Operation of a cascade air conditioning system with two-phase loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yinshan; Wang, Jinliang; Zhao, Futao
A method of operating a heat transfer system includes starting operation of a first heat transfer fluid vapor/compression circulation loop including a fluid pumping mechanism, a heat exchanger for rejecting thermal energy from a first heat transfer fluid, and a heat absorption side of an internal heat exchanger. A first conduit in a closed fluid circulation loop circulates the first heat transfer fluid therethrough. Operation of a second two-phase heat transfer fluid circulation loop is started after starting operation of the first heat transfer fluid circulation loop. The second heat transfer fluid circulation loop transfers heat to the first heatmore » transfer fluid circulation loop through the internal heat exchanger and includes a heat rejection side of the internal heat exchanger, a liquid pump, and a heat exchanger evaporator. A second conduit in a closed fluid circulation loop circulates a second heat transfer fluid therethrough.« less
Cipolla, Thomas M [Katonah, NY; Colgan, Evan George [Chestnut Ridge, NY; Coteus, Paul W [Yorktown Heights, NY; Hall, Shawn Anthony [Pleasantville, NY; Tian, Shurong [Mount Kisco, NY
2011-12-20
A cooling apparatus, system and like method for an electronic device includes a plurality of heat producing electronic devices affixed to a wiring substrate. A plurality of heat transfer assemblies each include heat spreaders and thermally communicate with the heat producing electronic devices for transferring heat from the heat producing electronic devices to the heat transfer assemblies. The plurality of heat producing electronic devices and respective heat transfer assemblies are positioned on the wiring substrate having the regions overlapping. A heat conduit thermally communicates with the heat transfer assemblies. The heat conduit circulates thermally conductive fluid therethrough in a closed loop for transferring heat to the fluid from the heat transfer assemblies via the heat spreader. A thermally conductive support structure supports the heat conduit and thermally communicates with the heat transfer assemblies via the heat spreader transferring heat to the fluid of the heat conduit from the support structure.
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T.T.; Keller, J.O.
1987-07-10
A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.
Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling
NASA Technical Reports Server (NTRS)
Faghri, Amir
2005-01-01
In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which
Heat transfer unit and method for prefabricated vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David A.; Kesterson, Matthew R; Hardy, Bruce J.
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one ofmore » the plurality of peripheral rods.« less
Two part condenser for varying the rate of condensing and related method
Dobos, James G.
2007-12-11
A heat transfer apparatus, such as a condenser, is provided. The apparatus includes a first component with a first heat transfer element that has first component inlet and outlet ports through which a first fluid may pass. A second component is also included and likewise has a second heat transfer element with second component inlet and outlet ports to pass a second fluid. The first component has a body that can receive a third fluid for heat transfer with the first heat transfer element. The first and second components are releasably attachable with one another so that when attached both the first and second heat transfer elements effect heat transfer with the third fluid. Attachment and removal of the first and second components allows for the heat transfer rate of the apparatus to be varied. An associated method is also provided.
NASA Astrophysics Data System (ADS)
Ratto, Luca; Satta, Francesca; Tanda, Giovanni
2018-06-01
This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.
1992-01-01
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.
NASA Technical Reports Server (NTRS)
Davis, L. R. (Editor); Wilson, R. E.
1974-01-01
Recent theoretical and experimental studies in heat transfer and fluid mechanics, including some environmental protection investigations, are presented in a number of papers. Some of the topics covered include condensation heat transfer, a model of turbulent momentum and heat transfer at points of separation and reattachment, an explicit scheme for calculations of confined turbulent flows with heat transfer, heat transfer effects on a delta wing in subsonic flow, fluid mechanics of ocean outfalls, thermal plumes from industrial cooling water, a photochemical air pollution model for the Los Angeles air basin, and a turbulence model of diurnal variations in the planetary boundary layer. Individual items are announced in this issue.
Heating systems for heating subsurface formations
Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX
2011-04-26
Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.
Axial flow heat exchanger devices and methods for heat transfer using axial flow devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Systems and methods described herein are directed to rotary heat exchangers configured to transfer heat to a heat transfer medium flowing in substantially axial direction within the heat exchangers. Exemplary heat exchangers include a heat conducting structure which is configured to be in thermal contact with a thermal load or a thermal sink, and a heat transfer structure rotatably coupled to the heat conducting structure to form a gap region between the heat conducting structure and the heat transfer structure, the heat transfer structure being configured to rotate during operation of the device. In example devices heat may be transferredmore » across the gap region from a heated axial flow of the heat transfer medium to a cool stationary heat conducting structure, or from a heated stationary conducting structure to a cool axial flow of the heat transfer medium.« less
Acoustically enhanced heat exchange and drying apparatus
Bramlette, T. Tazwell; Keller, Jay O.
1989-01-01
A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.
1992-12-29
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamburello, David A.; McWilliams, Anthony J.; Hardy, Bruce J.
Vessel assemblies, heat transfer units for prefabricated vessels, and methods for heat transfer prefabricated vessel are provided. A heat transfer unit includes a central rod, and a plurality of peripheral rods surrounding the central rod and connected to the central rod. The plurality of peripheral rods are movable between a first collapsed position and a second bowed position, wherein in the second bowed position a midpoint of each of the plurality of peripheral rods is spaced from the central rod relative to in the first position. The heat transfer unit further includes a heat transfer element connected to one ofmore » the plurality of peripheral rods.« less
Experimental and Computational Investigations of Phase Change Thermal Energy Storage Canisters
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Kerslake, Thomas; Sokolov, Pavel; Tolbert, Carol
1996-01-01
Two sets of experimental data are examined in this paper, ground and space experiments, for cylindrical canisters with thermal energy storage applications. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: (1) Ground Experiments: the convection heat transfer is equally important to that of the radiation heat transfer; radiation heat transfer in the liquid is found to be more significant than that in the void; including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); generally, most of the heat flow takes place in the radial direction. (2) Space Experiments: radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); accordingly, the location and size of the void affects the performance considerably; including the radiation heat transfer in the void resulted in lower temperatures (about 40 K).
7 CFR 2902.54 - Heat transfer fluids.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Heat transfer fluids. 2902.54 Section 2902.54... Items § 2902.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants for use in...
FAST TRACK COMMUNICATION Heat transfer between graphene and amorphous SiO2
NASA Astrophysics Data System (ADS)
Persson, B. N. J.; Ueba, H.
2010-11-01
We study the heat transfer between graphene and amorphous SiO2. We include both the heat transfer from the area of real contact, and between the surfaces in the non-contact region. We consider the radiative heat transfer associated with the evanescent electromagnetic waves which exist outside of all bodies, and the heat transfer by the gas in the non-contact region. We find that the dominant contribution to the heat transfer results from the area of real contact, and the calculated value of the heat transfer coefficient is in good agreement with the value deduced from experimental data.
Bibliography on augmentation of convective heat and mass transfer-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.
1983-12-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performancemore » evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.« less
Bibliography on augmentation of convective heat and mass transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation ofmore » passive techniques. Patents are not included as they will be the subject of a future topical report.« less
Solid state lighting devices and methods with rotary cooling structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
Solid state lighting devices and methods for heat dissipation with rotary cooling structures are described. An example solid state lighting device includes a solid state light source, a rotating heat transfer structure in thermal contact with the solid state light source, and a mounting assembly having a stationary portion. The mounting assembly may be rotatably coupled to the heat transfer structure such that at least a portion of the mounting assembly remains stationary while the heat transfer structure is rotating. Examples of methods for dissipating heat from electrical devices, such as solid state lighting sources are also described. Heat dissipationmore » methods may include providing electrical power to a solid state light source mounted to and in thermal contact with a heat transfer structure, and rotating the heat transfer structure through a surrounding medium.« less
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
Heat exchanger with transpired, highly porous fins
Kutscher, Charles F.; Gawlik, Keith
2002-01-01
The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.
System and method for treatment of a medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surinder Prabhjot; Acharya, Harish Radhakrishna; Perry, Robert James
2017-05-23
A system and method for treatment of a medium is disclosed. The system includes a plurality of separator zones and a plurality of heat transfer zones. Each of the separator zone and the heat transfer zone among the plurality of separator zones and heat transfer zones respectively, are disposed alternatively in a flow duct. Further, each separator zone includes an injector device for injecting a sorbent into the corresponding separator zone. Within the corresponding separator zone, the injected sorbent is reacted with a gaseous medium flowing in the flow duct, so as to generate a reacted gaseous medium and amore » reacted sorbent. Further, each heat transfer zone exchanges heat between the reacted gaseous medium fed from the corresponding separator zone and a heat transfer medium.« less
doctoral student since 2007. Jason's area of expertise is heat and mass transfer, including the design , analysis, and testing of heat and mass transfer devices and processes. Research Interests Membrane Thermal energy storage Heat and mass transfer enhancements Combined cooling, heat, and power (CCHP
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.; Power, G. D.; Verdon, J. M.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. Heat transfer measurements were obtained using low conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient (incidence), first-stator/rotor axial spacing, Reynolds number, and relative circumferential position of the first and second stators. Aerodynamic measurements include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions and a examination of solutions of the unstead boundary layer equipment.
ERIC Educational Resources Information Center
Barnes, George
1991-01-01
Discusses the heat-transfer systems of different animals. Systems include heat conduction into the ground, heat transferred by convection, heat exchange in lizards, fish and polar animals, the carotid rete system, electromagnetic radiation from animals and people, and plant and animal fiber optics. (MDH)
Study of a high performance evaporative heat transfer surface
NASA Technical Reports Server (NTRS)
Saaski, E. W.; Hamasaki, R. H.
1977-01-01
An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.
Evaluation of generalized heat-transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Evaluation of generalized heat transfer coefficients in pilot AFBC units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.
Experimental data for heat transfer rates as obtained in a 0.209m/sup 2/ AFBC unit at the GFETC is examined in the light of the existing four correlations for heat transfer coefficient between an immersed staggered array of horizontal tubes and a gas-solid fluidized bed. The predicted values of heat transfer coefficient from the correlations proposed by Grewal and Bansal are found to be in good agreement with the experimental values of heat transfer coefficient when the contribution due to radiation is also included.
Thermally integrated staged methanol reformer and method
Skala, Glenn William; Hart-Predmore, David James; Pettit, William Henry; Borup, Rodney Lynn
2001-01-01
A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.
NASA Astrophysics Data System (ADS)
Liu, T. L.; Liu, W. R.; Xu, X. H.
2017-11-01
Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1988-01-05
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1988-01-01
A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.
Heat transfer enhancement by application of nano-powder
NASA Astrophysics Data System (ADS)
Mosavian, M. T. Hamed; Heris, S. Zeinali; Etemad, S. Gh.; Esfahany, M. Nasr
2010-09-01
In this investigation, laminar flow heat transfer enhancement in circular tube utilizing different nanofluids including Al2O3 (20 nm), CuO (50 nm), and Cu (25 nm) nanoparticles in water was studied. Constant wall temperature was used as thermal boundary condition. The results indicate enhancement of heat transfer with increasing nanoparticle concentrations, but an optimum concentration for each nanofluid suspension can be found. Based on the experimental results, metallic nanoparticles show better enhancement of heat transfer coefficient in comparison with oxide particles. The promotions of heat transfer due to utilizing nanoparticles are higher than the theoretical correlation prediction.
Stagnation-point Heat Transfer to Blunt Shapes in Hypersonic Flight, Including Effects of Yaw
NASA Technical Reports Server (NTRS)
Eggers, A J , Jr; Hansen, C Frederick; Cunningham, Bernard E
1958-01-01
An approximate theory is developed for predicting the rate of heat transfer to the stagnation region of blunt bodies in hypersonic flight. Attention is focused on the case where wall temperature is small compared to stagnation temperature. The theoretical heat-transfer rate at the stagnation point of a hemispherical body is found to agree with available experimental data. The effect of yaw on heat transfer to a cylindrical stagnation region is treated at some length, and it is predicted that large yaw should cause sizable reductions in heat-transfer rate.
NASA Technical Reports Server (NTRS)
Mckillop, A. A.; Baughn, J. W.; Dwyer, H. A.
1976-01-01
Major research advances in heat transfer and fluid dynamics are outlined, with particular reference to relevant energy problems. Of significant importance are such topics as synthetic fuels in combustion, turbulence models, combustion modeling, numerical methods for interacting boundary layers, and light-scattering diagnostics for gases. The discussion covers thermal convection, two-phase flow and boiling heat transfer, turbulent flows, combustion, and aerospace heat transfer problems. Other areas discussed include compressible flows, fluid mechanics and drag, and heat exchangers. Featured topics comprise heat and salt transfer in double-diffusive systems, limits of boiling heat transfer in a liquid-filled enclosure, investigation of buoyancy-induced flow stratification in a cylindrical plenum, and digital algorithms for dynamic analysis of a heat exchanger. Individual items are announced in this issue.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Blair, M. F.; Joslyn, H. D.
1986-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence on airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx 5X engine), ambient temperature, rotating turbine model configured in both single stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermcouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first-stator/rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained as part of the program include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Analytical results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations. The results are reported in four separate volumes, of which this is Volume 2: Heat Transfer Data Tabulation; 15 Percent Axial Spacing.
NASA Astrophysics Data System (ADS)
Koca, Aliihsan; Acikgoz, Ozgen; Çebi, Alican; Çetin, Gürsel; Dalkilic, Ahmet Selim; Wongwises, Somchai
2018-02-01
Investigations on heated ceiling method can be considered as a new research area in comparison to the common wall heating-cooling and cooled ceiling methods. In this work, heat transfer characteristics of a heated radiant ceiling system was investigated experimentally. There were different configurations for a single room design in order to determine the convective and radiative heat transfer rates. Almost all details on the arrangement of the test chamber, hydraulic circuit and radiant panels, the measurement equipment and experimental method including uncertainty analysis were revealed in detail indicating specific international standards. Total heat transfer amount from the panels were calculated as the sum of radiation to the unheated surfaces, convection to the air, and conduction heat loss from the backside of the panels. Integral expression of the view factors was calculated by means of the numerical evaluations using Matlab code. By means of this experimental chamber, the radiative, convective and total heat-transfer coefficient values along with the heat flux values provided from the ceiling to the unheated surrounding surfaces have been calculated. Moreover, the details of 28 different experimental case study measurements from the experimental chamber including the convective, radiative and total heat flux, and heat output results are given in a Table for other researchers to validate their theoretical models and empirical correlations.
NASA Technical Reports Server (NTRS)
Eaton, L. R. (Inventor)
1976-01-01
An improved heat transfer device particularly suited for use as an evaporator plate in a diffusion cloud chamber. The device is characterized by a pair of mutually spaced heat transfer plates, each being of a planar configuration, having a pair of opposed surfaces defining therebetween a heat pipe chamber. Within the heat pipe chamber, in contiguous relation with the pair of opposed surfaces, there is disposed a pair of heat pipe wicks supported in a mutually spaced relationship by a foraminous spacer of a planar configuration. A wick including a foraminous layer is contiguously related to the external surfaces of the heat transfer plates for uniformly wetting these surfaces.
Immiscible fluid: Heat of fusion heat storage system
NASA Technical Reports Server (NTRS)
Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.
1980-01-01
Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.
Mathematical modeling of high and low temperature heat pipes
NASA Technical Reports Server (NTRS)
Chi, S. W.
1971-01-01
Following a review of heat and mass transfer theory relevant to heat pipe performance, math models are developed for calculating heat-transfer limitations of high-temperature heat pipes and heat-transfer limitations and temperature gradient of low temperature heat pipes. Calculated results are compared with the available experimental data from various sources to increase confidence in the present math models. Complete listings of two computer programs for high- and low-temperature heat pipes respectively are included. These programs enable the performance to be predicted of heat pipes with wrapped-screen, rectangular-groove, or screen-covered rectangular-groove wick.
Nonlinear Transient Problems Using Structure Compatible Heat Transfer Code
NASA Technical Reports Server (NTRS)
Hou, Gene
2000-01-01
The report documents the recent effort to enhance a transient linear heat transfer code so as to solve nonlinear problems. The linear heat transfer code was originally developed by Dr. Kim Bey of NASA Largely and called the Structure-Compatible Heat Transfer (SCHT) code. The report includes four parts. The first part outlines the formulation of the heat transfer problem of concern. The second and the third parts give detailed procedures to construct the nonlinear finite element equations and the required Jacobian matrices for the nonlinear iterative method, Newton-Raphson method. The final part summarizes the results of the numerical experiments on the newly enhanced SCHT code.
NASA Technical Reports Server (NTRS)
Ealker, David H.; Deming, Glenn
1991-01-01
Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.
Numerical studies of convective heat transfer in an inclined semiannular enclosure
NASA Technical Reports Server (NTRS)
Wang, Lin-Wen; Yung, Chain-Nan; Chai, An-Ti; Rashidnia, Nasser
1989-01-01
Natural convection heat transfer in a two-dimensional differentially heated semiannular enclosure is studied. The enclosure is isothermally heated and cooled at the inner and outer walls, respectively. A commercial software based on the SIMPLER algorithm was used to simulate the velocity and temperature profiles. Various parameters that affect the momentum and heat transfer processes were examined. These parameters include the Rayleigh number, Prandtl number, radius ratio, and the angle of inclination. A flow regime extending from conduction-dominated to convection-dominated flow was examined. The computed results of heat transfer are presented as a function of flow parameter and geometric factors. It is found that the heat transfer rate attains a minimum when the enclosure is tilted about +50 deg with respect to the gravitational direction.
Heat pump system with selective space cooling
Pendergrass, J.C.
1997-05-13
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.
Heat pump system with selective space cooling
Pendergrass, Joseph C.
1997-01-01
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.
Analysis of buoyancy effect on fully developed laminar heat transfer in a rotating tube
NASA Technical Reports Server (NTRS)
Siegel, R.
1985-01-01
Laminar heat transfer is analyzed in a tube rotating about an axis perpendicular to the tube axis. The solution applies for flow that is either radially outward from the axis of rotation, or radially inward toward the axis of rotation. The conditions are fully developed, and there is uniform heat addition at the tube wall. The analysis is performed by expanding velocities and temperature in power series using the Taylor number as a perturbation parameter. Coriolis and buoyancy forces caused by tube rotation are included, and the solution is calculated through second-order terms. The secondary flow induced by the Coriolis terms always tends to increase the heat transfer coefficient; this effect can dominate for small wall heating. For radial inflow, buoyancy also tends to improve heat transfer. For radial outflow, however, buoyancy tends to reduce heat transfer; for large wall heating this effect can dominate, and there is a net reduction in heat transfer coefficient.
NASA Technical Reports Server (NTRS)
Eastman, G. Yale; Dussinger, Peter M.; Hartenstine, John R.
1994-01-01
Three modular heat-transfer components designed for use together or separately. Simple mechanical connections facilitate assembly of these and related heat-transfer components into cooling systems of various configurations, such as to cool laboratory equipment rearranged for different experiments. Components are clamp-on cold plate, cold plate attached to flexible heat pipe, and thermal-bus receptacle. Clamp-on cold plate moved to any convenient location for attachment of equipment cooled by it, then clamped onto thermal bus. Heat from equipment conducted through plate and into coolant. Thermal-bus receptacle integral with thermal bus. Includes part of thermal bus to which clamp-on cold plate attached, plus tapered socket into which condenser end of flexible heat pipe plugged. Thermal-bus receptacle includes heat-pipe wick structure using coolant in bus to enhance transfer of heat from cold plate.
Bennett, G.A.
1992-11-24
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.
Laser Measurement Of Convective-Heat-Transfer Coefficient
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.; Keith, Theo G., Jr.
1994-01-01
Coefficient of convective transfer of heat at spot on surface of wind-tunnel model computed from measurements acquired by developmental laser-induced-heat-flux technique. Enables non-intrusive measurements of convective-heat-transfer coefficients at many points across surfaces of models in complicated, three-dimensional, high-speed flows. Measurement spot scanned across surface of model. Apparatus includes argon-ion laser, attenuator/beam splitter electronic shutter infrared camera, and subsystem.
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Idar, E. S., III; Galanski, S. R.
1977-01-01
The theoretical heat-transfer distributions are compared with experimental heat-transfer distributions obtained in Tunnel B at AEDC using a 0.0175 scale model of the space shuttle orbiter configuration for which the first 80% of the windward surface was roughened by a simulated tile misalignment. The theoretical solutions indicate that thinning the boundary layer by surface cooling increased the nondimensionalized value of the local heat-transfer coefficient. Tile misalignment did not significantly affect the heat-transfer rate in regions where the boundary layer was either laminar or turbulent.
NASA Technical Reports Server (NTRS)
Izenson, Michael G.; Crowley, Christopher J.
2005-01-01
A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.
Predictive capabilities of series solutions for laminar free convection boundary layer heat transfer
NASA Technical Reports Server (NTRS)
Lin, F. N.; Chao, B. T.
1978-01-01
Various types of series solutions for predicting laminar, free-convection boundary-layer heat transfer over both isothermal and nonisothermal boundaries are reviewed. The methods include finite difference, Merk series, Blasius series, and Goertler series. Comparative results are presented for heat transfer over an isothermal, horizontal, elliptical cylinder in both slender and blunt configurations.
Numerical Analysis of Coolant Flow and Heat Transfer in ITER Diagnostic First Wall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, A.; Loesser, G.; Zhai, Y.
2015-07-24
We performed numerical simulations of the ITER Diagnostic First Wall (DFW) using ANSYS workbench. During operation DFW will include solid main body as well as liquid coolant. Thus thermal and hydraulic analysis of the DFW was performed using conjugated heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously fluid dynamics analysis was performed only in the liquid part. This approach includes interface between solid and liquid part of the systemAnalysis was performed using ANSYS CFX software. CFX software allows solution of heat transfer equations in solid and liquid part, and solution ofmore » the flow equations in the liquid part. Coolant flow in the DFW was assumed turbulent and was resolved using Reynolds averaged Navier-Stokes equations with Shear Stress Transport turbulence model. Meshing was performed using CFX method available within ANSYS. The data cloud for thermal loading consisting of volumetric heating and surface heating was imported into CFX Volumetric heating source was generated using Attila software. Surface heating was obtained using radiation heat transfer analysis. Our results allowed us to identify areas of excessive heating. Proposals for cooling channel relocation were made. Additional suggestions were made to improve hydraulic performance of the cooling system.« less
Undergraduate Laboratory on a Turbulent Impinging Jet
NASA Astrophysics Data System (ADS)
Ivanosky, Arnaud; Brezzard, Etienne; van Poppel, Bret; Benson, Michael
2017-11-01
An undergraduate thermal sciences laboratory exercise that includes both experimental fluid mechanics and heat transfer measurements of an impinging jet is presented. The flow field is measured using magnetic resonance velocimetry (MRV) of a water flow, while IR thermography is used in the heat transfer testing. Flow Reynolds numbers for both the heat transfer and fluid mechanics tests range from 20,000-50,000 based on the jet diameter for a fully turbulent flow condition, with target surface temperatures in the heat transfer test reaching a maximum of approximately 50 Kelvin. The heat transfer target surface is subject to a measured uniform Joule heat flux, a well-defined boundary condition that allows comparison to existing correlations. The MRV generates a 3-component 3-dimensional data set, while the IR thermography provides a 2-dimensional heat transfer coefficient (or Nusselt number) map. These data sets can be post-processed and compared to existing correlations to verify data quality, and the sets can be juxtaposed to understand how flow features drive heat transfer. The laboratory setup, data acquisition, and analysis procedures are described for the laboratory experience, which can be incorporated as fluid mechanics, experimental methods, and heat transfer courses
Heating production fluids in a wellbore
Orrego, Yamila; Jankowski, Todd A.
2016-07-12
A method for heating a production fluid in a wellbore. The method can include heating, using a packer fluid, a working fluid flowing through a first medium disposed in a first section of the wellbore, where the first medium transfers heat from the packer fluid to the working fluid. The method can also include circulating the working fluid into a second section of the wellbore through a second medium, where the second medium transfers heat from the working fluid to the production fluid. The method can further include returning the working fluid to the first section of the wellbore through the first medium.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, P.R.; McLennan, G.A.
1984-08-30
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Fast reactor power plant design having heat pipe heat exchanger
Huebotter, Paul R.; McLennan, George A.
1985-01-01
The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D.; Turknett, Jerry C.; Smith, Alvin
1989-01-01
The effects of enhancement devices on flow boiling heat transfer in circular coolant channels, which are heated over a fraction of their perimeters, are studied. The variations were examined in both the mean and local (axial, and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls or with both a twisted tape and spiral finned walls. Improvements were initiated in the present data reduction analysis. These efforts should lead to the development of heat transfer correlations which include effects of single side heat flux and enhancement device configuration. It is hoped that a stage will be set for the study of heat transfer and pressure drop in single sided heated systems under zero gravity conditions.
Institute for High Heat Flux Removal (IHHFR). Phases I, II, and III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, Ronald D.
2014-08-31
The IHHFR focused on interdisciplinary applications as it relates to high heat flux engineering issues and problems which arise due to engineering systems being miniaturized, optimized, or requiring increased high heat flux performance. The work in the IHHFR focused on water as a coolant and includes: (1) the development, design, and construction of the high heat flux flow loop and facility; (2) test section development, design, and fabrication; and, (3) single-side heat flux experiments to produce 2-D boiling curves and 3-D conjugate heat transfer measurements for single-side heated test sections. This work provides data for comparisons with previously developed andmore » new single-side heated correlations and approaches that address the single-side heated effect on heat transfer. In addition, this work includes the addition of single-side heated circular TS and a monoblock test section with a helical wire insert. Finally, the present work includes: (1) data base expansion for the monoblock with a helical wire insert (only for the latter geometry), (2) prediction and verification using finite element, (3) monoblock model and methodology development analyses, and (4) an alternate model development for a hypervapotron and related conjugate heat transfer controlling parameters.« less
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
NASA Technical Reports Server (NTRS)
Dring, R. P.; Joslyn, H. D.; Blair, M. F.
1987-01-01
A combined experimental and analytical program was conducted to examine the effects of inlet turbulence and airfoil heat transfer. The experimental portion of the study was conducted in a large-scale (approx. 5X engine), ambient temperature, rotating turbine model configured in both single-stage and stage-and-a-half arrangements. Heat transfer measurements were obtained using low-conductivity airfoils with miniature thermocouples welded to a thin, electrically heated surface skin. Heat transfer data were acquired for various combinations of low or high inlet turbulence intensity, flow coefficient, first stator-rotor axial spacing, Reynolds number and relative circumferential position of the first and second stators. Aerodynamic measurements obtained include distributions of the mean and fluctuating velocities at the turbine inlet and, for each airfoil row, midspan airfoil surface pressures and circumferential distributions of the downstream steady state pressures and fluctuating velocities. Results include airfoil heat transfer predictions produced using existing 2-D boundary layer computation schemes and an examination of solutions of the unsteady boundary layer equations.
