Charge Transfer in Collisions of S^4+ with H.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  1. A group electronegativity equalization scheme including external potential effects.

    PubMed

    Leyssens, Tom; Geerlings, Paul; Peeters, Daniel

    2006-07-20

    By calculating the electron affinity and ionization energy of different functional groups, CCSD electronegativity values are obtained, which implicitly account for the effect of the molecular environment. This latter is approximated using a chemically justified point charge model. On the basis of Sanderson's electronegativity equalization principle, this approach is shown to lead to reliable "group in molecule" electronegativities. Using a slight adjustment of the modeled environment and first-order principles, an electronegativity equalization scheme is obtained, which implicitly accounts for the major part of the external potential effect. This scheme can be applied in a predictive manner to estimate the charge transfer between two functional groups, without having to rely on cumbersome calibrations. A very satisfactory correlation is obtained between these charge transfers and those obtained from an ab initio calculation of the entire molecule.

  2. Proton transfer to charged platinum electrodes. A molecular dynamics trajectory study.

    PubMed

    Wilhelm, Florian; Schmickler, Wolfgang; Spohr, Eckhard

    2010-05-05

    A recently developed empirical valence bond (EVB) model for proton transfer on Pt(111) electrodes (Wilhelm et al 2008 J. Phys. Chem. C 112 10814) has been applied in molecular dynamics (MD) simulations of a water film in contact with a charged Pt surface. A total of seven negative surface charge densities σ between -7.5 and -18.9 µC cm(-2) were investigated. For each value of σ, between 30 and 84 initial conditions of a solvated proton within a water slab were sampled, and the trajectories were integrated until discharge of a proton occurred on the charged surfaces. We have calculated the mean rates for discharge and for adsorption of solvated protons within the adsorbed water layer in contact with the metal electrode as a function of surface charge density. For the less negative values of σ we observe a Tafel-like exponential increase of discharge rate with decreasing σ. At the more negative values this exponential increase levels off and the discharge process is apparently transport limited. Mechanistically, the Tafel regime corresponds to a stepwise proton transfer: first, a proton is transferred from the bulk into the contact water layer, which is followed by transfer of a proton to the charged surface and concomitant discharge. At the more negative surface charge densities the proton transfer into the contact water layer and the transfer of another proton to the surface and its discharge occur almost simultaneously.

  3. Charge transport in electrically doped amorphous organic semiconductors.

    PubMed

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  5. Voltage and frequency dependence of prestin-associated charge transfer

    PubMed Central

    Sun, Sean X.; Farrell, Brenda; Chana, Matthew S.; Oster, George; Brownell, William E.; Spector, Alexander A.

    2009-01-01

    Membrane protein prestin is a critical component of the motor complex that generates forces and dimensional changes in cells in response to changes in the cell membrane potential. In its native cochlear outer hair cell, prestin is crucial to the amplification and frequency selectivity of the mammalian ear up to frequencies of tens of kHz. Other cells transfected with prestin acquire voltage-dependent properties similar to those of the native cell. The protein performance is critically dependent on chloride ions, and intrinsic protein charges also play a role. We propose an electro-diffusion model to reveal the frequency and voltage dependence of electric charge transfer by prestin. The movement of the combined charge (i.e., anion and protein charges) across the membrane is described with a Fokker-Planck equation coupled to a kinetic equation that describes the binding of chloride ions to prestin. We found a voltage-and frequency-dependent phase shift between the transferred charge and the applied electric field that determines capacitive and resistive components of the transferred charge. The phase shift monotonically decreases from zero to -90 degree as a function of frequency. The capacitive component as a function of voltage is bell-shaped, and decreases with frequency. The resistive component is bell-shaped for both voltage and frequency. The capacitive and resistive components are similar to experimental measurements of charge transfer at high frequencies. The revealed nature of the transferred charge can help reconcile the high-frequency electrical and mechanical observations associated with prestin, and it is important for further analysis of the structure and function of this protein. PMID:19490917

  6. Molecular Structures and Momentum Transfer Cross Sections: The Influence of the Analyte Charge Distribution.

    PubMed

    Young, Meggie N; Bleiholder, Christian

    2017-04-01

    Structure elucidation by ion mobility spectrometry-mass spectrometry methods is based on the comparison of an experimentally measured momentum transfer cross-section to cross-sections calculated for model structures. Thus, it is imperative that the calculated cross-section must be accurate. However, it is not fully understood how important it is to accurately model the charge distribution of an analyte ion when calculating momentum transfer cross-sections. Here, we calculate and compare momentum transfer cross-sections for carbon clusters that differ in mass, charge state, and mode of charge distribution, and vary temperature and polarizability of the buffer gas. Our data indicate that the detailed distribution of the ion charge density is intimately linked to the contribution of glancing collisions to the momentum transfer cross-section. The data suggest that analyte ions with molecular mass ~3 kDa or momentum transfer cross-section 400-500 Å 2 would be significantly influenced by the charge distribution in nitrogen buffer gas. Our data further suggest that accurate structure elucidation on the basis of IMS-MS data measured in nitrogen buffer gas must account for the molecular charge distribution even for systems as large as C 960 (~12 kDa) when localized charges are present and/or measurements are conducted under cryogenic temperatures. Finally, our data underscore that accurate structure elucidation is unlikely if ion mobility data recorded in one buffer gas is converted into other buffer gases when electronic properties of the buffer gases differ. Graphical Abstract ᅟ.

  7. Experimental exploration of the Mulliken-Hush relationship for intramolecular electron transfer reactions.

    PubMed

    Mukherjee, Tamal; Ito, Naoki; Gould, Ian R

    2011-03-17

    The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.

  8. Overhead Projector Demonstrations.

    ERIC Educational Resources Information Center

    Kolb, Doris, Ed.

    1989-01-01

    Included are demonstrations using the overhead projector to show change in optical rotation with wavelength and aromatic pi cloud availability, and formation of colored charge-transfer complexes. Instructional techniques unique to these topics are discussed. (CW)

  9. Photoinduced charge-transfer electronic excitation of tetracyanoethylene/tetramethylethylene complex in dichloromethane

    NASA Astrophysics Data System (ADS)

    Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan

    2017-07-01

    Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.

  10. Charge Transfer and Catalysis at the Metal Support Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Lawrence Robert

    Kinetic, electronic, and spectroscopic characterization of model Pt–support systems are used to demonstrate the relationship between charge transfer and catalytic activity and selectivity. The results show that charge flow controls the activity and selectivity of supported metal catalysts. This dissertation builds on extensive existing knowledge of metal–support interactions in heterogeneous catalysis. The results show the prominent role of charge transfer at catalytic interfaces to determine catalytic activity and selectivity. Further, this research demonstrates the possibility of selectively driving catalytic chemistry by controlling charge flow and presents solid-state devices and doped supports as novel methods for obtaining electronic control over catalyticmore » reaction kinetics.« less

  11. Surfactant-enhanced singlet energy transfer from the charge-transfer excited state of tris(2,2-bipyridine) ruthenium(II)

    NASA Astrophysics Data System (ADS)

    Mandal, Krishnagopal; Demas, J. N.

    1981-12-01

    Very efficient (45-75%) sodium lauryl sulfate (NaLS) enhanced singlet enengy transfer has been demonstrated from the spin-orbit charge-transfer excited state of [Ru(bpy) 3] 2+ (bpy = 2,2'-bipyridine) to the xxx violet, oxazine 1, and rhodamine 101 at concentrations of 10 -5 M, Energy transfer occurs in xxx.

  12. Rational construction of multiple interfaces in ternary heterostructure for efficient spatial separation and transfer of photogenerated carriers in the application of photocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Shi, Jian-Wen; Ma, Dandan; Zou, Yajun; Fan, Zhaoyang; Shi, Jinwen; Cheng, Linhao; Ji, Xin; Niu, Chunming

    2018-03-01

    The design of efficient and stable photocatalyst plays a critical role in the photocatalytic hydrogen evolution from water splitting. Herein, we develop a novel ZnS/CdS/ZnO ternary heterostructure by the in-situ sulfuration of CdS/ZnO, which includes four contact interfaces: CdS-ZnS interface, ZnS-ZnO interface, CdS-ZnO interface and ZnS-CdS-ZnO ternary interface, forming three charge carrier-transfer modes (type-I, type-II and direct Z-scheme) through five carrier-transfer pathways. As a result, the separation and transfer of photoexcited electron-hole pairs are promoted significantly, resulting in a high hydrogen evolution rate of 44.70 mmol h-1 g-1, which is 2, 3.7 and 8 times higher than those of binary heterostructures, CdS/ZnO, CdS/ZnS and ZnS/ZnO, respectively, and 26.5, 280 and 298 times higher than those of single CdS, ZnO and ZnS, respectively. As a counterpart ternary heterostructure, CdS/ZnS/ZnO contains only two interfaces: CdS-ZnS interface and ZnS-ZnO interface, which form two charge carrier-transfer modes (type-I and type-II) through two carrier-transfer pathways, leading to its much lower hydrogen evolution rate (27.25 mmol h-1 g-1) than ZnS/CdS/ZnO ternary heterostructure. This work is relevant for understanding the charge-transfer pathways between multi-interfaces in multicomponent heterojunctions.

  13. Laboratory Studies of Thermal Energy Charge Transfer of Silicon and Iron Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    1997-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department is dedicated to the study of atomic processes in low temperature plasmas. Our current program is directed to the study of charge transfer of multiply charged ions and neutrals that are of importance to astrophysics at energies less than 1 eV (about 10(exp 4) K). Specifically, we measure the charge transfer rate coefficient of ions such as N(2+), Si(3+), Si(3+), with helium and Fe(2+) with molecular and atomic hydrogen. All these ions are found in a variety of astrophysical plasmas. Their electron transfer reactions with neutral atoms can affect the ionization equilibrium of the plasma.

  14. Molecular orbital (SCF-X-α-SW) theory of Fe2+-Mn3+, Fe3+-Mn2+, and Fe3+-Mn3+ charge transfer and magnetic exchange in oxides and silicates

    USGS Publications Warehouse

    Sherman, David M.

    1990-01-01

    Metal-metal charge-transfer and magnetic exchange interactions have important effects on the optical spectra, crystal chemistry, and physics of minerals. Previous molecular orbital calculations have provided insight on the nature of Fe2+-Fe3+ and Fe2+-Ti4+ charge-transfer transitions in oxides and silicates. In this work, spin-unrestricted molecular orbital calculations on (FeMnO10) clusters are used to study the nature of magnetic exchange and electron delocalization (charge transfer) associated with Fe3+-Mn2+, Fe3+-Mn3+, and Fe2+-Mn3+ interactions in oxides and silicates. 

  15. Improving nanoparticle dispersion and charge transfer in cadmium telluride tetrapod and conjugated polymer blends.

    PubMed

    Monson, Todd C; Hollars, Christopher W; Orme, Christine A; Huser, Thomas

    2011-04-01

    The dispersion of CdTe tetrapods in a conducting polymer and the resulting charge transfer is studied using a combination of confocal fluorescence microscopy and atomic force microscopy (AFM). The results of this work show that both the tetrapod dispersion and charge transfer between the CdTe and conducting polymer (P3HT) are greatly enhanced by exchanging the ligands on the surface of the CdTe and by choosing proper solvent mixtures. The ability to experimentally probe the relationship between particle dispersion and charge transfer through the combination of AFM and fluorescence microscopy provides another avenue to assess the performance of polymer/semiconductor nanoparticle composites. © 2011 American Chemical Society

  16. Spectral resolution of states relevant to photoinduced charge transfer in modified pentacene/ZnO field-effect transistors

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Mannebach, Ehren M.; Bindl, Dominick J.; Arnold, Michael S.; Evans, Paul G.

    2011-11-01

    Pentacene field-effect transistors incorporating ZnO quantum dots can be used as a sensitive probe of the optical properties of a buried donor-acceptor interface. Photoinduced charge transfer between pentacene and ZnO in these devices varies with incident photon energy and reveals which energies will contribute most to charge transfer in other structures. A subsequent slow return to the dark state following the end of illumination arises from near-interface traps. Charge transfer has a sharp onset at 1.7 eV and peaks at 1.82 and 2.1 eV due to transitions associated with excitons, features absent in pentacene FETs without ZnO.

  17. Investigation of ground state charge transfer complex between paracetamol and p-chloranil through DFT and UV-visible studies

    NASA Astrophysics Data System (ADS)

    Shukla, Madhulata; Srivastava, Nitin; Saha, Satyen

    2012-08-01

    The present report deals with the theoretical investigation on ground state structure and charge transfer (CT) transitions in paracetamol (PA)/p-chloranil (CA) complex using Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) method. It is found that Cdbnd O bond length of p-chloranil increases on complexation with paracetamol along with considerable amount of charge transfer from PA to CA. TD-DFT calculations have been performed to analyse the observed UV-visible spectrum of PA-CA charge transferred complex. Interestingly, in addition to expected CT transition, a weak symmetry relieved π-π* transition in the chloranil is also observed.

  18. Charge transfer in iridate-manganite superlattices

    DOE PAGES

    Okamoto, Satoshi; Nichols, John; Sohn, Changhee; ...

    2017-03-03

    Charge transfer in superlattices consisting of SrIrOmore » $$_3$$ and SrMnO$$_3$$ is investigated using density functional theory. Despite the nearly identical work function and non-polar interfaces between SrIrO$$_3$$ and SrMnO$$_3$$, rather large charge transfer was experimentally reported between them. Our results provide a qualitative understanding to such experimental reports. We further develop a microscopic model that captures the mechanism behind this phenomenon. This leads to unique strain dependence of such charge transfer in iridate-manganite superlattices. The predicted behavior is consistently verified by experiment. Lastly, our work thus demonstrates a new route to control electronic states in non-polar oxide heterostructures.« less

  19. How can we make stable linear monoatomic chains? Gold-cesium binary subnanowires as an example of a charge-transfer-driven approach to alloying.

    PubMed

    Choi, Young Cheol; Lee, Han Myoung; Kim, Woo Youn; Kwon, S K; Nautiyal, Tashi; Cheng, Da-Yong; Vishwanathan, K; Kim, Kwang S

    2007-02-16

    On the basis of first-principles calculations of clusters and one dimensional infinitely long subnanowires of the binary systems, we find that alkali-noble metal alloy wires show better linearity and stability than either pure alkali metal or noble metal wires. The enhanced alternating charge buildup on atoms by charge transfer helps the atoms line up straight. The cesium doped gold wires showing significant charge transfer from cesium to gold can be stabilized as linear or circular monoatomic chains.

  20. Inductive High Power Transfer Technologies for Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Madzharov, Nikolay D.; Tonchev, Anton T.

    2014-03-01

    Problems associated with "how to charge the battery pack of the electric vehicle" become more important every passing day. Most logical solution currently is the non-contact method of charge, possessing a number of advantages over standard contact methods for charging. This article focuses on methods for Inductive high power contact-less transfer of energy at relatively small distances, their advantages and disadvantages. Described is a developed Inductive Power Transfer (IPT) system for fast charging of electric vehicles with nominal power of 30 kW over 7 to 9 cm air gap.

  1. Charge-pump voltage converter

    DOEpatents

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  2. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering.

    PubMed

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M; Turban, David H P; Hine, Nicholas D M; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C; Musser, Andrew J

    2016-12-07

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

  3. Tuning the role of charge-transfer states in intramolecular singlet exciton fission through side-group engineering

    PubMed Central

    Lukman, Steven; Chen, Kai; Hodgkiss, Justin M.; Turban, David H. P.; Hine, Nicholas D. M.; Dong, Shaoqiang; Wu, Jishan; Greenham, Neil C.; Musser, Andrew J.

    2016-01-01

    Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics. PMID:27924819

  4. Chemical and physical investigations on the charge transfer interaction of organic donors with iodine and its application as non-traditional organic conductors

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Sharshar, T.; Adam, Abdel Majid A.; Elsabawy, Khaled M.; Hemeda, O. M.

    2014-09-01

    The iso-leucine-iodide and methionine-iodide charge-transfer complexes were prepared and characterized using different spectroscopic techniques. The iodide charge-transfer complexes were synthesized by grinding KI-I2-amino acid with 1:1:1 M ratio in presence of few drops of methanol solvent. The structures of both solid amino acid iodide charge-transfer complexes are discussed with the help of the obtained results of the infrared and Raman laser spectra, Uv-vis. electronic spectra and thermal analyses. The electrical properties (AC resistivity and dielectric constant) of both complexes were investigated. The positron annihilation Doppler broadening (PADB) spectroscopies were also used to probe the structural changes of both complexes. The PADB line-shape parameters (S and W) were found to be dependent on the structure, electronic configuration of the charge transfer complex. The PADB technique is a powerful tool to probe the structural features of the KI-I2-amino acid complexes.

  5. Engineering and Probing Topological Properties of Dirac Semimetal Films by Asymmetric Charge Transfer.

    PubMed

    Villanova, John W; Barnes, Edwin; Park, Kyungwha

    2017-02-08

    Dirac semimetals (DSMs) have topologically robust three-dimensional Dirac (doubled Weyl) nodes with Fermi-arc states. In heterostructures involving DSMs, charge transfer occurs at the interfaces, which can be used to probe and control their bulk and surface topological properties through surface-bulk connectivity. Here we demonstrate that despite a band gap in DSM films, asymmetric charge transfer at the surface enables one to accurately identify locations of the Dirac-node projections from gapless band crossings and to examine and engineer properties of the topological Fermi-arc surface states connecting the projections, by simulating adatom-adsorbed DSM films using a first-principles method with an effective model. The positions of the Dirac-node projections are insensitive to charge transfer amount or slab thickness except for extremely thin films. By varying the amount of charge transfer, unique spin textures near the projections and a separation between the Fermi-arc states change, which can be observed by gating without adatoms.

  6. Opposites Attract: Organic Charge Transfer Salts

    ERIC Educational Resources Information Center

    van de Wouw, Heidi L.; Chamorro, Juan; Quintero, Michael; Klausen, Rebekka S.

    2015-01-01

    A laboratory experiment is described that introduces second-year undergraduate organic chemistry students to organic electronic materials. The discovery of metallic conductivity in the charge transfer salt tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) is a landmark result in the history of organic electronics. The charge transfer…

  7. Optimisation of stability and charge transferability of ferrocene-encapsulated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prajongtat, Pongthep; Sriyab, Suwannee; Zentgraf, Thomas; Hannongbua, Supa

    2018-01-01

    Ferrocene-encapsulated carbon nanotubes (Fc@CNTs) became promising nanocomposite materials for a wide range of applications due to their superior catalytic, mechanical and electronic properties. To open up new windows of applications, the highly stable and charge transferable encapsulation complexes are required. In this work, we designed the new encapsulation complexes formed from ferrocene derivatives (FcR, where R = -CHO, -CH2OH, -CON3 and -PCl2) and single-walled carbon nanotubes (SWCNTs). The influence of diameter and chirality of the nanotubes on the stability, charge transferability and electronic properties of such complexes has been investigated using density functional theory. The calculations suggest that the encapsulation stability and charge transferability of the encapsulation complexes depend on the size and chirality of the nanotubes. FcR@SWCNTs are more stable than Fc@SWCNTs at the optimum tube diameter. The greatest charge transfer was observed for FcCH2OH@SWCNTs and Fc@SWCNTs since the Fe d levels of FcCH2OH and Fc are nearly equal and close to the Fermi energy level of the nanotubes. The obtained results pave the way to the design of new encapsulated ferrocene derivatives which can give rise to higher stability and charge transferability of the encapsulation complexes.

  8. Charge-transfer channel in quantum dot-graphene hybrid materials

    NASA Astrophysics Data System (ADS)

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-01

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd13Se13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  9. Charge-transfer channel in quantum dot-graphene hybrid materials.

    PubMed

    Cao, Shuo; Wang, Jingang; Ma, Fengcai; Sun, Mengtao

    2018-04-06

    The energy band theory of a classical semiconductor can qualitatively explain the charge-transfer process in low-dimensional hybrid colloidal quantum dot (QD)-graphene (GR) materials; however, the definite charge-transfer channels are not clear. Using density functional theory (DFT) and time-dependent DFT, we simulate the hybrid QD-GR nanostructure, and by constructing its orbital interaction diagram, we show the quantitative coupling characteristics of the molecular orbitals (MOs) of the hybrid structure. The main MOs are derived from the fragment MOs (FOs) of GR, and the Cd 13 Se 13 QD FOs merge with the GR FOs in a certain proportion to afford the hybrid system. Upon photoexcitation, electrons in the GR FOs jump to the QD FOs, leaving holes in the GR FOs, and the definite charge-transfer channels can be found by analyzing the complex MOs coupling. The excited electrons and remaining holes can also be localized in the GR or the QD or transfer between the QD and GR with different absorption energies. The charge-transfer process for the selected excited states of the hybrid QD-GR structure are testified by the charge difference density isosurface. The natural transition orbitals, charge-transfer length analysis and 2D site representation of the transition density matrix also verify the electron-hole delocalization, localization, or coherence chacracteristics of the selected excited states. Therefore, our research enhances understanding of the coupling mechanism of low-dimensional hybrid materials and will aid in the design and manipulation of hybrid photoelectric devices for practical application in many fields.

  10. Theoretical studies of charge transfer and proton transfer complex formation between 3,5-dinitrobenzic acid and 1,2-dimethylimidazole

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    Natural atomic charge analysis and molecular electrostatic potential (MEP) surface analysis of hydrogen bonded charge transfer (HBCT) and proton transfer (PT) complex of 3,5-dinitrobenzoic acid (DNBA) and 1,2-dimethylimidazole (DMI) have been investigated by theoretical modelling using widely employed DFT/B3LYP/6-311G(d,p) level of theory. Along with this analysis, Hirshfeld surface study of the intermolecular interactions and associated 2D finger plot for reported PT complex between DNBA and DMI have been explored.

  11. Frenkel versus charge-transfer exciton dispersion in molecular crystals

    NASA Astrophysics Data System (ADS)

    Cudazzo, Pierluigi; Gatti, Matteo; Rubio, Angel; Sottile, Francesco

    2013-11-01

    By solving the many-body Bethe-Salpeter equation at finite momentum transfer, we characterize the exciton dispersion in two prototypical molecular crystals, picene and pentacene, in which localized Frenkel excitons compete with delocalized charge-transfer excitons. We explain the exciton dispersion on the basis of the interplay between electron and hole hopping and electron-hole exchange interaction, unraveling a simple microscopic description to distinguish Frenkel and charge-transfer excitons. This analysis is general and can be applied to other systems in which the electron wave functions are strongly localized, as in strongly correlated insulators.

  12. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  13. Bromine-doped DWNTs: A Molecular Faraday Cage

    NASA Astrophysics Data System (ADS)

    Chen, Gugang; Margine, Roxana; Gupta, Rajeev; Crespi, Vincent; Eklund, Peter; Sumanasekera, Gamini; Bandow, Shunji; Iijima, S.

    2003-03-01

    Raman scattering is used to probe the charge transfer distribution in Bromine-doped double-walled carbon nanotubes (DWNT). Using 1064 nm and 514.5 nm laser excitation we are able to study the charge-transfer sensitive phonons in the inner ( (5,5)) and outer ( (10,10)) tubes of the double-walled pair. The experimental results are compared to our tight binding band structure calculations that include a self-consistent electrostatic term sensitive to the average net charge density on each tube. Upon doping, the nanotube tangential and radial Raman bands from the outer (primary) tubes were observed to shift dramatically to higher frequencies, consistent with a C-C bond contraction driven by the acceptor-doping. The peak intensities of these bands significantly decreased with increasing doping exposure, and they eventually vanished, consistent with a deep depression in the Fermi energy that extinguishes the resonant Raman effect. Interestingly, at the same time, we observed little or no change for the tangential and radial Raman features identified with the inner (secondary) tubes during the bromine doping. Our electronic structure calculations show that the charge distribution between the outer and inner tubes depends on doping level and also, to some extent, on specific tube chirality combinations. In general, in agreement with experiment, the calculations find a very small net charge on the inner tube, consistent with a "Molecular Faraday Effect", e.g., a DWNT of (10, 10)/ (5, 5) configuration that exhibits 0.5 holes/Å total charge transfer, has only 0.04 holes/Å on the inner (secondary) tube.

  14. Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO

    NASA Astrophysics Data System (ADS)

    David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing

    2017-08-01

    Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.

  15. Charge-transfer contributions to the excitonic coupling matrix element in BODIPY-based energy transfer cassettes

    NASA Astrophysics Data System (ADS)

    Spiegel, J. Dominik; Lyskov, Igor; Kleinschmidt, Martin; Marian, Christel M.

    2017-01-01

    BODIPY-based dyads serve as model systems for the investigation of excitation energy transfer (EET). Through-space EET is brought about by direct and exchange interactions between the transition densities of donor and acceptor localized states. The presence of a molecular linker gives rise to additional charge transfer (CT) contributions. Here, we present a novel approach for the calculation of the excitonic coupling matrix element (ECME) including CT contributions which is based on supermolecular one-electron transition density matrices (STD). The validity of the approach is assessed for a model system of two π -stacked ethylene molecules at varying intermolecular separation. Wave functions and electronic excitation energies of five EET cassettes comprising anthracene as exciton donor and BODIPY as exciton acceptor are obtained by the redesigned combined density functional theory and multireference configuration interaction (DFT/MRCI-R) method. CT contributions to the ECME are shown to be important in the covalently linked EET cassettes.

  16. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    NASA Astrophysics Data System (ADS)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  17. The influence of electric charge transferred during electro-mechanical reshaping on mechanical behavior of cartilage

    NASA Astrophysics Data System (ADS)

    Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.

    2011-03-01

    Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.

  18. Electronic coupling in long-range electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, M.D.

    1996-12-31

    One of the quantities crucial in controlling electron transfer (et) kinetics is the donor/acceptor electronic coupling integral (HDA). Recent theoretical models for HDA will be presented, and the results of ab initio computational implementation will be reported and analyzed for several metal-to-metal ligand charge transfer processes in complex molecular aggregates. New procedures for defining diabatic states, including a generalization of the Mulliken-Hush model, allow applications to optical and excited state as well as ground state et in a many-state framework.

  19. Electron energy distribution function, effective electron temperature, and dust charge in the temporal afterglow of a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denysenko, I. B.; Azarenkov, N. A.; Kersten, H.

    2016-05-15

    Analytical expressions describing the variation of electron energy distribution function (EEDF) in an afterglow of a plasma are obtained. Especially, the case when the electron energy loss is mainly due to momentum-transfer electron-neutral collisions is considered. The study is carried out for different EEDFs in the steady state, including Maxwellian and Druyvesteyn distributions. The analytical results are not only obtained for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy but also for the case when the collisions are a power function of electron energy. Using analytical expressions for the EEDF, the effective electron temperaturemore » and charge of the dust particles, which are assumed to be present in plasma, are calculated for different afterglow durations. An analytical expression for the rate describing collection of electrons by dust particles for the case when the rate for momentum-transfer electron-neutral collisions is independent on electron energy is also derived. The EEDF profile and, as a result, the effective electron temperature and dust charge are sufficiently different in the cases when the rate for momentum-transfer electron-neutral collisions is independent on electron energy and when the rate is a power function of electron energy.« less

  20. The role of charge transfer in the energy level alignment at the pentacene/C60 interface.

    PubMed

    Beltrán, J; Flores, F; Ortega, J

    2014-03-07

    Understanding the mechanism of energy level alignment at organic-organic interfaces is a crucial line of research to optimize applications in organic electronics. We address this problem for the C60-pentacene interface by performing local-orbital Density Functional Theory (DFT) calculations, including the effect of the charging energies on the energy gap of both organic materials. The results are analyzed within the induced density of interface states (IDIS) model. We find that the induced interface potential is in the range of 0.06-0.10 eV, in good agreement with the experimental evidence, and that such potential is mainly induced by the small, but non-negligible, charge transfer between the two compounds and the multipolar contribution associated with pentacene. We also suggest that an appropriate external intercompound potential could create an insulator-metal transition at the interface.

  1. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less

  2. New instrument for tribocharge measurement due to single particle impacts.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10 fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as approximately 100 microm impacting on the target at different incident angles with a velocity up to about 80 m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  3. New instrument for tribocharge measurement due to single particle impacts

    NASA Astrophysics Data System (ADS)

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Long Ding, Yu; Pitt, Kendal G.

    2007-02-01

    During particulate solid processing, particle-particle and particle-wall collisions can generate electrostatic charges. This may lead to a variety of problems ranging from fire and explosion hazards to segregation, caking, and blocking. A fundamental understanding of the particle charging in such situations is therefore essential. For this purpose we have developed a new device that can measure charge transfer due to impact between a single particle and a metal plate. The device consists of an impact test system and two sets of Faraday cage and preamplifier for charge measurement. With current amplifiers, high-resolution measurements of particle charges of approximately 1 and 10fC have been achieved before and after the impact, respectively. The device allows charge measurements of single particles with a size as small as ˜100μm impacting on the target at different incident angles with a velocity up to about 80m/s. Further analyses of the charge transfer as a function of particle initial charge define an equilibrium charge, i.e., an initial charge level prior to impact for which no net charge transfer would occur as a result of impact.

  4. Magnetic field enhancement of organic photovoltaic cells performance.

    PubMed

    Oviedo-Casado, S; Urbina, A; Prior, J

    2017-06-27

    Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.

  5. Fragment charge difference method for estimating donor-acceptor electronic coupling: Application to DNA π-stacks

    NASA Astrophysics Data System (ADS)

    Voityuk, Alexander A.; Rösch, Notker

    2002-09-01

    The purpose of this communication is two-fold. We introduce the fragment charge difference (FCD) method to estimate the electron transfer matrix element HDA between a donor D and an acceptor A, and we apply this method to several aspects of hole transfer electronic couplings in π-stacks of DNA, including systems with several donor-acceptor sites. Within the two-state model, our scheme can be simplified to recover a convenient estimate of the electron transfer matrix element HDA=(1-Δq2)1/2(E2-E1)/2 based on the vertical excitation energy E2-E1 and the charge difference Δq between donor and acceptor. For systems with strong charge separation, Δq≳0.95, one should resort to the FCD method. As favorable feature, we demonstrate the stability of the FCD approach for systems which require an approach beyond the two-state model. On the basis of ab initio calculations of various DNA related systems, we compared three approaches for estimating the electronic coupling: the minimum splitting method, the generalized Mulliken-Hush (GMH) scheme, and the FCD approach. We studied the sensitivity of FCD and GMH couplings to the donor-acceptor energy gap and found both schemes to be quite robust; they are applicable also in cases where donor and acceptor states are off resonance. In the application to π-stacks of DNA, we demonstrated for the Watson-Crick pair dimer [(GC),(GC)] how structural changes considerably affect the coupling strength of electron hole transfer. For models of three Watson-Crick pairs, we showed that the two-state model significantly overestimates the hole transfer coupling whereas simultaneous treatment of several states leads to satisfactory results.

  6. Reagent Anions for Charge Inversion of Polypeptide/Protein Cations in the Gas Phase

    PubMed Central

    He, Min; Emory, Joshua F.; McLuckey, Scott A.

