Status of commercial fuel cell powerplant system development
NASA Technical Reports Server (NTRS)
Warshay, Marvin
1987-01-01
The primary focus is on the development of commercial Phosphoric Acid Fuel Cell (PAFC) powerplant systems because the PAFC, which has undergone extensive development, is currently the closest fuel cell system to commercialization. Shorter discussions are included on the high temperature fuel cell systems which are not as mature in their development, such as the Molten Carbonate Fuel Cell (MCFC) and the Solid Oxide Fuel Cell (SOFC). The alkaline and the Solid Polymer Electrolyte (SPE) fuel cell systems, are also included, but their discussions are limited to their prospects for commercial development. Currently, although the alkaline fuel cell continues to be used for important space applications there are no commercial development programs of significant size in the USA and only small efforts outside. The market place for fuel cells and the status of fuel cell programs in the USA receive extensive treatment. The fuel cell efforts outside the USA, especially the large Japanese programs, are also discussed.
Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.
2013-03-05
Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.
PLATINUM, FUEL CELLS, AND FUTURE ROAD TRANSPORT
A vehicle powered by a fuel cell will emit virtually no air polution and, depending on fuel choice, can substantially improve fuel economy above that of current technology. Those attributes are complementary to issues of increasing national importance including the effects of tra...
Conversion from film to image plates for transfer method neutron radiography of nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craft, Aaron E.; Papaioannou, Glen C.; Chichester, David L.
This paper summarizes efforts to characterize and qualify a computed radiography (CR) system for neutron radiography of irradiated nuclear fuel at Idaho National Laboratory (INL). INL has multiple programs that are actively developing, testing, and evaluating new nuclear fuels. Irradiated fuel experiments are subjected to a number of sequential post-irradiation examination techniques that provide insight into the overall behavior and performance of the fuel. One of the first and most important of these exams is neutron radiography, which provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Results from neutronmore » radiography are often the driver for subsequent examinations of the PIE program. Features of interest that can be evaluated using neutron radiography include irradiation-induced swelling, isotopic and fuel-fragment redistribution, plate deformations, and fuel fracturing. The NRAD currently uses the foil-film transfer technique with film for imaging fuel. INL is pursuing multiple efforts to advance its neutron imaging capabilities for evaluating irradiated fuel and other applications, including conversion from film to CR image plates. Neutron CR is the current state-of-the-art for neutron imaging of highly-radioactive objects. Initial neutron radiographs of various types of nuclear fuel indicate that radiographs can be obtained of comparable image quality currently obtained using film. This paper provides neutron radiographs of representative irradiated fuel pins along with neutron radiographs of standards that informed the qualification of the neutron CR system for routine use. Additionally, this paper includes evaluations of some of the CR scanner parameters and their effects on image quality.« less
NASA Astrophysics Data System (ADS)
Jewulski, J. R.; Osif, T. L.; Remick, R. J.
1990-12-01
The purpose of this program was to survey the field of solid-state proton conductors (SSPC), identify conductors that could be used to develop solid-state fuel cells suitable for use with coal derived fuel gases, and begin the experimental research required for the development of these fuel cells. This document covers the following topics: the history of developments and current status of the SSPC, including a review of proton conducting electrolyte structures, the current status of the medium temperature SSPC development, electrodes for moderate temperature (SSPC) fuel cell, basic material and measurement techniques applicable for SSPC development, modeling, and optimization studies. Correlation and optimization studies are described which include correlation studies on proton conduction and oxide cathode optimization for the SSPC fuel cell. Experiments with the SSPC fuel cells are presented which include the fabrication of the electrolyte disks, apparatus for conducting measurements, the strontium-cerium based electrolyte, the barium-cerium based electrolyte with solid foil electrodes, the barium-cerium based electrolyte with porous electrodes, and conduction mechanisms.
Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL
Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Carmack; L. Braase; F. Goldner
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performancemore » under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.« less
DoD use of Domestically-Produced Alternative Fuels and Alternative Fuel Vehicles
2014-04-10
based fuels and biodiesel , in DoD vehicles; (2) current and projected actions by the DoD to increase the use of alternative fuels in vehicles; (3) a...fuels and vehicles. 15. SUBJECT TERMS alternative fuel infrastructure, electric vehicles, biofuels, ethanol, biodiesel , drop-in, synthetic fuel...of: (1) use and potential use of domestically-produced alternative fuels including but not limited to, natural gas based fuels and biodiesel , in DoD
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennifer Lyons; Wade R. Marcum; Mark D. DeHart
2014-01-01
The Advanced Test Reactor (ATR), under the Reduced Enrichment for Research and Test Reactors (RERTR) Program and the Global Threat Reduction Initiative (GTRI), is conducting feasibility studies for the conversion of its fuel from a highly enriched uranium (HEU) composition to a low enriched uranium (LEU) composition. These studies have considered a wide variety of LEU plate-type fuels to replace the current HEU fuel. Continuing to investigate potential alternatives to the present HEU fuel form, this study presents a preliminary analysis of TRIGA® fuel within the current ATR fuel envelopes and compares it to the functional requirements delineated by themore » Naval Reactors Program, which includes: greater than 4.8E+14 fissions/s/g of 235U, a fast to thermal neutron flux ratio that is less than 5% deviation of its current value, a constant cycle power within the corner lobes, and an operational cycle length of 56 days at 120 MW. Other parameters outside those put forth by the Naval Reactors Program which are investigated herein include axial and radial power profiles, effective delayed neutron fraction, and mean neutron generation time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.
Future long-range transports - Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: historical trends in airplane efficiency; technological opportunities including supercritical aerodynamics, vortex diffusers, composite materials, propulsion systems, active controls, and terminal-area operations; unconventional design concepts, and hydrogen-fueled airplane.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Efficiency and Renewable Energy or any other DOE official to whom the Assistant Secretary's duties under this... an electric motor that draws current from rechargeable storage batteries, fuel cells or other sources... batteries, fuel cells, photovoltaic arrays, or other sources of electric current and may include an electric...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Efficiency and Renewable Energy or any other DOE official to whom the Assistant Secretary's duties under this... an electric motor that draws current from rechargeable storage batteries, fuel cells or other sources... batteries, fuel cells, photovoltaic arrays, or other sources of electric current and may include an electric...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Efficiency and Renewable Energy or any other DOE official to whom the Assistant Secretary's duties under this... an electric motor that draws current from rechargeable storage batteries, fuel cells or other sources... batteries, fuel cells, photovoltaic arrays, or other sources of electric current and may include an electric...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Efficiency and Renewable Energy or any other DOE official to whom the Assistant Secretary's duties under this... an electric motor that draws current from rechargeable storage batteries, fuel cells or other sources... batteries, fuel cells, photovoltaic arrays, or other sources of electric current and may include an electric...
Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014
DOT National Transportation Integrated Search
2014-12-03
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...
The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America
Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.
2018-02-26
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less
The Need for Integrating the Back End of the Nuclear Fuel Cycle in the United States of America
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonano, Evaristo J.; Kalinina, Elena A.; Swift, Peter N.
Current practice for commercial spent nuclear fuel management in the United States of America (US) includes storage of spent fuel in both pools and dry storage cask systems at nuclear power plants. Most storage pools are filled to their operational capacity, and management of the approximately 2,200 metric tons of spent fuel newly discharged each year requires transferring older and cooler fuel from pools into dry storage. In the absence of a repository that can accept spent fuel for permanent disposal, projections indicate that the US will have approximately 134,000 metric tons of spent fuel in dry storage by mid-centurymore » when the last plants in the current reactor fleet are decommissioned. Current designs for storage systems rely on large dual-purpose (storage and transportation) canisters that are not optimized for disposal. Various options exist in the US for improving integration of management practices across the entire back end of the nuclear fuel cycle.« less
Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Jennifer; Peters, Mike; Muratori, Matteo
The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.
Fabrication and Testing of CERMET Fuel Materials for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie; Mireles, Omar
2012-01-01
A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on Nuclear Thermal Propulsion (NTP) is currently being developed for Advanced Space Exploration Systems. The overall goal of the project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of NTP systems. The current technology roadmap for NTP identifies the development of a robust fuel form as a critical near term need. The lack of a qualified nuclear fuel is a significant technical risk that will require a considerable fraction of program resources to mitigate. Due to these risks and the cost for qualification, the development and selection of a primary fuel must begin prior to Authority to Proceed (ATP) for a specific mission. The fuel development is a progressive approach to incrementally reduce risk, converge the fuel materials, and mature the design and fabrication process of the fuel element. A key objective of the current project is to advance the maturity of CERMET fuels. The work includes fuel processing development and characterization, fuel specimen hot hydrogen screening, and prototypic fuel element testing. Early fuel materials development is critical to help validate requirements and fuel performance. The purpose of this paper is to provide an overview and status of the work at Marshall Space Flight Center (MSFC).
Future long-range transports: Prospects for improved fuel efficiency
NASA Technical Reports Server (NTRS)
Nagel, A. L.; Alford, W. J., Jr.; Dugan, J. F., Jr.
1975-01-01
A status report is provided on current thinking concerning potential improvements in fuel efficiency and possible alternate fuels. Topics reviewed are: (1) historical trends in airplane efficiency; (2) technological opportunities including supercritical aerodynamics, (3) vortex diffusers, (4) composite materials, (5) propulsion systems, (6) active controls, and terminal-area operations; (7) unconventional design concepts, and (8) hydrogen-fueled airplane.
The role of technology as air transportation faces the fuel situation
NASA Technical Reports Server (NTRS)
Driver, C.
1980-01-01
Perspectives on the air transportation fuel stituation are discussed including intercity air traffic, airline fuel consumption, fuel price effects on ticket price, and projected traffic and fuel useage between now and the year 2000. Actions taken by the airlines to reduce consumption are reviewed, as well as efforts currently underway to improve fuel consumption. Longer range technology payoffs resulting from NASA research programs are reviewed and results from studies on the use of alternate fuels are discussed.
PEM fuel cell bipolar plate material requirements for transportation applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, R.L.; Stroh, K.R.; Vanderborgh, N.E.
1996-04-01
Cost effective bipolar plates are currently under development to help make proton exchange membrane (PEM) fuel cells commercially viable. Bipolar plates separate individual cells of the fuel cell stack, and thus must supply strength, be electrically conductive, provide for thermal control of the fuel stack, be a non-porous materials separating hydrogen and oxygen feed streams, be corrosion resistant, provide gas distribution for the feed streams and meet fuel stack cost targets. Candidate materials include conductive polymers and metal plates with corrosion resistant coatings. Possible metals include aluminium, titanium, iron/stainless steel and nickel.
Trench fast reactor design using the microcomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rohach, A.F.; Sankoorikal, J.T.; Schmidt, R.R.
1987-01-01
This project is a study of alternative liquid-metal-cooled fast power reactor system concepts. Specifically, an unconventional primary system is being conceptually designed and evaluated. The project design is based primarily on microcomputer analysis through the use of computational modules. The reactor system concept is a long, narrow pool with a long, narrow reactor called a trench-type pool reactor in it. The reactor consists of five core-blanket modules in a line. Specific power is to be modest, permitting long fuel residence time. Two fuel cycles are currently being considered. The reactor design philosophy is that of the inherently safe concept. Thismore » requires transient analysis dependent on reactivity coefficients: prompt fuel, including Doppler and expansion, fuel expansion, sodium temperature and void, and core expansion. Conceptual reactor design is done on a microcomputer. A part of the trench reactor project is to develop a microcomputer-based system that can be used by the user for scoping studies and design. Current development includes the neutronics and fuel management aspects of the design. Thermal-hydraulic analysis and economics are currently being incorporated into the microcomputer system. The system is menu-driven including preparation of program input data and of output data for displays in graphics form.« less
A comparison of 3 models of 1-hr timelag fuel moisture in Hawaii
D.R. Weise; F.M. Fujioka; R.M. Nelson
2005-01-01
The U.S. National Fire Danger Rating System currently uses a moisture diffusion model developed by Fosberg to predict fine fuel moisture in woody fuels. Nelson recently developed a fuel moisture model that includes functions for both heat and moisture transfer. Fuel moisture samples were collected in Hawaii hourly for up to 96 h for three litter, one herbaceous, and...
Grot, Stephen Andreas
1998-01-01
A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.
NASA Technical Reports Server (NTRS)
Prok, G. M.; Seng, G. T.
1980-01-01
Characterization data and a hydrocarbon compositional analysis are presented for a research test fuel designated as an experimental referee broadened-specification aviation turbine fuel. This research fuel, which is a special blend of kerosene and hydrotreated catalytic gas oil, is a hypothetical representation of a future fuel should it become necessary to broaden current kerojet specifications. It is used as a reference fuel in research investigations into the effects of fuel property variations on the performance and durability of jet aircraft components, including combustors and fuel systems.
Simplified jet fuel reaction mechanism for lean burn combustion application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
Fuel inspection and reconstitution experience at Surry Power Station
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brookmire, T.A.
Surry Power Station, located on the James River near Williamsburg, Virginia, has two Westinghouse pressurized water reactors. Unit 2 consistently sets a high standard of fuel performance (no indication of fuel failures in recent cycles), while unit 1, since cycle 6, has been plagued with numerous fuel failures. Both Surry units operate with Westinghouse standard 15 x 15 fuel. Virginia Power management set goals to reduce the coolant activity, thus reducing person-rem exposure and the associated costs of high coolant activity. To achieve this goal, extensive fuel examination campaigns were undertaken that included high-magnification video inspectionsa, debris cleaning, wet andmore » vacuum fuel sipping, fuel rod ultrasonic testing, and eddy current examination. In the summer of 1985, during cycle 8 operation, Kraftwerk Union reconstituted (repaired) the damage, once-burned assemblies from cycles 6 and 7 by replacing failed fuel rods with solid Zircaloy-4 rods. Currently, cycle 9 has operated for 5 months without any indication of fuel failure (the cycle 9 core has two reconstituted assemblies).« less
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
The effect of modifications in hydrocarbon jet fuels specifications on engine performance, component durability and maintenance, and aircraft fuel system performance is discussed. Specific topics covered include: specific fuel consumption; ignition at relight limits; exhaust emissions; combustor liner temperatures; carbon deposition; gum formation in fuel nozzles, erosion and corrosion of turbine blades and vanes; deposits in fuel system heat exchangers; and pumpability and flowability of the fuel. Data that evaluate the ability of current technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.
Commercial jet fuel quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, K.H.
1995-05-01
The paper discusses the purpose of jet fuel quality control between the refinery and the aircraft. It describes fixed equipment, including various types of filters, and the usefulness and limitations of this equipment. Test equipment is reviewed as are various surveillance procedures. These include the Air Transport Association specification ATA 103, the FAA Advisory Circular 150/5230-4, the International Air Transport Association Guidance Material for Fuel Quality Control and Fuelling Service and the Guidelines for Quality Control at Jointly Operated Fuel Systems. Some past and current quality control problems are briefly mentioned.
Advanced Fuels Campaign FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann; Carmack, William Jonathan
2015-10-29
The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.
Grot, S.A.
1998-01-13
A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.
Current and anticipated uses of thermal-hydraulic codes in NFI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuda, K.; Takayasu, M.
1997-07-01
This paper presents the thermal-hydraulic codes currently used in NFI for the LWR fuel development and licensing application including transient and design basis accident analyses of LWR plants. The current status of the codes are described in the context of code capability, modeling feature, and experience of code application related to the fuel development and licensing. Finally, the anticipated use of the future thermal-hydraulic code in NFI is briefly given.
Electrically heated particulate filter preparation methods and systems
Gonze, Eugene V [Pinckney, MI
2012-01-31
A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.
Nuclear fuel in a reactor accident.
Burns, Peter C; Ewing, Rodney C; Navrotsky, Alexandra
2012-03-09
Nuclear accidents that lead to melting of a reactor core create heterogeneous materials containing hundreds of radionuclides, many with short half-lives. The long-lived fission products and transuranium elements within damaged fuel remain a concern for millennia. Currently, accurate fundamental models for the prediction of release rates of radionuclides from fuel, especially in contact with water, after an accident remain limited. Relatively little is known about fuel corrosion and radionuclide release under the extreme chemical, radiation, and thermal conditions during and subsequent to a nuclear accident. We review the current understanding of nuclear fuel interactions with the environment, including studies over the relatively narrow range of geochemical, hydrological, and radiation environments relevant to geological repository performance, and discuss priorities for research needed to develop future predictive models.
2015-01-01
Spent nuclear fuel data are collected by the U.S. Energy Information Administration (EIA) for the Department of Energy's Office of Standard Contract Management (Office of the General Counsel) on the Form GC-859, "Nuclear Fuel Data Survey." The data include detailed characteristics of spent nuclear fuel discharged from commercial U.S. nuclear power plants and currently stored at commercial sites in the United States. Utilities were not required to report spent nuclear fuel assemblies shipped to away-from-reactor, off-site facilities.
Report on FY16 Low-dose Metal Fuel Irradiation and PIE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.
2016-09-01
This report gives an overview of the efforts into the low-dose metal fuel irradiation and PIE as part of the Fuel Cycle Research & Development (FCRD) Advanced Fuels Campaign (AFC) milestone M3FT-16OR020303031. The current status of the FCT and FCRP irradiation campaigns are given including a description of the materials that have been irradiated, analysis of the passive temperature monitors, and the initial PIE efforts of the fuel samples.
Safety and Regulatory Issues of the Thorium Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian; Worrall, Andrew; Powers, Jeffrey
2014-02-01
Thorium has been widely considered an alternative to uranium fuel because of its relatively large natural abundance and its ability to breed fissile fuel (233U) from natural thorium (232Th). Possible scenarios for using thorium in the nuclear fuel cycle include use in different nuclear reactor types (light water, high temperature gas cooled, fast spectrum sodium, molten salt, etc.), advanced accelerator-driven systems, or even fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based on concepts that mix thorium with uranium (UO2 + ThO2),more » add fertile thorium (ThO2) fuel pins to LWR fuel assemblies, or use mixed plutonium and thorium (PuO2 + ThO2) fuel assemblies. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts on the nuclear fuel. Thorium and its irradiation products have nuclear characteristics that are different from those of uranium. In addition, ThO2, alone or mixed with UO2 fuel, leads to different chemical and physical properties of the fuel. These aspects are key to reactor safety-related issues. The primary objectives of this report are to summarize historical, current, and proposed uses of thorium in nuclear reactors; provide some important properties of thorium fuel; perform qualitative and quantitative evaluations of both in-reactor and out-of-reactor safety issues and requirements specific to a thorium-based fuel cycle for current LWR reactor designs; and identify key knowledge gaps and technical issues that need to be addressed for the licensing of thorium LWR fuel in the United States.« less
Feasibility of Producing and Using Biomass-Based Diesel and Jet Fuel in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrandt, A.; Kinchin, C.; McCormick, R.
The study summarizes the best available public data on the production, capacity, cost, market demand, and feedstock availability for the production of biomass-based diesel and jet fuel. It includes an overview of the current conversion processes and current state-of-development for the production of biomass-based jet and diesel fuel, as well as the key companies pursuing this effort. Thediscussion analyzes all this information in the context of meeting the RFS mandate, highlights uncertainties for the future industry development, and key business opportunities.
Soloveichik, Grigorii L
2014-01-01
The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.
Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles
NASA Technical Reports Server (NTRS)
Walker, James F.; Civinskas, Kestutis C.
2004-01-01
Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.
Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production
NASA Astrophysics Data System (ADS)
Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda
2016-10-01
Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.
Fuels characterization studies. [jet fuels
NASA Technical Reports Server (NTRS)
Seng, G. T.; Antoine, A. C.; Flores, F. J.
1980-01-01
Current analytical techniques used in the characterization of broadened properties fuels are briefly described. Included are liquid chromatography, gas chromatography, and nuclear magnetic resonance spectroscopy. High performance liquid chromatographic ground-type methods development is being approached from several directions, including aromatic fraction standards development and the elimination of standards through removal or partial removal of the alkene and aromatic fractions or through the use of whole fuel refractive index values. More sensitive methods for alkene determinations using an ultraviolet-visible detector are also being pursued. Some of the more successful gas chromatographic physical property determinations for petroleum derived fuels are the distillation curve (simulated distillation), heat of combustion, hydrogen content, API gravity, viscosity, flash point, and (to a lesser extent) freezing point.
Hydrogen storage and fuel cells
NASA Astrophysics Data System (ADS)
Liu, Di-Jia
2018-01-01
Global warming and future energy supply are two major challenges facing American public today. To overcome such challenges, it is imperative to maximize the existing fuel utilization with new conversion technologies while exploring alternative energy sources with minimal environmental impact. Hydrogen fuel cell represents a next-generation energy-efficient technology in transportation and stationary power productions. In this presentation, a brief overview of the current technology status of on-board hydrogen storage and polymer electrolyte membrane fuel cell in transportation will be provided. The directions of the future researches in these technological fields, including a recent "big idea" of "H2@Scale" currently developed at the U. S. Department of Energy, will also be discussed.
Requirements to the procedure and stages of innovative fuel development
NASA Astrophysics Data System (ADS)
Troyanov, V.; Zabudko, L.; Grachyov, A.; Zhdanova, O.
2016-04-01
According to the accepted current understanding under the nuclear fuel we will consider the assembled active zone unit (Fuel assembly) with its structural elements, fuel rods, pellet column, structural materials of fuel rods and fuel assemblies. The licensing process includes justification of safe application of the proposed modifications, including design-basis and experimental justification of the modified items under normal operating conditions and in violation of normal conditions, including accidents as well. Besides the justification of modified units itself, it is required to show the influence of modifications on the performance and safety of the other Reactor Unit’ and Nuclear Plant’ elements (e.g. burst can detection system, transportation and processing operations during fuel handling), as well as to justify the new standards of fuel storage etc. Finally, the modified fuel should comply with the applicable regulations, which often becomes a very difficult task, if only because those regulations, such as the NP-082-07, are not covered modification issues. Making amendments into regulations can be considered as the only solution, but the process is complicated and requires deep grounds for amendments. Some aspects of licensing new nuclear fuel are considered the example of mixed nitride uranium -plutonium fuel application for the BREST reactor unit.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
2014-01-01
Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123
Nuclear power generation and fuel cycle report 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-10-01
This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.
NASA Astrophysics Data System (ADS)
Porter, Ian Edward
A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several additional fuels will also be analyzed, including uranium nitride (UN), uranium carbide (UC) and uranium silicide (U3Si2). Focusing on the system response in an accident scenario, an emphasis is placed on the fracture mechanics of the ceramic cladding by design the fuel rods to eliminate pellet cladding mechanical interaction (PCMI). The time to failure and how much of the fuel in the reactor fails with an advanced fuel design will be analyzed and compared to the current UO2/Zircaloy design using a full scale reactor model.
Advanced fuels campaign 2013 accomplishments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; Hamelin, Doug
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle optionsmore » defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.« less
Thermofluid Modeling of Fuel Cells
NASA Astrophysics Data System (ADS)
Young, John B.
2007-01-01
Fuel cells offer the prospect of silent electrical power generation at high efficiency with near-zero pollutant emission. Many materials and fabrication problems have now been solved and attention has shifted toward system modeling, including the fluid flows that supply the cells with hydrogen and oxygen. This review describes the current thermofluid modeling capabilities for proton exchange membrane fuel cells (PEMFCs) and solid oxide fuel cells (SOFCs), the most promising candidates for commercial exploitation. Topics covered include basic operating principles and stack design, convective-diffusive flow in porous solids, special modeling issues for PEMFCs and SOFCs, and the use of computational fluid dynamics (CFD) methods.
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
Hydrogen: The Ultimate Fuel and Energy Carrier.
ERIC Educational Resources Information Center
Dinga, Gustav P.
1988-01-01
Lists 24 frequently asked questions concerning hydrogen as a fuel with several responses given to each question. Emphasized are hydrogen production, storage, transmission, and application to various energy-consuming sectors. Summarizes current findings and research on hydrogen. An extensive bibliography is included. (ML)
Onboard fuel reformers for fuel cell vehicles: Equilibrium, kinetic and system modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreutz, T.G.; Steinbugler, M.M.; Ogden, J.M.
1996-12-31
On-board reforming of liquid fuels to hydrogen for use in proton exchange membrane (PEM) fuel cell electric vehicles (FCEVs) has been the subject of numerous investigations. In many respects, liquid fuels represent a more attractive method of carrying hydrogen than compressed hydrogen itself, promising greater vehicle range, shorter refilling times, increased safety, and perhaps most importantly, utilization of the current fuel distribution infrastructure. The drawbacks of on-board reformers include their inherent complexity [for example a POX reactor includes: a fuel vaporizer, a reformer, water-gas shift reactors, a preferential oxidation (PROX) unit for CO cleanup, heat exchangers for thermal integration, sensorsmore » and controls, etc.], weight, and expense relative to compressed H{sub 2}, as well as degraded fuel cell performance due to the presence of inert gases and impurities in the reformate. Partial oxidation (POX) of automotive fuels is another alternative for hydrogen production. This paper provides an analysis of POX reformers and a fuel economy comparison of vehicles powered by on-board POX and SRM fuel processors.« less
Combustion processes in wildland fuels
Charles K. McMahon
1985-01-01
Abstract. A 5-year summary of accomplishments, current activities, and planned actions for fire research project SE-2110 are presented. Areas of discussion center on: (1) characterization of wildland smoke, and (2) fuel, fire, and emission relationships. Characterization summaries include physical and chemical properties of smoke, smoke from...
Experimental and Computational Study of Trapped Vortex Combustor Sector Rig With Tri-Pass Diffuser
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Shouse, D. T.; Roquernore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.
2004-01-01
The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.
Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program
NASA Technical Reports Server (NTRS)
Lundblad, H. L.; Cavagrotti, R. R.
1983-01-01
The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology.
Current status of the development of high density LEU fuel for Russian research reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vatulin, A.; Dobrikova, I.; Suprun, V.
2008-07-15
One of the main directions of the Russian RERTR program is to develop U-Mo fuel and fuel elements/FA with this fuel. The development is carried out both for existing reactors, and for new advanced designs of reactors. Many organizations in Russia, i.e. 'TVEL', RDIPE, RIAR, IRM, NPCC participate in the work. Two fuels are under development: dispersion and monolithic U-Mo fuel, as well two types of FA to use the dispersion U-Mo fuel: with tubular type fuel elements and with pin type fuel elements. The first stage of works was successfully completed. This stage included out-pile, in-pile and post irradiationmore » examinations of U-Mo dispersion fuel in experimental tubular and pin fuel elements under parameters similar to operation conditions of Russian design pool-type research reactors. The results received both in Russia and abroad enabled to go on to the next stage of development which includes irradiation tests both of full-scale IRT pin-type and tube-type fuel assemblies with U-Mo dispersion fuel and of mini-fuel elements with modified U-Mo dispersion fuel and monolithic fuel. The paper gives a generalized review of the results of U-Mo fuel development accomplished by now. (author)« less
NASA Astrophysics Data System (ADS)
Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.
All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.
Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Neal P.
The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.
Metals and Ceramics Division annual progress report, October 1, 1978-June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, S.
Research is reported concerning: (1) engineering materials including materials compatibility, mechanical properties, nondestructive testing, pressure vessel technology, and welding and brazing; (2) fuels and processes consisting of ceramic technology, fuel cycle technology, fuels evaluation, fuels fabrication and metals processing; and (3) materials science which includes, ceramic studies, physical metallurgy and properties, radiation effects and microstructural analysis, metastable and superconducting materials, structure and properties of surfaces, theoretical research, and x-ray research and applications. Highlights of the work of the metallographic group and the current status of the High-Temperature Materials Laboratory (HTML) and the Materials and Structures Technology Management Center (MSTMC) aremore » presented. (FS)« less
Spent nuclear fuel discharges from US reactors 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-05
This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactivemore » Waste Management.« less
Review of Biojet Fuel Conversion Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Wei-Cheng; Tao, Ling; Markham, Jennifer
Biomass-derived jet (biojet) fuel has become a key element in the aviation industry’s strategy to reduce operating costs and environmental impacts. Researchers from the oil-refining industry, the aviation industry, government, biofuel companies, agricultural organizations, and academia are working toward developing commercially viable and sustainable processes that produce long-lasting renewable jet fuels with low production costs and low greenhouse gas emissions. Additionally, jet fuels must meet ASTM International specifications and potentially be a 100% drop-in replacement for the current petroleum jet fuel. The combustion characteristics and engine tests demonstrate the benefits of running the aviation gas turbine with biojet fuels. Inmore » this study, the current technologies for producing renewable jet fuels, categorized by alcohols-to-jet, oil-to-jet, syngas-to-jet, and sugar-to-jet pathways, are reviewed. The main challenges for each technology pathway, including feedstock availability, conceptual process design, process economics, life-cycle assessment of greenhouse gas emissions, and commercial readiness, are discussed. Although the feedstock price and availability and energy intensity of the process are significant barriers, biomass-derived jet fuel has the potential to replace a significant portion of conventional jet fuel required to meet commercial and military demand.« less
The US Army Foreign Comparative Test fuel cell program
NASA Astrophysics Data System (ADS)
Bostic, Elizabeth; Sifer, Nicholas; Bolton, Christopher; Ritter, Uli; Dubois, Terry
The US Army RDECOM initiated a Foreign Comparative Test (FCT) Program to acquire lightweight, high-energy dense fuel cell systems from across the globe for evaluation as portable power sources in military applications. Five foreign companies, including NovArs, Smart Fuel Cell, Intelligent Energy, Ballard Power Systems, and Hydrogenics, Inc., were awarded competitive contracts under the RDECOM effort. This paper will report on the status of the program as well as the experimental results obtained from one of the units. The US Army has interests in evaluating and deploying a variety of fuel cell systems, where these systems show added value when compared to current power sources in use. For low-power applications, fuel cells utilizing high-energy dense fuels offer significant weight savings over current battery technologies. This helps reduce the load a solider must carry for longer missions. For high-power applications, the low operating signatures (acoustic and thermal) of fuel cell systems make them ideal power generators in stealth operations. Recent testing has been completed on the Smart Fuel Cell A25 system that was procured through the FCT program. The "A-25" is a direct methanol fuel cell hybrid and was evaluated as a potential candidate for soldier and sensor power applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob
This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less
Key metrics for HFIR HEU and LEU models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Betzler, Benjamin R.; Chandler, David
This report compares key metrics for two fuel design models of the High Flux Isotope Reactor (HFIR). The first model represents the highly enriched uranium (HEU) fuel currently in use at HFIR, and the second model considers a low-enriched uranium (LEU) interim design fuel. Except for the fuel region, the two models are consistent, and both include an experiment loading that is representative of HFIR's current operation. The considered key metrics are the neutron flux at the cold source moderator vessel, the mass of 252Cf produced in the flux trap target region as function of cycle time, the fast neutronmore » flux at locations of interest for material irradiation experiments, and the reactor cycle length. These key metrics are a small subset of the overall HFIR performance and safety metrics. They were defined as a means of capturing data essential for HFIR's primary missions, for use in optimization studies assessing the impact of HFIR's conversion from HEU fuel to different types of LEU fuel designs.« less
DOT National Transportation Integrated Search
2010-12-01
The current climate crisis and recent world events, including a global economic crisis and growing concerns over the availability and cost of petroleum fuels, has sparked a global interest in developing alternative, sustainable, clean fuel technologi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timbario, Thomas A.; Timbario, Thomas J.; Laffen, Melissa J.
2011-04-12
Currently, several cost-per-mile calculators exist that can provide estimates of acquisition and operating costs for consumers and fleets. However, these calculators are limited in their ability to determine the difference in cost per mile for consumer versus fleet ownership, to calculate the costs beyond one ownership period, to show the sensitivity of the cost per mile to the annual vehicle miles traveled (VMT), and to estimate future increases in operating and ownership costs. Oftentimes, these tools apply a constant percentage increase over the time period of vehicle operation, or in some cases, no increase in direct costs at all overmore » time. A more accurate cost-per-mile calculator has been developed that allows the user to analyze these costs for both consumers and fleets. Operating costs included in the calculation tool include fuel, maintenance, tires, and repairs; ownership costs include insurance, registration, taxes and fees, depreciation, financing, and tax credits. The calculator was developed to allow simultaneous comparisons of conventional light-duty internal combustion engine (ICE) vehicles, mild and full hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs). Additionally, multiple periods of operation, as well as three different annual VMT values for both the consumer case and fleets can be investigated to the year 2024. These capabilities were included since today's “cost to own” calculators typically include the ability to evaluate only one VMT value and are limited to current model year vehicles. The calculator allows the user to select between default values or user-defined values for certain inputs including fuel cost, vehicle fuel economy, manufacturer's suggested retail price (MSRP) or invoice price, depreciation and financing rates.« less
Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.
Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A
2007-06-21
Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.
Integrated fuel cell stack shunt current prevention arrangement
Roche, Robert P.; Nowak, Michael P.
1992-01-01
A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.
Evaluation Metrics Applied to Accident Tolerant Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner
2014-10-01
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuelsmore » and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being readied for insertion in fiscal year 2015. This paper provides a brief summary of the proposed evaluation process that would be used to evaluate and prioritize the candidate accident tolerant fuel concepts currently under development.« less
Alternate-Fueled Combustion-Sector Emissions
NASA Technical Reports Server (NTRS)
Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry
2012-01-01
In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.
Keane, Robert E.; Burgan, Robert E.; Van Wagtendonk, Jan W.
2001-01-01
Fuel maps are essential for computing spatial fire hazard and risk and simulating fire growth and intensity across a landscape. However, fuel mapping is an extremely difficult and complex process requiring expertise in remotely sensed image classification, fire behavior, fuels modeling, ecology, and geographical information systems (GIS). This paper first presents the challenges of mapping fuels: canopy concealment, fuelbed complexity, fuel type diversity, fuel variability, and fuel model generalization. Then, four approaches to mapping fuels are discussed with examples provided from the literature: (1) field reconnaissance; (2) direct mapping methods; (3) indirect mapping methods; and (4) gradient modeling. A fuel mapping method is proposed that uses current remote sensing and image processing technology. Future fuel mapping needs are also discussed which include better field data and fuel models, accurate GIS reference layers, improved satellite imagery, and comprehensive ecosystem models.
Inactive end cell assembly for fuel cells for improved electrolyte management and electrical contact
Yuh, Chao-Yi [New Milford, CT; Farooque, Mohammad [Danbury, CT; Johnsen, Richard [New Fairfield, CT
2007-04-10
An assembly for storing electrolyte in a carbonate fuel cell is provided. The combination of a soft, compliant and resilient cathode current collector and an inactive anode part including a foam anode in each assembly mitigates electrical contact loss during operation of the fuel cell stack. In addition, an electrode reservoir in the positive end assembly and an electrode sink in the negative end assembly are provided, by which ribbed and flat cathode members inhibit electrolyte migration in the fuel cell stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David Ragnar; Stanek, Christopher Richard; Noordhoek, Mark
Uranium silicides, in particular U 3Si 2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO 2 fuel. They benefit from high thermal conductivity (metallic) compared to UO 2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular formore » the temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersson, Anders David Ragnar; Stanek, Christopher Richard; Noordhoek, Mark J.
Uranium silicides, in particular U 3Si 2, are being explored as an advanced nuclear fuel with increased accident tolerance as well as competitive economics compared to the baseline UO2 fuel. They benefit from high thermal conductivity (metallic) compared to UO 2 fuel (insulator or semi-conductor) used in current Light Water Reactors (LWRs). The U-Si fuels also have higher fissile density. In order to perform meaningful engineering scale nuclear fuel performance simulations, the material properties of the fuel, including the response to irradiation environments, must be known. Unfortunately, the data available for USi fuels are rather limited, in particular for themore » temperature range where LWRs would operate. The ATF HIP is using multi-scale modeling and simulations to address this knowledge gap.« less
Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with Tri-pass Diffuser
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.; Shouse, D. T.; Roquemore, W. M.; Burrus, D. L.; Duncan, B. S.; Ryder, R. C.; Brankovic, A.; Liu, N.-S.; Gallagher, J. R.; Hendricks, J. A.
2001-01-01
The Trapped Vortex Combustor (TVC) potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL (Rich burn/Quick mix/Lean burn) modes of combustion. The present work describes the operational principles of the TVC, and provides detailed performance data on a configuration featuring a tri-pass diffusion system. Performance data include EINOx (NO(sub x) emission index) results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO) performance. Computational fluid dynamics (CFD) simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable in comparison to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.
Metrics for the technical performance evaluation of light water reactor accident-tolerant fuel
Bragg-Sitton, Shannon M.; Todosow, Michael; Montgomery, Robert; ...
2017-03-26
The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Enhancing the accident tolerance of light water reactors (LWRs) became a topic of serious discussion following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal for the development of accident-tolerant fuel (ATF) for LWRs is to identify alternative fuel system technologies to further enhance the safety, competitiveness, andmore » economics of commercial nuclear power. Designed for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+), fuels with enhanced accident tolerance would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance. Research and development of ATF in the United States is conducted under the U.S. Department of Energy (DOE) Fuel Cycle Research and Development Advanced Fuels Campaign. The DOE is sponsoring multiple teams to develop ATF concepts within multiple national laboratories, universities, and the nuclear industry. Concepts under investigation offer both evolutionary and revolutionary changes to the current nuclear fuel system. This study summarizes the technical evaluation methodology proposed in the United States to aid in the optimization and prioritization of candidate ATF designs.« less
RERTR-12 Post-irradiation Examination Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, Francine; Williams, Walter; Robinson, Adam
2015-02-01
The following report contains the results and conclusions for the post irradiation examinations performed on RERTR-12 Insertion 2 experiment plates. These exams include eddy-current testing to measure oxide growth; neutron radiography for evaluating the condition of the fuel prior to sectioning and determination of fuel relocation and geometry changes; gamma scanning to provide relative measurements for burnup and indication of fuel- and fission-product relocation; profilometry to measure dimensional changes of the fuel plate; analytical chemistry to benchmark the physics burnup calculations; metallography to examine the microstructural changes in the fuel, interlayer and cladding; and microhardness testing to determine the material-propertymore » changes of the fuel and cladding.« less
Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temitope A. Taiwo; Samuel E. Bays; Abdullatif M. Yacout
2011-03-01
A study in the United States has evaluated the attributes of the heterogeneous recycle approach for plutonium and minor actinide transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach, where pertinent. The work investigated the characteristics, advantages, and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separation and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources was included in the findings. The intent ofmore » the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time.« less
Penn State Multi-Discipline Tribology Group and Energy Institute Studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Joseph
This presentation is a summary of the current research activities on fuels and lubricants in the Multi-discipline Tribology group and the engine test group in the Combustion Laboratory of the Pennsylvania State University. The progress areas discussed in this summary include those found in Table 1. Table 1. RESEARCH AREAS: Diesel Engine Emission Reduction; Oxygenated Fuels; Improved Friction Fuels; Vegetable Oil Lubricants; Extended Drain Lubricants; Effect of Chemical Structure on Friction and Wear. The research is of interest either directly or indirectly to the goal of this workshop, diesel engine emissions reduction. The current projects at Penn State in themore » areas listed above will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2004-05-27
Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check tomore » test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.« less
Booming Economy Fuels Continued Expansion of For-Profit Child Care--Annual Status Report #13.
ERIC Educational Resources Information Center
Neugebauer, Roger
2000-01-01
Discusses growth of North America's 40 largest for- profit child care centers. Identifies current threats, including staffing shortage and increasing competition from public schools and among chains. Identifies current opportunities to include employer and franchise child care, upscale child care, elementary school services, and flexible hours.…
Engineering cyanobacteria for fuels and chemicals production.
Zhou, Jie; Li, Yin
2010-03-01
The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.
40 CFR 600.306-86 - Labeling requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... labels are required to bear range values as required by paragraph (b) of this section, or determined by... requested which has a combined unadjusted fuel economy value at or below the minimum tax-free value, the... manufacturer shall include the current range of fuel economy of comparable automobiles (as described in §§ 600...