Staged regenerative sorption heat pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1995-01-01
A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.
Volume-energy parameters for heat transfer to supercritical fluids
NASA Technical Reports Server (NTRS)
Kumakawa, A.; Niino, M.; Hendricks, R. C.; Giarratano, P. J.; Arp, V. D.
1986-01-01
Reduced Nusselt numbers of supercritical fluids from different sources were grouped by several volume-energy parameters. A modified bulk expansion parameter was introduced based on a comparative analysis of data scatter. Heat transfer experiments on liquefied methane were conducted under near-critical conditions in order to confirm the usefulness of the parameters. It was experimentally revealed that heat transfer characteristics of near-critical methane are similar to those of hydrogen. It was shown that the modified bulk expansion parameter and the Gibbs-energy parameter grouped the heat transfer data of hydrogen, oxygen and methane including the present data on near-critical methane. It was also indicated that the effects of surface roughness on heat transfer were very important in grouping the data of high Reynolds numbers.
Heat pump/refrigerator using liquid working fluid
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.
1982-01-01
A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.
Heat transfer between a heated plate and an impinging transient diesel spray
NASA Astrophysics Data System (ADS)
Arcoumanis, C.; Chang, J.-C.
1993-12-01
An experimental investigation was performed to determine the heat-transfer distribution in the vicinity of a transient diesel spray impinging on a heated flat plate. The spray prior to impingement was characterised in terms of simultaneous droplet sizes and velocities by phase-Doppler anemometry while during its impingement on the plate, which was heated at temperatures between 150 205°C, the instantaneous surface temperature and associated rates of wall heat transfer were monitored by fast response thermocouples. The parameters examined in this work included the distance between the nozzle and the wall surface, the radial distance from the impingement point, the injection frequency, the injected volume and the pre-impingement wall temperature. The results showed that the wall heat transfer rates are dependent on the spray characteristics prior to impingement; the higher the “velocity of arrival” of the droplet is, the higher the heat transfer. A correlation was thus developed for the instantaneous and spatially-resolved spray/wall heat transfer based on experimentally-determined Nusselt, Reynolds, Prandtl and Weber numbers over a wide range of test conditions.
Computer Code For Turbocompounded Adiabatic Diesel Engine
NASA Technical Reports Server (NTRS)
Assanis, D. N.; Heywood, J. B.
1988-01-01
Computer simulation developed to study advantages of increased exhaust enthalpy in adiabatic turbocompounded diesel engine. Subsytems of conceptual engine include compressor, reciprocator, turbocharger turbine, compounded turbine, ducting, and heat exchangers. Focus of simulation of total system is to define transfers of mass and energy, including release and transfer of heat and transfer of work in each subsystem, and relationship among subsystems. Written in FORTRAN IV.
Heat transfer and pressure drop for air flow through enhanced passages
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obot, N.T.; Esen, E.B.
1992-06-01
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less
Heat transfer and pressure drop for air flow through enhanced passages. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obot, N.T.; Esen, E.B.
1992-06-01
An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less
Jet-impingement heat transfer in gas turbine systems.
Han, B; Goldstein, R J
2001-05-01
A review of jet-impingement heat transfer in gas turbine systems is presented. Characteristics of the different flow regions for submerged jets--free jet, stagnation flow, and wall jet--are reviewed. Heat transfer characteristics of both single and multiple jets are discussed with consideration of the effects of important parameters relevant to gas turbine systems including curvature of surfaces, crossflow, angle of impact, and rotation.
Heat transfer enhancement with mixing vane spacers using the field synergy principle
NASA Astrophysics Data System (ADS)
Yang, Lixin; Zhou, Mengjun; Tian, Zihao
2017-01-01
The single-phase heat transfer characteristics in a PWR fuel assembly are important. Many investigations attempt to obtain the heat transfer characteristics by studying the flow features in a 5 × 5 rod bundle with a spacer grid. The field synergy principle is used to discuss the mechanism of heat transfer enhancement using mixing vanes according to computational fluid dynamics results, including a spacer grid without mixing vanes, one with a split mixing vane, and one with a separate mixing vane. The results show that the field synergy principle is feasible to explain the mechanism of heat transfer enhancement in a fuel assembly. The enhancement in subchannels is more effective than on the rod's surface. If the pressure loss is ignored, the performance of the split mixing vane is superior to the separate mixing vane based on the enhanced heat transfer. Increasing the blending angle of the split mixing vane improves heat transfer enhancement, the maximum of which is 7.1%. Increasing the blending angle of the separate mixing vane did not significantly enhance heat transfer in the rod bundle, and even prevented heat transfer at a blending angle of 50°. This finding testifies to the feasibility of predicting heat transfer in a rod bundle with a spacer grid by field synergy, and upon comparison with analyzed flow features only, the field synergy method may provide more accurate guidance for optimizing the use of mixing vanes.
Latent heat sink in soil heat flux measurements
USDA-ARS?s Scientific Manuscript database
The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...
Latent Heat in Soil Heat Flux Measurements
USDA-ARS?s Scientific Manuscript database
The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...
Bennett, Gloria A.
1992-01-01
A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.
NASA Astrophysics Data System (ADS)
Tian, Ran; Dai, Xiaoye; Wang, Dabiao; Shi, Lin
2018-06-01
In order to improve the prediction performance of the numerical simulations for heat transfer of supercritical pressure fluids, a variable turbulent Prandtl number (Prt) model for vertical upward flow at supercritical pressures was developed in this study. The effects of Prt on the numerical simulation were analyzed, especially for the heat transfer deterioration conditions. Based on the analyses, the turbulent Prandtl number was modeled as a function of the turbulent viscosity ratio and molecular Prandtl number. The model was evaluated using experimental heat transfer data of CO2, water and Freon. The wall temperatures, including the heat transfer deterioration cases, were more accurately predicted by this model than by traditional numerical calculations with a constant Prt. By analyzing the predicted results with and without the variable Prt model, it was found that the predicted velocity distribution and turbulent mixing characteristics with the variable Prt model are quite different from that predicted by a constant Prt. When heat transfer deterioration occurs, the radial velocity profile deviates from the log-law profile and the restrained turbulent mixing then leads to the deteriorated heat transfer.
Modeling the Performance of Water-Zeolite 13X Adsorption Heat Pump
NASA Astrophysics Data System (ADS)
Kowalska, Kinga; Ambrożek, Bogdan
2017-12-01
The dynamic performance of cylindrical double-tube adsorption heat pump is numerically analysed using a non-equilibrium model, which takes into account both heat and mass transfer processes. The model includes conservation equations for: heat transfer in heating/cooling fluids, heat transfer in the metal tube, and heat and mass transfer in the adsorbent. The mathematical model is numerically solved using the method of lines. Numerical simulations are performed for the system water-zeolite 13X, chosen as the working pair. The effect of the evaporator and condenser temperatures on the adsorption and desorption kinetics is examined. The results of the numerical investigation show that both of these parameters have a significant effect on the adsorption heat pump performance. Based on computer simulation results, the values of the coefficients of performance for heating and cooling are calculated. The results show that adsorption heat pumps have relatively low efficiency compared to other heat pumps. The value of the coefficient of performance for heating is higher than for cooling
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
Waste heat recovery system for recapturing energy after engine aftertreatment systems
Ernst, Timothy C.; Nelson, Christopher R.
2014-06-17
The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
Methods for heat transfer and temperature field analysis of the insulated diesel
NASA Technical Reports Server (NTRS)
Morel, T.; Blumberg, P. N.; Fort, E. F.; Keribar, R.
1984-01-01
Work done during phase 1 of a three-year program aimed at developing a comprehensive heat transfer and thermal analysis methodology oriented specifically to the design requirements of insulated diesel engines is reported. The technology developed in this program makes possible a quantitative analysis of the low heat rejection concept. The program is comprehensive in that it addresses all the heat transfer issues that are critical to the successful development of the low heat rejection diesel engine: (1) in-cylinder convective and radiative heat transfer; (2) cyclic transient heat transfer in thin solid layers at component surfaces adjacent to the combustion chamber; and (3) steady-state heat conduction in the overall engine structure. The Integral Technologies, Inc. (ITI) program is comprised of a set of integrated analytical and experimental tasks. A detailed review of the ITI program approach is provided, including the technical issues which underlie it and a summay of the methods that were developed.
Heat and Mass Transfer in an L Shaped Porous Medium
NASA Astrophysics Data System (ADS)
Salman Ahmed, N. J.; Azeem; Yunus Khan, T. M.
2017-08-01
This article is an extension to the heat transfer in L-shaped porous medium by including the mass diffusion. The heat and mass transfer in the porous domain is represented by three coupled partial differential equations representing the fluid movement, energy transport and mass transport. The equations are converted into algebraic form of equations by the application of finite element method that can be conveniently solved by matrix method. An iterative approach is adopted to solve the coupled equations by setting suitable convergence criterion. The results are discussed in terms of heat transfer characteristics influenced by physical parameters such as buoyancy ratio, Lewis number, Rayleigh number etc. It is found that these physical parameters have significant effect on heat and mass transfer behavior of L-shaped porous medium.
NASA Astrophysics Data System (ADS)
Chen, H.; Hu, C.; Chen, G.; Zhang, Q.
2017-12-01
Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.
Surface temperature/heat transfer measurement using a quantitative phosphor thermography system
NASA Technical Reports Server (NTRS)
Buck, G. M.
1991-01-01
A relative-intensity phosphor thermography technique developed for surface heating studies in hypersonic wind tunnels is described. A direct relationship between relative emission intensity and phosphor temperature is used for quantitative surface temperature measurements in time. The technique provides global surface temperature-time histories using a 3-CCD (Charge Coupled Device) video camera and digital recording system. A current history of technique development at Langley is discussed. Latest developments include a phosphor mixture for a greater range of temperature sensitivity and use of castable ceramics for inexpensive test models. A method of calculating surface heat-transfer from thermal image data in blowdown wind tunnels is included in an appendix, with an analysis of material thermal heat-transfer properties. Results from tests in the Langley 31-Inch Mach 10 Tunnel are presented for a ceramic orbiter configuration and a four-inch diameter hemisphere model. Data include windward heating for bow-shock/wing-shock interactions on the orbiter wing surface, and a comparison with prediction for hemisphere heating distribution.
Applications of Laser Diagnostics
2005-03-01
Heat Transfer and Thermal Management of PDE . . . . 39 5.1.2 Application of Optical and Numerical Diagnostic Methods to PDE...in Reno, NV. The paper is included in the Appendix. 5.1.1.16 Heat Transfer and Thermal Management in PDE The unsteady nature of the PDE cycle...January 2003, Reno, NV. 57 “Heat Transfer and Thermal Management in a Pulsed Detonation Engine,” J. Hoke, R. Bradley, and F. Schauer, AIAA Paper No
Building an Understanding of Heat Transfer Concepts in Undergraduate Chemical Engineering Courses
ERIC Educational Resources Information Center
Nottis, Katharyn E. K.; Prince, Michael J.; Vigeant, Margot A.
2010-01-01
Understanding the distinctions among heat, energy and temperature can be difficult for students at all levels of instruction, including those in engineering. Misconceptions about heat transfer have been found to persist, even after students successfully complete relevant coursework. New instructional methods are needed to address these…
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred
1988-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Pumped two-phase heat transfer loop
NASA Technical Reports Server (NTRS)
Edelstein, Fred (Inventor)
1987-01-01
A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.
Thermal management systems and methods
Gering, Kevin L.; Haefner, Daryl R.
2006-12-12
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Stagnation Region Heat Transfer Augmentation at Very High Turbulence Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ames, Forrest; Kingery, Joseph E.
A database for stagnation region heat transfer has been extended to include heat transfer measurements acquired downstream from a new high intensity turbulence generator. This work was motivated by gas turbine industry heat transfer designers who deal with heat transfer environments with increasing Reynolds numbers and very high turbulence levels. The new mock aero-combustor turbulence generator produces turbulence levels which average 17.4%, which is 37% higher than the older turbulence generator. The increased level of turbulence is caused by the reduced contraction ratio from the liner to the exit. Heat transfer measurements were acquired on two large cylindrical leading edgemore » test surfaces having a four to one range in leading edge diameter (40.64 cm and 10.16 cm). Gandvarapu and Ames [1] previously acquired heat transfer measurements for six turbulence conditions including three grid conditions, two lower turbulence aero-combustor conditions, and a low turbulence condition. The data are documented and tabulated for an eight to one range in Reynolds numbers for each test surface with Reynolds numbers ranging from 62,500 to 500,000 for the large leading edge and 15,625 to 125,000 for the smaller leading edge. The data show augmentation levels of up to 136% in the stagnation region for the large leading edge. This heat transfer rate is an increase over the previous aero-combustor turbulence generator which had augmentation levels up to 110%. Note, the rate of increase in heat transfer augmentation decreases for the large cylindrical leading edge inferring only a limited level of turbulence intensification in the stagnation region. The smaller cylindrical leading edge shows more consistency with earlier stagnation region heat transfer results correlated on the TRL (Turbulence, Reynolds number, Length scale) parameter. The downstream regions of both test surfaces continue to accelerate the flow but at a much lower rate than the leading edge. Bypass transition occurs in these regions providing a useful set of data to ground the prediction of transition onset and length over a wide range of Reynolds numbers and turbulence intensity and scales.« less
Comparison of different bioheat transfer models for assessment of burns injuries
NASA Astrophysics Data System (ADS)
Łapka, Piotr; Furmański, Piotr; Wiśniewski, Tomasz S.
2016-12-01
Two bioheat transfer models i.e.: the classical Pennes model and a more realistic two-equation model which accounted for blood vessel structure in the skin as well as heat transfer in the tissue and arteria blood were coupled with heat and mass transfer model in the protective multilayer garment. The clothing model included conductive-radiative heat transfer with water vapor diffusion in pores and air gaps as well as sorption and desorption of water in fibers. Thermal radiation was modeled rigorously e.g.: both the tissue and fabrics were assumed non-gray, absorbing, emitting and anisotropically scattering. Additionally different refractive indices of fabrics, air and tissue and resulting optical phenomena at separating interfaces were accounted for. Both bioheat models were applied for predicting skin temperature distributions and possibility of burns for different exposition times and radiative heat fluxes incident on external surface of the protective garment. Performed analyses revealed that heat transfer in the skin subjected to high heat flux is independent of the blood vessel structure.
Design of an Improved Heater Array to Measure Microscale Wall Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; Chng, Choon Ping; Kalkur, T. S.
1996-01-01
An improved array of microscale heaters is being developed to measure the heat transfer coefficient at many points underneath individual bubbles during boiling as a function of space and time. This heater array enables the local heat transfer from a surface during the bubble growth and departure process to be measured with very high temporal and spatial resolution, and should allow better understanding of the boiling heat transfer mechanisms by pin-pointing when and where in the bubble departure cycle large amounts of wall heat transfer occur. Such information can provide much needed data regarding the important heat transfer mechanisms during the bubble departure cycle, and can serve as benchmarks to validate many of the analytical and numerical models used to simulate boiling. The improvements to the heater array include using a silicon-on-quartz substrate to reduce thermal cross-talk between the heaters, decreased space between the heaters, increased pad sizes on the heaters, and progressive heater sizes. Some results using the present heater array are discussed.
Energy efficient data center liquid cooling with geothermal enhancement
Chainer, Timothy J.; Parida, Pritish R.
2017-11-07
A data center cooling system is operated in a first mode, and has an indoor portion wherein heat is absorbed from components in the data center by a heat transfer fluid, and an outdoor heat exchanger portion and a geothermal heat exchanger portion. The first mode includes ambient air cooling of the heat transfer fluid in the outdoor heat exchanger portion and/or geothermal cooling of the heat transfer fluid in the geothermal heat exchanger portion. Based on an appropriate metric, a determination is made that a switch should be made from the first mode to a second mode; and, in response, the data center cooling system is switched to the second mode. The second mode is different than the first mode.
Two Experiments for Estimating Free Convection and Radiation Heat Transfer Coefficients
ERIC Educational Resources Information Center
Economides, Michael J.; Maloney, J. O.
1978-01-01
This article describes two simple undergraduate heat transfer experiments which may reinforce a student's understanding of free convection and radiation. Apparatus, experimental procedure, typical results, and discussion are included. (Author/BB)
Chiu, Rong-Shi Paul; Hasz, Wayne Charles; Johnson, Robert Alan; Lee, Ching-Pang; Abuaf, Nesim
2002-01-01
An annular turbine shroud separates a hot gas path from a cooling plenum containing a cooling medium. Bumps are cast in the surface on the cooling side of the shroud. A surface coating overlies the cooling side surface of the shroud, including the bumps, and contains cooling enhancement material. The surface area ratio of the cooling side of the shroud with the bumps and coating is in excess of a surface area ratio of the cooling side surface with bumps without the coating to afford increased heat transfer across the element relative to the heat transfer across the element without the coating.
NASA Technical Reports Server (NTRS)
Khattar, Mukesh K. (Inventor)
1990-01-01
The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.
Review of heat transfer problems associated with magnetically-confined fusion reactor concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, M.A.; Werner, R.W.; Carlson, G.A.
1976-04-01
Conceptual design studies of possible fusion reactor configurations have revealed a host of interesting and sometimes extremely difficult heat transfer problems. The general requirements imposed on the coolant system for heat removal of the thermonuclear power from the reactor are discussed. In particular, the constraints imposed by the fusion plasma, neutronics, structure and magnetic field environment are described with emphasis on those aspects which are unusual or unique to fusion reactors. Then the particular heat transfer characteristics of various possible coolants including lithium, flibe, boiling alkali metals, and helium are discussed in the context of these general fusion reactor requirements.more » Some specific areas where further experimental and/or theoretical work is necessary are listed for each coolant along with references to the pertinent research already accomplished. Specialized heat transfer problems of the plasma injection and removal systems are also described. Finally, the challenging heat transfer problems associated with the superconducting magnets are reviewed, and once again some of the key unsolved heat transfer problems are enumerated.« less
Heat transfer and flow friction correlations for perforated plate matrix heat exchangers
NASA Astrophysics Data System (ADS)
Ratna Raju, L.; Kumar, S. Sunil; Chowdhury, K.; Nandi, T. K.
2017-02-01
Perforated plate matrix heat exchangers (MHE) are constructed of high conductivity perforated plates stacked alternately with low conductivity spacers. They are being increasingly used in many cryogenic applications including Claude cycle or Reversed Brayton cycle cryo-refrigerators and liquefiers. Design of high NTU (number of (heat) transfer unit) cryogenic MHEs requires accurate heat transfer coefficient and flow friction factor. Thermo-hydraulic behaviour of perforated plates strongly depends on the geometrical parameters. Existing correlations, however, are mostly expressed as functions of Reynolds number only. This causes, for a given configuration, significant variations in coefficients from one correlation to the other. In this paper we present heat transfer and flow friction correlations as functions of all geometrical and other controlling variables. A FluentTM based numerical model has been developed for heat transfer and pressure drop studies over a stack of alternately arranged perforated plates and spacers. The model is validated with the data from literature. Generalized correlations are obtained through regression analysis over a large number of computed data.
Mathematical Model of Two Phase Flow in Natural Draft Wet-Cooling Tower Including Flue Gas Injection
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2016-03-01
The previously developed model of natural draft wet-cooling tower flow, heat and mass transfer is extended to be able to take into account the flow of supersaturated moist air. The two phase flow model is based on void fraction of gas phase which is included in the governing equations. Homogeneous equilibrium model, where the two phases are well mixed and have the same velocity, is used. The effect of flue gas injection is included into the developed mathematical model by using source terms in governing equations and by using momentum flux coefficient and kinetic energy flux coefficient. Heat and mass transfer in the fill zone is described by the system of ordinary differential equations, where the mass transfer is represented by measured fill Merkel number and heat transfer is calculated using prescribed Lewis factor.
Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube
NASA Astrophysics Data System (ADS)
Duval, W. M. B.
The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.
NASA Astrophysics Data System (ADS)
Bunker, R. S.; Metzger, D. E.; Wittig, S.
1990-06-01
Detailed radial heat-transfer coefficient distributions applicable to the cooling of disk-cavity regions of gas turbines are obtained experimentally from local heat-transfer data on both the rotating and stationary surfaces of a parallel-geometry disk-cavity system. Attention is focused on the hub injection of a coolant over a wide range of parameters including disk rotational Reynolds numbers of 200,000 to 50,000, rotor/stator spacing-to-disk ratios of 0.025 to 0.15, and jet mass flow rates between 0.10 and 0.40 times the turbulent pumped flow rate of a free disk. It is shown that rotor heat transfer exhibits regions of impingement and rotational domination with a transition region between, while stator heat transfer displays flow reattachment and convection regions with an inner recirculation zone.
NASA Astrophysics Data System (ADS)
Timofeev, D. V.; Malyavina, E. G.
2017-11-01
The subject of the investigation was to find out the influence of heat pump operation in summer on its function in winter. For this purpose a mathematical model of a ground coupled heat pump system has been developed and programmed. The mathematical model of a system ground heat exchanger uses the finite difference method to describe the heat transfer in soil and the analytical method to specify the heat transfer in the U-tubes heat exchanger. The thermal diffusivity by the heat transfer in the soil changes during gradual freezing of the pore moisture and thus slows soil freezing. The mathematical model of a heat pump includes the description of a scroll compressor and the simplified descriptions of the evaporator and condenser. The analysis showed that heating during the cold season and cooling in the warm season affect the average heat transfer medium temperature in the soil loop in the winter season. It has been also showed that the degree of this effect depends on the clay content in the soil.
Capillary condenser/evaporator
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A. (Inventor)
2010-01-01
A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.
Natural convection of Al2O3-water nanofluid in a wavy enclosure
NASA Astrophysics Data System (ADS)
Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.
2017-06-01
Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat transfer medium and the effects of changing geometrical parameters, which will help in developing novel geometries with enhanced and controlled heat-transfer for solar collectors, electronic cooling, and food processing industries.
Experimental investigation of heat transfer characteristics of guar-based polymer solutions and gels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azouz, I.; Vinod, P.S.; Shah, S.N.
1996-12-31
An experimental investigation of the heat transfer characteristics of hydraulic fracturing fluids was conducted at the Fracturing Fluid Characterization Facility (FFCF) of the University of Oklahoma. The facility is equipped with a high pressure fracture simulator, coiled tubing fluid pre-conditioning system, and a full-scale, counter-current, double pipe heat exchanger. The fluids investigated include non-crosslinked and borate-crosslinked guar gum and hydroxypropyl guar (HPG). Results were also obtained for water and were used as a basis for comparison. The effects of flow rate, operating temperature, pH, and various levels of shear pre-conditioning, on the heat transfer behavior of the test fluids weremore » investigated. Results show a significant difference between the heat transfer coefficient of the pure solvent (water) and those of the polymer solutions tested. While all polymer solutions tested exhibited lower heat transfer coefficients than that of the pure solvent, crosslinking appears to enhance the heat transfer characteristics of the polymer fluids. It was also observed that shear preconditioning does not seem to have a significant effect on the heat transfer coefficient of the crosslinked gels. These findings are of great interest to the industry, especially to the petroleum industry where these fluids are commonly used during hydraulic fracturing of hydrocarbon reservoirs.« less
NASA Astrophysics Data System (ADS)
Lei, Yuchuan; Chen, Zhenqian; Shi, Juan
2017-12-01
Numerical simulations of condensation heat transfer of R134a in curved triangle microchannels with various curvatures are proposed. The model is established on the volume of fluid (VOF) approach and user-defined routines which including mass transfer at the vapor-liquid interface and latent heat. Microgravity operating condition is assumed in order to highlight the surface tension. The predictive accuracy of the model is assessed by comparing the simulated results with available correlations in the literature. Both an increased mass flux and the decreased hydraulic diameter could bring better heat transfer performance. No obvious effect of the wall heat flux is observed in condensation heat transfer coefficient. Changes in geometry and surface tension lead to a reduction of the condensate film thickness at the sides of the channel and accumulation of the condensate film at the corners of the channel. Better heat transfer performance is obtained in the curved triangle microchannels over the straight ones, and the performance could be further improved in curved triangle microchannels with larger curvatures. The minimum film thickness where most of the heat transfer process takes place exists near the corners and moves toward the corners in curved triangle microchannels with larger curvatures.
Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A
2014-11-15
Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. Copyright © 2014 Elsevier B.V. All rights reserved.
Heat transfer and hydrodynamic analysis in an industrial circulating fluidized bed boiler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maggio, T.; Piedfer, O.; Jestin, L.
In order to scale-up Circulating Fluidized Bed boilers (up to 600 MWe), Electricite de France has initiated a Research and Development program including: laboratory work on mock-up, numerical modeling and on-site tests in the 125 MWe CFB Emile Huchet plant. This paper is devoted to on-site measurements analysis in two main components of this industrial unit: the external fluidized bed heat exchangers and the backpass. This study particularly concerns hydrodynamics and heat transfer with the final target of developing a physical model of a CFB unit. The first part of this paper describes the specific instrumentation set up on externalmore » fluidized bed heat exchangers. The comparison between experimental data collected on these heat exchangers and the theoretical heat transfer models mainly used, shows a great difference about the value of the overall heat transfer coefficient. To explain this discrepancy, the particle flow pattern initially used in the thermal balance calculation is modified and a solid bypass is introduced. The analysis of the by-pass behavior, connected to the geometrical and operating parameters of each exchanger, confirms the particle flow pattern suggested. The second part of this paper shows an analysis of the specific measurements set up on the backpass to study heat transfer. The physical model of heat transfer used to assess the importance of each convection, radiation and conduction components is presented. This model allows one to assess the influence of heat exchangers design on heat transfer. Moreover, the analysis of heat transfer variations during sweeping cycles gives the amount of dust that is removed from the heat exchanger tubes. These results are used to evaluate the amount of power that can be recovered by optimizing both design and sweeping of the backpass.« less
Uncertainty Analysis on Heat Transfer Correlations for RP-1 Fuel in Copper Tubing
NASA Technical Reports Server (NTRS)
Driscoll, E. A.; Landrum, D. B.