    2005-01-01

    Various reagent anions capable of converting polypeptide cations to anions via ion/ion reactions have been investigated. The major charge inversion reaction channels include multiple proton transfer and adduct formation. Dianions composed of sulfonate groups as the negative charge carriers show essentially exclusive adduct formation in converting protonated peptides and proteins to anions. Dianions composed of carboxylate groups, on the other hand, show far more charge inversion via multiple proton transfer, with the degree of adduct formation dependent upon both the size of the polypeptide and the spacings between carboxylate groups in the dianion. More highly charged carboxylate-containing anions, such as those derived from carboxylate-terminated polyamidoamine half-generation dendrimers show charge inversion to give anion charges as high in magnitude as −4, with the degree of adduct formation being inversely related to dendrimer generation. All observations can be interpreted on the basis of charge inversion taking place via a long-lived chemical complex. The lifetime of this complex is related to the strengths and numbers of the interactions of the reactants in the complex. Calculations with model systems are fully consistent with sulfonate groups giving rise to more stable complexes. The kinetic stability of the complex can also be affected by the presence of electrostatic repulsion if it is multiply charged. In general, this situation destabilizes the complex and reduces the likelihood for observation of adducts. The findings highlight the characteristics of multiply charged anions that play roles in determining the nature of charge inversion products associated with protonated peptides and proteins. PMID:15889906

  7. 33 CFR 127.1317 - Declaration of Inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...— (1) The name of the vessel and that of the facility; (2) The date and time that the transfer begins... to begin transfer; and (5) The signature of each relief person in charge and the date and time of... Inspection. (a) Each person in charge of transfer for the facility shall ensure that no person transfers LHG...

  8. 33 CFR 127.1317 - Declaration of Inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...— (1) The name of the vessel and that of the facility; (2) The date and time that the transfer begins... to begin transfer; and (5) The signature of each relief person in charge and the date and time of... Inspection. (a) Each person in charge of transfer for the facility shall ensure that no person transfers LHG...

  9. Cascading electron and hole transfer dynamics in a CdS/CdTe core-shell sensitized with bromo-pyrogallol red (Br-PGR): slow charge recombination in type II regime.

    PubMed

    Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath

    2015-02-14

    Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.

  10. Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules - Synthesis and Characterization

    DTIC Science & Technology

    2016-04-12

    AFRL-AFOSR-CL-TR-2016-0012 Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene Macromolecules Ronald Ziolo CIQA Final Report 07/07...3. DATES COVERED (From - To)  15 Aug 2014 to 14 Jan 2016 4. TITLE AND SUBTITLE Intramolecular Charge Transfer of Conjugated Liquid Crystal Ferrocene...characterization of a new series of conjugated macromolecules bearing ferrocene as a highly efficient electron donor material coupled to 2,5-di(alcoxy) benzene

  11. Excited state electron transfer in systems with a well-defined geometry. [cyclophane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufmann, K.J.

    1980-12-01

    The effect of temperature, dielectric strength and ligand on the structure of the mesopyropheophorbide cyclophanes will be studied. ESR, NMR, emission and absorption spectroscopy, as well as circular dichroism will be used. The changes in structure will be correlated with changes in the photochemical activity. Electron acceptors such as benzoquinone will be utilized to stabilize the charge separation. Charge separation in porphyrin quinone dimers will also be studied. It was found that electron transfer in the cyclophane system is relatively slow. This is presumably due to an orientation requirement for fast electron transfer. Solvent dielectric also is important in producingmore » a charge separation. Decreasing the temperature effects the yield of charge transfer, but not the kinetics.« less

  12. The low-energy, charge-transfer excited states of 4-amino-4-prime-nitrodiphenyl sulfide

    NASA Technical Reports Server (NTRS)

    O'Connor, Donald B.; Scott, Gary W.; Tran, Kim; Coulter, Daniel R.; Miskowski, Vincent M.; Stiegman, Albert E.; Wnek, Gary E.

    1992-01-01

    Absorption and emission spectra of 4-amino-4-prime-nitrodiphenyl sulfide in polar and nonpolar solvents were used to characterize and assign the low-energy excited states of the molecule. Fluorescence-excitation anisotropy spectra and fluorescence quantum yields were also used to characterize the photophysics of these states. The lowest-energy fluorescent singlet state was determined to be an intramolecular charge transfer (ICT) state involving transfer of a full electron charge from the amino to the nitro group yielding a dipole moment of about 50 D. A low-energy, intense absorption band is assigned as a transition to a different ICT state involving a partial electron charge transfer from sulfur to the nitro group.

  13. Topologically protected charge transfer along the edge of a chiral p -wave superconductor

    NASA Astrophysics Data System (ADS)

    Gnezdilov, N. V.; van Heck, B.; Diez, M.; Hutasoit, Jimmy A.; Beenakker, C. W. J.

    2015-09-01

    The Majorana fermions propagating along the edge of a topological superconductor with px+i py pairing deliver a shot noise power of 1/2 ×e2/h per eV of voltage bias. We calculate the full counting statistics of the transferred charge and find that it becomes trinomial in the low-temperature limit, distinct from the binomial statistics of charge-e transfer in a single-mode nanowire or charge-2 e transfer through a normal-superconductor interface. All even-order correlators of current fluctuations have a universal quantized value, insensitive to disorder and decoherence. These electrical signatures are experimentally accessible, because they persist for temperatures and voltages large compared to the Thouless energy.

  14. Superconductivity, phase separation, and charge-transfer instability in the U = infinity limit of the three-band model of the CuO sub 2 planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grilli, M.; Raimondi, R.; Castellani, C.

    1991-07-08

    The {ital U}={infinity} limit of the three-band Hubbard model with nearest-neighbor repulsion {ital V} is studied using the slave-boson approach and the large-{ital N} expansion technique to order 1/{ital N}. A charge-transfer instability is found as in weak-coupling theory. The charge-transfer instability is always associated with a diverging compressibility leading to a phase separation. Near the phase-separation, charge-transfer-instability region we find superconducting instabilities in the {ital s}- and {ital d}-wave channel. The requirement for superconductivity is that {ital V} be on the scale of the Cu-O hopping as suggested by Varma, Schmitt-Rink, and Abrahams.

  15. Field Effect Modulation of Heterogeneous Charge Transfer Kinetics at Back-Gated Two-Dimensional MoS2 Electrodes.

    PubMed

    Wang, Yan; Kim, Chang-Hyun; Yoo, Youngdong; Johns, James E; Frisbie, C Daniel

    2017-12-13

    The ability to improve and to modulate the heterogeneous charge transfer kinetics of two-dimensional (2D) semiconductors, such as MoS 2 , is a major challenge for electrochemical and photoelectrochemical applications of these materials. Here we report a continuous and reversible physical method for modulating the heterogeneous charge transfer kinetics at a monolayer MoS 2 working electrode supported on a SiO 2 /p-Si substrate. The heavily doped p-Si substrate serves as a back gate electrode; application of a gate voltage (V BG ) to p-Si tunes the electron occupation in the MoS 2 conduction band and shifts the conduction band edge position relative to redox species dissolved in electrolyte in contact with the front side of the MoS 2 . The gate modulation of both charge density and energy band alignment impacts charge transfer kinetics as measured by cyclic voltammetry (CV). Specifically, cyclic voltammograms combined with numerical simulations suggest that the standard heterogeneous charge transfer rate constant (k 0 ) for MoS 2 in contact with the ferrocene/ferrocenium (Fc 0/+ ) redox couple can be modulated by over 2 orders of magnitude from 4 × 10 -6 to 1 × 10 -3 cm/s, by varying V BG . In general, the field effect offers the potential to tune the electrochemical properties of 2D semiconductors, opening up new possibilities for fundamental studies of the relationship between charge transfer kinetics and independently controlled electronic band alignment and band occupation.

  16. Science Notes.

    ERIC Educational Resources Information Center

    Talbot, Chris; And Others

    1991-01-01

    Twenty science experiments are presented. Topics include recombinant DNA, physiology, nucleophiles, reactivity series, molar volume of gases, spreadsheets in chemistry, hydrogen bonding, composite materials, radioactive decay, magnetism, speed, charged particles, compression waves, heat transfer, Ursa Major, balloons, current, and expansion of…

  17. Charge-transfer crystallites as molecular electrical dopants

    PubMed Central

    Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo

    2015-01-01

    Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403

  18. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces

    NASA Astrophysics Data System (ADS)

    Abramavicius, V.; Pranculis, V.; Melianas, A.; Inganäs, O.; Gulbinas, V.; Abramavicius, D.

    2016-09-01

    Photo-induced charge transfer at molecular heterojunctions has gained particular interest due to the development of organic solar cells (OSC) based on blends of electron donating and accepting materials. While charge transfer between donor and acceptor molecules can be described by Marcus theory, additional carrier delocalization and coherent propagation might play the dominant role. Here, we describe ultrafast charge separation at the interface of a conjugated polymer and an aggregate of the fullerene derivative PCBM using the stochastic Schrödinger equation (SSE) and reveal the complex time evolution of electron transfer, mediated by electronic coherence and delocalization. By fitting the model to ultrafast charge separation experiments, we estimate the extent of electron delocalization and establish the transition from coherent electron propagation to incoherent hopping. Our results indicate that even a relatively weak coupling between PCBM molecules is sufficient to facilitate electron delocalization and efficient charge separation at organic interfaces.

  19. CMOS minimal array

    NASA Astrophysics Data System (ADS)

    Janesick, James; Cheng, John; Bishop, Jeanne; Andrews, James T.; Tower, John; Walker, Jeff; Grygon, Mark; Elliot, Tom

    2006-08-01

    A high performance prototype CMOS imager is introduced. Test data is reviewed for different array formats that utilize 3T photo diode, 5T pinned photo diode and 6T photo gate CMOS pixel architectures. The imager allows several readout modes including progressive scan, snap and windowed operation. The new imager is built on different silicon substrates including very high resistivity epitaxial wafers for deep depletion operation. Data products contained in this paper focus on sensor's read noise, charge capacity, charge transfer efficiency, thermal dark current, RTS dark spikes, QE, pixel cross- talk and on-chip analog circuitry performance.

  20. Neutralized ion beam modification of cellulose membranes for study of ion charge effect on ion-beam-induced DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-02-01

    Low-energy ion beam biotechnology (IBBT) has recently been rapidly developed worldwide. Ion-beam-induced DNA transfer is one of the important applications of IBBT. However, mechanisms involved in this application are not yet well understood. In this study plasma-neutralized ion beam was applied to investigate ion charge effect on induction of DNA transfer. Argon ion beam at 7.5 keV was neutralized by RF-driven plasma in the beam path and then bombarded cellulose membranes which were used as the mimetic plant cell envelope. Electrical properties such as impedance and capacitance of the membranes were measured after the bombardment. An in vitro experiment on plasmid DNA transfer through the cellulose membrane was followed up. The results showed that the ion charge input played an important role in the impedance and capacitance changes which would affect DNA transfer. Generally speaking, neutral particle beam bombardment of biologic cells was more effective in inducing DNA transfer than charged ion beam bombardment.

  1. Ultrafast investigation of photoinduced charge transfer in aminoanthraquinone pharmaceutical product

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Sun, Simei; Zhou, Miaomiao; Wang, Lian; Zhang, Bing

    2017-02-01

    We investigated the mechanism of intramolecular charge transfer and the following radiationless dynamics of the excited states of 1-aminoanthraquinone using steady state and time-resolved absorption spectroscopy combined with quantum chemical calculations. Following photoexcitation with 460 nm, conformational relaxation via twisting of the amino group, charge transfer and the intersystem crossing (ISC) processes have been established to be the major relaxation pathways responsible for the ultrafast nonradiative of the excited S1 state. Intramolecular proton transfer, which could be induced by intramolecular hydrogen bonding is inspected and excluded. Time-dependent density functional theory (TDDFT) calculations reveal the change of the dipole moments of the S0 and S1 states along the twisted coordinate of the amino group, indicating the mechanism of twisted intra-molecular charge transfer (TICT). The timescale of TICT is measured to be 5 ps due to the conformational relaxation and a barrier on the S1 potential surface. The ISC from the S1 state to the triplet manifold is a main deactivation pathway with the decay time of 28 ps. Our results observed here have yield a physically intuitive and complete picture of the photoinduced charge transfer and radiationless dynamics in anthraquinone pharmaceutial products.

  2. Spatial distribution of transferred charges across the heterointerface between perovskite transition metal oxides LaNiO{sub 3} and LaMnO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitamura, Miho; Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization; Horiba, Koji

    2016-03-14

    To investigate the interfacial charge-transfer phenomena between perovskite transition metal oxides LaNiO{sub 3} (LNO) and LaMnO{sub 3} (LMO), we have performed in situ x-ray absorption spectroscopy (XAS) measurements on LNO/LMO multilayers. The Ni-L{sub 2,3} and Mn-L{sub 2,3} XAS spectra clearly show the occurrence of electron transfer from Mn to Ni ions in the interface region. Detailed analysis of the thickness dependence of these XAS spectra has revealed that the spatial distribution of the transferred charges across the interface is significantly different between the two constituent layers. The observed spatial distribution is presumably described by the charge spreading model that treatsmore » the transfer integral between neighboring transition metal ions and the Coulomb interaction, rather than the Thomas–Fermi screening model.« less

  3. Doping graphene films via chemically mediated charge transfer.

    PubMed

    Ishikawa, Ryousuke; Bando, Masashi; Morimoto, Yoshitaka; Sandhu, Adarsh

    2011-01-31

    Transparent conductive films (TCFs) are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ), is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  4. Carbon-, sulfur-, and phosphorus-based charge transfer reactions in inductively coupled plasma-atomic emission spectrometry

    NASA Astrophysics Data System (ADS)

    Grindlay, Guillermo; Gras, Luis; Mora, Juan; de Loos-Vollebregt, Margaretha T. C.

    2016-01-01

    In this work, the influence of carbon-, sulfur-, and phosphorus-based charge transfer reactions on the emission signal of 34 elements (Ag, Al, As, Au, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Ga, Hg, I, In, Ir, K, Li, Mg, Mn, Na, Ni, P, Pb, Pd, Pt, S, Sb, Se, Sr, Te, and Zn) in axially viewed inductively coupled plasma-atomic emission spectrometry has been investigated. To this end, atomic and ionic emission signals for diluted glycerol, sulfuric acid, and phosphoric acid solutions were registered and results were compared to those obtained for a 1% w w- 1 nitric acid solution. Experimental results show that the emission intensities of As, Se, and Te atomic lines are enhanced by charge transfer from carbon, sulfur, and phosphorus ions. Iodine and P atomic emission is enhanced by carbon- and sulfur-based charge transfer whereas the Hg atomic emission signal is enhanced only by carbon. Though signal enhancement due to charge transfer reactions is also expected for ionic emission lines of the above-mentioned elements, no experimental evidence has been found with the exception of Hg ionic lines operating carbon solutions. The effect of carbon, sulfur, and phosphorus charge transfer reactions on atomic emission depends on (i) wavelength characteristics. In general, signal enhancement is more pronounced for electronic transitions involving the highest upper energy levels; (ii) plasma experimental conditions. The use of robust conditions (i.e. high r.f. power and lower nebulizer gas flow rates) improves carbon, sulfur, and phosphorus ionization in the plasma and, hence, signal enhancement; and (iii) the presence of other concomitants (e.g. K or Ca). Easily ionizable elements reduce ionization in the plasma and consequently reduce signal enhancement due to charge transfer reactions.

  5. Theoretical investigation of the charge-transfer properties in different meso-linked zinc porphyrins for highly efficient dye-sensitized solar cells.

    PubMed

    Namuangruk, Supawadee; Sirithip, Kanokkorn; Rattanatwan, Rattanawelee; Keawin, Tinnagon; Kungwan, Nawee; Sudyodsuk, Taweesak; Promarak, Vinich; Surakhot, Yaowarat; Jungsuttiwong, Siriporn

    2014-06-28

    The charge transfer effect of different meso-substituted linkages on porphyrin analogue 1 (A1, B1 and C1) was theoretically investigated using density functional theory (DFT) and time-dependent DFT (TDDFT) calculations. The calculated geometry parameters and natural bond orbital analysis reveal that the twisted conformation between porphyrin macrocycle and meso-substituted linkages leads to blocking of the conjugation of the conjugated backbone, and the frontier molecular orbital plot shows that the intramolecular charge transfer of A1, B1 and C1 hardly takes place. In an attempt to improve the photoinduced intramolecular charge transfer ability of the meso-linked zinc porphyrin sensitizer, a strong electron-withdrawing group (CN) was introduced into the anchoring group of analogue 1 forming analogue 2 (A2, B2 and C2). The density difference plot of A2, B2 and C2 shows that the charge transfer properties dramatically improved. The electron injection process has been performed using TDDFT; the direct charge-transfer transition in the A2-(TiO2)38 interacting system takes place; our results strongly indicated that introducing electron-withdrawing groups into the acceptor part of porphyrin dyes can fine-tune the effective conjugation length of the π-spacer and improve intramolecular charge transfer properties, consequently inducing the electron injection process from the anchoring group of the porphyrin dye to the (TiO2)38 surface which may improve the conversion efficiency of the DSSCs. Our calculated results can provide valuable information and a promising outlook for computation-aided sensitizer design with anticipated good properties in further experimental synthesis.

  6. Transition from capacitive coupling to direct charge transfer in asymmetric terahertz plasmonic assemblies.

    PubMed

    Ahmadivand, Arash; Sinha, Raju; Gerislioglu, Burak; Karabiyik, Mustafa; Pala, Nezih; Shur, Michael

    2016-11-15

    We experimentally and numerically analyze the charge transfer THz plasmons using an asymmetric plasmonic assembly of metallic V-shaped blocks. The asymmetric design of the blocks allows for the excitation of classical dipolar and multipolar modes due to the capacitive coupling. Introducing a conductive microdisk between the blocks, we facilitated the excitation of the charge transfer plasmons and studied their characteristics along with the capacitive coupling by varying the size of the disk.

  7. Variationally consistent approximation scheme for charge transfer

    NASA Technical Reports Server (NTRS)

    Halpern, A. M.

    1978-01-01

    The author has developed a technique for testing various charge-transfer approximation schemes for consistency with the requirements of the Kohn variational principle for the amplitude to guarantee that the amplitude is correct to second order in the scattering wave functions. Applied to Born-type approximations for charge transfer it allows the selection of particular groups of first-, second-, and higher-Born-type terms that obey the consistency requirement, and hence yield more reliable approximation to the amplitude.

  8. Excited State Charge Transfer reaction with dual emission from 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile: Spectral measurement and theoretical density functional theory calculation

    NASA Astrophysics Data System (ADS)

    Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil

    2011-07-01

    The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.

  9. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  10. Charge-Transfer Analysis of 2p3d Resonant Inelastic X-ray Scattering of Cobalt Sulfide and Halides

    PubMed Central

    2017-01-01

    We show that with 2p3d resonant inelastic X-ray scattering (RIXS) we can accurately determine the charge-transfer parameters of CoF2, CoCl2, CoBr2, and CoS. The 160 meV resolution RIXS results are compared with charge-transfer multiplet calculations. The improved resolution and the direct observation of the crystal field and charge-transfer excitations allow the determination of more accurate parameters than could be derived from X-ray absorption and X-ray photoemission, both limited in resolution by their lifetime broadening. We derive the crystal field and charge-transfer parameters of the Co2+ ions, which provides the nature of the ground state of the Co2+ ions with respect to symmetry and hybridization. In addition, the increased spectral resolution allows the more accurate determination of the atomic Slater integrals. The results show that the crystal field energy decreases with increasing ligand covalency. The L2 edge RIXS spectra show that the intensity of the (Coster–Kronig induced) nonresonant X-ray emission is a measure of ligand covalency. PMID:29170686

  11. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  12. Charge transfer properties of pentacene adsorbed on silver: DFT study

    NASA Astrophysics Data System (ADS)

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-01

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  13. Molecular aspects of the Eu3+/Eu2+ redox reaction at the interface between a molten salt and a metallic electrode

    NASA Astrophysics Data System (ADS)

    Pounds, Michael A.; Salanne, Mathieu; Madden, Paul A.

    2015-09-01

    We perform molecular dynamics simulations of a system consisting of Eu3+ and Eu2+ species dissolved in a high-temperature KCl electrolyte between two metallic electrodes. The interaction potential includes ion polarisation effects, and a constant electric potential is maintained within the electrodes by allowing the atomic charges to fluctuate in response to the environment. This setup allows us to study the electrochemical Eu3+/Eu2+ reaction in the framework of Marcus theory. Numerous studies have pointed to the highly structured nature of ionic liquids and molten salts close to solid surfaces which is not accounted for in the conventional mean-field description of this interface that underpins the theories of electrochemical reaction rates. Here we examine the influence on the kinetics of the charge-transfer event of the electrical potential across the electrode-electrolyte interface and on the effect of the presence of charged surface on the coordination structure and energetics of the ions in the region important for the charge-transfer event.

  14. Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case.

    PubMed

    Guillot, Benoît; Jelsch, Christian; Podjarny, Alberto; Lecomte, Claude

    2008-05-01

    The valence electron density of the protein human aldose reductase was analyzed at 0.66 angstroms resolution. The methodological developments in the software MoPro to adapt standard charge-density techniques from small molecules to macromolecular structures are described. The deformation electron density visible in initial residual Fourier difference maps was significantly enhanced after high-order refinement. The protein structure was refined after transfer of the experimental library multipolar atom model (ELMAM). The effects on the crystallographic statistics, on the atomic thermal displacement parameters and on the structure stereochemistry are analyzed. Constrained refinements of the transferred valence populations Pval and multipoles Plm were performed against the X-ray diffraction data on a selected substructure of the protein with low thermal motion. The resulting charge densities are of good quality, especially for chemical groups with many copies present in the polypeptide chain. To check the effect of the starting point on the result of the constrained multipolar refinement, the same charge-density refinement strategy was applied but using an initial neutral spherical atom model, i.e. without transfer from the ELMAM library. The best starting point for a protein multipolar refinement is the structure with the electron density transferred from the database. This can be assessed by the crystallographic statistical indices, including Rfree, and the quality of the static deformation electron-density maps, notably on the oxygen electron lone pairs. The analysis of the main-chain bond lengths suggests that stereochemical dictionaries would benefit from a revision based on recently determined unrestrained atomic resolution protein structures.

  15. Development of highly accurate approximate scheme for computing the charge transfer integral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pershin, Anton; Szalay, Péter G.

    The charge transfer integral is a key parameter required by various theoretical models to describe charge transport properties, e.g., in organic semiconductors. The accuracy of this important property depends on several factors, which include the level of electronic structure theory and internal simplifications of the applied formalism. The goal of this paper is to identify the performance of various approximate approaches of the latter category, while using the high level equation-of-motion coupled cluster theory for the electronic structure. The calculations have been performed on the ethylene dimer as one of the simplest model systems. By studying different spatial perturbations, itmore » was shown that while both energy split in dimer and fragment charge difference methods are equivalent with the exact formulation for symmetrical displacements, they are less efficient when describing transfer integral along the asymmetric alteration coordinate. Since the “exact” scheme was found computationally expensive, we examine the possibility to obtain the asymmetric fluctuation of the transfer integral by a Taylor expansion along the coordinate space. By exploring the efficiency of this novel approach, we show that the Taylor expansion scheme represents an attractive alternative to the “exact” calculations due to a substantial reduction of computational costs, when a considerably large region of the potential energy surface is of interest. Moreover, we show that the Taylor expansion scheme, irrespective of the dimer symmetry, is very accurate for the entire range of geometry fluctuations that cover the space the molecule accesses at room temperature.« less

  16. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  17. Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles

    2005-03-17

    We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.

  18. Azimuthally and radially excited charge transfer plasmon and Fano lineshapes in conductive sublayer-mediated nanoassemblies.

    PubMed

    Ahmadivand, Arash; Gerislioglu, Burak; Pala, Nezih

    2017-11-01

    Here, the plasmon responses of both symmetric and antisymmetric oligomers on a conductive substrate under linear, azimuthal, and radial polarization excitations are analyzed numerically. By observing charge transfer plasmons under cylindrical vector beam (CVB) illumination for what we believe is the first time, we show that our studies open new horizons to induce significant charge transfer plasmons and antisymmetric Fano resonance lineshapes in metallic substrate-mediated plasmonic nanoclusters under both azimuthal and radial excitation as CVBs.

  19. DDT: participation in ultraviolet-detectable, charge-transfer complexation.

    PubMed

    Wilson, W E; Fishbein, L; Clements, S T

    1971-01-15

    The chlorophenyl groups of DDT and several of its metabolites are capable of participating in a charge-transfer interaction with tetracyanoethylene detectable in the ultraviolet region of the spectrum. In addition, during a change of state DDT undergoes ultraviolet spectral alterations that closely resemble those previously claimed to support the hypothesis suggesting charge-transfer interaction between this pesticide and a component of insect nerve tissue. The pesticide DDT possesses structural characteristics that would permit it to participate in several types of molecular association.

  20. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  1. Synthesis and electrochemical studies of charge-transfer complexes of thiazolidine-2,4-dione with σ and π acceptors

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Kumar, Pradeep; Katyal, Anju; Kalra, Rashmi; Dass, Sujata K.; Prakash, Satya; Chandra, Ramesh

    2010-03-01

    In the present work, we report the synthesis and characterization of novel charge-transfer complexes of thiazolidine-2,4-dione (TZD) with sigma acceptor (iodine) and pi acceptors (chloranil, dichlorodicyanoquinone, picric acid and duraquinone). We also evaluated their thermal and electrochemical properties and we conclude that these complexes are frequency dependent. Charge-transfer complex between thiazolidine-2,4-dione and iodine give best conductivity. In conclusion, complex with sigma acceptors are more conducting than with pi acceptors.

  2. Measurement techniques and applications of charge transfer to aerospace research

    NASA Technical Reports Server (NTRS)

    Smith, A.

    1978-01-01

    A technique of developing high-velocity low-intensity neutral gas beams for use in aerospace research problems is described. This technique involves ionization of gaseous species with a mass spectrometer and focusing the resulting primary ion beam into a collision chamber containing a static gas at a known pressure and temperature. Equations are given to show how charge-transfer cross sections are obtained from a total-current measurement technique. Important parameters are defined for the charge-transfer process.

  3. Frequency-dependent local field factors in dielectric liquids by a polarizable force field and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof

    2015-12-01

    A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.

  4. CCD charge collection efficiency and the photon transfer technique

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Klaasen, K.; Elliott, T.

    1985-01-01

    The charge-coupled device (CCD) has shown unprecendented performance as a photon detector in the areas of spectral response, charge transfer, and readout noise. Recent experience indicates, however, that the full potential for the CCD's charge collection efficiency (CCE) lies well beyond that which is realized in currently available devices. A definition of CCE performance is presented and a standard test tool (the photon transfer technique) for measuring and optimizing this important CCD parameter is introduced. CCE characteristics for different types of CCDs are compared; the primary limitations in achieving high CCE performance are discussed, and the prospects for future improvement are outlined.

  5. Coupled sensitizer-catalyst dyads: electron-transfer reactions in a perylene-polyoxometalate conjugate.

    PubMed

    Odobel, Fabrice; Séverac, Marjorie; Pellegrin, Yann; Blart, Errol; Fosse, Céline; Cannizzo, Caroline; Mayer, Cédric R; Elliott, Kristopher J; Harriman, Anthony

    2009-01-01

    Ultrafast discharge of a single-electron capacitor: A variety of intramolecular electron-transfer reactions are apparent for polyoxometalates functionalized with covalently attached perylene monoimide chromophores, but these are restricted to single-electron events. (et=electron transfer, cr=charge recombination, csr=charge-shift reaction, PER=perylene, POM=polyoxometalate).A new strategy is introduced that permits covalent attachment of an organic chromophore to a polyoxometalate (POM) cluster. Two examples are reported that differ according to the nature of the anchoring group and the flexibility of the linker. Both POMs are functionalized with perylene monoimide units, which function as photon collectors and form a relatively long-lived charge-transfer state under illumination. They are reduced to a stable pi-radical anion by electrolysis or to a protonated dianion under photolysis in the presence of aqueous triethanolamine. The presence of the POM opens up an intramolecular electron-transfer route by which the charge-transfer state reduces the POM. The rate of this process depends on the molecular conformation and appears to involve through-space interactions. Prior reduction of the POM leads to efficient fluorescence quenching, again due to intramolecular electron transfer. In most cases, it is difficult to resolve the electron-transfer products because of relatively fast reverse charge shift that occurs within a closed conformer. Although the POM can store multiple electrons, it has not proved possible to use these systems as molecular-scale capacitors because of efficient electron transfer from the one-electron-reduced POM to the excited singlet state of the perylene monoimide.

  6. Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Ismail, Lamia A.; Adam, Abdel Majid A.

    2015-01-01

    Given the great importance of the various uses of 1,8-naphthalimides in the trends of biology, medicine and industry, the current study focused on extending the scope of these dyes by introducing some of their charge-transfer (CT) complexes. For this purpose, two highly fluorescent bis-1,8-naphthalimide dyes and their complexes with some π-acceptors have been synthesized and characterized spectroscopically. The π-acceptors include picric acid (PA), chloranilic acid (CLA), tetracyanoquinodimethane (TCNQ) and dichlorodicyanobenzoquinone (DDQ). The molecular structure, spectroscopic and fluorescence properties as well as the binding modes were deduced from IR, UV-vis and 1H NMR spectral studies. The binding ratio of complexation was determined to be 1:1 according to the elemental analyses and photometric titrations. It has been found that the order of acceptance ability for the different acceptors is TCNQ > DDQ > CLA > PA. The photostability of 1,8-naphthalimide dye as a donor and its charge-transfer complex doped in polymethyl methacrylate/PMMA were exposed to UV-Vis radiation and the change in the absorption spectra was achieved at different times during irradiation period.

  7. Microscopic origin of the charge transfer in single crystals based on thiophene derivatives: A combined NEXAFS and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Chernenkaya, A.; Morherr, A.; Backes, S.; Popp, W.; Witt, S.; Kozina, X.; Nepijko, S. A.; Bolte, M.; Medjanik, K.; Öhrwall, G.; Krellner, C.; Baumgarten, M.; Elmers, H. J.; Schönhense, G.; Jeschke, H. O.; Valentí, R.

    2016-07-01

    We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.

  8. Organic solar cells: understanding the role of Förster resonance energy transfer.

    PubMed

    Feron, Krishna; Belcher, Warwick J; Fell, Christopher J; Dastoor, Paul C

    2012-12-12

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by F¨orster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of F¨orster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells.

  9. A comparative study of charge transfer inefficiency value and trap parameter determination techniques making use of an irradiated ESA-Euclid prototype CCD

    NASA Astrophysics Data System (ADS)

    Prod'homme, Thibaut; Verhoeve, P.; Kohley, R.; Short, A.; Boudin, N.

    2014-07-01

    The science objectives of space missions using CCDs to carry out accurate astronomical measurements are put at risk by the radiation-induced increase in charge transfer inefficiency (CTI) that results from trapping sites in the CCD silicon lattice. A variety of techniques are used to obtain CTI values and derive trap parameters, however they often differ in results. To identify and understand these differences, we take advantage of an on-going comprehensive characterisation of an irradiated Euclid prototype CCD including the following techniques: X-ray, trap pumping, flat field extended pixel edge response and first pixel response. We proceed to a comparative analysis of the obtained results.

  10. Utility of positron annihilation lifetime technique for the assessment of spectroscopic data of some charge-transfer complexes derived from N-(1-Naphthyl)ethylenediamine dihydrochloride

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Adam, Abdel Majid A.; Sharshar, T.; Saad, Hosam A.; Eldaroti, Hala H.