40 CFR 600.306-86 - Labeling requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... labels are required to bear range values as required by paragraph (b) of this section, or determined by... requested which has a combined unadjusted fuel economy value at or below the minimum tax-free value, the... manufacturer shall include the current range of fuel economy of comparable automobiles (as described in §§ 600...
NASA Astrophysics Data System (ADS)
Berwald, D. H.; Maniscalco, J. A.
1981-01-01
The paper evaluates the potential of several future electricity generating systems composed of laser fusion-driven breeder reactors that provide fissile fuel for current technology light water fission power reactors (LWRs). The performance and economic feasibility of four fusion breeder blanket technologies for laser fusion drivers, namely uranium fast fission (UFF) blankets, uranium-thorium fast fission (UTFF) blankets, thorium fast fission (TFF) blankets and thorium-suppressed fission (TSF) blankets, are considered, including design and costs of two kinds, fixed (indirect) costs associated with plant capital and variable (direct) costs associated with fuel processing and operation and maintenance. Results indicate that the UTFF and TFF systems produce electricity most inexpensively and that any of the four breeder blanket concepts, including the TSF and UFF systems, can produce electricity for about 25 to 33% above the cost of electricity produced by a new LWR operating on the current once-through cycle. It is suggested that fusion breeders could supply most or all of our fissile fuel makeup requirements within about 20 years after commercial introduction.
NASA Technical Reports Server (NTRS)
Schmidt, W. G.
1974-01-01
The thermal stability of perchlorate composite propellants was studied at 135 and 170 C. The experimental efforts were concentrated on determining the importance of heterogeneous oxidizer-fuel reactions in the thermal degradation process. The experimental approach used to elucidate the mechanisms by which the oxidizer fuel composites thermally degrade was divided into two parts: (1) keeping the fuel constant and varying the nature of the oxidizers, and (2) holding the oxidizer constant and varying the fuel components. The fuel component primarily utilized in the first phase was polyethylene. Oxidizers included KClO4, KClO3, NH4ClO4 and NH4ClO4 doped with materials such as chlorate, phosphate and arsenate. In the second phase the oxidizer used was primarily NH4ClO4 while the fuels included saturated and unsaturated polybutadiene prepolymers and a series of bonding agents. Techniques employed in the current study include thermogravimetric measurements, differential thermal analysis, infrared, mass spectrometry, electron microscopy, and appropriate wet chemical analysis.
Effect of load transients on SOFC operation—current reversal on loss of load
NASA Astrophysics Data System (ADS)
Gemmen, Randall S.; Johnson, Christopher D.
The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.
High performance methanol-oxygen fuel cell with hollow fiber electrode
NASA Technical Reports Server (NTRS)
Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)
1983-01-01
A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.
Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk
1999-12-14
The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrell, John T; Holladay, John; Wagner, Robert
The U.S. Department of Energy's (DOE's) Co-Optimization of Fuels & Engines (Co-Optima) initiative is conducting the early-stage research needed to accelerate the market introduction of advanced fuel and engine technologies. The research includes both spark-ignition (SI) and compression-ignition (CI) combustion approaches, targeting applications that impact the entire on-road fleet (light-, medium-, and heavy-duty vehicles). The initiative's major goals include significant improvements in vehicle fuel economy, lower-cost pathways to reduce emissions, and leveraging diverse U.S. fuel resources. A key objective of Co-Optima's research is to identify new blendstocks that enhance current petroleum blending components, increase blendstock diversity, and provide refiners withmore » increased flexibility to blend fuels with the key properties required to optimize advanced internal combustion engines. This report identifies eight representative blendstocks from five chemical families that have demonstrated the potential to increase boosted SI engine efficiency, meet key fuel quality requirements, and be viable for production at commercial scale by 2025-2030.« less
Sequential variable fuel injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.
This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less
Past, present and emerging toxicity issues for jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattie, David R., E-mail: david.mattie@wpafb.af.mil; Sterner, Teresa R.
2011-07-15
The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8more » and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels.« less
Past, present and emerging toxicity issues for jet fuel.
Mattie, David R; Sterner, Teresa R
2011-07-15
The US Air Force wrote the specification for the first official hydrocarbon-based jet fuel, JP-4, in 1951. This paper will briefly review the toxicity of the current fuel, JP-8, as compared to JP-4. JP-8 has been found to have low acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with slight dermal irritation as the adverse effect. Respiratory tract sensory irritation was greater in JP-8 than in JP-4. Recent data suggest exposure to jet fuel may contribute to hearing loss. Subchronic studies for 90 days with JP-8 and JP-4 showed little toxicity with the primary effect being male rat specific hydrocarbon nephropathy. A 1-year study was conducted for JP-4. The only tumors seen were associated with the male rat specific hydrocarbon nephropathy. A number of immunosuppressive effects have been seen after exposure to JP-8. Limited neurobehavioral effects have been associated with JP-8. JP-8 is not a developmental toxicant and has little reproductive toxicity. JP-4 has not been tested for immune, neurobehavioral or reproductive endpoints. JP-8 and JP-4 were negative in mutagenicity tests but JP-4 showed an increase in unscheduled DNA synthesis. Currently, JP-8 is being used as the standard for comparison of future fuels, including alternative fuels. Emerging issues of concern with jet fuels include naphthalene content, immunotoxicity and inhalation exposure characterization and modeling of complex mixtures such as jet fuels. Copyright © 2011 Elsevier Inc. All rights reserved.
Delivery of Fuel and Construction Materials to South Pole Station
1993-07-01
AID-A270 431 Delivery of Fuel and Construction Materials to South Pole Station Stephen L. DenHartog and George L. Blaisdell July 993 DTIC ELECT S OCT...South Pole Station, ideally with minimal impact on the current science and operational program. The new station will require the delivery of massive...amounts of construction materials to this remote site. The existing means of delivering material and fuel to the South Pole include the use of specialized
NASA Astrophysics Data System (ADS)
Bao, Cheng; Jiang, Zeyi; Zhang, Xinxin
2015-10-01
Fuel flexibility is a significant advantage of solid oxide fuel cell (SOFC). A comprehensive macroscopic framework is proposed for synthesis gas (syngas) fueled electrochemistry and transport in SOFC anode with two main novelties, i.e. analytical H2/CO electrochemical co-oxidation, and correction of gas species concentration at triple phase boundary considering competitive absorption and surface diffusion. Staring from analytical approximation of the decoupled charge and mass transfer, we present analytical solutions of two defined variables, i.e. hydrogen current fraction and enhancement factor. Giving explicit answer (rather than case-by-case numerical calculation) on how many percent of the current output contributed by H2 or CO and on how great the water gas shift reaction plays role on, this approach establishes at the first time an adaptive superposition mechanism of H2-fuel and CO-fuel electrochemistry for syngas fuel. Based on the diffusion equivalent circuit model, assuming series-connected resistances of surface diffusion and bulk diffusion, the model predicts well at high fuel utilization by keeping fixed porosity/tortuosity ratio. The model has been validated by experimental polarization behaviors in a wide range of operation on a button cell for H2-H2O-CO-CO2-N2 fuel systems. The framework could be helpful to narrow the gap between macro-scale and meso-scale SOFC modeling.
Analytical fuel property effects--small combustors
NASA Technical Reports Server (NTRS)
Sutton, R. D.; Troth, D. L.; Miles, G. A.
1984-01-01
The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.
Reactivity Insertion Accident (RIA) Capability Status in the BISON Fuel Performance Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williamson, Richard L.; Folsom, Charles Pearson; Pastore, Giovanni
2016-05-01
One of the Challenge Problems being considered within CASL relates to modelling and simulation of Light Water Reactor LWR) fuel under Reactivity Insertion Accident (RIA) conditions. BISON is the fuel performance code used within CASL for LWR fuel under both normal operating and accident conditions, and thus must be capable of addressing the RIA challenge problem. This report outlines required BISON capabilities for RIAs and describes the current status of the code. Information on recent accident capability enhancements, application of BISON to a RIA benchmark exercise, and plans for validation to RIA behavior are included.
40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...
40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...
40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...
40 CFR 80.49 - Fuels to be used in augmenting the complex emission model through vehicle testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... complex emission model through vehicle testing. 80.49 Section 80.49 Protection of Environment... Reformulated Gasoline § 80.49 Fuels to be used in augmenting the complex emission model through vehicle testing... augmenting the complex emission model with a parameter not currently included in the complex emission model...
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Electricity from methane by reversing methanogenesis
McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.
2017-01-01
Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency. PMID:28513579
Electricity from methane by reversing methanogenesis
NASA Astrophysics Data System (ADS)
McAnulty, Michael J.; G. Poosarla, Venkata; Kim, Kyoung-Yeol; Jasso-Chávez, Ricardo; Logan, Bruce E.; Wood, Thomas K.
2017-05-01
Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency.
Cord Wood Testing in a Non-Catalytic Wood Stove
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.; Trojanowski, R.; Wei, G.
EPA Method 28 and the current wood stove regulations have been in-place since 1988. Recently, EPA proposed an update to the existing NSPS for wood stove regulations which includes a plan to transition from the current crib wood fuel to cord wood fuel for certification testing. Cord wood is seen as generally more representative of field conditions while the crib wood is seen as more repeatable. In any change of certification test fuel, there are questions about the impact on measured results and the correlation between tests with the two different fuels. The purpose of the work reported here ismore » to provide data on the performance of a noncatalytic stove with cord wood. The stove selected has previously been certified with crib wood which provides a basis for comparison with cord wood. Overall, particulate emissions were found to be considerably higher with cord wood.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wackett, LP
The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerizationmore » processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.« less
Gas turbine critical research and advanced technology (CRT) support project
NASA Technical Reports Server (NTRS)
Furman, E. R.; Anderson, D. N.; Gedwill, M. A.; Lowell, C. E.; Schultz, D. F.
1982-01-01
The technical progress to provide a critical technology base for utility gas turbine systems capable of burning coal-derived fuels is summarized. Project tasks include the following: (1) combustion - to investigate the combustion of coal-derived fuels and the conversion of fuel-bound nitrogen to NOx; (2) materials - to understand and prevent the hot corrosion of turbine hot section materials; and (3) system studies - to integrate and guide the technological efforts. Technical accomplishments include: an extension of flame tube combustion testing of propane - Toluene Fuel Mixtures to vary H2 content from 9 to 18 percent by weight and the comparison of results with that predicted from a NASA Lewis General Chemical Kinetics Computer Code; the design and fabrication of combustor sector test section to test current and advanced combustor concepts; Testing of Catalytic combustors with residual and coal-derived liquid fuels; testing of high strength super alloys to evaluate their resistance to potential fuel impurities using doped clean fuels and coal-derived liquids; and the testing and evaluation of thermal barrier coatings and bond coatings on conventional turbine materials.
Materials for solar fuels and chemicals.
Montoya, Joseph H; Seitz, Linsey C; Chakthranont, Pongkarn; Vojvodic, Aleksandra; Jaramillo, Thomas F; Nørskov, Jens K
2016-12-20
The conversion of sunlight into fuels and chemicals is an attractive prospect for the storage of renewable energy, and photoelectrocatalytic technologies represent a pathway by which solar fuels might be realized. However, there are numerous scientific challenges in developing these technologies. These include finding suitable materials for the absorption of incident photons, developing more efficient catalysts for both water splitting and the production of fuels, and understanding how interfaces between catalysts, photoabsorbers and electrolytes can be designed to minimize losses and resist degradation. In this Review, we highlight recent milestones in these areas and some key scientific challenges remaining between the current state of the art and a technology that can effectively convert sunlight into fuels and chemicals.
Nuclear fuel performance: Trends, remedies and challenges
NASA Astrophysics Data System (ADS)
Rusch, C. A.
2008-12-01
It is unacceptable to have nuclear power plants unavailable or power restricted due to fuel reliability issues. 'Fuel reliability' has a much broader definition than just maintaining mechanical integrity and being leaker free - fuel must fully meet the specifications, impose no adverse impacts on plant operation and safety, and maintain quantifiable margins within design and operational envelopes. The fuel performance trends over the last decade are discussed and the significant contributors to reduced reliability experienced with commercial PWR and BWR designs are identified and discussed including grid-to-rod fretting and debris fretting in PWR designs and accelerated corrosion, debris fretting and pellet-cladding interaction in BWR designs. In many of these cases, the impacts have included not only fuel failures but also plant operating restrictions, forced shutdowns, and/or enhanced licensing authority oversight. Design and operational remedies are noted. The more demanding operating regimes and the constant quest to improve fuel performance require enhancements to current designs and/or new design features. Fuel users must continue to and enhance interaction with fuel suppliers in such areas as oversight of supplier design functions, lead test assembly irradiation programs and quality assurance oversight and surveillance. With the implementation of new designs and/or features, such fuel user initiatives can help to minimize the potential for performance problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krawiec, F.; Thomas, T.; Jackson, F.
1980-11-01
An examination is made of the current and future energy demands, and uses, and cost to characterize typical applications and resulting services in the US and industrial sectors of 15 selected states. Volume III presents tables containing data on selected states' manufacturing subsector energy consumption, functional uses, and cost in 1974 and 1976. Alabama, California, Illinois, Indiana, Louisiana, Michigan, Missouri, New Jersey, New York, Ohio, Oregon, Pennsylvania, Texas, West Virginia, and Wisconsin were chosen as having the greatest potential for replacing conventional fuel with solar energy. Basic data on the quantities, cost, and types of fuel and electric energy purchasedmore » by industr for heat and power were obtained from the 1974 and 1976 Annual Survey of Manufacturers. The specific indutrial energy servic cracteristics developed for each selected state include. 1974 and 1976 manufacturing subsector fuels and electricity consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector fuel consumption by 2-, 3-, and 4-digit SIC and primary fuel (quantity and relative share); 1974 and 1976 manufacturing subsector average cost of purchsed fuels and electricity per million Btu by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); 1974 and 1976 manufacturing subsector fuels and electric energy intensity by 2-, 3-, and 4-digit SIC and primary fuel (in 1976 dollars); manufacturing subsector average annual growth rates of (1) fuels and electricity consumption, (2) fuels and electric energy intensity, and (3) average cost of purchased fuels and electricity (1974 to 1976). Data are compiled on purchased fuels, distillate fuel oil, residual ful oil, coal, coal, and breeze, and natural gas. (MCW)« less
Analysis of key safety metrics of thorium utilization in LWRs
Ade, Brian J.; Bowman, Stephen M.; Worrall, Andrew; ...
2016-04-08
Here, thorium has great potential to stretch nuclear fuel reserves because of its natural abundance and because it is possible to breed the 232Th isotope into a fissile fuel ( 233U). Various scenarios exist for utilization of thorium in the nuclear fuel cycle, including use in different nuclear reactor types (e.g., light water, high-temperature gas-cooled, fast spectrum sodium, and molten salt reactors), along with use in advanced accelerator-driven systems and even in fission-fusion hybrid systems. The most likely near-term application of thorium in the United States is in currently operating light water reactors (LWRs). This use is primarily based onmore » concepts that mix thorium with uranium (UO 2 + ThO 2) or that add fertile thorium (ThO 2) fuel pins to typical LWR fuel assemblies. Utilization of mixed fuel assemblies (PuO 2 + ThO 2) is also possible. The addition of thorium to currently operating LWRs would result in a number of different phenomenological impacts to the nuclear fuel. Thorium and its irradiation products have different nuclear characteristics from those of uranium and its irradiation products. ThO 2, alone or mixed with UO 2 fuel, leads to different chemical and physical properties of the fuel. These key reactor safety–related issues have been studied at Oak Ridge National Laboratory and documented in “Safety and Regulatory Issues of the Thorium Fuel Cycle” (NUREG/CR-7176, U.S. Nuclear Regulatory Commission, 2014). Various reactor analyses were performed using the SCALE code system for comparison of key performance parameters of both ThO 2 + UO 2 and ThO 2 + PuO 2 against those of UO 2 and typical UO 2 + PuO 2 mixed oxide fuels, including reactivity coefficients and power sharing between surrounding UO 2 assemblies and the assembly of interest. The decay heat and radiological source terms for spent fuel after its discharge from the reactor are also presented. Based on this evaluation, potential impacts on safety requirements and identification of knowledge gaps that require additional analysis or research to develop a technical basis for the licensing of thorium fuel are identified.« less
Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.
Jiang, Rongzhong; Rong, Charles; Chu, Deryn
2005-01-01
A 40-member array of direct methanol fuel cells (with stationary fuel and convective air supplies) was generated by electrically connecting the fuel cells in series. High-throughput analysis of these fuel cells was realized by fast screening of voltages between the two terminals of a fuel cell at constant current discharge. A large number of voltage-current curves (200) were obtained by screening the voltages through multiple small-current steps. Gaussian distribution was used to statistically analyze the large number of experimental data. The standard deviation (sigma) of voltages of these fuel cells increased linearly with discharge current. The voltage-current curves at various fuel concentrations were simulated with an empirical equation of voltage versus current and a linear equation of sigma versus current. The simulated voltage-current curves fitted the experimental data well. With increasing methanol concentration from 0.5 to 4.0 M, the Tafel slope of the voltage-current curves (at sigma=0.0), changed from 28 to 91 mV.dec-1, the cell resistance from 2.91 to 0.18 Omega, and the power output from 3 to 18 mW.cm-2.
Cogeneration Technology Alternatives Study (CTAS). Volume 5: Cogeneration systems results
NASA Technical Reports Server (NTRS)
Gerlaugh, H. E.; Hall, E. W.; Brown, D. H.; Priestley, R. R.; Knightly, W. F.
1980-01-01
The use of various advanced energy conversion systems is examined and compared with each other and with current technology systems for savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. The methodology and results of matching the cogeneration energy conversion systems to approximately 50 industrial processes are described. Results include fuel energy saved, levelized annual energy cost saved, return on investment, and operational factors relative to the noncogeneration base cases.
Affordable Development and Optimization of CERMET Fuels for NTP Ground Testing
NASA Technical Reports Server (NTRS)
Hickman, Robert R.; Broadway, Jeramie W.; Mireles, Omar R.
2014-01-01
CERMET fuel materials for Nuclear Thermal Propulsion (NTP) are currently being developed at NASA's Marshall Space Flight Center. The work is part of NASA's Advanced Space Exploration Systems Nuclear Cryogenic Propulsion Stage (NCPS) Project. The goal of the FY12-14 project is to address critical NTP technology challenges and programmatic issues to establish confidence in the affordability and viability of an NTP system. A key enabling technology for an NCPS system is the fabrication of a stable high temperature nuclear fuel form. Although much of the technology was demonstrated during previous programs, there are currently no qualified fuel materials or processes. The work at MSFC is focused on developing critical materials and process technologies for manufacturing robust, full-scale CERMET fuels. Prototypical samples are being fabricated and tested in flowing hot hydrogen to understand processing and performance relationships. As part of this initial demonstration task, a final full scale element test will be performed to validate robust designs. The next phase of the project will focus on continued development and optimization of the fuel materials to enable future ground testing. The purpose of this paper is to provide a detailed overview of the CERMET fuel materials development plan. The overall CERMET fuel development path is shown in Figure 2. The activities begin prior to ATP for a ground reactor or engine system test and include materials and process optimization, hot hydrogen screening, material property testing, and irradiation testing. The goal of the development is to increase the maturity of the fuel form and reduce risk. One of the main accomplishmens of the current AES FY12-14 project was to develop dedicated laboratories at MSFC for the fabrication and testing of full length fuel elements. This capability will enable affordable, near term development and optimization of the CERMET fuels for future ground testing. Figure 2 provides a timeline of the development and optimization tasks for the AES FY15-17 follow on program.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2004-02-17
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell.
U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullenkamp, Patrick; Holody, Diane; James, Brian
The objectives of this project are a 1) Global Competitiveness Analysis of hydrogen and fuel cell systems and components manufactured including 700 bar compressed hydrogen storage system in the U.S., Europe, Asia, and other key areas to be identified to determine the global cost leaders, the best current manufacturing processes, the key factors determining competitiveness, and the potential means of cost reductions; and an 2) Analysis to assess the status of global hydrogen and fuel cell markets. The analysis of units, megawatts by country and by application will focus on polymer electrolyte membrane (PEM) fuel cell systems (automotive and stationary).
NASA Astrophysics Data System (ADS)
Katayama, Noboru; Kamiyama, Hideyuki; Kogoshi, Sumio; Kudo, Yusuke; Fukada, Takafumi; Ogawa, Makoto
The use of fuel-cell auxiliary power units (FC-APU) in refrigerator cars employed delivery to for convenience store delivery has been studied. The delivery pattern is assumed to be a typical pattern that includes driving between convenience stores or between a delivery center and a convenience store, unloading, driver's lunch break. The M15 driving mode, which simulates the driving condition in urban areas, is used as the driving mode in the delivery pattern. The FC-APU system includes a proton-exchange membrane fuel cell (PEFC) module, an inverter, and DC/DC converter. Bench tests of the FC-APU are performed to determine the hydrogen fuel consumption rate and the energy efficiency; these values depend on the output power of the PEFC module. The calculated relationship between the output power and fuel consumption rate of a current used system, which consists of an alternator and a secondary battery, are used to estimate the energy efficiency of the current used system. On the basis of the measurement data in this study and the results for the model proposed by Brodric et al. [C. J. Brodrick et al., Trans. Res. D, vol 7, pp. 303 (2002)], the payback period is calculated. The results indicate that the payback period would be 2.1 years when the FC-APU operates at a load of 70%.
Pore growth in U-Mo/Al dispersion fuel
NASA Astrophysics Data System (ADS)
Kim, Yeon Soo; Jeong, G. Y.; Sohn, D.-S.; Jamison, L. M.
2016-09-01
U-Mo/Al dispersion fuel is currently under development in the DOE's Material Management and Minimization program to convert HEU-fueled research reactors to LEU-fueled reactors. In some demanding conditions in high-power and high-performance reactors, large pores form in the interaction layers between the U-Mo fuel particles and the Al matrix, which pose a potential to cause fuel failure. In this study, comprehension of the formation and growth of these pores was explored. As a product, a model to predict pore growth and porosity increase was developed. The model includes three major topics: fission gas release from the U-Mo and the IL to the pores, stress evolution in the fuel meat, and the effect of amorphous IL growth. Well-characterized in-pile data from reduced-size plates were used to fit the model parameters. A data set from full-sized plates, independent and distinctively different from those used to fit the model parameters, was used to examine the accuracy of the model. The model showed fair agreement with the measured data. The model suggested that the growth of the IL has a critical effect on pore growth, as both its material properties and energetics are favorable to pore formation. Therefore, one area of the current effort, focused on suppressing IL growth, appears to be on the right track to improve the performance of this fuel.
NASA Technical Reports Server (NTRS)
Dean, David L.
1995-01-01
McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Karl O.; Hallen, Richard T.
2011-03-29
Renewable methods of producing transportation fuels are currently the focus of numerous large research efforts across the globe. Renewable fuel produced from algal lipids is one aspect of this research that could have profound implications on future transportation fuel requirements. However, technical challenges remain in several areas of algal-lipid-based fuels. These challenges include the identification and development of robust and productive algal species as well as extraction methods to recover the produced lipids. Not the least of these technical challenges is the conversion of the algae lipids to fungible fuels. This brief literature review focuses primarily on state-of-the-art “downstream” applicationsmore » of producing fuel from fats and lipids, which can be applied to ongoing research with algae-derived lipids.« less
Alternate-Fueled Combustor-Sector Emissions
NASA Technical Reports Server (NTRS)
Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry
2013-01-01
In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.
Fuel cell stack monitoring and system control
Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.
2005-01-25
A control method for monitoring a fuel cell stack in a fuel cell system in which the actual voltage and actual current from the fuel cell stack are monitored. A preestablished relationship between voltage and current over the operating range of the fuel cell is established. A variance value between the actual measured voltage and the expected voltage magnitude for a given actual measured current is calculated and compared with a predetermined allowable variance. An output is generated if the calculated variance value exceeds the predetermined variance. The predetermined voltage-current for the fuel cell is symbolized as a polarization curve at given operating conditions of the fuel cell. Other polarization curves may be generated and used for fuel cell stack monitoring based on different operating pressures, temperatures, hydrogen quantities.
Samuel A. Cushman; Kevin S. McKelvey
2006-01-01
The primary weakness in our current ability to evaluate future landscapes in terms of wildlife lies in the lack of quantitative models linking wildlife to forest stand conditions, including fuels treatments. This project focuses on 1) developing statistical wildlife habitat relationships models (WHR) utilizing Forest Inventory and Analysis (FIA) and National Vegetation...
Deep sea microbial fuel cell output as a proxy for microbial activity
NASA Astrophysics Data System (ADS)
Richter, K.; George, R.; Hardy, K. R.
2016-02-01
Abstract: Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The current is chiefly limited by the rate of microbial metabolism at the anode and serves as a proxy for microbial activity. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions and studies of important environmental parameters that affect fuel cell performance. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>4000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. We are pursuing a field efforts to deploy a microbial fuel cell in progressively deeper water, record in situ power and temperature over several weeks, and retrieve the fuel cell along with sediment samples for analysis. We are also pursuing a laboratory effort to build a matching microbial fuel cell in a pressure vessel capable of matching the pressure and temperature of deep water, and stocking the pressure vessel with deep water sediment in order to take measurements analogous to those in the field. We also hope to determine whether bacteria growing on the anode are different from bacteria growing in the bulk sediment via DNA analysis. The current progress and results from this work at SPAWAR will be presented.
Review of Transient Testing of Fast Reactor Fuels in the Transient REActor Test Facility (TREAT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, C.; Wachs, D.; Carmack, J.
The restart of the Transient REActor Test (TREAT) facility provides a unique opportunity to engage the fast reactor fuels community to reinitiate in-pile experimental safety studies. Historically, the TREAT facility played a critical role in characterizing the behavior of both metal and oxide fast reactor fuels under off-normal conditions, irradiating hundreds of fuel pins to support fast reactor fuel development programs. The resulting test data has provided validation for a multitude of fuel performance and severe accident analysis computer codes. This paper will provide a review of the historical database of TREAT experiments including experiment design, instrumentation, test objectives, andmore » salient findings. Additionally, the paper will provide an introduction to the current and future experiment plans of the U.S. transient testing program at TREAT.« less
Analysis and Test of a Proton Exchange Membrane Fuel Cell Power System for Space Power Applications
NASA Technical Reports Server (NTRS)
Vasquez, Arturo; Varanauski, Donald; Clark, Robert, Jr.
2000-01-01
An effort is underway to develop a prototype Proton Exchange Membrane (PEM) Fuel Cell breadboard system for fuhlre space applications. This prototype will be used to develop a comprehensive design basis for a space-rated PEM fuel cell powerplant. The prototype system includes reactant pressure regulators, ejector-based reactant pumps, a 4-kW fuel cell stack and cooling system, and a passive, membranebased oxygen / water separator. A computer model is being developed concurrently to analytically predict fluid flow in the oxidant reactant system. Fuel cells have historically played an important role in human-rated spacecraft. The Gemini and Apollo spacecraft used fuel cells for vehicle electrical power. The Space Shuttle currently uses three Alkaline Fuel Cell Powerplants (AFCP) to generate all of the vehicle's 15-20kW electrical power. Engineers at the Johnson Space Center have leveraged off the development effort ongoing in the commercial arena to develop PEM fuel cel ls for terrestrial uses. The prototype design originated from efforts to develop a PEM fuel cell replacement for the current Space Shuttle AFCP' s. In order to improve on the life and an already excellent hi storical record of reliability and safety, three subsystems were focused on. These were the fuel cell stack itself, the reactant circulation devices, and reactant / product water separator. PEM fuel cell stack performance is already demonstrating the potential for greater than four times the useful life of the current Shuttle's AFCP. Reactant pumping for product water removal has historically been accomplished with mechanical pumps. Ejectors offer an effective means of reactant pumping as well as the potential for weight reduction, control simplification, and long life. Centrifugal water separation is used on the current AFCP. A passive, membrane-based water separator offers compatibility with the micro-gravity environment of space, and the potential for control simplification, elimination of moving parts in an oxygen environment, and long life. The prototype system has been assembled from components that have previously been tested and evaluated at the component level. Preliminary data obtained from tests performed with the prototype system, as well as other published data, has been used to validate the analytical component models. These components have been incorporated into an integrated oxidant fluid system model. Results obtained from both the performance tests and the analytical model are presented.
Transportation Research Fueled by Academia | News | NREL
. Interested in furthering their research and education with the vast resources available at NREL, university researchers who are currently teaching include Senior Research Engineer Adam Duran, who has a senior capstone more transportation researchers-Yi Hou, Clement Rames, and Josh Sperling-are currently teaching an
$250 million and the maximum grant funding is 50% of project costs. For more information, including current funding application deadlines, see the Biorefinery Assistance Program website. (Reference Public
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.
Protozoan grazing reduces the current output of microbial fuel cells.
Holmes, Dawn E; Nevin, Kelly P; Snoeyenbos-West, Oona L; Woodard, Trevor L; Strickland, Justin N; Lovley, Derek R
2015-10-01
Several experiments were conducted to determine whether protozoan grazing can reduce current output from sediment microbial fuel cells. When marine sediments were amended with eukaryotic inhibitors, the power output from the fuel cells increased 2-5-fold. Quantitative PCR showed that Geobacteraceae sequences were 120 times more abundant on anodes from treated fuel cells compared to untreated fuel cells, and that Spirotrichea sequences in untreated fuel cells were 200 times more abundant on anode surfaces than in the surrounding sediments. Defined studies with current-producing biofilms of Geobacter sulfurreducens and pure cultures of protozoa demonstrated that protozoa that were effective in consuming G. sulfurreducens reduced current production up to 91% when added to G. sulfurreducens fuel cells. These results suggest that anode biofilms are an attractive food source for protozoa and that protozoan grazing can be an important factor limiting the current output of sediment microbial fuel cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCoy, G.A.
1983-11-18
The City of Longview can obtain significant fuel savings benefits by converting a portion of their vehicle fleet to operate on either compressed natural gas (CNG) or liquid petroleum gas (LPG) fuels. The conversion of 41 vehicles including police units, sedans, pickups, and light duty trucks to CNG use would offset approximately 47% of the city's 1982 gasoline consumption. The CNG conversion capital outlay of $115,000 would be recovered through fuel cost reductions. The Cascade Natural Gas Corporation sells natural gas under an interruptible tariff for $0.505 per therm, equivalent to slightly less than one gallon of gasoline. The citymore » currently purchases unleaded gasoline at $1.115 per gallon. A payback analysis indicates that 39.6 months are required for the CNG fuel savings benefits to offset the initial or first costs of the conversion. The conversion of fleet vehicles to liquid petroleum gas (LPG) or propane produces comparable savings in vehicle operating costs. The conversion of 59 vehicles including police units, pickup and one ton trucks, street sweepers, and five cubic yard dump trucks would cost approximately $59,900. The annual purchase of 107,000 gallons of propane would offset the consumption of 96,300 gallons of gasoline, or approximately 67% of the city's 1982 usage. Propane is currently retailing for $0.68 to $0.74 per gallon. A payback analysis indicates that 27.7 months are required for the fuel savings benefits to offset the initial LPG conversion costs.« less
Using Checklists to Assess Your Transition to Alternative Fuels: A Technical Reference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Risch, C. E.; Santini, D. J.; Johnson, L. R.
The Checklist for Transition to New Alternative Fuel(s) was published in September 2011 by Chuck Risch and Dan Santini. Many improvements, described below, have been incorporated into this current document, Checklists for Assessing the Transitions to New Highway Fuels.2 Further, the original authors and Larry Johnson, co-author of the current report, identified a need for a succinct version of the full report and prepared a brochure based on it to aid busy decisionmakers: Check It Out: Using Checklists to Assess Your Transition to Alternative Fuels.2 These checklists are tools for those stakeholders charged with determining a feasible alternative fuel ormore » fuels for highway transportation systems of the future. The original had four major players whose needs had to be satisfied for a successful transition. The term “activist,” intended to encompass environmental and other special interests, was included in the “customers” category. Activists are customers of the government in the sense that they organize citizens to exert political pressure to regulate the design of vehicles, fuel infrastructure, and roadway networks. Many who evaluate alternative fuels view activists, particularly environmental activists, as a separate category. Further, “activist” has become a pejorative term to many people. Therefore, we have used the word “advocate” or “activist/advocate” instead. Thus, in this update we recognize that environmental and other activists/advocates have been--and will continue to be--a powerful force promoting change in the nature of the fuels that are used in transportation.« less
Advanced Fuels Campaign FY 2014 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori; May, W. Edgar
The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of a “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cyclemore » options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. AFC uses a “goal-oriented, science-based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. The modeling and simulation activities for fuel performance are carried out under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program, which is closely coordinated with AFC. In this report, the word “fuel” is used generically to include fuels, targets, and their associated cladding materials. R&D of light water reactor (LWR) fuels with enhanced accident tolerance is also conducted by AFC. These fuel systems are designed to achieve significantly higher fuel and plant performance to allow operation to significantly higher burnup, and to provide enhanced safety during design basis and beyond design basis accident conditions. The overarching goal is to develop advanced nuclear fuels and materials that are robust, have high performance capability, and are more tolerant to accident conditions than traditional fuel systems. AFC management and integration activities included continued support for international collaborations, primarily with France, Japan, the European Union, Republic of Korea, and China, as well as various working group and expert group activities in the Organization for Economic Cooperation and Development Nuclear Energy Agency (OECD-NEA) and the International Atomic Energy Agency (IAEA). Three industry-led Funding Opportunity Announcements (FOAs) and two university-led Integrated Research Projects (IRPs), funded in 2013, made significant progress in fuels and materials development. All are closely integrated with AFC and Accident Tolerant Fuels (ATF) research. Accomplishments made during fiscal year (FY) 2014 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the lead technical contact is provided for each section.« less
A survey of Opportunities for Microbial Conversion of Biomass to Hydrocarbon Compatible Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovanovic, Iva; Jones, Susanne B.; Santosa, Daniel M.
2010-09-01
Biomass is uniquely able to supply renewable and sustainable liquid transportation fuels. In the near term, the Biomass program has a 2012 goal of cost competitive cellulosic ethanol. However, beyond 2012, there will be an increasing need to provide liquid transportation fuels that are more compatible with the existing infrastructure and can supply fuel into all transportation sectors, including aviation and heavy road transport. Microbial organisms are capable of producing a wide variety of fuel and fuel precursors such as higher alcohols, ethers, esters, fatty acids, alkenes and alkanes. This report surveys liquid fuels and fuel precurors that can bemore » produced from microbial processes, but are not yet ready for commercialization using cellulosic feedstocks. Organisms, current research and commercial activities, and economics are addressed. Significant improvements to yields and process intensification are needed to make these routes economic. Specifically, high productivity, titer and efficient conversion are the key factors for success.« less
NASA Astrophysics Data System (ADS)
Bubna, Piyush; Brunner, Doug; Gangloff, John J.; Advani, Suresh G.; Prasad, Ajay K.
The fuel cell hybrid bus (FCHB) program was initiated at the University of Delaware in 2005 to demonstrate the viability of fuel cell vehicles for transit applications and to conduct research and development to facilitate the path towards their eventual commercialization. Unlike other fuel cell bus programs, the University of Delaware's FCHB design features a battery-heavy hybrid which offers multiple advantages in terms of cost, performance and durability. The current fuel cell hybrid bus is driven on a regular transit route at the University of Delaware. The paper describes the baseline specifications of the bus with a focus on the fuel cell and the balance of plant. The fuel cell/battery series-hybrid design is well suited for urban transit routes and provides key operational advantages such as hydrogen fuel economy, efficient use of the fuel cell for battery recharging, and regenerative braking. The bus is equipped with a variety of sensors including a custom-designed cell voltage monitoring system which provide a good understanding of bus performance under normal operation. Real-time data collection and analysis have yielded key insights for fuel cell bus design optimization. Results presented here illustrate the complex flow of energy within the various subsystems of the fuel cell hybrid bus. A description of maintenance events has been included to highlight the issues that arise during general operation. The paper also describes several modifications that will facilitate design improvements in future versions of the bus. Overall, the fuel cell hybrid bus demonstrates the viability of fuel cells for urban transit applications in real world conditions.
Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine
Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan
2011-05-17
A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.
2017-01-01
EIA's latest analysis of planned refinery outages during the first half of 2017 finds that such outages are not expected to cause a shortfall in the supply of petroleum products including gasoline, jet fuel, and distillate fuel, relative to expected demand, either nationally or within any U.S. region. This result occurs notwithstanding the current high level of U.S. gasoline demand, which in 2016 was as high as or higher than in any past year.
A physical and economic model of the nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Schneider, Erich Alfred
A model of the nuclear fuel cycle that is suitable for use in strategic planning and economic forecasting is presented. The model, to be made available as a stand-alone software package, requires only a small set of fuel cycle and reactor specific input parameters. Critical design criteria include ease of use by nonspecialists, suppression of errors to within a range dictated by unit cost uncertainties, and limitation of runtime to under one minute on a typical desktop computer. Collision probability approximations to the neutron transport equation that lead to a computationally efficient decoupling of the spatial and energy variables are presented and implemented. The energy dependent flux, governed by coupled integral equations, is treated by multigroup or continuous thermalization methods. The model's output includes a comprehensive nuclear materials flowchart that begins with ore requirements, calculates the buildup of 24 actinides as well as fission products, and concludes with spent fuel or reprocessed material composition. The costs, direct and hidden, of the fuel cycle under study are also computed. In addition to direct disposal and plutonium recycling strategies in current use, the model addresses hypothetical cycles. These include cycles chosen for minor actinide burning and for their low weapons-usable content.
Simplified jet-A kinetic mechanism for combustor application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
Spray combustion experiments and numerical predictions
NASA Technical Reports Server (NTRS)
Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey
1993-01-01
The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.
NASA Technical Reports Server (NTRS)
1980-01-01
Six current and thirty-six advanced energy conversion systems were defined and combined with appropriate balance of plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a frame work for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Fuel energy savings of 10 to 25 percent were predicted compared to traditional on site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal derived fuels, or coal with advanced fluid bed combustion or on site gasifications. Data and information for both current and advanced energy conversion technology are presented. Schematic and physical descriptions, performance data, equipment cost estimates, and predicted emissions are included. Technical developments which are needed to achieve commercialization in the 1985-2000 period are identified.
Sustainable and Renewable Energy Resources — Alternative Forms of Energy
NASA Astrophysics Data System (ADS)
Rao, M. C.
In order to move towards a sustainable existence in our critically energy dependent society there is a continuing need to adopt environmentally sustainable methods for energy production, storage and conversion. A fuel cell is an energy conversion device that generates electricity and heat by electrochemically combining a gaseous fuel and an oxidant gas through electrodes and across an ion conducting electrolyte. The use of fuel cells in both stationary and mobile power applications can offer significant advantages for the sustainable conversion of energy. Currently the cost of fuel cell systems is greater than that of similar, already available products, mainly because of small scale production and the lack of economies of scale. The best fuel for fuel cells is hydrogen and another barrier is fuel flexibility. Benefits arising from the use of fuel cells include efficiency and reliability, as well as economy, unique operating characteristics and planning flexibility and future development potential. By integrating the application of fuel cells, in series with renewable energy storage and production methods, sustainable energy requirements may be realized. As fuel cell application increases and improved fuel storage methods and handlings are developed, it is expected that the costs associated with fuel cell systems will fall dramatically in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag
2012-04-01
The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather thanmore » graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.« less
Early, Jack; Kaufman, Arthur; Stawsky, Alfred
1982-01-01
A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.
Cyanoborohydride-based ionic liquids as green aerospace bipropellant fuels.