2004-01-01
NASA is studying kerosene (RP-1) for application in Next Generation Launch Technology (NGLT). Accurate heat transfer correlations in narrow passages at high temperatures and pressures are needed. Hydrocarbon fuels, such as RP-1, produce carbon deposition (coke) along the inside of tube walls when heated to high temperatures. A series of tests to measure the heat transfer using RP-1 fuel and examine the coking were performed in NASA Glenn Research Center's Heated Tube Facility. The facility models regenerative cooling by flowing room temperature RP-1 through resistively heated copper tubing. A Regression analysis is performed on the data to determine the heat transfer correlation for Nusselt number as a function of Reynolds and Prandtl numbers. Each measurement and calculation is analyzed to identify sources of uncertainty, including RP-1 property variations. Monte Carlo simulation is used to determine how each uncertainty source propagates through the regression and an overall uncertainty in predicted heat transfer coefficient. The implications of these uncertainties on engine design and ways to minimize existing uncertainties are discussed.
Methods of forming thermal management systems and thermal management methods
Gering, Kevin L.; Haefner, Daryl R.
2012-06-05
A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Radiative heat transfer in the extreme near field.
Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod
2015-12-17
Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.
Heat Transfer Phenomena in Concentrating Solar Power Systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armijo, Kenneth Miguel; Shinde, Subhash L.
Concentrating solar power (CSP) utilizes solar thermal energy to drive a thermal power cycle for the generation of electricity. CSP systems are facilitated as large, centralized power plants , such as power towers and trough systems, to take advantage of ec onomies of scale through dispatchable thermal energy storage, which is a principle advantage over other energy generation systems . Additionally, the combination of large solar concentration ratios with high solar conversion efficiencies provides a strong o pportunity of employment of specific power cycles such as the Brayton gas cycle that utilizes super critical fluids such as supercritical carbon dioxidemore » (s CO 2 ) , compared to other sola r - fossil hybrid power plants. A comprehensive thermal - fluids examination is provided by this work of various heat transfer phenomena evident in CSP technologies. These include sub - systems and heat transfer fundamental phenomena evident within CSP systems , which include s receivers, heat transfer fluids (HTFs), thermal storage me dia and system designs , thermodynamic power block systems/components, as well as high - temperature materials. This work provides literature reviews, trade studies, and phenomenological comparisons of heat transfer media (HTM) and components and systems, all for promotion of high performance and efficient CSP systems. In addition, f urther investigations are also conducted that provide advanced heat transfer modeling approaches for gas - particle receiver systems , as well as performance/efficiency enhancement re commendations, particularly for solarized supercritical power systems .« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, W; Hein, D
1986-09-01
The influence of the wetting state of a heated surface on heat transfer and pressure loss in an evaporator tube was investigated for a parameter range occurring in fossil-fired steam generators. Included in the analysis are quantities which determine the wetting state in steady and transient flow. The experimental work consists of the following: Occurrence of critical heat flux (CHF) and post-CHF heat transfer in a vertical upflow evaporator tube; influence of pressure and enthalpy transients on heat transfer in the unwetted region; influence of pipe orientation on heat transfer; and two phase flow pressure loss in wetted and unwettedmore » region. Based on these experiments a method of predicting CHF for a vertical upflow evaporator tube was developed. The heat transfer in the unwetted region was newly formulated taking into account thermal nonequilibrium between the water and steam phases. Wall temperature excursions during pressure and enthalpy transients are interpreted with the help of the boiling curve and the Leidenfrost phenomenon. A method is developed by means of which it is possible to determine the influence of the pipe orientation on the location of the boiling crisis as well as on the heat transfer in the unwetted region. The influence of the wetting state of the heated surface on the two phase flow pressure loss is interpreted as ''Wall effect'' and is calculated using a simplified computer model. 68 refs., 83 figs.« less
Best Practices in Overset Grid Generation
NASA Technical Reports Server (NTRS)
Gomez, Reynaldo J., III
2002-01-01
Accurate geometry + high quality grids are necessary for an accurate solution. Other requirements include a) Verified/validated solver with appropriate physics b) Convergence criteria consistent with application: 1) Aerodynamics - forces and moments; 2) Heat transfer - maximum and minimum heat transfer coefficients.
Overview of NASA Glenn Research Center Programs in Aero-Heat Transfer and Future Needs
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
2002-01-01
This presentation concentrates on an overview of the NASA Glenn Research Center and the projects that are supporting Turbine Aero-Heat Transfer Research. The principal areas include the Ultra Efficient Engine Technology (UEET) Project, the Advanced Space Transportation Program (ASTP) Revolutionary Turbine Accelerator (RTA) Turbine Based Combined Cycle (TBCC) project, and the Propulsion & Power Base R&T - Smart Efficient Components (SEC), and Revolutionary Aeropropulsion Concepts (RAC) Projects. In addition, highlights are presented of the turbine aero-heat transfer work currently underway at NASA Glenn, focusing on the use of the Glenn-HT Navier- Stokes code as the vehicle for research in turbulence & transition modeling, grid topology generation, unsteady effects, and conjugate heat transfer.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.; Johnson, C. B.
1972-01-01
The results are presented of a wind tunnel test program to determine aerodynamic heat transfer distributions on delta body and straight body transition models of the space shuttle. Heat transfer rates were determined by the phase-change paint technique on Stycast and RTV models using Tempilag as the surface temperature indicator. The nominal test conditions were: Mach 8, length Reynolds numbers of 5 million and 7.4 million, and angles of attack of 20, 40, and 60 deg. Model details, test conditions, and reduced heat transfer data are included. Data reduction of the phase-change paint photographs was performed by utilizing a new technique.
Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.; Goblirsch, G.
Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand and limestone are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125 K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient. The predicted values of heat transfer coefficient from the correlations proposed by Grewal andmore » Bansal et al. are found to be within + or - 25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included.« less
Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer
NASA Astrophysics Data System (ADS)
Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr
2017-12-01
This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.
Flow structure and heat exchange analysis in internal cooling channel of gas turbine blade
NASA Astrophysics Data System (ADS)
Szwaba, Ryszard; Kaczynski, Piotr; Doerffer, Piotr; Telega, Janusz
2016-08-01
This paper presents the study of the flow structure and heat transfer, and also their correlations on the four walls of a radial cooling passage model of a gas turbine blade. The investigations focus on heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of radial cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include corner fillet, ribs with fillet radii and special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which possesses very realistic features.
Effectiveness of a multi-channel volumetric air receiver for a solar power tower
NASA Astrophysics Data System (ADS)
Jung, Eui Guk; Boo, Joon Hong; Kang, Yong Heak; Kim, Nak Hoon
2013-08-01
In this study, the heat transfer performance of a multi-channel volumetric air receiver for a solar power tower was numerically analyzed. The governing equations, including the solar radiation heat flux, conduction, convection and radiation heat transfer for a single channel, were solved on the basis of valid related references and a methodology that can predict the temperature distribution of the receiver wall and the heat transfer fluid for specific dimensions and input conditions. Furthermore, a mathematical model of the effectiveness of the receiver was derived from an analysis of the temperature profiles of the wall and the heat transfer fluid. The receiver effectiveness as an appropriate criterion to assess economic feasibility regarding geometric size was investigated, as it would be applied to the design process of the receiver. The main parameters for the thermal performance simulations described in this paper are the air mass flow rate, receiver length and the influence of these parameters on the heat transfer performance from the viewpoint of receiver efficiency and effectiveness.
Effects of Freestream Turbulence on Turbine Blade Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, Robert J.; Giel, Paul W.; Ames, Forrest E.
2004-01-01
Experiments have shown that moderate turbulence levels can nearly double turbine blade stagnation region heat transfer. Data have also shown that heat transfer is strongly affected by the scale of turbulence as well as its level. In addition to the stagnation region, turbulence is often seen to increase pressure surface heat transfer. This is especially evident at low to moderate Reynolds numbers. Vane and rotor stagnation region, and vane pressure surface heat transfer augmentation is often seen in a pre-transition environment. Accurate predictions of transition and relaminarization are critical to accurately predicting blade surface heat transfer. An approach is described which incorporates the effects of both turbulence level and scale into a CFD analysis. The model is derived from experimental data for cylindrical and elliptical leadng edges. Results using this model are compared to experimental data for both vane and rotor geometries. The comparisons are made to illustrate that using a model which includes the effects of turbulence length scale improves agreement with data, and to illustrate where improvements in the modeling are needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert
2002-08-01
A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numericalmore » modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.« less
Probe Measures Fouling As In Heat Exchangers
NASA Technical Reports Server (NTRS)
Marner, Wilbur J.; Macdavid, Kenton S.
1990-01-01
Combustion deposits reduce transfer of heat. Instrument measures fouling like that on gas side of heat exchanger in direct-fired boiler or heat-recovery system. Heat-flux probe includes tube with embedded meter in outer shell. Combustion gases flow over probe, and fouling accumulates on it, just as fouling would on heat exchanger. Embedded heat-flow meter is sandwich structure in which thin Chromel layers and middle alloy form thermopile. Users determine when fouling approaches unacceptable levels so they schedule cleaning and avoid decreased transfer of heat and increased drop in pressure fouling causes. Avoids cost of premature, unnecessary maintenance.
NASA Technical Reports Server (NTRS)
Morel, T.; Kerlbar, R.; Fort, E. F.; Blumberg, P. N.
1985-01-01
This report describes work done during Phase 2 of a 3 year program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. During Phase 2, radiation heat transfer model was developed, which accounts for soot formation and burn up. A methodology was developed for carrying out the multi-dimensional finite-element heat conduction calculations within the framework of thermodynamic cycle codes. Studies were carried out using the integrated methodology to address key issues in low heat rejection engines. A wide ranging design analysis matrix was covered, including a variety of insulation strategies, recovery devices and base engine configurations. A single cylinder Cummins engine was installed at Purdue University, and it was brought to a full operational status. The development of instrumentation was continued, concentrating on radiation heat flux detector, total heat flux probe, and accurate pressure-crank angle data acquisition.
Numerical Modeling of Conjugate Heat Transfer in Fluid Network
NASA Technical Reports Server (NTRS)
Majumdar, Alok
2004-01-01
Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1979-01-01
A computer program which can distinguish between different receiver designs, and predict transient performance under variable solar flux, or ambient temperatures, etc. has a basic structure that fits a general heat transfer problem, but with specific features that are custom-made for solar receivers. The code is written in MBASIC computer language. The methodology followed in solving the heat transfer problem is explained. A program flow chart, an explanation of input and output tables, and an example of the simulation of a cavity-type solar receiver are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, Karsten
2005-03-22
Leakage of CO2 from a hypothetical geologic storage reservoir along an idealized fault zone has been simulated, including transitions between supercritical, liquid, and gaseous CO2. We find strong non-isothermal effects due to boiling and Joule-Thomson cooling of expanding CO2. Leakage fluxes are limited by limitations in conductive heat transfer to the fault zone. The interplay between multiphase flow and heat transfer effects produces non-monotonic leakage behavior.
Enhancement of heat transfer rate on phase change materials with thermocapillary flows
NASA Astrophysics Data System (ADS)
Madruga, Santiago; Mendoza, Carolina
2017-04-01
We carry out simulations of the melting process on the phase change material n-octadecane in squared geometries in the presence of natural convection and including thermocapillary effects. We show how the introduction of thermocapillary effects enhances the heat transfer rate, being the effect especially relevant for small Bond numbers. Thus induction of Marangoni flows results in a useful mechanism to enhance the typical slow heat transfer rate of paraffin waxes in applications of energy storage or passive control management.
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
NASA Astrophysics Data System (ADS)
Rezaei, Omid; Akbari, Omid Ali; Marzban, Ali; Toghraie, Davood; Pourfattah, Farzad; Mashayekhi, Ramin
2017-09-01
In this presentation, the flow and heat transfer inside a microchannel with a triangular section, have been numerically simulated. In this three-dimensional simulation, the flow has been considered turbulent. In order to increase the heat transfer of the channel walls, the semi-truncated and semi-attached ribs have been placed inside the channel and the effect of forms and numbers of ribs has been studied. In this research, the base fluid is Water and the effect of volume fraction of Al2O3 nanoparticles on the amount of heat transfer and physics of flow have been investigated. The presented results are including of the distribution of Nusselt number in the channel, friction coefficient and Performance Evaluation Criterion of each different arrangement. The results indicate that, the ribs affect the physics of flow and their influence is absolutely related to Reynolds number of flow. Also, the investigation of the used semi-truncated and semi-attached ribs in Reynolds number indicates that, although heat transfer increases, but more pressure drop arises. Therefore, in this method, in order to improve the heat transfer from the walls of microchannel on the constant heat flux, using the pump is demanded.
Turbulent heat transfer prediction method for application to scramjet engines
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1974-01-01
An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.
Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.
Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S
2017-05-03
During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.
Matrix heat exchanger including a liquid, thermal couplant
Fewell, Thomas E.; Ward, Charles T.
1976-01-01
A tube-to-tube heat exchanger is disclosed with a thermally conductive matrix between and around the tubes to define annuli between the tubes and matrix. The annuli are filled to a level with a molten metal or alloy to provide a conductive heat transfer path from one tube through the matrix to the second tube. A matrix heat exchanger of this type is particularly useful for heat transfer between fluids which would react should one leak into the second.
Heat Transfer Affected by Transverse Magnetic Field using 3D Modeling of Arc Plasma
NASA Astrophysics Data System (ADS)
Maeda, Yoshifumi; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru
2016-10-01
Gas shielded metal arc welding is used to join the various metal because this is the high quality joining technology. Thus, this welding is used for a welding of large buildings such as bridges and LNG tanks. However, the welding defect caused by the heat transfer decrement may occur with increasing the wind velocity. This is because that the convection loss increases because the arc deflects to leeward side with increasing the wind velocity. In order to prevent from the arc deflection, it is used that the transverse magnetic field is applied to the arc. However, the arc deflection occurs with increasing the transverse magnetic field excessively. The energy balance of the arc is changed with increasing the convection loss caused by the arc deflection, and the heat transfer to the anode decreases. Therefore, the analysis including the arc and anode is necessary to elucidate the heat transfer to the anode. In this paper, the heat transfer affected by the transverse magnetic field using 3D modeling of the arc plasma is elucidated. The heat transfer to the anode is calculated by using the EMTF(electromagnetic thermal fluid) simulation with increasing the transverse magnetic field. As a result, the heat transfer decreased with increasing the transverse magnetic field.
Plasma-catalyzed fuel reformer
Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele
2013-06-11
A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.
A method to model latent heat for transient analysis using NASTRAN
NASA Technical Reports Server (NTRS)
Harder, R. L.
1982-01-01
A sample heat transfer analysis is demonstrated which includes the heat of fusion. The method can be used to analyze a system with nonconstant specific heat. The enthalpy is introduced as an independent degree of freedom at each node. The user input consists of a curve of temperature as a function of enthalpy, which may include a constant temperature phase change. The basic NASTRAN heat transfer capability is used to model the effects of latent heat with existing direct matrix output and nonlinear load data cards. Although some user care is required, the numerical stability of the integration is quite good when the given recommendations are followed. The theoretical equations used and the NASTRAN techniques are shown.
NASA Astrophysics Data System (ADS)
Inaba, Hideo; Morita, Shin-Ichi
This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.
Conjugate Compressible Fluid Flow and Heat Transfer in Ducts
NASA Technical Reports Server (NTRS)
Cross, M. F.
2011-01-01
A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.
Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration
NASA Technical Reports Server (NTRS)
Bard, Steven (Inventor); Jones, Jack A. (Inventor)
1992-01-01
A three-stage sorption type cryogenic refrigeration system, each stage containing a fluid having a respectively different boiling point, is presented. Each stage includes a compressor in which a respective fluid is heated to be placed in a high pressure gaseous state. The compressor for that fluid which is heated to the highest temperature is enclosed by the other two compressors to permit heat to be transferred from the inner compressor to the surrounding compressors. The system may include two sets of compressors, each having the structure described above, with the interior compressors of the two sets coupled together to permit selective heat transfer therebetween, resulting in more efficient utilization of input power.
Heat transfer rate and film cooling effectiveness measurements in a transient cascade
NASA Astrophysics Data System (ADS)
Schultz, D. L.; Oldfield, M. L. G.; Jones, T. V.
1980-09-01
A transient cascade useful for heat transfer rate measurements is briefly described. The facility employs a free piston which compresses the test gas to temperatures around 450 K and pressures of about 3.5 to 7.5 Atm. The model is initially at room temperature and it is necessary to attain the correct gas to wall temperature ratio. The exit Mach number is set by the inlet total pressure and the pressure in the exit dump tank. Thin film heat transfer gauges are used for the measurement of heat transfer rate, deposited on machineable glass ceramic blades. The inherently fast response of these transducers makes them useful for the investigation of boundary layer transition on blade surfaces and some typical results are included.
Heat Transfer and Thermodynamics: a Compilation
NASA Technical Reports Server (NTRS)
1974-01-01
A compilation is presented for the dissemination of information on technological developments which have potential utility outside the aerospace and nuclear communities. Studies include theories and mechanical considerations in the transfer of heat and the thermodynamic properties of matter and the causes and effects of certain interactions.
Code for Multiblock CFD and Heat-Transfer Computations
NASA Technical Reports Server (NTRS)
Fabian, John C.; Heidmann, James D.; Lucci, Barbara L.; Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur
2006-01-01
The NASA Glenn Research Center General Multi-Block Navier-Stokes Convective Heat Transfer Code, Glenn-HT, has been used extensively to predict heat transfer and fluid flow for a variety of steady gas turbine engine problems. Recently, the Glenn-HT code has been completely rewritten in Fortran 90/95, a more object-oriented language that allows programmers to create code that is more modular and makes more efficient use of data structures. The new implementation takes full advantage of the capabilities of the Fortran 90/95 programming language. As a result, the Glenn-HT code now provides dynamic memory allocation, modular design, and unsteady flow capability. This allows for the heat-transfer analysis of a full turbine stage. The code has been demonstrated for an unsteady inflow condition, and gridding efforts have been initiated for a full turbine stage unsteady calculation. This analysis will be the first to simultaneously include the effects of rotation, blade interaction, film cooling, and tip clearance with recessed tip on turbine heat transfer and cooling performance. Future plans call for the application of the new Glenn-HT code to a range of gas turbine engine problems of current interest to the heat-transfer community. The new unsteady flow capability will allow researchers to predict the effect of unsteady flow phenomena upon the convective heat transfer of turbine blades and vanes. Work will also continue on the development of conjugate heat-transfer capability in the code, where simultaneous solution of convective and conductive heat-transfer domains is accomplished. Finally, advanced turbulence and fluid flow models and automatic gridding techniques are being developed that will be applied to the Glenn-HT code and solution process.
Experimental determination of in situ utilization of lunar regolith for thermal energy storage
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1992-01-01
A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister which contains simulated lunar regolith, a heater, nine heat shields, a heat transfer cold jacket, and 19 type-B platinum rhodium thermocouples. The simulated lunar regolith is a basalt that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith, which include melt temperature, specific heat thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.
Augmentation of heat and mass transfer in laminar flow of suspensions: A correlation of data
NASA Astrophysics Data System (ADS)
Ahuja, Avtar S.
1980-01-01
The experimental data from literature on the augmentation of heat and gas transport in the laminar flow of suspensions of polystyrene spheres have been correlated on common coordinates. The correlation includes the influences of particle size, tube diameter and length, shear rate of flow, transport properties of diffusing species (heat or gas) in suspending liquids, and of the particle interactions on the augmentation of heat or gas transfer in flowing suspensions.
NASA Technical Reports Server (NTRS)
Chiaramonte, Francis; Motil, Brian; McQuillen, John
2014-01-01
The Two-phase Heat Transfer International Topical Team consists of researchers and members from various space agencies including ESA, JAXA, CSA, and RSA. This presentation included descriptions various fluid experiments either being conducted by or planned by NASA for the International Space Station in the areas of two-phase flow, flow boiling, capillary flow, and crygenic fluid storage.
ERIC Educational Resources Information Center
Burgher, J. K.; Finkel, D.; Adesope, O. O.; Van Wie, B. J.
2015-01-01
This study used a within-subjects experimental design to compare the effects of learning with lecture and hands-on desktop learning modules (DLMs) in a fluid mechanics and heat transfer class. The hands-on DLM implementation included the use of worksheets and one of two heat exchangers: an evaporative cooling device and a shell and tube heat…
Natural convective heat transfer from square cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novomestský, Marcel, E-mail: marcel.novomestsky@fstroj.uniza.sk; Smatanová, Helena, E-mail: helena.smatanova@fstroj.uniza.sk; Kapjor, Andrej, E-mail: andrej.kapjor@fstroj.uniza.sk
This article is concerned with natural convective heat transfer from square cylinder mounted on a plane adiabatic base, the cylinders having an exposed cylinder surface according to different horizontal angle. The cylinder receives heat from a radiating heater which results in a buoyant flow. There are many industrial applications, including refrigeration, ventilation and the cooling of electrical components, for which the present study may be applicable.
Lunar ash flow with heat transfer.
NASA Technical Reports Server (NTRS)
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwamoto, A.; Mito, T.; Takahata, K.
Heat transfer of large copper plates (18 x 76 mm) in liquid helium has been measured as a function of orientation and treatment of the heat transfer surface. The results relate to applications of large scale superconductors. In order to clarify the influence of the area where the surface treatment peels off, the authors studied five types of heat transfer surface areas including: (a) 100% polished copper sample, (b) and (c) two 50% oxidized copper samples having different patterns of oxidation, (d) 75% oxidized copper sample, (e) 90% oxidized copper sample, and (f) 100% oxidized copper sample. They observed thatmore » the critical heat flux depends on the heat transfer surface orientation. The critical heat flux is a maximum at angles of 0{degrees} - 30{degrees} and decreases monotonically with increasing angles above 30{degrees}, where the angle is taken in reference to the horizontal axis. On the other hand, the minimum heat flux is less dependent on the surface orientation. More than 75% oxidation on the surface makes the critical heat flux increase. The minimum heat fluxes of the 50 and 90% oxidized Cu samples approximately agree with that of the 100% oxidized Cu sample. Experiments and calculations show that the critical and the minimum heat fluxes are a bilinear function of the fraction of oxidized surface area.« less
NASA Technical Reports Server (NTRS)
Bellmore, C. P.; Reid, R. L.
1980-01-01
Presented herein is a method of including density fluctuations in the equations of turbulent transport. Results of a numerical analysis indicate that the method may be used to predict heat transfer for the case of near-critical para-hydrogen in turbulent upflow inside vertical tubes. Wall temperatures, heat transfer coefficients, and velocities obtained by coupling the equations of turbulent momentum and heat transfer with a perturbed equation of state show good agreement with experiment for inlet reduced pressures of 1.28-5.83.
Heat pump having improved defrost system
Chen, Fang C.; Mei, Viung C.; Murphy, Richard W.
1998-01-01
A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.
Heat pump having improved defrost system
Chen, F.C.; Mei, V.C.; Murphy, R.W.
1998-12-08
A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.
Prediction of Relaminarization Effects on Turbine Blade Heat Transfer
NASA Technical Reports Server (NTRS)
Boyle, R. J.; Giel, P. W.
2001-01-01
An approach to predicting turbine blade heat transfer when turbulent flow relaminarizes due to strong favorable pressure gradients is described. Relaminarization is more likely to occur on the pressure side of a rotor blade. While stators also have strong favorable pressure gradients, the pressure surface is less likely to become turbulent at low to moderate Reynolds numbers. Accounting for the effects of relaminarization for blade heat transfer can substantially reduce the predicted rotor surface heat transfer. This in turn can lead to reduced rotor cooling requirements. Two-dimensional midspan Navier-Stokes analyses were done for each of eighteen test cases using eleven different turbulence models. Results showed that including relaminarization effects generally improved the agreement with experimental data. The results of this work indicate that relatively small changes in rotor shape can be utilized to extend the likelihood of relaminarization to high Reynolds numbers. Predictions showing how rotor blade heat transfer at a high Reynolds number can be reduced through relaminarization are given.
Heat transfer to horizontal tubes in a pilot-scale fluidized-bed combustor burning low-rank coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.; Goblirsch, G.
Experimental data are obtained for the heat transfer coefficient between immersed horizontal tube bundles and an atmospheric-fluidized-bed combustor burning low-rank coals. Silica sand (d/sub p/ = 888 to 1484 ..mu..m) and limestone (d/sub p/ = 716 to 1895 ..mu..m) are used as bed material. The tests are conducted, with and without limestone addition and ash recycle, at average bed temperatures ranging from 1047 to 1125/sup 0/K, superficial fluidizing velocity of 1.66 to 2.04 m/s, and excess air levels of 15 to 40 percent. The experimental data are examined in the light of the existing correlations for the heat transfer coefficient.more » The predicted values of heat transfer coefficient from the correlations proposed by Grewal (1981) and Bansal et al. (1980) are found to be within +-25 percent of the experimental values of heat transfer coefficient, when the contribution due to radiation is also included. 5 figures, 5 tables.« less
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
Experimental Study of Heat Transfer Performance of Polysilicon Slurry Drying Process
NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Ma, Dongyun; Liu, Yaqian; Wang, Zhimin; Yan, Yangyang; Li, Yuankui
2016-12-01
In recent years, the growth of the solar energy photovoltaic industry has greatly promoted the development of polysilicon. However, there has been little research into the slurry by-products of polysilicon production. In this paper the thermal performance of polysilicon slurry was studied in an industrial drying process with a twin-screw horizontal intermittent dryer. By dividing the drying process into several subunits, the parameters of each unit could be regarded as constant in that period. The time-dependent changes in parameters including temperature, specific heat and evaporation enthalpy were plotted. An equation for the change in the heat transfer coefficient over time was calculated based on heat transfer equations. The concept of a distribution coefficient was introduced to reflect the influence of stirring on the heat transfer area. The distribution coefficient ranged from 1.2 to 1.7 and was obtained with the fluid simulation software FLUENT, which simplified the calculation of heat transfer area during the drying process. These experimental data can be used to guide the study of polysilicon slurry drying and optimize the design of dryers for industrial processes.
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh; Vinegar, Harold J.
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
Analytical solutions to the problem of transient heat transfer in living tissue.
NASA Technical Reports Server (NTRS)
Shitzer, A.; Chato, J. C.