    2014-03-01

    In this work, structural, thermal, morphological, pharmacological screening and positron annihilation lifetime measurements were performed on the interactions between a N-(1-Naphthyl)ethylenediamine dihydrochloride (NEDA·2HCl) donor and three types of acceptors to characterize these CT complexes. The three types of acceptors include π-acceptors (quinol and picric acid), σ-acceptors (iodine) and vacant orbital acceptors (tin(IV) tetrachloride and zinc chloride). The positron annihilation lifetime parameters were found to be dependent on the structure, electronic configuration, the power of acceptors and molecular weight of the CT complexes. The positron annihilation lifetime spectroscopy can be used as a probe for the formation of charge-transfer (CT) complexes.

  11. Three-dimensional nonsteady heat-transfer analysis of an indirect heating furnace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, H.; Umeda, Y.; Nakamura, Y.

    1991-01-01

    This paper reports on an accurate design method for industrial furnaces from the viewpoint of heat transfer. The authors carried out a three-dimensional nonsteady heat-transfer analysis for a practical-size heat- treatment furnace equipped with radiant heaters. The authors applied three software package programs, STREAM, MORSE, and TRUMP, for the analysis of the combined heat-transfer problems of radiation, conduction, and convection. The authors also carried out experiments of the heating of a charge consisting of packed bolts. The authors found that the air swirled inside the furnace. As for the temperature in each part in the furnace, analytical results were generallymore » in close agreement with the experimental ones. This suggests that our analytical method is useful for a fundamental heat- transfer-based design of a practical-size industrial furnace with an actual charge such as packed bolts. As for the temperature distribution inside the bolt charge (work), the analytical results were also in close agreement with the experimental ones. Consequently, it was found that the heat transfer in the bolt charge could be described with an effective thermal conductivity.« less

  12. Communication: Charge transfer dominates over proton transfer in the reaction of nitric acid with gas-phase hydrated electrons

    NASA Astrophysics Data System (ADS)

    Lengyel, Jozef; Med, Jakub; Slavíček, Petr; Beyer, Martin K.

    2017-09-01

    The reaction of HNO3 with hydrated electrons (H2O)n- (n = 35-65) in the gas phase was studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry and ab initio molecular dynamics simulations. Kinetic analysis of the experimental data shows that OH-(H2O)m is formed primarily via a reaction of the hydrated electron with HNO3 inside the cluster, while proton transfer is not observed and NO3-(H2O)m is just a secondary product. The reaction enthalpy was determined using nanocalorimetry, revealing a quite exothermic charge transfer with -241 ± 69 kJ mol-1. Ab initio molecular dynamics simulations indicate that proton transfer is an allowed reaction pathway, but the overall thermochemistry favors charge transfer.

  13. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.

  14. Thermal energy and charge currents in multi-terminal nanorings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kramer, Tobias; Konrad-Zuse-Zentrum für Informationstechnik Berlin, 14195 Berlin; Kreisbeck, Christoph

    2016-06-15

    We study in experiment and theory thermal energy and charge transfer close to the quantum limit in a ballistic nanodevice, consisting of multiply connected one-dimensional electron waveguides. The fabricated device is based on an AlGaAs/GaAs heterostructure and is covered by a global top-gate to steer the thermal energy and charge transfer in the presence of a temperature gradient, which is established by a heating current. The estimate of the heat transfer by means of thermal noise measurements shows the device acting as a switch for charge and thermal energy transfer. The wave-packet simulations are based on the multi-terminal Landauer-Büttiker approachmore » and confirm the experimental finding of a mode-dependent redistribution of the thermal energy current, if a scatterer breaks the device symmetry.« less

  15. Probe-based measurement of lateral single-electron transfer between individual molecules

    PubMed Central

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  16. Preparation and spectroscopic studies on charge-transfer complexes of 2,2'-bipyridine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Teleb, Said M.; Gaballa, Akmal S.

    2005-11-01

    Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H 2CA) have been studied in CHCl 3 and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH 2)(CA)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants ( KC) for the complexes were shown to be dependent on the structure of the electron acceptors used.

  17. Preparation and spectroscopic studies on charge-transfer complexes of 2,2'-bipyridine with picric and chloranilic acids.

    PubMed

    Teleb, Said M; Gaballa, Akmal S

    2005-11-01

    Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.

  18. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.

    PubMed

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-05-17

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling.

  19. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators

    PubMed Central

    Shin, Taeho; Cho, Kyung-Sang; Yun, Dong-Jin; Kim, Jinwoo; Li, Xiang-Shu; Moon, Eui-Seong; Baik, Chan-Wook; Il Kim, Sun; Kim, Miyoung; Choi, Jun Hee; Park, Gyeong-Su; Shin, Jai-Kwang; Hwang, Sungwoo; Jung, Tae-Sung

    2016-01-01

    We examine exciton recombination, energy-, and charge transfer in multilayer CdS/ZnS quantum dots (QDs) on silver plasmonic resonators using photoluminescence (PL) and excitation spectroscopy along with kinetic modeling and simulations. The exciton dynamics including all the processes are strongly affected by the separation distance between QDs and silver resonators, excitation wavelength, and QD film thickness. For a direct contact or very small distance, interfacial charge transfer and tunneling dominate over intrinsic radiative recombination and exciton energy transfer to surface plasmons (SPs), resulting in PL suppression. With increasing distance, however, tunneling diminishes dramatically, while long-range exciton-SP coupling takes place much faster (>6.5 ns) than intrinsic recombination (~200 ns) causing considerable PL enhancement. The exciton-SP coupling strength shows a strong dependence on excitation wavelengths, suggesting the state-specific dynamics of excitons and the down-conversion of surface plasmons involved. The overlayers as well as the bottom monolayer of QD multilayers exhibit significant PL enhancement mainly through long-range exciton-SP coupling. The overall emission behaviors from single- and multilayer QD films on silver resonators are described quantitatively by a photophysical kinetic model and simulations. The present experimental and simulation results provide important and useful design rules for QD-based light harvesting applications using the exciton-surface plasmon coupling. PMID:27184469

  20. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities.

    PubMed

    Smalø, Hans S; Astrand, Per-Olof; Jensen, Lasse

    2009-07-28

    The electronegativity equalization model (EEM) has been combined with a point-dipole interaction model to obtain a molecular mechanics model consisting of atomic charges, atomic dipole moments, and two-atom relay tensors to describe molecular dipole moments and molecular dipole-dipole polarizabilities. The EEM has been phrased as an atom-atom charge-transfer model allowing for a modification of the charge-transfer terms to avoid that the polarizability approaches infinity for two particles at infinite distance and for long chains. In the present work, these shortcomings have been resolved by adding an energy term for transporting charges through individual atoms. A Gaussian distribution is adopted for the atomic charge distributions, resulting in a damping of the electrostatic interactions at short distances. Assuming that an interatomic exchange term may be described as the overlap between two electronic charge distributions, the EEM has also been extended by a short-range exchange term. The result is a molecular mechanics model where the difference of charge transfer in insulating and metallic systems is modeled regarding the difference in bond length between different types of system. For example, the model is capable of modeling charge transfer in both alkanes and alkenes with alternating double bonds with the same set of carbon parameters only relying on the difference in bond length between carbon sigma- and pi-bonds. Analytical results have been obtained for the polarizability of a long linear chain. These results show that the model is capable of describing the polarizability scaling both linearly and nonlinearly with the size of the system. Similarly, a linear chain with an end atom with a high electronegativity has been analyzed analytically. The dipole moment of this model system can either be independent of the length or increase linearly with the length of the chain. In addition, the model has been parametrized for alkane and alkene chains with data from density functional theory calculations, where the polarizability behaves differently with the chain length. For the molecular dipole moment, the same two systems have been studied with an aldehyde end group. Both the molecular polarizability and the dipole moment are well described as a function of the chain length for both alkane and alkene chains demonstrating the power of the presented model.

  1. Active pixel sensor pixel having a photodetector whose output is coupled to an output transistor gate

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)

    2005-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.

  2. Energy gap law of electron transfer in nonpolar solvents.

    PubMed

    Tachiya, M; Seki, Kazuhiko

    2007-09-27

    We investigate the energy gap law of electron transfer in nonpolar solvents for charge separation and charge recombination reactions. In polar solvents, the reaction coordinate is given in terms of the electrostatic potentials from solvent permanent dipoles at solutes. In nonpolar solvents, the energy fluctuation due to solvent polarization is absent, but the energy of the ion pair state changes significantly with the distance between the ions as a result of the unscreened strong Coulomb potential. The electron transfer occurs when the final state energy coincides with the initial state energy. For charge separation reactions, the initial state is a neutral pair state, and its energy changes little with the distance between the reactants, whereas the final state is an ion pair state and its energy changes significantly with the mutual distance; for charge recombination reactions, vice versa. We show that the energy gap law of electron-transfer rates in nonpolar solvents significantly depends on the type of electron transfer.

  3. The Role of FRET in Non-Fullerene Organic Solar Cells: Implications for Molecular Design.

    PubMed

    Gautam, Bhoj R; Younts, Robert; Carpenter, Joshua; Ade, Harald; Gundogdu, Kenan

    2018-04-19

    Non-fullerene acceptors (NFAs) have been demonstrated to be promising candidates for highly efficient organic photovoltaic (OPV) devices. The tunability of absorption characteristics of NFAs can be used to make OPVs with complementary donor-acceptor absorption to cover a broad range of the solar spectrum. However, both charge transfer from donor to acceptor moieties and energy (energy) transfer from high-bandgap to low-bandgap materials are possible in such structures. Here, we show that when charge transfer and exciton transfer processes are both present, the coexistence of excitons in both domains can cause a loss mechanism. Charge separation of excitons in a low-bandgap material is hindered due to exciton population in the larger bandgap acceptor domains. Our results further show that excitons in low-bandgap material should have a relatively long lifetime compared to the transfer time of excitons from higher bandgap material in order to contribute to the charge separation. These observations provide significant guidance for design and development of new materials in OPV applications.

  4. Revealing the Double-Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure.

    PubMed

    Quan, Quan; Xie, Shunji; Weng, Bo; Wang, Ye; Xu, Yi-Jun

    2018-05-01

    Charge separation/transfer is generally believed to be the most key factor affecting the efficiency of photocatalysis, which however will be counteracted if not taking the active site engineering into account for a specific photoredox reaction. Here, a 3D heterostructure composite is designed consisting of MoS 2 nanoplatelets decorated on reduced graphene oxide-wrapped TiO 2 nanotube arrays (TNTAs@RGO/MoS 2 ). Such a cascade configuration renders a directional migration of charge carriers and controlled immobilization of active sites, thereby showing much higher photoactivity for water splitting to H 2 than binary TNTAs@RGO and TNTAs/MoS 2 . The photoactivity comparison and mechanistic analysis reveal the double-edged sword role of RGO on boosted charge separation/transfer versus active site control in this composite system. The as-observed inconsistency between boosted charge transfer and lowered photoactivity over TNTAs@RGO is attributed to the decrease of active sites for H 2 evolution, which is significantly different from the previous reports in literature. The findings of the intrinsic relationship of balanced benefits from charge separation/transfer and active site control could promote the rational optimization of photocatalyst design by cooperatively manipulating charge flow and active site control, thereby improving the efficiency of photocatalysis for target photoredox processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Boundary layer charge dynamics in ionic liquid-ionic polymer transducers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2011-01-01

    Ionic polymer transducers (IPTs), also known as ionic polymer-metal composites, are soft sensors and actuators which operate through a coupling of microscale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work, we apply Nernst-Planck/Poisson theory to model charge transport in an ionic liquid IPT by considering a certain fraction of the ionic liquid ions as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. Numerical simulations are performed using the finite element method to examine how the introduction of another pair of mobile ions affects boundary layer charge dynamics, concentration, and charge density distributions in the electric double layer, and the overall charge transferred and current response of the IPT. Due to interactions with the Nafion ionomer, not all of the ionic liquid ions will function as mobile charge carriers; only a certain fraction will exist as "free" ions. The presence of mobile ionic liquid ions in the transducer will increase the overall charge transferred when a voltage is applied, and cause the current in the transducer to decay more slowly. The additional mobile ions also cause the ionic concentration profiles to exhibit a nonlinear dynamic response, characterized by nonmonotonic ionic concentration profiles in space and time. Although the presence of mobile ionic liquid ions increases the overall amount of charge transferred, this additional charge transfer occurs in a somewhat symmetric manner. Therefore, the additional charge transferred due to the ionic liquid ions does not greatly increase the net bending moment of the transducer; in fact, it is possible that ionic liquid ion movement actually decreases the observed bending response. This suggests that an optimal electromechanical conversion efficiency for bending actuation is achieved by using an ionic liquid where only a relatively small fraction of the ionic liquid ions exist as free ions. Conversely, if it is desired to increase the overall amount of charge transferred, an ionic liquid with a large fraction of free ions should be used. These theoretical considerations are found to be in good qualitative agreement with recent experimental results.

  6. Electroluminescence Properties of IrQ(ppy)2 Dual-Emitter Organometallic Compound in Organic Light-Emitting Devices

    NASA Astrophysics Data System (ADS)

    Ciobotaru, Constantin Claudiu; Polosan, Silviu; Ciobotaru, Iulia Corina

    2018-02-01

    This paper reports the influence of the charge carrier mobility on the electroluminescent properties of a dual-emitter organometallic compound dispersed in two conjugated organic small-molecule host materials and embedded in organic light-emitting devices (OLEDs). The electroluminescent processes in OLEDs are strongly influenced by the host-guest interaction. The charge carrier mobility in the host material plays an important role in the electroluminescent processes but also depends on the triplet-triplet interaction with the organometallic compound. The low charge carrier mobility in 4,4'-bis( N-carbazolyl)-1,1'-biphenyl (CBP) host material reduces the electroluminescent processes, but they are slightly enhanced by the triplet-triplet exothermic charge transfer. The higher charge carrier mobility in the case of N, N'-bis(3-methylphenyl)- N, N'-diphenylbenzidine (TPD) host material influences the electroluminescent processes by the endothermic energy transfer at room temperature, which facilitates the triplet-triplet harvesting in the host-guest system. The excitation is transferred to the guest molecules by triplet-triplet interaction as a Dexter transfer, which occurs by endothermic transfer from the triplet exciton in the host to the triplet exciton in the guest.

  7. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.

  8. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. The role of interfacial water layer in atmospherically relevant charge separation

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Indrani

    Charge separation at interfaces is important in various atmospheric processes, such as thunderstorms, lightning, and sand storms. It also plays a key role in several industrial processes, including ink-jet printing and electrostatic separation. Surprisingly, little is known about the underlying physics of these charging phenomena. Since thin films of water are ubiquitous, they may play a role in these charge separation processes. This talk will focus on the experimental investigation of the role of a water adlayer in interfacial charging, with relevance to meteorologically important phenomena, such as atmospheric charging due to wave actions on oceans and sand storms. An ocean wave generates thousands of bubbles, which upon bursting produce numerous large jet droplets and small film droplets that are charged. In the 1960s, Blanchard showed that the jet droplets are positively charged. However, the charge on the film droplets was not known. We designed an experiment to exclusively measure the charge on film droplets generated by bubble bursting on pure water and aqueous salt solution surfaces. We measured their charge to be negative and proposed a model where a slight excess of hydroxide ions in the interfacial water layer is responsible for generating these negatively charged droplets. The findings from this research led to a better understanding of the ionic disposition at the air-water interface. Sand particles in a wind-blown sand layer, or 'saltation' layer, become charged due to collisions, so much so, that it can cause lightning. Silica, being hydrophilic, is coated with a water layer even under low-humidity conditions. To investigate the importance of this water adlayer in charging the silica surfaces, we performed experiments to measure the charge on silica surfaces due to contact and collision processes. In case of contact charging, the maximum charge separation occurred at an optimum relative humidity. On the contrary, in collisional charging process, no humidity effect was observed. We proposed an ion transfer mechanism in case of contact charging. However, an electron transfer mechanism explained the collisional charging process. The effects of temperature, surface roughness, and chemical nature of surface were also studied for both contact and collisional charging processes.

  10. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    PubMed

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  11. Associative charge transfer reactions. Temperature effects and mechanism of the gas-phase polymerization of propene initiated by a benzene radical cation.

    PubMed

    Ibrahim, Yehia; Meot-Ner Mautner, Michael; El-Shall, M Samy

    2006-07-13

    In associative charge transfer (ACT) reactions, a core ion activates ligand molecules by partial charge transfer. The activated ligand polymerizes, and the product oligomer takes up the full charge from the core ion. In the present system, benzene(+*) (Bz(+*)) reacts with two propene (Pr) molecules to form a covalently bonded ion, C(6)H(6)(+*) + 2 C(3)H(6) --> C(6)H(12)(+*) + C(6)H(6). The ACT reaction is activated by a partial charge transfer from Bz(+*) to Pr in the complex, and driven to completion by the formation of a covalent bond in the polymerized product. An alternative channel forms a stable association product (Bz.Pr)(+*), with an ACT/association product ratio of 60:40% that is independent of pressure and temperature. In contrast to the Bz(+*)/propene system, ACT polymerization is not observed in the Bz(+*)/ethylene (Et) system since charge transfer in the Bz(+*)(Et) complex is inefficient to activate the reaction. The roles of charge transfer in these complexes are verified by ab initio calculations. The overall reaction of Bz(+*) with Pr follows second-order kinetics with a rate constant of k (304 K) = 2.1 x 10(-12) cm(3) s(-1) and a negative temperature coefficient of k = aT(-5.9) (or an activation energy of -3 kcal/mol). The kinetic behavior is similar to sterically hindered reactions and suggests a [Bz(+*) (Pr)]* activated complex that proceeds to products through a low-entropy transition state. The temperature dependence shows that ACT reactions can reach a unit collision efficiency below 100 K, suggesting that ACT can initiate polymerization in cold astrochemical environments.

  12. Influence of Processing Additives on Charge-Transfer Time Scales and Sound Velocity in Organic Bulk Heterojunction Films.

    PubMed

    Kaake, Loren G; Welch, Gregory C; Moses, Daniel; Bazan, Guillermo C; Heeger, Alan J

    2012-05-17

    The role of processing additives in organic bulk heterojunction thin films was investigated by means of transient absorption spectroscopy. The rate of ultrafast charge transfer was found to increase when a small amount of diiodooctane was used during film formation. In addition, coherent acoustic phonons were observed, and their velocity was determined. A strong correlation between the sound velocity and the charge-transfer time scale was observed, both of which could be explained by a subtle increase in thin film density.

  13. Ion-atom charge-transfer reactions and a hot intercloud medium. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    An investigation is conducted concerning the ionization equilibrium of carbon in a hot intercloud medium (ICM), taking into account various charge-transfer reactions. Attention is given to problems related to observations of carbon along the lines of sight to several unreddened stars. It is pointed out that the observed underabundance of C III and overabundance of C I can be consistent with the presence of a hot, partially ionized ICM, provided that two of the charge-transfer reactions considered are rapid at thermal energies.

  14. Electric field changes on Au nanoparticles on semiconductor supports--the molecular voltmeter and other methods to observe adsorbate-induced charge-transfer effects in Au/TiO2 nanocatalysts.

    PubMed

    McEntee, Monica; Stevanovic, Ana; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2015-02-11

    Infrared (IR) studies of Au/TiO2 catalyst particles indicate that charge transfer from van der Waals-bound donor or acceptor molecules on TiO2 to or from Au occurs via transport of charge carriers in the semiconductor TiO2 support. The ΔνCO on Au is shown to be proportional to the polarizability of the TiO2 support fully covered with donor or acceptor molecules, producing a proportional frequency shift in νCO. Charge transfer through TiO2 is associated with the population of electron trap sites in the bandgap of TiO2 and can be independently followed by changes in photoluminescence intensity and by shifts in the broad IR absorbance region for electron trap sites, which is also proportional to the polarizability of donors by IR excitation. Density functional theory calculations show that electron transfer from the donor molecules to TiO2 and to supported Au particles produces a negative charge on the Au, whereas the transfer from the Au particles to the TiO2 support into acceptor molecules results in a positive charge on the Au. These changes along with the magnitudes of the shifts are consistent with the Stark effect. A number of experiments show that the ∼3 nm Au particles act as "molecular voltmeters" in influencing ΔνCO. Insulator particles, such as SiO2, do not display electron-transfer effects to Au particles on their surface. These studies are preliminary to doping studies of semiconductor-oxide particles by metal ions which modify Lewis acid/base oxide properties and possibly strongly modify the electron-transfer and catalytic activity of supported metal catalyst particles.

  15. Role of Au(NPs) in the enhanced response of Au(NPs)-decorated MWCNT electrochemical biosensor

    PubMed Central

    Mehmood, Shahid; Ciancio, Regina; Carlino, Elvio; Bhatti, Arshad S

    2018-01-01

    Background The combination of Au-metallic-NPs and CNTs are a new class of hybrid nanomaterials for the development of electrochemical biosensor. Concentration of Au(nanoparticles [NPs]) in the electrochemical biosensor is crucial for the efficient charge transfer between the Au-NPs-MWCNTs modified electrode and electrolytic solution. Methods In this work, the charge transfer kinetics in the glassy carbon electrode (GCE) modified with Au(NPs)–multiwalled carbon nanotube (MWCNT) nanohybrid with varied concentrations of Au(NPs) in the range 40–100 nM was studied using electrochemical impedance spectroscopy (EIS). Field emission scanning electron microscopy and transmission electron microscopy confirmed the attachment of Au(NPs) on the surface of MWCNTs. Results The cyclic voltammetry and EIS results showed that the charge transfer mechanism was diffusion controlled and the rate of charge transfer was dependent on the concentration of Au(NPs) in the nanohybrid. The formation of spherical diffusion zone, which was dependent on the concentration of Au(NPs) in nanohybrids, was attributed to result in 3 times the increase in the charge transfer rate ks, 5 times increase in mass transfer, and 5% (9%) increase in Ipa (Ipc) observed in cyclic voltammetry in 80 nM Au(NP) nanohybrid-modified GCE from MWCNT-modified GCE. The work was extended to probe the effect of charge transfer rates at various concentrations of Au(NPs) in the nanohybrid-modified electrodes in the presence of Escherichia coli. The cyclic voltammetry results clearly showed the best results for 80 nM Au(NPs) in nanohybrid electrode. Conclusion The present study suggested that the formation of spherical diffusion zone in nanohybrid-modified electrodes is critical for the enhanced electrochemical biosensing applications. PMID:29713161

  16. Double heterojunction nanowire photocatalysts for hydrogen generation.

    PubMed

    Tongying, P; Vietmeyer, F; Aleksiuk, D; Ferraudi, G J; Krylova, G; Kuno, M

    2014-04-21

    Charge separation and charge transfer across interfaces are key aspects in the design of efficient photocatalysts for solar energy conversion. In this study, we investigate the hydrogen generating capabilities and underlying photophysics of nanostructured photocatalysts based on CdSe nanowires (NWs). Systems studied include CdSe, CdSe/CdS core/shell nanowires and their Pt nanoparticle-decorated counterparts. Femtosecond transient differential absorption measurements reveal how semiconductor/semiconductor and metal/semiconductor heterojunctions affect the charge separation and hydrogen generation efficiencies of these hybrid photocatalysts. In turn, we unravel the role of surface passivation, charge separation at semiconductor interfaces and charge transfer to metal co-catalysts in determining photocatalytic H2 generation efficiencies. This allows us to rationalize why Pt nanoparticle decorated CdSe/CdS NWs, a double heterojunction system, performs best with H2 generation rates of ∼434.29 ± 27.40 μmol h(-1) g(-1) under UV/Visible irradiation. In particular, we conclude that the CdS shell of this double heterojunction system serves two purposes. The first is to passivate CdSe NW surface defects, leading to long-lived charges at the CdSe/CdS interface capable of carrying out reduction chemistries. Upon photoexcitation, we also find that CdS selectively injects charges into Pt NPs, enabling simultaneous reduction chemistries at the Pt NP/solvent interface. Pt nanoparticle decorated CdSe/CdS NWs thus enable reduction chemistries at not one, but rather two interfaces, taking advantage of each junction's optimal catalytic activities.

  17. Evaluation of Bulk Charging in Geostationary Transfer Orbit and Earth Escape Trajectories Using the Numit 1-D Charging Model

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Coffey, Victoria N.; Parker, Linda N.; Blackwell, William C., Jr.; Jun, Insoo; Garrett, Henry B.

    2007-01-01

    The NUMIT 1-dimensional bulk charging model is used as a screening to ol for evaluating time-dependent bulk internal or deep dielectric) ch arging of dielectrics exposed to penetrating electron environments. T he code is modified to accept time dependent electron flux time serie s along satellite orbits for the electron environment inputs instead of using the static electron flux environment input originally used b y the code and widely adopted in bulk charging models. Application of the screening technique ts demonstrated for three cases of spacecraf t exposure within the Earth's radiation belts including a geostationa ry transfer orbit and an Earth-Moon transit trajectory for a range of orbit inclinations. Electric fields and charge densities are compute d for dielectric materials with varying electrical properties exposed to relativistic electron environments along the orbits. Our objectiv e is to demonstrate a preliminary application of the time-dependent e nvironments input to the NUMIT code for evaluating charging risks to exposed dielectrics used on spacecraft when exposed to the Earth's ra diation belts. The results demonstrate that the NUMIT electric field values in GTO orbits with multiple encounters with the Earth's radiat ion belts are consistent with previous studies of charging in GTO orb its and that potential threat conditions for electrostatic discharge exist on lunar transit trajectories depending on the electrical proper ties of the materials exposed to the radiation environment.

  18. Binding and Diffusion of Lithium in Graphite: Quantum Monte Carlo Benchmarks and Validation of van der Waals Density Functional Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, P.; Kim, Jeongnim; Park, Changwon

    2014-11-03

    In highly accurate diffusion quantum Monte Carlo (QMC) studies of the adsorption and diffusion of atomic lithium in AA-stacked graphite are compared with van der Waals-including density functional theory (DFT) calculations. Predicted QMC lattice constants for pure AA graphite agree with experiment. Pure AA-stacked graphite is shown to challenge many van der Waals methods even when they are accurate for conventional AB graphite. Moreover, the highest overall DFT accuracy, considering pure AA-stacked graphite as well as lithium binding and diffusion, is obtained by the self-consistent van der Waals functional vdW-DF2, although errors in binding energies remain. Empirical approaches based onmore » point charges such as DFT-D are inaccurate unless the local charge transfer is assessed. Our results demonstrate that the lithium carbon system requires a simultaneous highly accurate description of both charge transfer and van der Waals interactions, favoring self-consistent approaches.« less

  19. An Electronic Structure Approach to Charge Transfer and Transport in Molecular Building Blocks for Organic Optoelectronics

    NASA Astrophysics Data System (ADS)

    Hendrickson, Heidi Phillips

    A fundamental understanding of charge separation in organic materials is necessary for the rational design of optoelectronic devices suited for renewable energy applications and requires a combination of theoretical, computational, and experimental methods. Density functional theory (DFT) and time-dependent (TD)DFT are cost effective ab-initio approaches for calculating fundamental properties of large molecular systems, however conventional DFT methods have been known to fail in accurately characterizing frontier orbital gaps and charge transfer states in molecular systems. In this dissertation, these shortcomings are addressed by implementing an optimally-tuned range-separated hybrid (OT-RSH) functional approach within DFT and TDDFT. The first part of this thesis presents the way in which RSH-DFT addresses the shortcomings in conventional DFT. Environmentally-corrected RSH-DFT frontier orbital energies are shown to correspond to thin film measurements for a set of organic semiconducting molecules. Likewise, the improved RSH-TDDFT description of charge transfer excitations is benchmarked using a model ethene dimer and silsesquioxane molecules. In the second part of this thesis, RSH-DFT is applied to chromophore-functionalized silsesquioxanes, which are currently investigated as candidates for building blocks in optoelectronic applications. RSH-DFT provides insight into the nature of absorptive and emissive states in silsesquioxanes. While absorption primarily involves transitions localized on one chromophore, charge transfer between chromophores and between chromophore and silsesquioxane cage have been identified. The RSH-DFT approach, including a protocol accounting for complex environmental effects on charge transfer energies, was tested and validated against experimental measurements. The third part of this thesis addresses quantum transport through nano-scale junctions. The ability to quantify a molecular junction via spectroscopic methods is crucial to their technological design and development. Time dependent perturbation theory, employed by non-equilibrium Green's function formalism, is utilized to study the effect of quantum coherences on electron transport and the effect of symmetry breaking on the electronic spectra of model molecular junctions. The fourth part of this thesis presents the design of a physical chemistry course based on a pedagogical approach called Writing-to-Teach. The nature of inaccuracies expressed in student-generated explanations of quantum chemistry topics, and the ability of a peer review process to engage these inaccuracies, is explored within this context.

  20. Electronic, structural and chemical effects of charge-transfer at organic/inorganic interfaces

    NASA Astrophysics Data System (ADS)

    Otero, R.; Vázquez de Parga, A. L.; Gallego, J. M.

    2017-07-01

    During the last decade, interest on the growth and self-assembly of organic molecular species on solid surfaces spread over the scientific community, largely motivated by the promise of cheap, flexible and tunable organic electronic and optoelectronic devices. These efforts lead to important advances in our understanding of the nature and strength of the non-bonding intermolecular interactions that control the assembly of the organic building blocks on solid surfaces, which have been recently reviewed in a number of excellent papers. To a large extent, such studies were possible because of a smart choice of model substrate-adsorbate systems where the molecule-substrate interactions were purposefully kept low, so that most of the observed supramolecular structures could be understood simply by considering intermolecular interactions, keeping the role of the surface always relatively small (although not completely negligible). On the other hand, the systems which are more relevant for the development of organic electronic devices include molecular species which are electron donors, acceptors or blends of donors and acceptors. Adsorption of such organic species on solid surfaces is bound to be accompanied by charge-transfer processes between the substrate and the adsorbates, and the physical and chemical properties of the molecules cannot be expected any longer to be the same as in solution phase. In recent years, a number of groups around the world have started tackling the problem of the adsorption, self- assembly and electronic and chemical properties of organic species which interact rather strongly with the surface, and for which charge-transfer must be considered. The picture that is emerging shows that charge transfer can lead to a plethora of new phenomena, from the development of delocalized band-like electron states at molecular overlayers, to the existence of new substrate-mediated intermolecular interactions or the strong modification of the chemical reactivity of the adsorbates. The aim of this review is to start drawing general conclusions and developing new concepts which will help the scientific community to proceed more efficiently towards the understanding of organic/inorganic interfaces in the strong interaction limit, where charge-transfer effects must be taken into consideration.

  1. Resonance Raman and excitation energy dependent charge transfer mechanism in halide-substituted hybrid perovskite solar cells.

    PubMed

    Park, Byung-wook; Jain, Sagar M; Zhang, Xiaoliang; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2015-02-24

    Organo-metal halide perovskites (OMHPs) are materials with attractive properties for optoelectronics. They made a recent introduction in the photovoltaics world by methylammonium (MA) lead triiodide and show remarkably improved charge separation capabilities when chloride and bromide are added. Here we show how halide substitution in OMHPs with the nominal composition CH3NH3PbI2X, where X is I, Br, or Cl, influences the morphology, charge quantum yield, and local interaction with the organic MA cation. X-ray diffraction and photoluminescence data demonstrate that halide substitution affects the local structure in the OMHPs with separate MAPbI3 and MAPbCl3 phases. Raman spectroscopies as well as theoretical vibration calculations reveal that this at the same time delocalizes the charge to the MA cation, which can liberate the vibrational movement of the MA cation, leading to a more adaptive organic phase. The resonance Raman effect together with quantum chemical calculations is utilized to analyze the change in charge transfer mechanism upon electronic excitation and gives important clues for the mechanism of the much improved photovoltage and photocurrent also seen in the solar cell performance for the materials when chloride compounds are included in the preparation.