Zhang, Qinghua; Yin, Ping; Zhang, Jiaheng; Shreeve, Jean'ne M
2014-06-02
In propellant systems, the most common bipropellants are composed of two chemicals, a fuel (or reducer) and an oxidizer. Currently, the choices for propellant fuels rely mainly on hydrazine and its methylated derivatives, even though they are extremely toxic, highly volatile, sensitive to adiabatic compression (risk of detonation), and, therefore, difficult to handle. With this background, the search for alternative green propellant fuels has been an urgent goal of space science. In this study, a new family of cyanoborohydride-based ionic liquids (ILs) with properties and performances comparable to hydrazine derivatives were designed and synthesized. These new ILs as bipropellant fuels, have some unique advantages including negligible vapor pressure, ultra-short ignition delay (ID) time, and reduced synthetic and storage costs, thereby showing great application potential as environmentally friendly fuels in bipropellant formulations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Green Fuels From Algae - The University of Tulsa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler
The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on green fuels which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are amore » diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI's have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.« less
Parameter Estimation of Spacecraft Fuel Slosh Model
NASA Technical Reports Server (NTRS)
Gangadharan, Sathya; Sudermann, James; Marlowe, Andrea; Njengam Charles
2004-01-01
Fuel slosh in the upper stages of a spinning spacecraft during launch has been a long standing concern for the success of a space mission. Energy loss through the movement of the liquid fuel in the fuel tank affects the gyroscopic stability of the spacecraft and leads to nutation (wobble) which can cause devastating control issues. The rate at which nutation develops (defined by Nutation Time Constant (NTC can be tedious to calculate and largely inaccurate if done during the early stages of spacecraft design. Pure analytical means of predicting the influence of onboard liquids have generally failed. A strong need exists to identify and model the conditions of resonance between nutation motion and liquid modes and to understand the general characteristics of the liquid motion that causes the problem in spinning spacecraft. A 3-D computerized model of the fuel slosh that accounts for any resonant modes found in the experimental testing will allow for increased accuracy in the overall modeling process. Development of a more accurate model of the fuel slosh currently lies in a more generalized 3-D computerized model incorporating masses, springs and dampers. Parameters describing the model include the inertia tensor of the fuel, spring constants, and damper coefficients. Refinement and understanding the effects of these parameters allow for a more accurate simulation of fuel slosh. The current research will focus on developing models of different complexity and estimating the model parameters that will ultimately provide a more realistic prediction of Nutation Time Constant obtained through simulation.
Chemical and electrochemical oxidation of small organic molecules
NASA Astrophysics Data System (ADS)
Smart, Marshall C.
Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be generated as the major products in good to excellent yields. The oxidation of other organic substrates was also investigated using urea-hydrogen peroxide as an oxidation reagent, including cyclohexylamine, 1-adamantaneamine, and adamantane.
NASA Technical Reports Server (NTRS)
Knightly, W. F.
1980-01-01
Various advanced energy conversion systems (ECS) are compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the largest energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidates which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on-site gasification of coal. Computer generated reports of the fuel consumption and savings, capital costs, economics and emissions of the cogeneration energy conversion systems (ECS's) heat and power matched to the individual industrial processes are presented for coal fired process boilers. National fuel and emissions savings are also reported for each ECS assuming it alone is implemented.
Air Force electrochemical power research and technology program for space applications
NASA Technical Reports Server (NTRS)
Allen, Douglas
1987-01-01
An overview is presented of the existing Air Force electrochemical power, battery, and fuel cell programs for space application. Present thrusts are described along with anticipated technology availability dates. Critical problems to be solved before system applications occur are highlighted. Areas of needed performance improvement of batteries and fuel cells presently used are outlined including target dates for key demonstrations of advanced technology. Anticipated performance and current schedules for present technology programs are reviewed. Programs that support conventional military satellite power systems and special high power applications are reviewed. Battery types include bipolar lead-acid, nickel-cadmium, silver-zinc, nickel-hydrogen, sodium-sulfur, and some candidate advanced couples. Fuel cells for pulsed and transportation power applications are discussed as are some candidate advanced regenerative concepts.
Characteristics of potential repository wastes. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-07-01
The LWR spent fuels discussed in Volume 1 of this report comprise about 99% of all domestic non-reprocessed spent fuel. In this report we discuss other types of spent fuels which, although small in relative quantity, consist of a number of diverse types, sizes, and compositions. Many of these fuels are candidates for repository disposal. Some non-LWR spent fuels are currently reprocessed or are scheduled for reprocessing in DOE facilities at the Savannah River Site, Hanford Site, and the Idaho National Engineering Laboratory. It appears likely that the reprocessing of fuels that have been reprocessed in the past will continuemore » and that the resulting high-level wastes will become part of defense HLW. However, it is not entirely clear in some cases whether a given fuel will be reprocessed, especially in cases where pretreatment may be needed before reprocessing, or where the enrichment is not high enough to make reprocessing attractive. Some fuels may be canistered, while others may require special means of disposal. The major categories covered in this chapter include HTGR spent fuel from the Fort St. Vrain and Peach Bottom-1 reactors, research and test reactor fuels, and miscellaneous fuels, and wastes generated from the decommissioning of facilities.« less
ERIC Educational Resources Information Center
Roffia, Sergio; And Others
1988-01-01
Reports two electrochemical demonstrations. Uses a hydrogen-oxygen fuel cell to power a clock. Includes description of methods and materials. Investigates the "potato clock" used with different fruits. Lists emf and current for various fruit and electrode combinations. (ML)
Betzler, Benjamin R.; Chandler, David; Davidson, Eva E.; ...
2017-05-08
A high-fidelity model of the High Flux Isotope Reactor (HFIR) with a low-enriched uranium (LEU) fuel design and a representative experiment loading has been developed to serve as a new reference model for LEU conversion studies. With the exception of the fuel elements, this HFIR LEU model is completely consistent with the current highly enriched uranium HFIR model. Results obtained with the new LEU model provide a baseline for analysis of alternate LEU fuel designs and further optimization studies. The newly developed HFIR LEU model has an explicit representation of the HFIR-specific involute fuel plate geometry, including the within-plate fuelmore » meat contouring, and a detailed geometry model of the fuel element side plates. Such high-fidelity models are necessary to accurately account for the self-shielding from 238U and the depletion of absorber materials present in the side plates. In addition, a method was developed to account for fuel swelling in the high-density LEU fuel plates during the depletion simulation. In conclusion, calculated time-dependent metrics for the HFIR LEU model include fission rate and cumulative fission density distributions, flux and reaction rates for relevant experiment locations, point kinetics data, and reactivity coefficients.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betzler, Benjamin R.; Chandler, David; Davidson, Eva E.
A high-fidelity model of the High Flux Isotope Reactor (HFIR) with a low-enriched uranium (LEU) fuel design and a representative experiment loading has been developed to serve as a new reference model for LEU conversion studies. With the exception of the fuel elements, this HFIR LEU model is completely consistent with the current highly enriched uranium HFIR model. Results obtained with the new LEU model provide a baseline for analysis of alternate LEU fuel designs and further optimization studies. The newly developed HFIR LEU model has an explicit representation of the HFIR-specific involute fuel plate geometry, including the within-plate fuelmore » meat contouring, and a detailed geometry model of the fuel element side plates. Such high-fidelity models are necessary to accurately account for the self-shielding from 238U and the depletion of absorber materials present in the side plates. In addition, a method was developed to account for fuel swelling in the high-density LEU fuel plates during the depletion simulation. In conclusion, calculated time-dependent metrics for the HFIR LEU model include fission rate and cumulative fission density distributions, flux and reaction rates for relevant experiment locations, point kinetics data, and reactivity coefficients.« less
Modeling and Simulations for the High Flux Isotope Reactor Cycle 400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ilas, Germina; Chandler, David; Ade, Brian J
2015-03-01
A concerted effort over the past few years has been focused on enhancing the core model for the High Flux Isotope Reactor (HFIR), as part of a comprehensive study for HFIR conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel. At this time, the core model used to perform analyses in support of HFIR operation is an MCNP model for the beginning of Cycle 400, which was documented in detail in a 2005 technical report. A HFIR core depletion model that is based on current state-of-the-art methods and nuclear data was needed to serve as reference for the designmore » of an LEU fuel for HFIR. The recent enhancements in modeling and simulations for HFIR that are discussed in the present report include: (1) revision of the 2005 MCNP model for the beginning of Cycle 400 to improve the modeling data and assumptions as necessary based on appropriate primary reference sources HFIR drawings and reports; (2) improvement of the fuel region model, including an explicit representation for the involute fuel plate geometry that is characteristic to HFIR fuel; and (3) revision of the Monte Carlo-based depletion model for HFIR in use since 2009 but never documented in detail, with the development of a new depletion model for the HFIR explicit fuel plate representation. The new HFIR models for Cycle 400 are used to determine various metrics of relevance to reactor performance and safety assessments. The calculated metrics are compared, where possible, with measurement data from preconstruction critical experiments at HFIR, data included in the current HFIR safety analysis report, and/or data from previous calculations performed with different methods or codes. The results of the analyses show that the models presented in this report provide a robust and reliable basis for HFIR analyses.« less
FCRD Transmutation Fuels Handbook 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn Elizabeth; Papesch, Cynthia Ann
2015-09-01
Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloysmore » containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling, its primary focus is experimental data. Most of the data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data is presented here for the first time.« less
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Gyekenyesi, John Z.; Arnold, Steven M.; Sullivan, Roy M.; Manderscheid, Jane M.; Murthy, Pappu L. N.
2006-01-01
Due to its high specific energy content, liquid hydrogen (LH2) is emerging as an alternative fuel for future aircraft. As a result, there is a need for hydrogen tank storage systems, for these aircraft applications, that are expected to provide sufficient capacity for flight durations ranging from a few minutes to several days. It is understood that the development of a large, lightweight, reusable cryogenic liquid storage tank is crucial to meet the goals of and supply power to hydrogen-fueled aircraft, especially for long flight durations. This report provides an annotated review (including the results of an extensive literature review) of the current state of the art of cryogenic tank materials, structural designs, and insulation systems along with the identification of key challenges with the intent of developing a lightweight and long-term storage system for LH2. The broad classes of insulation systems reviewed include foams (including advanced aerogels) and multilayer insulation (MLI) systems with vacuum. The MLI systems show promise for long-term applications. Structural configurations evaluated include single- and double-wall constructions, including sandwich construction. Potential wall material candidates are monolithic metals as well as polymer matrix composites and discontinuously reinforced metal matrix composites. For short-duration flight applications, simple tank designs may suffice. Alternatively, for longer duration flight applications, a double-wall construction with a vacuum-based insulation system appears to be the most optimum design. The current trends in liner material development are reviewed in the case that a liner is required to minimize or eliminate the loss of hydrogen fuel through permeation.
Single-layer transition metal sulfide catalysts
Thoma, Steven G [Albuquerque, NM
2011-05-31
Transition Metal Sulfides (TMS), such as molybdenum disulfide (MoS.sub.2), are the petroleum industry's "workhorse" catalysts for upgrading heavy petroleum feedstocks and removing sulfur, nitrogen and other pollutants from fuels. We have developed an improved synthesis technique to produce SLTMS catalysts, such as molybdenum disulfide, with potentially greater activity and specificity than those currently available. Applications for this technology include heavy feed upgrading, in-situ catalysis, bio-fuel conversion and coal liquefaction.
Tier 3 Certification Fuel Impacts Test Program
The recent Tier 3 regulations for light duty vehicles introduced a new certification fuel designed to be more characteristic of current market fuels. A laboratory test program was conducted to measure differences in CO2 and fuel economy between the current and future certificatio...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A., E-mail: Azizov-EA@nrcki.ru
2015-12-15
The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel canmore » be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.« less
Proton Exchange Membrane (PEM) fuel Cell for Space Shuttle
NASA Technical Reports Server (NTRS)
Hoffman, William C., III; Vasquez, Arturo; Lazaroff, Scott M.; Downey, Michael G.
1999-01-01
Development of a PEM fuel cell powerplant (PFCP) for use in the Space Shuttle offers multiple benefits to NASA. A PFCP with a longer design life than is delivered currently from the alkaline fuel will reduce Space Shuttle Program maintenance costs. A PFCP compatible with zero-gravity can be adapted for future NASA transportation and exploration programs. Also, the commercial PEM fuel cell industry ensures a competitive environment for select powerplant components. Conceptual designs of the Space Shuttle PFCP have resulted in identification of key technical areas requiring resolution prior to development of a flight system. Those technical areas include characterization of PEM fuel cell stack durability under operational conditions and water management both within and external to the stack. Resolution of the above issues is necessary to adequately control development, production, and maintenance costs for a PFCP.
High performance direct methanol fuel cell with thin electrolyte membrane
NASA Astrophysics Data System (ADS)
Wan, Nianfang
2017-06-01
A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.
Dual membrane hollow fiber fuel cell and method of operating same
NASA Technical Reports Server (NTRS)
Ingham, J. D.; Lawson, D. D. (Inventor)
1978-01-01
A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.
Utilization of corn cob biochar in a direct carbon fuel cell
NASA Astrophysics Data System (ADS)
Yu, Jinshuai; Zhao, Yicheng; Li, Yongdan
2014-12-01
Biochar obtained from the pyrolysis of corn cob is used as the fuel of a direct carbon fuel cell (DCFC) employing a composite electrolyte composed of a samarium doped ceria (SDC) and a eutectic carbonate phase. An anode layer made of NiO and SDC is utilized to suppress the cathode corrosion by the molten carbonate and improves the whole cell stability. The anode off-gas of the fuel cell is analyzed with a gas chromatograph. The effect of working temperature on the cell resistance and power output is examined. The maximum power output achieves 185 mW cm-2 at a current density of 340 mA cm-2 and 750 °C. An anode reaction scheme including the Boudouard reaction is proposed.
Tubular solid oxide fuel cell current collector
Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.
2010-07-20
An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.
75 FR 14669 - Regulation of Fuels and Fuel Additives: Changes to Renewable Fuel Standard Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-26
...Under the Clean Air Act Section 211(o), as amended by the Energy Independence and Security Act of 2007 (EISA), the Environmental Protection Agency is required to promulgate regulations implementing changes to the Renewable Fuel Standard program. The revised statutory requirements specify the volumes of cellulosic biofuel, biomass-based diesel, advanced biofuel, and total renewable fuel that must be used in transportation fuel. This action finalizes the regulations that implement the requirements of EISA, including the cellulosic, biomass- based diesel, advanced biofuel, and renewable fuel standards that will apply to all gasoline and diesel produced or imported in 2010. The final regulations make a number of changes to the current Renewable Fuel Standard program while retaining many elements of the compliance and trading system already in place. This final rule also implements the revised statutory definitions and criteria, most notably the new greenhouse gas emission thresholds for renewable fuels and new limits on renewable biomass feedstocks. This rulemaking marks the first time that greenhouse gas emission performance is being applied in a regulatory context for a nationwide program. As mandated by the statute, our greenhouse gas emission assessments consider the full lifecycle emission impacts of fuel production from both direct and indirect emissions, including significant emissions from land use changes. In carrying out our lifecycle analysis we have taken steps to ensure that the lifecycle estimates are based on the latest and most up-to-date science. The lifecycle greenhouse gas assessments reflected in this rulemaking represent significant improvements in analysis based on information and data received since the proposal. However, we also recognize that lifecycle GHG assessment of biofuels is an evolving discipline and will continue to revisit our lifecycle analyses in the future as new information becomes available. EPA plans to ask the National Academy of Sciences for assistance as we move forward. Based on current analyses we have determined that ethanol from corn starch will be able to comply with the required greenhouse gas (GHG) threshold for renewable fuel. Similarly, biodiesel can be produced to comply with the 50% threshold for biomass-based diesel, sugarcane with the 50% threshold for advanced biofuel and multiple cellulosic-based fuels with their 60% threshold. Additional fuel pathways have also been determined to comply with their thresholds. The assessment for this rulemaking also indicates the increased use of renewable fuels will have important environmental, energy and economic impacts for our Nation.
Life-Cycle Assessment of Cookstove Fuels in India and China
A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are repo...
Heater Development, Fabrication, and Testing: Analysis of Fabricated Heaters
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Dickens, R. E.; Farmer, J. T.; Davis, J. D.; Adams, M. R.; Martin, J. J.; Webster, K. L.
2008-01-01
Thermal simulators (highly designed heater elements) developed at the Early Flight Fission Test Facility (EFF-TF) are used to simulate the heat from nuclear fission in a variety of reactor concepts. When inserted into the reactor geometry, the purpose of the thermal simulators is to deliver thermal power to the test article in the same fashion as if nuclear fuel were present. Considerable effort has been expended to mimic heat from fission as closely as possible. To accurately represent the fuel, the simulators should be capable of matching the overall properties of the nuclear fuel rather than simply matching the fuel temperatures. This includes matching thermal stresses in the pin, pin conductivities, total core power, and core power profile (axial and radial). This Technical Memorandum discusses the historical development of the thermal simulators used in nonnuclear testing at the EFF-TF and provides a basis for the development of the current series of thermal simulators. The status of current heater fabrication and testing is assessed, providing data and analyses for both successes and failures experienced in the heater development and testing program.
Fuel cell added value for early market applications
NASA Astrophysics Data System (ADS)
Hardman, Scott; Chandan, Amrit; Steinberger-Wilckens, Robert
2015-08-01
Fuel Cells are often considered in the market place as just power providers. Whilst fuel cells do provide power, there are additional beneficial characteristics that should be highlighted to consumers. Due to the high price premiums associated with fuel cells, added value features need to be exploited in order to make them more appealing and increase unit sales and market penetration. This paper looks at the approach taken by two companies to sell high value fuel cells to niche markets. The first, SFC Energy, has a proven track record selling fuel cell power providers. The second, Bloom Energy, is making significant progress in the US by having sold its Energy Server to more than 40 corporations including Wal-Mart, Staples, Google, eBay and Apple. Further to these current markets, two prospective added value applications for fuel cells are discussed. These are fuel cells for aircraft APUs and fuel cells for fire prevention. These two existing markets and two future markets highlight that fuel cells are not just power providers. Rather, they can be used as solutions to many needs, thus being more cost effective by replacing a number of incumbent systems at the same time.
Cermet-fueled reactors for advanced space applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, C.L.; Palmer, R.S.; Taylor, I.N.
Cermet-fueled nuclear reactors are attractive candidates for high-performance advanced space power systems. The cermet consists of a hexagonal matrix of a refractory metal and a ceramic fuel, with multiple tubular flow channels. The high performance characteristics of the fuel matrix come from its high strength at elevated temperatures and its high thermal conductivity. The cermet fuel concept evolved in the 1960s with the objective of developing a reactor design that could be used for a wide range of mobile power generating sytems, including both Brayton and Rankine power conversion cycles. High temperature thermal cycling tests for the cermet fuel weremore » carried out by General Electric as part of the 710 Project (General Electric 1966), and by Argonne National Laboratory in the Direct Nuclear Rocket Program (1965). Development programs for cermet fuel are currently under way at Argonne National Laboratory and Pacific Northwest Laboratory. The high temperature qualification tests from the 1960s have provided a base for the incorporation of cermet fuel in advanced space applications. The status of the cermet fuel development activities and descriptions of the key features of the cermet-fueled reactor design are summarized in this paper.« less
"Fuel Gage" for Electric Vehicles
NASA Technical Reports Server (NTRS)
Rowlette, J. J.
1984-01-01
Gas-emmission and time-integrated-current measurements indicate battery charge state. Tests indicate possibility of monitoring state of charge of lead/acid batteries at any stage in charging cycle by measuring charging current and either gas evolution or electrode potential. Data then processed by microcomputer. Uses include cell voltage, cell pressure, cell temperature and rate of gas recombination on catalyst.
An Overview of Power Electronics Applications in Fuel Cell Systems: DC and AC Converters
Ali, M. S.; Kamarudin, S. K.; Masdar, M. S.; Mohamed, A.
2014-01-01
Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter. PMID:25478581
A case for biofuels in aviation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
In the last 15 years, the technical and the economic feasibility of biomass based fuels for general aviation piston engines has been proven. Exhaustive ground and flight tests performed at the Renewable Aviation Fuels Development Center (RAFDC) using ethanol, ethanol/methanol blends, and ETBE have proven these fuels to be superior to aviation gasoline (avgas) in all aspects of performance except range. Two series of Lycoming engines have been certified. Record flights, including a transatlantic flight on pure ethanol, were made to demonstrate the reliability of the fuel. Aerobatic demonstrations with aircraft powered by ethanol, ethanol/methanol, and ETBE were flown atmore » major airshows around the world. the use of bio-based fuels for aviation will benefit energy security, improve the balance of trade, domestic economy, and environmental quality. The United States has the resources to supply the aviation community`s needs with a domestically produced fuel using current available technology. The adoption of a renewable fuel in place of conventional petroleum-based fuels for aviation piston and turbine engines is long overdue.« less
An overview of power electronics applications in fuel cell systems: DC and AC converters.
Ali, M S; Kamarudin, S K; Masdar, M S; Mohamed, A
2014-01-01
Power electronics and fuel cell technologies play an important role in the field of renewable energy. The demand for fuel cells will increase as fuel cells become the main power source for portable applications. In this application, a high-efficiency converter is an essential requirement and a key parameter of the overall system. This is because the size, cost, efficiency, and reliability of the overall system for portable applications primarily depend on the converter. Therefore, the selection of an appropriate converter topology is an important and fundamental aspect of designing a fuel cell system for portable applications as the converter alone plays a major role in determining the overall performance of the system. This paper presents a review of power electronics applications in fuel cell systems, which include various topology combinations of DC converters and AC inverters and which are primarily used in fuel cell systems for portable or stand-alone applications. This paper also reviews the switching techniques used in power conditioning for fuel cell systems. Finally, this paper addresses the current problem encountered with DC converters and AC inverter.
Analyzing the impact of reactive transport on the repository performance of TRISO fuel
NASA Astrophysics Data System (ADS)
Schmidt, Gregory
One of the largest determiners of the amount of electricity generated by current nuclear reactors is the efficiency of the thermodynamic cycle used for power generation. Current light water reactors (LWR) have an efficiency of 35% or less for the conversion of heat energy generated by the reactor to electrical energy. If this efficiency could be improved, more power could be generated from equivalent volumes of nuclear fuel. One method of improving this efficiency is to use a coolant flow that operates at a much higher temperature for electricity production. A reactor design that is currently proposed to take advantage of this efficiency is a graphite-moderated, helium-cooled reactor known as a High Temperature Gas Reactor (HTGR). There are significant differences between current LWR's and the proposed HTGR's but most especially in the composition of the nuclear fuel. For LWR's, the fuel elements consist of pellets of uranium dioxide or plutonium dioxide that are placed in long tubes made of zirconium metal alloys. For HTGR's, the fuel, known as TRISO (TRIstructural-ISOtropic) fuel, consists of an inner sphere of fissile material, a layer of dense pyrolytic carbon (PyC), a ceramic layer of silicon carbide (SiC) and a final dense outer layer of PyC. These TRISO particles are then compacted with graphite into fuel rods that are then placed in channels in graphite blocks. The blocks are then arranged in an annular fashion to form a reactor core. However, this new fuel form has unanswered questions on the environmental post-burn-up behavior. The key question for current once-through fuel operations is how these large irradiated graphite blocks with spent fuel inside will behave in a repository environment. Data in the literature to answer this question is lacking, but nevertheless this is an important question that must be answered before wide-spread adoption of HTGR's could be considered. This research has focused on answering the question of how the large quantity of graphite surrounding the spent HTGR fuel will impact the release of aqueous uranium from the TRISO fuel. In order to answer this question, the sorption and partitioning behavior of uranium to graphite under a variety of conditions was investigated. Key systematic variables that were analyzed include solution pH, dissolved carbonate concentration, uranium metal concentration and ionic strength. The kinetics and desorption characteristics of uranium/graphite partitioning were studied as well. The graphite used in these experiments was also characterized by a variety of techniques and conclusions are drawn about the relevant surface chemistry of graphite. This data was then used to generate a model for the reactive transport of uranium in a graphite matrix. This model was implemented with the software code CXTFIT and validated through the use of column studies mirroring the predicted system.
2016-01-01
The Annual Energy Outlook 2016 (AEO2016) Extended Policies case includes selected policies that go beyond current laws and regulations. Existing tax credits that have scheduled reductions and sunset dates are assumed to remain unchanged through 2040. Other efficiency policies, including corporate average fuel economy standards, appliance standards, and building codes, are expanded beyond current provisions; and the U.S. Environmental Protection Agency (EPA) Clean Power Plan (CPP) regulations that reduce carbon dioxide emissions from electric power generation are tightened after 2030.
Electricity generation in microbial fuel cells using neutral red as an electronophore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, D.H.; Zeikus, J.G.
2000-04-01
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. Inmore » microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator was 10-fold more than the amount produced when thionin was the electron mediator. The amount of electrical energy generated and the amount of current produced from glucose in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge was used in the fuel cell, stable and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Their results are discussed in relation to factors that may improve the relatively low electrical efficiencies obtained with microbial fuel cells.« less
Reestablishing Open Rotor as an Option for Significant Fuel Burn Improvements
NASA Technical Reports Server (NTRS)
Van Zante, Dale
2011-01-01
A low-noise open rotor system is being tested in collaboration with General Electric and CFM International, a 50/50 joint company between Snecma and GE. Candidate technologies for lower noise will be investigated as well as installation effects such as pylon integration. Current test status is presented as well as future scheduled testing which includes the FAA/CLEEN test entry. Pre-test predictions show that Open Rotors have the potential for revolutionary fuel burn savings.
Preliminary assessment of systems for deriving liquid and gaseous fuels from waste or grown organics
NASA Technical Reports Server (NTRS)
Graham, R. W.; Reynolds, T. W.; Hsu, Y. Y.
1976-01-01
The overall feasibility of the chemical conversion of waste or grown organic matter to fuel is examined from the technical, economic, and social viewpoints. The energy contribution from a system that uses waste and grown organic feedstocks is estimated as 4 to 12 percent of our current energy consumption. Estimates of today's market prices for these fuels are included. Economic and social issues are as important as technology in determining the feasibility of such a proposal. An orderly program of development and demonstration is recommended to provide reliable data for an assessment of the viability of the proposal.
Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou
2015-12-01
Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Richard Hess; Jacob J. Jacobson; Richard Nelson
This report updates the status of U.S. biomass resources currently and future potentials for domestic and export markets of residues, energy crops, and woody resources. Includes energy and fuel production and consumption statistics, driving policies, targets, and government investment in bioenergy industry development.
Single chamber microbial fuel cell with Ni-Co cathode
NASA Astrophysics Data System (ADS)
Włodarczyk, Barbara; Włodarczyk, Paweł P.; Kalinichenko, Antonina
2017-10-01
The possibility of wastewater treatment and the parallel energy production using the Ni-Co alloy as cathode catalyst for single chamber microbial fuel cells is presented in this research. The research included a preparation of catalyst and comparison of COD, NH4+ and NO3- reduction in the reactor without aeration, with aeration and with using a single chamber microbial fuel cell with Ni-Co cathode. The reduction time for COD with the use of microbial fuel cell with the Ni-Co catalyst is similar to the reduction time with aeration. The current density (2.4 A·m-2) and amount of energy (0.48 Wh) obtained in MFC is low, but the obtained amount of energy allows elimination of the energy needed for reactor aeration. It has been shown that the Ni-Co can be used as cathode catalyst in single chamber microbial fuel cells.
Regenerative Fuel Cell Test Rig at Glenn Research Center
NASA Technical Reports Server (NTRS)
Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.; Scullin, Vincent J.; Bents, David J.
2003-01-01
The regenerative fuel cell development effort at Glenn Research Center (GRC) involves the integration of a dedicated fuel cell and electrolyzer into an energy storage system test rig. The test rig consists of a fuel cell stack, an electrolysis stack, cooling pumps, a water transfer pump, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, interconnecting tubing, nitrogen purge provisions, and instrumentation for control and monitoring purposes. The regenerative fuel cell (RFC) thus formed is a completely closed system which is capable of autonomous cyclic operation. The test rig provides direct current (DC) load and DC power supply to simulate power consumption and solar power input. In addition, chillers are used as the heat sink to dissipate the waste heat from the electrochemical stack operation. Various vents and nitrogen (N2) sources are included in case inert purging is necessary to safe the RFC test rig.
Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven J. Piet
2012-07-01
The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historicalmore » survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.« less
NASA Technical Reports Server (NTRS)
Hickman, Robert; Broadway, Jeramie
2014-01-01
CERMET fuel materials are being developed at the NASA Marshall Space Flight Center for a Nuclear Cryogenic Propulsion Stage. Recent work has resulted in the development and demonstration of a Compact Fuel Element Environmental Test (CFEET) System that is capable of subjecting depleted uranium fuel material samples to hot hydrogen. A critical obstacle to the development of an NCPS engine is the high-cost and safety concerns associated with developmental testing in nuclear environments. The purpose of this testing capability is to enable low-cost screening of candidate materials, fabrication processes, and further validation of concepts. The CERMET samples consist of depleted uranium dioxide (UO2) fuel particles in a tungsten metal matrix, which has been demonstrated on previous programs to provide improved performance and retention of fission products1. Numerous past programs have utilized hot hydrogen furnace testing to develop and evaluate fuel materials. The testing provides a reasonable simulation of temperature and thermal stress effects in a flowing hydrogen environment. Though no information is gained about radiation damage, the furnace testing is extremely valuable for development and verification of fuel element materials and processes. The current work includes testing of subscale W-UO2 slugs to evaluate fuel loss and stability. The materials are then fabricated into samples with seven cooling channels to test a more representative section of a fuel element. Several iterations of testing are being performed to evaluate fuel mass loss impacts from density, microstructure, fuel particle size and shape, chemistry, claddings, particle coatings, and stabilizers. The fuel materials and forms being evaluated on this effort have all been demonstrated to control fuel migration and loss. The objective is to verify performance improvements of the various materials and process options prior to expensive full scale fabrication and testing. Post test analysis will include weight percent fuel loss, microscopy, dimensional tolerance, and fuel stability.
Review of alternate automotive engine fuel economy. Final report January-October 78
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, D.; Bolt, J.A.; Huber, P.
This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucksmore » through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.« less
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W. Y.
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc.; a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR); NERVA-derivative; and other concepts are discussed. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggest that full-scale PBR elements could be tested at an average energy deposition of approximately 60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of approximately 100 MW/L may be achievable.
Space reactor fuel element testing in upgraded TREAT
NASA Astrophysics Data System (ADS)
Todosow, Michael; Bezler, Paul; Ludewig, Hans; Kato, Walter Y.
1993-01-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., is a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. Initial results suggests that full-scale PBR elements could be tested at an average energy deposition of ˜60-80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperture limit, average energy deposition of ˜100 MW/L may be achievable.
TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Brandon Miller; Dennis Keiser
2014-04-01
As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope; R. Sonat Sen; Brian Boer
2011-09-01
The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code tomore » assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.« less
Urban Wood-Based Bio-Energy Systems in Seattle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stan Gent, Seattle Steam Company
2010-10-25
Seattle Steam Company provides thermal energy service (steam) to the majority of buildings and facilities in downtown Seattle, including major hospitals (Swedish and Virginia Mason) and The Northwest (Level I) Regional Trauma Center. Seattle Steam has been heating downtown businesses for 117 years, with an average length of service to its customers of 40 years. In 2008 and 2009 Seattle Steam developed a biomass-fueled renewable energy (bio-energy) system to replace one of its gas-fired boilers that will reduce greenhouse gases, pollutants and the amount of waste sent to landfills. This work in this sub-project included several distinct tasks associated withmore » the biomass project development as follows: a. Engineering and Architecture: Engineering focused on development of system control strategies, development of manuals for start up and commissioning. b. Training: The project developer will train its current operating staff to operate equipment and facilities. c. Flue Gas Clean-Up Equipment Concept Design: The concept development of acid gas emissions control system strategies associated with the supply wood to the project. d. Fuel Supply Management Plan: Development of plans and specifications for the supply of wood. It will include potential fuel sampling analysis and development of contracts for delivery and management of fuel suppliers and handlers. e. Integrated Fuel Management System Development: Seattle Steam requires a biomass Fuel Management System to track and manage the delivery, testing, processing and invoicing of delivered fuel. This application will be web-based and accessed from a password-protected URL, restricting data access and privileges by user-level.« less
A new topology of fuel cell hybrid power source for efficient operation and high reliability
NASA Astrophysics Data System (ADS)
Bizon, Nicu
2011-03-01
This paper analyzes a new fuel cell Hybrid Power Source (HPS) topology having the feature to mitigate the current ripple of the fuel cell inverter system. In the operation of the inverter system that is grid connected or supplies AC motors in vehicle application, the current ripple normally appears at the DC port of the fuel cell HPS. Consequently, if mitigation measures are not applied, this ripple is back propagated to the fuel cell stack. Other features of the proposed fuel cell HPS are the Maximum Power Point (MPP) tracking, high reliability in operation under sharp power pulses and improved energy efficiency in high power applications. This topology uses an inverter system directly powered from the appropriate fuel cell stack and a controlled buck current source as low power source used for ripple mitigation. The low frequency ripple mitigation is based on active control. The anti-ripple current is injected in HPS output node and this has the LF power spectrum almost the same with the inverter ripple. Consequently, the fuel cell current ripple is mitigated by the designed active control. The ripple mitigation performances are evaluated by indicators that are defined to measure the mitigation ratio of the low frequency harmonics. In this paper it is shown that good performances are obtained by using the hysteretic current control, but better if a dedicated nonlinear controller is used. Two ways to design the nonlinear control law are proposed. First is based on simulation trials that help to draw the characteristic of ripple mitigation ratio vs. fuel cell current ripple. The second is based on Fuzzy Logic Controller (FLC). The ripple factor is up to 1% in both cases.
Synthetic and Biomass Alternate Fueling in Aviation
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Bushnell, D. M.
2009-01-01
While transportation fueling can accommodate a broad range of alternate fuels, aviation fueling needs are specific, such as the fuel not freezing at altitude or become too viscous to flow properly or of low bulk energy density that shortens range. The fuel must also be compatible with legacy aircraft, some of which are more than 50 years old. Worldwide, the aviation industry alone uses some 85-95 billion gallons of hydrocarbon-based fossil fuel each year, which is about 10% of the transportation industry. US civil aviation alone consumes nearly 14 billion gallons. The enormity of the problem becomes overwhelming, and the aviation industry is taking alternate fueling issues very seriously. Biofuels (algae, cyanobacteria, halophytes, weeds that use wastelands, wastewater and seatwater), when properly sourced, have the capacity to be drop-in fuel replacements for petroleum fuels. As such, biojet from such sources solves the aviation CO2 emissions issue without the downsides of 'conventional' biofuels, such as competing with food and fresh water resources. Of the many current fundamental problems, the major biofuel problem is cost. Both research and development and creative engineering are required to reduce these biofuels costs. Research is also ongoing in several 'improvement' areas including refining/processing and biologics with greater disease resistance, greater bio-oil productivity, reduced water/nutrient requirements, etc. The authors' current research is aimed at aiding industry efforts in several areas. They are considering different modeling approaches, growth media and refining approaches, different biologic feedstocks, methods of sequestering carbon in the processes, fuel certification for aviation use and, overall, ensuring that biofuels are feasible from all aspects - operability, capacity, carbon cycle and financial. The authors are also providing common discussion grounds/opportunities for the various parties, disciplines and concerned organization to share both issues and potential ways for moving forward, and overall, trying to educate those concerned about the innate limitations of 'conventional' biofuels and the solutions provided by non-traditional feedstocks that used waste lands/water or saline/salt water have an immense capacity potential.
Magnetotomography—a new method for analysing fuel cell performance and quality
NASA Astrophysics Data System (ADS)
Hauer, Karl-Heinz; Potthast, Roland; Wüster, Thorsten; Stolten, Detlef
Magnetotomography is a new method for the measurement and analysis of the current density distribution of fuel cells. The method is based on the measurement of the magnetic flux surrounding the fuel cell stack caused by the current inside the stack. As it is non-invasive, magnetotomography overcomes the shortcomings of traditional methods for the determination of current density in fuel cells [J. Stumper, S.A. Campell, D.P. Wilkinson, M.C. Johnson, M. Davis, In situ methods for the determination of current distributions in PEM fuel cells, Electrochem. Acta 43 (1998) 3773; S.J.C. Cleghorn, C.R. Derouin, M.S. Wilson, S. Gottesfeld, A printed circuit board approach to measuring current distribution in a fuel cell, J. Appl. Electrochem. 28 (1998) 663; Ch. Wieser, A. Helmbold, E. Gülzow, A new technique for two-dimensional current distribution measurements in electro-chemical cells, J. Appl. Electrochem. 30 (2000) 803; Grinzinger, Methoden zur Ortsaufgelösten Strommessung in Polymer Elektrolyt Brennstoffzellen, Diploma thesis, TU-München, 2003; Y.-G. Yoon, W.-Y. Lee, T.-H. Yang, G.-G. Park, C.-S. Kim, Current distribution in a single cell of PEMFC, J. Power Sources 118 (2003) 193-199; M.M. Mench, C.Y. Wang, An in situ method for determination of current distribution in PEM fuel cells applied to a direct methanol fuel cell, J. Electrochem. Soc. 150 (2003) A79-A85; S. Schönbauer, T. Kaz, H. Sander, E. Gülzow, Segmented bipolar plate for the determination of current distribution in polymer electrolyte fuel cells, in: Proceedings of the Second European PEMFC Forum, vol. 1, Lucerne/Switzerland, 2003, pp. 231-237; G. Bender, S.W. Mahlon, T.A. Zawodzinski, Further refinements in the segmented cell approach to diagnosing performance in polymer electrolyte fuel cells, J. Power Sources 123 (2003) 163-171]. After several years of research a complete prototype system is now available for research on single cells and stacks. This paper describes the basic system (fundamentals, hardware and software) as well as the state of development until December 2003. Initial findings on a full-size single cell will be presented together with an outlook on the planned next steps.
Hydrogen fuel dispensing station for transportation vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S.P.N.; Richmond, A.A.
1995-07-01
A technical and economic assessment is being conducted of a hydrogen fuel dispensing station to develop an understanding of the infrastructure requirements for supplying hydrogen fuel for mobile applications. The study includes a process design of a conceptual small-scale, stand-alone, grassroots fuel dispensing facility (similar to the present-day gasoline stations) producing hydrogen by steam reforming of natural gas. Other hydrogen production processes (such as partial oxidation of hydrocarbons and water electrolysis) were reviewed to determine their suitability for manufacturing the hydrogen. The study includes an assessment of the environmental and other regulatory permitting requirements likely to be imposed on amore » hydrogen fuel dispensing station for transportation vehicles. The assessment concludes that a dispensing station designed to produce 0.75 million standard cubic feet of fuel grade (99.99%+ purity) hydrogen will meet the fuel needs of 300 light-duty vehicles per day. Preliminary economics place the total capital investment (in 1994 US dollars) for the dispensing station at $4.5 million and the annual operating costs at around $1 million. A discounted cash-flow analysis indicates that the fuel hydrogen product price (excluding taxes) to range between $1.37 to $2.31 per pound of hydrogen, depending upon the natural gas price, the plant financing scenario, and the rate of return on equity capital. A report on the assessment is due in June 1995. This paper presents a summary of the current status of the assessment.« less
Electromechanical Power for NASA Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.
2005-01-01
NASA has a wide range of missions that require electrochemical power sources. These needs are met with a variety of options that include primary and secondary cells and batteries, fuel cells, and regenerative fuel cells. This presentation wil cover an overview of NASA missions and requirements for electrochemical power sources and investigate the synergy and diversity that exist between NASA's requirements and those for military tactical power sources. Current development programs at GRC and other NASA centers, aimed at meeting NASA's future requirements will also be discussed.