1971-01-01
An analytical model of transient heat transfer in living biological tissue is considered. The model includes storage, generation, conduction, and convective transport of heat in the tissue. Solutions for rectangular and cylindrical coordinates are presented and discussed. Transient times for reaching the ?locally fully developed' temperature profile were found to be of the order of 5 to 25 min. These transients are dominated by a geometrical parameters and, to a lesser extent, by a parameter representing the ratio of heat supplied by blood flow to heat conducted in the tissue.
NASA Astrophysics Data System (ADS)
Błaszczuk, Artur; Krzywański, Jarosław
2017-03-01
The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB) has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K) and 111-240 W/(m2K), for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-01-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
NASA Astrophysics Data System (ADS)
Hasanpour, B.; Irandoost, M. S.; Hassani, M.; Kouhikamali, R.
2018-07-01
In this paper a numerical simulation of upward two-phase flow evaporation in a vertical tube has been studied by considering water as working fluid. To this end, the computational fluid dynamic simulations of this system are performed with heat and mass transfer mechanisms due to energy transfer during the phase change interaction near the heat transfer surface. The volume of fluid model in an available Eulerian-Eulerian approach based on finite volume method is utilized and the mass source term in conservation of mass equation is implemented using a user defined function. The characteristics of water flow boiling such as void fraction and heat transfer coefficient distribution are investigated. The main cause of fluctuations on heat transfer coefficient and volume fraction is velocity increment in the vapor phase rather than the liquid phase. The case study of this research including convective heat transfer coefficient and tube diameter are considered as a parametric study. The operating conditions are considered at high pressure in saturation temperature and the physical properties of water are determined by considering system's inlet temperature and pressure in saturation conditions. Good agreement is achieved between the numerical and the experimental values of heat transfer coefficients.
Slotting Fins of Heat Exchangers to Provide Thermal Breaks
NASA Technical Reports Server (NTRS)
Scull, Timothy D.
2003-01-01
Heat exchangers that include slotted fins (in contradistinction to continuous fins) have been invented. The slotting of the fins provides thermal breaks that reduce thermal conduction along flow paths (longitudinal thermal conduction), which reduces heat-transfer efficiency. By increasing the ratio between transverse thermal conduction (the desired heat-transfer conduction) and longitudinal thermal conduction, slotting of the fins can be exploited to (1) increase heat-transfer efficiency (thereby reducing operating cost) for a given heat-exchanger length or to (2) reduce the length (thereby reducing the weight and/or cost) of the heat exchanger needed to obtain a given heat transfer efficiency. By reducing the length of a heat exchanger, one can reduce the pressure drop associated with the flow through it. In a case in which slotting enables the use of fins with thermal conductivity greater than could otherwise be tolerated on the basis of longitudinal thermal conduction, one can exploit the conductivity to make the fins longer (in the transverse direction) than they otherwise could be, thereby making it possible to make a heat exchanger that contains fewer channels and therefore, that weighs less, contains fewer potential leak paths, and can be constructed from fewer parts and, hence, reduced cost.
NASA Technical Reports Server (NTRS)
Foust, J. W.
1975-01-01
Results are presented of heat transfer tests of a 147B configuration orbiter model (50-0) conducted in the NASA Langley Research Center Freon Tunnel (LRC/CF4). These tests were conducted at a nominal Mach number of 6, and at Reynolds numbers of 0.3 and 0.5 x 1,000,000 per foot. The objectives of the tests were to determine the effects of the low freon specific heat ratio, gamma, on the heating distributions and to determine the impingement of the orbiter bow shock on the wing. The data presented include thin skin heat transfer data (tabulated data and plotted data).
NASA Astrophysics Data System (ADS)
Liu, Joseph T. C.; Barbosa Decastilho, Cintia Juliana; Fuller, Mark E.; Sane, Aakash
2017-11-01
The present work uses a perturbation procedure to deduce the small nanoparticle volume concentration conservation equations for momentum, heat and concentration diffusion. Thermal physical variables are obtained from conventional means (mixture and field theories) for alumina-water and gold-water nanofluids. In the case of gold-water nano fluid molecular dynamics results are used to estimate such properties, including transport coefficients. The very thin diffusion layer at large Schmidt numbers is found to have a great impact on the velocity and temperature profiles owing to their dependency on transport properties. This has a profound effect on the conduction surface heat transfer rate enhancement and skin friction suppression for the case of nano fluid concentration withdrawal at the wall, while the diffusional surface heat transfer rate is negligible due to large Schmidt numbers. Possible experimental directed at this interesting phenomenon is suggested.
NASA Astrophysics Data System (ADS)
Xie, Qi
Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.
Mathematical model of compact type evaporator
NASA Astrophysics Data System (ADS)
Borovička, Martin; Hyhlík, Tomáš
2018-06-01
In this paper, development of the mathematical model for evaporator used in heat pump circuits is covered, with focus on air dehumidification application. Main target of this ad-hoc numerical model is to simulate heat and mass transfer in evaporator for prescribed inlet conditions and different geometrical parameters. Simplified 2D mathematical model is developed in MATLAB SW. Solvers for multiple heat and mass transfer problems - plate surface temperature, condensate film temperature, local heat and mass transfer coefficients, refrigerant temperature distribution, humid air enthalpy change are included as subprocedures of this model. An automatic procedure of data transfer is developed in order to use results of MATLAB model in more complex simulation within commercial CFD code. In the end, Proper Orthogonal Decomposition (POD) method is introduced and implemented into MATLAB model.
User's Manual for Thermal Analysis Program of Axially Grooved Heat Pipe (HTGAP)
NASA Technical Reports Server (NTRS)
Kamotani, Y.
1978-01-01
A computer program that numerically predicts the steady state temperature distribution inside an axially grooved heat pipe wall for a given groove geometry and working fluid under various heat input and output modes is described. The program computes both evaporator and condenser film coefficients. The program is able to handle both axisymmetric and nonaxisymmetric heat transfer cases. Non-axisymmetric heat transfer results either from non-uniform input at the evaporator or non-uniform heat removal from the condenser, or from both. The presence of a liquid pool in the condenser region under one-g condition also causes non-axisymmetric heat transfer, and its effect on the pipe wall temperature distribution is included in the present program. The hydrodynamic aspect of an axially grooved heat pipe is studied in the Groove Analysis Program (GAP). The present thermal analysis program assumes that the GAP program (or other similar programs) is run first so that the heat transport limit and optimum fluid charge of the heat pipe are known a priori.
Optimal Experiment Design for Thermal Characterization of Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Cole, Kevin D.
2003-01-01
The purpose of the project was to investigate methods to accurately verify that designed , materials meet thermal specifications. The project involved heat transfer calculations and optimization studies, and no laboratory experiments were performed. One part of the research involved study of materials in which conduction heat transfer predominates. Results include techniques to choose among several experimental designs, and protocols for determining the optimum experimental conditions for determination of thermal properties. Metal foam materials were also studied in which both conduction and radiation heat transfer are present. Results of this work include procedures to optimize the design of experiments to accurately measure both conductive and radiative thermal properties. Detailed results in the form of three journal papers have been appended to this report.
Activated-Carbon Sorbent With Integral Heat-Transfer Device
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Yavrouian, Andre
1996-01-01
Prototype adsorption device used, for example, in adsorption heat pump, to store natural gas to power automobile, or to separate components of fluid mixtures. Device includes activated carbon held together by binder and molded into finned heat-transfer device providing rapid heating or cooling to enable rapid adsorption or desorption of fluids. Concepts of design and fabrication of device equally valid for such other highly thermally conductive devices as copper-finned tubes, and for such other high-surface-area sorbents as zeolites or silicates.
Nelson, Paul A.; Horowitz, Jeffrey S.
1983-01-01
A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.
Heat Exchange in “Human body - Thermal protection - Environment” System
NASA Astrophysics Data System (ADS)
Khromova, I. V.
2017-11-01
This article is devoted to the issues of simulation and calculation of thermal processes in the system called “Human body - Thermal protection - Environment” under low temperature conditions. It considers internal heat sources and convective heat transfer between calculated elements. Overall this is important for the Heat Transfer Theory. The article introduces complex heat transfer calculation method and local thermophysical parameters calculation method in the system called «Human body - Thermal protection - Environment», considering passive and active thermal protections, thermophysical and geometric properties of calculated elements in a wide range of environmental parameters (water, air). It also includes research on the influence that thermal resistance of modern materials, used in special protective clothes development, has on heat transfer in the system “Human body - Thermal protection - Environment”. Analysis of the obtained results allows adding of the computer research data to experiments and optimizing of individual life-support system elements, which are intended to protect human body from exposure to external factors.
Characterization of heat transfer in nutrient materials, part 2
NASA Technical Reports Server (NTRS)
Cox, J. E.; Bannerot, R. B.; Chen, C. K.; Witte, L. C.
1973-01-01
A thermal model is analyzed that takes into account phase changes in the nutrient material. The behavior of fluids in low gravity environments is discussed along with low gravity heat transfer. Thermal contact resistance in the Skylab food heater is analyzed. The original model is modified to include: equivalent conductance due to radiation, radial equivalent conductance, wall equivalent conductance, and equivalent heat capacity. A constant wall-temperature model is presented.
Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang; Lee, Yung-Cheng; Ma, Xuehu; Yang, Ronggui
2017-12-27
Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang
Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closelymore » spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.« less
Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang; ...
2017-12-07
Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closelymore » spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.« less
Methods for heat transfer and temperature field analysis of the insulated diesel, phase 3
NASA Technical Reports Server (NTRS)
Morel, Thomas; Wahiduzzaman, Syed; Fort, Edward F.; Keribar, Rifat; Blumberg, Paul N.
1988-01-01
Work during Phase 3 of a program aimed at developing a comprehensive heat transfer and thermal analysis methodology for design analysis of insulated diesel engines is described. The overall program addresses all the key heat transfer issues: (1) spatially and time-resolved convective and radiative in-cylinder heat transfer, (2) steady-state conduction in the overall structure, and (3) cyclical and load/speed temperature transients in the engine structure. These are all accounted for in a coupled way together with cycle thermodynamics. This methodology was developed during Phases 1 and 2. During Phase 3, an experimental program was carried out to obtain data on heat transfer under cooled and insulated engine conditions and also to generate a database to validate the developed methodology. A single cylinder Cummins diesel engine was instrumented for instantaneous total heat flux and heat radiation measurements. Data were acquired over a wide range of operating conditions in two engine configurations. One was a cooled baseline. The other included ceramic coated components (0.050 inches plasma sprayed zirconia)-piston, head and valves. The experiments showed that the insulated engine has a smaller heat flux than the cooled one. The model predictions were found to be in very good agreement with the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, A; Chandran, RB; Davidson, JH
2015-01-22
The present study presents an experimental study of a prototype counter-flow heat exchanger designed to recover sensible heat from inert and reactive gases flowing through a high temperature solar reactor for splitting CO2. The tube-in-tube heat exchanger is comprised of two concentric alumina tubes, each filled with reticulated porous alumina with a nominal porosity of 80% and pore density of 5 pores per inch (ppi). The RPC provides high heat transfer surface area per unit volume (917 m(-1)) with low pressure drop. Measurements include the permeability, inertial coefficient, overall heat transfer coefficient, effectiveness and pressure drop. For laminar flow andmore » an inlet gas temperature of 1240 K, the overall heat transfer coefficients are 36-41 W m(-2) K-1. The measured performance is in good agreement with a prior CFD model of the heat exchanger. (C) 2014 Elsevier Ltd. All rights reserved.« less
NASA Technical Reports Server (NTRS)
Blair, Michael F.; Anderson, Olof L.
1989-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similiar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full-span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The primary objective of the program was to provide a benchmark-quality data base for the assessment of rotor passage heat transfer computational procedures. The experimental portion of the study was conducted in a large-scale, ambient temperature, rotating turbine model. Heat transfer data were obtained using thermocouple and liquid-crystal techniques to measure temperature distributions on the thin, electrically-heated skin of the rotor passage model. Test data were obtained for various combinations of Reynolds number, rotor incidence angle and model surface roughness. The data are reported in the form of contour maps of Stanton number. These heat distribution maps revealed numerous local effects produced by the three-dimensional flows within the rotor passage. Of particular importance were regions of local enhancement produced on the airfoil suction surface by the main-passage and tip-leakage vortices and on the hub endwall by the leading-edge horseshoe vortex system. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis to the calculation of the three-dimensional viscous flow through ducts simulating the a gas turbine passage. These cases include a 90 deg turning duct, a gas turbine cascade simulating a stator passage, and a gas turbine rotor passage including Coriolis forces. The calculated results were evaluated using experimental data of the three-dimensional velocity fields, wall static pressures, and wall heat transfer on the suction surface of the turbine airfoil and on the end wall. Particular attention was paid to an accurate modeling of the passage vortex and to the development of the wall boundary layers including crossflow.
Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.
2004-06-08
A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
Self-contained heat rejection module for future spacecraft
NASA Technical Reports Server (NTRS)
Fleming, M. L.; Williams, J. L.; Baskett, J. D.; Leach, J. W.
1975-01-01
This paper discusses development of a Self-Contained Heat Rejection Module (SHRM) which can be used on a wide variety of future spacecraft launched by the space shuttle orbiter. The SHRM contains radiators which are deployed by a scissor-mechanism and the flow equipment including pumps, accumulator, by-pass valves, and controllers necessary to reject heat from those radiators. Heat transfer between SHRM and the parent vehicle is effected by a contact heat exchanger. This device provides heat transfer between two separate flow loops through a mechanical connection. This approach reduces the time required to attach the SHRM to the payload, and increases the reliability of the SHRM flow loop since breaking into the fluid system in the field is not required. The SHRM concept also includes a refrigeration system to increase heat rejection capacity in adverse environments, or to provide for a lower return temperature, down to -23 C.
Post impact behavior of mobile reactor core containment systems
NASA Technical Reports Server (NTRS)
Puthoff, R. L.; Parker, W. G.; Vanbibber, L. E.
1972-01-01
The reactor core containment vessel temperatures after impact, and the design variables that affect the post impact survival of the system are analyzed. The heat transfer analysis includes conduction, radiation, and convection in addition to the core material heats of fusion and vaporization under partially burial conditions. Also, included is the fact that fission products vaporize and transport radially outward and condense outward and condense on cooler surfaces, resulting in a moving heat source. A computer program entitled Executive Subroutines for Afterheat Temperature Analysis (ESATA) was written to consider this complex heat transfer analysis. Seven cases were calculated of a reactor power system capable of delivering up to 300 MW of thermal power to a nuclear airplane.
Heat-Transfer Fluids for Solar-Energy Systems
NASA Technical Reports Server (NTRS)
Parker, J. C.
1982-01-01
43-page report investigates noncorrosive heat-transport fluids compatible with both metallic and nonmetallic solar collectors and plumbing systems. Report includes tables and figures of X-ray inspections for corrosion and schematics of solar-heat transport systems and heat rejection systems.
Method for forming synthesis gas using a plasma-catalyzed fuel reformer
Hartvigsen, Joseph J; Elangovan, S; Czernichowski, Piotr; Hollist, Michele
2015-04-28
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
NASA Technical Reports Server (NTRS)
Lee, Chun P.; Wang, Taylor G.
1988-01-01
A previous theoretical result on the subject of the acoustic radiation force on a heated sphere (Lee and Wang, 1984) is reexamined. For a more complete understanding, effects of heat transfer and acoustic streaming are taken into consideration. Essentially, it was found that, at high sound-pressure levels in a steady situation, the force is not affected significantly by the temperature profile, consistent with the result of an experimental work (Leung and Wang, 1985). This resolves the earlier apparent contradiction between the theory and the experiment. If excessive hot air is accumulated around the sphere, which can happen in transient situations, the force can be weakened or reversed in sign. A heat transfer model due to acoustic streaming was also found.
Radiative heat transfer in 2D Dirac materials
NASA Astrophysics Data System (ADS)
Rodriguez-López, Pablo; Tse, Wang-Kong; Dalvit, Diego A. R.
2015-06-01
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Radiative heat transfer in 2D Dirac materials
Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.
2015-05-12
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Ahmed, Mahmoud; Eslamian, Morteza
2015-12-01
Laminar natural convection in differentially heated (β = 0°, where β is the inclination angle), inclined (β = 30° and 60°), and bottom-heated (β = 90°) square enclosures filled with a nanofluid is investigated, using a two-phase lattice Boltzmann simulation approach. The effects of the inclination angle on Nu number and convection heat transfer coefficient are studied. The effects of thermophoresis and Brownian forces which create a relative drift or slip velocity between the particles and the base fluid are included in the simulation. The effect of thermophoresis is considered using an accurate and quantitative formula proposed by the authors. Some of the existing results on natural convection are erroneous due to using wrong thermophoresis models or simply ignoring the effect. Here we show that thermophoresis has a considerable effect on heat transfer augmentation in laminar natural convection. Our non-homogenous modeling approach shows that heat transfer in nanofluids is a function of the inclination angle and Ra number. It also reveals some details of flow behavior which cannot be captured by single-phase models. The minimum heat transfer rate is associated with β = 90° (bottom-heated) and the maximum heat transfer rate occurs in an inclination angle which varies with the Ra number.
Chemical Safety: Molten Salt Baths Cited as Lab Hazards.
ERIC Educational Resources Information Center
Baum, Rudy
1982-01-01
Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…
A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem
ERIC Educational Resources Information Center
Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.
2010-01-01
To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…
Film condensation in a horizontal rectangular duct
NASA Technical Reports Server (NTRS)
Lu, Qing; Suryanarayana, N. V.
1992-01-01
Condensation heat transfer in an annular flow regime with and without interfacial waves was experimentally investigated. The study included measurements of heat transfer rate with condensation of vapor flowing inside a horizontal rectangular duct and experiments on the initiation of interfacial waves in condensation, and adiabatic air-liquid flow. An analytical model for the condensation was developed to predict condensate film thickness and heat transfer coefficients. Some conclusions drawn from the study are that the condensate film thickness was very thin (less than 0.6 mm). The average heat transfer coefficient increased with increasing the inlet vapor velocity. The local heat transfer coefficient decreased with the axial distance of the condensing surface, with the largest change at the leading edge of the test section. The interfacial shear stress, which consisted of the momentum shear stress and the adiabatic shear stress, appeared to have a significant effect on the heat transfer coefficients. In the experiment, the condensate flow along the condensing surface experienced a smooth flow, a two-dimensional wavy flow, and a three-dimensional wavy flow. In the condensation experiment, the local wave length decreased with the axial distance of the condensing surface and the average wave length decreased with increasing inlet vapor velocity, while the wave speed increased with increasing vapor velocity. The heat transfer measurements are reliable. And, the ultrasonic technique was effective for measuring the condensate film thickness when the surface was smooth or had waves of small amplitude.
Viscosity induced non-uniform flow in laminar flow heat exchangers
NASA Astrophysics Data System (ADS)
Putnam, G. R.; Rohsenow, W. M.
1985-05-01
Laminar flow heat exchangers which cool oil in noninterconnected parallel passages can experience nonuniform flows and a reduction in the effective heat exchanger coefficient in a range of Reynolds number which varies with tube length and diameter, tube wall temperature and fluid inlet temperature. The method of predicting the reduction in effective heat transfer coefficient and the range of Reynolds number over which these instabilities exist is presented for a particular oil, Mobil aviation oil 120. Included, also, is the prediction of the effect of radial viscosity variation on the constant property magnitudes of friction and heat transfer coefficient.
Solis, Kyle Jameson; Martin, James E.
2012-11-01
Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
NASA Astrophysics Data System (ADS)
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
NASA Astrophysics Data System (ADS)
Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.
2018-01-01
The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper
Khaled, A.-R. A.
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572
Khaled, A-R A
2014-01-01
Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost.
Capillary-Condenser-Pumped Heat-Transfer Loop
NASA Technical Reports Server (NTRS)
Silverstein, Calvin C.
1989-01-01
Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.
Heat Transfer In High-Temperature Multilayer Insulation
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Miller, Stephen D.; Cunnington, George R.
2006-01-01
The combined radiation/conduction heat transfer in high-temperature multilayer insulations for typical reentry of reusable launch vehicles from low Earth orbit was investigated experimentally and numerically. The high-temperature multilayer insulation investigated consisted of gold-coated reflective foils separated by alumina fibrous insulation spacers. The steady-state heat transfer through four multilayer insulation configurations was investigated experimentally over the temperature range of 300-1300 K and environmental pressure range of 1.33 10(exp -5)-101.32 kPa. It was shown that including the reflective foils reduced the effective thermal conductivity compared to fibrous insulation sample at 1.5 times the density of the multilayer sample. A finite volume numerical model was developed to solve the governing combined radiation/conduction heat transfer equations. The radiation heat transfer in the fibrous insulation spacers was modeled using the modified two-flux approximation assuming anisotropic scattering and gray medium. The numerical model was validated by comparison with steady-state experimental data. The root mean square deviation between the predicted and measured effective thermal conductivity of the samples was 9.5%.
Heat transfer to horizontal tubes immersed in a fluidized-bed combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grewal, N.S.; Menart, J.; Hajicek, D.R.
Experiments were carried out to measure the heat transfer rates to water-cooled horizontal tubes immersed in an atmospheric fluidized-bed combustor burning North Dakota lignite. The effect of bed temperature (T/sub B/ = 587 to 1205K), particle size (anti d/sub p/ = 0.544 to 2.335 mm), and fluidizing velocity (U = 0.73 to 2.58 m/s) on the heat transfer rate to horizontal tubes immersed in a fluidized-bed combustor (0.45 x 0.45 m) was investigated. Among existing correlations, correlations proposed by Glicksman and Decker (1980), Zabrodsky et al. (1980), Catipovic et al. (1980), Grewal (1981), and Bansal et al. (1980) are foundmore » to predict the present data quite well, when the contribution due to radiation is included. The radiative heat transfer is estimated as the difference between the heat transfer to an oxidized boiler tube and to a gold-plated tube. The relative contribution of radiation is found to be 11% for a bed of sand particles (anti d/sub p/ = 0.9 mm) operating at 1088K. 40 refs., 7 figs., 5 tabs.« less
Experimental research and numerical simulation on cryogenic line chill-down process
NASA Astrophysics Data System (ADS)
Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon
2018-01-01
The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
Lu, Liqiang; Morris, Aaron; Li, Tingwen; ...
2017-04-18
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Extension of a coarse grained particle method to simulate heat transfer in fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Liqiang; Morris, Aaron; Li, Tingwen
The heat transfer in a gas-solids fluidized bed is simulated with computational fluid dynamic-discrete element method (CFD-DEM) and coarse grained particle method (CGPM). In CGPM fewer numerical particles and their collisions are tracked by lumping several real particles into a computational parcel. Here, the assumption is that the real particles inside a coarse grained particle (CGP) are made from same species and share identical physical properties including density, diameter and temperature. The parcel-fluid convection term in CGPM is calculated using the same method as in DEM. For all other heat transfer mechanisms, we derive in this study mathematical expressions thatmore » relate the new heat transfer terms for CGPM to those traditionally derived in DEM. This newly derived CGPM model is verified and validated by comparing the results with CFD-DEM simulation results and experiment data. The numerical results compare well with experimental data for both hydrodynamics and temperature profiles. Finally, the proposed CGPM model can be used for fast and accurate simulations of heat transfer in large scale gas-solids fluidized beds.« less
Crystal diffraction lens with variable focal length
Smither, R.K.
1991-04-02
A method and apparatus for altering the focal length of a focusing element of one of a plurality of pre-determined focal lengths by changing heat transfer within selected portions of the element by controlled quantities is disclosed. Control over heat transfer is accomplished by manipulating one or more of a number of variables, including: the amount of heat or cold applied to surfaces; type of fluids pumped through channels for heating and cooling; temperatures, directions of flow and rates of flow of fluids; and placement of channels. 19 figures.
Passive cooling safety system for liquid metal cooled nuclear reactors
Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.
1991-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.
Indirect passive cooling system for liquid metal cooled nuclear reactors
Hunsbedt, Anstein; Boardman, Charles E.
1990-01-01
A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.
Heat transfer fluids containing nanoparticles
Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.
2016-05-17
A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.
Low temperature barriers with heat interceptor wells for in situ processes
McKinzie, II, Billy John
2008-10-14
A system for reducing heat load applied to a frozen barrier by a heated formation is described. The system includes heat interceptor wells positioned between the heated formation and the frozen barrier. Fluid is positioned in the heat interceptor wells. Heat transfers from the formation to the fluid to reduce the heat load applied to the frozen barrier.
A finite element method based microwave heat transfer modeling of frozen multi-component foods
NASA Astrophysics Data System (ADS)
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a frozen pizza. The root mean square error values of transient temperature profiles of five locations ranged from 5.0 °C to 12.6 °C. A methodology was developed to incorporate electromagnetic frequency spectrum in the coupled electromagnetic and heat transfer model. Implementing the electromagnetic frequency spectrum in the simulation improved the accuracy of temperature field pattern and transient temperature profile as compared to mono-chromatic frequency of 2.45 GHz. The bulk moisture diffusion coefficient of cooked pasta was calculated as a function of temperature at a constant water activity using desorption isotherms.
Hu, H W; Tang, G H; Niu, D
2016-06-07
Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.
NASA Astrophysics Data System (ADS)
Hu, H. W.; Tang, G. H.; Niu, D.
2016-06-01
Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.
Hu, H. W.; Tang, G. H.; Niu, D.
2016-01-01
Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed. PMID:27270997
Aerodynamic heating to representative SRB and ET protuberances
NASA Technical Reports Server (NTRS)
Engel, C. D.; Lapointe, J. K.
1979-01-01
Heating data and data scaling methods which can be used on representative solid rocket booster and external tank (ET) protuberances are described. Topics covered include (1) ET geometry and heating points; (2) interference heating test data (51A); (3) heat transfer data from tests FH-15 and FH-16; (4) individual protuberance data; and (5) interference heating of paint data from test IH-42. A set of drawings of the ET moldline and protuberances is included.
NASA Astrophysics Data System (ADS)
Gerhard, J.; Zanoni, M. A. B.; Torero, J. L.