  2. Resource utilization and charges of patients with and without diagnosed venous thromboembolism during primary hospitalization and after elective inpatient surgery: a retrospective study.

    PubMed

    Sepassi, Aryana; Chingcuanco, Francine; Gordon, Ronald; Meier, Angela; Divino, Victoria; DeKoven, Mitch; Ben-Joseph, Rami

    2018-06-01

    To assess incremental charges of patients experiencing venous thromboembolisms (VTE) across various types of elective inpatient surgical procedures with administration of general anesthesia in the US. The authors performed a retrospective study utilizing data from a nationwide hospital operational records database from July 2014 through June 2015 to compare a group of inpatients experiencing a VTE event post-operatively to a propensity score matched group of inpatients who did not experience a VTE. Patients included in the analysis had a hospital admission for an elective inpatient surgical procedure with the use of general anesthesia. Procedures of the heart, brain, lungs, and obstetrical procedures were excluded, as these procedures often require a scheduled ICU stay post-operatively. Outcomes examined included VTE events during hospitalization, length of stay, unscheduled ICU transfers, number of days spent in the ICU if transferred, 3- and 30-day re-admissions, and total hospital charges incurred. The study included 17,727 patients undergoing elective inpatient surgical procedures. Of these, 36 patients who experienced a VTE event were matched to 108 patients who did not. VTE events occurred in 0.2% of the study population, with most events occurring for patients undergoing total knee replacement. VTE patients had a mean total hospital charge of $60,814 vs $48,325 for non-VTE patients, resulting in a mean incremental charge of $11,979 (p < .05). Compared to non-VTE patients, VTE patients had longer length of stay (5.9 days vs 3.7 days, p < .001), experienced a higher rate of 3-day re-admissions (3 vs 0 patients) and 30-day re-admissions (7 vs 2 patients). Patients undergoing elective inpatient surgical procedures with general anesthesia who had a VTE event during their primary hospitalization had a significantly longer length of stay and significantly higher total hospital charges than comparable patients without a VTE event.

  3. Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses

    PubMed Central

    Boll, Rebecca; Erk, Benjamin; Coffee, Ryan; Trippel, Sebastian; Kierspel, Thomas; Bomme, Cédric; Bozek, John D.; Burkett, Mitchell; Carron, Sebastian; Ferguson, Ken R.; Foucar, Lutz; Küpper, Jochen; Marchenko, Tatiana; Miron, Catalin; Patanen, Minna; Osipov, Timur; Schorb, Sebastian; Simon, Marc; Swiggers, Michelle; Techert, Simone; Ueda, Kiyoshi; Bostedt, Christoph; Rolles, Daniel; Rudenko, Artem

    2016-01-01

    Ultrafast electron transfer in dissociating iodomethane and fluoromethane molecules was studied at the Linac Coherent Light Source free-electron laser using an ultraviolet-pump, X-ray-probe scheme. The results for both molecules are discussed with respect to the nature of their UV excitation and different chemical properties. Signatures of long-distance intramolecular charge transfer are observed for both species, and a quantitative analysis of its distance dependence in iodomethane is carried out for charge states up to I21+. The reconstructed critical distances for electron transfer are in good agreement with a classical over-the-barrier model and with an earlier experiment employing a near-infrared pump pulse. PMID:27051675

  4. Laboratory Studies of Thermal Energy Charge Transfer of Multiply Charged Ions in Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Kwong, Victor H. S.

    2003-01-01

    The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.

  5. Charge Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Dennerl, Konrad

    2010-12-01

    Charge transfer, or charge exchange, describes a process in which an ion takes one or more electrons from another atom. Investigations of this fundamental process have accompanied atomic physics from its very beginning, and have been extended to astrophysical scenarios already many decades ago. Yet one important aspect of this process, i.e. its high efficiency in generating X-rays, was only revealed in 1996, when comets were discovered as a new class of X-ray sources. This finding has opened up an entirely new field of X-ray studies, with great impact due to the richness of the underlying atomic physics, as the X-rays are not generated by hot electrons, but by ions picking up electrons from cold gas. While comets still represent the best astrophysical laboratory for investigating the physics of charge transfer, various studies have already spotted a variety of other astrophysical locations, within and beyond our solar system, where X-rays may be generated by this process. They range from planetary atmospheres, the heliosphere, the interstellar medium and stars to galaxies and clusters of galaxies, where charge transfer may even be observationally linked to dark matter. This review attempts to put the various aspects of the study of charge transfer reactions into a broader historical context, with special emphasis on X-ray astrophysics, where the discovery of cometary X-ray emission may have stimulated a novel look at our universe.

  6. A simple model of solvent-induced symmetry-breaking charge transfer in excited quadrupolar molecules

    NASA Astrophysics Data System (ADS)

    Ivanov, Anatoly I.; Dereka, Bogdan; Vauthey, Eric

    2017-04-01

    A simple model has been developed to describe the symmetry-breaking of the electronic distribution of AL-D-AR type molecules in the excited state, where D is an electron donor and AL and AR are identical acceptors. The origin of this process is usually associated with the interaction between the molecule and the solvent polarization that stabilizes an asymmetric and dipolar state, with a larger charge transfer on one side than on the other. An additional symmetry-breaking mechanism involving the direct Coulomb interaction of the charges on the acceptors is proposed. At the same time, the electronic coupling between the two degenerate states, which correspond to the transferred charge being localised either on AL or AR, favours a quadrupolar excited state with equal amount of charge-transfer on both sides. Because of these counteracting effects, symmetry breaking is only feasible when the electronic coupling remains below a threshold value, which depends on the solvation energy and the Coulomb repulsion energy between the charges located on AL and AR. This model allows reproducing the solvent polarity dependence of the symmetry-breaking reported recently using time-resolved infrared spectroscopy.

  7. Organic Solar Cells: Understanding the Role of Förster Resonance Energy Transfer

    PubMed Central

    Feron, Krishna; Belcher, Warwick J.; Fell, Christopher J.; Dastoor, Paul C.

    2012-01-01

    Organic solar cells have the potential to become a low-cost sustainable energy source. Understanding the photoconversion mechanism is key to the design of efficient organic solar cells. In this review, we discuss the processes involved in the photo-electron conversion mechanism, which may be subdivided into exciton harvesting, exciton transport, exciton dissociation, charge transport and extraction stages. In particular, we focus on the role of energy transfer as described by Förster resonance energy transfer (FRET) theory in the photoconversion mechanism. FRET plays a major role in exciton transport, harvesting and dissociation. The spectral absorption range of organic solar cells may be extended using sensitizers that efficiently transfer absorbed energy to the photoactive materials. The limitations of Förster theory to accurately calculate energy transfer rates are discussed. Energy transfer is the first step of an efficient two-step exciton dissociation process and may also be used to preferentially transport excitons to the heterointerface, where efficient exciton dissociation may occur. However, FRET also competes with charge transfer at the heterointerface turning it in a potential loss mechanism. An energy cascade comprising both energy transfer and charge transfer may aid in separating charges and is briefly discussed. Considering the extent to which the photo-electron conversion efficiency is governed by energy transfer, optimisation of this process offers the prospect of improved organic photovoltaic performance and thus aids in realising the potential of organic solar cells. PMID:23235328

  8. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less

  9. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    DOE PAGES

    Pace, Natalie A.; Reid, Obadiah G.; Rumbles, Garry

    2018-02-19

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solidmore » state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.« less

  10. 46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...

  11. 46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...

  12. 46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...

  13. 46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...

  14. 46 CFR 153.957 - Persons in charge of transferring liquid cargo in bulk or cleaning cargo tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.957 Persons in charge of...

  15. Ab initio treatment of ion-induced charge transfer dynamics of isolated 2-deoxy-D-ribose.

    PubMed

    Bacchus-Montabonel, Marie-Christine

    2014-08-21

    Modeling-induced radiation damage in biological systems, in particular, in DNA building blocks, is of major concern in cancer therapy studies. Ion-induced charge-transfer dynamics may indeed be involved in proton and hadrontherapy treatments. We have thus performed a theoretical approach of the charge-transfer dynamics in collision of C(4+) ions and protons with isolated 2-deoxy-D-ribose in a wide collision energy range by means of ab initio quantum chemistry molecular methods. The comparison of both projectile ions has been performed with regard to previous theoretical and experimental results. The charge transfer appears markedly less efficient with the 2-deoxy-D-ribose target than that with pyrimidine nucleobases, which would induce an enhancement of the fragmentation process in agreement with experimental measurements. The mechanism has been analyzed with regard to inner orbital excitations, and qualitative tendencies have been pointed out for studies on DNA buiding block damage.

  16. Designing a Spin-one Mott Insulator: Complete Charge Transfer in Nickelate-Titanate Heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Marianetti, Chris; Millis, Andrew

    2013-03-01

    Ab initio calculations are performed to show that complete charge transfer may occur from the TiO2 to the NiO2 layers in (LaTiO3)1/(LaNiO3)1 superlattices. Although the two component materials are an S = 1 / 2 Mott insulator and a weakly correlated paramagnetic metal, strong correlation effects on Ni d states can render the superlattice an unusual S = 1 charge transfer insulator, with the Ti- d band empty, the Ni in the d8 state and the oxygen bands filled. The charge transfer gap is set by the Ti/Ni d level splitting. Magnetic, photoemission and x-ray scattering experiments are suggested to test the theory. The results show that heterostructuring can lead to very high levels of electron doping of oxides. This research was supported by the Army Research Office under ARO-Ph 56032 and DOE-ER-046169.

  17. Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors

    PubMed Central

    Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.

    2016-01-01

    Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413

  18. Oxygen vacancies promoted interfacial charge carrier transfer of CdS/ZnO heterostructure for photocatalytic hydrogen generation.

    PubMed

    Xie, Ying Peng; Yang, Yongqiang; Wang, Guosheng; Liu, Gang

    2017-10-01

    The solid-state Z-scheme trinary/binary heterostructures show the advantage of utilizing the high-energy photogenerated charge carriers in photocatalysis. However, the key factors controlling such Z-scheme in the binary heterostructures are still unclear. In this paper, we showed that oxygen vacancies could act as an interface electron transfer mediator to promote the direct Z-scheme charge transfer process in binary semiconductor heterostructures of CdS/ZnS. Increasing the concentration of surface oxygen vacancies of ZnO crystal can greatly enhance photocatalytic hydrogen generation of CdS/ZnO heterostructure. This was attributed to the strengthened direct Z-scheme charge transfer process in CdS/ZnO, as evidenced by steady-state/time-resolved photoluminescence spectroscopy and selective photodeposition of metal particles on the heterostructure. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Spectroscopic study of the charge-transfer complexes TiCl4/styrene and TiCl4/polystyrene

    NASA Astrophysics Data System (ADS)

    Gonçalves, Norberto S.; Noda, Lúcia. K.

    2017-10-01

    In this work, solutions of TiCl4/styrene and TiCl4/polystyrene charge-transfer complexes in CHCl3 or CDCl3 were investigated by UV-vis, resonance Raman and 1H NMR spectroscopies in order to study their molecular and electronic structures. Both show a yellow colour due to absorption in the 400 nm region, related to a charge-transfer transition. In Raman spectra, as the excitation approaches the resonance region, the primary enhancement of aromatic ring modes was mainly observed, rather than intensification of the vinylic double-bond stretch. Under the experimental conditions it was observed that formation of polystyrene takes place, as showed by 1H NMR spectra, and the most significant interaction occurs at the aromatic ring, as supported by the results from interaction of TiCl4 with polystyrene, as indicated by the charge-transfer band and resonant intensification of the aromatic ring modes.

  20. Metal-to-metal charge transfer transitions - Interpretation of visible-region spectra of the moon and lunar materials

    NASA Technical Reports Server (NTRS)

    Loeffler, B. M.; Burns, R. G.; Tossell, J. A.

    1975-01-01

    Prominent bands in the spectral profiles of Fe-Ti phases in lunar samples have been attributed to charge-transfer transitions between Fe and Ti cations, and a model is presented for calculating charge transfer energies from energy levels computed by the SCF-X(alpha) scattered wave molecular orbital method for isolated MO6 octahedral coordination clusters containing Fe(2+), Fe(3+), Ti(3+), and Ti(4+) cations. The calculated charge transfer energy for the Fe(2+) to Ti(4+) transition correlates well with a measured spectral feature around 0.6 micron in ilmenite, and, since ilmenite is a major constituent of mare basalts and dark-mantling material, the observed darkness and blueness of the regolith in lunar black spots is attributed primarily to this transition. The Ti(3+) to Ti(4+) transition is thought to contribute to some phases.

  1. Effects of convergent diffusion and charge transfer kinetics on the diffusion layer thickness of spherical micro- and nanoelectrodes.

    PubMed

    Molina, A; Laborda, E; González, J; Compton, R G

    2013-05-21

    Nuances of the linear diffusion layer approximation are examined for slow charge transfer reactions at (hemi)spherical micro- and nanoelectrodes. This approximation is widely employed in Electrochemistry to evaluate the extent of electrolyte solution perturbed by the electrode process, which is essential to the understanding of the effects arising from thin-layer diffusion, convergent diffusion, convection, coupled chemical reactions and the double layer. The concept was well established for fast charge transfer processes at macroelectrodes, but remains unclear under other conditions such that a thorough assessment of its meaning was necessary. In a previous publication [A. Molina, J. González, E. Laborda and R. G. Compton, Phys. Chem. Chem. Phys., 2013, 15, 2381-2388] we shed some light on the influence of the reversibility degree. In the present work, the meaning of the diffusion layer thickness is investigated when very small electrodes are employed and so the contribution of convergent diffusion to the mass transport is very important. An analytical expression is given to calculate the linear diffusion layer thickness at (hemi)spherical electrodes and its behaviour is studied for a wide range of conditions of reversibility (from reversible to fully-irreversible processes) and electrode size (from macro- to nano-electrodes). Rigorous analytical solutions are deduced for true concentration profiles, surface concentrations, linear diffusion layer thickness and current densities when a potential pulse is applied at (hemi)spherical electrodes. The expressions for the magnitudes mentioned above are valid for electrodes of any size (including (hemi)spherical nanoelectrodes) and for any degree of reversibility, provided that mass transport occurs exclusively via diffusion. The variation of the above with the electrode size, applied potential and charge transfer kinetics is studied.

  2. Charge transfer during individual collisions in ice growing by riming

    NASA Technical Reports Server (NTRS)

    Avila, Eldo E.; Caranti, Giorgio M.

    1991-01-01

    The charging of a target by riming in the wind was studied in the temperature range of (-10, -18 C). For each temperature, charge transfers of both signs are observed and, according to the environmental conditions, one of them prevails. The charge is more positive as the liquid water concentration is increased at any particular temperature. It is found that even at the low impact velocities used (5 m/s) there is abundant evidence of fragmentation following the collision.

  3. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  4. Direct Observation of Charge Transfer at a MgO(111) Surface

    NASA Astrophysics Data System (ADS)

    Subramanian, A.; Marks, L. D.; Warschkow, O.; Ellis, D. E.

    2004-01-01

    Transmission electron diffraction (TED) combined with direct methods have been used to study the √(3)×√(3)R30° reconstruction on the polar (111) surface of MgO and refine the valence charge distribution. The surface is nonstoichiometric and is terminated by a single magnesium atom. A charge-compensating electron hole is localized in the next oxygen layer and there is a nominal charge transfer from the oxygen atoms to the top magnesium atom. The partial charges that we obtain for the surface atoms are in reasonable agreement with empirical bond-valence estimations.

  5. The study of surface acoustic wave charge transfer device

    NASA Technical Reports Server (NTRS)

    Papanicolaou, N.; Lin, H. C.

    1978-01-01

    A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.

  6. Observation of excited state absorption in the V-Cr Prussian blue analogue

    NASA Astrophysics Data System (ADS)

    Hedley, Luke; Horbury, Michael D.; Liedy, Florian; Johansson, J. Olof

    2017-11-01

    We present femtosecond transient transmission measurements of thin films of the VII/III-CrIII Prussian blue analogue (V-Cr PBA) in the spectral range 330-675 nm after exciting the ligand-to-metal charge-transfer transition (LMCT) at 400 nm. A global analysis including three decay-times of τ1 = 230 fs, τ2 = 1.38 ps and τ3 ≫ 2 ns could satisfactory describe the data. We observed an excited state absorption (ESA) at 345 nm, which was attributed to a charge-transfer transition from the 2E state on the Cr ions after fast intersystem crossing from the quartet manifold. An additional weak and short-lived ESA at 455 nm was also observed and was tentatively attributed to the initially populated 4LMCT state.

  7. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    PubMed

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  8. An experimental approach to determine the heat transfer coefficient in directional solidification furnaces

    NASA Technical Reports Server (NTRS)

    Banan, Mohsen; Gray, Ross T.; Wilcox, William R.

    1992-01-01

    The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.

  9. Integrated exhaust gas recirculation and charge cooling system

    DOEpatents

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  10. Improvements of low-detection-limit filter-free fluorescence sensor developed by charge accumulation operation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kiyotsugu; Choi, Yong Joon; Moriwaki, Yu; Hizawa, Takeshi; Iwata, Tatsuya; Dasai, Fumihiro; Kimura, Yasuyuki; Takahashi, Kazuhiro; Sawada, Kazuaki

    2017-04-01

    We developed a low-detection-limit filter-free fluorescence sensor by a charge accumulation technique. For charge accumulation, a floating diffusion amplifier (FDA), which included a floating diffusion capacitor, a transfer gate, and a source follower circuit, was used. To integrate CMOS circuits with the filter-free fluorescence sensor, we adopted a triple-well process to isolate transistors from the sensor on a single chip. We detected 0.1 nW fluorescence under the illumination of excitation light by 1.5 ms accumulation, which was one order of magnitude greater than that of a previous current detection sensor.

  11. Epitaxial growth and electronic properties of well ordered phthalocyanine heterojunctions MnPc/F{sub 16}CoPc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, Susi; Mahns, Benjamin; Treske, Uwe

    2014-09-07

    We have prepared phthalocyanine heterojunctions out of MnPc and F{sub 16}CoPc, which were studied by means of X-ray absorption spectroscopy. This heterojunction is characterized by a charge transfer at the interface, resulting in charged MnPc{sup δ} {sup +} and F{sub 16}CoPc{sup δ} {sup −} species. Our data reveal that the molecules are well ordered and oriented parallel to the substrate surface. Furthermore, we demonstrate the filling of the Co 3d{sub z{sup 2}} orbital due to the charge transfer, which supports the explanation of the density functional theory, that the charge transfer is local and affects the metal centers only.

  12. Solvent Dependence of Lateral Charge Transfer in a Porphyrin Monolayer

    DOE PAGES

    Brennan, Bradley J.; Regan, Kevin P.; Durrell, Alec C.; ...

    2016-12-19

    Lateral charge transport in a redox)active monolayer can be utilized for solar energy harvesting. We chose the porphyrin system to study the influence of the solvent on lateral hole hopping, which plays a crucial role in the charge)transfer kinetics. We also examined the influence of water, acetonitrile, and propylene carbonate as solvents. Hole)hopping lifetimes varied by nearly three orders of magnitude among solvents, ranging from 3 ns in water to 2800 ns in propylene carbonate, and increased nonlinearly as a function of added acetonitrile in aqueous solvent mixtures. Our results elucidate the important roles of solvation, molecular packing dynamics, andmore » lateral charge)transfer mechanisms that have implications for all dye)sensitized photoelectrochemical device designs.« less

  13. Substitution effects on the absorption spectra of nitrophenolate isomers.

    PubMed

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-05

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  14. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  15. Electron-lattice interactions strongly renormalize the charge-transfer energy in the spin-chain cuprate Li 2CuO 2

    DOE PAGES

    Johnston, Steve; Monney, Claude; Bisogni, Valentina; ...

    2016-02-17

    Strongly correlated insulators are broadly divided into two classes: Mott–Hubbard insulators, where the insulating gap is driven by the Coulomb repulsion U on the transition-metal cation, and charge-transfer insulators, where the gap is driven by the charge-transfer energy Δ between the cation and the ligand anions. The relative magnitudes of U and Δ determine which class a material belongs to, and subsequently the nature of its low-energy excitations. These energy scales are typically understood through the local chemistry of the active ions. Here we show that the situation is more complex in the low-dimensional charge-transfer insulator Li 2CuO 2, wheremore » Δ has a large non-electronic component. Combining resonant inelastic X-ray scattering with detailed modelling, we determine how the elementary lattice, charge, spin and orbital excitations are entangled in this material. This results in a large lattice-driven renormalization of Δ, which significantly reshapes the fundamental electronic properties of Li 2CuO 2.« less

  16. Frenkel and Charge-Transfer Excitations in Donor-acceptor Complexes from Many-Body Green's Functions Theory.

    PubMed

    Baumeier, Björn; Andrienko, Denis; Rohlfing, Michael

    2012-08-14

    Excited states of donor-acceptor dimers are studied using many-body Green's functions theory within the GW approximation and the Bethe-Salpeter equation. For a series of prototypical small-molecule based pairs, this method predicts energies of local Frenkel and intermolecular charge-transfer excitations with the accuracy of tens of meV. Application to larger systems is possible and allowed us to analyze energy levels and binding energies of excitons in representative dimers of dicyanovinyl-substituted quarterthiophene and fullerene, a donor-acceptor pair used in state of the art organic solar cells. In these dimers, the transition from Frenkel to charge transfer excitons is endothermic and the binding energy of charge transfer excitons is still of the order of 1.5-2 eV. Hence, even such an accurate dimer-based description does not yield internal energetics favorable for the generation of free charges either by thermal energy or an external electric field. These results confirm that, for qualitative predictions of solar cell functionality, accounting for the explicit molecular environment is as important as the accurate knowledge of internal dimer energies.

  17. An Analytical Model of Tribocharging in Regolith

    NASA Astrophysics Data System (ADS)

    Carter, D. P.; Hartzell, C. M.

    2015-12-01

    Nongravitational forces, including electrostatic forces and cohesion, can drive the behavior of regolith in low gravity environments such as the Moon and asteroids. Regolith is the 'skin' of solid planetary bodies: it is the outer coating that is observed by orbiters and the first material contacted by landers. Triboelectric charging, the phenomenon by which electrical charge accumulates during the collision or rubbing of two surfaces, has been found to occur in initially electrically neutral granular mixtures. Although charge transfer is often attributed to chemical differences between the different materials, charge separation has also been found to occur in mixtures containing grains of a single material, but with a variety of grain sizes. In such cases, the charge always separates according to grain size; typically the smaller grains acquire a more negative charge than the larger grains. Triboelectric charging may occur in a variety of planetary phenomena (including mass wasting and dust storms) as well as during spacecraft-surface interactions (including sample collection and wheel motion). Interactions between charged grains or with the solar wind plasma could produce regolith motion. However, a validated, predictive model of triboelectric charging between dielectric grains has not yet been developed. A model for such size-dependent charge separation will be presented, demonstrating how random collisions between initially electrically neutral grains lead to net migration of electrons toward the smaller grains. The model is applicable to a wide range of single-material granular mixtures, including those with unusual or wildly varying size distributions, and suggests a possible mechanism for the reversal of the usual size-dependent charge polarity described above. This is a significant improvement over existing charge exchange models, which are restricted to two discrete grains sizes and provide severely limited estimates for charge magnitude. We will also discuss the design of an experiment planned to test the charging estimates provided by the model presented and the potential implications for our understanding of regolith behavior.

  18. Molecular dynamics and charge transport in organic semiconductors: a classical approach to modeling electron transfer

    DOE PAGES

    Pelzer, Kenley M.; Vázquez-Mayagoitia, Álvaro; Ratcliff, Laura E.; ...

    2017-01-01

    Organic photovoltaics (OPVs) are a promising carbon-neutral energy conversion technology, with recent improvements pushing power conversion efficiencies over 10%. A major factor limiting OPV performance is inefficiency of charge transport in organic semiconducting materials (OSCs). Due to strong coupling with lattice degrees of freedom, the charges form polarons, localized quasi-particles comprised of charges dressed with phonons. These polarons can be conceptualized as pseudo-atoms with a greater effective mass than a bare charge. Here we propose that due to this increased mass, polarons can be modeled with Langevin molecular dynamics (LMD), a classical approach with a computational cost much lower thanmore » most quantum mechanical methods. Here we present LMD simulations of charge transfer between a pair of fullerene molecules, which commonly serve as electron acceptors in OSCs. We find transfer rates consistent with experimental measurements of charge mobility, suggesting that this method may provide quantitative predictions of efficiency when used to simulate materials on the device scale. Our approach also offers information that is not captured in the overall transfer rate or mobility: in the simulation data, we observe exactly when and why intermolecular transfer events occur. In addition, we demonstrate that these simulations can shed light on the properties of polarons in OSCs. In conclusion, much remains to be learned about these quasi-particles, and there are no widely accepted methods for calculating properties such as effective mass and friction. Lastly, our model offers a promising approach to exploring mass and friction as well as providing insight into the details of polaron transport in OSCs.« less

  19. First principles molecular dynamics of molten NaI: Structure, self-diffusion, polarization effects, and charge transfer

    NASA Astrophysics Data System (ADS)

    Galamba, N.; Costa Cabral, B. J.

    2007-09-01

    The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.

  20. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reslan, Randa; Lopata, Kenneth; Arntsen, Christopher

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene molecules. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1–LUMO of the neutral dimer, or HOMO–LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offer a word of cautionmore » for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less

  1. Electron transfer beyond the static picture: A TDDFT/TD-ZINDO study of a pentacene dimer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reslan, Randa; Lopata, Kenneth A.; Arntsen, Christopher D.

    2012-12-14

    We use time-dependent density functional theory and time-dependent ZINDO (a semi-empirical method) to study transfer of an extra electron between a pair of pentacene dimers. A measure of the electronic transfer integral is computed in a dynamic picture via the vertical excitation energy from a delocalized anionic ground state. With increasing dimer separation, this dynamical measurement of charge transfer is shown to be significantly larger than the commonly used static approximation (i.e., LUMO+1 - LUMO of the neutral dimer, or HOMO - LUMO of the charged dimer), up to an order of magnitude higher at 6 Å. These results offermore » a word of caution for calculations involving large separations, as in organic photovoltaics, where care must be taken when using a static picture to model charge transfer.« less

  2. Charge transfer in ultracold gases via Feshbach resonances

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2017-06-01

    We investigate the prospects of using magnetic Feshbach resonance to control charge exchange in ultracold collisions of heteroisotopic combinations of atoms and ions of the same element. The proposed treatment, readily applicable to alkali or alkaline-earth metals, is illustrated on cold collisions of +9Be and 10Be. Feshbach resonances are characterized by quantum scattering calculations in a coupled-channel formalism that includes non-Born-Oppenheimer terms originating from the nuclear kinetic operator. Near a resonance predicted at 322 G, we find the charge exchange rate coefficient to rise from practically zero to values greater than 10-12cm3 /s. Our results suggest controllable charge exchange processes between different isotopes of suitable atom-ion pairs, with potential applications to quantum systems engineered to study charge diffusion in trapped cold atom-ion mixtures and emulate many-body physics.

  3. Free energy gap laws for the pulse-induced and stationary fluorescence quenching by reversible charge transfer in polar solutions.

    PubMed

    Khokhlova, Svetlana S; Burshtein, Anatoly I

    2011-01-21

    The Stern-Volmer constants for either pulse-induced or stationary fluorescence being quenched by a contact charge transfer are calculated and their free energy dependencies (the free energy gap laws) are specified. The reversibility of charge transfer is taken into account as well as spin conversion in radical ion pairs, followed by their recombination in either singlet or triplet neutral products. The natural decay of triplets as well as their impurity quenching by ionization are accounted for when estimating the fluorescence quantum yield and its free energy dependence.

  4. Change of electric dipole moment in charge transfer transitions of ferrocene oligomers studied by ultrafast two-photon absorption

    NASA Astrophysics Data System (ADS)

    Mikhaylov, Alexander; Arias, Eduardo; Moggio, Ivana; Ziolo, Ronald; Uudsemaa, Merle; Trummal, Aleksander; Cooper, Thomas; Rebane, Aleksander

    2017-02-01

    Change of permanent electric dipole moment in the lower-energy charge transfer transitions for a series of symmetrical and non-symmetrical ferrocene-phenyleneethynylene oligomers were studied by measuring the corresponding femtosecond two-photon absorption cross section spectra, and were determined to be in the range Δμ = 3 - 10 D. Quantum-chemical calculations of Δμ for the non-symmetrical oligomers show good quantitative agreement with the experimental results, thus validating two-photon absorption spectroscopy as a viable experimental approach to study electrostatic properties of organometallics and other charge transfer systems.

  5. Molecular implementation of molecular shift register memories

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor); Onuchic, Jose N. (Inventor)

    1991-01-01

    An electronic shift register memory (20) at the molecular level is described. The memory elements are based on a chain of electron transfer molecules (22) and the information is shifted by photoinduced (26) electron transfer reactions. Thus, multi-step sequences of charge transfer reactions are used to move charge with high efficiency down a molecular chain. The device integrates compositions of the invention onto a VLSI substrate (36), providing an example of a molecular electronic device which may be fabricated. Three energy level schemes, molecular implementation of these schemes, optical excitation strategies, charge amplification strategies, and error correction strategies are described.

  6. Intramolecular Charge Transfer States in the Condensed Phase

    NASA Astrophysics Data System (ADS)

    Williams, C. F.; Herbert, J. M.

    2009-06-01

    Time-Dependent Density Functional Theory (TDDFT) with long range corrected functionals can give accurate results for the energies of electronically excited states involving Intramolecular Charge Transfer (ICT) in large molecules. If this is combined with a Molecular Mechanics (MM) representation of the surrounding solvent this technique can be used to interpret the results of condensed phase UV-Vis Spectroscopy. Often the MM region is represented by a set of point charges, however this means that the solvent cannot repolarize to adapt to the new charge distribution as a result of ICT and so the excitation energies to ICT states are overestimated. To solve this problem an algorithm that interfaces TDDFT with the polarizable force-field AMOEBA is presented; the effect of solvation on charge transfer in species such as 4,4'dimethylaminobenzonitrile (DMABN) is discussed. M.A. Rohrdanz, K.M. Martins, and J.M. Herbert, J. Chem. Phys. 130 034107 (2008).

  7. Charge transfer in photorefractive CdTe:Ge at different wavelengths

    NASA Astrophysics Data System (ADS)

    Shcherbin, K.; Odoulov, S.; Ramaz, F.; Farid, B.; Briat, B.; von Bardeleben, H. J.; Delaye, P.; Roosen, G.

    2001-10-01

    The charge transfer processes in photorefractive CdTe:Ge were modeled using the data of optical absorption, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectroscopies. Within the developed model the variations in the photorefractive properties of different CdTe:Ge samples are explained by differences in the relative concentrations of donor and trap centers. The existence of two different centers of comparable concentrations, each in two charge states, allows charge redistribution between them and gives rise to optical sensitization of some CdTe:Ge samples for photorefractive recording under an auxiliary illumination. In the present article we follow the proposal of pseudo-3D presentation of light-induced absorption to distinguish the main charge transfer processes at different excitation energies and explain the sensitization of CdTe:Ge for photorefractive recording at 1.06, 1.32 and 1.55 μm by light with appropriate wavelength.