Future Propulsion Opportunities for Commuter Airplanes
NASA Technical Reports Server (NTRS)
Strack, W. C.
1982-01-01
Commuter airplane propulsion opportunities are summarized. Consideration is given to advanced technology conventional turboprop engines, advanced propellers, and several unconventional alternatives: regenerative turboprops, rotaries, and diesels. Advanced versions of conventional turboprops (including propellers) offer 15-20 percent savings in fuel and 10-15 percent in DOC compared to the new crop of 1500-2000 SHP engines currently in development. Unconventional engines could boost the fuel savings to 30-40 percent. The conclusion is that several important opportunities exist and, therefore, powerplant technology need not plateau.
Progress in the planar CPn SOFC system design verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elangovan, S.; Hartvigsen, J.; Khandkar, A.
1996-04-01
SOFCo is developing a high efficiency, modular and scaleable planar SOFC module termed the CPn design. This design has been verified in a 1.4 kW module test operated directly on pipeline natural gas. The design features multistage oxidation of fuel wherein the fuel is consumed incrementally over several stages. High efficiency is achieved by uniform current density distribution per stage, which lowers the stack resistance. Additional benefits include thermal regulation and compactness. Test results from stack modules operating in pipeline natural gas are presented.
International nuclear fuel cycle fact book. Revision 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
International Nuclear Fuel Cycle Fact Book. Revision 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries -more » a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.« less
Off-Highway Transportation-Related Fuel Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, S.C.
2004-05-08
The transportation sector includes many subcategories--for example, on-highway, off-highway, and non-highway. Use of fuel for off-highway purposes is not well documented, nor is the number of off-highway vehicles. The number of and fuel usage for on-highway and aviation, marine, and rail categories are much better documented than for off-highway land-based use. Several sources document off-highway fuel use under specific conditions--such as use by application (e.g., recreation) or by fuel type (e.g., gasoline). There is, however, no single source that documents the total fuel used off-highway and the number of vehicles that use the fuel. This report estimates the fuel usagemore » and number of vehicles/equipment for the off-highway category. No new data have been collected nor new models developed to estimate the off-highway data--this study is limited in scope to using data that already exist. In this report, unless they are being quoted from a source that uses different terminology, the terms are used as listed below. (1) ''On-highway/on-road'' includes land-based transport used on the highway system or other paved roadways. (2) ''Off-highway/off-road'' includes land-based transport not using the highway system or other paved roadways. (3) ''Non-highway/non-road'' includes other modes not traveling on highways such as aviation, marine, and rail. It should be noted that the term ''transportation'' as used in this study is not typical. Generally, ''transportation'' is understood to mean the movement of people or goods from one point to another. Some of the off-highway equipment included in this study doesn't transport either people or goods, but it has utility in movement (e.g., a forklift or a lawn mower). Along these lines, a chain saw also has utility in movement, but it cannot transport itself (i.e., it must be carried) because it does not have wheels. Therefore, to estimate the transportation-related fuel used off-highway, transportation equipment is defined to include all devices that have wheels, can move or be moved from one point to another, and use fuel. An attempt has been made to exclude off-highway engines that do not meet all three of these criteria (e.g., chain saws and generators). The following approach was used to determine the current off-highway fuel use. First, a literature review was conducted to ensure that all sources with appropriate information would be considered. Secondly, the fuel use data available from each source were compiled and compared in so far as possible. Comparable data sets (i.e., same fuel type; same application) were evaluated. Finally, appropriate data sets were combined to provide a final tally.« less
Fuel breaks affect nonnative species abundance in Californian plant communities
Merriam, K.E.; Keeley, J.E.; Beyers, J.L.
2006-01-01
We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment programs throughout the United States to reduce the threat of wildland fire. Our study included 24 fuel breaks located across the State of California. We found that nonnative plant abundance was over 200% higher on fuel breaks than in adjacent wildland areas. Relative nonnative cover was greater on fuel breaks constructed by bulldozers (28%) than on fuel breaks constructed by other methods (7%). Canopy cover, litter cover, and duff depth also were significantly lower on fuel breaks constructed by bulldozers, and these fuel breaks had significantly more exposed bare ground than other types of fuel breaks. There was a significant decline in relative nonnative cover with increasing distance from the fuel break, particularly in areas that had experienced more numerous fires during the past 50 years, and in areas that had been grazed. These data suggest that fuel breaks could provide establishment sites for nonnative plants, and that nonnatives may invade surrounding areas, especially after disturbances such as fire or grazing. Fuel break construction and maintenance methods that leave some overstory canopy and minimize exposure of bare ground may be less likely to promote nonnative plants. ?? 2006 by the Ecological Society of America.
van Wagtendonk, J.W.; Moore, P.E.
2010-01-01
Fire managers and researchers need information on fuel deposition rates to estimate future changes in fuel bed characteristics, determine when forests transition to another fire behavior fuel model, estimate future changes in fuel bed characteristics, and parameterize and validate ecosystem process models. This information is lacking for many ecosystems including the Sierra Nevada in California, USA. We investigated fuel deposition rates and stand characteristics of seven montane and four subalpine conifers in the Sierra Nevada. We collected foliage, miscellaneous bark and crown fragments, cones, and woody fuel classes from four replicate plots each in four stem diameter size classes for each species, for a total of 176 sampling sites. We used these data to develop predictive equations for each fuel class and diameter size class of each species based on stem and crown characteristics. There were consistent species and diameter class differences in the annual amount of foliage and fragments deposited. Foliage deposition rates ranged from just over 50 g m-2 year-1 in small diameter mountain hemlock stands to ???300 g m-2 year-1 for the three largest diameter classes of giant sequoia. The deposition rate for most woody fuel classes increased from the smallest diameter class stands to the largest diameter class stands. Woody fuel deposition rates varied among species as well. The rates for the smallest woody fuels ranged from 0.8 g m-2 year-1 for small diameter stands of Jeffrey pine to 126.9 g m-2 year-1 for very large diameter stands of mountain hemlock. Crown height and live crown ratio were the best predictors of fuel deposition rates for most fuel classes and species. Both characteristics reflect the amount of crown biomass including foliage and woody fuels. Relationships established in this study allow predictions of fuel loads to be made on a stand basis for each of these species under current and possible future conditions. These predictions can be used to estimate fuel treatment longevity, assist in determining fuel model transitions, and predict future changes in fuel bed characteristics.
Electricity Generation in Microbial Fuel Cells Using Neutral Red as an Electronophore
Park, Doo Hyun; Zeikus, J. Gregory
2000-01-01
Neutral red (NR) was utilized as an electron mediator in microbial fuel cells consuming glucose to study both its efficiency during electricity generation and its role in altering anaerobic growth and metabolism of Escherichia coli and Actinobacillus succinogenes. A study of chemical fuel cells in which NADH, NR, and ferricyanide were the electron donor, the electronophore, and the electron acceptor, respectively, showed that electrical current produced from NADH was proportional to the concentration of NADH. Fourfold more current was produced from NADH in chemical fuel cells when NR was the electron mediator than when thionin was the electron mediator. In microbial fuel cells in which E. coli resting cells were used the amount of current produced from glucose when NR was the electron mediator (3.5 mA) was 10-fold more than the amount produced when thionin was the electron mediator (0.4 mA). The amount of electrical energy generated (expressed in joules per mole of substrate) and the amount of current produced from glucose (expressed in milliamperes) in NR-mediated microbial fuel cells containing either E. coli or A. succinogenes were about 10- and 2-fold greater, respectively, when resting cells were used than when growing cells were used. Cell growth was inhibited substantially when these microbial fuel cells were making current, and more oxidized end products were formed under these conditions. When sewage sludge (i.e., a mixed culture of anaerobic bacteria) was used in the fuel cell, stable (for 120 h) and equivalent levels of current were obtained with glucose, as observed in the pure-culture experiments. These results suggest that NR is better than other electron mediators used in microbial fuel cells and that sludge production can be decreased while electricity is produced in fuel cells. Our results are discussed in relation to factors that may improve the relatively low electrical efficiencies (1.2 kJ/mol) obtained with microbial fuel cells. PMID:10742202
Armaroli, Nicola; Balzani, Vincenzo
2011-03-01
Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormick, Robert L
It is possible to significantly improve the efficiency of spark-ignition engines given fuels with improved autoignition, evaporative cooling, and particle emission properties. At the same time, a vast range of different fuel chemistries are accessible from biomass - leading to questions about how fuel chemistries outside the range available from petroleum and ethanol can impact engine operation. This presentation will briefly describe the factors leading to poor efficiency in current SI engines, and the technologies available for improving efficiency. Improved fuel properties that enable high efficiency engine designs to be pursued aggressively will be reviewed, including octane index and sensitivity.more » A screening process based on fuel properties was applied to a large set of proposed biomass-derived gasoline blendstocks, and the properties of the best blendstocks were evaluated. Some of these fuels exhibit poor stability towards oxidation in the liquid phase, and storage stability studies for alkyl furans and cyclopentanone will be presented in brief. The importance of fuel heat of vaporization for direct injection engines, along with new research on measurement of this parameter, will be presented including an SI engine study of the impact of heat of vaporization on octane index and engine knock. Fuel effects on fine particle emissions and how our understanding breaks down for oxygenates will be discussed. Engine combustion experiments, droplet evaporation simulations, and heat of vaporization measurements conducted to better understand how oxygenates affect particle emissions will be described. This research defines a process that can be used to evaluate fuels for other types of combustion such as diesel, gasoline compression ignition, or strategies with mixed modes.« less
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
NASA Astrophysics Data System (ADS)
Ghazali, N. F.; Mahmood, N. A. B. N.; Ibrahim, K. A.; Muhammad, S. A. F. S.; Amalina, N. S.
2017-06-01
Microbial fuel cell (MFC) has been discovered and utilized in laboratory scale for electricity production based on microbial degradation of organic compound. However, various source of fuel has been tested and recently complex biomass such as lignocellulose biomass has been focused on. In the present research, oil palm tree empty fruit bunch (EFB) has been tested for power production using dual chamber MFC and power generation analysis has been conducted to address the performance of MFC. In addition, two microorganisms (electric harvesting microbe and cellulose degrading microbe) were used in the MFC operation. The analysis include voltage produced, calculated current and power. The first section in your paper
Delayed flap approach procedures for noise abatement and fuel conservation
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Bull, J. S.; Foster, J. D.; Hegarty, D. M.; Drinkwater, F. J., III
1976-01-01
The NASA/Ames Research Center is currently investigating the delayed flap approach during which pilot actions are determined and prescribed by an onboard digital computer. The onboard digital computer determines the proper timing for the deployment of the landing gear and flaps based on the existing winds and airplane gross weight. Advisory commands are displayed to the pilot. The approach is flown along the conventional ILS glide slope but is initiated at a higher airspeed and in a clean aircraft configuration that allows for low thrust and results in reduced noise and fuel consumption. Topics discussed include operational procedures, pilot acceptability of these procedures, and fuel/noise benefits resulting from flight tests and simulation.
Effect of broadened-specification fuels on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1979-01-01
A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may effect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are explored; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are examined. The ability of current technology to accept possible future fuel specification changes is assessed and selected technological advances that can reduce the severity of the potential problems are illustrated.
Effect of broadened-specification fuels on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.
1979-01-01
A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Kaushik; Clarity, Justin B; Cumberland, Riley M
This will be licensed via RSICC. A new, integrated data and analysis system has been designed to simplify and automate the performance of accurate and efficient evaluations for characterizing the input to the overall nuclear waste management system -UNF-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). A relational database within UNF-ST&DARDS provides a standard means by which UNF-ST&DARDS can succinctly store and retrieve modeling and simulation (M&S) parameters for specific spent nuclear fuel analysis. A library of various analysis model templates provides the ability to communicate the various set of M&S parameters to the most appropriate M&S application.more » Interactive visualization capabilities facilitate data analysis and results interpretation. UNF-ST&DARDS current analysis capabilities include (1) assembly-specific depletion and decay, (2) and spent nuclear fuel cask-specific criticality and shielding. Currently, UNF-ST&DARDS uses SCALE nuclear analysis code system for performing nuclear analysis.« less
Corrosion testing of candidates for the alkaline fuel cell cathode
NASA Technical Reports Server (NTRS)
Singer, Joseph; Fielder, William L.
1989-01-01
Current/voltage data was obtained for specially made corrosion electrodes of some oxides and of gold materials for the purpose of developing a screening test of catalysts and supports for use at the cathode of the alkaline fuel cell. The data consists of measurements of current at fixed potentials and cyclic voltammograms. These data will have to be correlated with longtime performance data in order to fully evaluate this approach to corrosion screening. Corrosion test screening of candidates for the oxygen reduction electrode of the alkaline fuel cell was applied to two substances, the pyrochlore Pb2Ru2O6.5 and the spinel NiCo2O4. The substrate gold screen and a sample of the IFC Orbiter Pt-Au performance electrode were included as blanks. The pyrochlore data indicate relative stability, although nothing yet can be said about long term stability. The spinel was plainly unstable. For this type of testing to be validated, comparisons will have to be made with long term performance tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zygarlicke, C J; Schmidt, D D; Olson, E S
Biomass utilization is one solution to our nation’s addiction to oil and fossil fuels. What is needed now is applied fundamental research that will cause economic technology development for the utilization of the diverse biomass resources in the United States. This Energy & Environmental Research Center (EERC) applied fundamental research project contributes to the development of economical biomass utilization for energy, transportation fuels, and marketable chemicals using biorefinery methods that include thermochemical and fermentation processes. The fundamental and basic applied research supports the broad scientific objectives of the U.S. Department of Energy (DOE) Biomass Program, especially in the area ofmore » developing alternative renewable biofuels, sustainable bioenergy, technologies that reduce greenhouse gas emissions, and environmental remediation. Its deliverables include 1) identifying and understanding environmental consequences of energy production from biomass, including the impacts on greenhouse gas production, carbon emission abatement, and utilization of waste biomass residues and 2) developing biology-based solutions that address DOE and national needs related to waste cleanup, hydrogen production from renewable biomass, biological and chemical processes for energy and fuel production, and environmental stewardship. This project serves the public purpose of encouraging good environmental stewardship by developing biomass-refining technologies that can dramatically increase domestic energy production to counter current trends of rising dependence upon petroleum imports. Decreasing the nation’s reliance on foreign oil and energy will enhance national security, the economy of rural communities, and future competitiveness. Although renewable energy has many forms, such as wind and solar, biomass is the only renewable energy source that can be governed through agricultural methods and that has an energy density that can realistically compete with, or even replace, petroleum and other fossil fuels in the near future. It is a primary domestic, sustainable, renewable energy resource that can supply liquid transportation fuels, chemicals, and energy that are currently produced from fossil sources, and it is a sustainable resource for a hydrogen-based economy in the future.« less
Sustainable Skyscrapers: Designing the Net Zero Energy Building of the Future
NASA Astrophysics Data System (ADS)
Kothari, S.; Bartsch, A.
2016-12-01
Cities of the future will need to increase population density in order to keep up with the rising populations in the limited available land area. In order to provide sufficient power as the population grows, cities must become more energy efficient. Fossil fuels and grid energy will continue to become more expensive as nonrenewable resources deplete. The obvious solution to increase population density while decreasing the reliance on fossil fuels is to build taller skyscrapers that are energy neutral, i.e. self-sustaining. However, current skyscrapers are not energy efficient, and therefore cannot provide a sustainable solution to the problem of increasing population density in the face of depleting energy resources. The design of a net zero energy building that includes both residential and commercial space is presented. Alternative energy systems such as wind turbines, photovoltaic cells, and a waste-to-fuel conversion plant have been incorporated into the design of a 50 story skyscraper that is not reliant on fossil fuels and has a payback time of about six years. Although the current building was designed to be located in San Francisco, simple modifications to the design would allow this building to fit the needs of any city around the world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benoit Forget; Mehdi Asgari; Rodolfo M. Ferrer
2007-11-01
As part of the GNEP program, it is envisioned to build a fast reactor for the transmutation of minor actinides. The spent nuclear fuel from the current fleet of light water reactors would be recycled, the current baseline is the UREX+1a process, and would act as a feed for the fast reactor. As the fuel is irradiated in a fast reactor a certain quantity of minor actinides would thus build up in the fuel stream creating possible concerns with the neutron emission of these minor actinides for fuel transportation, handling and fabrication. Past neutronic analyses had not tracked minor actinidesmore » above Cm-246 in the transmutation chain, because of the small influence on the overall reactor performance and cycle parameters. However, when trying to quantify the neutron emission from the recycled fuel with high minor actinide content, these higher isotopes play an essential role and should be included in the analysis. In this paper, the influence of tracking these minor actinides on the calculated neutron emission is presented. Also presented is the particular influence of choosing a different evaluated cross section data set to represent the minor actinides above Cm-246. The first representation uses the cross-sections provided by MC2-2 for all isotopes, while the second representation uses infinitely diluted ENDF/BVII.0 cross-sections for Cm-247 to Cf-252 and MC2-2 for all other isotopes.« less
Next generation biofuel engineering in prokaryotes
Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.
2014-01-01
Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045
Microbial Penetration and Utilization of Organic Aircraft Fuel-Tank Coatings1
Crum, M. G.; Reynolds, R. J.; Hedrick, H. G.
1967-01-01
Microorganisms have been found as contaminants in various types of aircraft fuel tanks. Their presence introduces problems in the operation of the aircraft, including destruction of components such as the organic coatings used as protective linings in the fuel tanks. Microbial penetration and utilization of the currently used organic coatings, EC 776, DV 1180, PR 1560, and DeSoto 1080, were determined by changes in electrical resistances of the coatings; mycelial weight changes; growth counts of the bacteria; and manometric determinations on Pseudomonas aeruginosa (GD-FW B-25) and Cladosporium resinae (QMC-7998). The results indicate EC 776 and DV 1180 to be less resistant to microbial degradation than the other coatings. Organic coatings, serving as a source of nutrition, would be conducive to population buildups in aircraft fuel tanks. Images Fig. 1 PMID:16349744
Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis.
Jordan, Sabine D; Könner, A Christine; Brüning, Jens C
2010-10-01
The central nervous system (CNS) is capable of gathering information on the body's nutritional state and it implements appropriate behavioral and metabolic responses to changes in fuel availability. This feedback signaling of peripheral tissues ensures the maintenance of energy homeostasis. The hypothalamus is a primary site of convergence and integration for these nutrient-related feedback signals, which include central and peripheral neuronal inputs as well as hormonal signals. Increasing evidence indicates that glucose and lipids are detected by specialized fuel-sensing neurons that are integrated in these hypothalamic neuronal circuits. The purpose of this review is to outline the current understanding of fuel-sensing mechanisms in the hypothalamus, to integrate the recent findings in this field, and to address the potential role of dysregulation in these pathways in the development of obesity and type 2 diabetes mellitus.
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-01-14
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Space reactor fuel element testing in upgraded TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todosow, M.; Bezler, P.; Ludewig, H.
1993-05-01
The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. Ifmore » the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.« less
Separator plate for a fuel cell
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1996-04-02
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Separator plate for a fuel cell
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1996-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; ...
2015-10-19
Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less
Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J
2015-11-03
Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.
Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.
2015-01-01
Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.
Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present paper, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute ofmore » Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. Finally, this could be particularly important in agricultural areas where there are significant sources of OSCs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Frank
The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less
Fuel properties to enable lifted-flame combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Eric
The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental understanding of flame lift-off, generate model validation data, and demonstrate LLFC concurrent with FMC efforts. Additionally, LLNL was added to the project during the second year to develop a detailed kinetic mechanism for a key oxygenate to support CFD modeling. Successful completion of this project allowed the team to enhance fundamental understanding of LLFC, improve the state of current combustion models and increase understanding of desired fuel properties. This knowledge also improves our knowledge of how cost effective and environmentally friendly renewable fuels can assist in helping meet future emission and greenhouse gas regulations.« less
Eddy-Current Detection of Weak Bolt Heads
NASA Technical Reports Server (NTRS)
Messina, C. P.
1987-01-01
Electronic test identifies flawed units passing hardness tests. Eddy-current test detects weakness in head-to-shank junctions of 1/4-28 cup-washer lock bolts. Developed for alloy A286 steel bolts in Space Shuttle main engine fuel turbo-pump. Test examines full volume of head, including head-to-shank transition and nondestructively screens out potentially defective units. Test adapts to any other alloys.
NASA Astrophysics Data System (ADS)
Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J. S.
2012-11-01
The present paper reports the experimental study on the dynamic behavior of a solid oxide fuel cell (SOFC). The cell stack consists of planar type cells with standard power output 300W. A Major subject of the present study is characterization of the transient response to the electric current change, assuming load-following operation. The present studies particularly focus on fuel provision control to the load change. Optimized fuel provision improves power generation efficiency. However, the capability of SOFC must be restricted by a few operative parameters. Fuel utilization factor, which is defined as the ratio of the consumed fuel to the supplied fuel is adopted for a reference in the control scheme. The fuel flow rate was regulated to keep the fuel utilization at 50%, 60% and 70% during the current ramping. Lower voltage was observed with the higher fuel utilization, but achieved efficiency was higher. The appropriate mass flow control is required not to violate the voltage transient behavior. Appropriate fuel flow manipulation can contribute to moderate the overshoot on the voltage that may appear to the current change. The overshoot on the voltage response resulted from the gradual temperature behavior in the SOFC stack module.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harms, Gary A.; Ford, John T.; Barber, Allison Delo
2010-11-01
Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-IIImore » is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-02
... eddy current inspection for cracking of the keyway of the fuel tank access door cutout on the left and... frequency eddy current (HFEC) inspection for cracking at the keyway of the fuel tank access door cutout on... frequency eddy current (HFEC) inspection for cracking of the keyway of the fuel tank access door cutout on...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, Matthew; Brunett, Acacia J.; Grabaskas, David
In 2015, as part of a Regulatory Technology Development Plan (RTDP) effort for sodium-cooled fast reactors (SFRs), Argonne National Laboratory investigated the current state of knowledge of source term development for a metal-fueled, pool-type SFR. This paper provides a summary of past domestic metal-fueled SFR incidents and experiments and highlights information relevant to source term estimations that were gathered as part of the RTDP effort. The incidents described in this paper include fuel pin failures at the Sodium Reactor Experiment (SRE) facility in July of 1959, the Fermi I meltdown that occurred in October of 1966, and the repeated meltingmore » of a fuel element within an experimental capsule at the Experimental Breeder Reactor II (EBR-II) from November 1967 to May 1968. The experiments described in this paper include the Run-Beyond-Cladding-Breach tests that were performed at EBR-II in 1985 and a series of severe transient overpower tests conducted at the Transient Reactor Test Facility (TREAT) in the mid-1980s.« less
Mechanical flexible joint design document
NASA Technical Reports Server (NTRS)
Daily, Vic
1993-01-01
The purpose of this report is to document the status of the Mechanical Flexible Joint (MFJ) Design Subtask with the intent of halting work on the design. Recommendations for future work is included in the case that the task is to be resumed. The MFJ is designed to eliminate two failure points from the current flex joint configuration, the inner 'tripod configuration' and the outer containment jacket. The MFJ will also be designed to flex 13.5 degrees and have three degrees of freedom. By having three degrees of freedom, the MFJ will allow the Low Pressure Fuel Duct to twist and remove the necessity to angulate the full 11 degrees currently required. The current flex joints are very labor intensive and very costly and a simple alternative is being sought. The MFJ is designed with a greater angular displacement, with three degrees of freedom, to reside in the same overall envelope, to meet weight constraints of the current bellows, to be compatible with cryogenic fuel and oxidizers, and also to be man-rated.
Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2013-06-01
Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of different FE and finite difference models. Non-linear mechanical behaviour of the fuel and cladding including, fuel creep and swelling and cladding creep and plasticity each with dependencies on a variety of different properties. A fission gas release model which takes inputs from first principles calculations. Explicitly integrated inventory calculations performed in a coupled manner. Freedom to model steady state and transient behaviour using implicit time integration. The whole pin geometry is considered over an entire typical fuel life. The model showed by examination of normal operation and a subsequent transient chosen for software demonstration purposes: ABAQUS may be a sufficiently flexible platform to develop a complete and verified fuel performance code. The importance and effectiveness of the geometry of the fuel spacer pellets was characterised. The fuels performance under normal conditions (high friction no power spikes) would not suggest serious degradation of the cladding in fuel life. Large plastic strains were found when pellet bonding was strong, these would appear at all pellets cladding triple points and all pellet radial crack and cladding interfaces thus showing a possible axial direction to cracks forming from ductility exhaustion.
Soviet steam generator technology: fossil fuel and nuclear power plants. [Glossary included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosengaus, J.
1987-01-01
In the Soviet Union, particular operational requirements, coupled with a centralized planning system adopted in the 1920s, have led to a current technology which differs in significant ways from its counterparts elsewhere in the would and particularly in the United States. However, the monograph has a broader value in that it traces the development of steam generators in response to the industrial requirements of a major nation dealing with the global energy situation. Specifically, it shows how Soviet steam generator technology evolved as a result of changing industrial requirements, fuel availability, and national fuel utilization policy. The monograph begins withmore » a brief technical introduction focusing on steam-turbine power plants, and includes a discussion of the Soviet Union's regional power supply (GRES) networks and heat and power plant (TETs) systems. TETs may be described as large central co-generating stations which, in addition to electricity, provide heat in the form of steam and hot water. Plants of this type are a common feature of the USSR today. The adoption of these cogeneration units as a matter of national policy has had a central influence on Soviet steam generator technology which can be traced throughout the monograph. The six chapters contain: a short history of steam generators in the USSR; steam generator design and manufacture in the USSR; boiler and furnace assemblies for fossil fuel-fired power stations; auxiliary components; steam generators in nuclear power plants; and the current status of the Soviet steam generator industry. Chapters have been abstracted separately. A glossary is included containing abbreviations and acronyms of USSR organizations. 26 references.« less
Fuel cell generator with fuel electrodes that control on-cell fuel reformation
Ruka, Roswell J [Pittsburgh, PA; Basel, Richard A [Pittsburgh, PA; Zhang, Gong [Murrysville, PA
2011-10-25
A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.
NASA Astrophysics Data System (ADS)
Mitchell, B. R.; Maggio, J. C.; Paterson, K.
2010-12-01
Large amounts of aerosols are emitted from domestic biomass burning globally every day. Nearly three billion people cook in their homes using traditional fires and stoves. Biomass is the primary fuel source which results in detrimental levels of indoor air pollution as well as having a strong impact on climate change. Variations in emissions occur depending on the combustion process and stove design as well as the condition and type of fuel used. The three most commonly used fuels for domestic biomass burning are wood, charcoal, and crop residue. In addition to these commonly used fuels and because of the increased difficulty of obtaining charcoal and wood due to a combination of deforestation and new governmental restrictions, alternative fuels are becoming more prevalent. In the Republic of Tanzania a field campaign was executed to test previously adopted and available traditional and improved cooking stoves with various traditional and alternative fuels. The tests were conducted over a two month period and included four styles of improved stoves, two styles of traditional cooking methods, and eight fuel types. The stoves tested include a sawdust stove, ceramic and brick insulated metal stoves, and a mud stove. A traditional three-stone fire was also tested as a benchmark by which to compare the other stoves. Fuel types tested include firewood, charcoal (Acacia), sawdust, pressed briquettes, charcoal dust briquettes, and carbonized crop residue. Water boiling tests were conducted on each stove with associated fuel types during which boiling time, water temperature, CO, CO2, and PM2.5μm emissions were recorded. All tests were conducted on-site in Arusha, Tanzania enabling the use of local materials and fuels under local conditions. It was found that both stove design and fuel type play a critical role in the amount of emissions produced. The most influential design aspect affecting emissions was the size of the combustion chamber in combination with air intake. However, it was clear that varying fuel types has the largest influence on emissions and therefore has greater potential for reducing emissions compared to stove design. Most notably, alternative fuels such as carbonized crop residue produced far fewer particulates and lower carbon monoxide levels. With particulates and carbon monoxide emissions having the most damaging effects to human health, alternative fuels offer a cleaner burning option. The testing expanded understanding of current stove design and common cooking practices in and around the Arusha region of Tanzania while laying the foundation for future development of a more efficient stove and a cleaner burning biomass fuel.
Analysis and Implementation of Accident Tolerant Nuclear Fuels
NASA Astrophysics Data System (ADS)
Prewitt, Benjamin Joseph
To improve the reliability and robustness of LWR, accident tolerant nuclear fuels and cladding materials are being developed to possibly replace the current UO2/zirconium system. This research highlights UN and U3Si 2, two of the most favorable accident tolerant fuels being developed. To evaluate the commercial feasiblilty of these fuels, two areas of research were conducted. Chemical fabrication routes for both fuels were investigated in detail, considering UO2 and UF6 as potential starting materials. Potential pathways for industrial scale fabrication using these methods were discussed. Neutronic performance of 70%UN-30%U3Si2 composite was evaluated in MNCP using PWR assembly and core models. The results showed comparable performance to an identical UO2 fueled simulation with the same configuration. The parameters simulated for composite and oxide fuel include the following: fuel to moderator ratio curves; energy dependent flux spectra; temperature coefficients for fuel and moderator; delayed neutron fractions; power peaking factors; axial and radial flux profiles in 2D and 3D; burnup; critical boron concentration; and shutdown margin. Overall, the neutronic parameters suggest that the transition from UO2 to composite in existing nuclear systems will not require significant changes in operating procedures or modifications to standards and regulations.
Implementation of alternative bio-based fuels in aviation: The Clean Airports Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shauck, M.E.; Zanin, M.G.
1997-12-31
The Renewable Aviation Fuels Development Center at Baylor University in Waco, Texas, was designated, in March 1996, by the US Department of Energy (US DOE) as the national coordinator of the Clean Airports Program. This program, a spin-off of the Clean Cities Program, was initiated to increase the use of alternative fuels in aviation. There are two major fuels used in aviation today, the current piston engine aviation gasoline, and the current turbine engine fuel. The environmental impact of each of these fuels is significant. Aviation Gasoline (100LL), currently used in the General Aviation piston engine fleet, contributes 100% ofmore » the emissions containing lead in the USA today. In the case of the turbine engine fuel (Jet fuel), there are two major environmental impacts to be considered: the local, in the vicinity of the airports, and the global impact on climate change. The Clean Airports Program was established to promote the use of clean burning fuels in order to achieve and maintain clean air at and in the vicinities of airports through the use of alternative fuel-powered air and ground transportation vehicles.« less
Toxicological Outcomes in Rats Exposed to Inhaled Ethanol During Gestation
Recent legislation has encouraged replacing petroleum-based fuels with renewable alternatives including ethanol, which is currently blended with gasoline in the United States at concentrations up to 15%. Efforts to increase the amount of ethanol in gasoline have prompted concerns...
Fuel cycle cost reduction through Westinghouse fuel design and core management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, F.J.; Scherpereel, L.R.
1985-11-01
This paper describes advances in Westinghouse nuclear fuel and their impact on fuel cycle cost. Recent fabrication development has been aimed at maintaining high integrity, increased operating flexibility, longer operating cycles, and improved core margins. Development efforts at Westinghouse toward meeting these directions have culminated in VANTAGE 5 fuel. The current trend toward longer operating cycles provides a further driving force to minimize the resulting inherent increase in fuel cycle costs by further increases in region discharge burnup. Westinghouse studies indicate the capability of currently offered products to meet cycle lengths up to 24 months.
Fuzzy Logic Based Controller for a Grid-Connected Solid Oxide Fuel Cell Power Plant.
Chatterjee, Kalyan; Shankar, Ravi; Kumar, Amit
2014-10-01
This paper describes a mathematical model of a solid oxide fuel cell (SOFC) power plant integrated in a multimachine power system. The utilization factor of a fuel stack maintains steady state by tuning the fuel valve in the fuel processor at a rate proportional to a current drawn from the fuel stack. A suitable fuzzy logic control is used for the overall system, its objective being controlling the current drawn by the power conditioning unit and meet a desirable output power demand. The proposed control scheme is verified through computer simulations.
NASA Astrophysics Data System (ADS)
LaFleur, Adrienne Marie
The development of non-destructive assay (NDA) capabilities to directly measure the fissile content in spent fuel is needed to improve the timely detection of the diversion of significant quantities of fissile material. Currently, the International Atomic Energy Agency (IAEA) does not have effective NDA methods to verify spent fuel and recover continuity of knowledge in the event of a containment and surveillance systems failure. This issue has become increasingly critical with the worldwide expansion of nuclear power, adoption of enhanced safeguards criteria for spent fuel verification, and recent efforts by the IAEA to incorporate an integrated safeguards regime. In order to address these issues, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been developed to improve existing nuclear safeguards and material accountability measurements. The following characteristics of SINRD were analyzed: (1) ability to measure the fissile content in Light Water Reactors (LWR) fuel assemblies and (2) sensitivity and penetrability of SINRD to the removal of fuel pins from an assembly. The Monte Carlo Neutral Particle eXtended (MCNPX) transport code was used to simulate SINRD for different geometries. Experimental measurements were also performed with SINRD and were compared to MCNPX simulations of the experiment to verify the accuracy of the MCNPX model of SINRD. Based on the results from these simulations and measurements, we have concluded that SINRD provides a number of improvements over current IAEA verification methods. These improvements include: (1) SINRD provides absolute measurements of burnup independent of the operator's declaration. (2) SINRD is sensitive to pin removal over the entire burnup range and can verify the diversion of 6% of fuel pins within 3o from LWR spent LEU and MOX fuel. (3) SINRD is insensitive to the boron concentration and initial fuel enrichment and can therefore be used at multiple spent fuel storage facilities. (4) The calibration of SINRD at one reactor facility carries over to reactor sites in different countries because it uses the ratio of fission chambers (FCs) that are not facility dependent. (5) SINRD can distinguish fresh and 1-cycle spent MOX fuel from 3- and 4-cycles spent LEU fuel without using reactor burnup codes.
Luebke, E.A.; Vandenberg, L.B.
1959-09-01
A nuclear reactor for producing thermoelectric power is described. The reactor core comprises a series of thermoelectric assemblies, each assembly including fissionable fuel as an active element to form a hot junction and a thermocouple. The assemblies are disposed parallel to each other to form spaces and means are included for Introducing an electrically conductive coolant between the assemblies to form cold junctions of the thermocouples. An electromotive force is developed across the entire series of the thermoelectric assemblies due to fission heat generated in the fuel causing a current to flow perpendicular to the flow of coolant and is distributed to a load outside of the reactor by means of bus bars electrically connected to the outermost thermoelectric assembly.
Combustion Of Porous Graphite Particles In Oxygen Enriched Air
NASA Technical Reports Server (NTRS)
Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.
2003-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
Baseline Testing of the Hybrid Electric Transit Bus
NASA Technical Reports Server (NTRS)
Brown, Jeffrey C.; Eichenberg, Dennis J.; Thompson, William K.
1999-01-01
A government, industry and academic cooperative has developed a Hybrid Electric Transit Bus (HETB). Goals of the program include doubling the fuel economy of city transit buses currently in service, and reducing emissions to one-tenth of EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors for the energy storage system and the planned use of a natural gas fueled turbogenerator, to be developed from a small jet engine. At over 17000 kg gross weight, this is the largest vehicle to use ultra-capacitor energy storage. A description of the HETB, the results of performance testing, and future vehicle development plans are the subject of this report.
NASA Astrophysics Data System (ADS)
Krumbholz, S.; Kaiser, J.; Weiland, M.; Hahn, R.; Reichl, H.
Even if many fuel cell applications are ready to start into the market, more research needs to be done to improve the currently achieved power density further. In the power range of about 10-20 W micro-PEM fuel cells have a high improvement potential concerning the current collector design and the design of the passive air supply. These two points have a high impact on the water management of a PEM fuel cell and allow a significant decrease of the fuel cell system in size and weight. The current work shows calculations for the fuel cell impedance based on a mathematical resistance model which was already presented for similarly constructed direct methanol fuel cells (DMFCs) [4]. Selected publications on water uptake and membrane humidification for the used Gore MEAs [6,7] are taken into account. The model is evaluated with realized versions of cathode side current collector designs, which influence the maximum power density and the self-heating of the fuel cell stack. Several measurement results are presented, which can confirm the validity of the used model. A very low opening ratio of less than 0.1 induces a very high concentration gradient of the generated water in relation to the net water outtake. From this it follows that the cell impedance is very low and the membrane has a very high ionic conductivity. Additionally it can be shown that the power density of these fuel cells is twice as high as for the cells with an opening ratio greater than 0.45.
Apparatus and method for mixing fuel in a gas turbine nozzle
Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight
2014-08-12
A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.
The Role of Ceramics in a Resurgent Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J
2006-02-28
With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less
Closed Fuel Cycle Waste Treatment Strategy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, J. D.; Collins, E. D.; Crum, J. V.
This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less
Multi-Fuel Rotary Engine for General Aviation Aircraft
NASA Technical Reports Server (NTRS)
Jones, C.; Ellis, D. R.; Meng, P. R.
1983-01-01
Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butcher, T.A.
1983-05-01
This report describes Phase I of a study of the fouling of condensing heat exchangers in residential oil-fired boiler and furnaces. The first phase consists of a review of available information on soot information in residential systems and the preparation of a work plan for Phase II. In the literature review the effects of burner type, startup and shutdown, time from tuning, fuel quality, combustion chambers, nozzles, and fuel additives are discussed. While data are available on soot emissions with current burners and fuels there are limited data available on advanced burners and degraded fuels with modern burners. The Phasemore » II work will provide an evaluation of the need for the development of advanced burner concepts for oil-fired condensing systems. Planned experimental work includes a furnace draft optimization study, extended fouling tests, a blue flame/yellow flame comparative test, and some degraded fuel teste.« less
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
NASA Astrophysics Data System (ADS)
Renshaw, Jeremy B.; Jenkins, Thomas P.; Buckner, Benjamin D.; Friend, Brian
2015-03-01
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such as Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.
Natural Gas Vehicle Cylinder Safety, Training and Inspection Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hank Seiff
2008-12-31
Under the auspices of the National Energy Technology Laboratory and the US Department of Energy, the Clean Vehicle Education Foundation conducted a three-year program to increase the understanding of the safe and proper use and maintenance of vehicular compressed natural gas (CNG) fuel systems. High-pressure fuel systems require periodic inspection and maintenance to insure safe and proper operation. The project addressed the needs of CNG fuel containers (cylinders) and associated high-pressure fuel system components related to existing law, codes and standards (C&S), available training and inspection programs, and assured coordination among vehicle users, public safety officials, fueling station operators andmore » training providers. The program included a public and industry awareness campaign, establishment and administration of a cylinder inspector certification training scholarship program, evaluation of current safety training and testing practices, monitoring and investigation of CNG vehicle incidents, evaluation of a cylinder recertification program and the migration of CNG vehicle safety knowledge to the nascent hydrogen vehicle community.« less
Hydrogen-fueled postal vehicle performance evaluation
NASA Technical Reports Server (NTRS)
Hall, R. A.
1979-01-01
Fuel consumption, range, and emissions data were obtained while operating a hydrogen-fueled postal delivery vehicle over a defined Postal Service Driving Cycle and the 1975 Urban Driving Cycle. The vehicle's fuel consumption was 0.366 pounds of hydrogen per mile over the postal driving cycle and 0.22 pounds of hydrogen per mile over the urban driving cycle. These data correspond to 6.2 and 10.6 mpg equivalent gasoline mileage for the two driving cycles, respectively. The vehicle's range was 24.2 miles while being operated on the postal driving cycle. Vehicle emissions were measured over the urban driving cycle. HC and CO emissions were quite low, as would be expected. The oxides of nitrogen were found to be 4.86 gm/mi, a value which is well above the current Federal and California standards. Vehicle limitations discussed include excessive engine flashbacks, inadequate acceleration capability the engine air/fuel ratio, the water injection systems, and the cab temperature. Other concerns are safety considerations, iron-titanium hydride observed in the fuel system, evidence of water in the engine rocker cover, and the vehicle maintenance required during the evaluation.