2017-12-01
Smouldering (i.e., flameless combustion) underpins the technology Self-sustaining Treatment for Active Remediation (STAR). STAR achieves the in situ destruction of nonaqueous phase liquids (NAPLs) by generating a self-sustained smouldering reaction that propagates through the source zone. This research explores the nature of the travelling reaction and the influence of key in situ and engineered characteristics. A novel one-dimensional numerical model was developed (in COMSOL) to simulate the smouldering remediation of bitumen-contaminated sand. This model was validated against laboratory column experiments. Achieving model validation depended on correctly simulating the energy balance at the reaction front, including properly accounting for heat transfer, smouldering kinetics, and heat losses. Heat transfer between soil and air was demonstrated to be generally not at equilibrium. Moreover, existing heat transfer correlations were found to be inappropriate for the low air flow Reynold's numbers (Re < 30) relevant in this and similar thermal remediation systems. Therefore, a suite of experiments were conducted to generate a new heat transfer correlation, which generated correct simulations of convective heat flow through soil. Moreover, it was found that, for most cases of interest, a simple two-step pyrolysis/oxidation set of kinetic reactions was sufficient. Arrhenius parameters, calculated independently from thermogravimetric experiments, allowed the reaction kinetics to be validated in the smouldering model. Furthermore, a simple heat loss term sufficiently accounted for radial heat losses from the column. Altogether, these advances allow this simple model to reasonably predict the self-sustaining process including the peak reaction temperature, the reaction velocity, and the complete destruction of bitumen behind the front. Simulations with the validated model revealed numerous unique insights, including how the system inherently recycles energy, how air flow rate and NAPL saturation dictate contaminant destruction rates, and the extremes that lead to extinction. Overall, this research provides unique insights into the complex interplay of thermochemical processes that govern the success of smouldering as well as other thermal remediation approaches.
Code of Federal Regulations, 2011 CFR
2011-04-01
... highly stable, heat resistant, and nonflammable chemicals. Industrial uses of PCB's include, or did include in the past, their use as electrical transformer and capacitor fluids, heat transfer fluids... Food and Drug Administration have revealed that heat exchange fluids for certain pasteurization...
NASA Technical Reports Server (NTRS)
Whitesides, R. Harold; Majumdar, Alok K.; Jenkins, Susan L.; Bacchus, David L.
1990-01-01
A series of cold flow heat transfer tests was conducted with a 7.5-percent scale model of the Space Shuttle Rocket Motor (SRM) to measure the heat transfer coefficients in the separated flow region around the nose of the submerged nozzle. Modifications were made to an existing 7.5 percent scale model of the internal geometry of the aft end of the SRM, including the gimballed nozzle in order to accomplish the measurements. The model nozzle nose was fitted with a stainless steel shell with numerous thermocouples welded to the backside of the thin wall. A transient 'thin skin' experimental technique was used to measure the local heat transfer coefficients. The effects of Reynolds number, nozzle gimbal angle, and model location were correlated with a Stanton number versus Reynolds number correlation which may be used to determine the convective heating rates for the full scale Space Shuttle Solid Rocket Motor nozzle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splitter, Derek A; Hendricks, Terry Lee; Ghandhi, Jaal B
2014-01-01
The piston of a heavy-duty single-cylinder research engine was instrumented with 11 fast-response surface thermocouples, and a commercial wireless telemetry system was used to transmit the signals from the moving piston. The raw thermocouple data were processed using an inverse heat conduction method that included Tikhonov regularization to recover transient heat flux. By applying symmetry, the data were compiled to provide time-resolved spatial maps of the piston heat flux and surface temperature. A detailed comparison was made between conventional diesel combustion and reactivity-controlled compression ignition combustion operations at matched conditions of load, speed, boost pressure, and combustion phasing. The integratedmore » piston heat transfer was found to be 24% lower, and the mean surface temperature was 25 C lower for reactivity-controlled compression ignition operation as compared to conventional diesel combustion, in spite of the higher peak heat release rate. Lower integrated piston heat transfer for reactivity-controlled compression ignition was found over all the operating conditions tested. The results showed that increasing speed decreased the integrated heat transfer for conventional diesel combustion and reactivity-controlled compression ignition. The effect of the start of injection timing was found to strongly influence conventional diesel combustion heat flux, but had a negligible effect on reactivity-controlled compression ignition heat flux, even in the limit of near top dead center high-reactivity fuel injection timings. These results suggest that the role of the high-reactivity fuel injection does not significantly affect the thermal environment even though it is important for controlling the ignition timing and heat release rate shape. The integrated heat transfer and the dynamic surface heat flux were found to be insensitive to changes in boost pressure for both conventional diesel combustion and reactivity-controlled compression ignition. However, for reactivity-controlled compression ignition, the mean surface temperature increased with changes in boost suggesting that equivalence ratio affects steady-state heat transfer.« less
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, K.H.; Ahluwalia, R.K.
1994-10-18
A radiative heat transfer mechanism in a furnace is described having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits. 7 figs.
Heat transfer mechanism with thin filaments including ceramic high temperature heat exchanger
Im, Kwan H.; Ahluwalia, Rajesh K.
1994-01-01
A radiative heat transfer mechanism in a furnace having burners through which pulverized coal and air are burned producing combustion gases and contaminants. A plurality of elongated conduits are positioned inside the furnace proximate to the burners generally parallel to the flow of combustion gases in the furnace. A plurality of thin filaments are inside each of the elongated hollow conduits, the filaments having diameters in the range of from about 1 micrometer to about 1,000 micrometers and having an infrared radiation cross-section sufficient to cause the filaments to heat upon exposure to infrared radiation. Blower mechanism is associated with the elongated conduits for limiting the amount of soot and ash which deposit on the conduits to preserve the radiative and convective transfer of heat energy from the combustion gases to the conduits.
In-space experiment on thermoacoustic convection heat transfer phenomenon-experiment definition
NASA Technical Reports Server (NTRS)
Parang, M.; Crocker, D. S.
1991-01-01
The definition phase of an in-space experiment in thermoacoustic convection (TAC) heat transfer phenomenon is completed and the results are presented and discussed in some detail. Background information, application and potential importance of TAC in heat transfer processes are discussed with particular focus on application in cryogenic fluid handling and storage in microgravity space environment. Also included are the discussion on TAC space experiment objectives, results of ground support experiments, hardware information, and technical specifications and drawings. The future plans and a schedule for the development of experiment hardware (Phase 1) and flight tests and post-flight analysis (Phase 3/4) are also presented. The specific experimental objectives are rapid heating of a compressible fluid and the measurement of the fluid temperature and pressure and the recording and analysis of the experimental data for the establishment of the importance of TAC heat transfer process. The ground experiments that were completed in support of the experiment definition included fluid temperature measurement by a modified shadowgraph method, surface temperature measurements by thermocouples, and fluid pressure measurements by strain-gage pressure transducers. These experiments verified the feasibility of the TAC in-space experiment, established the relevance and accuracy of the experimental results, and specified the nature of the analysis which will be carried out in the post-flight phase of the report.
Vollrath, Ilona; Pauli, Victoria; Friess, Wolfgang; Freitag, Angelika; Hawe, Andrea; Winter, Gerhard
2017-05-01
This study investigates the suitability of heat flux measurement as a new technique for monitoring product temperature and critical end points during freeze drying. The heat flux sensor is tightly mounted on the shelf and measures non-invasively (no contact with the product) the heat transferred from shelf to vial. Heat flux data were compared to comparative pressure measurement, thermocouple readings, and Karl Fischer titration as current state of the art monitoring techniques. The whole freeze drying process including freezing (both by ramp freezing and controlled nucleation) and primary and secondary drying was considered. We found that direct measurement of the transferred heat enables more insights into thermodynamics of the freezing process. Furthermore, a vial heat transfer coefficient can be calculated from heat flux data, which ultimately provides a non-invasive method to monitor product temperature throughout primary drying. The end point of primary drying determined by heat flux measurements was in accordance with the one defined by thermocouples. During secondary drying, heat flux measurements could not indicate the progress of drying as monitoring the residual moisture content. In conclusion, heat flux measurements are a promising new non-invasive tool for lyophilization process monitoring and development using energy transfer as a control parameter. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
The United States of America as represented by the United States Department of Energy
2009-12-15
An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-01-01
The environmental impacts are assessed for a proposed 50,000 square foot field of single axis tracking, concentrating solar collectors along the Ohio River in southern Ohio. The facility is planned to produce process steam for use in the production of polystyrene. Absorbed solar energy would heat an aliphatic hydrocarbon synthetic heat transfer fluid to a maximum temperature of 500/sup 0/F. The existing environment is briefly described, particularly regarding air quality. The potential environmental impacts of the solar process heat system on the air, water, soil, endangered species and archaeological and historical resources are examined, including risks due to flood andmore » glare and a comparison of alternatives. Also included are a Consent Judgment relating to two coal-fired boilers in violation of EPA regulations, property data of Gulf Synfluid 4CS (a candidate heat transfer fluid), piping and instrumentation diagrams and schematics, site grade and drainage plan, geological survey map, subsurface soil investigation, Ohio endangered species list, Ohio Archaeological Counsel certification list, and a study of heat transfer fluids and their properties. (LEW)« less
Electrical Space Conditioning.
ERIC Educational Resources Information Center
General Electric Co., Cleveland, OH. Large Lamp Dept.
Integrated systems utilizing the heating potential of lighting equipment are discussed in terms of the implications for design and the methods for evaluation and control. General principles cover heat transfer, heat from lamps and luminaires, and control of lighting heat. Suggested systems include--(1) total control systems, (2) bleed-off systems,…
Aerothermodynamic measurements for space shuttle configuration in hypersonic wind tunnels
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Williams, F. E.; Baker, R. C.; Goodrich, W. D.; Kessler, W. C.
1972-01-01
The effect of shuttle configuration geometry, angle of attack, and free stream flow conditions on the heat-transfer distribution as influenced by three-dimensional effects, the wing-fuselage shock-interaction, and resultant wing-impingement phenomena are examined. In addition, the data provided information regarding the flow field in the vicinity of the nose and boundary layer transition in the plane of symmetry of the fuselage. The data included measurements of the surface pressure, the heat transfer rate distributions, (using models instrumented with thermocouples and models painted with thermographic phosphor) and schlieren and shadowgraph photographs. Posttest photographs of the painted models supplemented the heat transfer data.
Green's function solution to heat transfer of a transparent gas through a tube
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1989-01-01
A heat transfer analysis of a transparent gas flowing through a circular tube of finite thickness is presented. This study includes the effects of wall conduction, internal radiative exchange, and convective heat transfer. The natural mathematical formulation produces a nonlinear, integrodifferential equation governing the wall temperature and an ordinary differential equation describing the gas temperature. This investigation proposes to convert the original system of equations into an equivalent system of integral equations. The Green's function method permits the conversion of an integrodifferential equation into a pure integral equation. The proposed integral formulation and subsequent computational procedure are shown to be stable and accurate.
NASA Astrophysics Data System (ADS)
Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.
2017-12-01
Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.
Iyengar, Madhusudan K.; Parida, Pritish R.; Schultz, Mark D.
2015-10-06
A data center cooling system is operated in a first mode; it has an indoor portion wherein heat is absorbed from components in the data center, and an outdoor heat exchanger portion wherein outside air is used to cool a first heat transfer fluid (e.g., water) present in at least the outdoor heat exchanger portion of the cooling system during the first mode. The first heat transfer fluid is a relatively high performance heat transfer fluid (as compared to the second fluid), and has a first heat transfer fluid freezing point. A determination is made that an appropriate time has been reached to switch from the first mode to a second mode. Based on this determination, the outdoor heat exchanger portion of the data cooling system is switched to a second heat transfer fluid, which is a relatively low performance heat transfer fluid, as compared to the first heat transfer fluid. It has a second heat transfer fluid freezing point lower than the first heat transfer fluid freezing point, and the second heat transfer fluid freezing point is sufficiently low to operate without freezing when the outdoor air temperature drops below a first predetermined relationship with the first heat transfer fluid freezing point.
NASA Astrophysics Data System (ADS)
Sayar, Ersin
2017-07-01
The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.
NASA Astrophysics Data System (ADS)
Blaszczuk, Artur; Nowak, Wojciech
2016-10-01
In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.
Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.
2003-05-27
A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.
Nanoparticles for heat transfer and thermal energy storage
Singh, Dileep; Cingarapu, Sreeram; Timofeeva, Elena V.; Moravek, Michael
2015-07-14
An article of manufacture and method of preparation thereof. The article of manufacture and method of making the article includes an eutectic salt solution suspensions and a plurality of nanocrystalline phase change material particles having a coating disposed thereon and the particles capable of undergoing the phase change which provides increase in thermal energy storage. In addition, other articles of manufacture can include a nanofluid additive comprised of nanometer-sized particles consisting of copper decorated graphene particles that provide advanced thermal conductivity to heat transfer fluids.
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Painter, S. L.
2004-12-01
Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.
NASA Astrophysics Data System (ADS)
Valentin Rodriguez, Francisco Ivan
High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat dissipating capabilities of helium flow, due to natural circulation in the system at both high and low pressure, were also examined. These experimental results are useful for the development and validation of VHTR design and safety analysis codes. Numerical simulations were performed using a Multiphysics computer code, COMSOL, displaying less than 5% error between the measured graphite temperatures in both the heated and cooled channels. Finally, new correlations have been proposed describing the thermal-hydraulic phenomena in buoyancy driven flows in both heated and cooled channels.
An assessment of gas-side fouling in cement plants
NASA Technical Reports Server (NTRS)
Marner, W. J.
1982-01-01
The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.
Zhang, Yue; Barnes, George L; Yan, Tianying; Hase, William L
2010-05-07
Model non-equilibrium molecular dynamics (MD) simulations are presented of heat transfer from a hot Au {111} substrate to an alkylthiolate self-assembled monolayer (H-SAM) to assist in obtaining an atomic-level understanding of experiments by Wang et al. (Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Science, 2007, 317, 787). Different models are considered to determine how they affect the heat transfer dynamics. They include temperature equilibrated (TE) and temperature gradient (TG) thermostat models for the Au(s) surface, and soft and stiff S/Au(s) models for bonding of the S-atoms to the Au(s) surface. A detailed analysis of the non-equilibrium heat transfer at the heterogeneous interface is presented. There is a short time temperature gradient within the top layers of the Au(s) surface. The S-atoms heat rapidly, much faster than do the C-atoms in the alkylthiolate chains. A high thermal conductivity in the H-SAM, perpendicular to the interface, results in nearly identical temperatures for the CH(2) and CH(3) groups versus time. Thermal-induced disorder is analyzed for the Au(s) substrate, the S/Au(s) interface and the H-SAM. Before heat transfer occurs from the hot Au(s) substrate to the H-SAM, there is disorder at the S/Au(s) interface and within the alkylthiolate chains arising from heat-induced disorder near the surface of hot Au(s). The short-time rapid heating of the S-atoms enhances this disorder. The increasing disorder of H-SAM chains with time results from both disorder at the Au/S interface and heat transfer to the H-SAM chains.
Heat Transfer Principles in Thermal Calculation of Structures in Fire
Zhang, Chao; Usmani, Asif
2016-01-01
Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379
NASA Astrophysics Data System (ADS)
Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.
1987-05-01
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
NASA Astrophysics Data System (ADS)
Hippensteele, S. A.; Russell, L. M.; Torres, F. J.
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.
1987-01-01
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
Thermal performance analysis of a thermocline thermal energy storage system with FLiNaK molten salt
NASA Astrophysics Data System (ADS)
Liu, C.; Cheng, M. S.; Zhao, B. C.; Dai, Z. M.
2017-01-01
A thermocline thermal storage unit with a heat transfer fluid (HTF) of high-temperature molten salt is considered as one of the most promising methods of thermal storage due to its lower cost and smaller size. The main objective of this work is to analyze the transient behavior of the available molten salt FLiNaK used as the HTF in heat transfer and heat storage in a thermocline thermal energy storage (TES) system. Thermal characteristics including temperature profiles influenced by different inlet velocities of HTF and different void fractions of porous heat storage medium are analyzed. The numerical investigation on the heat storage and heat transfer characteristics of FLiINaK has been carried out. A comparison between two different molten salts, FLiNaK and Hitec, has been explored in this paper with regards to their charging and discharging operations. The results indicate the system with FLiNaK has a greater energy storage capability, a shorter charging time and a higher output power. The numerical investigation reveals heat storage and heat transfer characteristics of the thermocline TES system with FLiNaK, and provide important references for molten salt selection of the TES system in the future.
NASA Technical Reports Server (NTRS)
Pallman, A. J.
1974-01-01
Time dependent vertical distributions of atmospheric temperature and static stability were determined by a radiative-convective-conductive heat transfer model attuned to Mariner 9 IRIS radiance data. Of particular interest were conditions of both the dust-laden and dust-free atmosphere in the middle latitudes on Mars during the late S.H. summer season. The numerical model simulates at high spatial and temporal resolution (52 atmospheric and 30 subsurface levels; with a time-step of 7.5 min.) the heat transports in the ground-atmosphere system. The algorithm is based on the solution of the appropriate heating rate equation which includes radiative, molecular-conductive and convective heat transfer terms. Ground and atmosphere are coupled by an internal thermal boundary condition.
Some heat transfer and hydrodynamic problems associated with superconducting cables (SPTL)
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Daney, D. E.; Yeroshenko, V. M.; Kuznetsov, Y. V.; Shevckenko, O. A.
1978-01-01
To study some effects of thermogravitation on (CIIK-SPTL) systems, a heated tube experiment was set up at Krzhizhanovsky Power Engineering Institute Moscow, U.S.S.R. Heat transfer data were taken with fluid helium flowing through a 2.85 m, 19 mm diameter uniformly heated horizontal tube. Temperatures were measured on the top and bottom of the tube at six axial locations with three other circumferential measurements made at (X/L) =57. Typical temperature profiles show significant variations both axially and circumferentially. The data are grouped using reduced Nusselt number (NuR) and the bulk expansion parameter for each axial location. The average data for 0.26 less than or equal to X/L less than or equal to 0.76 follow a power law relation with the average expansion parameter. System instabilities are noted and discussed. Future work including heat transfer in coaxial cylinders is discussed.
Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Foote, John; Litchford, Ron
2006-01-01
A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.
Experimental Study of Vane Heat Transfer and Film Cooling at Elevated Levels of Turbulence
NASA Technical Reports Server (NTRS)
Ames, Forrest E.
1996-01-01
This report documents the results of an experimental study on the influence of high level turbulence on vane film cooling and the influence of film cooling on vane heat transfer. Three different cooling configurations were investigated which included one row of film cooling on both pressure and suction surfaces, two staggered rows of film cooling on both suction and pressure surfaces, and a shower-head cooling array. The turbulence had a strong influence on film cooling effectiveness, particularly on the pressure surface where local turbulence levels were the highest. For the single row of holes, the spanwise mixing quickly reduced centerline effectiveness levels while mixing in the normal direction was more gradual. The film cooling had a strong influence on the heat transfer in the laminar regions of the vane. The effect of film cooling on heat transfer was noticeable in the turbulent regions but augmentation ratios were significantly lower. In addition to heat transfer and film cooling, velocity profiles were taken downstream of the film cooling rows at three spanwise locations. These profile comparisons documented the strong spanwise mixing due to the high turbulence. Total pressure exit measurements were also documented for the three configurations.
Preparation, characteristics, convection and applications of magnetic nanofluids: A review
NASA Astrophysics Data System (ADS)
Kumar, Aditya; Subudhi, Sudhakar
2018-02-01
Magnetic nanofluids (MNfs), the colloidal suspension of ferromagnetic nanomaterial, have been taken into research fascinatingly. After contemplating its distinctive interesting properties and unique eximious features it offers innumerous application not only in heat transfer field but also immensely prevalent in medical, biological, aerospace, electronics and solar sciences. This review paper epitomizes and perusing the research work done on heat transfer application of MNfs and encapsulate it for the future research support. Moreover, numerical and experimental, both the approaches has been included for the insightful analysis of phenomenon to apprehend augmentation in heat transfer by MNfs. This article first underlines the importance of appropriate methods of preparation of MNfs as well as its effects on the thermophysical properties of MNfs. Subsequently, the paper comprehended the descriptive analysis of augmentation of convection heat transfer and the effect of magnetic field on the behavior MNfs. Additionally, the effect of magnetic field intensity has been taken as a pertinent parameter and correlations have been developed for thermal conductivity, viscosity and heat transfer coefficient based on the reviewed data. The paper concluded with the tremendous applications of the MNfs and the futuristic plan to support the potential areas for future research.
Modular jet impingement assemblies with passive and active flow control for electronics cooling
Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh
2016-09-13
Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.
Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces
NASA Astrophysics Data System (ADS)
Olceroglu, Emre
Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable gases (NCGs), a novel characterization technique has been developed based on image tracking of droplet growth rates. The full-field dynamic characterization of superhydrophobic surfaces during condensation has been achieved using high-speed microscopy coupled with image-processing algorithms. This method is able to resolve heat fluxes as low as 20 W/m 2 and heat transfer coefficients of up to 1000 kW/m2, across an array of 1000's of microscale droplets simultaneously. Nanostructured surfaces with mixed wettability have been used to demonstrate delayed flooding during superhydrophobic condensation. These surfaces have been optimized and characterized using optical and electron microscopy, leading to the observation of self-organizing microscale droplets. The self-organization of small droplets effectively delays the onset of surface flooding, allowing the superhydrophobic surfaces to operate at higher supersaturations. Additionally, hierarchical surfaces have been fabricated and characterized showing enhanced droplet growth rates as compared to existing models. This enhancement has been shown to be derived from the presence of small feeder droplets nucleating within the microscale unit cells of the hierarchical surfaces. Based on the experimental observations, a mechanistic model for growth rates has been developed for superhydrophobic hierarchical surfaces. While superhydrophobic surfaces exhibit high heat transfer rates they are inherently unstable due to the necessity to maintain a non-wetted state in a condensing environment. As an alternative condensation surface, a novel design is introduced here using ambiphilic structures to promote the formation of a thin continuous liquid film across the surface which can still provide the benefits of superhydrophobic condensation. Preliminary results show that the ambiphilic structures restrain the film thickness, thus maintaining a low thermal resistance while simultaneously maximizing the liquid-vapor interface available for condensation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
Lowenstein, Andrew; Sibilia, Marc J.; Miller, Jeffrey A.; Tonon, Thomas
2007-09-18
A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.
Lowenstein, Andrew [Princeton, NJ; Sibilia, Marc J [Princeton, NJ; Miller, Jeffrey A [Hopewell, NJ; Tonon, Thomas [Princeton, NJ
2011-06-28
A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.
Fuel delivery system including heat exchanger means
NASA Technical Reports Server (NTRS)
Coffinberry, G. A. (Inventor)
1978-01-01
A fuel delivery system is presented wherein first and second heat exchanger means are each adapted to provide the transfer of heat between the fuel and a second fluid such as lubricating oil associated with the gas turbine engine. Valve means are included which are operative in a first mode to provide for flow of the second fluid through both first and second heat exchange means and further operative in a second mode for bypassing the second fluid around the second heat exchanger means.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mullins, C. B.; Felde, D. K.; Sutton, A. G.
1982-04-01
Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) Test 3.03.6AR. This test was conducted by members of the ORNL Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on May 21, 1980. Objective was to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small and large break loss-of-coolant accidents. Test 3.03.6AR was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.03.6AR available. Included in the report are uncertainties in the instrument responses,more » calculated mass flows, and calculated rod powers.« less
Miniature Heat Transport System for Spacecraft Thermal Control
NASA Technical Reports Server (NTRS)
Ochterbeck, Jay M.; Ku, Jentung (Technical Monitor)
2002-01-01
Loop heat pipes (LHP) are efficient devices for heat transfer and use the basic principle of a closed evaporation-condensation cycle. The advantage of using a loop heat pipe over other conventional methods is that large quantities of heat can be transported through a small cross-sectional area over a considerable distance with no additional power input to the system. By using LHPs, it seems possible to meet the growing demand for high-power cooling devices. Although they are somewhat similar to conventional heat pipes, LHPs have a whole set of unique properties, such as low pressure drops and flexible lines between condenser and evaporator, that make them rather promising. LHPs are capable of providing a means of transporting heat over long distances with no input power other than the heat being transported because of the specially designed evaporator and the separation of liquid and vapor lines. For LHP design and fabrication, preliminary analysis on the basis of dimensionless criteria is necessary because of certain complicated phenomena that take place in the heat pipe. Modeling the performance of the LHP and miniaturizing its size are tasks and objectives of current research. In the course of h s work, the LHP and its components, including the evaporator (the most critical and complex part of the LHP), were modeled with the corresponding dimensionless groups also being investigated. Next, analysis of heat and mass transfer processes in the LHP, selection of the most weighted criteria from known dimensionless groups (thermal-fluid sciences), heat transfer rate limits, (heat pipe theory), and experimental ratios which are unique to a given heat pipe class are discussed. In the third part of the report, two-phase flow heat and mass transfer performances inside the LHP condenser are analyzed and calculated for Earth-normal gravity and microgravity conditions. On the basis of recent models and experimental databanks, an analysis for condensing two-phase flow regimes, pressure gradients, and local heat transfer coefficients using ammonia, propylene, and R134, are carried out.
A heat transfer model for a hot helium airship
NASA Astrophysics Data System (ADS)
Rapert, R. M.
1987-06-01
Basic heat transfer empirical and analytic equations are applied to a double envelope airship concept which uses heated Helium in the inner envelope to augment and control gross lift. The convective and conductive terms lead to a linear system of five equations for the concept airship, with the nonlinear radiation terms included by an iterative solution process. The graphed results from FORTRAN program solutions are presented for the variables of interest. These indicate that a simple use of airship engine exhaust heat gives more than a 30 percent increase in gross airship lift. Possibly more than 100 percent increase can be achieved if a 'stream injection' heating system, with associated design problems, is used.
Methods and systems for concentrated solar power
Ma, Zhiwen
2016-05-24
Embodiments described herein relate to a method of producing energy from concentrated solar flux. The method includes dropping granular solid particles through a solar flux receiver configured to transfer energy from concentrated solar flux incident on the solar flux receiver to the granular solid particles as heat. The method also includes fluidizing the granular solid particles from the solar flux receiver to produce a gas-solid fluid. The gas-solid fluid is passed through a heat exchanger to transfer heat from the solid particles in the gas-solid fluid to a working fluid. The granular solid particles are extracted from the gas-solid fluid such that the granular solid particles can be dropped through the solar flux receiver again.
Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective
NASA Astrophysics Data System (ADS)
Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu
2016-02-01
We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).
TWO-PHASE (GAS-LIQUID) SYSTEM: HEAT TRANSFER AND HYDRAULICS. An Annotated Bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepple, R.R.; Tung, T.V.