  8. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    NASA Astrophysics Data System (ADS)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  9. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors

    NASA Astrophysics Data System (ADS)

    El-Sayed, Mohamed Y.; Refat, Moamen S.

    2015-02-01

    Herein, this study was focused to get a knowledge about the intermolecular charge transfer complexes between the second generation of poly(propylene amine) dendrimer (PPD2) with picric acid (PA) and iodine (I2) as π and σ-acceptors. The charge-transfer interaction of the PPD2 electron donor and the PA acceptor has been studied in CHCl3. The resulted data refereed to the formation of the new CT-complex with the general formula [(PPD2)(PA)4]. The 1:4 stoichiometry of the reaction was discussed upon the on elemental analysis and photometric titration. On the other hand, the 1:3½ iodine-PPD2 heptaiodide (I7-) charge-transfer complex has been studied spectrophotometrically in chloroform at room temperature with general formula [(PPD2)]+I7-. The electronic absorption bands of 2I2·I3- (I7-) are observed at 358 and 294 nm. Raman laser spectrum of the brown solid heptaiodide complex has two clearly vibration bands at 155 and 110 cm-1 due to symmetric stretching νs(Isbnd I) outer and inner bonds, respectively. The 1H NMR spectra and differential scanning calorimetry (DSC) data of PPD2 charge-transfer complexes were discussed.

  10. Abnormal Magnetic Field Effects on Electrogenerated Chemiluminescence

    NASA Astrophysics Data System (ADS)

    Pan, Haiping; Shen, Yan; Wang, Hongfeng; He, Lei; Hu, Bin

    2015-03-01

    We report abnormal magnetic field effects on electrogenerated chemiluminescence (MFEECL) based on triplet emission from the Ru(bpy)3Cl2-TPrA electrochemical system: the appearance of MFEECL after magnetic field ceases. In early studies the normal MFEECL have been observed from electrochemical systems during the application of magnetic field. Here, the abnormal MFEECL suggest that the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes may become magnetized in magnetic field and experience a long magnetic relaxation after removing magnetic field. Our analysis indicates that the magnetic relaxation can gradually increase the density of charge-transfer complexes within reaction region due to decayed magnetic interactions, leading to a positive component in the abnormal MFEECL. On the other hand, the magnetic relaxation facilitates an inverse conversion from triplets to singlets within charge-transfer complexes. The inverse triplet --> singlet conversion reduces the density of triplet light-emitting states through charge-transfer complexes and gives rise to a negative component in the abnormal MFEECL. The combination of positive and negative components can essentially lead to a non-monotonic profile in the abnormal MFEECL after ceasing magnetic field. Nevertheless, our experimental studies may reveal un-usual magnetic behaviors with long magnetic relaxation from the activated charge-transfer [Ru(bpy)33+ … TPrA•] complexes in solution at room temperature.

  11. Charging of Proteins in Native Mass Spectrometry

    DOE PAGES

    Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; ...

    2016-10-12

    Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo protonmore » transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.« less

  12. Charging of Proteins in Native Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.; Tainer, John A.; Williams, Evan R.

    2017-02-01

    Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo proton transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.

  13. High-surface-area architectures for improved charge transfer kinetics at the dark electrode in dye-sensitized solar cells.

    PubMed

    Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2014-06-11

    Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

  14. Delayed Triplet-State Formation through Hybrid Charge Transfer Exciton at Copper Phthalocyanine/GaAs Heterojunction.

    PubMed

    Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won

    2017-10-05

    Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.

  15. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization.

    PubMed

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-12-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 (3-/4-) as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  16. Mediated Electron Transfer at Vertically Aligned Single-Walled Carbon Nanotube Electrodes During Detection of DNA Hybridization

    NASA Astrophysics Data System (ADS)

    Wallen, Rachel; Gokarn, Nirmal; Bercea, Priscila; Grzincic, Elissa; Bandyopadhyay, Krisanu

    2015-06-01

    Vertically aligned single-walled carbon nanotube (VASWCNT) assemblies are generated on cysteamine and 2-mercaptoethanol (2-ME)-functionalized gold surfaces through amide bond formation between carboxylic groups generated at the end of acid-shortened single-walled carbon nanotubes (SWCNTs) and amine groups present on the gold surfaces. Atomic force microscopy (AFM) imaging confirms the vertical alignment mode of SWCNT attachment through significant changes in surface roughness compared to bare gold surfaces and the lack of any horizontally aligned SWCNTs present. These SWCNT assemblies are further modified with an amine-terminated single-stranded probe-DNA. Subsequent hybridization of the surface-bound probe-DNA in the presence of complementary strands in solution is followed using impedance measurements in the presence of Fe(CN)6 3-/4- as the redox probe in solution, which show changes in the interfacial electrochemical properties, specifically the charge-transfer resistance, due to hybridization. In addition, hybridization of the probe-DNA is also compared when it is attached directly to the gold surfaces without any intermediary SWCNTs. Contrary to our expectations, impedance measurements show a decrease in charge-transfer resistance with time due to hybridization with 300 nM complementary DNA in solution with the probe-DNA attached to SWCNTs. In contrast, an increase in charge-transfer resistance is observed with time during hybridization when the probe-DNA is attached directly to the gold surfaces. The decrease in charge-transfer resistance during hybridization in the presence of VASWCNTs indicates an enhancement in the electron transfer process of the redox probe at the VASWCNT-modified electrode. The results suggest that VASWCNTs are acting as mediators of electron transfer, which facilitate the charge transfer of the redox probe at the electrode-solution interface.

  17. Dependence of triboelectric charging behavior on material microstructure

    NASA Astrophysics Data System (ADS)

    Wang, Andrew E.; Gil, Phwey S.; Holonga, Moses; Yavuz, Zelal; Baytekin, H. Tarik; Sankaran, R. Mohan; Lacks, Daniel J.

    2017-08-01

    We demonstrate that differences in the microstructure of chemically identical materials can lead to distinct triboelectric charging behavior. Contact charging experiments are carried out between strained and unstrained polytetrafluoroethylene samples. Whereas charge transfer is random between samples of identical strain, when one of the samples is strained, systematic charge transfer occurs. No significant changes in the molecular-level structure of the polymer are observed by XRD and micro-Raman spectroscopy after deformation. However, the strained surfaces are found to exhibit void and craze formation spanning the nano- to micrometer length scales by molecular dynamics simulations, SEM, UV-vis spectroscopy, and naked-eye observations. This suggests that material microstructure (voids and crazes) can govern the triboelectric charging behavior of materials.

  18. Spacecraft Charging in Geostationary Transfer Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Minow, Joseph I.

    2014-01-01

    The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.

  19. Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains

    NASA Astrophysics Data System (ADS)

    Lee, Victor

    In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on hydrophobicity. Charging between a hydrophilic and a hydrophobic surface is enhanced in a basic atmosphere and suppressed in an acidic one. Moreover, hydrophobicity is also found to play a key role in particle charging driven by an external electric field. These results strongly support the idea that aqueous-ion transfer is responsible for the particle contact charging phenomenon.

  20. New fluorescent probes for visual proteins. Part II. 5-(Oxo)penta-2,4-dienyl-p-(N,N-dimethylamino)benzoate.

    PubMed

    Papper, Vladislav; Kharlanov, Vladimir; Schädel, Sandra; Maretzki, Dieter; Rettig, Wolfgang

    2003-12-01

    A new dual-fluorescent compound, 5-(oxo)penta-2,4-dienyl-p-(N,N-dimethylamino)benzoate (1), a derivative of dimethylaminobenzoic acid, has been synthesised and studied photophysically. This compound continues the series of potential fluorescent probes for visual and proton-pumping opsin proteins. The photophysical behaviour of this molecule, including charge-transfer interaction in the ground state and dual-fluorescence emission, is similar to that of the previously studied analogue cis-3-(oxo)propenyl-p-(N,N-dimethylamino)benzoate (cis-2). The presence of several theoretically calculated conformers of compound 2 was suggested to be responsible for the observed strongly red-shifted absorption and excitation wavelength dependence. These photophysical anomalies were also observed for molecule 1, though the models put forward to explain them in the cases of 1 and 2 are rather different. Based on theoretical calculations and experimental results, we propose that some of the stable conformers might be connected with either a charge-transfer complex or mesomeric interactions in the ground state. Upon changing the electronic nature of the oxo-pentadienyl acceptor moiety, e.g. protonation, chemical or biochemical reaction, the charge-transfer absorption disappears, which leads to a dramatic increase in the fluorescence quantum yield.

  1. Simulation of solution phase electron transfer in a compact donor-acceptor dyad.

    PubMed

    Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy

    2011-10-27

    Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.

  2. Ultraviolet and Visible Emission Mechanisms in Astrophysics

    NASA Technical Reports Server (NTRS)

    Stancil, Phillip C.; Schultz, David R.

    2003-01-01

    The project involved the study of ultraviolet (UV) and visible emission mechanisms in astrophysical and atmospheric environments. In many situations, the emission is a direct consequence of a charge transferring collision of an ion with a neutral with capture of an electron to an excited state of the product ion. The process is also important in establishing the ionization and thermal balance of an astrophysical plasma. As little of the necessary collision data are available, the main thrust of the project was the calculation of total and state-selective charge transfer cross sections and rate coefficients for a very large number of collision systems. The data was computed using modern explicit techniques including the molecular-orbital close-coupling (MOCC), classical trajectory Monte Carlo (CTMC), and continuum distorted wave (CDW) methods. Estimates were also made in some instances using the multichannel Landau-Zener (MCLZ) and classical over-the-barrier (COB) models. Much of the data which has been computed has been formatted for inclusion in a charge transfer database on the World Wide Web (cfadc.phy.ornl.gov/astro/ps/data/). A considerable amount of data has been generated during the lifetime of the grant. Some of it has not been analyzed, but it will be as soon as possible, the data placed on our website, and papers ultimately written.

  3. Charge transfer mechanism in titanium-doped microporous silica for photocatalytic water-splitting applications

    DOE PAGES

    Sapp, Wendi; Koodali, Ranjit; Kilin, Dmitri

    2016-02-29

    Solar energy conversion into chemical form is possible using artificial means. One example of a highly-efficient fuel is solar energy used to split water into oxygen and hydrogen. Efficient photocatalytic water-splitting remains an open challenge for researchers across the globe. Despite significant progress, several aspects of the reaction, including the charge transfer mechanism, are not fully clear. Density functional theory combined with density matrix equations of motion were used to identify and characterize the charge transfer mechanism involved in the dissociation of water. A simulated porous silica substrate, using periodic boundary conditions, with Ti 4+ ions embedded on the innermore » pore wall was found to contain electron and hole trap states that could facilitate a chemical reaction. A trap state was located within the silica substrate that lengthened relaxation time, which may favor a chemical reaction. A chemical reaction would have to occur within the window of photoexcitation; therefore, the existence of a trapping state may encourage a chemical reaction. Furthermore, this provides evidence that the silica substrate plays an integral part in the electron/hole dynamics of the system, leading to the conclusion that both components (photoactive materials and support) of heterogeneous catalytic systems are important in optimization of catalytic efficiency.« less

  4. Interaction mechanisms and biological effects of static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tenforde, T.S.

    1994-06-01

    Mechanisms through which static magnetic fields interact with living systems are described and illustrated by selected experimental observations. These mechanisms include electrodynamic interactions with moving, ionic charges (blood flow and nerve impulse conduction), magnetomechanical interactions (orientation and translation of molecules structures and magnetic particles), and interactions with electronic spin states in charge transfer reactions (photo-induced electron transfer in photosynthesis). A general summary is also presented of the biological effects of static magnetic fields. There is convincing experimental evidence for magnetoreception mechanisms in several classes of lower organisms, including bacteria and marine organisms. However, in more highly evolved species of animals,more » there is no evidence that the interactions of static magnetic fields with flux densities up to 2 Tesla (1 Tesla [T] = 10{sup 4} Gauss) produce either behavioral or physiolocical alterations. These results, based on controlled studies with laboratory animals, are consistent with the outcome of recent epidemiological surveys on human populations exposed occupationally to static magnetic fields.« less

  5. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, R.; Calvin, M.

    1984-01-24

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospholipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transferring electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  6. Transference and Countertransference in the Psychotherapy of Therapists Charged With Sexual Misconduct

    PubMed Central

    GABBARD, GLEN O.

    1995-01-01

    When psychotherapists accused of sexual misconduct are referred for personal psychotherapy, formidable challenges are presented to the clinician designated as the psychotherapist. The author outlines common transference-countertransference themes and discusses them in terms of their psychodynamic underpinnings and optimal management. These themes include the therapist as a law enforcement agent, the therapist as a corruptible object, the therapist as a love object, the therapist as a rescuer and absolver, the therapist as an authoritarian parent, and the therapist as a voyeur. A common thread in all of these transference-counter-transference paradigms involves the discomfort experienced by the treating psychotherapists when they recognize aspects of themselves in the accused professional. PMID:22700209

  7. Negative kinetic temperature effect on the hydride transfer from NADH analogue BNAH to the radical cation of N-benzylphenothiazine in acetonitrile.

    PubMed

    Zhu, Xiao-Qing; Zhang, Jian-Yu; Cheng, Jin-Pei

    2006-09-01

    The reaction rates of 1-(p-substituted benzyl)-1,4-dihydronicotinamide (G-BNAH) with N-benzylphenothiazine radical cation (PTZ(*+)) in acetonitrile were determined. The results show that the reaction rates (k(obs)) decreased from 2.80 x 10(7) to 2.16 x 10(7) M(-1) s(-1) for G = H as the reaction temperature increased from 298 to 318 K. The activation enthalpies of the reactions were estimated according to Eyring equation to give negative values (-3.4 to -2.9 kcal/mol). Investigation of the reaction intermediate shows that the charge-transfer complex (CT-complex) between G-BNAH and PTZ(*+) was formed in front of the hydride transfer from G-BNAH to PTZ(*+). The formation enthalpy of the CT-complex was estimated by using the Benesi-Hildebrand equation to give the values from -6.4 to -6.0 kcal/mol when the substituent G in G-BNAH changes from CH(3)O to Br. Detailed thermodynamic analyses on each elementary step in the possible reaction pathways suggest that the hydride transfer from G-BNAH to PTZ(*+) occurs by a concerted hydride transfer via a CT-complex. The effective charge distribution on the pyridine ring in G-BNAH at the various stages-the reactant G-BNAH, the charge-transfer complex, the transition-state, and the product G-BNA(+)-was estimated by using the method of Hammett-type linear free energy analysis, and the results show that the pyridine ring carries relative effective positive charges of 0.35 in the CT-complex and 0.45 in the transition state, respectively, which indicates that the concerted hydride transfer from G-BNAH to PTZ(*+) was practically performed by the initial charge (-0.35) transfer from G-BNAH to PTZ(*+) and then followed by the transfer of hydrogen atom with partial negative charge (-0.65). It is evident that the present work would be helpful in understanding the nature of the negative temperature effect, especially on the reaction of NADH coenzyme with the drug phenothiazine in vivo.

  8. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout †

    PubMed Central

    Ni, Yang

    2018-01-01

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout. PMID:29443903

  9. QLog Solar-Cell Mode Photodiode Logarithmic CMOS Pixel Using Charge Compression and Readout.

    PubMed

    Ni, Yang

    2018-02-14

    In this paper, we present a new logarithmic pixel design currently under development at New Imaging Technologies SA (NIT). This new logarithmic pixel design uses charge domain logarithmic signal compression and charge-transfer-based signal readout. This structure gives a linear response in low light conditions and logarithmic response in high light conditions. The charge transfer readout efficiently suppresses the reset (KTC) noise by using true correlated double sampling (CDS) in low light conditions. In high light conditions, thanks to charge domain logarithmic compression, it has been demonstrated that 3000 electrons should be enough to cover a 120 dB dynamic range with a mobile phone camera-like signal-to-noise ratio (SNR) over the whole dynamic range. This low electron count permits the use of ultra-small floating diffusion capacitance (sub-fF) without charge overflow. The resulting large conversion gain permits a single photon detection capability with a wide dynamic range without a complex sensor/system design. A first prototype sensor with 320 × 240 pixels has been implemented to validate this charge domain logarithmic pixel concept and modeling. The first experimental results validate the logarithmic charge compression theory and the low readout noise due to the charge-transfer-based readout.

  10. Large Ice Crystal Charge Transfer Studies

    DTIC Science & Technology

    1988-10-28

    electrification. However, the extra- polation using qcd 4 was completely unjustified. With corrected values of the separation probability of ice crystals...contact to leak away from the local area or become trapped in the crystal lattice . Obviously, larger initial charge transfers, with larger 6 crystals

  11. Conjugated block copolymers as model materials to examine charge transfer in donor-acceptor systems

    NASA Astrophysics Data System (ADS)

    Gomez, Enrique; Aplan, Melissa; Lee, Youngmin

    Weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. The lack of control of interfacial structure has also prevented studies of how driving forces promote charge photogeneration, leading to conflicting hypotheses in the organic photovoltaic literature. Our approach has focused on utilizing block copolymer architectures -where critical interfaces are controlled and stabilized by covalent bonds- to provide the hierarchical structure needed for high-performance organic electronics from self-assembled soft materials. For example, we have demonstrated control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers to achieve 3% power conversion efficiencies in non-fullerene photovoltaics. Furthermore, incorporating the donor-acceptor interface within the molecular structure facilitates studies of charge transfer processes. Conjugated block copolymers enable studies of the driving force needed for exciton dissociation to charge transfer states, which must be large to maximize charge photogeneration but must be minimized to prevent losses in photovoltage in solar cell devices. Our work has systematically varied the chemical structure, energetics, and dielectric constant to perturb charge transfer. As a consequence, we predict a minimum dielectric constant needed to minimize the driving force and therefore simultaneously maximize photocurrent and photovoltage in organic photovoltaic devices.

  12. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  13. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE PAGES

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...

    2016-08-09

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  14. Charge transfer complex of some nervous and brain drugs - Part 1: Synthesis, spectroscopic, analytical and biological studies on the reaction between haloperidol antipsychotic drugs with π-acceptors

    NASA Astrophysics Data System (ADS)

    El-Habeeb, Abeer A.; Al-Saif, Foziah A.; Refat, Moamen S.

    2013-02-01

    Donor-acceptor interactions between the electron donor haloperidol (HPL) and π-acceptors like 7,7,8,8-tetracyanoquinodimethane (TCNQ) and picric acid (PA) have been studied spectrophotometrically in CH3OH solvent. The donor-acceptor (charge transfer complexes) were discussed in terms of formation constant (KCT), molar extinction coefficient (ɛCT), standard free energy (ΔGo), oscillator strength (ƒ), transition dipole moment (μ), resonance energy (RN) and ionization potential (ID). The stoichiometry of these complexes was found to be 1:1 M ratio and having the formulas [(HPL)(TCNQ)] and [(HPL)(PA)], respectively. The charge transfer interaction was successfully applied to determine of HPL drug using mentioned common π-acceptors also, the results obtained herein are satisfactory for estimation of HPL compound in the pharmaceutical form. The formed solid charge-transfer complexes were also isolated and characterized using elemental analysis, conductivity, (infrared, Raman, and 1H NMR) spectra and X-ray powder diffraction (XRD). The experimental data of elemental analyses are in agreement with calculated data. The infrared spectra of both HPL complexes are confirming the participation of sbnd OH of 4-hydroxy-1-piperidyl moiety in the donor-acceptor chelation. The morphological surface of the resulted charge transfer complexes were investigated using scanning electron microscopy (SEM). The thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) techniques were performed to give knowledge about the thermal stability behavior of the synthesized charge transfer complexes. Thermodynamic parameters were computed from the thermal decomposition data. These complexes were also tested for their antimicrobial activity against six different microorganisms, and the results were compared with the parent drug.

  15. DFT and TD-DFT computation of charge transfer complex between o-phenylenediamine and 3,5-dinitrosalicylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afroz, Ziya; Zulkarnain,; Ahmad, Afaq, E-mail: afaqahmad3@gmail.com

    2016-05-23

    DFT and TD-DFT studies of o-phenylenediamine (PDA), 3,5-dinitrosalicylic acid (DNSA) and their charge transfer complex have been carried out at B3LYP/6-311G(d,p) level of theory. Molecular geometry and various other molecular properties like natural atomic charges, ionization potential, electron affinity, band gap, natural bond orbital (NBO) and frontier molecular analysis have been presented at same level of theory. Frontier molecular orbital and natural bond orbital analysis show the charge delocalization from PDA to DNSA.

  16. Crystallochromy of perylene pigments: Interference between Frenkel excitons and charge-transfer states

    NASA Astrophysics Data System (ADS)

    Gisslén, Linus; Scholz, Reinhard

    2009-09-01

    The optical properties of perylene-based pigments are arising from the interplay between neutral molecular excitations and charge transfer between adjacent molecules. In the crystalline phase, these excitations are coupled via electron and hole transfer, two quantities relating directly to the width of the conduction and valence band in the crystalline phase. Based on the crystal structure determined by x-ray diffraction, density-functional theory (DFT) and Hartree-Fock are used for the calculation of the electronic states of a dimer of stacked molecules. The resulting transfer parameters for electron and hole are used in an exciton model for the coupling between Frenkel excitons and charge-transfer states. The deformation of the positively or negatively charged molecular ions with respect to the neutral ground state is calculated with DFT and the geometry in the optically excited state is deduced from time-dependent DFT and constrained DFT. All of these deformations are interpreted in terms of the elongation of an effective internal vibration which is used subsequently in the exciton model for the crystalline phase. A comparison between the calculated dielectric function and the observed optical spectra allows to deduce the relative energetic position of Frenkel excitons and the charge-transfer state involving stack neighbors, a key parameter for various electronic and optoelectronic device applications. For five out of six perylene pigments studied in the present work, this exciton model results in excellent agreement between calculated and observed optical properties.

  17. Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO 2 Interface in Quantum Dot-Sensitized Solar Cells

    DOE PAGES

    Xin, Xukai; Li, Bo; Jung, Jaehan; ...

    2014-07-24

    Quantum dot-sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next-generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO 2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. In order to understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO 2 substrate are simulated using a rigorous ab initio density functional method. Our method capitalizes onmore » localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO 2 occurring via the strong bonding between the conduction bands of QDs and TiO 2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO 2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO 2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO 2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.« less

  18. First-principles calculation of photo-induced electron transfer rate constants in phthalocyanine-C60 organic photovoltaic materials: Beyond Marcus theory

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    Classical Marcus theory is commonly adopted in solvent-mediated charge transfer (CT) process to obtain the CT rate constant, but it can become questionable when the intramolecular vibrational modes dominate the CT process as in OPV devices because Marcus theory treats these modes classically and therefore nuclear tunneling is not accounted for. We present a computational scheme to obtain the electron transfer rate constant beyond classical Marcus theory. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided. Ab initio calculations are used to obtain the basic parameters needed for calculating the electron transfer rate constant. We apply our methodology to phthalocyanine(H2PC)-C60 organic photovoltaic system where one C60 acceptor and one or two H2PC donors are included to model the donor-acceptor interface configuration. We obtain the electron transfer and recombination rate constants for all accessible charge transfer (CT) states, from which the CT exciton dynamics is determined by employing a master equation. The role of higher lying excited states in CT exciton dynamics is discussed. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  19. Using quantum dynamics simulations to follow the competition between charge migration and charge transfer in polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Spinlove, K. E.; Vacher, M.; Bearpark, M.; Robb, M. A.; Worth, G. A.

    2017-01-01

    Recent work, particularly by Cederbaum and co-workers, has identified the phenomenon of charge migration, whereby charge flow occurs over a static molecular framework after the creation of an electronic wavepacket. In a real molecule, this charge migration competes with charge transfer, whereby the nuclear motion also results in the re-distribution of charge. To study this competition, quantum dynamics simulations need to be performed. To break the exponential scaling of standard grid-based algorithms, approximate methods need to be developed that are efficient yet able to follow the coupled electronic-nuclear motion of these systems. Using a simple model Hamiltonian based on the ionisation of the allene molecule, the performance of different methods based on Gaussian Wavepackets is demonstrated.

  20. Charge transfer kinetics at the solid-solid interface in porous electrodes

    NASA Astrophysics Data System (ADS)

    Bai, Peng; Bazant, Martin Z.

    2014-04-01

    Interfacial charge transfer is widely assumed to obey the Butler-Volmer kinetics. For certain liquid-solid interfaces, the Marcus-Hush-Chidsey theory is more accurate and predictive, but it has not been applied to porous electrodes. Here we report a simple method to extract the charge transfer rates in carbon-coated LiFePO4 porous electrodes from chronoamperometry experiments, obtaining curved Tafel plots that contradict the Butler-Volmer equation but fit the Marcus-Hush-Chidsey prediction over a range of temperatures. The fitted reorganization energy matches the Born solvation energy for electron transfer from carbon to the iron redox site. The kinetics are thus limited by electron transfer at the solid-solid (carbon-LixFePO4) interface rather than by ion transfer at the liquid-solid interface, as previously assumed. The proposed experimental method generalizes Chidsey’s method for phase-transforming particles and porous electrodes, and the results show the need to incorporate Marcus kinetics in modelling batteries and other electrochemical systems.

  1. Charge Transfer in Multiple Site Chemical Systems.

    DTIC Science & Technology

    1985-05-30

    oxidation either chemically (using excess Ce+(IV)) or electrochemically (using a reticulated vitreous carbon electrode potentiostated at +1.20 V vs.. SCE...The resulting polymers form fairly stable, electrochemically active films on the cxidizing electrode, which can be Pt, SnO2 or vitreous carbon ...surface, including platinum and glassy carbon electrodes. The redox couples incorporated include polypyrydyl omplexes of iron, ruthenium and osmium

  2. Charge states of ions, and mechanisms of charge ordering transitions

    NASA Astrophysics Data System (ADS)

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  3. Spectroscopy of charge transfer states in Mg1 - x Ni x O

    NASA Astrophysics Data System (ADS)

    Churmanov, V. N.; Sokolov, V. I.; Pustovarov, V. A.; Gruzdev, N. B.; Mironova-Ulmane, N.

    2016-10-01

    Photoluminescence and photoluminescence excitation spectra of solid solution Mg1- x Ni x O ( x = 0.008) have been analyzed. The contributions of charge transfer electronic states and nonradiative Auger relaxation to the formation of the photoluminescence spectrum are discussed.

  4. Charge-transfer complexes and their role in exciplex emission and near-infrared photovoltaics.

    PubMed

    Ng, Tsz-Wai; Lo, Ming-Fai; Fung, Man-Keung; Zhang, Wen-Jun; Lee, Chun-Sing

    2014-08-20

    Charge transfer and interactions at organic heterojunctions (OHJs) are known to have critical influences on various properties of organic electronic devices. In this Research News article, a short review is given from the electronic viewpoint on how the local molecular interactions and interfacial energetics at P/N OHJs contribute to the recombination/dissociation of electron-hole pairs. Very often, the P-type materials donate electrons to the N-type materials, giving rise to charge-transfer complexes (CTCs) with a P(δ+) -N(δ-) configuration. A recently observed opposite charge-transfer direction in OHJs is also discussed (i.e., N-type material donates electrons to P-type material to form P(δ-) -N(δ+) ). Recent studies on the electronic structures of CTC-forming material pairs are also summarized. The formation of P(δ-) -N(δ+) -type CTCs and their correlations with exciplex emission are examined. Furthermore, the potential applications of CTCs in NIR photovoltaic devices are reviewed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    NASA Astrophysics Data System (ADS)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  6. Evidences For Charge Transfer-Induced Conformational Changes In Carbon Nanostructure-Protein Corona

    PubMed Central

    Podila, R.; Vedantam, P.; Ke, P. C.; Brown, J. M.; Rao, A. M.

    2012-01-01

    The binding of proteins to a nanostructure often alters protein secondary and tertiary structures. However, the main physical mechanisms that elicit protein conformational changes in the presence of the nanostructure have not yet been fully established. Here we performed a comprehensive spectroscopic study to probe the interactions between bovine serum albumin (BSA) and carbon-based nanostructures of graphene and single-walled carbon nanotubes (SWNTs). Our results showed that the BSA “corona” acted as a weak acceptor to facilitate charge transfer from the carbon nanostructures. Notably, we observed that charge transfer occurred only in the case of SWNTs but not in graphene, resulting from the sharp and discrete electronic density of states of the former. Furthermore, the relaxation of external α–helices in BSA secondary structure increased concomitantly with the charge transfer. These results may help guide controlled nanostructure-biomolecular interactions and prove beneficial for developing novel drug delivery systems, biomedical devices and engineering of safe nanomaterials. PMID:23243478

  7. Competing charge transfer pathways at the photosystem II-electrode interface

    PubMed Central

    Zhang, Jenny Z.; Sokol, Katarzyna P.; Paul, Nicholas; Romero, Elisabet; van Grondelle, Rienk; Reisner, Erwin

    2016-01-01

    The integration of the water-oxidation enzyme, photosystem II (PSII), into electrodes allows the electrons extracted from water-oxidation to be harnessed for enzyme characterization and driving novel endergonic reactions. However, PSII continues to underperform in integrated photoelectrochemical systems despite extensive optimization efforts. Here, we performed protein-film photoelectrochemistry on spinach and Thermosynechococcus elongatus PSII, and identified a competing charge transfer pathway at the enzyme-electrode interface that short-circuits the known water-oxidation pathway: photo-induced O2 reduction occurring at the chlorophyll pigments. This undesirable pathway is promoted by the embedment of PSII in an electron-conducting matrix, a common strategy of enzyme immobilization. Anaerobicity helps to recover the PSII photoresponses, and unmasked the onset potentials relating to the QA/QB charge transfer process. These findings have imparted a fuller understanding of the charge transfer pathways within PSII and at photosystem-electrode interfaces, which will lead to more rational design of pigment-containing photoelectrodes in general. PMID:27723748

  8. Spectrophotometric and spectroscopic studies of charge transfer complex of 1-Naphthylamine as an electron donor with picric acid as an electron acceptor in different polar solvents

    NASA Astrophysics Data System (ADS)

    Singh, Neeti; Ahmad, Afaq

    2010-08-01

    The charge transfer complex of 1-Naphthylamine as a donor with π-acceptor picric acid has been studied spectrophotometrically in different solvents at room temperature. The results indicate that the formation of charge transfer complex is high in less polar solvent. The stoichiometry of the complex was found to be 1:1 by straight line method. The data are analysed in terms of formation constant ( KCT), molar extinction coefficient ( ɛCT), standard free energy (Δ G o), oscillator strength ( ƒ), transition dipole moment ( μ EN), resonance energy ( R N) and ionization potential ( I D). It is concluded that the formation constant ( KCT) of the complex is found to be depends upon the nature of both electron acceptor and donor and also on the polarity of solvents. Further the charge transfer molecular complex between picric acid and 1-Naphthylamine is stabilized by hydrogen bonding.

  9. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities

    NASA Astrophysics Data System (ADS)

    Samba, R.; Herrmann, T.; Zeck, G.

    2015-02-01

    Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.

  10. A general intermolecular force field based on tight-binding quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas

    2017-10-01

    A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.

  11. Electric power processing, distribution, management and energy storage

    NASA Astrophysics Data System (ADS)

    Giudici, R. J.

    1980-07-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  12. Electric power processing, distribution, management and energy storage

    NASA Technical Reports Server (NTRS)

    Giudici, R. J.