Micro reactor integrated μ-PEM fuel cell system: a feed connector and flow field free approach
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Mueller, C.; Reinecke, H.
2013-12-01
A system level microreactor concept for hydrogen generation with Sodium Borohydride (NaBH4) is demonstrated. The uniqueness of the system is the transport and distribution feature of fuel (hydrogen) to the anode of the fuel cell without any external feed connectors and flow fields. The approach here is to use palladium film instead of feed connectors and the flow fields; palladium's property to adsorb and desorb the hydrogen at ambient and elevated condition. The proof of concept is demonstrated with a polymethyl methacrylate (PMMA) based complete system integration which includes microreactor, palladium transport layer and the self-breathing polymer electrolyte membrane (PEM) fuel cell. The hydrolysis of NaBH4 was carried out in the presence of platinum supported by nickel (NiPt). The prototype functionality is tested with NaBH4 chemical hydride. The characterization of the integrated palladium layer and fuel cell is tested with constant and switching load. The presented integrated fuel cell is observed to have a maximum power output and current of 60 mW and 280 mA respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
75 FR 3876 - Mark Edward Leyse; Receipt of Petition for Rulemaking
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-25
... (assembly) severe fuel damage experiments. The petitioner also requests that the NRC promulgate a regulation... aware that data from multi-rod (assembly) severe fuel damage experiments indicates that the current... fuel damage experiments indicates that the current peak cladding temperature limit contained in 10 CFR...
Distillate Fuel Oil Assessment for Winter 1996-1997
1997-01-01
This article describes findings of an analysis of the current low level of distillate stocks which are available to help meet the demand for heating fuel this winter, and presents a summary of the Energy Information Administration's distillate fuel oil outlook for the current heating season under two weather scenarios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn E.; Papesch, Cynthia A.; Burkes, Douglas E.
This is not a typical External Report--It is a Handbook. No Abstract is involved. This includes both Parts 1 and 2. The Metallic Fuels Handbook summarizes currently available information about phases and phase diagrams, heat capacity, thermal expansion, and thermal conductivity of elements and alloys in the U-Pu-Zr-Np-Am-La-Ce-Pr-Nd system. Although many sections are reviews and updates of material in previous versions of the Handbook [1, 2], this revision is the first to include alloys with four or more elements. In addition to presenting information about materials properties, the handbook attempts to provide information about how well each property is knownmore » and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data.« less
The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells
NASA Technical Reports Server (NTRS)
Eisman, G. A.
1989-01-01
Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.
Analysis of pellet cladding interaction and creep of U 3SIi2 fuel for use in light water reactors
NASA Astrophysics Data System (ADS)
Metzger, Kathryn E.
Following the accident at the Fukushima plant, enhancing the accident tolerance of the light water reactor (LWR) fleet became a topic of serious discussion. Under the direction of congress, the DOE office of Nuclear Energy added accident tolerant fuel development as a primary component to the existing Advanced Fuels Program. The DOE defines accident tolerant fuels as fuels that "in comparison with the standard UO2- Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, as well as design-basis and beyond design-basis events." To be economically viable, proposed accident tolerant fuels and claddings should be backward compatible with LWR designs, provide significant operating cost improvements such as power uprates, increased fuel burnup, or increased cycle length. In terms of safety, an alternative fuel pellet must have resistance to water corrosion comparable to UO2, thermal conductivity equal to or larger than that of UO2, and a melting temperature that allows the material to remain solid under power reactor conditions. Among the candidates, U3Si2 has a number of advantageous thermophysical properties, including; high density, high thermal conductivity at room temperature, and a high melting temperature. These properties support its use as an accident tolerant fuel while its high uranium density is capable of supporting uprates to the LWR fleet. This research characterizes U3Si2 pellets and analyzes U3Si2 under light water reactor conditions using the fuel performance code BISON. While some thermophysical properties for U3Si2 have been found in the literature, the irradiation behavior is sparse and limited to experience with dispersion fuels. Accordingly, the creep behavior for U3Si2 has been unknown, making it difficult to predict fuel-cladding mechanical behavior. This information is essential for designing accident tolerant fuel systems where ceramic claddings, like silicon carbide (SiC) are proposed. This research provides a model for both the thermal and irradiation creep behavior for U3Si2. This body of research is comprised of both experimental and modeling components. Characterization of the fuel microstructure includes; optical microscopy with pore and grain size analysis, helium pycnometry for density determination, mercury intrusion porosimetry, compositional analysis in the form of XRD, second phase identification using EDX, electrical resistance measurement via four point probe, determination of hardness and toughness through Vickers indentation testing, and determination of elastic properties using the impulse excitation method. Post-sintering grain size data allowed for the determination of grain boundary activation energy and diffusion coefficients, which were used to develop creep models. This was extended to lattice and irradiation enhanced diffusion in order to develop a U3Si2 creep model over thermal and irradiation creep regimes. In addition to the creep model, thermal and swelling behavior models for U3Si2 were implemented into the BISON fuel performance code. A series of simulations evaluated the performance and behavior of U3Si2 under typical light water reactor conditions with advanced SiC ceramic cladding. Simulation results show that fuel creep relieves stress in the ceramic cladding and postpones the. moment of fuel-clad contact. However, the stress reduction to the cladding is minimal because the fuel creep rate is low while the swelling rate is high. Future work should include the investigation of monolithic U3Si2 irradiation swelling since the current model relies upon the swelling data of U3Si2 particles in a metallic dispersion fuel. Additionally, planned thermal creep testing at the University of South Carolina can provide confirmation of the U3Si2 creep model contained herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soloveichik, Grigorii
2015-11-30
EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power andmore » energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of prospective organic liquid fuels was studied. During EFRC program various types of electrocatalysts, classes of fuels, and membranes have been investigated.« less
Alternative Fuels Data Center: Petroleum Reduction Planning Tool
alternative fuel. Values found in Table 1. Fuel Cost Fuel_cost_current Fuel_cost_alt_new Fuel_cost_alt Fuel cost for old vehicle. Fuel cost for new vehicle using conventional vehicle Fuel cost for new vehicle *(Alt_GGE_factor_conv/Alt_GGE_factor)*Alt_GGE_factor*GHG_alt)] Yearly fuel cost savings resulting from fuel and vehicle
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Post, Matthew; Gikakis, Christina
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. Themore » 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.« less
Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets
NASA Astrophysics Data System (ADS)
Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.
2017-08-01
One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.
Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. As the liquid biofuels industry transitions to lignocellulosic feedstocks, expands the end product portfolio to include other alcoho...
Survey of industrial dryers for solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, A.S.; Jensen, W.P.
1976-07-01
A study was directed toward obtaining data for an estimate of the current and anticipated energy demand for industrial drying operations for solid materials. Twenty-seven dryer types, including those utilizing both direct and indirect heat sources, were identified and are described. Results of an analysis made on 17 dryer types and based on data obtained from several of the largest solids dryer manufacturers indicate that industrial dryers for solids currently consume about 1.3 x 10/sup 18/ J (1.2 quads) of energy. This represents nearly 4 percent of the total United States industrial energy use. Several examples of steps being takenmore » by industry to reduce energy requirements for solids drying are included. Still further action to reduce energy consumption of dryers is possible; implementation will depend upon the extent to which incentives are provided by fuel scarcity, fuel costs, and the perfection of new technology by industry alone and in programs with the Federal Government.« less
NASA Glenn Research Center Program in High Power Density Motors for Aeropropulsion
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Kascak, Albert F.; Ebihara, Ben; Johnson, Dexter; Choi, Benjamin; Siebert, Mark; Buccieri, Carl
2005-01-01
Electric drive of transport-sized aircraft propulsors, with electric power generated by fuel cells or turbo-generators, will require electric motors with much higher power density than conventional room-temperature machines. Cryogenic cooling of the motor windings by the liquid hydrogen fuel offers a possible solution, enabling motors with higher power density than turbine engines. Some context on weights of various systems, which is required to assess the problem, is presented. This context includes a survey of turbine engine weights over a considerable size range, a correlation of gear box weights and some examples of conventional and advanced electric motor weights. The NASA Glenn Research Center program for high power density motors is outlined and some technical results to date are presented. These results include current densities of 5,000 A per square centimeter current density achieved in cryogenic coils, finite element predictions compared to measurements of torque production in a switched reluctance motor, and initial tests of a cryogenic switched reluctance motor.
JP-8+100: The development of high-thermal-stability jet fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heneghan, S.P.; Zabarnick, S.; Ballal, D.R.
1996-09-01
Jet fuel requirements have evolved over the years as a balance of the demands placed by advanced aircraft performance (technological need), fuel cost (economic factors), and fuel availability (strategic factors). In a modern aircraft, the jet fuel not only provides the propulsive energy for flight, but also is the primary coolant for aircraft and engine subsystems. To meet the evolving challenge of improving the cooling potential of jet fuel while maintaining the current availability at a minimal price increase, the US Air Force, industry, and academia have teamed to develop an additive package for JP-8 fuels. This paper describes themore » development of an additive package for JP-8, to produce JP-8+100. This new fuel offers a 55 C increase in the bulk maximum temperature (from 325 F to 425 F) and improves the heat sink capability by 50%. Major advances made during the development JP-8 + 100 fuel include the development of several new quantitative fuel analysis tests, a free radical theory of autooxidation, adaptation of new chemistry models to computational fluid dynamics programs, and a nonparametric statistical analysis to evaluate thermal stability. Hundreds of additives were tested for effectiveness, and a package of additives was then formulated for JP-8 fuel. This package has been tested for fuel system materials compatibility and general fuel applicability. To date, the flight testing ha shown an improvement in thermal stability of JP-8 fuel. This improvement has resulted in a significant reduction in fuel-related maintenance costs and a threefold increase in mean time between fuel-related failures. In this manner, a novel high-thermal-stability jet fuel for the 21st century has been successfully developed.« less
Reactor Power for Large Displacement Autonomous Underwater Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClure, Patrick Ray; Reid, Robert Stowers; Poston, David Irvin
This is a PentaChart on reactor power for large displacement autonomous underwater vehicles. Currently AUVs use batteries or combinations of batteries and fuel cells for power. Battery/fuel cell technology is limited by duration. Batteries and cell fuels are a good match for some missions, but other missions could benefit greatly by a longer duration. The goal is the following: to design nuclear systems to power an AUV and meet design constraints including non-proliferation issues, power level, size constraints, and power conversion limitations. The action plan is to continue development of a range of systems for terrestrial systems and focus onmore » a system for Titan Moon as alternative to Pu-238 for NASA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sagar, A.D.
Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less
Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney; Meyers, Jeremy; Pivovar, Bryan
Rod Borup is a Team Leader in the fuel cell program at Los Alamos National Lab in Los Alamos, New Mexico. He received his B.S.E. in Chemical Engineering from the University of Iowa in 1988 and his Ph.D. from the University of Washington in 1993. He has worked on fuel cell technology since 1994, working in the areas of hydrogen production and PEM fuel cell stack components. He has been awarded 12 U.S. patents, authored over 40 papers related to fuel cell technology, and presented over 50 oral papers at national meetings. His current main research area is related tomore » water transport in PEM fuel cells and PEM fuel cell durability. Recently, he was awarded the 2005 DOE Hydrogen Program R&D Award for the most significant R&D contribution of the year for his team's work in fuel cell durability and was the Principal Investigator for the 2004 Fuel Cell Seminar (San Antonio, TX, USA) Best Poster Award. Jeremy Meyers is an Assistant Professor of materials science and engineering and mechanical engineering at the University of Texas at Austin, where his research focuses on the development of electrochemical energy systems and materials. Prior to joining the faculty at Texas, Jeremy worked as manager of the advanced transportation technology group at UTC Power, where he was responsible for developing new system designs and components for automotive PEM fuel cell power plants. While at UTC Power, Jeremy led several customer development projects and a DOE-sponsored investigation into novel catalysts and membranes for PEM fuel cells. Jeremy has coauthored several papers on key mechanisms of fuel cell degradation and is a co-inventor of several patents. In 2006, Jeremy and several colleagues received the George Mead Medal, UTC's highest award for engineering achievement, and he served as the co-chair of the Gordon Research Conference on fuel cells. Jeremy received his Ph.D. in Chemical Engineering from the University of California at Berkeley and holds a Bachelor's Degree in Chemical Engineering from Stanford University. Bryan Pivovar received his B.S. in Chemical Engineering from the University of Wisconsin in 1994. He completed his Ph.D. in Chemical Engineering at the University of Minnesota in 2000 under the direction of Profs. Ed Cussler and Bill Smyrl, studying transport properties in fuel cell electrolytes. He continued working in the area of polymer electrolyte fuel cells at Los Alamos National Laboratory as a post-doc (2000-2001), as a technical staff member (2001-2005), and in his current position as a team leader (2005-present). In this time, Bryan's research has expanded to include further aspects of fuel cell operation, including electrodes, subfreezing effects, alternative polymers, hydroxide conductors, fuel cell interfaces, impurities, water transport, and high-temperature membranes. Bryan has served at various levels in national and international conferences and workshops, including organizing a DOE sponsored workshop on freezing effects in fuel cells and an ARO sponsored workshop on alkaline membrane fuel cells, and he was co-chair of the 2007 Gordon Research Conference on Fuel Cells. Minoru Inaba is a Professor at the Department of Molecular Science and Technology, Faculty of Engineering, Doshisha University, Japan. He received his B.Sc. from the Faculty of Engineering, Kyoto University, in 1984 and his M.Sc. in 1986 and his Dr. Eng. in 1995 from the Graduate School of Engineering, Kyoto University. He has worked on electrochemical energy conversion systems including fuel cells and lithium-ion batteries at Kyoto University (1992-2002) and at Doshisha University (2002-present). His primary research interest is the durability of polymer electrolyte fuel cells (PEFCs), in particular, membrane degradation, and he has been involved in NEDO R&D research projects on PEFC durability since 2001. He has authored over 140 technical papers and 30 review articles. Kenichiro Ota is a Professor of the Chemical Energy Laboratory at the Graduate School of Engineering, Yokohama National University, Japan. He received his B.S.E. in Applied Chemistry from the University of Tokyo in 1968 and his Ph.D. from the University of Tokyo in 1973. He has worked on hydrogen energy and fuel cells since 1974, working on materials science for fuel cells and water electrolysis. He has published more than 150 original papers, 70 review papers, and 50 scientific books. He is now the president of the Hydrogen Energy Systems Society of Japan, the chairman of the Fuel Cell Research Group of the Electrochemical Society of Japan, and the chairman of the National Committee for the Standardization of the Stationary Fuel Cells. ABSTRACT TRUNCATED« less
BISON Fuel Performance Analysis of IFA-796 Rod 3 & 4 and Investigation of the Impact of Fuel Creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Terrani, Kurt A.; Sweet, Ryan T.
In order to improve the accident tolerance of light water reactor (LWR) fuel, alternative cladding materials have been proposed to replace the currently used zirconium (Zr)-based alloys. Of these materials, there is a particular focus on iron-chromiumaluminum (FeCrAl) alloys because they exhibit slower oxidation kinetics in high-temperature steam than Zr-alloys. This should decrease the energy release due to oxidation and slow cladding consumption in the presence of high temperature steam. These alloys should also exhibit increased “coping time” in the event of an accident scenario by improving the mechanical performance at high temperatures, allowing greater flexibility to achieve core cooling.more » As a continuation of the development of these alloys, in-reactor irradiation testing of FeCrAl cladded fuel rods has started. In order to provide insight on the possible behavior of these fuel rods as they undergo irradiation in the Halden Boiling Water Reactor, engineering analysis has been performed using FeCrAl material models implemented into the BISON fuel performance code. This milestone report provides an update on the ongoing development of modeling capability to predict FeCrAl cladding fuel performance and to provide an early look at the possible behavior of planned in-reactor FeCrAl cladding experiments. In particular, this report consists of two separate analyses. The first analysis consists of fuel performance simulations of IFA-796 rod 4 and two segments of rod 3. These simulations utilize previously implemented material models for the C35M FeCrAl alloy and UO2 to provide a bounding behavior analysis corresponding to variation of the initial fuel cladding gap thickness within the fuel rod. The second analysis is an assessment of the fuel and cladding stress states after modification of the fuel creep model that is currently implemented in the BISON fuel performance code. Effects from modifying the fuel creep model were identified for the BISON simulations of the IFA-796 rod 4 experiment, but show that varying the creep model (within the range investigated here) only provide a minimal increase in the fuel radius and maximum cladding hoop stress. Continued investigation of fuel behavioral models will include benchmarking the modified fuel creep model against available experimental data, as well as an investigation of the role that fuel cracking will play in the compliance of the fuel. Correctly calculating stress evolution in the fuel is key to assessing fuel behavior up to gap closure and the subsequent deformation of the cladding due to PCMI. The inclusion of frictional contact should also be investigated to determine the axial elongation of the fuel rods for comparison with data from this experiment.« less
High Temperature Polymers for use in Fuel Cells
NASA Technical Reports Server (NTRS)
Peplowski, Katherine M.
2004-01-01
NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require highly efficient power density for lowering emissions and meeting increasing consumer demands. Many of the solutions can be provided by proton exchange membrane fuel cells and lithium batteries. NASA Glenn Research Center has recognized this need, and is presently engaged in a solution. The goals for the summer include mastering synthesis techniques, understanding the reactions occurring during the synthesis, and characterizing the resulting polymer membranes using NMR, DSC, and TGA for the PEMFC and lithium batteries.
Fully Burdened Cost of Fuel Using Input-Output Analysis
2011-12-01
Distribution Model could be used to replace the current seven-step Fully Burdened Cost of Fuel process with a single step, allowing for less complex and...wide extension of the Bulk Fuels Distribution Model could be used to replace the current seven-step Fully Burdened Cost of Fuel process with a single...ABBREVIATIONS AEM Atlantic, Europe, and the Mediterranean AOAs Analysis of Alternatives DAG Defense Acquisition Guidebook DAU Defense Acquisition University
Regulatory cross-cutting topics for fuel cycle facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott
This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research & Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas: Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities) Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed: Integrated Security,more » Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)« less
Application of the monolithic solid oxide fuel cell to space power systems
NASA Astrophysics Data System (ADS)
Myles, Kevin M.; Bhattacharyya, Samit K.
1991-01-01
The monolithic solid-oxide fuel cell (MSOFC) is a promising electrochemical power generation device that is currently under development at Argonne National Laboratory. The extremely high power density of the MSOFC leads to MSOFC systems that have sufficiently high energy densities that they are excellent candidates for a number of space missions. The fuel cell can also be operated in reverse, if it can be coupled to an external power source, to regenerate the fuel and oxidant from the water product. This feature further enhances the potential mission applications of the MSOFC. In this paper, the current status of the fuel cell development is presented—the focus being on fabrication and currently achievable performance. In addition, a specific example of a space power system, featuring a liquid metal cooled fast spectrum nuclear reactor and a monolithic solid oxide fuel cell, is presented to demonstrate the features of an integrated system.
Advanced fuel system technology for utilizing broadened property aircraft fuels
NASA Technical Reports Server (NTRS)
Reck, G. M.
1980-01-01
Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Y.K.; Chen, H.T.; Helm, R.W.
1980-01-01
A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for themore » system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.« less
Advanced Fuels for LWRs: Fully-Ceramic Microencapsulated and Related Concepts FY 2012 Interim Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. Sonat Sen; Brian Boer; John D. Bess
2012-03-01
This report summarizes the progress in the Deep Burn project at Idaho National Laboratory during the first half of fiscal year 2012 (FY2012). The current focus of this work is on Fully-Ceramic Microencapsulated (FCM) fuel containing low-enriched uranium (LEU) uranium nitride (UN) fuel kernels. UO2 fuel kernels have not been ruled out, and will be examined as later work in FY2012. Reactor physics calculations confirmed that the FCM fuel containing 500 mm diameter kernels of UN fuel has positive MTC with a conventional fuel pellet radius of 4.1 mm. The methodology was put into place and validated against MCNP tomore » perform whole-core calculations using DONJON, which can interpolate cross sections from a library generated using DRAGON. Comparisons to MCNP were performed on the whole core to confirm the accuracy of the DRAGON/DONJON schemes. A thermal fluid coupling scheme was also developed and implemented with DONJON. This is currently able to iterate between diffusion calculations and thermal fluid calculations in order to update fuel temperatures and cross sections in whole-core calculations. Now that the DRAGON/DONJON calculation capability is in place and has been validated against MCNP results, and a thermal-hydraulic capability has been implemented in the DONJON methodology, the work will proceed to more realistic reactor calculations. MTC calculations at the lattice level without the correct burnable poison are inadequate to guarantee zero or negative values in a realistic mode of operation. Using the DONJON calculation methodology described in this report, a startup core with enrichment zoning and burnable poisons will be designed. Larger fuel pins will be evaluated for their ability to (1) alleviate the problem of positive MTC and (2) increase reactivity-limited burnup. Once the critical boron concentration of the startup core is determined, MTC will be calculated to verify a non-positive value. If the value is positive, the design will be changed to require less soluble boron by, for example, increasing the reactivity hold-down by burnable poisons. Then, the whole core analysis will be repeated until an acceptable design is found. Calculations of departure from nucleate boiling ratio (DNBR) will be included in the safety evaluation as well. Once a startup core is shown to be viable, subsequent reloads will be simulated by shuffling fuel and introducing fresh fuel. The PASTA code has been updated with material properties of UN fuel from literature and a model for the diffusion and release of volatile fission products from the SiC matrix material . Preliminary simulations have been performed for both normal conditions and elevated temperatures. These results indicated that the fuel performs well and that the SiC matrix has a good retention of the fission products. The path forward for fuel performance work includes improvement of metallic fission product release from the kernel. Results should be considered preliminary and further validation is required.« less
NASA Astrophysics Data System (ADS)
Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad
2017-02-01
A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.
The California Multimedia Risk Assessment Protocol for Alternative Fuels
NASA Astrophysics Data System (ADS)
Hatch, T.; Ginn, T. R.; McKone, T. E.; Rice, D. W.
2013-12-01
Any new fuel in California requires approval by the state agencies overseeing human and environmental health. In order to provide a systematic evaluation of new fuel impacts, California now requires a multimedia risk assessment (MMRA) for fuel approval. The fuel MMRA involves all relevant state agencies including: the California Air Resources Board (CARB), the State Water Resources Control Board (SWRCB), the Office of Environmental Health Hazards Assessment (OEHHA), and the Department of Toxic Substances Control (DTSC) overseen by the California Environmental Protection Agency (CalEPA). The lead agency for MMRAs is the CARB. The original law requiring a multimedia assessment is California Health and Safety Code 43830.8. In addition, the low carbon fuel standard (LCFS), the Global Warming Solutions Act (AB32), and the Verified Diesel Emission Control Strategy (VDECS) have provisions that can require a multimedia assessment. In this presentation, I give an overview of the California multimedia risk assessment (MMRA) for new fuels that has been recently developed and applied to several alternative fuels. The objective of the California MMRA is to assess risk of potential impacts of new fuels to multiple environmental media including: air, water, and soil. Attainment of this objective involves many challenges, including varying levels of uncertainty, relative comparison of incommensurate risk factors, and differing levels of priority assigned to risk factors. The MMRA is based on a strategy of relative risk assessment and flexible accommodation of distinct and diverse fuel formulations. The approach is tiered by design, in order to allow for sequentially more sophisticated investigations as knowledge gaps are identified and re-prioritized by the ongoing research. The assessment also involves peer review in order to provide coupling between risk assessment and stakeholder investment, as well as constructive or confrontational feedback. The multimedia assessment framework has been implemented for a number of alternative fuels to date. MMRAs for Biodiesel, Ethanol blended Gasoline, Renewable Diesel, and Biobutanol have been submitted to California for regulatory approval. Currently, assessments are being conducted for natural gasoline (alkanes blended with natural gas) and DiMethyl Ether. With each new fuel MMRA, lessons are learned on how to perform a MMRA better. As a result, the multimedia assessment guidelines are being slightly revised based on lessons learned from the MMRAs completed to date.
Economic study of future aircraft fuels (1970-2000)
NASA Technical Reports Server (NTRS)
Alexander, A. D., III
1972-01-01
Future aircraft fuels are evaluated in terms of fuel resource availability and pricing, processing methods, and economic projections over the period 1970-2000. Liquefied hydrogen, methane and propane are examined as potential turbine engine aircraft fuels relative to current JP fuel.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
..., reptiles and amphibians. We will initiate basic inventories for fish species and invertebrates, including... maintain current fire management programs but intensify management of a 5,000-acre Piedmont savanna focus... (law enforcement), refuge operations specialist, prescribed fire/fuels technician, engineering...
Biochemical Process Development and Integration | Bioenergy | NREL
Process Development We develop and scale fermentation processes that produce fuels and chemicals from guide experimental designs. Our newly updated fermentation laboratory houses 38 bench-scale fermentors current projects cover the fermentation spectrum including anaerobic, micro-aerobic, aerobic, and gas-to
Experimental Study of the Stability of Aircraft Fuels at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Vranos, A.; Marteney, P. J.
1980-01-01
An experimental study of fuel stability was conducted in an apparatus which simulated an aircraft gas turbine fuel system. Two fuels were tested: Jet A and Number 2 Home Heating oil. Jet A is an aircraft gas turbine fuel currently in wide use. No. 2HH was selected to represent the properties of future turbine fuels, particularly experimental Reference Broad Specification, which, under NASA sponsorship, was considered as a possible next-generation fuel. Tests were conducted with varying fuel flow rates, delivery pressures and fuel pretreatments (including preheating and deoxygenation). Simulator wall temperatures were varied between 422K and 672K at fuel flows of 0.022 to 0.22 Kg/sec. Coking rate was determined at four equally-spaced locations along the length of the simulator. Fuel samples were collected for infrared analysis. The dependence of coking rate in Jet A may be correlated with surface temperature via an activation energy of 9 to 10 kcal/mole, although the results indicate that both bulk fluid and surface temperature affect the rate of decomposition. As a consequence, flow rate, which controls bulk temperature, must also be considered. Taken together, these results suggest that the decomposition reactions are initiated on the surface and continue in the bulk fluid. The coking rate data for No. 2 HH oil are very highly temperature dependent above approximately 533K. This suggests that bulk phase reactions can become controlling in the formation of coke.
Onboard Plasmatron Hydrogen Production for Improved Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi
2005-12-31
A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperaturemore » electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer technology for onboard applications in internal combustion engine vehicles using diesel, gasoline and biofuels. This included the reduction of NOx and particulate matter emissions from diesel engines using plasmatron reformer generated hydrogen-rich gas, conversion of ethanol and bio-oils into hydrogen rich gas, and the development of new concepts for the use of plasmatron fuel reformers for enablement of HCCI engines.« less
NASA Technical Reports Server (NTRS)
Barnett, Henry C; Hibbard, Robert R
1953-01-01
Since the release of the first NACA publication on fuel characteristics pertinent to the design of aircraft fuel systems (NACA-RM-E53A21), additional information has become available on MIL-F7914(AER) grade JP-5 fuel and several of the current grades of fuel oils. In order to make this information available to fuel-system designers as quickly as possible, the present report has been prepared as a supplement to NACA-RM-E53A21. Although JP-5 fuel is of greater interest in current fuel-system problems than the fuel oils, the available data are not as extensive. It is believed, however, that the limited data on JP-5 are sufficient to indicate the variations in stocks that the designer must consider under a given fuel specification. The methods used in the preparation and extrapolation of data presented in the tables and figures of this supplement are the same as those used in NACA-RM-E53A21.
NASA Astrophysics Data System (ADS)
Chang, C. L.; Chen, C. Y.; Sung, C. C.; Liou, D. H.; Chang, C. Y.; Cha, H. C.
This work presents a new fuel sensor-less control scheme for liquid feed fuel cells that is able to control the supply to a fuel cell system for operation under dynamic loading conditions. The control scheme uses cell-operating characteristics, such as potential, current, and power, to regulate the fuel concentration of a liquid feed fuel cell without the need for a fuel concentration sensor. A current integral technique has been developed to calculate the quantity of fuel required at each monitoring cycle, which can be combined with the concentration regulating process to control the fuel supply for stable operation. As verified by systematic experiments, this scheme can effectively control the fuel supply of a liquid feed fuel cell with reduced response time, even under conditions where the membrane electrolyte assembly (MEA) deteriorates gradually. This advance will aid the commercialization of liquid feed fuel cells and make them more adaptable for use in portable and automotive power units such as laptops, e-bikes, and handicap cars.
NASA Technical Reports Server (NTRS)
Zettle, Eugene V; Mark, Herman
1953-01-01
The design principle of injecting liquid fuel at more than one axial station in an annual turbojet combustor was investigated. Fuel was injected into the combustor as much as 5 inches downstream of the primary fuel injectors. Many fuel-injection configurations were examined and the performance results are presented for 11 configurations that best demonstrate the trends in performance obtained. The performance investigations were made at a constant combustor-inlet pressure of 15 inches of mercury absolute and at air flows up to 70 percent higher than values typical of current design practice. At these higher air flows, staging the fuel introduction improved the combustion efficiency considerably over that obtained in the combustor when no fuel staging was employed. At air flows currently encountered in turbojet engines, fuel staging was of minor value. Radial temperature distribution seemed relatively unaffected by the location of fuel-injection stations.
2010-03-01
this would complete the fossil fuel cycle, as algae are understood to be the progenitors of our current oil based fossil fuel stocks. As primary... oil . However, considering the scope of the world’s energy uses, these sources cannot possibly replace the fossil fuels currently in use. Some...122 Jatropha 1892 140 77 Coconut 2689 99 54 Oil Palm 5950 45 24 * For meeting 50% of transport fuel requirements in the United States
Power conversion apparatus and method
Su, Gui-Jia [Knoxville, TN
2012-02-07
A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.
A fuel-based approach to estimating motor vehicle exhaust emissions
NASA Astrophysics Data System (ADS)
Singer, Brett Craig
Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories in California appear to understate total exhaust CO and VOC emissions, while overstating the importance of cold start emissions. The fuel-based approach yields robust, independent, and accurate estimates of on-road vehicle emissions. Fuel-based estimates should be used to validate or adjust official vehicle emission inventories before society embarks on new, more costly air pollution control programs.
Cassettes for solid-oxide fuel cell stacks and methods of making the same
Weil, K. Scott; Meinhardt, Kerry D; Sprenkle, Vincent L
2012-10-23
Solid-oxide fuel cell (SOFC) stack assembly designs are consistently investigated to develop an assembly that provides optimal performance, and durability, within desired cost parameters. A new design includes a repeat unit having a SOFC cassette and being characterized by a three-component construct. The three components include an oxidation-resistant, metal window frame hermetically joined to an electrolyte layer of a multi-layer, anode-supported ceramic cell and a pre-cassette including a separator plate having a plurality of vias that provide electrical contact between an anode-side collector within the pre-cassette and a cathode-side current collector of an adjacent cell. The third component is a cathode-side seal, which includes a standoff that supports a cathode channel spacing between each of the cassettes in a stack. Cassettes are formed by joining the pre-cassette and the window frame.
Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Biffinger, Justin C; Byrd, Jacqueline N; Dudley, Breanna L; Ringeisen, Bradley R
2008-01-18
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (
Developing RCM Strategy for Hydrogen Fuel Cells Utilizing On Line E-Condition Monitoring
NASA Astrophysics Data System (ADS)
Baglee, D.; Knowles, M. J.
2012-05-01
Fuel cell vehicles are considered to be a viable solution to problems such as carbon emissions and fuel shortages for road transport. Proton Exchange Membrane (PEM) Fuel Cells are mainly used in this purpose because they can run at low temperatures and have a simple structure. Yet high maintenance costs and the inherent dangers of maintaining equipment using hydrogen are two main issues which need to be addressed. The development of appropriate and efficient strategies is currently lacking with regard to fuel cell maintenance. A Reliability Centered Maintenance (RCM) approach offers considerable benefit to the management of fuel cell maintenance since it includes an identification and consideration of the impact of critical components. Technological developments in e-maintenance systems, radio-frequency identification (RFID) and personal digital assistants (PDAs) have proven to satisfy the increasing demand for improved reliability, efficiency and safety. RFID technology is used to store and remotely retrieve electronic maintenance data in order to provide instant access to up-to-date, accurate and detailed information. The aim is to support fuel cell maintenance decisions by developing and applying a blend of leading-edge communications and sensor technology including RFID. The purpose of this paper is to review and present the state of the art in fuel cell condition monitoring and maintenance utilizing RCM and RFID technologies. Using an RCM analysis critical components and fault modes are identified. RFID tags are used to store the critical information, possible faults and their cause and effect. The relationship between causes, faults, symptoms and long term implications of fault conditions are summarized. Finally conclusions are drawn regarding suggested maintenance strategies and the optimal structure for an integrated, cost effective condition monitoring and maintenance management system.
NASA Astrophysics Data System (ADS)
Herden, Susanne; Riewald, Felix; Hirschfeld, Julian A.; Perchthaler, Markus
2017-07-01
Within the active area of a fuel cell inhomogeneous operating conditions occur, however, state of the art electrodes are homogenous over the complete active area. This study uses current density distribution measurements to analyze which ionomer equivalent weight (EW) shows locally the highest current densities. With this information a segmented cathode electrode is manufactured by decal transfer. The segmented electrode shows better performance especially at high current densities compared to homogenous electrodes. Furthermore this segmented catalyst coated membrane (CCM) performs optimal in wet as well as dry conditions, both operating conditions arise in automotive fuel cell applications. Thus, cathode electrodes with an optimized ionomer EW distribution might have a significant impact on future automotive fuel cell development.
Fuel cell commercialization: The key to a hydrogen economy
NASA Astrophysics Data System (ADS)
Zegers, P.
With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.
Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity
NASA Technical Reports Server (NTRS)
Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.
2001-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.
What is Swanson's Law & why Should you Care?
NASA Astrophysics Data System (ADS)
Hansen, S. F.; Partain, L.; Hansen, R. T.
2015-12-01
For 40 years the cost of Solar Photovoltaics (PV) has decreased by a factor of 2 for every 10X increase in its cumulative-installed electric-generating capacity (CC). The straight line, log-log, experimental and historical data fit of cost versus CC is called Swanson's Law for its accurate fit of the rapid decrease in cost over 6 orders of magnitude increase in CC with time. Now Solar PV is cost competitive with coal and natural gas in some regions and provides 1% of the world's electric generating capacity. The Law can next be tested to predict the future. With 2 more orders of magnitude increase in CC, Solar PV could provide 10% and then 100% of the world's current electric capacity, as the Law projects costs falling by another factor of 4. For the last 10 years CC has doubled every 2 years under strong public policy support. If this doubling and policy support are extended, an order-of-magnitude increase (10X) will occur every 6.6 yrs and installed solar PV capacity could reach 100% of the current world's consumption in 13 years or by 2028. The world's solar resource, accessible indefinitely and yearly to PV, is over 1000 times current consumption while coal, uranium, petroleum and natural gas are finite, limited resources, destined to be depleted within our lifetimes or the lives of our children or grandchildren. In 2015 a 56 MW fossil fueled power plant was shut down at Stanford University and replaced with Solar PV and geothermal to save money and eliminate greenhouse gas emissions. If more such shut downs could follow this same 2 year doubling time as Solar PV, then the replacements could exceed 14,000 within 26 years or by 2041, including all 7000 current coal-fired plants plus an equivalent number fueled by uranium, petroleum and natural gas. These shut-downs, including all current fossil-fueled-power plants, could start reversing the human-generated, greenhouse-gas-induced, global climate changes by 2041.
Injector with integrated resonator
Johnson, Thomas Edward; Ziminsky, Willy Steve; York, William David; Stevenson, Christian Xavier
2014-07-29
The system may include a turbine engine. The turbine engine may include a fuel nozzle. The fuel nozzle may include an air path. The fuel nozzle may also include a fuel path such that the fuel nozzle is in communication with a combustion zone of the turbine engine. Furthermore, the fuel nozzle may include a resonator. The resonator may be disposed in the fuel nozzle directly adjacent to the combustion zone.
Obaseki, Daniel O; Awopeju, Olayemi F; Awokola, Babatunde I; Adeniyi, Bamidele O; Adefuye, Bolanle O; Ozoh, Obianuju B; Isiguzo, Godsent C; Amusa, Ganiyu A; Adewole, Olufemi O; Erhabor, Gregory E
2017-09-01
We examined the association of respiratory symptoms, health status, and lung function with the use of solid fuel (wood, charcoal, coal or crop residue) for cooking or heating in a predominantly non-smoking population. Using the protocol of the Burden of Obstructive Lung Diseases (BOLD) initiative, we collected representative population data using questionnaires and spirometry tests. We categorized solid fuel use into 'never user', 'ex user' and 'current user' based on responses to the survey. We developed regression models to evaluate the relation between use of solid fuel and the prevalence of respiratory symptoms, quality of life and lung function adjusting for confounding variables. Out of 1147 respondents with complete information on domestic fuel type, 33% were 'never-users', 19% were 'ex-users' while 48% reported current use of solid fuel for domestic cooking and/or indoor heating. Compared with never-users, current solid fuel users were more likely to report cough (OR: 1.7, 95% CI: 1.0, 2.9), cough or phlegm (OR: 1.6, 95% CI: 1.0, 2.5) and the association was stronger among women (OR: 3.0, 95% CI: 1.3, 7.1 and OR: 2.3, 95% CI: 1.1, 5.2, respectively). Current solid fuel users also had lower mental health status (coefficient: ?1.5, 95% CI: ?2.8, - 0.2) compared with the group of never-users. Current or previous domestic use of solid fuels for cooking or heating was not associated with higher prevalence of chronic airflow obstruction (FEV 1 /FVC < LLN). Using solid fuel for domestic cooking or heating was associated with a higher risk of cough or phlegm and a lower mental quality of life. However we found no significant effect in the prevalence of chronic airflow obstruction in Ife, Nigeria. Copyright © 2017. Published by Elsevier Ltd.
Resource requirements of inclusive urban development in India: insights from ten cities
NASA Astrophysics Data System (ADS)
Singh Nagpure, Ajay; Reiner, Mark; Ramaswami, Anu
2018-02-01
This paper develops a methodology to assess the resource requirements of inclusive urban development in India and compares those requirements to current community-wide material and energy flows. Methods include: (a) identifying minimum service level benchmarks for the provision of infrastructure services including housing, electricity and clean cooking fuels; (b) assessing the percentage of homes that lack access to infrastructure or that consume infrastructure services below the identified benchmarks; (c) quantifying the material requirements to provide basic infrastructure services using India-specific design data; and (d) computing material and energy requirements for inclusive development and comparing it with current community-wide material and energy flows. Applying the method to ten Indian cities, we find that: 1%-6% of households do not have electricity, 14%-71% use electricity below the benchmark of 25 kWh capita-month-1 4%-16% lack structurally sound housing; 50%-75% live in floor area less than the benchmark of 8.75 m2 floor area/capita; 10%-65% lack clean cooking fuel; and 6%-60% lack connection to a sewerage system. Across the ten cities examined, to provide basic electricity (25 kWh capita-month-1) to all will require an addition of only 1%-10% in current community-wide electricity use. To provide basic clean LPG fuel (1.2 kg capita-month-1) to all requires an increase of 5%-40% in current community-wide LPG use. Providing permanent shelter (implemented over a ten year period) to populations living in non-permanent housing in Delhi and Chandigarh would require a 6%-14% increase over current annual community-wide cement use. Conversely, to provide permanent housing to all people living in structurally unsound housing and those living in overcrowded housing (<5 m cap-2) would require 32%-115% of current community-wide cement flows. Except for the last scenario, these results suggest that social policies that seek to provide basic infrastructure provisioning for all residents would not dramatically increasing current community-wide resource flows.