1963-07-01
A bibliography of 2843 references in abstracted form is presented which covers the period l950 to 1962. The references are arranged under the following headings: books and review articles, boiling, bubble, condensation, evaporation, equations of state, interfacial characteristics, mass transfer across phase boundaries, measurement techniques, nuclear reactor heat removal, and twophase flow. An author index is included. (D.L.C.)
Dust as a Working Fluid for Heat Transfer Project
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2015-01-01
The project known as "Dust as a Working Fluid" demonstrates the feasibility of a dust-based system for transferring heat radiatively into space for those space applications requiring higher efficiency, lower mass, and the need to operate in extreme vacuum and thermal environments - including operating in low or zero gravity conditions in which the dust can be conveyed much more easily than on Earth.
Advanced thermionic energy conversion
NASA Technical Reports Server (NTRS)
1979-01-01
Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.
NASA Astrophysics Data System (ADS)
Elias, M. M.; Saidur, R.; Ben-Mansour, R.; Hepbasli, A.; Rahim, N. A.; Jesbains, K.
2018-04-01
Nanofluid is a new class of engineering fluid that has good heat transfer characteristics which is essential to increase the heat transfer performance in various engineering applications such as heat exchangers and cooling of electronics. In this study, experiments were conducted to compare the heat transfer performance and pressure drop characteristics in a plate heat exchanger (PHE) for 30° and 60° chevron angles using water based Al2O3 nanofluid at the concentrations from 0 to 0.5 vol.% for different Reynolds numbers. The thermo-physical properties has been determined and presented in this paper. At 0.5 vol% concentration, the maximum heat transfer coefficient, the overall heat transfer coefficient and the heat transfer rate for 60° chevron angle have attained a higher percentage of 15.14%, 7.8% and 15.4%, respectively in comparison with the base fluid. Consequently, when the volume concentration or Reynolds number increases, the heat transfer coefficient and the overall heat transfer coefficient as well as the heat transfer rate of the PHE (Plate Heat Exchangers) increases respectively. Similarly, the pressure drop increases with the volume concentration. 60° chevron angle showed better performance in comparison with 30° chevron angle.
NASA Technical Reports Server (NTRS)
Kim, K.; Wiedner, B.; Camci, C.
1993-01-01
A combined convective heat transfer and fluid dynamics investigation in a turbulent round jet impinging on a flat surface is presented. The experimental study uses a high resolution liquid crystal technique for the determination of the convective heat transfer coefficients on the impingement plate. The heat transfer experiments are performed using a transient heat transfer method. The mean flow and the character of turbulent flow in the free jet is presented through five hole probe and hot wire measurements, respectively. The flow field character of the region near the impingement plate plays an important role in the amount of convective heat transfer. Detailed surveys obtained from five hole probe and hot wire measurements are provided. An extensive validation of the liquid crystal based heat transfer method against a conventional technique is also presented. After a complete documentation of the mean and turbulent flow field, the convective heat transfer coefficient distributions on the impingement plate are presented. The near wall of the impingement plate and the free jet region is treated separately. The current heat transfer distributions are compared to other studies available from the literature. The present paper contains complete sets of information on the three dimensional mean flow, turbulent velocity fluctuations, and convective heat transfer to the plate. The experiments also prove that the present nonintrusive heat transfer method is highly effective in obtaining high resolution heat transfer maps with a heat transfer coefficient uncertainty of 5.7 percent.
Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A
2017-08-01
Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.
Fluid-cooled heat sink with improved fin areas and efficiencies for use in cooling various devices
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth; Narumanchi, Sreekant
2015-04-21
The disclosure provides a fluid-cooled heat sink having a heat transfer base and a plurality of heat transfer fins in thermal communication with the heat transfer base, where the heat transfer base and the heat transfer fins form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop of the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.
Advanced k-epsilon modeling of heat transfer
NASA Technical Reports Server (NTRS)
Kwon, Okey; Ames, Forrest E.
1995-01-01
This report describes two approaches to low Reynolds-number k-epsilon turbulence modeling which formulate the eddy viscosity on the wall-normal component of turbulence and a length scale. The wall-normal component of turbulence is computed via integration of the energy spectrum based on the local dissipation rate and is bounded by the isotropic condition. The models account for the anisotropy of the dissipation and the reduced mixing length due to the high strain rates present in the near-wall region. The turbulent kinetic energy and its dissipation rate were computed from the k and epsilon transport equations of Durbin. The models were tested for a wide range of turbulent flows and proved to be superior to other k-epsilon models, especially for nonequilibrium anisotropic flows. For the prediction of airfoil heat transfer, the models included a set of empirical correlations for predicting laminar-turbulent transition and laminar heat transfer augmentation due to the presence of freestream turbulence. The predictions of surface heat transfer were generally satisfactory.
Detailed modeling analysis for soot formation and radiation in microgravity gas jet diffusion flames
NASA Technical Reports Server (NTRS)
Ku, Jerry C.; Tong, LI; Greenberg, Paul S.
1995-01-01
Radiation heat transfer in combustion systems has been receiving increasing interest. In the case of hydrocarbon fuels, a significant portion of the radiation comes from soot particles, justifying the need for detailed soot formation model and radiation transfer calculations. For laminar gas jet diffusion flames, results from this project (4/1/91 8/22/95) and another NASA study show that flame shape, soot concentration, and radiation heat fluxes are substantially different under microgravity conditions. Our emphasis is on including detailed soot transport models and a detailed solution for radiation heat transfer, and on coupling them with the flame structure calculations. In this paper, we will discuss the following three specific areas: (1) Comparing two existing soot formation models, and identifying possible improvements; (2) A simple yet reasonably accurate approach to calculating total radiative properties and/or fluxes over the spectral range; and (3) Investigating the convergence of iterations between the flame structure solver and the radiation heat transfer solver.
TAP 2: A finite element program for thermal analysis of convectively cooled structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1980-01-01
A finite element computer program (TAP 2) for steady-state and transient thermal analyses of convectively cooled structures is presented. The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature-dependent thermal parameters is performed using the Newton-Raphson iteration method. Transient analyses are performed using an implicit Crank-Nicolson time integration scheme with consistent or lumped capacitance matrices as an option. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. User instructions and sample problems are presented in appendixes.
Hollow fiber apparatus and use thereof for fluids separations and heat and mass transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bikson, Benjamin; Etter, Stephen; Ching, Nathaniel
A hollow fiber device includes a hollow fiber bundle, comprising a plurality of hollow fibers, a first tubesheet and a second tubesheet encapsulating respective distal ends of the hollow fiber bundle. The tubesheets have boreholes in fluid communication with bores of the hollow fibers. In at least one of the tubesheets, the boreholes are formed radially. The hollow fiber device can be utilized in heat exchange, in gas/gas, liquid/liquid and gas/liquid heat transfer, in combined heat and mass transfer and in fluid separation assemblies and processes. The design disclosed herein is light weight and compact and is particularly advantageous whenmore » the pressure of a first fluid introduced into the bores of hollow fibers is higher than the pressure on the shell side of the device.« less
Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser
NASA Astrophysics Data System (ADS)
Aghel, Babak; Rahimi, Masoud; Almasi, Saeed
2017-03-01
The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.
The variable polarity plasma arc welding process: Characteristics and performance
NASA Technical Reports Server (NTRS)
Hung, R. J.; Zhu, G. J.
1991-01-01
Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.
Theory and design of variable conductance heat pipes
NASA Technical Reports Server (NTRS)
Marcus, B. D.
1972-01-01
A comprehensive review and analysis of all aspects of heat pipe technology pertinent to the design of self-controlled, variable conductance devices for spacecraft thermal control is presented. Subjects considered include hydrostatics, hydrodynamics, heat transfer into and out of the pipe, fluid selection, materials compatibility and variable conductance control techniques. The report includes a selected bibliography of pertinent literature, analytical formulations of various models and theories describing variable conductance heat pipe behavior, and the results of numerous experiments on the steady state and transient performance of gas controlled variable conductance heat pipes. Also included is a discussion of VCHP design techniques.
The effect of heating direction on flow boiling heat transfer of R134a in micro-channels
NASA Astrophysics Data System (ADS)
Xu, Mingchen; Jia, Li; Dang, Chao; Peng, Qi
2017-04-01
This paper presents effects of heating directions on heat transfer performance of R134a flow boiling in micro- channel heat sink. The heat sink has 30 parallel rectangular channels with cross-sectional dimensions of 500μm width 500μm depth and 30mm length. The experimental operation condition ranges of the heat flux and the mass flux were 13.48 to 82.25 W/cm2 and 373.3 to 1244.4 kg/m2s respectively. The vapor quality ranged from 0.07 to 0.93. The heat transfer coefficients of top heating and bottom heating both were up to 25 kW/m2 K. Two dominate transfer mechanisms of nucleate boiling and convection boiling were observed according to boiling curves. The experimental results indicated that the heat transfer coefficient of bottom heating was 13.9% higher than top heating in low heat flux, while in high heat flux, the heat transfer coefficient of bottom heating was 9.9%.higher than the top heating, because bubbles were harder to divorce the heating wall. And a modified correlation was provided to predict heat transfer of top heating.
NASA Astrophysics Data System (ADS)
Bulygin, Y. I.; Koronchik, D. A.; Legkonogikh, A. N.; Zharkova, M. G.; Azimova, N. N.
2017-05-01
The standard k-epsilon turbulence model, adapted for welding workshops, equipped with fixed workstations with sources of pollution took into account only the convective component of heat transfer, which is quite reasonable for large-volume rooms (with low density distribution of sources of pollution) especially the results of model calculations taking into account only the convective component correlated well with experimental data. For the purposes of this study, when we are dealing with a small confined space where necessary to take account of the body heated to a high temperature (for welding), located next to each other as additional sources of heat, it can no longer be neglected radiative heat exchange. In the task - to experimentally investigate the various types of heat transfer in a limited closed space for welding and behavior of a mathematical model, describing the contribution of the various components of the heat exchange, including radiation, influencing the formation of fields of concentration, temperature, air movement and thermal stress in the test environment. Conducted field experiments to model cubic body, allowing you to configure and debug the model of heat and mass transfer processes with the help of the developed approaches, comparing the measurement results of air flow velocity and temperature with the calculated data showed qualitative and quantitative agreement between process parameters, that is an indicator of the adequacy of heat and mass transfer model.
Nanofluids and a method of making nanofluids for ground source heat pumps and other applications
Olson, John Melvin
2013-11-12
This invention covers nanofluids. Nanofluids are a combination of particles between 1 and 100 nanometers, a surfactant and the base fluid. The nanoparticles for this invention are either pyrogenic nanoparticles or carbon nanotubes. These nanofluids improve the heat transfer of the base fluids. The base fluid can be ethylene glycol, or propylene glycol, or an aliphatic-hydrocarbon based heat transfer fluid. This invention also includes a method of making nanofluids. No surfactant is used to suspend the pyrogenic nanoparticles in glycols.
Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys
NASA Astrophysics Data System (ADS)
Zhang, Wei
The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1988-01-01
Papers are presented on superconductivity applications including magnets, electronics, rectifiers, magnet stability, coil protection, and cryogenic techniques. Also considered are insulation, heat transfer to liquid helium and nitrogen, heat and mass transfer in He II, superfluid pumps, and refrigeration for superconducting systems. Other topics include cold compressors, refrigeration and liquefaction, magnetic refrigeration, and refrigeration for space applications. Papers are also presented on cryogenic applications, commercial cryogenic plants, the properties of cryogenic fluids, and cryogenic instrumentation and data acquisition.
Not Available
1980-03-07
A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
McGuire, Joseph C.
1982-01-01
A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.
Three-phase flow? Consider helical-coil heat exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haraburda, S.S.
1995-07-01
In recent years, chemical process plants are increasingly encountering processes that require heat exchange in three-phase fluids. A typical application, for example, is heating liquids containing solid catalyst particles and non-condensable gases. Heat exchangers designed for three-phase flow generally have tubes with large diameters (typically greater than two inches), because solids can build-up inside the tube and lead to plugging. At the same time, in order to keep heat-transfer coefficients high, the velocity of the process fluid within the tube should also be high. As a result, heat exchangers for three-phase flow may require less than five tubes -- eachmore » having a required linear length that could exceed several hundred feet. Given these limitations, it is obvious that a basic shell-and-tube heat exchanger is not the most practical solution for this purpose. An alternative for three-phase flow is a helical-coil heat exchanger. The helical-coil units offer a number of advantages, including perpendicular, counter-current flow and flexible overall dimensions for the exchanger itself. The paper presents equations for: calculating the tube-side heat-transfer coefficient; calculating the shell-side heat-transfer coefficient; calculating the heat-exchanger size; calculating the tube-side pressure drop; and calculating shell-side pressure-drop.« less
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
46 CFR 153.436 - Heat transfer fluids: compatibility with cargo.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer fluids: compatibility with cargo. 153.436... Equipment Cargo Temperature Control Systems § 153.436 Heat transfer fluids: compatibility with cargo. A heat transfer fluid separated from the cargo by only one wall (for example, the heat transfer fluid in a coil...
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1995-01-01
A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.
NASA Astrophysics Data System (ADS)
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Turbulent Heat Transfer in Curved Pipe Flow
NASA Astrophysics Data System (ADS)
Kang, Changwoo; Yang, Kyung-Soo
2013-11-01
In the present investigation, turbulent heat transfer in fully-developed curved pipe flow with axially uniform wall heat flux has been numerically studied. The Reynolds numbers under consideration are Reτ = 210 (DNS) and 1,000 (LES) based on the mean friction velocity and the pipe radius, and the Prandtl number (Pr) is 0.71. For Reτ = 210 , the pipe curvature (κ) was fixed as 1/18.2, whereas three cases of κ (0.01, 0.05, 0.1) were computed in the case of Reτ = 1,000. The mean velocity, turbulent intensities and heat transfer rates obtained from the present calculations are in good agreement with the previous numerical and experimental results. To elucidate the secondary flow structures due to the pipe curvature, the mean quantities and rms fluctuations of the flow and temperature fields are presented on the pipe cross-sections, and compared with those of the straight pipe flow. To study turbulence structures and their influence on turbulent heat transfer, turbulence statistics including but not limited to skewness and flatness of velocity fluctuations, cross-correlation coefficients, an Octant analysis, and turbulence budgets are presented and discussed. Based on our results, we attempt to clarify the effects of Reynolds number and the pipe curvature on turbulent heat transfer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0008457).
NASA Astrophysics Data System (ADS)
Seager, David J.; Liburdy, James A.
1997-11-01
To further understand the effect of both compound angle holes and hole shaping on film cooling, detailed heat transfer measurements were obtained using hue based thermochromic liquid crystal method. The data were analyzed to measure both the full surface adiabatic effectiveness and heat transfer coefficient. The compound angles that were evaluated consist of holes that were aligned 0 degrees, 45 degrees, 60 degrees and 90 degrees to the main cross flow direction. Hole shaping variations from the traditional cylindrical shaped hole include forward diffused and laterally diffused hole geometries. Geometric parameters that were selected were the length to diameter ratio of 3.0, and the inclination angle 35 degrees. A density ratio of 1.55 was obtained for all teste. For each set of conditions the blowing ratio was varied to be 0.88, 1.25, and 1.88. Adiabatic effectiveness was obtained using a steady state test, while an active heating surface was used to determine the heat transfer coefficient using a transient method. The experimental method provides a unique method of analyzing a three-temperature heat transfer problem by providing detailed surface transport properties. Based on these results for the different hole geometries at each blowing ratio conclusions are drawn relative to the effects of compound angle holes on the overall film cooling performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valvesmore » configured to selectively provide liquid coolant to the one or more liquid-cooled servers.« less
Provisioning cooling elements for chillerless data centers
Chainer, Timothy J.; Parida, Pritish R.
2016-12-13
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valves configured to selectively provide liquid coolant to the one or more liquid-cooled servers.
2011-01-01
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877
Ramesh, Gopalan; Prabhu, Narayan Kotekar
2011-04-14
The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment.
Steady State Film Boiling Heat Transfer Simulated With Trace V4.160
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audrius Jasiulevicius; Rafael Macian-Juan
2006-07-01
This paper presents the results of the assessment and analysis of TRACE v4.160 heat transfer predictions in the post-CHF (critical heat flux) region and discusses the possibilities to improve the TRACE v4.160 code predictions in the film boiling heat transfer when applying different film boiling correlations. For this purpose, the TRACE v4.160-calculated film boiling heat flux and the resulting maximum inner wall temperatures during film boiling in single tubes were compared with experimental data obtained at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database included measurements for pressures ranging from 30 to 200 bar and coolantmore » mass fluxes from 500 to 3000 kg/m{sup 2}s. It was found that TRACE v4.160 does not produce correct predictions of the film boiling heat flux, and consequently of the maximum inner wall temperature in the test section, under the wide range of conditions documented in the KTH experiments. In particular, it was found that the standard TRACE v4.160 under-predicts the film boiling heat transfer coefficient at low pressure-low mass flux and high pressure-high mass flux conditions. For most of the rest of the investigated range of parameters, TRACE v4.160 over-predicts the film boiling heat transfer coefficient, which can lead to non-conservative predictions in applications to nuclear power plant analyses. Since no satisfactory agreement with the experimental database was obtained with the standard TRACE v4.160 film boiling heat transfer correlations, we have added seven film boiling correlations to TRACE v4.160 in order to investigate the possibility to improve the code predictions for the conditions similar to the KTH tests. The film boiling correlations were selected among the most commonly used film boiling correlations found in the open literature, namely Groeneveld 5.7, Bishop (2 correlations), Tong, Konkov, Miropolskii and Groeneveld-Delorme correlations. The only correlation among the investigated, which resulted in a significant improvement of TRACE predictions, was the Groeneveld 5.7. It was found, that replacing the current film boiling correlation (Dougall-Rohsenow) for the wall-togas heat transfer with Groeneveld 5.7 improves the code predictions for the film boiling heat transfer at high qualities in single tubes in the entire range of pressure and coolant mass flux considered. (authors)« less
Fluid-cooled heat sink for use in cooling various devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bharathan, Desikan; Bennion, Kevin; Kelly, Kenneth
The disclosure provides a fluid-cooled heat sink having a heat transfer base, a shroud, and a plurality of heat transfer fins in thermal communication with the heat transfer base and the shroud, where the heat transfer base, heat transfer fins, and the shroud form a central fluid channel through which a forced or free cooling fluid may flow. The heat transfer pins are arranged around the central fluid channel with a flow space provided between adjacent pins, allowing for some portion of the central fluid channel flow to divert through the flow space. The arrangement reduces the pressure drop ofmore » the flow through the fins, optimizes average heat transfer coefficients, reduces contact and fin-pin resistances, and reduces the physical footprint of the heat sink in an operating environment.« less
Low-melting point heat transfer fluid
Cordaro, Joseph Gabriel; Bradshaw, Robert W.
2010-11-09
A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.
Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.
Calonne, Neige; Geindreau, Christian; Flin, Frédéric
2014-11-26
Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.
NASA Astrophysics Data System (ADS)
Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T.
2016-07-01
The microchannels are device used to remove high heat fluxes from smaller area. In this experimental research work the heat transfer performance of nanofluids of Al2O3/water and CuO/water were compared. The important character of such fluids is the enhanced thermal conductivity, in comparison with base fluid without considerable alteration in physical and chemical properties. The effect of forced convective heat transfer coefficient was calculated using serpentine shaped microchannel heat exchanger. Furthermore we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. The heat transfer coefficient for different particle concentration and temperature were analysed using forced convection heat transfer using nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the basefluid. The results also shows that CuO/water nanofluid has increased heat transfer coefficient compared with Al2O3/water and base fluids. Moreover the experimental results indicate there is increased forced convective heat transfer coefficient with the increase in nano particle concentration.
Secondary Heat Exchanger Design and Comparison for Advanced High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Ali Siahpush; Michael McKellar
2012-06-01
The goals of next generation nuclear reactors, such as the high temperature gas-cooled reactor and advance high temperature reactor (AHTR), are to increase energy efficiency in the production of electricity and provide high temperature heat for industrial processes. The efficient transfer of energy for industrial applications depends on the ability to incorporate effective heat exchangers between the nuclear heat transport system and the industrial process heat transport system. The need for efficiency, compactness, and safety challenge the boundaries of existing heat exchanger technology, giving rise to the following study. Various studies have been performed in attempts to update the secondarymore » heat exchanger that is downstream of the primary heat exchanger, mostly because its performance is strongly tied to the ability to employ more efficient conversion cycles, such as the Rankine super critical and subcritical cycles. This study considers two different types of heat exchangers—helical coiled heat exchanger and printed circuit heat exchanger—as possible options for the AHTR secondary heat exchangers with the following three different options: (1) A single heat exchanger transfers all the heat (3,400 MW(t)) from the intermediate heat transfer loop to the power conversion system or process plants; (2) Two heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants, each exchanger transfers 1,700 MW(t) with a parallel configuration; and (3) Three heat exchangers share heat to transfer total heat of 3,400 MW(t) from the intermediate heat transfer loop to the power conversion system or process plants. Each heat exchanger transfers 1,130 MW(t) with a parallel configuration. A preliminary cost comparison will be provided for all different cases along with challenges and recommendations.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
... (Japan). PCB's are highly stable, heat resistant, and nonflammable chemicals. Industrial uses of PCB's include, or did include in the past, their use as electrical transformer and capacitor fluids, heat transfer fluids, hydraulic fluids, and plasticizers, and in formulations of lubricants, coatings, and inks...
Code of Federal Regulations, 2011 CFR
2011-04-01
... (Japan). PCB's are highly stable, heat resistant, and nonflammable chemicals. Industrial uses of PCB's include, or did include in the past, their use as electrical transformer and capacitor fluids, heat transfer fluids, hydraulic fluids, and plasticizers, and in formulations of lubricants, coatings, and inks...
NASA Astrophysics Data System (ADS)
Oh, Se-Yoon
A smooth tube and five microfin tubes were tested, and evaporation heat transfer coefficients were measured and compared for mass fluxes, 50, 100 and 200 kg/m2 s, and heat fluxes, 5, 10 and 20 kW/m 2, with Refrigerant 134a as a working fluid. The evaporation heat transfer coefficients at quality 0.5 were compared among the smooth and five microfin tubes with spiral angles 6, 12, 18, 25 and 44 degrees. The effect of the spiral angle on the heat transfer coefficients was examined. It was found that the optimal spiral angle where the maximum heat transfer coefficient occurs, mainly depends on mass flux. The optimal spiral angle was 18 degrees for G=50 kg/m2 s, and 6 degrees for G=100 and 200 kg/m 2 s. A borescope was used to visualize the flow on the inside wall of test tubes. The purpose was to find out the effect of the grooves on the liquid flow in microfin tubes and to explain the mechanism of heat transfer enhancement. Temperatures on the tube wall were measured at the same axial location as the imaging sensor of the borescope, and were related to the behavior of the liquid flow on the inside wall of the tubes. The liquid flow in the grooves on the wall was found to be the most important factor in enhancing heat transfer coefficients. The liquid flowed upward along the grooves and covered the upper inside wall of the microfin tubes at G=50 kg/m2 s. When heat flux increases, the liquid flow was found at a higher position. Both liquid viscosity and surface tension decrease, when temperature increases. Thus, the lower viscosity at higher heat flux facilitated the upward motion of the liquid flow in the grooves, so that the momentum force as well as the capillary effect was found to push the liquid along the grooves.* *A CD is included with dissertation containing video clips in avi format which can be viewed with media player.
Gas-Generator Augmented Expander Cycle Rocket Engine
NASA Technical Reports Server (NTRS)
Greene, William D. (Inventor)
2011-01-01
An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.
NASA Technical Reports Server (NTRS)
Chan, S. H. (Editor); Anderson, E. E. (Editor); Simoneau, R. J. (Editor); Chan, C. K. (Editor); Pepper, D. W. (Editor)
1990-01-01
Theoretical and experimental studies of heat-tranfer in a space environment are discussed in reviews and reports. Topics addressed include a small-scale two-phase thermosiphon to cool high-power electronics, a low-pressure-drop heat exchanger with integral heat pipe, an analysis of the thermal performance of heat-pipe radiators, measurements of temperature and concentration fields in a rectangular heat pipe, and a simplified aerothermal heating method for axisymmetric blunt bodies. Consideration is given to entropy production in a shock wave, bubble-slug transition in a two-phase liquid-gas flow under microgravity, plasma arc welding under normal and zero gravity, the Microgravity Thaw Experiment, the flow of a thin film on stationary and rotating disks, an advanced ceramic fabric body-mounted radiator for Space Station Freedom phase 0 design, and lunar radiators with specular reflectors.
Heat Pipe Technology: A bibliography with abstracts
NASA Technical Reports Server (NTRS)
1974-01-01
This bibliography lists 149 references with abstracts and 47 patents dealing with applications of heat pipe technology. Topics covered include: heat exchangers for heat recovery; electrical and electronic equipment cooling; temperature control of spacecraft; cryosurgery; cryogenic, cooling; nuclear reactor heat transfer; solar collectors; laser mirror cooling; laser vapor cavitites; cooling of permafrost; snow melting; thermal diodes variable conductance; artery gas venting; and venting; and gravity assisted pipes.
Film condensation in a horizontal rectangular duct
NASA Technical Reports Server (NTRS)
Lu, Qing; Suryanarayana, N. V.
1993-01-01
Condensation heat transfer in a horizontal rectangular duct was experimentally and analytically investigated. To prevent the dripping of condensate on the film, the experiment was conducted inside a horizontal rectangular duct with vapor condensing only on the bottom cooled plate of the duct. R-113 and FC-72 (Fluorinert Electronic Fluid developed by the 3M Company) were used as the condensing fluids. The experimental program included measurements of film thickness, local and average heat transfer coefficients, wave length, wave speed, and a study of wave initiation. The measured film thickness was used to obtain the local heat transfer coefficient. The wave initiation was studied both with condensation and with an adiabatic air-liquid flow. The test sections used in both experiments were identical.