    1980-01-01

    Power distribution subsystems are required for three elements of the SPS program: (1) orbiting satellite, (2) ground rectenna, and (3) Electric Orbiting Transfer Vehicle (EOTV). Power distribution subsystems receive electrical power from the energy conversion subsystem and provide the power busses rotary power transfer devices, switchgear, power processing, energy storage, and power management required to deliver control, high voltage plasma interactions, electric thruster interactions, and spacecraft charging of the SPS and the EOTV are also included as part of the power distribution subsystem design.

  13. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yukihira, Nao; Sugai, Yuko; Fujiwara, Masazumi

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin intomore » a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.« less

  14. Development of a Simple Electron Transfer and Polarization Model and Its Application to Biological Systems.

    PubMed

    Diller, David J

    2017-01-10

    Here we present a new method for point charge calculation which we call Q ET (charges by electron transfer). The intent of this work is to develop a method that can be useful for studying charge transfer in large biological systems. It is based on the intuitive framework of the Q EQ method with the key difference being that the Q ET method tracks all pairwise electron transfers by augmenting the Q EQ pseudoenergy function with a distance dependent cost function for each electron transfer. This approach solves the key limitation of the Q EQ method which is its handling of formally charged groups. First, we parametrize the Q ET method by fitting to electrostatic potentials calculated using ab initio quantum mechanics on over 11,000 small molecules. On an external test set of over 2500 small molecules the Q ET method achieves a mean absolute error of 1.37 kcal/mol/electron when compared to the ab initio electrostatic potentials. Second, we examine the conformational dependence of the charges on over 2700 tripeptides. With the tripeptide data set, we show that the conformational effects account for approximately 0.4 kcal/mol/electron on the electrostatic potentials. Third, we test the Q ET method for its ability to reproduce the effects of polarization and electron transfer on 1000 water clusters. For the water clusters, we show that the Q ET method captures about 50% of the polarization and electron transfer effects. Finally, we examine the effects of electron transfer and polarizability on the electrostatic interaction between p38 and 94 small molecule ligands. When used in conjunction with the Generalized-Born continuum solvent model, polarization and electron transfer with the Q ET model lead to an average change of 17 kcal/mol on the calculated electrostatic component of ΔG.

  15. Direct Observation of Individual Charges and Their Dynamics on Graphene by Low-Energy Electron Holography.

    PubMed

    Latychevskaia, Tatiana; Wicki, Flavio; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2016-09-14

    Visualizing individual charges confined to molecules and observing their dynamics with high spatial resolution is a challenge for advancing various fields in science, ranging from mesoscopic physics to electron transfer events in biological molecules. We show here that the high sensitivity of low-energy electrons to local electric fields can be employed to directly visualize individual charged adsorbates and to study their behavior in a quantitative way. This makes electron holography a unique probing tool for directly visualizing charge distributions with a sensitivity of a fraction of an elementary charge. Moreover, spatial resolution in the nanometer range and fast data acquisition inherent to lens-less low-energy electron holography allows for direct visual inspection of charge transfer processes.

  16. Room-temperature current blockade in atomically defined single-cluster junctions

    NASA Astrophysics Data System (ADS)

    Lovat, Giacomo; Choi, Bonnie; Paley, Daniel W.; Steigerwald, Michael L.; Venkataraman, Latha; Roy, Xavier

    2017-11-01

    Fabricating nanoscopic devices capable of manipulating and processing single units of charge is an essential step towards creating functional devices where quantum effects dominate transport characteristics. The archetypal single-electron transistor comprises a small conducting or semiconducting island separated from two metallic reservoirs by insulating barriers. By enabling the transfer of a well-defined number of charge carriers between the island and the reservoirs, such a device may enable discrete single-electron operations. Here, we describe a single-molecule junction comprising a redox-active, atomically precise cobalt chalcogenide cluster wired between two nanoscopic electrodes. We observe current blockade at room temperature in thousands of single-cluster junctions. Below a threshold voltage, charge transfer across the junction is suppressed. The device is turned on when the temporary occupation of the core states by a transiting carrier is energetically enabled, resulting in a sequential tunnelling process and an increase in current by a factor of ∼600. We perform in situ and ex situ cyclic voltammetry as well as density functional theory calculations to unveil a two-step process mediated by an orbital localized on the core of the cluster in which charge carriers reside before tunnelling to the collector reservoir. As the bias window of the junction is opened wide enough to include one of the cluster frontier orbitals, the current blockade is lifted and charge carriers can tunnel sequentially across the junction.

  17. Enhancement of IR and VCD intensities due to charge transfer.

    PubMed

    Nicu, Valentin Paul; Autschbach, Jochen; Baerends, Evert Jan

    2009-03-14

    Donor-acceptor interactions such as the one between the Cl(-) base and the N-H sigma* acceptor orbitals encountered in the complexation of Cl(-) counterions to the [Co(en)(3)](3+) transition metal complex, have been shown to cause huge enhancement (between 1 and 2 orders of magnitude) of the VCD intensities of N-H stretching modes. This effect has been fully analyzed, and could be attributed to increased charge flow from the Cl(-) donors when the N-H bonds become stretched. The transfer of charge counteracts the movement of negative electronic charge that happens along with the motion of the H nuclei, effectively reversing the electronic part of the electric dipole transition moment (EDTM) in the direction of the charge flow (z, say), and of the magnetic transition dipole moment (MDTM) in the perpendicular direction. The consequences for the IR and VCD intensity follow: IR intensity is strongly increased if the EDTM is polarized in the z direction, e.g. in A(2) modes, but not so much if it is polarized in the xy plane (E modes), the VCD is strongly enhanced if the EDTM and MTDM are polarized in the xy plane (in E modes), but less so when they are polarized in the z direction (in A(2) modes). The explanation holds generally for complexation phenomena of this sort, including the donor-acceptor part of hydrogen bonding interactions, e.g. with solvent molecules.

  18. Computational Investigation of Amine–Oxygen Exciplex Formation

    PubMed Central

    Haupert, Levi M.; Simpson, Garth J.; Slipchenko, Lyudmila V.

    2012-01-01

    It has been suggested that fluorescence from amine-containing dendrimer compounds could be the result of a charge transfer between amine groups and molecular oxygen [Chu, C.-C.; Imae, T. Macromol. Rapid Commun. 2009, 30, 89.]. In this paper we employ equation-of-motion coupled cluster computational methods to study the electronic structure of an ammonia–oxygen model complex to examine this possibility. The results reveal several bound electronic states with charge transfer character with emission energies generally consistent with previous observations. However, further work involving confinement, solvent, and amine structure effects will be necessary for more rigorous examination of the charge transfer fluorescence hypothesis. PMID:21812447

  19. Generalized Breit-Wigner treatment of molecular transport: Charging effects in a single decanedithiol molecule

    NASA Astrophysics Data System (ADS)

    Cabrera-Tinoco, Hugo Andres; Moreira, Augusto C. L.; de Melo, Celso P.

    2018-05-01

    We examine the relative contribution of ballistic and elastic cotunneling mechanisms to the charge transport through a single decanedithiol molecule linked to two terminal clusters of gold atoms. For this, we first introduced a conceptual model that permits a generalization of the Breit-Wigner scattering formalism where the cation, anion, and neutral forms of the molecule can participate with different probabilities of the charge transfer process, but in a simultaneous manner. We used a density functional theory treatment and considered the fixed geometry of each charge state to calculate the corresponding eigenvalues and eigenvectors of the extended system for different values of the external electric field. We have found that for the ballistic transport the HOMO and LUMO of the neutral species play a key role, while the charged states give a negligible contribution. On the other hand, an elastic cotunneling charge transfer can occur whenever a molecular orbital (MO) of the cation or anion species, even if localized in just one side of the molecule-gold clusters complex, has energy close to that of a delocalized MO of the neutral species. Under these conditions, a conduction channel is formed throughout the entire system, in a process that is controlled by the degree of resonance between the MOs involved. Our results indicate that while different charge transfer mechanisms contribute to the overall charge transport, quantum effects such as avoided-crossing situations between relevant frontier MOs can be of special importance. In these specific situations, the interchange of spatial localization of two MOs involved in the crossing can open a new channel of charge transfer that otherwise would not be available.

  20. Vibrationally-resolved Charge Transfer of O^3+ Ions with Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.; Turner, A. R.; Cooper, D. L.

    2003-05-01

    Charge transfer processes due to collisions of ground state O^3+ ions with H2 are investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method. The MOCC calculations utilize ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. Vibrationally-resolved cross sections for energies between 0.1 eV/u and 2 keV/u using the infinite order sudden approximation (IOSA), vibrational sudden approximation (VSA), and electronic approximation (EA), but including Frank-Condon factors (the centroid approximation) will be presented. Comparison with existing experimental data for total cross sections shows best agreement with IOSA and discrepancies for VSA and EA. Triplet-singlet cross section ratios obtained with IOSA are found generally to be in harmony with experiment. JGW and PCS acknowledge support from NASA grant 11453.

  1. Control of interfacial charge-transfer interaction of dye and p-CuI in solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Moribe, Shinya; Kato, Naohiko; Higuchi, Kazuo; Mizumoto, Katsuyoshi; Toyoda, Tatsuo

    2017-04-01

    We systematically investigated the photovoltaic and absorption characteristics of solid-state dye-sensitized solar cells with CuI to elucidate the impact of the interaction between the dye and CuI. For the ruthenium complex N719, the incident photon-to-current conversion efficiency (IPCE) on the longer-wavelength side decreased owing to the change of the metal-to-ligand charge transfer (CT) of N719 due to the interaction between the thiocyanate groups of N719 and CuI. In contrast, when D149 — which included rhodanine groups — was used, the interaction with CuI and the resultant CT increased the IPCE. The results provide a new strategy for improving the photovoltaic performance by controlling the interfacial CT between the dye and CuI.

  2. Electron Transfer Dissociation of iTRAQ Labeled Peptide Ions

    PubMed Central

    Han, Hongling; Pappin, Darryl J.; Ross, Philip L; McLuckey, Scott A.

    2009-01-01

    Triply and doubly charged iTRAQ (isobaric tagging for relative and absolute quantitation) labeled peptide cations from a tryptic peptide mixture of bovine carbonic anhydrase II were subjected to electron transfer ion/ion reactions to investigate the effect of charge bearing modifications associated with iTRAQ on the fragmentation pattern. It was noted that electron transfer dissociation (ETD) of triply charged or activated ETD (ETD + supplemental collisional activation of intact electron transfer species) of doubly charged iTRAQ tagged peptide ions yielded extensive sequence information, in analogy with ETD of unmodified peptide ions. That is, addition of the fixed charge iTRAQ tag showed relatively little deleterious effect on the ETD performance of the modified peptides. ETD of the triply charged iTRAQ labeled peptide ions followed by collision-induced dissociation (CID) of the product ion at m/z 162 yielded the reporter ion at m/z 116, which is the reporter ion used for quantitation via CID of the same precursor ions. The reporter ion formed via the two-step activation process is expected to provide quantitative information similar to that directly produced from CID. A 103 Da neutral loss species observed in the ETD spectra of all the triply and doubly charged iTRAQ labeled peptide ions is unique to the 116 Da iTRAQ reagent, which implies that this process also has potential for quantitation of peptides/proteins. Therefore, ETD with or without supplemental collisional activation, depending on the precursor ion charge state, has the potential to directly identify and quantify the peptides/proteins simultaneously using existing iTRAQ reagents. PMID:18646790

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susa, Anna C.; Xia, Zijie; Tang, Henry Y. H.

    Factors that influence the charging of protein ions formed by electrospray ionization from aqueous solutions in which proteins have native structures and function were investigated. Protein ions ranging in molecular weight from 12.3 to 79.7 kDa and pI values from 5.4 to 9.6 were formed from different solutions and reacted with volatile bases of gas-phase basicities higher than that of ammonia in the cell of a Fourier-transform ion cyclotron resonance mass spectrometer. The charge-state distribution of cytochrome c ions formed from aqueous ammonium or potassium acetate is the same. Moreover, ions formed from these two solutions do not undergo protonmore » transfer to 2-fluoropyridine, which is 8 kcal/mol more basic than ammonia. These results provide compelling evidence that proton transfer between ammonia and protein ions does not limit protein ion charge in native electrospray ionization. Both circular dichroism and ion mobility measurements indicate that there are differences in conformations of proteins in pure water and aqueous ammonium acetate, and these differences can account for the difference in the extent of charging and proton-transfer reactivities of protein ions formed from these solutions. The extent of proton transfer of the protein ions with higher gas-phase basicity bases trends with how closely the protein ions are charged to the value predicted by the Rayleigh limit for spherical water droplets approximately the same size as the proteins. These results indicate that droplet charge limits protein ion charge in native mass spectrometry and are consistent with these ions being formed by the charged residue mechanism.« less

  4. Charged particle concepts for fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Collins, F. G.; Koepf, D.

    1981-01-01

    Charged particle techniques hold promise for dispersing warm fog in the terminal area of commercial airports. This report focuses on features of the charged particle technique which require further study. The basic physical principles of the technique and the major verification experiments carried out in the past are described. The fundamentals of the nozzle operation are given. The nozzle characteristics and the theory of particle charging in the nozzle are discussed, including information from extensive literature on electrostatic precipitation relative to environmental pollution control and a description of some preliminary reported analyses on the jet characteristics and interaction with neighboring jets. The equation governing the transfer of water substances and of electrical charge is given together with a brief description of several semi-empirical, mathematical expressions necessary for the governing equations. The necessary ingredients of a field experiment to verify the system once a prototype is built are described.

  5. An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals.

    PubMed

    Chawla, Parul; Singh, Son; Sharma, Shailesh Narain

    2014-01-01

    In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.

  6. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  7. Analysis of pulsed injection for microgravity receiver tank chilldown

    NASA Astrophysics Data System (ADS)

    Honkonen, Scott C.; Pietrzyk, Joe R.; Schuster, John R.

    The dominant heat transfer mechanism during the hold phase of a tank chilldown cycle in a low-gravity environment is due to fluid motion persistence following the charge. As compared to the single-charge per vent cycle case, pulsed injection maintains fluid motion and the associated high wall heat transfer coefficients during the hold phase. As a result, the pulsed injection procedure appears to be an attractive method for reducing the time and liquid mass required to chill a tank. However, for the representative conditions considered, no significant benefit can be realized by using pulsed injection as compared to the single-charge case. A numerical model of the charge/hold/vent process was used to evaluate the pulsed injection procedure for tank chilldown in microgravity. Pulsed injection results in higher average wall heat transfer coefficients during the hold, as compared to the single-charge case. However, these high levels were not coincident with the maximum wall-to-fluid temperature differences, as in the single-charge case. For representative conditions investigated, the charge/hold/vent process is very efficient. A slightly shorter chilldown time was realized by increasing the number of pulses.

  8. The behavior of exciplex decay processes and interplay of radiationless transition and preliminary reorganization mechanisms of electron transfer in loose and tight pairs of reactants.

    PubMed

    Kuzmin, Michael G; Soboleva, Irina V; Dolotova, Elena V

    2007-01-18

    Exciplex emission spectra and rate constants of their decay via internal conversion and intersystem crossing are studied and discussed in terms of conventional radiationless transition approach. Exciplexes of 9-cyanophenanthrene with 1,2,3-trimethoxybenzene and 1,3,5-trimethoxybenzene were studied in heptane, toluene, butyl acetate, dichloromethane, butyronitrile, and acetonitrile. A better description of spectra and rate constants is obtained using 0-0 transition energy and Gauss broadening of vibrational bands rather than the free energy of electron transfer and reorganization energy. The coincidence of parameters describing exciplex emission spectra and dependence of exciplex decay rate constants on energy gap gives the evidence of radiationless quantum transition mechanism rather than thermally activated medium reorganization mechanism of charge recombination in exciplexes and excited charge transfer complexes (contact radical ion pairs) as well as in solvent separated radical ion pairs. Radiationless quantum transition mechanism is shown to provide an appropriate description also for the main features of exergonic excited-state charge separation reactions if fast mutual transformations of loose and tight pairs of reactants are considered. In particular, very fast electron transfer (ET) in tight pairs of reactants with strong electronic coupling of locally excited and charge transfer states can prevent the observation of an inverted region in bimolecular excited-state charge separation even for highly exergonic reactions.

  9. Effect of Molecular Coupling on Ultrafast Electron-Transfer and Charge-Recombination Dynamics in a Wide-Gap ZnS Nanoaggregate Sensitized by Triphenyl Methane Dyes.

    PubMed

    Debnath, Tushar; Maity, Partha; Dana, Jayanta; Ghosh, Hirendra N

    2016-03-03

    Wide-band-gap ZnS nanocrystals (NCs) were synthesized, and after sensitizing the NCs with series of triphenyl methane (TPM) dyes, ultrafast charge-transfer dynamics was demonstrated. HRTEM images of ZnS NCs show the formation of aggregate crystals with a flower-like structure. Exciton absorption and lumimescence, due to quantum confinement of the ZnS NCs, appear at approximately 310 and 340 nm, respectively. Interestingly, all the TPM dyes (pyrogallol red, bromopyrogallol red, and aurin tricarboxylic acid) form charge-transfer complexes with the ZnS NCs, with the appearance of a red-shifted band. Electron injection from the photoexcited TPM dyes into the conduction band of the ZnS NCs is shown to be a thermodynamically viable process, as confirmed by steady-state and time-resolved emission studies. To unravel charge-transfer (both electron injection and charge recombination) dynamics and the effect of molecular coupling, femtosecond transient absorption studies were carried out in TPM-sensitized ZnS NCs. The electron-injection dynamics is pulse-width-limited in all the ZnS/TPM dye systems, however, the back electron transfer differs, depending on the molecular coupling of the sensitizers (TPM dyes). The detailed mechanisms for the above-mentioned processes are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structural and spectroscopic characterizations on the charge-transfer interactions of the second generation poly(propylene amine) dendrimers with iodine and picric acid acceptors.

    PubMed

    El-Sayed, Mohamed Y; Refat, Moamen S

    2015-02-25

    Herein, this study was focused to get a knowledge about the intermolecular charge transfer complexes between the second generation of poly(propylene amine) dendrimer (PPD2) with picric acid (PA) and iodine (I2) as π and σ-acceptors. The charge-transfer interaction of the PPD2 electron donor and the PA acceptor has been studied in CHCl3. The resulted data refereed to the formation of the new CT-complex with the general formula [(PPD2)(PA)4]. The 1:4 stoichiometry of the reaction was discussed upon the on elemental analysis and photometric titration. On the other hand, the 1:3½ iodine-PPD2 heptaiodide (I7(-)) charge-transfer complex has been studied spectrophotometrically in chloroform at room temperature with general formula [(PPD2)](+)I7(-). The electronic absorption bands of 2I2·I3(-) (I7(-)) are observed at 358 and 294 nm. Raman laser spectrum of the brown solid heptaiodide complex has two clearly vibration bands at 155 and 110 cm(-1) due to symmetric stretching νs(II) outer and inner bonds, respectively. The (1)H NMR spectra and differential scanning calorimetry (DSC) data of PPD2 charge-transfer complexes were discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Study of lithium cation in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Li, Xin; Yang, Zhong-Zhi

    2005-05-12

    We present a potential model for Li(+)-water clusters based on a combination of the atom-bond electronegativity equalization and molecular mechanics (ABEEM/MM) that is to take ABEEM charges of the cation and all atoms, bonds, and lone pairs of water molecules into the intermolecular electrostatic interaction term in molecular mechanics. The model allows point charges on cationic site and seven sites of an ABEEM-7P water molecule to fluctuate responding to the cluster geometry. The water molecules in the first sphere of Li(+) are strongly structured and there is obvious charge transfer between the cation and the water molecules; therefore, the charge constraint on the ionic cluster includes the charged constraint on the Li(+) and the first-shell water molecules and the charge neutrality constraint on each water molecule in the external hydration shells. The newly constructed potential model based on ABEEM/MM is first applied to ionic clusters and reproduces gas-phase state properties of Li(+)(H(2)O)(n) (n = 1-6 and 8) including optimized geometries, ABEEM charges, binding energies, frequencies, and so on, which are in fair agreement with those measured by available experiments and calculated by ab initio methods. Prospects and benefits introduced by this potential model are pointed out.

  12. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  13. Molecular layers of ZnPc and FePc on Au(111) surface: Charge transfer and chemical interaction

    NASA Astrophysics Data System (ADS)

    Ahmadi, Sareh; Shariati, M. Nina; Yu, Shun; Göthelid, Mats

    2012-08-01

    We have studied zinc phthalocyanine (ZnPc) and iron phthalocyanine (FePc) thick films and monolayers on Au(111) using photoelectron spectroscopy and x-ray absorption spectroscopy. Both molecules are adsorbed flat on the surface at monolayer. ZnPc keeps this orientation in all investigated coverages, whereas FePc molecules stand up in the thick film. The stronger inter-molecular interaction of FePc molecules leads to change of orientation, as well as higher conductivity in FePc layer in comparison with ZnPc, which is reflected in thickness-dependent differences in core-level shifts. Work function changes indicate that both molecules donate charge to Au; through the π-system. However, the Fe3d derived lowest unoccupied molecular orbital receives charge from the substrate when forming an interface state at the Fermi level. Thus, the central atom plays an important role in mediating the charge, but the charge transfer as a whole is a balance between the two different charge transfer channels; π-system and the central atom.

  14. Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries

    NASA Astrophysics Data System (ADS)

    Le, Xuan Que; Nguyen, Phu Thuy

    2002-12-01

    As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.

  15. Melting of Pb Charge Glass and Simultaneous Pb-Cr Charge Transfer in PbCrO 3 as the Origin of Volume Collapse

    DOE PAGES

    Yu, Runze; Hojo, Hajime; Watanuki, Tetsu; ...

    2015-09-15

    A metal to insulator transition in integer or half integer charge systems can be regarded as crystallization of charges. The insulating state tends to have a glassy nature when randomness or geometrical frustration exists. In this paper, we report that the charge glass state is realized in a perovskite compound PbCrO 3, which has been known for almost 50 years, without any obvious inhomogeneity or triangular arrangement in the charge system. PbCrO 3 has a valence state of Pb 2+ 0.5Pb 4+ 0.5Cr 3+O 3 with Pb 2+–Pb 4+ correlation length of three lattice-spacings at ambient condition. A pressure inducedmore » melting of charge glass and simultaneous Pb–Cr charge transfer causes an insulator to metal transition and ~10% volume collapse.« less

  16. Electrically conducting polymers for aerospace applications

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  17. Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates.

    PubMed

    Selvakannan, Pr; Ramanathan, Rajesh; Plowman, Blake J; Sabri, Ylias M; Daima, Hemant K; O'Mullane, Anthony P; Bansal, Vipul; Bhargava, Suresh K

    2013-08-21

    The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.

  18. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

  19. Simple Model for the Benzene Hexafluorobenzene Interaction

    DOE PAGES

    Tillack, Andreas F.; Robinson, Bruce H.

    2017-06-05

    While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less

  20. Plasmon enhanced heterogeneous electron transfer with continuous band energy model

    NASA Astrophysics Data System (ADS)

    Zhao, Dandan; Niu, Lu; Wang, Luxia

    2017-08-01

    Photoinduced charge injection from a perylene dye molecule into the conduction band of a TiO2 system decorated by a metal nanoparticles (MNP) is studied theoretically. Utilizing the density matrix theory the charge transfer dynamics is analyzed. The continuous behavior of the TiO2 conduction band is accounted for by a Legendre polynomials expansion. The simulations consider optical excitation of the dye molecule coupled to the MNP and the subsequent electron injection into the TiO2 semiconductor. Due to the energy transfer coupling between the molecule and the MNP optical excitation and subsequent charge injection into semiconductor is strongly enhanced. The respective enhancement factor can reach values larger than 103. Effects of pulse duration, coupling strength and energetic resonances are also analyzed. The whole approach offers an efficient way to increase charge injection in dye-sensitized solar cells.

  1. Constructing diabatic states from adiabatic states: Extending generalized Mulliken-Hush to multiple charge centers with Boys localization

    NASA Astrophysics Data System (ADS)

    Subotnik, Joseph E.; Yeganeh, Sina; Cave, Robert J.; Ratner, Mark A.

    2008-12-01

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  2. Constructing diabatic states from adiabatic states: extending generalized Mulliken-Hush to multiple charge centers with boys localization.

    PubMed

    Subotnik, Joseph E; Yeganeh, Sina; Cave, Robert J; Ratner, Mark A

    2008-12-28

    This article shows that, although Boys localization is usually applied to single-electron orbitals, the Boys method itself can be applied to many electron molecular states. For the two-state charge-transfer problem, we show analytically that Boys localization yields the same charge-localized diabatic states as those found by generalized Mulliken-Hush theory. We suggest that for future work in electron transfer, where systems have more than two charge centers, one may benefit by using a variant of Boys localization to construct diabatic potential energy surfaces and extract electronic coupling matrix elements. We discuss two chemical examples of Boys localization and propose a generalization of the Boys algorithm for creating diabatic states with localized spin density that should be useful for Dexter triplet-triplet energy transfer.

  3. Simple Model for the Benzene Hexafluorobenzene Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tillack, Andreas F.; Robinson, Bruce H.

    While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less

  4. Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Thomas; Coto, Pedro B.; Serrano-Andres, Luis

    2009-07-21

    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

  5. Correlating electronic and vibrational motions in charge transfer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Munira

    2014-06-27

    The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.

  6. Battery Cell By-Pass Circuit

    NASA Technical Reports Server (NTRS)

    Mumaw, Susan J. (Inventor); Evers, Jeffrey (Inventor); Craig, Calvin L., Jr. (Inventor); Walker, Stuart D. (Inventor)

    2001-01-01

    The invention is a circuit and method of limiting the charging current voltage from a power supply net work applied to an individual cell of a plurality of cells making up a battery being charged in series. It is particularly designed for use with batteries that can be damaged by overcharging, such as Lithium-ion type batteries. In detail. the method includes the following steps: 1) sensing the actual voltage level of the individual cell; 2) comparing the actual voltage level of the individual cell with a reference value and providing an error signal representative thereof; and 3) by-passing the charging current around individual cell necessary to keep the individual cell voltage level generally equal a specific voltage level while continuing to charge the remaining cells. Preferably this is accomplished by by-passing the charging current around the individual cell if said actual voltage level is above the specific voltage level and allowing the charging current to the individual cell if the actual voltage level is equal or less than the specific voltage level. In the step of bypassing the charging current, the by-passed current is transferred at a proper voltage level to the power supply. The by-pass circuit a voltage comparison circuit is used to compare the actual voltage level of the individual cell with a reference value and to provide an error signal representative thereof. A third circuit, designed to be responsive to the error signal, is provided for maintaining the individual cell voltage level generally equal to the specific voltage level. Circuitry is provided in the third circuit for bypassing charging current around the individual cell if the actual voltage level is above the specific voltage level and transfers the excess charging current to the power supply net work. The circuitry also allows charging of the individual cell if the actual voltage level is equal or less than the specific voltage level.

  7. Laser pulse detection method and apparatus

    NASA Technical Reports Server (NTRS)

    Goss, W.; Janesick, J. R. (Inventor)

    1984-01-01

    A sensor is described for detecting the difference in phase of a pair of returned light pulse components, such as two components of a light pulse of an optical gyro. In an optic gyro, the two light components have passed in opposite directions through a coil of optical fiber, with the difference in phase of the returned light components determining the intensity of light shining on the sensor. The sensor includes a CCD (charge coupled device) that receives the pair of returned light components to generate a charge proportional to the number of photons in the received light. The amount of the charge represents the phase difference between the two light components. At a time after the transmission of the light pulse and before the expected time of arrival of the interfering light components, charge accumulating in the CCD as a result of reflections from components in the system, are repeatedly removed from the CCD, by transferring out charges in the CCD and dumping these charges.

  8. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.

    PubMed

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-10-09

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.

  9. Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks

    PubMed Central

    Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid

    2017-01-01

    The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200

  10. Tribo-electric charging of dielectric solids of identical composition

    NASA Astrophysics Data System (ADS)

    Angus, John C.; Greber, Isaac

    2018-05-01

    Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.

  11. Engineering interfacial photo-induced charge transfer based on nanobamboo array architecture for efficient solar-to-chemical energy conversion.

    PubMed

    Wang, Xiaotian; Liow, Chihao; Bisht, Ankit; Liu, Xinfeng; Sum, Tze Chien; Chen, Xiaodong; Li, Shuzhou

    2015-04-01

    Engineering interfacial photo-induced charge transfer for highly synergistic photocatalysis is successfully realized based on nanobamboo array architecture. Programmable assemblies of various components and heterogeneous interfaces, and, in turn, engineering of the energy band structure along the charge transport pathways, play a critical role in generating excellent synergistic effects of multiple components for promoting photocatalytic efficiency. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    PubMed Central

    Grisolia, M.N.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J.E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2015-01-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence. PMID:27158255

  13. Hybridization-controlled charge transfer and induced magnetism at correlated oxide interfaces

    NASA Astrophysics Data System (ADS)

    Grisolia, M. N.; Varignon, J.; Sanchez-Santolino, G.; Arora, A.; Valencia, S.; Varela, M.; Abrudan, R.; Weschke, E.; Schierle, E.; Rault, J. E.; Rueff, J.-P.; Barthélémy, A.; Santamaria, J.; Bibes, M.

    2016-05-01

    At interfaces between conventional materials, band bending and alignment are classically controlled by differences in electrochemical potential. Applying this concept to oxides in which interfaces can be polar and cations may adopt a mixed valence has led to the discovery of novel two-dimensional states between simple band insulators such as LaAlO3 and SrTiO3. However, many oxides have a more complex electronic structure, with charge, orbital and/or spin orders arising from strong Coulomb interactions at and between transition metal and oxygen ions. Such electronic correlations offer a rich playground to engineer functional interfaces but their compatibility with the classical band alignment picture remains an open question. Here we show that beyond differences in electron affinities and polar effects, a key parameter determining charge transfer at correlated oxide interfaces is the energy required to alter the covalence of the metal-oxygen bond. Using the perovskite nickelate (RNiO3) family as a template, we probe charge reconstruction at interfaces with gadolinium titanate GdTiO3. X-ray absorption spectroscopy shows that the charge transfer is thwarted by hybridization effects tuned by the rare-earth (R) size. Charge transfer results in an induced ferromagnetic-like state in the nickelate, exemplifying the potential of correlated interfaces to design novel phases. Further, our work clarifies strategies to engineer two-dimensional systems through the control of both doping and covalence.

  14. Mechanistic insights into the photoinduced charge carrier dynamics of BiOBr/CdS nanosheet heterojunctions for photovoltaic application.

    PubMed

    Jia, Huimin; Zhang, Beibei; He, Weiwei; Xiang, Yong; Zheng, Zhi

    2017-03-02

    The rational design of high performance hetero-structure photovoltaic devices requires a full understanding of the photoinduced charge transfer mechanism and kinetics at the interface of heterojunctions. In this paper, we intelligently fabricated p-BiOBr/n-CdS heterojunctions with perfect nanosheet arrays by using a facile successive ionic layer adsorption and reaction and chemical bath deposition methods at low temperature. A BiOBr/CdS heterojunction based solar cell has been fabricated which exhibited enhanced photovoltaic responses. Assisted by the surface photovoltage (SPV), transient photovoltage (TPV) and Kelvin probe technique, the photoinduced charge transfer dynamics on the BiOBr nanosheet and p-BiOBr/n-CdS interface were systematically investigated. It was found that the BiOBr/CdS nanosheet array heterojunctions were more efficient in facilitating charge carrier separation than both bare BiOBr and CdS films. The mechanism underlying the photoinduced charge carrier transfer behaviour was unravelled by allying the energy band of BiOBr/CdS p-n junctions from both the interfacial electric field and surface electric field. In addition, the CdS loading thickness in the p-BiOBr/n-CdS heterojunction and the incident wavelength affected greatly the transfer behavior of photoinduced charges, which was of great value for design of photovoltaic devices.