Understanding electrostatic charge behaviour in aircraft fuel systems
NASA Astrophysics Data System (ADS)
Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell
2015-10-01
This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.
Jiang, Rongzhong
2007-07-01
An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively.
Chapter 10: Research and Deployment of Renewable Bioenergy Production from Microalgae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurens, Lieve M; Glasser, Melodie
Recent progress towards the implementation of renewable bioenergy production has included microalgae, which have potential to significantly contribute to a viable future bioeconomy. In a current challenging energy landscape, where an increased demand for renewable fuels is projected and accompanied by plummeting fossil fuels' prices, economical production of algae-based fuels becomes more challenging. However, in the context of mitigating carbon emissions with the potential of algae to assimilate large quantities of CO2, there is a route to drive carbon sequestration and utilization to support a sustainable and secure global energy future. This chapter places international energy policy in the contextmore » of the current and projected energy landscape. The contribution that algae can make, is summarized as both a conceptual contribution as well as an overview of the commercial infrastructure installed globally. Some of the major recent developments and crucial technology innovations are the results of global government support for the development of algae-based bioenergy, biofuels and bioproduct applications, which have been awarded as public private partnerships and are summarized in this chapter.« less
International nuclear waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrahms, C W; Patridge, M D; Widrig, J E
1995-11-01
The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addressesmore » and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.« less
Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob
2018-05-17
Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
Capabilities Development for Transient Testing of Advanced Nuclear Fuels at TREAT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolstenhulme, N. E.; Baker, C. C.; Bess, J. D.
2016-09-01
The TREAT facility is a unique capability at the Idaho National Laboratory currently being prepared for resumption of nuclear transient testing. Accordingly, designs for several transient irradiation tests are being pursued to enable development of advanced nuclear fuels and materials. In addition to the reactor itself, the foundation for TREAT’s capabilities also include a suite of irradiation vehicles and supporting infrastructure to provide the desired specimen boundary conditions while supporting a variety of instrumentation needs. The challenge of creating these vehicles, especially since many of the modern data needs were not historically addressed in TREAT experiment vehicles, has necessitated amore » sizeable engineering effort. This effort is currently underway and maturing rapidly. This paper summarizes the status, future plans, and rationale for TREAT experiment vehicle capabilities. Much of the current progress is focused around understanding and demonstrating the behavior of fuel design with enhanced accident tolerance in water-cooled reactors. Additionally, several related efforts are underway to facilitate transient testing in liquid sodium, inert gas, and steam environments. This paper discusses why such a variety of capabilities are needed, outlines plans to accomplish them, and describes the relationship between transient data needs and the irradiation hardware that will support the gathering of this information.« less
Fuel cell generator energy dissipator
Veyo, Stephen Emery; Dederer, Jeffrey Todd; Gordon, John Thomas; Shockling, Larry Anthony
2000-01-01
An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel
US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald Karner; J.E. Francfort
2005-09-01
The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3more » million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).« less
Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes
NASA Technical Reports Server (NTRS)
Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.
1980-01-01
Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.
International Mutual Recognition: Progress and Prospects. Working Paper.
ERIC Educational Resources Information Center
Hager, Paul
Increasing the mobility of service providers, including professionals, via mutual recognition (of regulatory systems) agreements (MRAs) has become a significant issue worldwide. Despite increasing interest in MRAs, it may be argued that MRAs are but one of a larger range of major developments that have fueled current interest in occupational…
METHANOL: THE CURRENT STATUS OF ENVIRONMENTAL HEALTH ISSUES
Methanol has been a topic of interest both as an environmental pollutant and as a fuel. The Clean Air Act (CAA) includes methanol in a list of 189 toxic air pollutants that the U.S. Congress identified for special consideration in the 1990 CAA Amendments. In addition, growing i...
NASA Technical Reports Server (NTRS)
Heyson, H. H.
1976-01-01
The development of a very large cargo aircraft by combining, in catamaran fashion, two existing wide body transports was studied. Advantages of this system include: lighter weight and increased payload; increased fuel economy; and reduction in direct operating costs.
2012-01-01
complex fuels (2, 4-6). Current research on alkali fuel cells is primarily focused on the development of a solid polymer anion exchange membrane ( AEM ...a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...research focus the last few decades due to their high power density and low emissions when operating with hydrogen fuel (1-3). Recently however
Spraying Techniques for Large Scale Manufacturing of PEM-FC Electrodes
NASA Astrophysics Data System (ADS)
Hoffman, Casey J.
Fuel cells are highly efficient energy conversion devices that represent one part of the solution to the world's current energy crisis in the midst of global climate change. When supplied with the necessary reactant gasses, fuel cells produce only electricity, heat, and water. The fuel used, namely hydrogen, is available from many sources including natural gas and the electrolysis of water. If the electricity for electrolysis is generated by renewable energy (e.g., solar and wind power), fuel cells represent a completely 'green' method of producing electricity. The thought of being able to produce electricity to power homes, vehicles, and other portable or stationary equipment with essentially zero environmentally harmful emissions has been driving academic and industrial fuel cell research and development with the goal of successfully commercializing this technology. Unfortunately, fuel cells cannot achieve any appreciable market penetration at their current costs. The author's hypothesis is that: the development of automated, non-contact deposition methods for electrode manufacturing will improve performance and process flexibility, thereby helping to accelerate the commercialization of PEMFC technology. The overarching motivation for this research was to lower the cost of manufacturing fuel cell electrodes and bring the technology one step closer to commercial viability. The author has proven this hypothesis through a detailed study of two non-contact spraying methods. These scalable deposition systems were incorporated into an automated electrode manufacturing system that was designed and built by the author for this research. The electrode manufacturing techniques developed by the author have been shown to produce electrodes that outperform a common lab-scale contact method that was studied as a baseline, as well as several commercially available electrodes. In addition, these scalable, large scale electrode manufacturing processes developed by the author are also flexible and can be used to fabricate almost any fuel cell electrodes on the market today. This dissertation provides a description of the entire electrode manufacturing process as well as an analysis of the accuracy, performance and repeatability of the methods.
World wide IFC phosphoric acid fuel cell implementation
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J.M. Jr
1996-04-01
International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.
NASA Astrophysics Data System (ADS)
Harkness, Ira; Zhu, Ting; Liang, Yinong; Rauch, Eric; Enqvist, Andreas; Jordan, Kelly A.
2018-01-01
Demand for spent nuclear fuel dry casks as an interim storage solution has increased globally and the IAEA has expressed a need for robust safeguards and verification technologies for ensuring the continuity of knowledge and the integrity of radioactive materials inside spent fuel casks. Existing research has been focusing on "fingerprinting" casks based on count rate statistics to represent radiation emission signatures. The current research aims to expand to include neutron energy spectral information as part of the fuel characteristics. First, spent fuel composition data are taken from the Next Generation Safeguards Initiative Spent Fuel Libraries, representative for Westinghouse 17ˣ17 PWR assemblies. The ORIGEN-S code then calculates the spontaneous fission and (α,n) emissions for individual fuel rods, followed by detailed MCNP simulations of neutrons transported through the fuel assemblies. A comprehensive database of neutron energy spectral profiles is to be constructed, with different enrichment, burn-up, and cooling time conditions. The end goal is to utilize the computational spent fuel library, predictive algorithm, and a pressurized 4He scintillator to verify the spent fuel assemblies inside a cask. This work identifies neutron spectral signatures that correlate with the cooling time of spent fuel. Both the total and relative contributions from spontaneous fission and (α,n) change noticeably with respect to cooling time, due to the relatively short half-life (18 years) of the major neutron source 244Cm. Identification of this and other neutron spectral signatures allows the characterization of spent nuclear fuels in dry cask storage.
Fuel Cell Activities at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.; Lyons, Valerie (Technical Monitor)
2002-01-01
Fuel cells have a long history in space applications and may have potential application in aeronautics as well. A fuel cell is an electrochemical energy conversion device that directly transforms the chemical energy of a fuel and oxidant into electrical energy. Alkaline fuel cells have been the mainstay of the U.S. space program, providing power for the Apollo missions and the Space Shuttle. However, Proton Exchange Membrane (PEM) fuel cells offer potential benefits over alkaline systems and are currently under development for the next generation Reusable Launch Vehicle (RLV). Furthermore, primary and regenerative systems utilizing PEM technology are also being considered for future space applications such as surface power and planetary aircraft. In addition to these applications, the NASA Glenn Research Center is currently studying the feasibility of the use of both PEM and solid oxide fuel cells for low- or zero-emission electric aircraft propulsion. These types of systems have potential applications for high altitude environmental aircraft, general aviation and commercial aircraft, and high attitude airships. NASA Glenn has a unique set of capabilities and expertise essential to the successful development of advanced fuel cell power systems for space and aeronautics applications. NASA Glenn's role in past fuel cell development programs as well as current activities to meet these new challenges will be presented
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagener, Earl; Topping, Chris; Morgan, Brad
Hydrogen fuel cells are currently one of the more promising long term alternative energy options and out of the range of fuel cell technologies under development, proton exchange membranes [PEMs] have the advantage of being able to deliver high power density at relatively low operating temperatures. This is essential for systems such as fuel cell vehicles (FCV) and many stationary applications that undergoing frequent on/off cycling. One of the biggest challenges for PEM systems is the need to maintain a high level of hydration in the cell to enable efficient conduction of protons from the anode to the cathode. Inmore » addition to significant power loss, low humidity conditions lead to increased stress on the membranes which can result in both physical and chemical degradation. Therefore, an effective fuel cell humidifier can be critical for the efficient operation and durability of the system under high load and low humidity conditions. The most common types of water vapor transport (WVT) devices are based on water permeable membrane based separators. Successful membranes must effectively permeate water vapor while restricting crossover of air, and be robust to the temperature and humidity fluctuations experienced in fuel cell systems. DOE sponsored independent evaluations indicate that balance of plant components, including humidification devices, make up more than half of the cost of current automotive fuel cell systems. Despite its relatively widespread us in other applications, the current industry standard perfluorosulfonic acid based Nafion® remains expensive compared with non-perfluorinated polymer membranes. During Phase II of this project, we demonstrated the improved performance of our semi-fluorinated perfluorocyclobutyl polymer based membranes compared with the current industry standard perfluorosulfonic acid based Nafion®, at ~ 50% lower cost. Building on this work, highlights of our Phase IIB developments, in close collaboration with leading global automotive component supplier Dana Holding Corporation include: • Development of a lower cost series of ionomers, with reduced synthetic steps and purification requirements and improved scale-ability, while maintaining performance advantages over Nafion® demonstrated during Phase II. • Demonstration of efficient, continuous production of down-selected WVT membrane configurations at commercial continuous roll coating facilities. We see no major issues producing Tetramer supported WVT membranes on a large commercial scale. • Following the production and testing of three prototype humidifier stacks, a full size humidifier unit was manufactured and successfully tested by an automotive customer for performance and durability. • Assuming the availability of a reasonably priced support, our cost projections for mid to large scale production of Tetramer WVT membranes are within the acceptable range of the leading automotive manufacturers and at a large scale, our calculations based on bulk sourcing of raw materials indicate we can achieve the project goal of $25/m2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, D.M.; Guerra, G.; Neider, T.
1995-12-01
This report describes the system developed by EPRI/DOE for the dry transfer of spent fuel assemblies outside the reactor spent fuel pool. The system is designed to allow spent fuel assemblies to be removed from a spent fuel pool in a small cask, transported to the transfer facility, and transferred to a larger cask, either for off-site transportation or on-site storage. With design modifications, this design is capable of transferring single spent fuel assemblies from dry storage casks to transportation casks or visa versa. One incentive for the development of this design is that utilities with limited lifting capacity ormore » other physical or regulatory constraints are limited in their ability to utilize the current, more efficient transportation and storage cask designs. In addition, DOE, in planning to develop and implement the multi-purpose canister (MPC) system for the Civilian Radioactive Waste Management System, included the concept of an on-site dry transfer system to support the implementation of the MPC system at reactors with limitations that preclude the handling of the MPC system transfer casks. This Dry Transfer System can also be used at reactors wi decommissioned spent fuel pools and fuel in dry storage in non-MPC systems to transfer fuel into transportation casks. It can also be used at off-reactor site interim storage facilities for the same purpose.« less
Iron aluminide alloy container for solid oxide fuel cells
Judkins, Roddie Reagan; Singh, Prabhakar; Sikka, Vinod Kumar
2000-01-01
A container for fuel cells is made from an iron aluminide alloy. The container alloy preferably includes from about 13 to about 22 weight percent Al, from about 2 to about 8 weight percent Cr, from about 0.1 to about 4 weight percent M selected from Zr and Hf, from about 0.005 to about 0.5 weight percent B or from about 0.001 to about 1 weight percent C, and the balance Fe and incidental impurities. The iron aluminide container alloy is extremely resistant to corrosion and metal loss when exposed to dual reducing and oxidizing atmospheres at elevated temperatures. The alloy is particularly useful for containment vessels for solid oxide fuel cells, as a replacement for stainless steel alloys which are currently used.
Limitations of Commercializing Fuel Cell Technologies
NASA Astrophysics Data System (ADS)
Nordin, Normayati
2010-06-01
Fuel cell is the technology that, nowadays, is deemed having a great potential to be used in supplying energy. Basically, fuel cells can be categorized particularly by the kind of employed electrolyte. Several fuel cells types which are currently identified having huge potential to be utilized, namely, Solid Oxide Fuel Cells (SOFC), Molten Carbonate Fuel Cells (MCFC), Alkaline Fuel Cells (AFC), Phosphoric Acid Fuel Cells (PAFC), Polymer Electron Membrane Fuel Cell (PEMFC), Direct Methanol Fuel Cells (DMFC) and Regenerative Fuel Cells (RFC). In general, each of these fuel cells types has their own characteristics and specifications which assign the capability and suitability of them to be utilized for any particular applications. Stationary power generations and transport applications are the two most significant applications currently aimed for the fuel cell market. It is generally accepted that there are lots of advantages if fuel cells can be excessively commercialized primarily in context of environmental concerns and energy security. Nevertheless, this is a demanding task to be accomplished, as there is some gap in fuel cells technology itself which needs a major enhancement. It can be concluded, from the previous study, cost, durability and performance are identified as the main limitations to be firstly overcome in enabling fuel cells technology become viable for the market.
Thermionic energy conversion technology - Present and future
NASA Technical Reports Server (NTRS)
Shimada, K.; Morris, J. F.
1977-01-01
Aerospace and terrestrial applications of thermionic direct energy conversion and advances in direct energy conversion (DEC) technology are surveyed. Electrode materials, the cesium plasma drop (the difference between the barrier index and the collector work function), DEC voltage/current characteristics, conversion efficiency, and operating temperatures are discussed. Attention is centered on nuclear reactor system thermionic DEC devices, for in-core or out-of-core operation. Thermionic fuel elements, the radiation shield, power conditions, and a waste heat rejection system are considered among the thermionic DEC system components. Terrestrial applications include topping power systems in fossil fuel and solar power generation.
Nanocrystalline cerium oxide materials for solid fuel cell systems
Brinkman, Kyle S
2015-05-05
Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
Biological and health effects of exposure to kerosene-based jet fuels and performance additives.
Ritchie, Glenn; Still, Kenneth; Rossi, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl
2003-01-01
Over 2 million military and civilian personnel per year (over 1 million in the United States) are occupationally exposed, respectively, to jet propulsion fuel-8 (JP-8), JP-8 +100 or JP-5, or to the civil aviation equivalents Jet A or Jet A-1. Approximately 60 billion gallon of these kerosene-based jet fuels are annually consumed worldwide (26 billion gallon in the United States), including over 5 billion gallon of JP-8 by the militaries of the United States and other NATO countries. JP-8, for example, represents the largest single chemical exposure in the U.S. military (2.53 billion gallon in 2000), while Jet A and A-1 are among the most common sources of nonmilitary occupational chemical exposure. Although more recent figures were not available, approximately 4.06 billion gallon of kerosene per se were consumed in the United States in 1990 (IARC, 1992). These exposures may occur repeatedly to raw fuel, vapor phase, aerosol phase, or fuel combustion exhaust by dermal absorption, pulmonary inhalation, or oral ingestion routes. Additionally, the public may be repeatedly exposed to lower levels of jet fuel vapor/aerosol or to fuel combustion products through atmospheric contamination, or to raw fuel constituents by contact with contaminated groundwater or soil. Kerosene-based hydrocarbon fuels are complex mixtures of up to 260+ aliphatic and aromatic hydrocarbon compounds (C(6) -C(17+); possibly 2000+ isomeric forms), including varying concentrations of potential toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes (including polycyclic aromatic hydrocarbons [PAHs], and certain other C(9)-C(12) fractions (i.e., n-propylbenzene, trimethylbenzene isomers). While hydrocarbon fuel exposures occur typically at concentrations below current permissible exposure limits (PELs) for the parent fuel or its constituent chemicals, it is unknown whether additive or synergistic interactions among hydrocarbon constituents, up to six performance additives, and other environmental exposure factors may result in unpredicted toxicity. While there is little epidemiological evidence for fuel-induced death, cancer, or other serious organic disease in fuel-exposed workers, large numbers of self-reported health complaints in this cohort appear to justify study of more subtle health consequences. A number of recently published studies reported acute or persisting biological or health effects from acute, subchronic, or chronic exposure of humans or animals to kerosene-based hydrocarbon fuels, to constituent chemicals of these fuels, or to fuel combustion products. This review provides an in-depth summary of human, animal, and in vitro studies of biological or health effects from exposure to JP-8, JP-8 +100, JP-5, Jet A, Jet A-1, or kerosene.
Bidirectional converter for high-efficiency fuel cell powertrain
NASA Astrophysics Data System (ADS)
Fardoun, Abbas A.; Ismail, Esam H.; Sabzali, Ahmad J.; Al-Saffar, Mustafa A.
2014-03-01
In this paper, a new wide conversion ratio step-up and step-down converter is presented. The proposed converter is derived from the conventional Single Ended Primary Inductor Converter (SEPIC) topology and it is integrated with a capacitor-diode voltage multiplier, which offers a simple structure, reduced electromagnetic interference (EMI), and reduced semiconductors' voltage stresses. Other advantages include: continuous input and output current, extended step-up and step-down voltage conversion ratio without extreme low or high duty-cycle, simple control circuitry, and near-zero input and output ripple currents compared to other converter topologies. The low charging/discharging current ripple and wide gain features result in a longer life-span and lower cost of the energy storage battery system. In addition, the "near-zero" ripple capability improves the fuel cell durability. Theoretical analysis results obtained with the proposed structure are compared with other bi-direction converter topologies. Simulation and experimental results are presented to verify the performance of the proposed bi-directional converter.
Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth
2012-01-01
Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett; Shannon Bragg-Sitton
The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system thatmore » would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.« less
Li, Kan; Xu, Yunlan; He, Yi; Yang, Chen; Wang, Yalin; Jia, Jinping
2013-04-02
A fuel cell that functioned as a photo fuel cell (PFC) when irradiated with UV light and as a dye self-photosensitization photo fuel cell (DSPFC) when irradiated with visible light was proposed and investigated in this study. The system included a BiOCl/Ti plate photoanode and a Pt cathode, and dye solutions were employed as fuel. Electricity was generated at the same time as the dyes were degraded. 26.2% and 24.4% Coulombic efficiency were obtained when 20 mL of 10 mg · L(-1) Rhodamine B solution was treated with UV for 2 h and visible light for 3 h, respectively. Irradiation with natural and artificial sunlight was also evaluated. UV and visible light could be utilized at the same time and the photogenerated current was observed. The mechanism of electricity generation in BiOCl/Ti PFC and DSPFC was studied through degradation of the colorless salicylic acid solution. Factors that affect the electricity generation and dye degradation performance, such as solution pH and cathode material, were also investigated and optimized.
Experimental study of a fuel cell power train for road transport application
NASA Astrophysics Data System (ADS)
Corbo, P.; Corcione, F. E.; Migliardini, F.; Veneri, O.
The development of fuel cell electric vehicles requires the on-board integration of fuel cell systems and electric energy storage devices, with an appropriate energy management system. The optimization of performance and efficiency needs an experimental analysis of the power train, which has to be effected in both stationary and transient conditions (including standard driving cycles). In this paper experimental results concerning the performance of a fuel cell power train are reported and discussed. In particular characterization results for a small sized fuel cell system (FCS), based on a 2.5 kW PEM stack, alone and coupled to an electric propulsion chain of 3.7 kW are presented and discussed. The control unit of the FCS allowed the main stack operative parameters (stoichiometric ratio, hydrogen and air pressure, temperature) to be varied and regulated in order to obtain optimized polarization and efficiency curves. Experimental runs effected on the power train during standard driving cycles have allowed the performance and efficiency of the individual components (fuel cell stack and auxiliaries, dc-dc converter, traction batteries, electric engine) to be evaluated, evidencing the role of output current and voltage of the dc-dc converter in directing the energy flows within the propulsion system.
Overview of thermal barrier coatings in diesel engines
NASA Technical Reports Server (NTRS)
Yonushonis, Thomas M.
1995-01-01
An understanding of delamination mechanisms in thermal barrier coatings has been developed for diesel engine applications through rig tests, structural analysis modeling, nondestructive evaluation, and engine evaluation of various thermal barrier coatings. This knowledge has resulted in improved thermal barrier coatings which survive abusive cyclic fatigue tests in high output diesel engines. Although much conflicting literature now exists regarding the impact of thermal barrier coatings on engine performance and fuel consumption, the changes in fuel consumption appear to be less than a few percent and can be negative for state-of-the-art diesel engines. The ability of the thermal barrier coating to improve fuel economy tends to be dependent on a number of factors including the fuel injection system, combustion chamber design, and the initial engine fuel economy. Limited investigations on state-of-the-art diesel engines have indicated that the surface connected porosity and coating surface roughness may influence engine fuel economy. Current research efforts on thermal barrier coatings are primarily directed at reducing in-cylinder heat rejection, thermal fatigue protection of underlying metal surfaces and a possible reduction in diesel engine emissions. Significant efforts are still required to improve the plasma spray processing capability and the economics for complex geometry diesel engine components.
Aviation turbine fuels: An assessment of alternatives
NASA Technical Reports Server (NTRS)
1982-01-01
The general outlook for aviation turbine fuels, the effect that broadening permissible aviation turbine fuel properties could have on the overall availability of such fuels, the fuel properties most likely to be affected by use of lower grade petroleum crudes, and the research and technology required to ensure that aviation turbine fuels and engines can function satisfactorily with fuels having a range of fuel properties differing from those of current specification fuel are assessed. Views of industry representatives on alternative aviation turbine fuels are presented.
Modeling fuels and fire effects in 3D: Model description and applications
Francois Pimont; Russell Parsons; Eric Rigolot; Francois de Coligny; Jean-Luc Dupuy; Philippe Dreyfus; Rodman R. Linn
2016-01-01
Scientists and managers critically need ways to assess how fuel treatments alter fire behavior, yet few tools currently exist for this purpose.We present a spatially-explicit-fuel-modeling system, FuelManager, which models fuels, vegetation growth, fire behavior (using a physics-based model, FIRETEC), and fire effects. FuelManager's flexible approach facilitates...
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.
Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov
This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work coversmore » the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.« less
Ho, Guan Sem; Faizal, Hasan Mohd; Ani, Farid Nasir
2017-11-01
High temperature thermal plasma has a major drawback which consumes high energy. Therefore, non-thermal plasma which uses comparatively lower energy, for instance, microwave plasma is more attractive to be applied in gasification process. Microwave-induced plasma gasification also carries the advantages in terms of simplicity, compactness, lightweight, uniform heating and the ability to operate under atmospheric pressure that gains attention from researchers. The present paper synthesizes the current knowledge available for microwave plasma gasification on solid fuels and waste, specifically on affecting parameters and their performance. The review starts with a brief outline on microwave plasma setup in general, and followed by the effect of various operating parameters on resulting output. Operating parameters including fuel characteristics, fuel injection position, microwave power, addition of steam, oxygen/fuel ratio and plasma working gas flow rate are discussed along with several performance criteria such as resulting syngas composition, efficiency, carbon conversion, and hydrogen production rate. Based on the present review, fuel retention time is found to be the key parameter that influences the gasification performance. Therefore, emphasis on retention time is necessary in order to improve the performance of microwave plasma gasification of solid fuels and wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.
2016-01-01
As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural, thermal, combustion performance, and combustion stability considerations. This paper also discusses the fabrication and assembly of the injector components, including the injector body/interpropellant plate, the additive manufactured GRCop-84 faceplate, and the pieces that make up the injector elements including the oxidizer tube, an inlet to the oxidizer tube, and a facenut that includes the fuel tangential inlets and forms the initial recessed volume where oxidizer and fuel first interact. Hot-fire test results of these main injector designs in an integrated test article that includes an oxidizer-rich preburner are described in companion papers at this JANNAF meeting.
Optical coherence tomography for nondestructive evaluation of fuel rod degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renshaw, Jeremy B., E-mail: jrenshaw@epri.com; Jenkins, Thomas P., E-mail: tjenkins@metrolaserinc.com; Buckner, Benjamin D., E-mail: tjenkins@metrolaserinc.com
Nuclear power plants regularly inspect fuel rods to ensure safe and reliable operation. Excessive corrosion can cause fuel failures which can have significant repercussions for the plant, including impacts on plant operation, worker exposure to radiation, and the plant's INPO rating. While plants typically inspect for fuel rod corrosion using eddy current techniques, these techniques have known issues with reliability in the presence of tenacious, ferromagnetic crud layers that can deposit during operation, and the nondestructive evaluation (NDE) inspection results can often be in error by a factor of 2 or 3. For this reason, alternative measurement techniques, such asmore » Optical Coherence Tomography (OCT), have been evaluated that are not sensitive to the ferromagnetic nature of the crud. This paper demonstrates that OCT has significant potential to characterize the thickness of crud layers that can deposit on the surfaces of fuel rods during operation. Physical trials have been performed on simulated crud samples, and the resulting data show an apparent correlation between the crud layer thickness and the OCT signal.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... standard Jet A aviation fuel in most aircraft could significantly reduce fuel transport distances and... Mobility Fuel Purchasing Programs AGENCY: Defense Logistics Agency Energy (DLA Energy), DoD. ACTION... fuel purchase programs. DLA Energy currently operates two programs for mobility fuel contracts, Direct...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori
Develop advanced nuclear fuel cycle separation and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion.
Potential benefits of superconductivity to transportation in the United States
NASA Astrophysics Data System (ADS)
Rote, Donald M.; Johnson, Larry R.
Research in U.S. transportation applications of superconductors is strongly motivated by a number of potential national benefits. These include the reduction of dependence on petroleum-based fuels, energy savings, substantially reduced air and noise pollution, increased customer convenience, and reduced maintenance costs. Current transportation technology offers little flexibility to switch to alternative fuels, and efforts to achieve the other benefits are confounded by growing congestion at airports and on urban roadways. A program has been undertaken to identify possible applications of the emerging superconducting applications to transportation and to evaluate potential national benefits. The current phase of the program will select the most promising applications for a more detailed subsequent study. Transportation modes being examined include highway and industrial vehicles, as well as rail, sea, air transport and pipelines. Three strategies are being considered: (1) replacing present components with those employing superconductors, (2) substituting new combinations of components or systems for present systems, and (3) developing completely new technologies. Distinctions are made between low-, medium-, and near-room-temperature superconductors. The most promising applications include magnetically levitated passenger and freight vehicles; replacement of drive systems in locomotives, self-propelled rail cars, and ships; and electric vehicles inductively coupled to electrified roadways.
Computer analysis of effects of altering jet fuel properties on refinery costs and yields
NASA Technical Reports Server (NTRS)
Breton, T.; Dunbar, D.
1984-01-01
This study was undertaken to evaluate the adequacy of future U.S. jet fuel supplies, the potential for large increases in the cost of jet fuel, and to what extent a relaxation in jet fuel properties would remedy these potential problems. The results of the study indicate that refiners should be able to meet jet fuel output requirements in all regions of the country within the current Jet A specifications during the 1990-2010 period. The results also indicate that it will be more difficult to meet Jet A specifications on the West Coast, because the feedstock quality is worse and the required jet fuel yield (jet fuel/crude refined) is higher than in the East. The results show that jet fuel production costs could be reduced by relaxing fuel properties. Potential cost savings in the East (PADDs I-IV) through property relaxation were found to be about 1.3 cents/liter (5 cents/gallon) in January 1, 1981 dollars between 1990 and 2010. However, the savings from property relaxation were all obtained within the range of current Jet A specifications, so there is no financial incentive to relax Jet A fuel specifications in the East. In the West (PADD V) the potential cost savings from lowering fuel quality were considerably greater than in the East. Cost savings from 2.7 to 3.7 cents/liter (10-14 cents/gallon) were found. In contrast to the East, on the West Coast a significant part of the savings was obtained through relaxation of the current Jet A fuel specifications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lammert, M. P.; McCormick, R. L.; Sindler, P.
2012-10-01
Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level hadmore » the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.« less
NASA Astrophysics Data System (ADS)
Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna
2014-09-01
This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.
Ablation study of tungsten-based nuclear thermal rocket fuel
NASA Astrophysics Data System (ADS)
Smith, Tabitha Elizabeth Rose
The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.
CERDEC Fuel Cell Team: Military Transitions for Soldier Fuel Cells
2008-10-27
Fuel Cell (DMFC) (PEO Soldier) Samsung: 20W DMFC (CRADA) General Atomics & Jadoo: 50W Ammonia Borane Fueled PEMFC Current Fuel Cell Team Efforts...Continued Ardica: 20W Wearable PEMFC operating on Chemical Hydrides Spectrum Brands w/ Rayovac: Hydrogen Generators and Alkaline Fuel Cells for AA...100W Ammonia Borane fueled PEMFC Ultralife: 150W sodium borohydride fueled PEMFC Protonex: 250W RMFC and Power Manager (ARO) NanoDynamics: 250W SOFC
Structural Materials and Fuels for Space Power Plants
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Busby, Jeremy; Porter, Douglas
2008-01-01
A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.
Recycling of carbon dioxide to methanol and derived products - closing the loop.
Goeppert, Alain; Czaun, Miklos; Jones, John-Paul; Surya Prakash, G K; Olah, George A
2014-12-07
Starting with coal, followed by petroleum oil and natural gas, the utilization of fossil fuels has allowed the fast and unprecedented development of human society. However, the burning of these resources in ever increasing pace is accompanied by large amounts of anthropogenic CO2 emissions, which are outpacing the natural carbon cycle, causing adverse global environmental changes, the full extent of which is still unclear. Even through fossil fuels are still abundant, they are nevertheless limited and will, in time, be depleted. Chemical recycling of CO2 to renewable fuels and materials, primarily methanol, offers a powerful alternative to tackle both issues, that is, global climate change and fossil fuel depletion. The energy needed for the reduction of CO2 can come from any renewable energy source such as solar and wind. Methanol, the simplest C1 liquid product that can be easily obtained from any carbon source, including biomass and CO2, has been proposed as a key component of such an anthropogenic carbon cycle in the framework of a "Methanol Economy". Methanol itself is an excellent fuel for internal combustion engines, fuel cells, stoves, etc. It's dehydration product, dimethyl ether, is a diesel fuel and liquefied petroleum gas (LPG) substitute. Furthermore, methanol can be transformed to ethylene, propylene and most of the petrochemical products currently obtained from fossil fuels. The conversion of CO2 to methanol is discussed in detail in this review.
NASA Technical Reports Server (NTRS)
Warshay, Marvin; Prokopius, Paul
1996-01-01
Though the fuel cell was invented in 1839, it was not until the early 1960's that the fuel cell power system was developed and used for a real application, for the NASA Space Mission Gemini. Unfortunately, fuel cell power systems did not, as a result, become in widespread use. Nevertheless, a great deal of progress has been made by both government and industry, culminating in many successful fuel cell power system demonstrations. Initially, each government agency and each private organization went its own way. Later, it became evident that coordination among programs was essential. An overview is presented of the current coordinated efforts by government and industry in fuel cells, with a sufficient historical background. The primary barriers to coordination of programs were institutional and differing application requirements. Initially, in the institutional area, it was the energy crisis and the formation of DOE which fostered close working relationships among government, manufacturers, and users. The authors discuss the fuel cell power system programs (of NASA, DOE, DOT, DOC, EPRI, GRI, industry, and universities), including missions and applications, technology advances, and demonstrations. The discussion covers the new Solar Regenerative Fuel Cell (RFC) program which has space, defense, and commercial terrestrial applications, and which is an excellent example of both program coordination and the Clinton Administration's dual-use application policy.
Current conducting end plate of fuel cell assembly
Walsh, Michael M.
1999-01-01
A fuel cell assembly has a current conducting end plate with a conductive body formed integrally with isolating material. The conductive body has a first surface, a second surface opposite the first surface, and an electrical connector. The first surface has an exposed portion for conducting current between a working section of the fuel cell assembly and the electrical connector. The isolating material is positioned on at least a portion of the second surface. The conductive body can have support passage(s) extending therethrough for receiving structural member(s) of the fuel cell assembly. Isolating material can electrically isolate the conductive body from the structural member(s). The conductive body can have service passage(s) extending therethrough for servicing one or more fluids for the fuel cell assembly. Isolating material can chemically isolate the one or more fluids from the conductive body. The isolating material can also electrically isolate the conductive body from the one or more fluids.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eudy, Leslie; Gikakis, Christina
2013-12-01
This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.
Automated brush plating process for solid oxide fuel cells
Long, Jeffrey William
2003-01-01
A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.
NASA Astrophysics Data System (ADS)
Zheng, C. H.; Xu, G. Q.; Park, Y. I.; Lim, W. S.; Cha, S. W.
2014-02-01
The lifetime of fuel cell stacks is a major issue currently, especially for automotive applications. In order to take into account the lifetime of fuel cell stacks while considering the fuel consumption minimization in fuel cell hybrid vehicles (FCHVs), a Pontryagin's Minimum Principle (PMP)-based power management strategy is proposed in this research. This strategy has the effect of prolonging the lifetime of fuel cell stacks. However, there is a tradeoff between the fuel cell stack lifetime and the fuel consumption when this strategy is applied to an FCHV. Verifying the positive economic influence of this strategy is necessary in order to demonstrate its superiority. In this research, the economic influence of the proposed strategy is assessed according to an evaluating cost which is dependent on the fuel cell stack cost, the hydrogen cost, the fuel cell stack lifetime, and the lifetime prolonging impact on the fuel cell stack. Simulation results derived from the proposed power management strategy are also used to evaluate the economic influence. As a result, the positive economic influence of the proposed PMP-based power management strategy is proved for both current and future FCHVs.
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
7 CFR 2903.13 - Evaluation criteria.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF AGRICULTURE BIODIESEL FUEL EDUCATION PROGRAM Application Review and Evaluation § 2903.13... for the Biodiesel Fuel Education Program: (1) Relevance of proposed project to current and future issues related to the production, use, distribution, fuel quality, and fuel properties of biodiesel...
Variable volume combustor with aerodynamic fuel flanges for nozzle mounting
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnaughhay, Johnie Franklin; Keener, Christopher Paul; Johnson, Thomas Edward
2016-09-20
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and for providing the flow of fuel therethrough. The fuel injection system also may include a number of aerodynamic fuel flanges connecting the micro-mixer fuel nozzles and the support struts.
NASA Astrophysics Data System (ADS)
Colorado, Andres
This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including: ignition; lean blowoff; and variable air to fuel ratio. Some remarkable results of this dissertation include: • At a fixed fire rate (117kW) the addition of hydrogen to NG raises the emission of NO x for the reactions stabilized with the LSB. Under the same conditions, the addition of H2 to NG will reduce the emission levels of the reactions stabilized with the SSCB. • It was found experimentally that nitrous oxide (N2O) is emitted during ignition and blowoff events. • Ammonia (NH3) is also emitted during ignition and blowoff events. • It was found experimentally that at high concentrations of hydrogen in NG (H2>70%), reactions aerodynamically stabilized with the LSB will emit significant amounts of N2O.
FCRD Advanced Reactor (Transmutation) Fuels Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn Elizabeth; Papesch, Cynthia Ann
2016-09-01
Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, importantmore » to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, the handbook attempts to provide information about how well the property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data. The Handbook is organized in two sections: one with information about the U-Pu-Zr ternary and one with information about other elements and binary and vi ternary alloys in the U-Np-Pu-Am-La-Ce-Pr-Nd-Zr system. Within each section, information about elements is presented first, followed by information about binary alloys, then information about ternary alloys. The order in which the elements in each alloy are mentioned follows the order in the first sentence of this paragraph. Much of the information on the U-Pu-Zr system repeats information from the FCRD Transmutation Fuels Handbook 2015. Most of the other data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data from Idaho National Laboratory is presented here for the first time. As the FCRD programmatic mission evolves, future editions of this handbook will begin to include other advanced reactor fuel designs and compositions. Hence, the title of the handbook will transition to the Advanced Reactor Fuels Handbook.« less
Inhalation of Hydrocarbon Jet Fuel Suppress Central Auditory Nervous System Function.
Guthrie, O'neil W; Wong, Brian A; McInturf, Shawn M; Reboulet, James E; Ortiz, Pedro A; Mattie, David R
2015-01-01
More than 800 million L/d of hydrocarbon fuels is used to power cars, boats, and jet airplanes. The weekly consumption of these fuels necessarily puts the public at risk for repeated inhalation exposure. Recent studies showed that exposure to hydrocarbon jet fuel produces lethality in presynaptic sensory cells, leading to hearing loss, especially in the presence of noise. However, the effects of hydrocarbon jet fuel on the central auditory nervous system (CANS) have not received much attention. It is important to investigate the effects of hydrocarbons on the CANS in order to complete current knowledge regarding the ototoxic profile of such exposures. The objective of the current study was to determine whether inhalation exposure to hydrocarbon jet fuel might affect the functions of the CANS. Male Fischer 344 rats were randomly divided into four groups (control, noise, fuel, and fuel + noise). The structural and functional integrity of presynaptic sensory cells was determined in each group. Neurotransmission in both peripheral and central auditory pathways was simultaneously evaluated in order to identify and differentiate between peripheral and central dysfunctions. There were no detectable effects on pre- and postsynaptic peripheral functions. However, the responsiveness of the brain was significantly depressed and neural transmission time was markedly delayed. The development of CANS dysfunctions in the general public and the military due to cumulative exposure to hydrocarbon fuels may represent a significant but currently unrecognized public health issue.
Mechanistic materials modeling for nuclear fuel performance
Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...
2017-03-15
Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less
Development of Metallic Fuels for Actinide Transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Steven Lowe; Fielding, Randall Sidney; Benson, Michael Timothy
Research and development activities on metallic fuels are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is also a need for a near zero-loss fabrication process and a desire to demonstrate a multifold increase in burnup potential. The incorporation of Am and Np into the traditional U-20Pu-10Zr metallic fuel alloy was demonstrated in the US during the Integral Fast Reactor Program of the 1980’s and early 1990’s. However, the conventional counter gravity injection casting method performed under vacuum, previously used to fabricate these metallic fuel alloys, was not optimizedmore » for mitigating loss of the volatile Am constituent in the casting charge; as a result, approximately 40% of the Am casting charge failed to be incorporated into the as-cast fuel alloys. Fabrication development efforts of the past few years have pursued an optimized bottom-pour casting method to increase utilization of the melted charge to near 100%, and a differential pressure casting approach, performed under an argon overpressure, has been demonstrated to result in essentially no loss of Am due to volatilization during fabrication. In short, a path toward zero-loss fabrication of metallic fuels including minor actinides has been shown to be feasible. Irradiation testing of advanced metallic fuel alloys in the Advanced Test Reactor (ATR) has been underway since 2003. Testing in the ATR is performed inside of cadmium-shrouded positions to remove >99% of the thermal flux incident on the test fuels, resulting in an epi-thermal driven fuel test that is free from gross flux depression and producing an essentially prototypic radial temperature profile inside the fuel rodlets. To date, three irradiation test series (AFC-1,2,3) have been completed. Over 20 different metallic fuel alloys have been tested to burnups as high as 30% with constituent compositions of Pu up to 30%, Am up to 12%, Np up to 10%, and Zr between 10 and 60%. In general, the performance of all of these substantially disparate metallic fuel alloys has been observed to be excellent, and their irradiation behaviors are generally consistent with historic norms for metallic fuels without minor actinide additions and having lower Pu or Zr contents. Future work is being undertaken with a view toward increasing the burnup potential of metallic fuels even more. Design innovations under investigation include: 1) lowering the fuel smear density in order to accommodate more swelling, 2) annular fuel geometry to eliminate the need for a sodium bond, 3) minor alloy additions to stabilize lanthanide fission products inside the fuel and prevent their transport to the cladding where they can participate in fuel-cladding chemical interaction (FCCI), and 4) coatings/liners on the cladding inner surface to mitigate FCCI and enable higher temperature operation. This paper will present the current state of development of metallic fuels for actinide transmutation in the US. Highlights will include recent results from metallic fuel casting experiments, experiments to identify alloy additions to immobilize lanthanide fission products, and postirradiation examinations of annular metallic fuels at low burnup.« less
A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Frank L.