Jet fuel based high pressure solid oxide fuel cell system
NASA Technical Reports Server (NTRS)
Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Bayt, Robert (Inventor); Srinivasan, Hari (Inventor); Dasgupta, Arindam (Inventor); Hardin, Larry (Inventor)
2013-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Jet Fuel Based High Pressure Solid Oxide Fuel Cell System
NASA Technical Reports Server (NTRS)
Srinivasan, Hari (Inventor); Hardin, Larry (Inventor); Gummalla, Mallika (Inventor); Yamanis, Jean (Inventor); Olsommer, Benoit (Inventor); Dardas, Zissis (Inventor); Dasgupta, Arindam (Inventor); Bayt, Robert (Inventor)
2015-01-01
A power system for an aircraft includes a solid oxide fuel cell system which generates electric power for the aircraft and an exhaust stream; and a heat exchanger for transferring heat from the exhaust stream of the solid oxide fuel cell to a heat requiring system or component of the aircraft. The heat can be transferred to fuel for the primary engine of the aircraft. Further, the same fuel can be used to power both the primary engine and the SOFC. A heat exchanger is positioned to cool reformate before feeding to the fuel cell. SOFC exhaust is treated and used as inerting gas. Finally, oxidant to the SOFC can be obtained from the aircraft cabin, or exterior, or both.
Active thermal control systems for lunar and Martian exploration
NASA Technical Reports Server (NTRS)
Ewert, Michael K.; Petete, Patricia A.; Dzenitis, John
1990-01-01
Several ATCS options including heat pumps, radiator shading devices, and single-phase flow loops were considered. The ATCS chosen for both lunar and Martian habitats consists of a heat pump integral with a nontoxic fluid acquisition and transport loop, and vertically oriented modular reflux-boiler radiators. The heat pump operates only during the lunar day. The lunar and Martian transfer vehicles have an internal single-phase water-acquisition loop and an external two-phase ammonia rejection system with rotating inflatable radiators. The lunar and Martian excursion vehicles incorporate internal single-phase water acquisition, which is connected via heat exchangers to external body-mounted single-phase radiators. A water evaporation system is used for the transfer vehicles during periods of high heating.
In situ conversion process utilizing a closed loop heating system
Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri
2009-08-18
An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.
Computational Model of Heat Transfer on the ISS
NASA Technical Reports Server (NTRS)
Torian, John G.; Rischar, Michael L.
2008-01-01
SCRAM Lite (SCRAM signifies Station Compact Radiator Analysis Model) is a computer program for analyzing convective and radiative heat-transfer and heat-rejection performance of coolant loops and radiators, respectively, in the active thermal-control systems of the International Space Station (ISS). SCRAM Lite is a derivative of prior versions of SCRAM but is more robust. SCRAM Lite computes thermal operating characteristics of active heat-transport and heat-rejection subsystems for the major ISS configurations from Flight 5A through completion of assembly. The program performs integrated analysis of both internal and external coolant loops of the various ISS modules and of an external active thermal control system, which includes radiators and the coolant loops that transfer heat to the radiators. The SCRAM Lite run time is of the order of one minute per day of mission time. The overall objective of the SCRAM Lite simulation is to process input profiles of equipment-rack, crew-metabolic, and other heat loads to determine flow rates, coolant supply temperatures, and available radiator heat-rejection capabilities. Analyses are performed for timelines of activities, orbital parameters, and attitudes for mission times ranging from a few hours to several months.
Modeling of Heating During Food Processing
NASA Astrophysics Data System (ADS)
Zheleva, Ivanka; Kamburova, Veselka
Heat transfer processes are important for almost all aspects of food preparation and play a key role in determining food safety. Whether it is cooking, baking, boiling, frying, grilling, blanching, drying, sterilizing, or freezing, heat transfer is part of the processing of almost every food. Heat transfer is a dynamic process in which thermal energy is transferred from one body with higher temperature to another body with lower temperature. Temperature difference between the source of heat and the receiver of heat is the driving force in heat transfer.
Post-Dryout Heat Transfer to a Refrigerant Flowing in Horizontal Evaporator Tubes
NASA Astrophysics Data System (ADS)
Mori, Hideo; Yoshida, Suguru; Kakimoto, Yasushi; Ohishi, Katsumi; Fukuda, Kenichi
Studies of the post-dryout heat transfer were made based on the experimental data for HFC-134a flowing in horizontal smooth and spiral1y grooved (micro-fin) tubes and the characteristics of the post-dryout heat transfer were c1arified. The heat transfer coefficient at medium and high mass flow rates in the smooth tube was lower than the single-phase heat transfer coefficient of the superheated vapor flow, of which mass flow rate was given on the assumption that the flow was in a thermodynamic equilibrium. A prediction method of post-dryout heat transfer coefficient was developed to reproduce the measurement satisfactorily for the smooth tube. The post dryout heat transfer in the micro-fin tube can be regarded approximately as a superheated vapor single-phase heat transfer.
Computational study of heat transfer in gas fluidization
NASA Astrophysics Data System (ADS)
Hou, Q. F.; Zhou, Z. Y.; Yu, A. B.
2013-06-01
Heat transfer in gas fluidization is investigated at a particle scale by means of a combined discrete element method and computational fluid dynamicsapproach. To develop understanding of heat transfer at various conditions, the effects of a few important material properties such as particle size, the Hamaker constant and particle thermal conductivity are examined through controlled numerical experiments. It is found that the convective heat transfer is dominant, and radiative heat transfer becomes important when the temperature is high. Conductive heat transfer also plays a role depending on the flow regimes and material properties. The heat transfer between a fluidized bed and an immersed surface is enhanced by the increase of particle thermal conductivity while it is little affected by Young's modulus. The findings should be useful for better understanding and predicting the heat transfer in gas fluidization.
Forced-convection Heat-transfer Characteristics of Molten Sodium Hydroxide
NASA Technical Reports Server (NTRS)
Grele, Milton D; Gedeon, Louis
1953-01-01
The forced-convection heat-transfer characteristics of sodium hydroxide were experimentally investigated. The heat-transfer data for heating fall slightly above the McAdams correlation line, and the heat-transfer data for cooling are fairly well represented by the McAdams correlation line.
MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT EXCHANGERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant
2014-01-01
Air-to-refrigerant heat exchangers are very common in air-conditioning, heat pump and refrigeration applications. In these heat exchangers, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for air-to-refrigerant heat exchangers with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat exchangers and compare their performance with existing state of the art designs. The air-side performance of various tube bundle configurationsmore » are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the air-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and air velocity. The metamodels are then integrated with an air-to-refrigerant heat exchanger design code. This integration allows a multi-scale analysis of air-side performance heat exchangers including air-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in air side pressure drop and doubled air heat transfer coefficients compared to a high performance compact micro channel heat exchanger with same capacity and flow rates.« less
NASA Technical Reports Server (NTRS)
Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)
1988-01-01
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Elovic, E.; O'Brien, J. E.; Pepper, D. W.
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu
2016-09-01
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.
Comment on "falsification of the Atmospheric CO2 Greenhouse Effects Within the Frame of Physics"
NASA Astrophysics Data System (ADS)
Halpern, Joshua B.; Colose, Christopher M.; Ho-Stuart, Chris; Shore, Joel D.; Smith, Arthur P.; Zimmermann, Jörg
In this journal, Gerhard Gerlich and Ralf D. Tscheuschner claim to have falsified the existence of an atmospheric greenhouse effect.1 Here, we show that their methods, logic, and conclusions are in error. Their most significant errors include trying to apply the Clausius statement of the Second Law of Thermodynamics to only one side of a heat transfer process rather than the entire process, and systematically ignoring most non-radiative heat flows applicable to the Earth's surface and atmosphere. They claim that radiative heat transfer from a colder atmosphere to a warmer surface is forbidden, ignoring the larger transfer in the other direction which makes the complete process allowed. Further, by ignoring heat capacity and non-radiative heat flows, they claim that radiative balance requires that the surface cool by 100 K or more at night, an obvious absurdity induced by an unphysical assumption. This comment concentrates on these two major points, while also taking note of some of Gerlich and Tscheuschner's other errors and misunderstandings.
Heat transfer in aeropropulsion systems
NASA Astrophysics Data System (ADS)
Simoneau, R. J.
1985-07-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Heat transfer in aeropropulsion systems
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1985-01-01
Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected.
Influence of surface contamination on the wettability of heat transfer surfaces
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng; ...
2015-08-08
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
Influence of surface contamination on the wettability of heat transfer surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Eric Christopher; Schulze, Roland; Liu, Cheng
In this study, the wettability of heat transfer surfaces plays an important role in liquid–vapor phase change phenomena, including boiling incipience, the critical heat flux, the Leidenfrost transition, and condensation. The influence of adsorbed surface contamination at the nanoscale, though seldom considered, can have a profound impact on wetting behavior. This study quantitatively investigates the impact of contaminant layer thickness on wettability. Various cleaning treatments are explored on zirconium and 6061 aluminum to determine the effect on contaminant and oxide layer thickness. Angle-resolved X-ray photoelectron spectroscopy can be used to measure the thickness of oxide and contaminant layers, which ismore » then correlated to wettability by measuring the equilibrium contact angle. Results indicate that even after solvent cleaning, the contact angle of water on practical heat transfer surfaces is dominated by a hydrocarbon contaminant overlayer around five nanometers thick.« less
NASA Technical Reports Server (NTRS)
Masters, P. A.; Aukerman, C. A.
1982-01-01
A high pressure fuel coking testing apparatus was designed and developed and was used to evaluate thermal decomposition limits and carbon decomposition rates in heated copper tubes for hydrocarbon fuels. A commercial propane (90% grade) and chemically pure (CP) propane were tested. Heat transfer to supercritical propane was evaluated at 136 atm, bulk fluid velocities of 6 to 30 m/s, and tube wall temperatures in the range of 422 to 811 K. A forced convection heat transfer correlation developed in a previous test effort verified a prediction of most of the experimental data within a + or - 30% range, with good agreement for the CP propane data. No significant differences were apparent in the predictions derived from the correlation when the carbon resistance was included with the film resistance. A post-test scanning electron microprobe analysis indicated occurrences of migration and interdiffusion of copper into the carbon deposit.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1978-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled, axial flow turbine blade or vane with an impingement insert is described. Coolant side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Sample problems, with tables of input and output, are included in the report. Input to the program includes a description of the blade geometry, coolant supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the inside heat-transfer coefficients.
Analysis of the heat transfer in double and triple concentric tube heat exchangers
NASA Astrophysics Data System (ADS)
Rădulescu, S.; Negoiţă, L. I.; Onuţu, I.
2016-08-01
The tubular heat exchangers (shell and tube heat exchangers and concentric tube heat exchangers) represent an important category of equipment in the petroleum refineries and are used for heating, pre-heating, cooling, condensation and evaporation purposes. The paper presents results of analysis of the heat transfer to cool a petroleum product in two types of concentric tube heat exchangers: double and triple concentric tube heat exchangers. The cooling agent is water. The triple concentric tube heat exchanger is a modified constructive version of double concentric tube heat exchanger by adding an intermediate tube. This intermediate tube improves the heat transfer by increasing the heat area per unit length. The analysis of the heat transfer is made using experimental data obtained during the tests in a double and triple concentric tube heat exchanger. The flow rates of fluids, inlet and outlet temperatures of water and petroleum product are used in determining the performance of both heat exchangers. Principally, for both apparatus are calculated the overall heat transfer coefficients and the heat exchange surfaces. The presented results shows that triple concentric tube heat exchangers provide better heat transfer efficiencies compared to the double concentric tube heat exchangers.
Scutellà, Bernadette; Bourlès, Erwan; Plana-Fattori, Artemio; Fonseca, Fernanda; Flick, Denis; Trelea, Ioan-Cristian; Passot, Stephanie
2018-04-14
During the freeze-drying process, vials located at the border of the shelf usually present higher heat flow rates that result in higher product temperatures than vials in the center. This phenomenon, referred to as edge vial effect, can lead to product quality variability within the same batch of vials and between batches at different scales. Our objective was to investigate the effect of various freeze dryer design features on heat transfer variability. A 3D mathematical model previously developed in COMSOL Multiphysics and experimentally validated was used to simulate the heat transfer of a set of vials located at the edge and in the center of the shelf. The design features considered included the vials loading configurations, the thermal characteristics, and some relevant dimensions of the drying chamber geometry. The presence of the rail in the loading configuration and the value of the shelf emissivity strongly impacted the heat flow rates received by the vials. Conversely, the heat transfer was not significantly influenced by modifications of the thermal conductivity of the rail, the emissivity of the walls, or the geometry of the drying chamber. The model developed turned out to be a powerful tool for cycle development and scale-up. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Strychalski, M.; Chorowski, M.; Polinski, J.
2014-05-01
Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.
NASA Technical Reports Server (NTRS)
Lowdermilk, Warren H; Grele, Milton D
1949-01-01
A heat transfer investigation, which was an extension of a previously reported NACA investigation, was conducted with air flowing through an electrically heated inconel tube with a rounded entrance,an inside diameter of 0.402 inch, and a length of 24 inches over a range of conditions, which included Reynolds numbers up to 500,000, average surface temperatures up to 2050 degrees R, and heat-flux densities up to 150,000 Btu per hour per square foot. Conventional methods of correlating heat-transfer data wherein properties of the air were evaluated at the average bulk, film, and surface temperatures resulted in reductions of Nusselt number of about 38, 46, and 53 percent, respectively, for an increase in surface temperature from 605 degrees to 2050 degrees R at constant Reynolds number. A modified correlation method in which the properties of air were based on the surface temperature and the Reynolds number was modified by substituting the product of the density at the inside tube wall and the bulk velocity for the conventional mass flow per unit cross-sectional area, resulted in a satisfactory correlation of the data for the extended ranges of conditions investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manohar S. Sohal
2005-09-01
This report summarizes work at the Idaho National Laboratory to develop strategies to enhance air-side heat transfer in geothermal air-cooled condensers such that it should not significantly increase pressure drop and parasitic fan pumping power. The work was sponsored by the U.S. Department of Energy, NEDO (New Energy and Industrial Technology Development Organization) of Japan, Yokohama National University, and the Indian Institute of Technology, Kanpur, India. A combined experimental and numerical investigation was performed to investigate heat transfer enhancement techniques that may be applicable to largescale air-cooled condensers such as those used in geothermal power applications. A transient heat transfermore » visualization and measurement technique was employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements were obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that included four tube rows in a staggered array. Heat transfer and pressure drop measurements were also acquired in a separate multiple-tube row apparatus in the Single Blow Test Facility. In addition, a numerical modeling technique was developed to predict local and average heat transfer for these low-Reynolds number flows, with and without winglets. Representative experimental and numerical results were obtained that reveal quantitative details of local finsurface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. Heat transfer and pressure-drop results were obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500. The winglets were of triangular (delta) shape with a 1:2 or 1:3 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface heat transfer results indicate a significant level of heat transfer enhancement (in terms of Colburn j-factor) associated with deployment of the winglets with circular as well as oval tubes. In general, toe-in (common flow up) type winglets appear to have better performance than the toe-out (common flow down) type winglets. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. During the course of their independent research, all of the researchers have established that about 10 to 30% enhancement in Colburn j-factor is expected. However, actual increase in heat transfer rate from a heat exchanger employing finned tubes with winglets may be smaller, perhaps on the order of 2 to 5%. It is also concluded that for any specific application, more full-size experimentation is needed to optimize the winglet design for a specific heat exchanger application. If in place of a circular tube, an oval tube can be economically used in a bundle, it is expected that the pressure drop across the tube bundle with the application of vortex generators (winglets) will be similar to that in a conventional circular tube bundle. It is hoped that the results of this research will demonstrate the benefits of applying vortex generators (winglets) on the fins to improve the heat transfer from the air-side of the tube bundle.« less
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
NASA Astrophysics Data System (ADS)
Nazari, Saman; Toghraie, Davood
2017-03-01
This study has compared the convection heat transfer of Water-based fluid flow with that of Water-Copper oxide (CuO) nanofluid in a sinusoidal channel with a porous medium. The heat flux in the lower and upper walls has been assumed constant, and the flow has been assumed to be two-dimensional, steady, laminar, and incompressible. The governing equations include equations of continuity, momentum, and energy. The assumption of thermal equilibrium has been considered between the porous medium and the fluid. The effects of the parameters, Reynolds number and Darcy number on the thermal performance of the channel, have been investigated. The results of this study show that the presence of a porous medium in a channel, as well as adding nanoparticles to the base fluid, increases the Nusselt number and the convection heat transfer coefficient. Also the results show that As the Reynolds number increases, the temperature gradient increases. In addition, changes in this parameter are greater in the throat of the flow than in convex regions due to changes in the channel geometry. In addition, porous regions reduce the temperature difference, which in turn increases the convective heat transfer coefficient.
Multi-scale heat and mass transfer modelling of cell and tissue cryopreservation
Xu, Feng; Moon, Sangjun; Zhang, Xiaohui; Shao, Lei; Song, Young Seok; Demirci, Utkan
2010-01-01
Cells and tissues undergo complex physical processes during cryopreservation. Understanding the underlying physical phenomena is critical to improve current cryopreservation methods and to develop new techniques. Here, we describe multi-scale approaches for modelling cell and tissue cryopreservation including heat transfer at macroscale level, crystallization, cell volume change and mass transport across cell membranes at microscale level. These multi-scale approaches allow us to study cell and tissue cryopreservation. PMID:20047939
NASA Astrophysics Data System (ADS)
Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua
2018-05-01
This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.
2010-01-01
Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.
In situ recovery from residually heated sections in a hydrocarbon containing formation
Vinegar, Harold J.; Karanikas, John Michael; Ryan, Robert Charles
2010-12-14
Methods of treating a tar sands formation is described herein. The methods may include providing heat to a first section of a hydrocarbon layer in the formation from a plurality of heaters located in the first section of the formation. Heat is transferred from the heaters so that at least a first section of the formation reaches a selected temperature. At least a portion of residual heat from the first section transfers from the first section to a second section of the formation. At least a portion of hydrocarbons in the second section are mobilized by providing a solvation fluid and/or a pressurizing fluid to the second section of the formation.
Lighting system with heat distribution face plate
Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri
2013-09-10
Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.
Provisioning cooling elements for chillerless data centers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chainer, Timothy J.; Parida, Pritish R.
Systems and methods for cooling include one or more computing structure, an inter-structure liquid cooling system that includes valves configured to selectively provide liquid coolant to the one or more computing structures; a heat rejection system that includes one or more heat rejection units configured to cool liquid coolant; and one or more liquid-to-liquid heat exchangers that include valves configured to selectively transfer heat from liquid coolant in the inter-structure liquid cooling system to liquid coolant in the heat rejection system. Each computing structure further includes one or more liquid-cooled servers; and an intra-structure liquid cooling system that has valvesmore » configured to selectively provide liquid coolant to the one or more liquid-cooled servers.« less
Thermocapillary flow contribution to dropwise condensation heat transfer
NASA Astrophysics Data System (ADS)
Phadnis, Akshay; Rykaczewski, Konrad
2017-11-01
With recent developments of durable hydrophobic materials potentially enabling industrial applications of dropwise condensation, accurate modeling of heat transfer during this phase change process is becoming increasingly important. Classical steady state models of dropwise condensation are based on the integration of heat transfer through individual droplets over the entire drop size distribution. These models consider only the conduction heat transfer inside the droplets. However, simple scaling arguments suggest that thermocapillary flows might exist in such droplets. In this work, we used Finite Element heat transfer model to quantify the effect of Marangoni flow on dropwise condensation heat transfer of liquids with a wide range of surface tensions ranging from water to pentane. We confirmed that the Marangoni flow is present for a wide range of droplet sizes, but only has quantifiable effects on heat transfer in drops larger than 10 µm. By integrating the single drop heat transfer simulation results with drop size distribution for the cases considered, we demonstrated that Marangoni flow contributes a 10-30% increase in the overall heat transfer coefficient over conduction only model.
NASA Technical Reports Server (NTRS)
Yee, Layton; Bailey, Harry E.; Woodward, Henry T.
1961-01-01
A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.
Heat transfer in freeboard region of fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biyikli, S.; Tuzla, K.; Chen, J.C.
1983-10-01
This research involved the study of heat transfer and fluid mechanic characteristics around a horizontal tube in the freeboard region of fluidized beds. Heat transfer coefficients were experimetnally measured for different bed temperatures, particle sizes, gas flow rates, and tube elevations in the freeboard region of air fluidized beds at atmospheric pressure. Local heat transfer coefficients were found to vary significantly with angular position around the tube. Average heat transfer coefficients were found to decrease with increasing freeboard tube elevation and approach the values for gas convection plus radiation for any given gas velocity. For a fixed tube elevation, heatmore » transfer coefficients generally increased with increasing gas velocity and with high particle entrainment they can approach the magnitudes found for immersed tubes. Heat transfer coefficients were also found to increase with increasing bed temperature. It was concluded that this increase is partly due to increase of radiative heat transfer and partly due to change of thermal properties of the fluidizing gas and particles. To investigate the fluid mechanic behavior of gas and particles around a freeboard tube, transient particle tube contacts were measured with a special capacitance probe in room temperature experiments. The results indicated that the tube surface experiences alternating dense and lean phase contacts. Quantitative information for local characteristics was obtained from the capacitance signals and used to develop a phenomenological model for prediction of the heat transfer coefficients around freeboard tubes. The packet renewal theory was modified to account for the dense phase heat transfer and a new model was suggested for the lean phase heat transfer. Finally, an empirical freeboard heat transfer correlation was developed from functional analysis of the freeboard heat transfer data using nondimensional groups representing gas velocity and tube elevation.« less
NASA Technical Reports Server (NTRS)
Siegel, R.; Goldstein, M. E.
1972-01-01
An analytical solution is obtained for flow and heat transfer in a three-dimensional porous medium. Coolant from a reservoir at constant pressure and temperature enters one portion of the boundary of the medium and exits through another portion of the boundary which is at a specified uniform temperature and uniform pressure. The variation with temperature of coolant density and viscosity are both taken into account. A general solution is found that provides the temperature distribution in the medium and the mass and heat fluxes along the portion of the surface through which the coolant is exiting.
NASA Technical Reports Server (NTRS)
Petrucco, R. J.; Leonardi, S. J.
1973-01-01
The wetting characteristics and deposit forming tendencies of a series of lubricants were evaluated using a microfog jet delivery system to wet a flat heated rotating disc. The performances of the nine lubricants are discussed in terms of the various testing parameters which include temperature, disc speed and lubricant gas flow rates. Also discussed are the heat transfer characteristics of two of the lubricants on that same plane disc specimen. The wetting characteristics and heat transfer characteristics of one of the lubricants on a complex disc simulating bearing geometry are also discussed.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
Elevated temperature forming method and preheater apparatus
Krajewski, Paul E; Hammar, Richard Harry; Singh, Jugraj; Cedar, Dennis; Friedman, Peter A; Luo, Yingbing
2013-06-11
An elevated temperature forming system in which a sheet metal workpiece is provided in a first stage position of a multi-stage pre-heater, is heated to a first stage temperature lower than a desired pre-heat temperature, is moved to a final stage position where it is heated to a desired final stage temperature, is transferred to a forming press, and is formed by the forming press. The preheater includes upper and lower platens that transfer heat into workpieces disposed between the platens. A shim spaces the upper platen from the lower platen by a distance greater than a thickness of the workpieces to be heated by the platens and less than a distance at which the upper platen would require an undesirably high input of energy to effectively heat the workpiece without being pressed into contact with the workpiece.
Procedures for testing and evaluating spacecraft-type heat pipes
NASA Astrophysics Data System (ADS)
Tower, L. K.; Kaufman, W. B.
1984-04-01
This report describes part of an effort to develop dependable, cost effective spacecraft thermal control heat pipes. In the program the reliability and performance of 30 commercially available heat pipes were assessed. The pipes comprised 10 groups of varying design, with aluminum and stainless steel as structural materials, and methanol and ammonia as working fluids. The factors studied were noncondensible gas accumulation and heat transfer capability in one g. The present report supplements a brief earlier report by describing in detail the procedures required to conduct a comprehensive evaluation of heat pipes for thermal control. It discusses the test facilities and testing procedures. The manner in which data may be taken for estimating useful life and comparing performance is described. Some of the pitfalls in making such judgments are illustrated. Originator supplied keywords include: heat transfer, and corrosion.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-11-10
Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system
Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E
2015-05-12
Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.
Notes on Earth Atmospheric Entry for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Rivell, Thomas
2006-01-01
The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.
NASA Technical Reports Server (NTRS)
Gaugler, R. E.
1979-01-01
A computer program to calculate transient and steady state temperatures, pressures, and coolant flows in a cooled axial flow turbine blade or vane with an impingement insert is described. Coolant-side heat transfer coefficients are calculated internally in the program, with the user specifying either impingement or convection heat transfer at each internal flow station. Spent impingement air flows in a chordwise direction and is discharged through the trailing edge and through film cooling holes. The ability of the program to handle film cooling is limited by the internal flow model. Input to the program includes a description of the blade geometry, coolant-supply conditions, outside thermal boundary conditions, and wheel speed. The blade wall can have two layers of different materials, such as a ceramic thermal barrier coating over a metallic substrate. Program output includes the temperature at each node, the coolant pressures and flow rates, and the coolant-side heat transfer coefficients.
Simulation of a 20-ton LiBr/H{sub 2}O absorption cooling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardono, B.; Nelson, R.M.
The possibility of using solar energy as the main heat input for cooling systems has led to several studies of available cooling technologies that use solar energy. The results show that double-effect absorption cooling systems give relatively high performance. To further study absorption cooling systems, a computer code was developed for a double-effect lithium bromide/water (LiBr/H{sub 2}O) absorption system. To evaluate the performance, two objective functions were developed including the coefficient of performance (COP) and the system cost. Based on the system cost, an optimization to find the minimum cost was performed to determine the nominal heat transfer areas ofmore » each heat exchanger. The nominal values of other system variables, such as the mass flow rates and inlet temperatures of the hot water, cooling water, and chilled water, are specified as commonly used values for commercial machines. The results of the optimization show that there are optimum heat transfer areas. In this study, hot water is used as the main energy input. Using a constant load of 20 tons cooling capacity, the effects of various variables including the heat transfer ares, mass flow rates, and inlet temperatures of hot water, cooling water, and chilled water are presented.« less
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2017-02-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
New Approach for Thermal Protection System of a Probe During Entry
NASA Technical Reports Server (NTRS)
Yendler, Boris; Poffenbarger, Nathan; Patel, Amisha; Bhave, Ninad; Papadopoulos, Periklis
2005-01-01
One of the biggest challenges for any thermal protection system (TPS) of a probe is to provide a sufficient barrier for heat generated during descent in order to keep the temperature inside of the probe low enough to support operational temperature of equipment. Typically, such a goal is achieved by having the ceramic tiles and blankets like on the Space Shuttle, silicon based ablators, or metallic systems to cover the probe external surface. This paper discusses the development of an innovative technique for TPS of the probe. It is proposed to use a novel TPS which comprises thermal management of the entry vehicle. It includes: a) absorption of the heat during heat pick load by a Phase Change Material (PCM), b) separation of the compartment which contains PCM from the rest of the space vehicle by a gap with a high thermal resistance, c) maintaining temperature of the internal wall of s/c cabin temperature by transfer heat from the internal wall to the "cold" side of the vehicle and to reject heat into the space during the flight and on a ground, d) utilization of an advanced heat pipe, so called Loop Heat Pipe to transfer heat from the cabin internal wall to the cold side of the s/c and to reject the heat into environment outside of the vehicle. A Loop Heat Pipe is capable of transferring heat against gravity
Lightweight Heat Pipes Made from Magnesium
NASA Technical Reports Server (NTRS)
Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale
2010-01-01
Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.