  15. Photo-induced electron transfer method

    DOEpatents

    Wohlgemuth, Roland; Calvin, Melvin

    1984-01-01

    The efficiency of photo-induced electron transfer reactions is increased and the back transfer of electrons in such reactions is greatly reduced when a photo-sensitizer zinc porphyrin-surfactant and an electron donor manganese porphyrin-surfactant are admixed into phospho-lipid membranes. The phospholipids comprising said membranes are selected from phospholipids whose head portions are negatively charged. Said membranes are contacted with an aqueous medium in which an essentially neutral viologen electron acceptor is admixed. Catalysts capable of transfering electrons from reduced viologen electron acceptor to hydrogen to produce elemental hydrogen are also included in the aqueous medium. An oxidizable olefin is also admixed in the phospholipid for the purpose of combining with oxygen that coordinates with oxidized electron donor manganese porphyrin-surfactant.

  16. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-01

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  17. Columnar mesophases of hexabenzocoronene derivatives. II. Charge carrier mobility.

    PubMed

    Kirkpatrick, James; Marcon, Valentina; Kremer, Kurt; Nelson, Jenny; Andrienko, Denis

    2008-09-07

    Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.

  18. Quasiparticles and charge transfer at the two surfaces of the honeycomb iridate Na2IrO3

    NASA Astrophysics Data System (ADS)

    Moreschini, L.; Lo Vecchio, I.; Breznay, N. P.; Moser, S.; Ulstrup, S.; Koch, R.; Wirjo, J.; Jozwiak, C.; Kim, K. S.; Rotenberg, E.; Bostwick, A.; Analytis, J. G.; Lanzara, A.

    2017-10-01

    Direct experimental investigations of the low-energy electronic structure of the Na2IrO3 iridate insulator are sparse and draw two conflicting pictures. One relies on flat bands and a clear gap, the other involves dispersive states approaching the Fermi level, pointing to surface metallicity. Here, by a combination of angle-resolved photoemission, photoemission electron microscopy, and x-ray absorption, we show that the correct picture is more complex and involves an anomalous band, arising from charge transfer from Na atoms to Ir-derived states. Bulk quasiparticles do exist, but in one of the two possible surface terminations the charge transfer is smaller and they remain elusive.

  19. An ab initio study of ion induced charge transfer dynamics in collision of carbon ions with thymine.

    PubMed

    Bacchus-Montabonel, Marie-Christine; Tergiman, Yvette Suzanne

    2011-05-28

    Charge transfer in collisions of carbon ions on a thymine target has been studied theoretically in a wide collision range by means of ab initio quantum chemistry molecular methods. The process appears markedly anisotropic in the whole energy domain, significantly favoured in the perpendicular orientation. A specific decrease of the charge transfer cross sections at low collision energies may be pointed out and could induce an enhancement of the complementary fragmentation processes for collision energies down to about 10 eV, as observed for the low-electron fragmentation process. Such feature may be of important interest in ion-induced biomolecular radiation damage. This journal is © the Owner Societies 2011

  20. Effect of Viscosity and Polar Properties of Solvent on Dynamics of Photoinduced Charge Transfer in BTA-1 Cation — Derivative of Thioflavin T

    NASA Astrophysics Data System (ADS)

    Gogoleva, S. D.; Stsiapura, V. I.

    2018-05-01

    It was found that the spectral and fluorescent properties of BTA-1C cation in protic and aprotic solvents differ. It was shown that for solutions in long-chain alcohols viscosity is the main factor that determines the dynamics of intramolecular charge transfer in the excited state of the BTA-1C molecule. In the case of aprotic solvents a correlation was found between the rate constant of twisted intramolecular charge transfer (TICT) during rotation of fragments of the molecule in relation to each other in the excited state and the solvent relaxation rate: k TICT 1/τ S .

  1. Modelling charge transfer reactions with the frozen density embedding formalism.

    PubMed

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  2. Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4'-Dimethylamino-2,5-dihydroxychalcone

    NASA Astrophysics Data System (ADS)

    Xu, Zhicheng; Bai, Guan; Dong, Chuan

    2005-12-01

    The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert-Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.

  3. Spectral and photophysical properties of intramolecular charge transfer fluorescence probe: 4'-dimethylamino-2,5-dihydroxychalcone.

    PubMed

    Xu, Zhicheng; Bai, Guan; Dong, Chuan

    2005-12-01

    The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4'-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert-Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.

  4. Computational study of interfacial charge transfer complexes of 2-anthroic acid adsorbed on a titania nanocluster for direct injection solar cells

    NASA Astrophysics Data System (ADS)

    Manzhos, Sergei; Kotsis, Konstantinos

    2016-09-01

    Adsorption and light absorption properties of interfacial charge transfer complexes of 2-anthroic acid and titania, promising for direct-injection solar cells, are studied ab initio. The formation of interfacial charge transfer bands is observed. The intensity of visible absorption is relatively low, highlighting a key challenge facing direct injection cells. We show that the popular strategy of using a lower level of theory for geometry optimization followed by single point calculations of adsorption or optical properties introduces significant errors which have been underappreciated: by up to 3 eV in adsorption energies, by up to 5 times in light absorption intensity.

  5. Origin of attraction in p-benzoquinone complexes with benzene and p-hydroquinone.

    PubMed

    Tsuzuki, Seiji; Uchimaru, Tadafumi; Ono, Taizo

    2017-08-30

    The origin of the attraction in charge-transfer complexes (a p-hydroquinone-p-benzoquinone complex and benzene complexes with benzoquinone, tetracyanoethylene and Br 2 ) was analyzed using distributed multipole analysis and symmetry-adapted perturbation theory. Both methods show that the dispersion interactions are the primary source of the attraction in these charge-transfer complexes followed by the electrostatic interactions. The natures of the intermolecular interactions in these complexes are close to the π/π interactions of neutral aromatic molecules. The electrostatic interactions play important roles in determining the magnitude of the attraction. The contribution of charge-transfer interactions to the attraction is not large compared with the dispersion interactions in these complexes.

  6. Theoretical studies of optics and charge transport in organic conducting oligomers and polymers: Rational design of improved transparent and conducting polymers

    NASA Astrophysics Data System (ADS)

    Hutchison, Geoffrey Rogers

    Theoretical studies on a variety of oligo- and polyheterocycles elucidate their optical and charge transport properties, suggesting new, improved transparent conductive polymers. First-principles calculations provide accurate methodologies for predicting both optical band gaps of neutral and cationic oligomers and intrinsic charge transfer rates. Multidimensional analysis reveals important motifs in chemical tailorability of oligoheterocycle optical and charge transport properties. The results suggest new directions for design of novel materials. Using both finite oligomer and infinite polymer calculations, the optical band gaps in polyheterocycles follow a modified particle-in-a-box formalism, scaling approximately as 1/N (where N is the number of monomer units) in short chains, saturating for long chains. Calculations demonstrate that band structure changes upon heteroatom substitution, (e.g., from polythiophene to polypyrrole) derive from heteroatom electron affinity. Further investigation of chemical variability in substituted oligoheterocycles using multidimensional statistics reveals the interplay between heteroatom and substituent in correlations between structure and redox/optical properties of neutral and cationic species. A linear correlation between band gaps of neutral and cationic species upon oxidation of conjugated oligomers, shows redshifts of optical absorption for most species and blueshifts for small band gap species. Interstrand charge-transport studies focus on two contributors to hopping-style charge transfer rates: internal reorganization energy and the electronic coupling matrix element. Statistical analysis of chemical variability of reorganization energies in oligoheterocycles proves the importance of reorganization energy in determining intrinsic charge transfer rates (e.g., charge mobility in unsubstituted oligothiophenes). Computed bandwidths across several oligothiophene crystal packing motifs show similar electron and hole bandwidths, and show that well-known tilted and herringbone motifs in oligothiophenes are driven by electrostatic repulsion. Tilted stacks exhibit intrinsic charge-transfer rates smaller than cofacial stacks, but with lower packing energy. Given similar electron and hole bandwidths, a charge injection model explains substitution-modulated majority carrier changes in n- and p-type oligothiophene field-effect transistors.

  7. Charge-conjugation symmetric complete impulse approximation for the pion electromagnetic form factor in the covariant spectator theory

    DOE PAGES

    Biernat, Elmar P.; Gross, Franz; Peña, M. T.; ...

    2015-10-26

    The pion form factor is calculated in the framework of the charge-conjugation invariant covariant spectator theory. This formalism is established in Minkowski space, and the calculation is set up in momentum space. In a previous calculation we included only the leading pole coming from the spectator quark (referred to as the relativistic impulse approximation). In this study we also include the contributions from the poles of the quark which interacts with the photon and average over all poles in both the upper and lower half-planes in order to preserve charge conjugation invariance (referred to as the C-symmetric complete impulse approximation).more » We find that for small pion mass these contributions are significant at all values of the four-momentum transfer Q 2 but, surprisingly, do not alter the shape obtained from the spectator poles alone.« less

  8. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    NASA Astrophysics Data System (ADS)

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  9. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes.

    PubMed

    Longuinhos, R; Lúcio, A D; Chacham, H; Alexandre, S S

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag_{4}. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag_{4} or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag_{4} to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag_{4} hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  10. Photo-induced interaction of thioglycolic acid (TGA)-capped CdTe quantum dots with cyanine dyes

    NASA Astrophysics Data System (ADS)

    Abdelbar, Mostafa F.; Fayed, Tarek A.; Meaz, Talaat M.; Ebeid, El-Zeiny M.

    2016-11-01

    The photo-induced interaction of three different sizes of thioglycolic acid (TGA)-capped CdTe quantum dots (CdTe QDs) with two monomethine cyanine dyes belonging to the thiazole orange (TO) family has been studied. Positively charged cyanines interact with QDs surface which is negatively charged due to capping agent carboxylate ions. The energy transfer parameters including Stern-Volmer constant, Ksv, number of binding sites, n, quenching sphere radius, r, the critical energy transfer distance, R0, and energy transfer efficiencies, E have been calculated. The effect of structure and the number of aggregating molecules have been studied as a function of CdTe QDs particle size. Combining organic and inorganic semiconductors leads to increase of the effective absorption cross section of the QDs which can be utilized in novel nanoscale designs for light-emitting, photovoltaic and sensor applications. A synthesized triplet emission of the studied dyes was observed using CdTe QDs as donors and this is expected to play a potential role in molecular oxygen sensitization and in photodynamic therapy (PDT) applications.

  11. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  12. Heat transfer analysis of the Bridgman-Stockbarger configuration for crystal growth. Part 1: Analytical treatment of the axial temperature distribution

    NASA Technical Reports Server (NTRS)

    Jasinski, T. J.; Rohsenow, W. M.; Witt, A. F.

    1982-01-01

    All first order effects on the axial temperature distribution in a solidifying charge in a Bridgman-Stockbarger configuration for crystal growth are analyzed on the basis of a one dimensional model whose validity can be verified through comparison with published finite difference ana;uses of two dimensional models. The model presented includes an insulated region between axially aligned heat pipes and considers the effects of charge diameter, charge motion, thickness, and thermal conductivity of a confining crucible, thermal conductivity change at the crystal-melt interface, generation of latent heat at the interface, and finite charge length. Results are primarily given in analytical form and can be used without recourse to computer work for both improve furnace design and optimization of growth conditions in a given thermal configuration.

  13. “Capacitive Sensor” to Measure Flow Electrification and Prevent Electrostatic Hazards

    PubMed Central

    Paillat, Thierry; Touchard, Gerard; Bertrand, Yves

    2012-01-01

    At a solid/liquid interface, physico-chemical phenomena occur that lead to the separation of electrical charges, establishing a zone called electrical double layer. The convection of one part of these charges by the liquid flow is the cause of the flow electrification phenomenon which is suspected of being responsible of incidents in the industry. The P' Institute of Poitiers University and CNRS has developed an original sensor called “capacitive sensor” that allows the characterization of the mechanisms involved in the generation, accumulation and transfer of charges. As an example, this sensor included in the design of high power transformers, could easily show the evolution of electrostatic charge generation developed during the operating time of the transformer and, therefore, point out the operations leading to electrostatic hazards and, then, monitor the transformer to prevent such risks. PMID:23202162

  14. Optimization design of wireless charging system for autonomous robots based on magnetic resonance coupling

    NASA Astrophysics Data System (ADS)

    Wang, Junhua; Hu, Meilin; Cai, Changsong; Lin, Zhongzheng; Li, Liang; Fang, Zhijian

    2018-05-01

    Wireless charging is the key technology to realize real autonomy of mobile robots. As the core part of wireless power transfer system, coupling mechanism including coupling coils and compensation topology is analyzed and optimized through simulations, to achieve stable and practical wireless charging suitable for ordinary robots. Multi-layer coil structure, especially double-layer coil is explored and selected to greatly enhance coupling performance, while shape of ferrite shielding goes through distributed optimization to guarantee coil fault tolerance and cost effectiveness. On the basis of optimized coils, primary compensation topology is analyzed to adopt composite LCL compensation, to stabilize operations of the primary side under variations of mutual inductance. Experimental results show the optimized system does make sense for wireless charging application for robots based on magnetic resonance coupling, to realize long-term autonomy of robots.

  15. Oak Ridge National Laboratory Wireless Charging of Electric Vehicles - CRADA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onar, Omer C.; Campbell, Steven L.; Seiber, Larry Eugene

    Wireless power transfer (WPT) is a paradigm shift in electric-vehicle (EV) charging that offers the consumer an autonomous, safe, and convenient option to conductive charging and its attendant need for cables. With WPT, charging process can be fully automated due to the vehicle and grid side radio communication systems, and is non-contacting; therefore issues with leakage currents, ground faults, and touch potentials do not exist. It also eliminates the need for touching the heavy, bulky, dirty cables and plugs. It eliminates the fear of forgetting to plug-in and running out of charge the following day and eliminates the tripping hazardsmore » in public parking lots and in highly populated areas such as shopping malls, recreational areas, parking buildings, etc. Furthermore, the high-frequency magnetic fields employed in power transfer across a large air gap are focused and shielded, so that fringe fields (i.e., magnetic leakage/stray fields) attenuate rapidly over a transition region to levels well below limits set by international standards for the public zone (which starts at the perimeter of the vehicle and includes the passenger cabin). Oak Ridge National Laboratory s approach to WPT charging places strong emphasis on radio communications in the power regulation feedback channel augmented with software control algorithms. The over-arching goal for WPT is minimization of vehicle on-board complexity by keeping the secondary side content confined to coil tuning, rectification, filtering, and interfacing to the regenerative energy-storage system (RESS). This report summarizes the CRADA work between the Oak Ridge National Laboratory and the Toyota Research Institute of North America, Toyota Motor Engineering and Manufacturing North America (TEMA) on the wireless charging of electric vehicles which was funded by Department of Energy under DE-FOA-000667. In this project, ORNL is the lead agency and Toyota TEMA is one of the major partners. Over the course of the project, ORNL and Toyota TEMA worked closely on the vehicle integration plans, compatibility, and the interoperability of the wireless charging technology developed by ORNL for the vehicles manufactured by Toyota. These vehicles include a Toyota Prius Plug-in Hybrid electric vehicle, a Scion iQ electric vehicle, and two Toyota RAV4 electric vehicles. The research include not only the hardware integration but also the controls and communication systems development to control and automate the charging process for these vehicles by utilizing a feedback channel from vehicle to the stationary unit for power regulation.« less

  16. Optical and thermal charge-transfer processes occurring in a series of three-centered, cyanide-bridged intervalent charge-transfer complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfennig, B.W.; Bocarsly, A.B.

    1992-01-09

    The mixed-valent compound (Pt(NH{sub 3}){sub 4}){sub 2}((NC){sub 5}Fe-CN-Pt(NH{sub 3}){sub 4}-NC-Fe(CN){sub 5} was used as the starting point for the synthesis and characterization of two series of trinuclear {open_quotes}M-Pt-M{close_quotes} compounds. The first group of complexes have the general formula Na{sub 2}(L(NC){sub 4}Fe-CN-Pt(NH{sub 3}){sub 4}-NC-Fe(CN){sub 4}L) (where the sixth coordination site on the terminal iron units has been varied using six different substituted pyridine or pyrazine ligands, L), and the secondary group of compounds have the general formula (Pt(NH){sub 3}){sub 4}){sub 2}((NC){sub 5}M-CN-Pt(NH{sub 3}){sub 4}-NC-M(CN){sub 5}) (where M = Fe, Ru, and Os). All of the compounds yielded an absorption spectrum containingmore » an intervalent charge-transfer (IT) band in the visible. Both series of complexes were modeled using Marcus-Hush theory to estimate the reorganization energies for the optical electron-transfer processes, electron-transfer rate constants, thermal-activation barriers, and the degrees of delocalization of these species. In addition, the kinetics of formation, photochemical decomposition, and a novel solvent-gated charge-transfer process are discussed. 26 refs., 10 figs., 4 tabs.« less

  17. Proton-coupled electron transfer versus hydrogen atom transfer: generation of charge-localized diabatic states.

    PubMed

    Sirjoosingh, Andrew; Hammes-Schiffer, Sharon

    2011-03-24

    The distinction between proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms is important for the characterization of many chemical and biological processes. PCET and HAT mechanisms can be differentiated in terms of electronically nonadiabatic and adiabatic proton transfer, respectively. In this paper, quantitative diagnostics to evaluate the degree of electron-proton nonadiabaticity are presented. Moreover, the connection between the degree of electron-proton nonadiabaticity and the physical characteristics distinguishing PCET from HAT, namely, the extent of electronic charge redistribution, is clarified. In addition, a rigorous diabatization scheme for transforming the adiabatic electronic states into charge-localized diabatic states for PCET reactions is presented. These diabatic states are constructed to ensure that the first-order nonadiabatic couplings with respect to the one-dimensional transferring hydrogen coordinate vanish exactly. Application of these approaches to the phenoxyl-phenol and benzyl-toluene systems characterizes the former as PCET and the latter as HAT. The diabatic states generated for the phenoxyl-phenol system possess physically meaningful, localized electronic charge distributions that are relatively invariant along the hydrogen coordinate. These diabatic electronic states can be combined with the associated proton vibrational states to generate the reactant and product electron-proton vibronic states that form the basis of nonadiabatic PCET theories. Furthermore, these vibronic states and the corresponding vibronic couplings may be used to calculate rate constants and kinetic isotope effects of PCET reactions.

  18. Molecular orbital (SCF-Xα-SW) theory of metal-metal charge transfer processes in minerals

    USGS Publications Warehouse

    Sherman, David M.

    1987-01-01

    Electronic transitions between the Fe-Fe bonding and Fe-Fe antibonding orbitals results in the optically-induced intervalence charge transfer bands observed in the electronic spectra of mixed valence minerals. Such transitions are predicted to be polarized along the metal-metal bond direction, in agreement with experimental observations.

  19. Investigating Wireless Power Transfer

    ERIC Educational Resources Information Center

    St. John, Stuart A.

    2017-01-01

    Understanding Physics is a great end in itself, but is also crucial to keep pace with developments in modern technology. Wireless power transfer, known to many only as a means to charge electric toothbrushes, will soon be commonplace in charging phones, electric cars and implanted medical devices. This article outlines how to produce and use a…

  20. Charge transfer polarisation wave in high Tc oxides and superconductive pairing

    NASA Technical Reports Server (NTRS)

    Chakraverty, B. K.

    1991-01-01

    A general formalism of quantized charge transfer polarization waves was developed. The nature of possible superconductive pairing between oxygen holes is discussed. Unlike optical phonons, these polarization fields will give rise to dielectric bipolarons or bipolaron bubbles. In the weak coupling limit, a new class of superconductivity is to be expected.

  1. Energy and charge transfer in nanoscale hybrid materials.

    PubMed

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes

    PubMed Central

    Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.

    2014-01-01

    The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dehua; Liu, Qing; Tisdale, Jeremy

    This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less

  4. Structure and charge transfer correlated with oxygen content for a Y0.8Ca0.2Ba2Cu3Oy (y = 6.84 6.32) system: a positron study

    NASA Astrophysics Data System (ADS)

    Cao, Shixun; Li, Lingwei; Liu, Fen; Li, Wenfeng; Chi, Changyun; Jing, Chao; Zhang, Jincang

    2005-05-01

    The structure and charge transfer correlated with oxygen content are studied by measuring the positron lifetime parameters of the Y0.8Ca0.2Ba2Cu3Oy system with a large range of oxygen content (y = 6.84-6.32). The local electron density ne is evaluated from the positron lifetime data. The positron lifetime parameters show a clear change around y = 6.50 where the compounds undergo the orthorhombic-tetragonal phase transition. The effect of ne and oxygen content on the structure, charge transfer and superconductivity are discussed. With the decrease of oxygen content y, O(4) tends to the Cu(1) site, causing carrier localization, and accordingly, the decrease of ne. This would prove that the localized carriers (electrons and holes) in the Cu-O chain region have great influence on the superconductivity by affecting the charge transfer between the reservoir layers and the conducting layers. The positron annihilation mechanism and its relation with superconductivity are also discussed.

  5. Electron Transfer Ion/Ion Reactions in a Three-Dimensional Quadrupole Ion Trap: Reactions of Doubly and Triply Protonated Peptides with SO2·−

    PubMed Central

    Pitteri, Sharon J.; Chrisman, Paul A.; Hogan, Jason M.; McLuckey, Scott A.

    2005-01-01

    Ion–ion reactions between a variety of peptide cations (doubly and triply charged) and SO2 anions have been studied in a 3-D quadrupole ion trap, resulting in proton and electron transfer. Electron transfer dissociation (ETD) gives many c- and z-type fragments, resulting in extensive sequence coverage in the case of triply protonated peptides with SO2·−. For triply charged neurotensin, in which a direct comparison can be made between 3-D and linear ion trap results, abundances of ETD fragments relative to one another appear to be similar. Reactions of doubly protonated peptides with SO2·− give much less structural information from ETD than triply protonated peptides. Collision-induced dissociation (CID) of singly charged ions formed in reactions with SO2·− shows a combination of proton and electron transfer products. CID of the singly charged species gives more structural information than ETD of the doubly protonated peptide, but not as much information as ETD of the triply protonated peptide. PMID:15762593

  6. Size-Induced Segregation in the Stepwise Microhydration of Hydantoin and Its Role in Proton-Induced Charge Transfer

    NASA Astrophysics Data System (ADS)

    Calvo, Florent; Bacchus-Montabonel, Marie-Christine

    2018-01-01

    Recent photochemistry experiments provided evidence for the formation of hydantoin by irradiation of interstellar ice analogues. The significance of these results and the importance of hydantoin in prebiotic chemistry and polypeptide synthesis motivate the present theoretical investigation, in which we analyzed the effects of stepwise hydration on the electronic and thermodynamical properties of the structure of microhydrated hydantoin using a variety of computational approaches. We generally find microhydration to proceed around the hydantoin heterocycle until 5 water molecules are reached, at which stage hydration becomes segregated with a water cluster forming aside the heterocycle. The reactivity of microhydrated hydantoin caused by an impinging proton was evaluated through charge transfer collision cross sections for microhydrated compounds but also for hydantoin on icy grains modeled using a cluster approach mimicking the true hexagonal ice surface. The effects of hydration on charge transfer efficiency are mostly significant when few water molecules are present, and they progressively weaken and stabilize in larger clusters. On the ice substrate, charge transfer essentially contributes to a global increase in the cross sections.

  7. Fermi Level shifting, Charge Transfer and Induced Magnetic Coupling at La0.7Ca0.3MnO3/LaNiO3 Interface

    PubMed Central

    Ning, Xingkun; Wang, Zhanjie; Zhang, Zhidong

    2015-01-01

    A large magnetic coupling has been observed at the La0.7Ca0.3MnO3/LaNiO3 (LCMO/LNO) interface. The x-ray photoelectron spectroscopy (XPS) study results show that Fermi level continuously shifted across the LCMO/LNO interface in the interface region. In addition, the charge transfer between Mn and Ni ions of the type Mn3+ − Ni3+ → Mn4+ − Ni2+ with the oxygen vacancies are observed in the interface region. The intrinsic interfacial charge transfer can give rise to itinerant electrons, which results in a “shoulder feature” observed at the low binding energy in the Mn 2p core level spectra. Meanwhile, the orbital reconstruction can be mapped according to the Fermi level position and the charge transfer mode. It can be considered that the ferromagnetic interaction between Ni2+ and Mn4+ gives rise to magnetic regions that pin the ferromagnetic LCMO and cause magnetic coupling at the LCMO/LNO interface. PMID:25676088

  8. Tuning electronic properties of graphene nanoflake polyaromatic hydrocarbon through molecular charge-transfer interactions

    NASA Astrophysics Data System (ADS)

    Sharma, Vaishali; Dabhi, Shweta D.; Shinde, Satyam; Jha, Prafulla K.

    2018-05-01

    By means of first principles calculation we have tuned the electronic properties of graphene nanoflake polyaromatic hydrocarbon via molecular charge transfer. Acceptor/donor Tetracyanoquinodimethane (TCNQ) and Tetrathiafulvalene (TTF) organic molecules are adsorbed on polyaromatic hydrocarbons (PAH) in order to introduce the charge transfer. The substrate's n- or p- type nature depends on the accepting/donating behavior of dopant molecules. Two different classes of PAH (extended form of triangulene) namely Bow-tie graphene nanoflake (BTGNF) and triangular zigzag graphene nanoflake (TZGNF). It is revealed that all the TCNQ and TTF modified graphene nanoflakes exhibit significant changes in HOMO-LUMO gap in range from 0.58 eV to 0.64 eV and 0.01 eV to 0.05 eV respectively. The adsorption energies are in the range of -0.05 kcal/mol to -2.6 kcal/mol. The change in work function is also calculated and discussed, the maximum charge transfer is for TCNQ adsorbed BTGNF. These alluring findings in the tuning of electronic properties will be advantageous for promoting graphene nanoflake polyaromatic hydrocarbon for their applications in electronic devices.

  9. Investigating molecule-semiconductor interfaces with nonlinear spectroscopies

    NASA Astrophysics Data System (ADS)

    Giokas, Paul George

    Knowledge of electronic structures and transport mechanisms at molecule-semiconductor interfaces is motivated by their ubiquity in photoelectrochemical cells. In this dissertation, optical spectroscopies are used uncover the influence of electronic coupling, coherent vibrational motion, and molecular geometry, and other factors on dynamics initiated by light absorption at such interfaces. These are explored for a family of ruthenium bipyridyl chromophores bound to titanium dioxide. Transient absorption measurements show molecular singlet state electron injection in 100 fs or less. Resonance Raman intensity analysis suggests the electronic excitations possess very little charge transfer character. The connections drawn in this work between molecular structure and photophysical behavior contribute to the general understanding of photoelectrochemical cells. Knowledge of binding geometry in nanocrystalline films is challenged by heterogeneity of semiconductor surfaces. Polarized resonance Raman spectroscopy is used to characterize the ruthenium chromophore family on single crystal titanium dioxide . Chromophores display a broad distribution of molecular geometries at the interface, with increased variation in binding angle due to the presence of a methylene bridge, as well as additional phosphonate anchors. This result implies multiple binding configurations for chromophores which incorporate multiple phosphonate ligands, and indicates the need for careful consideration when developing surface-assembled chromophore-catalyst cells. Electron transfer transitions occurring on the 100 fs time scale challenge conventional second-order approximations made when modeling these reactions. A fourth-order perturbative model which includes the relationship between coincident electron transfer and nuclear relaxation processes is presented. Insights provided by the model are illustrated for a two-level donor molecule. The presented fourth-order rate formula constitutes a rigorous and intuitive framework for understanding sub-picosecond photoinduced electron transfer dynamics. Charge transfer systems fit by this model include catechol-sensitized titanium dioxide nanoparticles and a closely-related molecular complex. These systems exhibit vibrational coherence coincident with back-electron transfer in the first picosecond after excitation, which suggests that intramolecular nuclear motion strongly influences the electronic transfer process and plays an important role in the dynamics of interfacial systems following light absorption.

  10. Non-perturbative Quantification of Ionic Charge Transfer through Nm-Scale Protein Pores Using Graphene Microelectrodes

    NASA Astrophysics Data System (ADS)

    Ping, Jinglei; Johnson, A. T. Charlie; A. T. Charlie Johnson Team

    Conventional electrical methods for detecting charge transfer through protein pores perturb the electrostatic condition of the solution and chemical reactivity of the pore, and are not suitable to be used for complex biofluids. We developed a non-perturbative methodology ( fW input power) for quantifying trans-pore electrical current and detecting the pore status (i.e., open vs. closes) via graphene microelectrodes. Ferritin was used as a model protein featuring a large interior compartment, well-separated from the exterior solution with discrete pores as charge commuting channels. The charge flowing through the ferritin pores transfers into the graphene microelectrode and is recorded by an electrometer. In this example, our methodology enables the quantification of an inorganic nanoparticle-protein nanopore interaction in complex biofluids. The authors acknowledge the support from the Defense Advanced Research Projects Agency (DARPA) and the U.S. Army Research Office under Grant Number W911NF1010093.

  11. Direct evidence of charge separation in a metal-organic framework: efficient and selective photocatalytic oxidative coupling of amines via charge and energy transfer.

    PubMed

    Xu, Caiyun; Liu, Hang; Li, Dandan; Su, Ji-Hu; Jiang, Hai-Long

    2018-03-28

    The selective aerobic oxidative coupling of amines under mild conditions is an important laboratory and commercial procedure yet a great challenge. In this work, a porphyrinic metal-organic framework, PCN-222, was employed to catalyze the reaction. Upon visible light irradiation, the semiconductor-like behavior of PCN-222 initiates charge separation, evidently generating oxygen-centered active sites in Zr-oxo clusters indicated by enhanced porphyrin π-cation radical signals. The photogenerated electrons and holes further activate oxygen and amines, respectively, to give the corresponding redox products, both of which have been detected for the first time. The porphyrin motifs generate singlet oxygen based on energy transfer to further promote the reaction. As a result, PCN-222 exhibits excellent photocatalytic activity, selectivity and recyclability, far superior to its organic counterpart, for the reaction under ambient conditions via combined energy and charge transfer.

  12. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    PubMed

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  13. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules

    PubMed Central

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin

    2017-01-01

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-Mx (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-Mx complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS. PMID:28767053

  14. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, Eric S.; Rosenberg, Ethan R.; Ristenpart, William D.

    2017-11-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV/cm). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1 to 3 microns wide, often with features similar to splash coronae. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660°C <=Tm <= 3414°C). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  15. Crater Formation on Electrodes during Charge Transfer with Aqueous Droplets or Solid Particles

    NASA Astrophysics Data System (ADS)

    Elton, E. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2017-09-01

    We report that metallic electrodes are physically pitted during charge transfer events with water droplets or other conductive objects moving in strong electric fields (>1 kV /cm ). Post situ microscopic inspection of the electrode shows that an individual charge transfer event yields a crater approximately 1-3 μ m wide, often with features similar to a splash corona. We interpret the crater formation in terms of localized melting of the electrode via resistive heating concurrent with dielectric breakdown through the surrounding insulating fluid. A scaling analysis indicates that the crater diameter scales as the inverse cube root of the melting point temperature Tm of the metal, in accord with measurements on several metals (660 °C ≤Tm≤3414 °C ). The process of crater formation provides a possible explanation for the longstanding difficulty in quantitatively corroborating Maxwell's prediction for the amount of charge acquired by spheres contacting a planar electrode.