2012-07-01
Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storagemore » sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)« less
Fuels planning: science synthesis and integration
Rachel White; Sarah McCaffrey
2007-01-01
A century of fire suppression has created heavy fuel loads in many U.S. forests, leading to increasingly intense wildfires. Addressing this problem will require widespread fuels treatments, yet fuels treatment planners do not always have access to the current scientific information that can help guide their planning process. The Fuels Planning: Science Synthesis and...
Fuel breaks affect nonnative species abundance in Californian plant communities
Kyle E Merriam; Jon E. Keeley; Jan L. Beyers
2006-01-01
We evaluated the abundance of nonnative plants on fuel breaks and in adjacent untreated areas to determine if fuel treatments promote the invasion of nonnative plant species. Understanding the relationship between fuel treatments and nonnative plants is becoming increasingly important as federal and state agencies are currently implementing large fuel treatment...
Phased Development of Accident Tolerant Fue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg-Sitton, Shannon M.; Carmack, W. Jon
2016-09-01
The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modelingmore » predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the technology readiness levels (TRL) defined for nuclear fuel development. TRL 1–3 corresponds to the “proof-of-concept” stage (Phase 1), TRL 4–6 to “proof-of-principle” (Phase 2), and TRL 7–9 to “proof-of-performance” (Phase 3). This paper will provide an overview of the anticipated activities within each phase of development and will provide an update on the current ATF development status.« less
Development of the HyStEP Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Terry A.; Ainscough, Christopher; Terlip, Danny
2016-04-05
With the introduction of more fuel cell electric vehicles (FCEVs) on U.S. roadways, especially in California, the need for available hydrogen refueling stations is growing. While funding from the California Energy Commission is helping to solve this problem, solutions need to be developed and implemented to help reduce the time to commission a hydrogen station. The current practice of hydrogen station acceptance can take months because each vehicle manufacturer conducts their own testing and evaluation. This process is not practical or sufficient to support the timely development of a hydrogen fueling station network. To address this issue, as part ofmore » the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Sandia National Laboratories and the National Renewable Energy Laboratory along with a team of stakeholders and contractor Powertech Labs has developed the Hydrogen Station Equipment Performance (HyStEP) Device. The HyStEP Device is intended to be a surrogate for FCEVs that can be used to collect data on hydrogen station fueling performance. The device includes three Type IV 70 MPa tanks capable of storing a total of 9 kg H2 that are instrumented with pressure and temperature sensors. The tanks can be used individually or in parallel to simulate small, medium, and large fuel systems. The tanks are connected to a 70 MPa receptacle equipped with pressure and temperature sensor as well as infrared communications integrated with a data acquisition, analysis, and control system. The HyStEP Device is capable of performing tests defined in the test method standard CSA HGV 4.3 and providing the data needed to ensure that hydrogen stations meet the fueling protocol standard SAE J2601-2014. These include IrDA communication tests, fault detection tests, and communication and non-communication fueling.« less
Wagnon, Scott W.; Thion, Sebastien; Nilsson, Elna J. K.; ...
2017-11-23
Lignocellulosic biomass is a promising alternative fuel source which can promote energy security, reduce greenhouse gas emissions, and minimize fuel consumption when paired with advanced combustion strategies. Pyrolysis is used to convert lignocellulosic biomass into a complex mixture of phenolic-rich species that can be used in a transportation fuel. Anisole (or methoxybenzene) can be used as a surrogate to represent these phenolic-rich species. Anisole also has attractive properties as a fuel component for use in advanced spark-ignition engines because of its high blending research octane number of 120. Presented in the current work are new measurements of laminar burning velocities,more » jet-stirred reactor (JSR) speciation of anisole/O 2/N 2 mixtures, and the development and validation of a detailed chemical kinetic mechanism for anisole. Homogeneous, steady state, fixed gas temperature, perfectly stirred reactor CHEMKIN simulations were used to validate the mechanism against the current JSR measurements and published JSR experiments from CNRS-Nancy. Pyrolysis and oxidation simulations were based on the experimental reactant compositions and thermodynamic state conditions including P = 1 bar and T = 675–1275 K. The oxidation compositions studied in this work span fuel-lean (φ = 0.5), stoichiometric, and fuel rich (φ = 2.0) equivalence ratios. Laminar burning velocities were measured on a heat flux stabilized burner at an unburnt T = 358 K, P = 1 bar and simulated using the CHEMKIN premixed laminar flame speed module. Ignition delay times of anisole were then simulated at conditions relevant to advanced combustion strategies. Current laminar burning velocity measurements and predicted ignition delay times were compared to gasoline components (e.g., n-heptane, iso-octane, and toluene) and gasoline surrogates to highlight differences and similarities in behavior. Reaction path analysis and sensitivity analysis were used to explain the pathways relevant to the current studies. Under pyrolysis and oxidative conditions, unimolecular decomposition of anisole to phenoxy radicals and methyl radicals was found to be important due to the relatively low bond strength between the oxygen and methyl group, ~65 kcal/mol. Finally, reactions of these abundant phenoxy radicals with O 2 were found to be critical to accurately reproduce anisole's reactivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagnon, Scott W.; Thion, Sebastien; Nilsson, Elna J. K.
Lignocellulosic biomass is a promising alternative fuel source which can promote energy security, reduce greenhouse gas emissions, and minimize fuel consumption when paired with advanced combustion strategies. Pyrolysis is used to convert lignocellulosic biomass into a complex mixture of phenolic-rich species that can be used in a transportation fuel. Anisole (or methoxybenzene) can be used as a surrogate to represent these phenolic-rich species. Anisole also has attractive properties as a fuel component for use in advanced spark-ignition engines because of its high blending research octane number of 120. Presented in the current work are new measurements of laminar burning velocities,more » jet-stirred reactor (JSR) speciation of anisole/O 2/N 2 mixtures, and the development and validation of a detailed chemical kinetic mechanism for anisole. Homogeneous, steady state, fixed gas temperature, perfectly stirred reactor CHEMKIN simulations were used to validate the mechanism against the current JSR measurements and published JSR experiments from CNRS-Nancy. Pyrolysis and oxidation simulations were based on the experimental reactant compositions and thermodynamic state conditions including P = 1 bar and T = 675–1275 K. The oxidation compositions studied in this work span fuel-lean (φ = 0.5), stoichiometric, and fuel rich (φ = 2.0) equivalence ratios. Laminar burning velocities were measured on a heat flux stabilized burner at an unburnt T = 358 K, P = 1 bar and simulated using the CHEMKIN premixed laminar flame speed module. Ignition delay times of anisole were then simulated at conditions relevant to advanced combustion strategies. Current laminar burning velocity measurements and predicted ignition delay times were compared to gasoline components (e.g., n-heptane, iso-octane, and toluene) and gasoline surrogates to highlight differences and similarities in behavior. Reaction path analysis and sensitivity analysis were used to explain the pathways relevant to the current studies. Under pyrolysis and oxidative conditions, unimolecular decomposition of anisole to phenoxy radicals and methyl radicals was found to be important due to the relatively low bond strength between the oxygen and methyl group, ~65 kcal/mol. Finally, reactions of these abundant phenoxy radicals with O 2 were found to be critical to accurately reproduce anisole's reactivity.« less
Mechanisms and kinetics of granulated sewage sludge combustion.
Kijo-Kleczkowska, Agnieszka; Środa, Katarzyna; Kosowska-Golachowska, Monika; Musiał, Tomasz; Wolski, Krzysztof
2015-12-01
This paper investigates sewage sludge disposal methods with particular emphasis on combustion as the priority disposal method. Sewage sludge incineration is an attractive option because it minimizes odour, significantly reduces the volume of the starting material and thermally destroys organic and toxic components of the off pads. Additionally, it is possible that ashes could be used. Currently, as many as 11 plants use sewage sludge as fuel in Poland; thus, this technology must be further developed in Poland while considering the benefits of co-combustion with other fuels. This paper presents the results of experimental studies aimed at determining the mechanisms (defining the fuel combustion region by studying the effects of process parameters, including the size of the fuel sample, temperature in the combustion chamber and air velocity, on combustion) and kinetics (measurement of fuel temperature and mass changes) of fuel combustion in an air stream under different thermal conditions and flow rates. The combustion of the sludge samples during air flow between temperatures of 800 and 900°C is a kinetic-diffusion process. This process determines the sample size, temperature of its environment, and air velocity. The adopted process parameters, the time and ignition temperature of the fuel by volatiles, combustion time of the volatiles, time to reach the maximum temperature of the fuel surface, maximum temperature of the fuel surface, char combustion time, and the total process time, had significant impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Battery and fuel cell electrodes containing stainless steel charging additive
Zuckerbrod, David; Gibney, Ann
1984-01-01
An electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer comprises a hydrophilic composite which includes: (i) carbon particles; (ii) stainless steel particles; (iii) a nonwetting agent; and (iv) a catalyst, where at least one current collector contacts said composite.
Synthetic fuels development: earth-science considerations
Rickert, D. A.; Ulman, W.J.; Hampton, E.R.
1979-01-01
The current energy crisis is affecting the lives of all Americans. Continued increases in energy prices and frequent shortages are stark reminders of our growing dependence on foreign energy resources in today's energy-hungry world. A comprehensive national energy policy must consider a variety of energy resources, including synfuels, to meet future energy needs.
Estimating economic impacts of timber-based industry expansion in northeastern Minnesota.
Daniel L. Erkkila; Dietmar W. Rose; Allen L. Lundgren
1982-01-01
Analysis of current and projected timber supplies in northeastern Minnesota indicates that expanded timber-based industrial activity could be supported. The impacts of a hypothetical industrial development scenario, including construction of waferboard plants and a wood-fueled power plant, were estimated using an input-output model. Development had noticeable impacts...
USDA-ARS?s Scientific Manuscript database
Potato peels and other low-value wastes from potato processing are currently being used as cattle feed or fermented to produce fuel-grade ethanol. The anaerobic fermentation of food wastes, including potato processing wastes, produces biogas (principally methane), which can be used directly for heat...
available through the RFS Program website. Section 203 Feedstock Impact Study of RFS DOE Requires DOE to work with NAS to conduct a study and issue a report on the impacts of the RFS program, including , USDA Requires a study to report on the current and future environmental and resource conservation
How forest context influences the acceptability of prescribed burning and mechanical thinning
Alan D. Bright; Peter Newman
2006-01-01
We examined how forest factors influenced public perceptions of three fuels management alternatives: prescribed burns, mechanical thinning, or no artificial fire management. The factors included the forest?s proximity to urban areas, primary use, wildfire history, and current fire conditions. Surveying three study strata with different wildfire histories and...
Developing a scalable artificial photosynthesis technology through nanomaterials by design
NASA Astrophysics Data System (ADS)
Lewis, Nathan S.
2016-12-01
An artificial photosynthetic system that directly produces fuels from sunlight could provide an approach to scalable energy storage and a technology for the carbon-neutral production of high-energy-density transportation fuels. A variety of designs are currently being explored to create a viable artificial photosynthetic system, and the most technologically advanced systems are based on semiconducting photoelectrodes. Here, I discuss the development of an approach that is based on an architecture, first conceived around a decade ago, that combines arrays of semiconducting microwires with flexible polymeric membranes. I highlight the key steps that have been taken towards delivering a fully functional solar fuels generator, which have exploited advances in nanotechnology at all hierarchical levels of device construction, and include the discovery of earth-abundant electrocatalysts for fuel formation and materials for the stabilization of light absorbers. Finally, I consider the remaining scientific and engineering challenges facing the fulfilment of an artificial photosynthetic system that is simultaneously safe, robust, efficient and scalable.
NASA Astrophysics Data System (ADS)
Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.
2016-11-01
The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
2000-04-01
During this quarter, in task area 1, work was performed on three separate areas of activity. These were (1) review of the proposed and final EPA Tier 2 regulations, (2) assistance in preparation of an ultra-clean transportation fuels report for the deputy assistant secretary for Fossil Energy, (3) preparation of a detailed trip report from attending the Clean Fuels 2000 conference in San Diego. In task area 4, three activities were undertaken: an update of coproduction, an analysis of the potential for gasification of petroleum coke in U.S. refineries, and preparation and presentation of a paper at the Coal Utilizationmore » and Fuel Systems conference in Clearwater. In task area 5, a presentation was prepared for the American Association of Petroleum Geologists (AAPG) Annual Convention to be held in New Orleans in April. This presentation was an overview of GTL technology including the current costs and product values. In addition the potential risks of the technology were addressed and the potential contribution of GTL products to the future world fuel market was discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R D programs and key personnel on 23 countries, including the US, four multi-national agencies, and 21 nuclear societies. The Fact Book is organized as follows: National summaries-a section for each country which summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies-a section for each of the international agencies which has significant fuel cycle involvement and a listing of nuclear societies. Glossary-a list of abbreviations/acronymsmore » of organizations, facilities, technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter presented from the perspective of the Fact Book user in the United States.« less
NASA Astrophysics Data System (ADS)
Boulet, L.
Consideration is given to the possibility of generating sufficient energy at acceptable costs on earth to offset the need to build solar power satellite systems (SPS). Electricity usage, one of the basic driving forces of developed nations, grows with the population. Currently comprising 33 pct of the total world energy used, electricity is projected to grow to a 50-55 pct share in the 21st century. Future terrestrial electrical energy sources include carbon-based fuels, nuclear (fusion or fission), and the renewable solar technologies. Carbon-based fuel supplies can last until 2030 AD, about the same as fission plants with recycled fuel. Breeder reactors would stretch the nuclear fuels to the year 3000. Solar technologies offer more immediate solutions than fusion reactors and can produce 50 pct of the power available from the construction of the maximum number of nuclear power plants. The addition of SPS would further augment the total. Combinations of all the technologies are recommended, with local research for the most appropriate technology for each nation.
Global models for synthetic fuels planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamontagne, J.
1983-10-01
This study was performed to identify the set of existing global models with the best potential for use in the US Synthetic Fuels Corporation's strategic planning process, and to recommend the most appropriate model. The study was limited to global models with representations that encompass time horizons beyond the year 2000, multiple fuel forms, and significant regional detail. Potential accessibility to the Synthetic Fuels Corporation and adequate documentation were also required. Four existing models (LORENDAS, WIM, IIASA, and IEA/ORAU) were judged to be the best candidates for the SFC's use at this time; none of the models appears to bemore » ideal for the SFC's purposes. On the basis of currently available information, the most promising short-term option open to the SFC is the use of LORENDAS, with careful attention to definition of alternative energy demand scenarios. Longer-term options which deserve further study are coupling LORENDAS with an explicit model of energy demand, and modification of the IEA/ORAU model to include finer time-period definition and additional technological detail.« less
The Science of Photons to Fuel
NASA Astrophysics Data System (ADS)
Chu, Steven
2008-09-01
Transportation consumes 28% of US energy, and 60% of that is consumed by personal transportation. Because liquid fuels have high energy density, they will be the dominant fuel, until batteries have improved enough to support plug-in cars on an economic basis. Fifty million acres of energy crops plus agricultural wastes can produce roughly half of all of current US consumption of gasoline. Although ethanol from corn has received much attention as a possible substitute for gasoline, other biofuels feedstocks such as perennial grasses and agricultural wastes have greater potential for a much more environmentally friendly substitute for oil. The advantages of grasses over food crops such as corn include higher yield for given water and nutrient inputs; lower soil depletion and fertilizer run-off pollution. The major challenge in biofuels production from perennials is to improve the efficiency of conversion of the plant material to fuel. This paper describes some of the research that is being done to make biofuels from cellulose.
Some Notes on Sparks and Ignition of Fuels
NASA Technical Reports Server (NTRS)
Fisher, Franklin A.
2000-01-01
This report compliments a concurrent analysis of the electromagnetic field threat to the fuel system of a transport aircraft. The accompanying effort assessed currents, voltages and power levels that may be induced upon fuel tank wiring from radio transmitters (inside and outside the aircraft). In addition to this, it was also essential to determine how much voltage, current, or power is required to create a fuel-vapor ignition hazard. The widely accepted minimum guideline for aircraft fuel-vapor ignition is the application of a 0.2 millijoule energy level. However, when considering radio frequency (RF) sources, this guideline is seriously inadequate. This report endeavors to bridge the gap between a traditional understanding of electrical breakdown, heating and combustion; and supplement the knowledge with available information regarding aircraft fuel-vapor ignition by RF sources
NASA Technical Reports Server (NTRS)
Larson, Daniel B.; Boyer, Eric; Wachs,Trevor; Kuo, Kenneth K.; Story, George
2012-01-01
Many approaches have been considered in an effort to improve the regression rate of solid fuels for hybrid rocket applications. One promising method is to use a fuel with a fast burning rate such as paraffin wax; however, additional performance increases to the fuel regression rate are necessary to make the fuel a viable candidate to replace current launch propulsion systems. The addition of energetic and/or nano-sized particles is one way to increase mass-burning rates of the solid fuels and increase the overall performance of the hybrid rocket motor.1,2 Several paraffin-based fuel grains with various energetic additives (e.g., lithium aluminum hydride (LiAlH4) have been cast in an attempt to improve regression rates. There are two major advantages to introducing LiAlH4 additive into the solid fuel matrix: 1) the increased characteristic velocity, 2) decreased dependency of Isp on oxidizer-to-fuel ratio. The testing and characterization of these solid-fuel grains have shown that continued work is necessary to eliminate unburned/unreacted fuel in downstream sections of the test apparatus.3 Changes to the fuel matrix include higher melting point wax and smaller energetic additive particles. The reduction in particle size through various methods can result in more homogeneous grain structure. The higher melting point wax can serve to reduce the melt-layer thickness, allowing the LiAlH4 particles to react closer to the burning surface, thus increasing the heat feedback rate and fuel regression rate. In addition to the formulation of LiAlH4 and paraffin wax solid-fuel grains, liquid additives of triethylaluminum and diisobutylaluminum hydride will be included in this study. Another promising fuel formulation consideration is to incorporate a small percentage of RDX as an additive to paraffin. A novel casting technique will be used by dissolving RDX in a solvent to crystallize the energetic additive. After dissolving the RDX in a solvent chosen for its compatibility with both paraffin and RDX, the mixture will be combined with the melted paraffin. With the melting point of the paraffin far below the decomposition temperature of the RDX, the solvent will be boiled off, leaving the crystallized RDX embedded in the paraffin. At low percentages of RDX additive and with crystallized RDX surrounded by paraffin, the fuel grains will remain inert, maintaining a key benefit of hybrids in the safety of the solid fuel.
NASA Astrophysics Data System (ADS)
Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.
2015-09-01
Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.
Passive Fuel Tank Inerting Systems for Ground Combat Vehicles
1988-09-01
elastomers and sealants used in currently fielded equipment and redesign of selected hydraulic and gun recoil systems would be necessary to...constraint~s or access problems. "* Fuel Lines.- Fuel lines are routed to use the least amount of line possible. Fuel lines are high-pressure braided ...steel and rubber hose or steel tube construction. "* Fuel Pumps. Fuel pumps are usually mounted internal to the fuel tanks, are of heavy-duty commercial
Thomas, Emma; Wickramasinghe, Kremlin; Mendis, Shanthi; Roberts, Nia; Foster, Charlie
2015-07-14
Household air pollution (HAP) resulting from the use of solid fuels presents a major public health hazard. Improved stoves have been offered as a potential tool to reduce exposure to HAP and improve health outcomes. Systematic information on stove interventions is limited. We conducted a systematic review of the current evidence of improved stove interventions aimed at reducing HAP in real life settings. An extensive search of ten databases commenced in April 2014. In addition, we searched clinical trial registers and websites for unpublished studies and grey literature. Studies were included if they reported on an improved stove intervention aimed at reducing HAP resulting from solid fuel use in a low or middle-income country. The review identified 5,243 records. Of these, 258 abstracts and 57 full texts were reviewed and 36 studies identified which met the inclusion criteria. When well-designed, implemented and monitored, stove interventions can have positive effects. However, the impacts are unlikely to reduce pollutant levels to World Health Organization recommended levels. Additionally, many participants in the included studies continued to use traditional stoves either instead of, or in additional to, new improved options. Current evidence suggests improved stove interventions can reduce exposure to HAP resulting from solid fuel smoke. Studies with longer follow-up periods are required to assess if pollutant reductions reported in the current literature are sustained over time. Adoption of new technologies is challenging and interventions must be tailored to the needs and preferences of the households of interest. Future studies require greater process evaluation to improve knowledge of implementation barriers and facilitators. The review was registered on Prospero (registration number CRD42014009796).
The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks
Gao, Zhiming; Smith, David E.; Daw, C. Stuart; ...
2015-12-01
We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less
Van Blarigan, Peter
2001-01-01
A combustion system which can utilize high compression ratios, short burn durations, and homogeneous fuel/air mixtures in conjunction with low equivalence ratios. In particular, a free-piston, two-stroke autoignition internal combustion engine including an electrical generator having a linear alternator with a double-ended free piston that oscillates inside a closed cylinder is provided. Fuel and air are introduced in a two-stroke cycle fashion on each end, where the cylinder charge is compressed to the point of autoignition without spark plugs. The piston is driven in an oscillating motion as combustion occurs successively on each end. This leads to rapid combustion at almost constant volume for any fuel/air equivalence ratio mixture at very high compression ratios. The engine is characterized by high thermal efficiency and low NO.sub.x emissions. The engine is particularly suited for generating electrical current in a hybrid automobile.
Fundamentals of fuel cell system integration
NASA Astrophysics Data System (ADS)
Krumpelt, Michael; Kumar, Romesh; Myles, Kevin M.
1994-04-01
Fuel cells are theoretically very efficient energy conversion devices that have the potential of becoming a commercial product for numerous uses in the civilian economy. We have analyzed several fuel cell system designs with regard to thermal and chemical integration of the fuel cell stack into the rest of the system. Thermal integration permits the use of the stack waste heat for the endothermic steps of fuel reforming. Chemical integration provides the steam needed for fuel reforming from the water produced by the electrochemical cell reaction. High-temperature fuel cells, such as the molten carbonate and the solid oxide fuel cells, permit this system integration in a relatively simple manner. Lower temperature fuel cells, such as the polymer electrolyte and phosphoric acid systems, require added system complexity to achieve such integration. The system economics are affected by capital and fuel costs and technical parameters, such as electrochemical fuel utilization, current density, and system complexity. At today's low fuel prices and the high fuel cell costs (in part, because of the low rates of production of the early prototypes), fuel cell systems are not cost competitive with conventional power generation. With the manufacture and sale of larger numbers of fuel cell systems, the total costs will decrease from the current several thousand dollars per kW, to perhaps less than $100 per kW as production volumes approa ch a million units per year.
Fuel cell tubes and method of making same
Borglum, Brian P.
1999-11-30
A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost. A method of manufacturing porous ceramic tubes for fuel cells with improved properties and higher manufacturing yield is disclosed. The method involves extruding a closed end fuel cell tube, such as an air electrode of a solid oxide fuel cell, in which the closed end also functions as the sintering support. The resultant fuel cell tube has a superior porosity distribution which allows improved diffusion of oxygen at the closed end of the tube during operation of the fuel cell. Because this region has the highest current density, performance enhancement and improved reliability of the fuel cell tube result. Furthermore, the higher manufacturing yield associated with the present method decreases the overall fuel cell cost.
Autonomous, Retrievable, Deep Sea Microbial Fuel Cell
NASA Astrophysics Data System (ADS)
Richter, K.
2014-12-01
Microbial fuel cells (MFCs) work by providing bacteria in anaerobic sediments with an electron acceptor (anode) that stimulates metabolism of organic matter. The buried anode is connected via control circuitry to a cathode exposed to oxygen in the overlying water. During metabolism, bacteria release hydrogen ions into the sediment and transfer electrons extra-cellularly to the anode, which eventually reduce dissolved oxygen at the cathode, forming water. The open circuit voltage is approximately 0.8 v. The voltage between electrodes is operationally kept at 0.4 v with a potentiastat. The current is chiefly limited by the rate of microbial metabolism at the anode. The Office of Naval Research has encouraged development of microbial fuel cells in the marine environment at a number of academic and naval institutions. Earlier work in shallow sediments of San Diego Bay showed that the most important environmental parameters that control fuel cell power output in San Diego Bay were total organic carbon in the sediment and seasonal water temperature. Current MFC work at SPAWAR includes extension of microbial fuel cell tests to the deep sea environment (>1000 m) and, in parallel, testing microbial fuel cells in the laboratory under deep sea conditions. One question we are asking is whether MFC power output from deep water sediments repressurized and chilled in the laboratory comparable to those measured in situ. If yes, mapping the power potential of deep sea sediments may be made much easier, requiring sediment grabs and lab tests rather than deployment and retrieval of fuel cells. Another question we are asking is whether in situ temperature and total organic carbon in the deep sea sediment can predict MFC power. If yes, then we can make use of the large collection of publicly available, deep sea oceanographic measurements to make these predictions, foregoing expensive work at sea. These regressions will be compared to those derived from shallow water measurements.
Systems for the Intermodal Routing of Spent Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Steven K; Liu, Cheng
The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable systemmore » for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.« less
TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.M. Wight; G.A. Moore; S.C. Taylor
2008-10-01
This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculationsmore » for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.« less
Tanker Fuel Efficiency: Saving Through Receiver Fuel Planning
2014-06-13
engage your weapon.” General James Mattis , 2003 Conclusions The current planning and execution of air refueling missions are costing the DOD...fuel cells, and bio fuels are being explored by scientists and engineers working to reduce the United States’ dependency on foreign oil (Harmon
MEMS-based thin-film fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2003-10-28
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Metabolic Engineering of Microorganisms for the Production of Higher Alcohols
Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin
2014-01-01
ABSTRACT Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. PMID:25182323
Metabolic engineering of microorganisms for the production of higher alcohols.
Choi, Yong Jun; Lee, Joungmin; Jang, Yu-Sin; Lee, Sang Yup
2014-09-02
Due to the increasing concerns about limited fossil resources and environmental problems, there has been much interest in developing biofuels from renewable biomass. Ethanol is currently used as a major biofuel, as it can be easily produced by existing fermentation technology, but it is not the best biofuel due to its low energy density, high vapor pressure, hygroscopy, and incompatibility with current infrastructure. Higher alcohols, including 1-propanol, 1-butanol, isobutanol, 2-methyl-1-butanol, and 3-methyl-1-butanol, which possess fuel properties more similar to those of petroleum-based fuel, have attracted particular interest as alternatives to ethanol. Since microorganisms isolated from nature do not allow production of these alcohols at high enough efficiencies, metabolic engineering has been employed to enhance their production. Here, we review recent advances in metabolic engineering of microorganisms for the production of higher alcohols. Copyright © 2014 Choi et al.
Environmentally Responsible Aviation - Real Solutions for Environmental Challenges Facing Aviation
NASA Technical Reports Server (NTRS)
Collier, Fayette; Thomas, Russell; Burley, Casey; Nickol, Craig; Lee, Chi-Ming; Tong, Michael
2010-01-01
The combined reality of persistently strong growth in air traffic and the vital economic role of the air transport system result in continued demand for the progress of technology for the reduction of aircraft noise, emissions of oxides of nitrogen, and fuel burn. NASA s Environmentally Responsible Aviation (ERA) project has set aggressive goals in these three areas including a noise goal of 42 dB cumulative below the Stage 4 certification level. The goal for the reduction of oxides of nitrogen is 75% below the current standard. The fuel burn reduction goal is 50% below that of a current state-of-the-art aircraft. Furthermore, the overall goal of ERA is to mature technologies that will meet these goals simultaneously and with a timeframe of 2020 for technical readiness. This paper outlines the key technologies and the progress achieved to date toward the goals.
System and method having multi-tube fuel nozzle with differential flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Johnson, Thomas Edward; Berry, Jonathan Dwight
A system includes a multi-tube fuel nozzle with a fuel nozzle body and a plurality of tubes. The fuel nozzle body includes a nozzle wall surrounding a chamber. The plurality of tubes extend through the chamber, wherein each tube of the plurality of tubes includes an air intake portion, a fuel intake portion, and an air-fuel mixture outlet portion. The multi-tube fuel nozzle also includes a differential configuration of the air intake portions among the plurality of tubes.
Boston Community Energy Study - Zonal Analysis for Urban Microgrids
2016-04-05
macrogrid. Fully autonomous micro- grids are ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV...or wind turbines ; they also could include direct current devices such as fuel cells or photovoltaic arrays [6,17]. Traditional storage systems include...economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the
Hydrogen/Air Fuel Nozzle Emissions Experiments
NASA Technical Reports Server (NTRS)
Smith, Timothy D.
2001-01-01
The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F. Computational fluid dynamics calculations, with the Glenn developed National Combustor Code, are being performed to optimize the fuel nozzle designs.
Transportation Fuels and the Hydrogen Economy
NASA Astrophysics Data System (ADS)
Gabbard, Alex
2004-11-01
An energy analysis of transportation fuels is performed for comparing automobiles and fuels currently in the marketplace as real world benchmarks projected as "hydrogen economy" requirements. Comparisons are made for ideal case average energy values at Standard Temperature and Pressure (STP) at 20°C, 1 atmosphere with no loses. "Real world" benchmarks currently in the marketplace illuminate the challenges to be met if an equivalent "hydrogen economy" is to become reality. The idea of a "hydrogen economy" is that, at some time in the future, world energy needs will be supplied in part or totally from hydrogen; in part as compared to the current "petroleum economy" that is the source of most of the world's transportation fuels and only a portion of total energy use, or hydrogen as the source of all energy consumption.
Alternative Fuels Data Center: Low Rolling Resistance Tires
meet their Corporate Average Fuel Economy (CAFE) standards. However, no requirements are currently Rolling Resistance Part 1: Understanding Corporate Average Fuel Economy Definitions 1015 Driving Cycle A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirk Gombert; Jay Roach
The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less
Nechaeva, Daria; Shishov, Andrey; Ermakov, Sergey; Bulatov, Andrey
2018-06-01
An easily performed miniaturized, cheap, selective and sensitive procedure for the determination of H 2 S in fuel oil samples based on a headspace liquid-phase microextraction followed by a cyclic voltammetry detection using a paper-based analytical device (PAD) was developed. A modified wax dipping method was applied to fabricate the PAD. The PAD included hydrophobic zones of sample and supporting electrolyte connecting by hydrophilic channel. The zones of sample and supporting electrolyte were connected with nickel working, platinum auxiliary and Ag/AgCl reference electrodes. The analytical procedure included separation of H 2 S from fuel oil sample based on the headspace liquid-phase microextraction in alkaline solution. Then, sulfide ions solution obtained and supporting electrolyte were dropped on the zones followed by analyte detection at + 0.45 V. Under the optimized conditions, H 2 S concentration in the range from 2 to 20 mg kg -1 had a good linear relation with the peak current. The limit of detection (3σ) was 0.6 mg kg -1 . The procedure was successfully applied to the analysis of fuel oil samples. Copyright © 2018 Elsevier B.V. All rights reserved.
High freezing point fuels used for aviation turbine engines
NASA Technical Reports Server (NTRS)
Friedman, R.
1979-01-01
Broadened-specification aviation fuels could be produced from a greater fraction of crude source material with improvements in fuel supply and price. These fuels, particularly those with increased final boiling temperatures, would have higher freezing temperatures than current aviation turbine fuels. For the small but significant fraction of commercial flights where low fuel temperatures make higher freezing-point fuel use unacceptable, adaptations to the fuel or fuel system may be made to accommodate this fuel. Several techniques are discussed. Fuel heating is the most promising concept. One simple design uses existing heat rejection from the fuel-lubricating oil cooler, another uses an engine-driven generator for electrical heating.
Fuel characteristics pertinent to the design of aircraft fuel systems
NASA Technical Reports Server (NTRS)
Barnett, Henry C; Hibbard, R R
1953-01-01
Because of the importance of fuel properties in design of aircraft fuel systems the present report has been prepared to provide information on the characteristics of current jet fuels. In addition to information on fuel properties, discussions are presented on fuel specifications, the variations among fuels supplied under a given specification, fuel composition, and the pertinence of fuel composition and physical properties to fuel system design. In some instances the influence of variables such as pressure and temperature on physical properties is indicated. References are cited to provide fuel system designers with sources of information containing more detail than is practicable in the present report.
A correlation to estimate the velocity of convective currents in boilover.
Ferrero, Fabio; Kozanoglu, Bulent; Arnaldos, Josep
2007-05-08
The mathematical model proposed by Kozanoglu et al. [B. Kozanoglu, F. Ferrero, M. Muñoz, J. Arnaldos, J. Casal, Velocity of the convective currents in boilover, Chem. Eng. Sci. 61 (8) (2006) 2550-2556] for simulating heat transfer in hydrocarbon mixtures in the process that leads to boilover requires the initial value of the convective current's velocity through the fuel layer as an adjustable parameter. Here, a correlation for predicting this parameter based on the properties of the fuel (average ebullition temperature) and the initial thickness of the fuel layer is proposed.
NASA Technical Reports Server (NTRS)
Shih, W.-P.; Lee, J. G.; Santavicca, D. A.
1994-01-01
Gas turbine engines for both land-based and aircraft propulsion applications are facing regulations on NOx emissions which cannot be met with current combustor technology. A number of alternative combustor strategies are being investigated which have the potential capability of achieving ultra-low NOx emissions, including lean premixed combustors, direct injection combustors, rich burn-quick quench-lean burn combustors and catalytic combustors. The research reported in this paper addresses the effect of incomplete fuel-air mixing on the lean limit performance and the NOx emissions characteristics of lean premixed combustors.
A review of Curtiss-Wright rotary engine developments with respect to general aviation potential
NASA Technical Reports Server (NTRS)
Jones, C.
1979-01-01
Aviation related rotary (Wankel-type) engine tests, possible growth directions and relevant developments at Curtiss-Wright have been reviewed. Automotive rotary engines including stratified charge are described and flight test results of rotary aircraft engines are presented. The current 300 HP engine prototype shows basic durability and competitive performance potential. Recent parallel developments have separately confirmed the geometric advantages of the rotary engine for direct injected unthrottled stratified charge. Specific fuel consumption equal to or better than pre- or swirl-chamber diesels, low emission and multi-fuel capability have been shown by rig tests of similar rotary engine.
Life-Cycle Assessment of Cookstove Fuels in India and China ...
A life cycle assessment (LCA) was conducted to compare the environmental footprint of current and possible fuels used for cooking within China and India. Current fuel mix profiles are compared to scenarios of projected differences in and/or cleaner cooking fuels. Results are reported for a suite of relevant life cycle impact assessment indicators: global climate change, energy demand, fossil depletion, water consumption, particulate matter formation, acidification, eutrophication and photochemical smog formation. Traditional fuels demonstrate notably poor relative performance in particulate matter formation, photochemical oxidant formation, freshwater eutrophication, and black carbon emissions. Most fuels demonstrate trade-offs between impact categories. Stove efficiency is found to be a crucial variable determining environmental performance across all impact categories. The study shows that electricity and many of the processed fuels, while yielding emission reductions in homes at the point of use, transfer many of those emissions upstream into the processing and distribution life cycle stage. To conduct LCA study of the cookstove fuels being used in India and China to determine how fuels and stoves compare based on a holistic assessment considering the LCA environmental tradeoffs
Inorganic salt mixtures as electrolyte media in fuel cells
NASA Technical Reports Server (NTRS)
Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)
2012-01-01
Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.
ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…
Synfuels and the energy transition
NASA Astrophysics Data System (ADS)
Balzhiser, R. E.
1981-08-01
Various synfuel options and their impact on the electric utility industry are discussed. The energy transition for the U.S.A. is seen as moving from natural fluid fuels to solid fuels and renewable energy resources. The key to this transition is electrification, which can encompass both nuclear and renewable resources, centralized and dispersed technologies. It is shown that the fraction of total energy converted to electricity has risen steadily for the past 30 years, reaching 33% last year. The abundance and cost of production of the various fossil energy resources, including natural gas, heavy oil, oil shale, and coal are considered. EPRI analyses indicate that an integrated-combined-cycle power plant could be competitive with conventional coal plant technology. These plants would use only half the water of current coal-fired plants, would meet tighter sulfur emission standards, and would produce a vitreous ash that is less leachable than the ash from today's coal plants. Solvent-refined coal processes, currently being developed in the U.S.A. are a second approach to converting coal to liquid fuels. It is pointed out, however, that synfuels will complement, not replace, other sources of energy in the continued electrification of the U.S.A.
Fuel Cell Research and Development for Future NASA Missions
NASA Technical Reports Server (NTRS)
Manzo, Michelle A.; Hoberecht, Mark; Loyselle, Patricia; Burke, Kenneth; Bents, David; Farmer, Serene; Kohout, Lisa
2006-01-01
NASA has been using fuel cell systems since the early days of space flight. Polymer Exchange Membrane Fuel cells provided the primary power for the Gemini and Apollo missions and more recently, alkaline fuel cells serve as the primary power source for the Space Shuttle. NASA's current investments in fuel cell technology support both Exploration and Aeronautics programs. This presentation provides an overview of NASA's fuel cell development programs.
Modeling and Analysis of Actinide Diffusion Behavior in Irradiated Metal Fuel
NASA Astrophysics Data System (ADS)
Edelmann, Paul G.
There have been numerous attempts to model fast reactor fuel behavior in the last 40 years. The US currently does not have a fully reliable tool to simulate the behavior of metal fuels in fast reactors. The experimental database necessary to validate the codes is also very limited. The DOE-sponsored Advanced Fuels Campaign (AFC) has performed various experiments that are ready for analysis. Current metal fuel performance codes are either not available to the AFC or have limitations and deficiencies in predicting AFC fuel performance. A modified version of a new fuel performance code, FEAST-Metal , was employed in this investigation with useful results. This work explores the modeling and analysis of AFC metallic fuels using FEAST-Metal, particularly in the area of constituent actinide diffusion behavior. The FEAST-Metal code calculations for this work were conducted at Los Alamos National Laboratory (LANL) in support of on-going activities related to sensitivity analysis of fuel performance codes. A sensitivity analysis of FEAST-Metal was completed to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. A modification was made to the FEAST-Metal constituent redistribution model to enable accommodation of newer AFC metal fuel compositions with verified results. Applicability of this modified model for sodium fast reactor metal fuel design is demonstrated.
Variable volume combustor with center hub fuel staging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman
The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.
Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory
Craft, Aaron E.; Wachs, Daniel M.; Okuniewski, Maria A.; ...