  16. Electrification of particulate entrained fluid flows-Mechanisms, applications, and numerical methodology

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Gu, Zhaolin

    2015-10-01

    Particulates in natural and industrial flows have two basic forms: liquid (droplet) and solid (particle). Droplets would be charged in the presence of the applied electric field (e.g. electrospray). Similar to the droplet charging, particles can also be charged under the external electric field (e.g. electrostatic precipitator), while in the absence of external electric field, tribo-electrostatic charging is almost unavoidable in gas-solid two-phase flows due to the consecutive particle contacts (e.g. electrostatic in fluidized bed or wind-blown sand). The particle charging may be beneficial, or detrimental. Although electrostatics in particulate entrained fluid flow systems have been so widely used and concerned, the mechanisms of particulate charging are still lack of a thorough understanding. The motivation of this review is to explore a clear understanding of particulate charging and movement of charged particulate in two-phase flows, by summarizing the electrification mechanisms, physical models of particulate charging, and methods of charging/charged particulate entrained fluid flow simulations. Two effective methods can make droplets charged in industrial applications: corona charging and induction charging. The droplet charge to mass ratio by corona charging is more than induction discharge. The particle charging through collisions could be attributed to electron transfer, ion transfer, material transfer, and/or aqueous ion shift on particle surfaces. The charges on charged particulate surface can be measured, nevertheless, the charging process in nature or industry is difficult to monitor. The simulation method might build a bridge of investigating from the charging process to finally charged state on particulate surface in particulate entrained fluid flows. The methodology combining the interface tracking under the action of the applied electric with the fluid flow governing equations is applicable to the study of electrohydrodynamics problems. The charge distribution and mechanical behaviors of liquid surface can be predicted by using this method. The methodology combining particle charging model with Computational Fluid Dynamics (CFD) and Discrete element method (DEM) is applicable to study the particle charging/charged processes in gas-solid two phase flows, the influence factors of particle charging, such as gas-particle interaction, contact force, contact area, and various velocities, are described systematically. This review would explore a clear understanding of the particulate charging and provide theoretical references to control and utilize the charging/charged particulate entrained fluid system.

  17. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  18. Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance.

    PubMed

    Shih, Yen-Chen; Lan, Yu-Bing; Li, Chia-Shuo; Hsieh, Hsiao-Chi; Wang, Leeyih; Wu, Chih-I; Lin, King-Fu

    2017-06-01

    Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO 2 electron-transporting layer with various amino acids, which affects charge transfer efficiency at the TiO 2 /CH 3 NH 3 PbI 3 interface in PSC, among which the l-alanine-modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino-acid-modified TiO 2 as observed in grazing-incidence wide-angle X-ray scattering of thin CH 3 NH 3 PbI 3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO 2 /CH 3 NH 3 PbI 3 interface after being modified with amino acids, which is also supported by the lower intensity of steady-state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino-acid-modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap-passivation are the niche for better photovoltaic performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Determination of charge transfer resistance and capacitance of microbial fuel cell through a transient response analysis of cell voltage.

    PubMed

    Ha, Phuc Thi; Moon, Hyunsoo; Kim, Byung Hong; Ng, How Yong; Chang, In Seop

    2010-03-15

    An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict the current generation with respect to activation overvoltage. This model was then used to fit the transient cell voltage response to the current step change during the continuous operation of a flat-plate type MFC fed with acetate. Variations of the charge transfer resistance and the capacitance value with respect to the MFC design conditions (biocatalyst existence and electrode area) and operating parameters (acetate concentration and buffer strength in the catholyte) were then determined to elucidate the validity of the proposed method. This model was able to describe the dynamic behavior of the MFC during current change in the activation loss region; having an R(2) value of over 0.99 in most tests. Variations of the charge transfer resistance value (thousands of Omega) according to the change of the design factors and operational factors were well-correlated with the corresponding MFC performances. However, though the capacitance values (approximately 0.02 F) reflected the expected trend according to the electrode area change and catalyst property, they did not show significant variation with changes in either the acetate concentration or buffer strength. (c) 2009 Elsevier B.V. All rights reserved.

  20. Enhancing SERS by Means of Supramolecular Charge Transfer

    NASA Technical Reports Server (NTRS)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  1. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less

  2. Hyperbolic metamaterial nanostructures to tune charge-transfer dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Jin; Xiao, Yiming; Woo, Jae Heun; Kim, Eun Sun; Kreher, David; Attias, André-Jean; Mathevet, Fabrice; Ribierre, Jean-Charles; Wu, Jeong Weon; André, Pascal

    2016-09-01

    Charge transfer (CT) is an essential phenomenon relevant to numerous fields including biology, physics and chemistry.1-5 Here, we demonstrate that multi-layered hyperbolic metamaterial (HMM) substrates alter organic semiconductor CT dynamics.6 With triphenylene:perylene diimide dyad supramolecular self-assemblies prepared on HMM substrates, we show that both charge separation (CS) and charge recombination (CR) characteristic times are increased by factors of 2.5 and 1.6, respectively, resulting in longer-lived CT states. We successfully rationalize the experimental data by extending Marcus theory framework with dipole image interactions tuning the driving force. The number of metal-dielectric pairs alters the HMM interfacial effective dielectric constant and becomes a solid analogue to solvent polarizability. Based on the experimental results and extended Marcus theory framework, we find that CS and CR processes are located in normal and inverted regions on Marcus parabola diagram, respectively. The model and further PH3T:PCBM data show that the phenomenon is general and that molecular and substrate engineering offer a wide range of kinetic tailoring opportunities. This work opens the path toward novel artificial substrates designed to control CT dynamics with potential applications in fields including optoelectronics, organic solar cells and chemistry. 1. Marcus, Rev. Mod. Phys., 1993, 65, 599. 2. Marcus, Phys. Chem. Chem. Phys., 2012, 14, 13729. 3. Lambert, et al., Nat. Phys., 2012, 9, 10. 4. C. Clavero, Nat. Photon., 2014, 8, 95. 5. A. Canaguier-Durand, et al., Angew. Chem. Int. Ed., 2013, 52, 10533. 6. K. J. Lee, et al., Submitted, 2015, arxiv.org/abs/1510.08574.

  3. Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces

    NASA Astrophysics Data System (ADS)

    Zheng, Qijing; Xie, Yu; Lan, Zhenggang; Prezhdo, Oleg V.; Saidi, Wissam A.; Zhao, Jin

    2018-05-01

    Van der Waals (vdW) heterostructures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the interfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS2/WS2 and MoSe2/WSe2 , which have similar band structures but different phonon frequencies. We found that MoSe2/WSe2 has softer phonon modes compared to MoS2/WS2 , and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS2/WS2 , phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.

  4. A charge-stabilizing, multimodular, ferrocene-bis(triphenylamine)-zinc-porphyrin-fullerene polyad.

    PubMed

    Wijesinghe, Channa A; El-Khouly, Mohamed E; Zandler, Melvin E; Fukuzumi, Shunichi; D'Souza, Francis

    2013-07-15

    A novel multimodular donor-acceptor polyad featuring zinc porphyrin, fullerene, ferrocene, and triphenylamine entities was designed, synthesized, and studied as a charge-stabilizing, photosynthetic-antenna/reaction-center mimic. The ferrocene and fullerene entities, covalently linked to the porphyrin ring, were distantly separated to accomplish the charge-separation/hole-migration events leading to the creation of a long-lived charge-separated state. The geometry and electronic structures of the newly synthesized compound was deduced by B3LYP/3-21G(*) optimization, while the energy levels for different photochemical events was established using data from the optical absorption and emission, and electrochemical studies. Excitation of the triphenylamine entities revealed singlet-singlet energy transfer to the appended zinc porphyrin. As predicted from the energy levels, photoinduced electron transfer from both the singlet and triplet excited states of the zinc porphyrin to fullerene followed by subsequent hole migration involving ferrocene was witnessed from the transient absorption studies. The charge-separated state persisted for about 8.5 μs and was governed by the distance between the final charge-transfer product, that is, a species involving a ferrocenium cation and a fullerene radical anion, with additional influence from the charge-stabilizing triphenylamine entities located on the zinc-porphyrin macrocycle. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Coarse-Grained Theory of Biological Charge Transfer with Spatially and Temporally Correlated Noise.

    PubMed

    Liu, Chaoren; Beratan, David N; Zhang, Peng

    2016-04-21

    System-environment interactions are essential in determining charge-transfer (CT) rates and mechanisms. We developed a computationally accessible method, suitable to simulate CT in flexible molecules (i.e., DNA) with hundreds of sites, where the system-environment interactions are explicitly treated with numerical noise modeling of time-dependent site energies and couplings. The properties of the noise are tunable, providing us a flexible tool to investigate the detailed effects of correlated thermal fluctuations on CT mechanisms. The noise is parametrizable by molecular simulation and quantum calculation results of specific molecular systems, giving us better molecular resolution in simulating the system-environment interactions than sampling fluctuations from generic spectral density functions. The spatially correlated thermal fluctuations among different sites are naturally built-in in our method but are not readily incorporated using approximate spectral densities. Our method has quantitative accuracy in systems with small redox potential differences (

  6. Structural and vibrational characteristics of a non-linear optical material 3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one probed by quantum chemical computation and spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Kumar, Ram; Karthick, T.; Tandon, Poonam; Agarwal, Parag; Menezes, Anthoni Praveen; Jayarama, A.

    2018-07-01

    Chalcone and its derivatives are well-known for their high non-linear optical behavior and charge transfer characteristics. The effectiveness of charge transfer via ethylenic group and increase in NLO response of the chalcone upon substitutions are of great interest. The present study focuses the structural, charge transfer and non-linear optical properties of a new chalcone derivative "3-(4-nitrophenyl)-1-(pyridine-3-yl) prop-2-en-1-one" (hereafter abbreviated as 4 NP3AP). To accomplish this task, we have incorporated the experimental FT-IR, FT-Raman and UV-vis spectroscopic studies along with quantum chemical calculations. The frequency assignments of peaks in IR and Raman have been done on the basis of potential energy distribution and the results were compared with the earlier reports on similar kind of molecules. For obtaining the electronic transition details of 4 NP3AP, UV-vis spectrum has been simulated by considering both gaseous and solvent phase using time-dependent density functional theory (TD-DFT). The HOMO-LUMO energy gap, most important factor to be considered for studying charge transfer properties of the molecule has been calculated. The electron density surface map corresponding to the net electrostatic point charges has been generated to obtain the electrophilic and nucleophilic sites. The charge transfer originating from the occupied (donor) and unoccupied (acceptor) molecular orbitals have been analyzed with the help of natural bond orbital theory. Moreover, the estimation of second-hyperpolarizability of the molecule confirms the non-linear optical behavior of the molecule.

  7. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence

    NASA Astrophysics Data System (ADS)

    Chábera, Pavel; Liu, Yizhu; Prakash, Om; Thyrhaug, Erling; Nahhas, Amal El; Honarfar, Alireza; Essén, Sofia; Fredin, Lisa A.; Harlang, Tobias C. B.; Kjær, Kasper S.; Handrup, Karsten; Ericson, Fredric; Tatsuno, Hideyuki; Morgan, Kelsey; Schnadt, Joachim; Häggström, Lennart; Ericsson, Tore; Sobkowiak, Adam; Lidin, Sven; Huang, Ping; Styring, Stenbjörn; Uhlig, Jens; Bendix, Jesper; Lomoth, Reiner; Sundström, Villy; Persson, Petter; Wärnmark, Kenneth

    2017-03-01

    Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3‧-dimethyl-1,1‧-bis(p-tolyl)-4,4‧-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.

  8. Charge Transfer Modulated Self-Assembly in Poly(aryl ether) Dendron Derivatives with Improved Stability and Transport Characteristics.

    PubMed

    Satapathy, Sitakanta; Prasad, Edamana

    2016-10-05

    Alteration of native gelation properties of anthracene and pyrene cored first generation poly(aryl ether) dendrons, G1-An and G1-Py, by introducing a common acceptor, 2,4,7-trinitro-9H-fluoren-9-one (TNF), results in forming charge transfer gels in long chain alcoholic solvents. This strategy leads to significant perturbation of optical and electronic properties within the gel matrix. Consequently, a noticeable increase of their electrical conductivities is observed, making these poly(aryl ether) dendron based gels potential candidates for organic electronics. While the dc-conductivity (σ) value for the native gel from G1-An is 2.8 × 10 -4 S m -1 , the value increased 3 times (σ = 8.7 × 10 -4 S m -1 ) for its corresponding charge transfer gel. Further, the dc-conductivity for the native gel self-assembled from G1-Py dramatically enhanced by approximately an order of magnitude from 4.9 × 10 -4 to 1.3 × 10 -3 S m -1 , under the influence of an acceptor. Apart from H-bonding and π···π interactions, charge transfer results in the formation of a robust 3D network of fibers, with improved aspect ratio, providing high thermo-mechanical stability to the gels compared to the native ones. The charge transfer gels self-assembled from G1-An/TNF (1:1) and G1-Py/TNF exhibit a 7.3- and 2.5-fold increase in their yield stress, respectively, compared to their native assemblies. A similar trend follows in the case of their thermal stabilities. This is attributed to the typical bilayer self-assembly of the former which is not present in the case of G1-Py/TNF charge transfer gel. Density functional calculations provide deeper insights accounting for the role of charge transfer interactions in the mode of self-assembly. The 1D potential energy surface for the G1-An/TNF dimer and G1-Py/TNF dimer is found to be 11.8 and 1.9 kcal mol -1 more stable than their corresponding native gel dimers, G1-An/G1-An and G1-Py/G1-Py, respectively.

  9. Graphene-on-semiconductor substrates for analog electronics

    DOEpatents

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  10. Visible and near-IR spectral reflectance of geologically important materials: A short review

    NASA Technical Reports Server (NTRS)

    Singer, R. B.

    1982-01-01

    Examples of reflectance spectra are presented and discussed for various mineral groups including pyroxenes, olivene, phylosilicates, amphiboles, feldspars, oxides and hydroxides, carbonates, and mixtures of minerals. The physical sources of some spectral features are also reviewed such as charge transfer and conduction bands, crystal field absorptions, and vibrational absorptions.

  11. CCD radiation damage in ESA Cosmic Visions missions: assessment and mitigation

    NASA Astrophysics Data System (ADS)

    Lumb, David H.

    2009-08-01

    Charge Coupled Device (CCD) imagers have been widely used in space-borne astronomical instruments. A frequent concern has been the radiation damage effects on the CCD charge transfer properties. We review some methods for assessing the Charge Transfer Inefficiency (CTI) in CCDs. Techniques to minimise degradation using background charge injection and p-channel CCD architectures are discussed. A critical review of the claims for p-channel architectures is presented. The performance advantage for p-channel CCD performance is shown to be lower than claimed previously. Finally we present some projections for the performance in the context of some future ESA missions.

  12. Surface Assisted Transient Displacement Charge Technique. II. Effect of Gases on Photoinduced Charge Transfer in Self-Assembled Monolayers

    PubMed Central

    Krasnoslobodtsev, Alexey V.; Smirnov, Sergei N.

    2008-01-01

    Surface assisted photoinduced transient displacement charge (SPTDC) technique was used to study charge transfer in self-assembled monolayers of 7-diethylaminocoumarin covalently linked to oxide surface in atmosphere of different gases. The dipole signal was found to be opposite to that in solution and dependent on the nature of gas and its pressure. The results were explained by collision-induced relaxation that impedes uninhibited tilting of molecules onto the surface. Collisions with paramagnetic oxygen induce intersystem crossing to long-lived triplet dipolar states of coumarin with the rate close to the half of that for the collision rate. PMID:16956285

  13. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  14. Large Capacitance Measurement by Multiple Uses of MBL Charge Sensor

    ERIC Educational Resources Information Center

    Lee, Jung Sook; Chae, Min; Kim, Jung Bog

    2010-01-01

    A recent article by Morse described interesting electrostatics experiments using an MBL charge sensor. In this application, the charge sensor has a large capacitance compared to the charged test object, so nearly all charges can be transferred to the sensor capacitor from the capacitor to be measured. However, the typical capacitance of commercial…

  15. The electrification of stratiform anvils

    NASA Astrophysics Data System (ADS)

    Boccippio, Dennis J.

    1997-10-01

    Stratiform precipitation regions accompany convective activity on many spatial scales. The electrification of these regions is anomalous in a number of ways. Surface and above-cloud fields are often 'inverted' from normal thunderstorm conditions. Unusually large, bright, horizontal 'spider' lightning and high current and charge transfer positive cloud-to-ground (CC) lightning dominates in these regions. Mesospheric 'red sprite' emissions have to date been observed exclusively over stratiform cloud shields. We postulate that a dominant 'inverted dipole' charge structure may account for this anomalous electrification. This is based upon laboratory observations of charge separation which show that in low liquid water content (LWC) environments, or dry but ice- supersaturated environments, precipitation ice tends to charge positively (instead of negatively) upon collision with smaller crystals. Under typical stratiform cloud conditions, liquid water should be depleted and this charging regime favored. An inverted dipole would be the natural consequence of large-scale charge separation (net flux divergence of charged ice), given typical hydrometeor profiles. The inverted dipole hypothesis is tested using radar and electrical observations of four weakly organized, late- stage systems in Orlando, Albuquerque and the Western Pacific. Time-evolving, area-average vertical velocity profiles are inferred from single Doppler radar data. These profiles provide the forcing for a 1-D steady state micro-physical retrieval, which yields vertical hydrometeor profiles and ice/water saturation conditions. The retrieved microphysical parameters are then combined with laboratory charge transfer measurements to infer the instantaneous charging behavior of the systems. Despite limitations in the analysis technique, the retrievals yield useful results. Total charge transfer drops only modestly as the storm enters the late (stratiform) stage, suggesting a continued active generator is plausible. Generator currents show an enhanced lowermost inverted dipole charging structure, which we may infer will result in a comparable inverted dipole charge structure, consistent with surface, in-situ and remote observations. Fine-scale vertical variations in ice and liquid water content may yield multipolar generator current profiles, despite unipolar charge transfer regimes. This suggests that multipoles observed in balloon soundings may not necessarily conflict with the simple ice-ice collisional charge separation mechanism. Overall, the results are consistent with, but not proof of, the inverted dipole model. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)

  16. Vehicle to wireless power transfer coupling coil alignment sensor

    DOEpatents

    Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.

    2016-02-16

    A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.

  17. [Diffusion and diffusion-osmosis models of the charged macromolecule transfer in barriers of biosystems].

    PubMed

    Varakin, A I; Mazur, V V; Arkhipova, N V; Serianov, Iu V

    2009-01-01

    Mathematical models of the transfer of charged macromolecules have been constructed on the basis of the classical equations of electromigration diffusion of Helmholtz-Smolukhovskii, Goldman, and Goldman-Hodgkin-Katz. It was shown that ion transfer in placental (mimicking lipid-protein barriers) and muscle barriers occurs by different mechanisms. In placental barriers, the electromigration diffusion occurs along lipid-protein channels formed due to the conformational deformation of phospholipid and protein molecules with the coefficients of diffusion D = (2.6-3.6) x 10(-8) cm2/s. The transfer in muscle barriers is due to the migration across charged interfibrillar channels with the negative diffusion activation energy, which is explained by changes in the structure of muscle fibers and expenditures of thermal energy for the extrusion of Cl- from channel walls with the diffusion coefficient D = (6.0-10.0) x 10(-6) cm2/s.

  18. Efficient Auger Charge-Transfer Processes in ZnO

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Chen, S. L.; Svensson, B. G.; Buyanova, I. A.; Chen, W. M.

    2018-05-01

    Photoluminescence and magneto-optical measurements are performed on a line peaking at 3.354 eV (labeled as NBX) in electron-irradiated ZnO. Even though the energy position of the NBX line is close to that for bound excitons in ZnO, it has distinctively different magneto-optical properties. Photoelectron paramagnetic resonance measurements reveal a connection and a charge-transfer process involving NBX and Fe and Al centers. The experimental results are explained within a model which assumes that the NBX is a neutral donor bound exciton at a defect center located near a Fe impurity and an Auger-type charge-transfer process occurs between NBX and Fe3 + . While the NBX dissociates, its hole is captured by an excited state of Fe3 + and the released energy is transferred to the NBX electron, which is excited to the conduction band and subsequently trapped by a substitutional AlZn shallow donor.

  19. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon

    PubMed Central

    Sun, Tianran; Levin, Barnaby D. A.; Guzman, Juan J. L.; Enders, Akio; Muller, David A.; Angenent, Largus T.; Lehmann, Johannes

    2017-01-01

    Surface functional groups constitute major electroactive components in pyrogenic carbon. However, the electrochemical properties of pyrogenic carbon matrices and the kinetic preference of functional groups or carbon matrices for electron transfer remain unknown. Here we show that environmentally relevant pyrogenic carbon with average H/C and O/C ratios of less than 0.35 and 0.09 can directly transfer electrons more than three times faster than the charging and discharging cycles of surface functional groups and have a 1.5 V potential range for biogeochemical reactions that invoke electron transfer processes. Surface functional groups contribute to the overall electron flux of pyrogenic carbon to a lesser extent with greater pyrolysis temperature due to lower charging and discharging capacities, although the charging and discharging kinetics remain unchanged. This study could spur the development of a new generation of biogeochemical electron flux models that focus on the bacteria–carbon–mineral conductive network. PMID:28361882

  20. Regulation control and energy management scheme for wireless power transfer

    DOEpatents

    Miller, John M.

    2015-12-29

    Power transfer rate at a charging facility can be maximized by employing a feedback scheme. The state of charge (SOC) and temperature of the regenerative energy storage system (RESS) pack of a vehicle is monitored to determine the load due to the RESS pack. An optimal frequency that cancels the imaginary component of the input impedance for the output signal from a grid converter is calculated from the load of the RESS pack, and a frequency offset f* is made to the nominal frequency f.sub.0 of the grid converter output based on the resonance frequency of a magnetically coupled circuit. The optimal frequency can maximize the efficiency of the power transfer. Further, an optimal grid converter duty ratio d* can be derived from the charge rate of the RESS pack. The grid converter duty ratio d* regulates wireless power transfer (WPT) power level.

  1. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT.

    PubMed

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-14

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  2. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT

    NASA Astrophysics Data System (ADS)

    Zhou, Yecheng; Deng, Wei-Qiao; Zhang, Hao-Li

    2016-09-01

    Cn-[1]benzothieno[3,2-b][1]-benzothiophene (BTBT) crystals show very high hole mobilities in experiments. These high mobilities are beyond existing theory prediction. Here, we employed different quantum chemistry methods to investigate charge transfer in Cn-BTBT crystals and tried to find out the reasons for the underestimation in the theory. It was found that the hopping rate estimated by the Fermi Golden Rule is higher than that of the Marcus theory due to the high temperature approximation and failure at the classic limit. More importantly, molecular dynamics simulations revealed that the phonon induced fluctuation of electronic transfer integral is much larger than the average of the electronic transfer integral itself. Mobilities become higher if simulations implement the phonon-electron coupling. This conclusion indicates that the phonon-electron coupling promotes charge transfer in organic semi-conductors at room temperature.

  3. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin

    2014-12-01

    The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.

  4. Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation.

    PubMed

    Zhang, Yin; Ley, Kevin D.; Schanze, Kirk S.

    1996-11-20

    A photochemical and photophysical investigation was carried out on (tbubpy)Pt(II)(dpdt) and (tbubpy)Pt(II)(edt) (1 and 2, respectively, where tbubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, dpdt = meso-1,2-diphenyl-1,2-ethanedithiolate and edt = 1,2-ethanedithiolate). Luminescence and transient absorption studies reveal that these complexes feature a lowest excited state with Pt(S)(2) --> tbubpy charge transfer to diimine character. Both complexes are photostable in deoxygenated solution; however, photolysis into the visible charge transfer band in air-saturated solution induces moderately efficient photooxidation. Photooxidation of 1 produces the dehydrogenation product (tbubpy)Pt(II)(1,2-diphenyl-1,2-ethenedithiolate) (4). By contrast, photooxidation of 2 produces S-oxygenated complexes in which one or both thiolate ligands are converted to sulfinate (-SO(2)R) ligands. Mechanistic photochemical studies and transient absorption spectroscopy reveal that photooxidation occurs by (1) energy transfer from the charge transfer to diimine excited state of 1 to (3)O(2) to produce (1)O(2) and (2) reaction between (1)O(2) and the ground state 1. Kinetic data indicates that excited state 1 produces (1)O(2) efficiently and that reaction between ground state 1 and (1)O(2) occurs with k approximately 3 x 10(8) M(-)(1) s(-)(1).

  5. [The experience of public guarantees of free-of-charge medical care foreign countries].

    PubMed

    Ulumbekova, G E

    2010-01-01

    The article deals with the analysis of the volumes of financing of public guarantees program of free-of-charge medical care and its algorithm of its elaboration in foreign countries. In the advanced countries, the higher financing of public health permit to ensure factually overall population the full free-of-charge spectrum of up-to-date medical interventions as a "public guarantees pack". It includes the pharmaceuticals supply in outpatient conditions and in most cases the long-term care services. In economically advanced countries, the general trend is the transfer from fundamental principles ("everything needed") to the more transparent approaches in case of implementation of the guarantees to achieve the balance between actual financial resources and stated population guarantees.

  6. Plasmonic Solar Cells: From Rational Design to Mechanism Overview.

    PubMed

    Jang, Yoon Hee; Jang, Yu Jin; Kim, Seokhyoung; Quan, Li Na; Chung, Kyungwha; Kim, Dong Ha

    2016-12-28

    Plasmonic effects have been proposed as a solution to overcome the limited light absorption in thin-film photovoltaic devices, and various types of plasmonic solar cells have been developed. This review provides a comprehensive overview of the state-of-the-art progress on the design and fabrication of plasmonic solar cells and their enhancement mechanism. The working principle is first addressed in terms of the combined effects of plasmon decay, scattering, near-field enhancement, and plasmonic energy transfer, including direct hot electron transfer and resonant energy transfer. Then, we summarize recent developments for various types of plasmonic solar cells based on silicon, dye-sensitized, organic photovoltaic, and other types of solar cells, including quantum dot and perovskite variants. We also address several issues regarding the limitations of plasmonic nanostructures, including their electrical, chemical, and physical stability, charge recombination, narrowband absorption, and high cost. Next, we propose a few potentially useful approaches that can improve the performance of plasmonic cells, such as the inclusion of graphene plasmonics, plasmon-upconversion coupling, and coupling between fluorescence resonance energy transfer and plasmon resonance energy transfer. This review is concluded with remarks on future prospects for plasmonic solar cell use.

  7. Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt

    NASA Astrophysics Data System (ADS)

    Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.

    2017-01-01

    A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.

  8. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conicalmore » intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density – charge migration – between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.« less

  9. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    NASA Astrophysics Data System (ADS)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-01

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D6h Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D2 eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D1, D2 (N+-Phenyl, N-Phenyl+). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density - charge migration - between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.

  10. Unit-dose assay of tropine alkaloids and their synthetic analogs.

    PubMed

    Gomaa, C; Taha, A

    1975-08-01

    A charge-transfer spectrophotometric method was developed for unit-dose assay of the tropine alkaloids and some of their synthetic analogs. The high molar absorptivities of the charge-transfer bands of the alkaloids with iodine in ethylene dichloride resulted in improved recoveries and good precision, particularly at the low dose levels of pediatric and hypodermic tablets.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Delnick, Frank M.

    Here, an improved method for quantitative measurement of the charge transfer, finite diffusion, and ohmic overpotentials in redox flow batteries using electrochemical impedance spectroscopy is presented. The use of a pulse dampener in the hydraulic circuit enables the collection of impedance spectra at low frequencies with a peristaltic pump, allowing the measurement of finite diffusion resistances at operationally relevant flow rates. This method is used to resolve the rate-limiting processes for the V 2+/V 3+ redox couple on carbon felt and carbon paper electrodes in the vanadium redox flow battery. Carbon felt was limited by both charge transfer and ohmicmore » resistance, while carbon paper was limited by charge transfer, finite diffusion, and ohmic resistances. The influences of vanadium concentration and flow field design also are quantified.« less

  12. Modelling charge transfer reactions with the frozen density embedding formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionalsmore » are used the electronic couplings are grossly overestimated.« less

  13. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-03

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  14. A new type of localized fast moving electronic excitations in molecular chains

    NASA Astrophysics Data System (ADS)

    Korshunova, A. N.; Lakhno, V. D.

    2014-06-01

    It is shown that in a Holstein molecular chain placed in a strong longitudinal electric field some new types of excitations can arise. These excitations can transfer a charge over large distance (more than 1000 nucleotide pairs) along the chain retaining approximately their shapes. Excitations are formed only when a strong electric field either exists or quickly arises under especially preassigned conditions. These excitations transfer a charge even in the case when Holstein polarons are practically immobile. The results obtained are applied to synthetic homogeneous PolyG/PolyC DNA duplexes. They can also be provide the basis for explanation of famous H.W. Fink and C. Schönenberger experiment on long-range charge transfer in DNA.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less

  16. A comparison of various surface charge transfer hole doping of graphene grown by chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Chandramohan, S.; Seo, Tae Hoon; Janardhanam, V.; Hong, Chang-Hee; Suh, Eun-Kyung

    2017-10-01

    Charge transfer doping is a renowned route to modify the electrical and electronic properties of graphene. Understanding the stability of potentially important charge-transfer materials for graphene doping is a crucial first step. Here we present a systematic comparison on the doping efficiency and stability of single layer graphene using molybdenum trioxide (MoO3), gold chloride (AuCl3), and bis(trifluoromethanesulfonyl)amide (TFSA). Chemical dopants proved to be very effective, but MoO3 offers better thermal stability and device fabrication compatibility. Single layer graphene films with sheet resistance values between 100 and 200 ohm/square were consistently produced by implementing a two-step growth followed by doping without compromising the optical transmittance.

  17. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlapmore » matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.« less

  18. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings.

    PubMed

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Ångstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  19. Organic doping of rotated double layer graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in

    2016-05-06

    Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less

  20. Electronic and magnetic properties of transition metal doped graphyne

    NASA Astrophysics Data System (ADS)

    Gangan, Abhijeet Sadashiv; Yadav, Asha S.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2017-05-01

    We have theoretically investigated the interaction of few 3d (V,Mn) and 4d (Y,Zr) transition metals with the γ-graphyne structure using the spin-polarized density functional theory for its potentials application in Hydrogen storage, spintronics and nano-electronics. By doping different TMs we have observed that the system can be either metallic(Y), semi-conducting or half metallic. The system for Y and Zr doped graphyne becomes non-magnetic while V and Mn doped graphyne have a magnetic moments of l μB and 3 μB respectively From bader charge analysis it is seen that there is a charge transfer from the TM atom to the graphyne. Zr and Y have a net charge transfer of 2.15e and 1.73e respectively. Charge density analysis also shows the polarization on the carbon skeleton which becomes larger as the charge transfer for the TM atom increases. Thus we see Y and Zr are better candidates for hydrogen storage devices since they are non-magnetic and have less d electrons which is ideal for kubas-type interactions between hydrogen molecule and TM.

Top