2015-09-10
Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities,more » the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging.« less
Cogeneration technology alternatives study. Volume 1: Summary report
NASA Technical Reports Server (NTRS)
1980-01-01
Data and information in the area of advanced energy conversion systems for industrial congeneration applications in the 1985-2000 time period was studied. Six current and thirty-one advanced energy conversion systems were defined and combined with appropriate balance-of-plant equipment. Twenty-six industrial processes were selected from among the high energy consuming industries to serve as a framework for the study. Each conversion system was analyzed as a cogenerator with each industrial plant. Fuel consumption, costs, and environmental intrusion were evaluated and compared to corresponding traditional values. Various cogeneration strategies were analyzed and both topping and bottoming (using industrial by-product heat) applications were included. The advanced energy conversion technologies indicated reduced fuel consumption, costs, and emissions. Typically fuel energy savings of 10 to 25 percent were predicted compared to traditional on-site furnaces and utility electricity. With the variety of industrial requirements, each advanced technology had attractive applications. Overall, fuel cells indicated the greatest fuel energy savings and emission reductions. Gas turbines and combined cycles indicated high overall annual cost savings. Steam turbines and gas turbines produced high estimated returns. In some applications, diesels were most efficient. The advanced technologies used coal-derived fuels, or coal with advanced fluid bed combustion or on-site gasification systems.
A Stirling engine for use with lower quality fuels
NASA Astrophysics Data System (ADS)
Paul, Christopher J.
There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.
The Palm Desert renewable [hydrogen] transportation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamberlin, C.E.; Lehman, P.
1998-08-01
This paper describes the Schatz Energy Research Center (SERC) progress on the Palm Desert Renewable Hydrogen Transportation System Project for the period June 1997 through May 1998. The project began in March 1996. The goal of the Palm Desert Project is to develop a clean and sustainable transportation system for a community. The project demonstrates the practical utility of hydrogen as a transportation fuel and the proton exchange membrane (PEM) fuel cell as a vehicle power system. The project includes designing and building 4 fuel cell powered vehicles, a solar hydrogen generating and refueling station, and a fuel cell vehiclemore » diagnostic center. Over this last year, SERC has built a fuel cell powered neighborhood electric vehicle and delivered it to the City of Palm Desert. The design of the hydrogen refueling station is near completion and it is anticipated that construction will be complete in the fall of 1998. The vehicles are currently being refueled at a temporary refueling station. The diagnostic center is being designed and maintenance procedures as well as computer diagnostic programs for the fuel cell vehicles are being developed. City employees are driving the vehicles daily and monitoring data are being collected. The drivers are pleased with the performance of the vehicles.« less
Variable volume combustor with aerodynamic support struts
Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul
2017-03-07
The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.
Plutonium: Advancing our Understanding to Support Sustainable Nuclear Fuel Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lines, Amanda M.; Adami, Susan R.; Casella, Amanda
With Global energy needs increasing, real energy solutions to meet demands now, are needed. Fossil fuels are not an ideal candidate to meet these needs because of their negative impact on the environment. Renewables such as wind and solar have huge potential, but still need major technological advancements (particularly in the area of battery storage) before they can effectively meet growing world needs. The best option for meeting large energy needs without a large carbon footprint is nuclear energy. Of course, nuclear energy can face a fair amount of opposition and concern. However, through modern engineering and science many ofmore » these concerns can now be addressed. Many safety concerns can be met by engineering advancements, but perhaps the biggest area of concern is what to do with the used nuclear fuel after it is removed from the reactor. Currently the United States (and several other countries) utilize an open fuel cycle, meaning fuel is only used once and then discarded. It should be noted that fuel coming out of a reactor has utilized approximately 1% of the total energy that could be produced by the uranium in the fuel rod. The answer here is to close the fuel cycle and recycle the nuclear materials. By reprocessing used nuclear fuel, all the U can be repurposed without requiring disposal. The various fission products can be removed and either discarded (hugely reduced waste volume) or more reasonably, utilized in specialty reactors to make more energy or needed research/medical isotopes. While reprocessing technology is currently advanced enough to meet energy needs, completing research to improve and better understand these techniques is still needed. Better understanding behavior of fission products is one area of important research. Despite it being discovered over 75 years ago, plutonium is still an exciting element to study because of the complex solution chemistry it exhibits. In aqueous solutions Pu can exist simultaneously in multiple oxidation states, including 3+, 4+, and 6+. It also readily forms a variety of metal-ligand complexes depending on solution pH and available ligands. Understanding of the behavior of Pu in solution remains an important area of research today, with relevance to developing sustainable nuclear fuel cycles, minimizing its impact on the environment, and detecting and preventing the spread of nuclear weapons technology.« less
NASA Astrophysics Data System (ADS)
Seymour, C. M.
1992-01-01
A project, jointly funded by VSEL and CJB Developments Limited, is aimed at the development of complete power generation systems based on PEM fuel cell technology. Potential markets for such systems are seen as being very broadly based, ranging from military land and marine systems through to commercial on-site power generation and transport. From the outset the project was applications driven, the intent being to identify market requirements, in terms of system specifications and to use these to produce development targets. The two companies have based their work on the Ballard PEM stack and have focused their efforts on the development of supporting systems. This benefits all three companies as it allows Ballard to obtain applications information on which to base future research and VSEL/CJBD are able to capitalise on the advanced development of the Ballard stack. Current work is focused on the production of a 20 kW, methanol fuelled, power generation system demonstrator, although work is also in hand to address a wider range of fuels including natural gas. The demonstrator, when complete, will be used to indicate the potential benefits of such systems and to act as a design aid for the applications phase of the project. Preliminary work on this next phase is already in hand, with studies to assess both systems and fuel cell stack design requirements for specific applications and to generate concept designs. Work to date has concentrated on the development of a methanol reformer, suitable for integration into a fuel cell system and on extensive testing and evaluation of the Ballard fuel cell stacks. This testing has covered a wide range of operating parameters, including different fuel and oxidant combinations. The effect of contaminants on the performance and life of the fuel cells is also under evaluation. PEM fuel cells still require a great deal of further development if they are to gain widespread commercial acceptance. A recent study conducted by VSEL in conjunction with the UK Department of Energy has addressed the fuel cell cost and performance requirements in order to both focus future research and to aid understanding of the time-scale to reach full commercialisation.
Advanced multiphysics coupling for LWR fuel performance analysis
Hales, J. D.; Tonks, M. R.; Gleicher, F. N.; ...
2015-10-01
Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics,more » particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower length scale models such as those used in the mesoscale MARMOT code to compute average properties, e.g. swelling or thermal conductivity. These may then be used by an engineering-scale model. Examples of this type of multiscale, multiphysics modeling are shown.« less
A NEW APPROACH FOR BIODIESEL PRODUCTION FROM ALGAE
The supply of energy for the United States and world is currently dependent on extraction of fossil fuels. Eventually, a novel or sustainable source of energy will be required for industrial societies. In particular, transportation fuels are currently dependent on dwindling su...
Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality
Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...
Hydrogen Generation Via Fuel Reforming
NASA Astrophysics Data System (ADS)
Krebs, John F.
2003-07-01
Reforming is the conversion of a hydrocarbon based fuel to a gas mixture that contains hydrogen. The H2 that is produced by reforming can then be used to produce electricity via fuel cells. The realization of H2-based power generation, via reforming, is facilitated by the existence of the liquid fuel and natural gas distribution infrastructures. Coupling these same infrastructures with more portable reforming technology facilitates the realization of fuel cell powered vehicles. The reformer is the first component in a fuel processor. Contaminants in the H2-enriched product stream, such as carbon monoxide (CO) and hydrogen sulfide (H2S), can significantly degrade the performance of current polymer electrolyte membrane fuel cells (PEMFC's). Removal of such contaminants requires extensive processing of the H2-rich product stream prior to utilization by the fuel cell to generate electricity. The remaining components of the fuel processor remove the contaminants in the H2 product stream. For transportation applications the entire fuel processing system must be as small and lightweight as possible to achieve desirable performance requirements. Current efforts at Argonne National Laboratory are focused on catalyst development and reactor engineering of the autothermal processing train for transportation applications.
Vimmerstedt, Laura J; Bush, Brian; Peterson, Steve
2012-01-01
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.
NASA Astrophysics Data System (ADS)
Rekos, N. F., Jr.; Parsons, E. L., Jr.
1989-09-01
For the past decade, the Department of Energy (DOE) has sponsored projects to develop diesel and gas turbine engines capable of operating on low-cost, coal-based fuels. Much of the current work addresses the use of coal-water fuel (CWF) in diesel and turbines, although there is some work with dry coal feed and other coal fuels. Both the diesel and gas turbine portions of the program include proof-of-concept and support projects. Specific highlights of the program include: engine tests and economic analyses have shown that CWF can replace 70 percent of the diesel oil used in the duty cycle of a typical main-line locomotive; A. D. Little and Cooper-Bessemer completed a system and economic study of coal-fueled diesel engines for modular power and industrial cogeneration markets. The coal-fueled diesel was found to be competitive at fuel oil prices of $5.50 per million British thermal units (MBtu); Over 200 hours of testing have been completed using CWF in full-scale, single-cylinder diesel engines. Combustion efficiencies have exceeded 99 percent; Both CWF and dry coal fuel forms can be burned in short residence time in-line combustors and in off-base combustors with a combustion efficiency of over 99 percent; Rich/lean combustion systems employed by the three major DOE contractors have demonstrated low NO(sub x) emissions levels; Contractors have also achieved promising results for controlling sulfur oxide (SO(sub x)) emissions using calcium-based sorbents; Slagging combustors have achieved between 65 and 95 percent slag capture, which will limit particulate loading on pre-turbine cleanup devices. For many of the gas turbine and diesel applications emission standards do not exist. Our goal is to develop coal-fueled diesels and gas turbines that not only meet all applicable emission standards that do exist, but also are capable of meeting possible future standards.
Degradation mechanisms and accelerated testing in PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney L; Mukundan, Rangachary
2010-01-01
The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less
Vimmerstedt, Laura J.; Bush, Brian; Peterson, Steve
2012-01-01
The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain–represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner’s decision whether to offer ethanol fuel and a consumer’s choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles. PMID:22606230
Composite nuclear fuel fabrication methodology for gas fast reactors
NASA Astrophysics Data System (ADS)
Vasudevamurthy, Gokul
An advanced fuel form for use in Gas Fast Reactors (GFR) was investigated. Criteria for the fuel includes operation at high temperature (˜1400°C) and high burnup (˜150 MWD/MTHM) with effective retention of fission products even during transient temperatures exceeding 1600°C. The GFR fuel is expected to contain up to 20% transuranics for a closed fuel cycle. Earlier evaluations of reference fuels for the GFR have included ceramic-ceramic (cercer) dispersion type composite fuels of mixed carbide or nitride microspheres coated with SiC in a SiC matrix. Studies have indicated that ZrC is a potential replacement for SiC on account of its higher melting point, increased fission product corrosion resistance and better chemical stability. The present work investigated natural uranium carbide microspheres in a ZrC matrix instead of SiC. Known issues of minor actinide volatility during traditional fabrication procedures necessitated the investigation of still high temperature but more rapid fabrication techniques to minimize these anticipated losses. In this regard, fabrication of ZrC matrix by combustion synthesis from zirconium and graphite powders was studied. Criteria were established to obtain sufficient matrix density with UC microsphere volume fractions up to 30%. Tests involving production of microspheres by spark erosion method (similar to electrodischarge machining) showed the inability of the method to produce UC microspheres in the desired range of 300 to 1200 mum. A rotating electrode device was developed using a minimum current of 80A and rotating at speeds up to 1500 rpm to fabricate microspheres between 355 and 1200 mum. Using the ZrC process knowledge, UC electrodes were fabricated and studied for use in the rotating electrode device to produce UC microspheres. Fabrication of the cercer composite form was studied using microsphere volume fractions of 10%, 20%, and 30%. The macrostructure of the composite and individual components at various stages were characterized to understand the required fabrication techniques and at the same time meet the necessary GFR fuel characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarnoski, Sarah E.; Fast, James E.; Fulsom, Bryan G.
2017-07-17
Non-destructive assay is a powerful tool the International Atomic Energy Agency (IAEA) employs to verify adherence to safeguards agreements. Current IAEA veri- cation techniques for fresh nuclear fuel include passive gamma-ray spectroscopy to determine fuel enrichment. This technique suers from self-shielding and lakes the percision to detect diversion of central fuel rods. The aim of this research is to develop a new, more capable non-destructive analysis technique using active neutron interroga- tion of fuel assemblies and determining the yields of short-lived ssion products from high-resolution gamma-ray spectroscopy using high-purity germanium (HPGe). This paper reports results from irradiation of a onemore » meter tall mock fresh fuel assembly with low enriched uranium (LEU) or depleted uranium (DU) rods using a down-scattered deuterium-tritium (D-T) neutron source. Both prompt and delayed gamma-ray spec- tra were collected as time-stamped list-mode data in a coax detector and without list mode data in a planar strip detector. No dierentiating signatures were observed in the prompt spectra in either detector; however, both detectors observed several short-lived ssion product signatures in LEU and not DU fuel, indicating that this technique has potential for determination of enrichment of fresh fuel assemblies. There were eight unique ssion products observed in the LEU spectra with the coax detector spectra, and three ssion products were observed in the LEU spectra with the strip detector.« less
Helen Y. Smith; Sharon Hood; Matt Brooks; JR Matchett; Curt Deuser
2006-01-01
The recent encroachment of piñon (Pinus edulis) and juniper trees (Juniperus osteosperma) into historically shrub- and grass-dominated landscapes has caused major changes in ecosystem structure and function, including dramatic changes in fuel structure and fire regimes. Such encroachment is currently occurring on thousands of acres...
Current status and future needs of the BehavePlus Fire Modeling System
Patricia L. Andrews
2014-01-01
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire...
Andrews, D
1999-04-01
Several trends will accelerate changes in the industry initiated by Medicare's change in payment methodology, including explosive growth fueled by changing demographics, patient preferences, and technological advances; altered customer buying incentives created by managed care organization-provider partnerships; and accelerated consolidation. Home care agencies should "take inventory" of current practices and systems to determine capability gaps for competing in the new environment.
Development and applications of the LANDFIRE forest structure layers
Chris Toney; Birgit Peterson; Don Long; Russ Parsons; Greg Cohn
2012-01-01
The LANDFIRE program is developing 2010 maps of vegetation and wildland fuel attributes for the United States at 30-meter resolution. Currently available vegetation layers include ca. 2001 and 2008 forest canopy cover and canopy height derived from Landsat and Forest Inventory and Analysis (FIA) plot measurements. The LANDFIRE canopy cover layer for the conterminous...
Tritium Breeding Blanket for a Commercial Fusion Power Plant - A System Engineering Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Wayne R.
The goal of developing a new source of electric power based on fusion has been pursued for decades. If successful, future fusion power plants will help meet growing world-wide demand for electric power. A key feature and selling point for fusion is that its fuel supply is widely distributed globally and virtually inexhaustible. Current world-wide research on fusion energy is focused on the deuterium-tritium (DT for short) fusion reaction since it will be the easiest to achieve in terms of the conditions (e.g., temperature, density and confinement time of the DT fuel) required to produce net energy. Over the pastmore » decades countless studies have examined various concepts for TBBs for both magnetic fusion energy (MFE) and inertial fusion energy (IFE). At this time, the key organizations involved are government sponsored research organizations world-wide. The near-term focus of the MFE community is on the development of TBB mock-ups to be tested on the ITER tokamak currently under construction in Caderache France. TBB concepts for IFE tend to be different from MFE primarily due to significantly different operating conditions and constraints. This report focuses on longer-term commercial power plants where the key stakeholders include: electric utilities, plant owner and operator, manufacturer, regulators, utility customers, and in-plant subsystems including the heat transfer and conversion systems, fuel processing system, plant safety systems, and the monitoring control systems.« less
Compositions and methods for treating nuclear fuel
Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M
2013-08-13
Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
Compositions and methods for treating nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K
Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
Describing current and potential markets for alternative-fuel vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-03-26
Motor vehicles are a major source of greenhouse gases, and the rising numbers of motor vehicles and miles driven could lead to more harmful emissions that may ultimately affect the world`s climate. One approach to curtailing such emissions is to use, instead of gasoline, alternative fuels: LPG, compressed natural gas, or alcohol fuels. In addition to the greenhouse gases, pollutants can be harmful to human health: ozone, CO. The Clean Air Act Amendments of 1990 authorized EPA to set National Ambient Air Quality Standards to control this. The Energy Policy Act of 1992 (EPACT) was the first new law tomore » emphasize strengthened energy security and decreased reliance on foreign oil since the oil shortages of the 1970`s. EPACT emphasized increasing the number of alternative-fuel vehicles (AFV`s) by mandating their incremental increase of use by Federal, state, and alternative fuel provider fleets over the new few years. Its goals are far from being met; alternative fuels` share remains trivial, about 0.3%, despite gains. This report describes current and potential markets for AFV`s; it begins by assessing the total vehicle stock, and then it focuses on current use of AFV`s in alternative fuel provider fleets and the potential for use of AFV`s in US households.« less
76 FR 31467 - Guide Concerning Fuel Economy Advertising for New Automobiles
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
...The Federal Trade Commission (``FTC'' or ``Commission'') gives notice that it is postponing any amendments to its Guide Concerning Fuel Economy Advertising for New Automobiles (``Fuel Economy Guide'' or ``Guide'') pending completion of ongoing review by the Environmental Protection Agency (``EPA'') and the National Highway Traffic Safety Administration (``NHTSA'') of current fuel economy labeling requirements and the Commission's accelerated regulatory review of its own Labeling Requirements for Alternative Fuels and Alternative Fueled Vehicles Rule (``Alternative Fuels Rule'').
Microbiological and engineering aspects of biohydrogen production.
Hallenbeck, Patrick C; Ghosh, Dipankar; Skonieczny, Monika T; Yargeau, Viviane
2009-03-01
Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention worldwide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels, and for realizing its full potential in reducing greenhouse gas emissions. One attractive option is to produce hydrogen through microbial fermentation. This process would use readily available wastes as well as presently unutilized bioresources, including enormous supplies of agricultural and forestry wastes. These potential energy sources are currently not well exploited, and in addition, pose environmental problems. However, fuels are relatively low value products, placing severe constraints on any production process. Therefore, means must be sought to maximize yields and rates of hydrogen production while at the same time minimizing energy and capital inputs to the bioprocess. Here we review the various attributes of the characterized hydrogen producing bacteria as well as the preparation and properties of mixed microflora that have been shown to convert various substrates to hydrogen. Factors affecting yields and rates are highlighted and some avenues for increasing these parameters are explored. On the engineering side, we review the potential waste pre-treatment technologies and discuss the relevant bioprocess parameters, possible reactor configurations, including emerging technologies, and how engineering design-directed research might provide insight into the exploitation of the significant energy potential of biomass resources.
Modeling of indirect carbon fuel cell systems with steam and dry gasification
NASA Astrophysics Data System (ADS)
Ong, Katherine M.; Ghoniem, Ahmed F.
2016-05-01
An indirect carbon fuel cell (ICFC) system that couples coal gasification to a solid oxide fuel cell (SOFC) is a promising candidate for high efficiency stationary power. This study couples an equilibrium gasifier model to a detailed 1D MEA model to study the theoretical performance of an ICFC system run on steam or carbon dioxide. Results show that the fuel cell in the ICFC system is capable of power densities greater than 1.0 W cm-2 with H2O recycle, and power densities ranging from 0.2 to 0.4 W cm-2 with CO2 recycle. This result indicates that the ICFC system performs better with steam than with CO2 gasification as a result of the faster electro-oxidation kinetics of H2 relative to CO. The ICFC system is then shown to reach higher current densities and efficiencies than a thermally decoupled gasifier + fuel cell (G + FC) system because it does not include combustion losses associated with autothermal gasification. 55-60% efficiency is predicted for the ICFC system coupled to a bottoming cycle, making this technology competitive with other state-of-the-art stationary power candidates.
Fabric-based alkaline direct formate microfluidic fuel cells.
Domalaon, Kryls; Tang, Catherine; Mendez, Alex; Bernal, Franky; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A
2017-04-01
Fabric-based microfluidic fuel cells (MFCs) serve as a novel, cost-efficient alternative to traditional FCs and batteries, since fluids naturally travel across fabric via capillary action, eliminating the need for an external pump and lowering production and operation costs. Building on previous research with Y-shaped paper-based MFCs, fabric-based MFCs mitigate fragility and durability issues caused by long periods of fuel immersion. In this study, we describe a microfluidic fabric-based direct formate fuel cell, with 5 M potassium formate and 30% hydrogen peroxide as the anode fuel and cathode oxidant, respectively. Using a two-strip, stacked design, the optimized parameters include the type of encasement, the barrier, and the fabric type. Surface contact of the fabric and laminate sheet expedited flow and respective chemical reactions. The maximum current (22.83 mA/cm 2 ) and power (4.40 mW/cm 2 ) densities achieved with a 65% cotton/35% polyester blend material are a respective 8.7% and 32% higher than previous studies with Y-shaped paper-based MFCs. In series configuration, the MFCs generate sufficient energy to power a handheld calculator, a thermometer, and a spectrum of light-emitting diodes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraybill, R.L.; Smart, G.R.; Bopp, F.
1985-09-04
A Problem Confirmation Study was performed at seven sites on Otis Air National Guard Base: the Current and Former Training Areas, the Base Landfill, the Nondestructive Inspection Laboratory, the Fuel Test Dump Site, the Railyard Fuel Pumping Station, and the Petrol Fuel Storage Area. The field investigation was conducted in two stages, in November 1983 through January 1984, and in October through December 1984. Resampling was performed at selected locations in April and July 1985. A total of 11 monitor wells were installed and sampled and test-pit investigations were conducted at six sites. In addition, the contents of a sumpmore » tank, and two header pipes for fuel-transmission lines were sampled. Analytes included TOC, TOX, cyanide, phenols, Safe Drinking Water metals, pesticides and herbicides, and in the second round, priority-pollutant volatile organic compounds and a GC fingerprint scan for fuel products. On the basis of the field-work findings, it is concluded that, to date, water-quality impacts on ground water from past activities have been minimal.« less
Redwing: A MOOSE application for coupling MPACT and BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick N. Gleicher; Michael Rose; Tom Downar
Fuel performance and whole core neutron transport programs are often used to analyze fuel behavior as it is depleted in a reactor. For fuel performance programs, internal models provide the local intra-pin power density, fast neutron flux, burnup, and fission rate density, which are needed for a fuel performance analysis. The fuel performance internal models have a number of limitations. These include effects on the intra-pin power distribution by nearby assembly elements, such as water channels and control rods, and the further limitation of applicability to a specified fuel type such as low enriched UO2. In addition, whole core neutronmore » transport codes need an accurate intra-pin temperature distribution in order to calculate neutron cross sections. Fuel performance simulations are able to model the intra-pin fuel displacement as the fuel expands and densifies. These displacements must be accurately modeled in order to capture the eventual mechanical contact of the fuel and the clad; the correct radial gap width is needed for an accurate calculation of the temperature distribution of the fuel rod. Redwing is a MOOSE-based application that enables coupling between MPACT and BISON for transport and fuel performance coupling. MPACT is a 3D neutron transport and reactor core simulator based on the method of characteristics (MOC). The development of MPACT began at the University of Michigan (UM) and now is under the joint development of ORNL and UM as part of the DOE CASL Simulation Hub. MPACT is able to model the effects of local assembly elements and is able calculate intra-pin quantities such as the local power density on a volumetric mesh for any fuel type. BISON is a fuel performance application of Multi-physics Object Oriented Simulation Environment (MOOSE), which is under development at Idaho National Laboratory. BISON is able to solve the nonlinearly coupled mechanical deformation and heat transfer finite element equations that model a fuel element as it is depleted in a nuclear reactor. Redwing couples BISON and MPACT in a single application. Redwing maps and transfers the individual intra-pin quantities such as fission rate density, power density, and fast neutron flux from the MPACT volumetric mesh to the individual BISON finite element meshes. For a two-way coupling Redwing maps and transfers the individual pin temperature field and axially dependent coolant densities from the BISON mesh to the MPACT volumetric mesh. Details of the mapping are given. Redwing advances the simulation with the MPACT solution for each depletion time step and then advances the multiple BISON simulations for fuel performance calculations. Sub-cycle advancement can be applied to the individual BISON simulations and allows multiple time steps to be applied to the fuel performance simulations. Currently, only loose coupling where data from a previous time step is applied to the current time step is performed.« less
CESAR5.3: Isotopic depletion for Research and Testing Reactor decommissioning
NASA Astrophysics Data System (ADS)
Ritter, Guillaume; Eschbach, Romain; Girieud, Richard; Soulard, Maxime
2018-05-01
CESAR stands in French for "simplified depletion applied to reprocessing". The current version is now number 5.3 as it started 30 years ago from a long lasting cooperation with ORANO, co-owner of the code with CEA. This computer code can characterize several types of nuclear fuel assemblies, from the most regular PWR power plants to the most unexpected gas cooled and graphite moderated old timer research facility. Each type of fuel can also include numerous ranges of compositions like UOX, MOX, LEU or HEU. Such versatility comes from a broad catalog of cross section libraries, each corresponding to a specific reactor and fuel matrix design. CESAR goes beyond fuel characterization and can also provide an evaluation of structural materials activation. The cross-sections libraries are generated using the most refined assembly or core level transport code calculation schemes (CEA APOLLO2 or ERANOS), based on the European JEFF3.1.1 nuclear data base. Each new CESAR self shielded cross section library benefits all most recent CEA recommendations as for deterministic physics options. Resulting cross sections are organized as a function of burn up and initial fuel enrichment which allows to condensate this costly process into a series of Legendre polynomials. The final outcome is a fast, accurate and compact CESAR cross section library. Each library is fully validated, against a stochastic transport code (CEA TRIPOLI 4) if needed and against a reference depletion code (CEA DARWIN). Using CESAR does not require any of the neutron physics expertise implemented into cross section libraries generation. It is based on top quality nuclear data (JEFF3.1.1 for ˜400 isotopes) and includes up to date Bateman equation solving algorithms. However, defining a CESAR computation case can be very straightforward. Most results are only 3 steps away from any beginner's ambition: Initial composition, in core depletion and pool decay scenario. On top of a simple utilization architecture, CESAR includes a portable Graphical User Interface which can be broadly deployed in R&D or industrial facilities. Aging facilities currently face decommissioning and dismantling issues. This way to the end of the nuclear fuel cycle requires a careful assessment of source terms in the fuel, core structures and all parts of a facility that must be disposed of with "industrial nuclear" constraints. In that perspective, several CESAR cross section libraries were constructed for early CEA Research and Testing Reactors (RTR's). The aim of this paper is to describe how CESAR operates and how it can be used to help these facilities care for waste disposal, nuclear materials transport or basic safety cases. The test case will be based on the PHEBUS Facility located at CEA - Cadarache.
Energy efficient engine: Flight propulsion system preliminary analysis and design
NASA Technical Reports Server (NTRS)
Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.
1980-01-01
The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.
Dry Storage of Research Reactor Spent Nuclear Fuel - 13321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.
2013-07-01
Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less
Hydrogen production econometric studies. [hydrogen and fossil fuels
NASA Technical Reports Server (NTRS)
Howell, J. R.; Bannerot, R. B.
1975-01-01
The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.
NASA Astrophysics Data System (ADS)
Beck, Faith R.; Lind, R. Paul; Smith, James A.
2018-04-01
Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.
Uranium extraction: Fuel from seawater
Tsouris, Costas; Oak Ridge National Lab.
2017-02-17
Over four billion tonnes of uranium are currently in the oceans that could be harvested for nuclear fuel, but current capture methods have limited performance and reusability. Now, an electrochemical method using modified carbon electrodes is shown to be promising for the extraction of uranium from seawater.
Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal
NASA Astrophysics Data System (ADS)
Kollar, Lenka
Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for the spent fuel pool, 0.42 for dry cask storage, 0.36 for the operating geological repository, and 0.28 for the closed geological repository. Therefore, the spent fuel pool is currently the most proliferation resistant method for storing spent fuel. The extrinsic attributes, mainly involving safeguards measures, affect the total PR value the most. As a result, several recommendations are made to improve the proliferation resistance of spent fuel. These recommendations include employing more advanced safeguards measures, such as verification techniques and remote monitoring, for dry cask storage and the geological repository. Dry cask storage facilities should also be located at the plant and in a secure building to minimize the proliferation risk. Finally, the cost-benefit analysis of increased safeguards needs to be considered. Taking these recommendations into account, the PR values of dry cask storage and the closed geological would be significantly increased, to 0.57 and 0.51, respectively. As a result, with increased safeguards to the safeguards level of the spent fuel pool, dry cask storage would be the most proliferation resistant method to store spent fuel. Therefore, the IAEA should continue to develop remote monitoring and cask storage verification techniques in order to improve the proliferation resistance of spent fuel.
Chen, Qihong; Long, Rong; Quan, Shuhai
2014-01-01
This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell. PMID:24707206
Real-time combustion controls and diagnostics sensors (CCADS)
Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas
2005-05-03
The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.
Current status of U{sub 3}Si{sub 2} fuel element fabrication in Brazil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durazzo, M.; Carvalho, E.F. Urano de; Saliba-Silva, A.M.
2008-07-15
IPEN has been working for increasing radioisotope production in order to supply the expanding demand for radiopharmaceutical medicines requested by the Brazilian welfare. To reach this objective, the IEA-R1 research reactor power capacity was recently increased from 2 MW to 4 MW. Since 1988 IPEN has been manufacturing its own fuel element, initially based on U{sub 3}O{sub 8}-Al dispersion fuel plates with 2.3 gU/cm{sup 3}. To support the reactor power increase, higher uranium density in the fuel plate meat had to be achieved for better irradiation flux and also to minimize the irradiated fuel elements to be stored. Uranium silicidemore » was the chosen option and the fuel fabrication development started with the support of the IAEA BRA/4/047 Technical Cooperation Project. This paper describes the results of this program and the current status of silicide fuel fabrication and its qualification. (author)« less
Hybrid Vehicle Technologies and their potential for reducing oil use
NASA Astrophysics Data System (ADS)
German, John
2006-04-01
Vehicles with hybrid gasoline-electric powertrains are starting to gain market share. Current hybrid vehicles add an electric motor, battery pack, and power electronics to the conventional powertrain. A variety of engine/motor configurations are possible, each with advantages and disadvantages. In general, efficiency is improved due to engine shut-off at idle, capture of energy during deceleration that is normally lost as heat in the brakes, downsizing of the conventional engine, and, in some cases, propulsion on the electric motor alone. Ongoing increases in hybrid market share are dependent on cost reduction, especially the battery pack, efficiency synergies with other vehicle technologies, use of the high electric power to provide features desired by customers, and future fuel price and availability. Potential barriers include historically low fuel prices, high discounting of the fuel savings by new vehicle purchasers, competing technologies, and tradeoffs with other factors desired by customers, such as performance, utility, safety, and luxury features.
DOE R&D Accomplishments Database
Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.
1990-02-01
The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.
NASA Technical Reports Server (NTRS)
1975-01-01
A comparison was made between the environmental impact of the present nuclear-heated process and the currently commercial hydrogen-producing process utilizing coal for heating, i.e., the Lurgi coal gasification process. This comparison is based on the assumption that both plants produce the same quantity of H2, i.e., 269 cu m/sec of approximately the same purity, that all pollution abatement equipment is of the same design and efficiency for both the Lurgi process and the nuclear process, and that the energy required for the fresh nuclear fuel and the fuel recycle is generated in a power plant which is also provided with pollution abatement equipment. The pollution caused by the auxiliary units is also taken into account. As regards process water usage, the data show that the water required for the nuclear route, including the nuclear fuel production, is approximately 78% of that required for the Lurgi route.
Integrated main rail, feed rail, and current collector
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1994-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
75 FR 76789 - Regulation of Fuels and Fuel Additives: 2011 Renewable Fuel Standards
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
... have the potential to produce qualifying cellulosic biofuel volumes for consumption as transportation... oxygen content. KiOR currently has a small pilot facility capable of producing 10-15 barrels of bio-crude...
International nuclear fuel cycle fact book. Revision 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
1986-01-01
The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.
Status of liquid metal fast breeder reactor fuel development in Japan
NASA Astrophysics Data System (ADS)
Katsuragawa, M.; Kashihara, H.; Akebi, M.
1993-09-01
The mixed-oxide fuel technology for a liquid metal fast breeder reactor (LMFBR) in Japan is progressing toward commercial deployment of LMFBR. Based on accumulated experience in Joyo and Monju fuel development, efforts for large scale LMFBR fuel development are devoted to improved irradiation performance, reliability and economy. This paper summarizes accomplishments, current activities and future plans for LMFBR fuel development in Japan.
Solid Polymer Electrolyte (SPE) fuel cell technology program
NASA Technical Reports Server (NTRS)
1978-01-01
Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.
Fuel cell system with combustor-heated reformer
Pettit, William Henry
2000-01-01
A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.
Pattern recognition monitoring of PEM fuel cell
Meltser, M.A.
1999-08-31
The CO-concentration in the H{sub 2} feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H{sub 2} fuel stream. 4 figs.
Pattern recognition monitoring of PEM fuel cell
Meltser, Mark Alexander
1999-01-01
The CO-concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and voltage behavior patterns from an auxiliary cell attached to the end of the stack. The auxiliary cell is connected to the same oxygen and hydrogen feed manifolds that supply the stack, and discharges through a constant load. Pattern recognition software compares the current and voltage patterns from the auxiliary cell to current and voltage signature determined from a reference cell similar to the auxiliary cell and operated under controlled conditions over a wide range of CO-concentrations in the H.sub.2 fuel stream.
Microbial‐based motor fuels: science and technology
Wackett, Lawrence P.
2008-01-01
Summary The production of biofuels via microbial biotechnology is a very active field of research. A range of fuel molecule types are currently under consideration: alcohols, ethers, esters, isoprenes, alkenes and alkanes. At the present, the major alcohol biofuel is ethanol. The ethanol fermentation is an old technology. Ongoing efforts aim to increase yield and energy efficiency of ethanol production from biomass. n‐Butanol, another microbial fermentation product, is potentially superior to ethanol as a fuel but suffers from low yield and unwanted side‐products currently. In general, biodiesel fuels consist of fatty acid methyl esters in which the carbon derives from plants, not microbes. A new biodiesel product, called microdiesel, can be generated in engineered bacterial cells that condense ethanol with fatty acids. Perhaps the best fuel type to generate from biomass would be biohydrocarbons. Microbes are known to produce hydrocarbons such as isoprenes, long‐chain alkenes and alkanes. The biochemical mechanisms of microbial hydrocarbon biosynthesis are currently under study. Hydrocarbons and minimally oxygenated molecules may also be produced by hybrid chemical and biological processes. A broad interest in novel fuel molecules is also driving the development of new bioinformatics tools to facilitate biofuels research. PMID:21261841
NASA Technical Reports Server (NTRS)
Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul
2010-01-01
The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.
Three generation production biotechnology of biomass into bio-fuel
NASA Astrophysics Data System (ADS)
Zheng, Chaocheng
2017-08-01
The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.
Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Michael A.
2014-10-01
These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU.more » Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.« less
NREL Fuels and Engines Research: Maximizing Vehicle Efficiency and
Laboratory, we analyze the effects of fuel chemistry on ignition and the potential emissions impacts. Our lab research. It can be used to investigate fuel chemistry effects on current and near-term engine technology , independent control allows for deeper interrogation of fuel effects on future-generation engine strategies
40 CFR 88.311-93 - Emissions standards for Inherently Low-Emission Vehicles.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) CLEAN-FUEL VEHICLES Clean-Fuel Fleet Program § 88.311-93 Emissions... fuel vapor emissions which are five or less total grams per test as measured by the current Federal... control devices (canister, purge system, etc.) related to control of evaporative emissions, the fuel vapor...
Fuel Cell Technology Status Analysis Project: Partnership Opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob; Gonder, Jeff
New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigationmore » systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lei; Holden, Jacob; Gonder, Jeffrey D
New technologies, such as connected and automated vehicles, have attracted more and more researchers for improving the energy efficiency and environmental impact of current transportation systems. The green routing strategy instructs a vehicle to select the most fuel-efficient route before the vehicle departs. It benefits the current transportation system with fuel saving opportunity through identifying the greenest route. This paper introduces an evaluation framework for estimating benefits of green routing based on large-scale, real-world travel data. The framework has the capability to quantify fuel savings by estimating the fuel consumption of actual routes and comparing to routes procured by navigationmore » systems. A route-based fuel consumption estimation model, considering road traffic conditions, functional class, and road grade is proposed and used in the framework. An experiment using a large-scale data set from the California Household Travel Survey global positioning system trajectory data base indicates that 31% of actual routes have fuel savings potential with a cumulative estimated fuel savings of 12%.« less
Solid oxide MEMS-based fuel cells
Jankowksi, Alan F.; Morse, Jeffrey D.
2007-03-13
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Solid polymer MEMS-based fuel cells
Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Pleasant Hill, CA
2008-04-22
A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.
Multi-tube arrangement for combustor and method of making the multi-tube arrangement
Ziminsky, Willy Steve [Simpsonville, SC
2012-07-31
A fuel injector tube includes a one piece, unitary, polygonal tube having an inlet end and an outlet end. The fuel injector tube further includes a fuel passage extending from the inlet end to the outlet end along a longitudinal axis of the polygonal tube, a plurality of air passages extending from the inlet end to the outlet end and surrounding the fuel passage, and a plurality of fuel holes. Each fuel hole connects an air passage with the fuel passage. The inlet end of the polygonal tube is formed into a fuel tube. A fuel injector includes a plurality of fuel injector tubes and a plate. The plurality of fuel tubes are connected to the plate adjacent the inlet ends of the plurality of fuel injector tubes.
NASA Astrophysics Data System (ADS)
Winijkul, E.; Bond, T. C.
2011-12-01
In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with current emission in residential sector can be estimated, based on the cleanest plausible fuels and stove availability.
NASA Technical Reports Server (NTRS)
Lin, K.-C.; Faeth, G. M.; Urban, D. L. (Technical Monitor)
2000-01-01
The structure and state relationships of laminar soot-free (permanently-blue) diffusion flames at various strain rates were studied experimentally using an opposed-jet configuration, motivated by the importance of soot-free hydrocarbon-fueled diffusion flames for many practical applications. Measurements of gas velocities, temperatures and compositions were carried out along the stagnation stream line. Flame conditions studied included propylene- and 1,3-butadiene-fueled opposed-jet diffusion flames having a stoichiometric mixture fractions of 0.7 and strain rates of 60-240 s (exp -1) at normal temperature and pressure. It was found that oxygen leakage to fuel-rich conditions and carbon monoxide leakage to fuel-lean conditions both increased as strain rates increased. Furthermore, increased strain rates caused increased fuel concentrations near the flame sheet, decreased peak gas temperatures, and decreased concentrations of carbon dioxide and water vapor throughout the flames. State relationships for major gas species and gas temperatures for these flames were found to exist over broad ranges of strain rates. In addition, current measurements, as well as previous measurements and predictions of ethylene-fueled permanently-blue diffusion flames, all having a stoichiometric mixture fraction of 0.7, were combined to establish generalized state relationships for permanently-blue diffusion flames for this stoichiometric mixture fraction. The combined measurements and predictions support relatively universal generalized state relationships for N2, CO2, H2O and fuel over a broad range of strain rates and fuel types. State relationships for O2 in the fuel-rich region, and for CO in the fuel-lean region, however, are functions of strain rate and fuel type. State relationships for H2 and temperature exhibit less universality, mainly due to the increased experimental uncertainties for these variables. The existence of state relationships for soot-free hydrocarbon-fueled diffusion flames provides potential for significant computational simplifications for modeling purposes in many instances, allowing for effects of finite-rate chemistry while avoiding time-consuming computations of Arrhenius expressions.
Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trammell, Michael P; Jolly, Brian C; Miller, James Henry
ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.