Cooperative heat transfer and ground coupled storage system
Metz, Philip D.
1982-01-01
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Cooperative heat transfer and ground coupled storage system
Metz, P.D.
A cooperative heat transfer and ground coupled storage system wherein collected solar heat energy is ground stored and permitted to radiate into the adjacent ground for storage therein over an extended period of time when such heat energy is seasonally maximally available. Thereafter, when said heat energy is seasonally minimally available and has propagated through the adjacent ground a substantial distance, the stored heat energy may be retrieved by a circumferentially arranged heat transfer means having a high rate of heat transfer.
Analysis of liquid-metal-jet impingement cooling in a corner region and for a row of jets
NASA Technical Reports Server (NTRS)
Siegel, R.
1975-01-01
A conformal mapping method was used to analyze liquid-metal-jet impingement heat transfer. The jet flow region and energy equation are transformed to correspond to uniform flow in a parallel plate channel with nonuniform heat addition along a portion of one wall. The exact solution for the wall-temperature distribution was obtained in the transformed channel, and the results are mapped back into the physical plane. Two geometries are analyzed. One is for a single slot jet directed either into an interior corner formed by two flat plates, or over the external sides of the corner; the flat plates are uniformly heated, and the corner can have various included angles. The heat-transfer coefficient at the stagnation point at the apex of the plates is obtained as a function of the corner angle, and temperature distributions are calculated along the heated walls. The second geometry is an infinite row of uniformly spaced parallel slot jets impinging normally against a uniformly heated plate. The heat-transfer behavior is obtained as a function of the spacing between the jets. Results are given for several jet Peclet numbers from 5 to 50.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
Gas turbine blade film cooling and blade tip heat transfer
NASA Astrophysics Data System (ADS)
Teng, Shuye
The detailed heat transfer coefficient and film cooling effectiveness distributions as well as the detailed coolant jet temperature profiles on the suction side of a gas turbine blade were measured using a transient liquid crystal image method and a traversing cold wire and thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 105. The upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 and 0.1. The coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness. Measurements of detailed heat transfer coefficient distributions on a turbine blade tip were performed in the same wind tunnel facility as above. The central blade had a variable tip gap clearance. Measurements were made at three different tip gap clearances of about 1.1%, 2.1%, and 3% of the blade span. Static pressure distributions were measured in the blade mid-span and on the shroud surface. Detailed heat transfer coefficient distributions were measured on the blade tip surface. Results show that reduced tip clearance leads to reduced heat transfer coefficient over the blade tip surface. Results also show that reduced tip clearance tends to weaken the unsteady wake effect on blade tip heat transfer.
NASA Astrophysics Data System (ADS)
Ahmad, Shahrokh; Oishe, Sadia Noon; Rahman, Md. Lutfor
2017-12-01
The purpose of this research work is to increase the heat transfer coefficient by operating the heat exchangers at smaller revolution per minute. This signifies an achievement of reduction of pressure drop corresponding to less operating cost. This study has used two types of SPT tape insert to observe the various heat transfer coefficient, heat transfer rate and heat transfer augmentation efficiency. One tape was fully twisted and another tape was partially twisted. The shape of the SPT tape creates turbulence effect. The turbulence flow (swirl flow) generated by SPT tape promotes greater mixing and high heat transfer coefficients. An arrangement scheme has been developed for the experimental investigation. For remarking the rate of change of heat transfer, temperature has been measured numerically through the temperature sensors with various flow rates and RPM. The volume flow rate was varied from 10.3448276 LPM to 21.045574 LPM and the rotation of the perforated twisted tape was varied from 50 RPM to 400 RPM. Finally the research study demonstrates the effectiveness of the results of the proposed approaches. It is observed that the suggested method of heat transfer augmentations is much more effective than existing methods, since it results in an increase in heat transfer area and also an increase in the heat transfer coefficient and reduction of cost in the industrial sectors.
Heat transfer in turbulent magneto-fluid-mechanic pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andelman, M.P.
1975-12-01
The ability to predict heat transfer in Magneto-Fluid-Mechanic flow is of importance in light of the development of MHD generators and the proposed development of thermonuclear reactors. In both cases heat transfer from (or to) a conducting fluid in the presence of a magnetic field plays an important part in the overall economics of the system. A semi-empirical analytical method is given for obtaining heat transfer coefficients in turbulent liquid metal pipe flow in the presence of a magnetic field aligned to the flow. The analysis was based on the Lykoudis turbulent transport model with the influence of a longitudinalmore » magnetic field included. The results are shown to be in agreement with available experimental values. Experimental velocity profiles in mercury for pipe flow in a transverse magnetic field were made at a Reynolds number of 315,000; for Hartmann numbers of 0, 92, 184, 369, and 1198; and at orientations of 0 degrees, 45 degrees, and 90 degrees from the magnetic field. These results provide a basis for the determination of the effect of a transverse magnetic field on turbulent diffusivities.« less
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.; Lee, Chi-Miag (Technical Monitor)
2001-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this paper, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery for space launch vehicle propulsion systems.
LeRC-HT: NASA Lewis Research Center General Multiblock Navier-Stokes Heat Transfer Code Developed
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Gaugler, Raymond E.
1999-01-01
For the last several years, LeRC-HT, a three-dimensional computational fluid dynamics (CFD) computer code for analyzing gas turbine flow and convective heat transfer, has been evolving at the NASA Lewis Research Center. The code is unique in its ability to give a highly detailed representation of the flow field very close to solid surfaces. This is necessary for an accurate representation of fluid heat transfer and viscous shear stresses. The code has been used extensively for both internal cooling passage flows and hot gas path flows--including detailed film cooling calculations, complex tip-clearance gap flows, and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool (at least 35 technical papers have been published relative to the code and its application), but it should be useful for detailed design analysis. We now plan to make this code available to selected users for further evaluation.
Glenn-HT: The NASA Glenn Research Center General Multi-Block Navier-Stokes Heat Transfer Code
NASA Technical Reports Server (NTRS)
Gaugfer, Raymond E.
2002-01-01
For the last several years, Glenn-HT, a three-dimensional (3D) Computational Fluid Dynamics (CFD) computer code for the analysis of gas turbine flow and convective heat transfer has been evolving at the NASA Glenn Research Center. The code is unique in the ability to give a highly detailed representation of the flow field very close to solid surfaces in order to get accurate representation of fluid heat transfer and viscous shear stresses. The code has been validated and used extensively for both internal cooling passage flow and for hot gas path flows, including detailed film cooling calculations and complex tip clearance gap flow and heat transfer. In its current form, this code has a multiblock grid capability and has been validated for a number of turbine configurations. The code has been developed and used primarily as a research tool, but it can be useful for detailed design analysis. In this presentation, the code is described and examples of its validation and use for complex flow calculations are presented, emphasizing the applicability to turbomachinery.
NASA Astrophysics Data System (ADS)
Tian, C.; Weng, J.; Liu, Y.
2017-11-01
The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.
NASA Technical Reports Server (NTRS)
Hung, R. J.; Lee, C. C.; Liu, J. W.
1990-01-01
Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. Flow profiles and power distribution of argon plasma gas as a working fluid to produce plasma arc jet in the VPPA welding process was analyzed. Major loss of heat transfer for flow through the nozzle is convective heat transfer; for the plasma jet flow between the outlet of the nozzle and workpiece is radiative heat transfer; and for the flow through the keyhole of the workpiece is convective heat transfer. The majority of the power absorbed by the keyhole of the workpiece is used for melting the solid metal workpiece into a molten metallic puddle. The crown and root widths and the crown and root heights can be predicted. An algorithm for promoting automatic control of flow parameters and the dimensions of the final product of the welding specification to be used for the VPPA Welding System operated at MSFC are provided.
Modeling of the heat transfer in bypass transitional boundary-layer flows
NASA Technical Reports Server (NTRS)
Simon, Frederick F.; Stephens, Craig A.
1991-01-01
A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.
Rankine cycle load limiting through use of a recuperator bypass
Ernst, Timothy C.
2011-08-16
A system for converting heat from an engine into work includes a boiler coupled to a heat source for transferring heat to a working fluid, a turbine that transforms the heat into work, a condenser that transforms the working fluid into liquid, a recuperator with one flow path that routes working fluid from the turbine to the condenser, and another flow path that routes liquid working fluid from the condenser to the boiler, the recuperator being configured to transfer heat to the liquid working fluid, and a bypass valve in parallel with the second flow path. The bypass valve is movable between a closed position, permitting flow through the second flow path and an opened position, under high engine load conditions, bypassing the second flow path.
Thermal-hydraulic analysis of low activity fusion blanket designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J A; Powell, J; Yu, W S
1977-01-01
The heat transfer aspects of fusion blankets are considered where: (a) conduction and (b) boiling and condensation are the dominant heat transfer mechanisms. In some cases, unique heat transfer problems arise and additional heat transfer data and analyses may be required.
Film-Cooling Heat-Transfer Measurements Using Liquid Crystals
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.
1997-01-01
The following topics are discussed: (1) The Transient Liquid-Crystal Heat-Transfer Technique; (2) 2-D Film-Cooling Heat-Transfer on an AlliedSignal Vane; and (3) Effects of Tab Vortex Generators on Surface Heat Transfer. Downstream of a Jet in Crossflow.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
NASA Astrophysics Data System (ADS)
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
NASA Astrophysics Data System (ADS)
Ahmed, Syed Muzamil; Kazi, S. N.; Khan, Ghulamullah; Sadri, Rad; Dahari, Mahidzal; Zubir, M. N. M.; Sayuti, M.; Ahmad, Pervaiz; Ibrahim, Rushdan
2018-03-01
Heat transfer coefficients were obtained for a range of non-wood kenaf bast pulp fiber suspensions flowing through a circular pipe heat exchanger test loop. The data were produced over a selected temperature and range of flow rates from the flow loop. It was found that the magnitude of the heat transfer coefficient of a fiber suspension is dependent on characteristics, concentration and pulping method of fiber. It was observed that at low concentration and high flow rates, the heat transfer coefficient values of suspensions were observed higher than that of the heat transfer coefficient values of water, on the other hand the heat transfer coefficient values of suspensions decreases at low flow rates and with the increase of their concentration. The heat transfer were affected by varying fiber characteristics, such as fiber length, fiber flexibility, fiber chemical and mechanical treatment as well as different pulping methods used to liberate the fibers. Heat transfer coefficient was decreased with the increase of fiber flexibility which was also observed by previous researchers. In the present work, the characteristics of fibers are correlated with the heat transfer coefficient of suspensions of the fibers. Deviations in fiber properties can be monitored from the flowing fiber suspensions by measuring heat transfer coefficient to adjust the degree of fiber refining treatment so that papers made from those fibers will be more uniform, consistent, within the product specification and retard the paper production loss.
Ideal heat transfer conditions for tubular solar receivers with different design constraints
NASA Astrophysics Data System (ADS)
Kim, Jin-Soo; Potter, Daniel; Gardner, Wilson; Too, Yen Chean Soo; Padilla, Ricardo Vasquez
2017-06-01
The optimum heat transfer condition for a tubular type solar receiver was investigated for various receiver pipe size, heat transfer fluid, and design requirement and constraint(s). Heat transfer of a single plain receiver pipe exposed to concentrated solar energy was modelled along the flow path of the heat transfer fluid. Three different working fluids, molten salt, sodium, and supercritical carbon dioxide (sCO2) were considered in the case studies with different design conditions. The optimized ideal heat transfer condition was identified through fast iterative heat transfer calculations solving for all relevant radiation, conduction and convection heat transfers throughout the entire discretized tubular receiver. The ideal condition giving the best performance was obtained by finding the highest acceptable solar energy flux optimally distributed to meet different constraint(s), such as maximum allowable material temperature of receiver, maximum allowable film temperature of heat transfer fluid, and maximum allowable stress of receiver pipe material. The level of fluid side turbulence (represented by pressure drop in this study) was also optimized to give the highest net power production. As the outcome of the study gives information on the most ideal heat transfer condition, it can be used as a useful guideline for optimal design of a real receiver and solar field in a combined manner. The ideal heat transfer condition is especially important for high temperature tubular receivers (e.g. for supplying heat to high efficiency Brayton cycle turbines) where the system design and performance is tightly constrained by the receiver pipe material strength.
ERIC Educational Resources Information Center
Cavallo, Ann M. L.
2001-01-01
Introduces three science activities for elementary and middle school students on the concepts of heat transfer and temperature. Includes two learning cycles. The first learning cycle examines the effects of temperature on air movement, and the second learning cycle investigates heat movement in water. (YDS)
Science Teaching to Fire the Imagination.
ERIC Educational Resources Information Center
Sandford, Diana; Fleetwood, Julie
1997-01-01
Presents a range of exciting ideas for encouraging active learning, for illuminating new concepts, and for making science lessons fun. Topics include modeling, matter, heat, diffusion, changes of state, heat transfer, energy changes, atomic structure, waves, gravity, enzymes, and habitats. (JRH)
NASA Astrophysics Data System (ADS)
Duan, Luanfang; Qi, Chonggang; Ling, Xiang; Peng, Hao
2018-03-01
In the present work, the contact heat transfer between the granular materials and heating plates inside plate rotary heat exchanger (PRHE) was investigated. The heat transfer coefficient is dominated by the contact heat transfer coefficient at hot wall surface of the heating plates and the heat penetration inside the solid bed. A plot scale PRHE with a diameter of Do = 273 mm and a length of L = 1000 mm has been established. Quartz sand with dp = 2 mm was employed as the experimental material. The operational parameters were in the range of ω = 1 - 8 rpm, and F = 15, 20, 25, 30%, and the effect of these parameters on the time-average contact heat transfer coefficient was analyzed. The time-average contact heat transfer coefficient increases with the increase of rotary speed, but decreases with the increase of the filling degree. The measured data of time-average heat transfer coefficients were compared with theoretical calculations from Schlünder's model, a good agreement between the measurements and the model could be achieved, especially at a lower rotary speed and filling degree level. The maximum deviation between the calculated data and the experimental data is approximate 10%.
Emergency heat removal system for a nuclear reactor
Dunckel, Thomas L.
1976-01-01
A heat removal system for nuclear reactors serving as a supplement to an Emergency Core Cooling System (ECCS) during a Loss of Coolant Accident (LOCA) comprises a plurality of heat pipes having one end in heat transfer relationship with either the reactor pressure vessel, the core support grid structure or other in-core components and the opposite end located in heat transfer relationship with a heat exchanger having heat transfer fluid therein. The heat exchanger is located external to the pressure vessel whereby excessive core heat is transferred from the above reactor components and dissipated within the heat exchanger fluid.
Flow and heat transfer in a curved channel
NASA Technical Reports Server (NTRS)
Brinich, P. F.; Graham, R. W.
1977-01-01
Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.
Emergency cooling system and method
Oosterkamp, W.J.; Cheung, Y.K.
1994-01-04
An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
46 CFR 153.434 - Heat transfer coils within a tank.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Heat transfer coils within a tank. 153.434 Section 153... Cargo Temperature Control Systems § 153.434 Heat transfer coils within a tank. When a cargo tank... the heat transfer fluid at a pressure greater than the pressure exerted on the heating or cooling...
NASA Astrophysics Data System (ADS)
Wengler, C.; Addy, J.; Luke, A.
2018-03-01
Due to high energy demand required for chemical processes, refrigeration and process industries the increase of efficiency and performance of thermal systems especially evaporators is indispensable. One of the possibilities to meet this purpose are investigations in enhancement of the heat transfer in nucleate boiling where high heat fluxes at low superheat are transferred. In the present work, the heat transfer in pool boiling is investigated with pure R134a over wide ranges of reduced pressures and heat fluxes. The heating materials of the test tubes are aluminum and stainless steel. The influence of the thermal conductivity on the heat transfer coefficients is analysed by the surface roughness of sandblasted surfaces. The heat transfer coefficient increases with increasing thermal conductivity, surface roughness and reduced pressures. The experimental results show a small degradation of the heat transfer coefficients between the two heating materials aluminum and stainless steel. In correlation with the VDI Heat Atlas, the experimental results are matching well with the predictions but do not accurately consider the stainless steel material reference properties.
Disk brake design for cooling improvement using Computational Fluid Dynamics (CFD)
NASA Astrophysics Data System (ADS)
Munisamy, Kannan M.; Shafik, Ramel
2013-06-01
The car disk brake design is improved with two different blade designs compared to the baseline blade design. The two designs were simulated in Computational fluid dynamics (CFD) to obtain heat transfer properties such as Nusselt number and Heat transfer coefficient. The heat transfer property is compared against the baseline design. The improved shape has the highest heat transfer performance. The curved design is inferior to baseline design in heat transfer performance.
NASA Astrophysics Data System (ADS)
Chen, Ting; Bae, Kyung Jin; Kwon, Oh Kyung
2018-02-01
In this paper, heat transfer characteristics of fin-tube heat exchanger and primary surface heat exchanger (PSHE) used in waste heat recovery were investigated experimentally. The flow in the fin-tube heat exchanger is cross flow and in PSHE counter flow. The variations of friction factor and Colburn j factor with air mass flow rate, and Nu number with Re number are presented. Various comparison methods are used to evaluate heat transfer performance, and the results show that the heat transfer rate of the PSHE is on average 17.3% larger than that of fin-tube heat exchanger when air mass flow rate is ranging from 1.24 to 3.45 kg/min. However, the PSHE causes higher pressure drop, and the fin-tube heat exchanger has a wider application range which leads to a 31.7% higher value of maximum heat transfer rate compared to that of the PSHE. Besides, under the same fan power per unit frontal surface, a higher heat transfer rate value is given in the fin-tube heat exchanger.
NASA Astrophysics Data System (ADS)
Bojko, Marian; Kocich, Radim
2016-06-01
Application of numerical simulations based on the CFD calculation when the mass and heat transfer between the fluid flows is essential component of thermal calculation. In this article the mathematical model of the heat exchanger is defined, which is subsequently applied to the plate heat exchanger, which is connected in series with the other heat exchanger (tubular heat exchanger). The present contribution deals with the possibility to use the waste heat of the flue gas produced by small micro turbine. Inlet boundary conditions to the mathematical model of the plate heat exchanger are obtained from the results of numerical simulation of the tubular heat exchanger. Required parameters such for example inlet temperature was evaluated from temperature field, which was subsequently imported to the inlet boundary condition to the simulation of plate heat exchanger. From the results of 3D numerical simulations are evaluated basic flow variables including the evaluation of dimensionless parameters such as Colburn j-factor and friction ft factor. Numerical simulation is realized by software ANSYS Fluent15.0.
Boiling local heat transfer enhancement in minichannels using nanofluids
2013-01-01
This paper reports an experimental study on nanofluid convective boiling heat transfer in parallel rectangular minichannels of 800 μm hydraulic diameter. Experiments are conducted with pure water and silver nanoparticles suspended in water base fluid. Two small volume fractions of silver nanoparticles suspended in water are tested: 0.000237% and 0.000475%. The experimental results show that the local heat transfer coefficient, local heat flux, and local wall temperature are affected by silver nanoparticle concentration in water base fluid. In addition, different correlations established for boiling flow heat transfer in minichannels or macrochannels are evaluated. It is found that the correlation of Kandlikar and Balasubramanian is the closest to the water boiling heat transfer results. The boiling local heat transfer enhancement by adding silver nanoparticles in base fluid is not uniform along the channel flow. Better performances and highest effect of nanoparticle concentration on the heat transfer are obtained at the minichannels entrance. PMID:23506445
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron
2010-12-14
A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least amore » portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.« less
Peristaltic Transport of Prandtl-Eyring Liquid in a Convectively Heated Curved Channel
Hayat, Tasawar; Bibi, Shahida; Alsaadi, Fuad; Rafiq, Maimona
2016-01-01
Here peristaltic activity for flow of a Prandtl-Eyring material is modeled and analyzed for curved geometry. Heat transfer analysis is studied using more generalized convective conditions. The channel walls satisfy complaint walls properties. Viscous dissipation in the thermal equation accounted. Unlike the previous studies is for uniform magnetic field on this topic, the radial applied magnetic field has been utilized in the problems development. Solutions for stream function (ψ), velocity (u), and temperature (θ) for small parameter β have been derived. The salient features of heat transfer coefficient Z and trapping are also discussed for various parameters of interest including magnetic field, curvature, material parameters of fluid, Brinkman, Biot and compliant wall properties. Main observations of present communication have been included in the conclusion section. PMID:27304458
Bancalari, Eduardo E.
2001-01-01
A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).
The effects of leading edge and downstream film cooling on turbine vane heat transfer
NASA Astrophysics Data System (ADS)
Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.
1988-11-01
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.
The effects of leading edge and downstream film cooling on turbine vane heat transfer
NASA Technical Reports Server (NTRS)
Hylton, L. D.; Nirmalan, V.; Sultanian, B. K.; Kaufman, R. M.
1988-01-01
The progress under contract NAS3-24619 toward the goal of establishing a relevant data base for use in improving the predictive design capabilities for external heat transfer to turbine vanes, including the effect of downstream film cooling with and without leading edge showerhead film cooling. Experimental measurements were made in a two-dimensional cascade previously used to obtain vane surface heat transfer distributions on nonfilm cooled airfoils under contract NAS3-22761 and leading edge showerhead film cooled airfoils under contract NAS3-23695. The principal independent parameters (Mach number, Reynolds number, turbulence, wall-to-gas temperature ratio, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio) were maintained over ranges consistent with actual engine conditions and the test matrix was structured to provide an assessment of the independent influence of parameters of interest, namely, exit Mach number, exit Reynolds number, coolant-to-gas temperature ratio, and coolant-to-gas pressure ratio. Data provide a data base for downstream film cooled turbine vanes and extends the data bases generated in the two previous studies. The vane external heat transfer obtained indicate that considerable cooling benefits can be achieved by utilizing downstream film cooling. The data obtained and presented illustrate the interaction of the variables and should provide the airfoil designer and computational analyst the information required to improve heat transfer design capabilities for film cooled turbine airfoils.
Numerical Simulation of Heat Transfer in Porous Metals for Cooling Applications
NASA Astrophysics Data System (ADS)
Gauna, Edgar Avalos; Zhao, Yuyuan
2017-08-01
Porous metals have low densities and novel physical, mechanical, thermal, electrical, and acoustic properties. Hence, they have attracted a large amount of interest over the last few decades. One of their applications is for thermal management in the electronics industry because of their fluid permeability and thermal conductivity. The heat transfer capability is achieved by the interaction between the internal channels within the porous metal and the coolant flowing through them. This paper studies the fluid flow and heat transfer in open-cell porous metals manufactured by space holder methods by numerical simulation using software ANSYS Fluent. A 3D geometric model of the porous structure was created based on the face-centered-cubic arrangement of spheres linked by cylinders. This model allows for different combinations of pore parameters including a wide range of porosity (50 to 80 pct), pore size (400 to 1000 µm), and metal particle size (10 to 75 µm). In this study, water was used as the coolant and copper was selected as the metal matrix. The flow rate was varied in the Darcian and Forchheimer's regimes. The permeability, form drag coefficient, and heat transfer coefficient were calculated under a range of conditions. The numerical results showed that permeability increased whereas the form drag coefficient decreased with porosity. Both permeability and form drag coefficient increased with pore size. Increasing flow rate and decreasing porosity led to better heat transfer performance.
Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach
NASA Astrophysics Data System (ADS)
Ooi, KT; Goh, AL
2016-09-01
This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.
Fundamental heat transfer research for gas turbine engines
NASA Technical Reports Server (NTRS)
Metzger, D. E. (Editor)
1980-01-01
Thirty-seven experts from industry and the universities joined 24 NASA Lewis staff members in an exchange of ideas on trends in aeropropulsion research and technology, basic analyses, computational analyses, basic experiments, near-engine environment experiments, fundamental fluid mechanics and heat transfer, and hot technology as related to gas turbine engines. The workshop proceedings described include pre-workshop input from participants, presentations of current activity by the Lewis staff, reports of the four working groups, and a workshop summary.
Heat Recovery at Army Materiel Command (AMC) Facilities
1988-06-01
industrial complexes and somewhat smaller commercial/ HVAC ** systems, a portion of this waste heat can be recovered, improving energy efficiency. Heat...devices are used in sequence. Other shell-and-tube applications include heat transfer from process liquids, condensates, and cooling water. Two...pipe consists of a sealed element involving an annular capillary wick con- tained inside the full length of the tube, with an appropriate entrained
Model wall and recovery temperature effects on experimental heat transfer data analysis
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.; Stone, D. R.
1974-01-01
Basic analytical procedures are used to illustrate, both qualitatively and quantitatively, the relative impact upon heat transfer data analysis of certain factors which may affect the accuracy of experimental heat transfer data. Inaccurate knowledge of adiabatic wall conditions results in a corresponding inaccuracy in the measured heat transfer coefficient. The magnitude of the resulting error is extreme for data obtained at wall temperatures approaching the adiabatic condition. High model wall temperatures and wall temperature gradients affect the level and distribution of heat transfer to an experimental model. The significance of each of these factors is examined and its impact upon heat transfer data analysis is assessed.
NASA Astrophysics Data System (ADS)
Farahani, Somayeh Davoodabadi; Kowsary, Farshad
2017-09-01
An experimental study on pulsating impingement semi-confined slot jet has been performed. The effect of pulsations frequency was examined for various Reynolds numbers and Nozzle to plate distances. Convective heat transfer coefficient is estimated using the measured temperatures in the target plate and conjugate gradient method with adjoint equation. Heat transfer coefficient in Re < 3000 tended to increase with increasing frequency. The pulsations enhance mixing, which results in an enhancement of mean flow velocity. In case of turbulent jet (Re > 3000), heat transfer coefficient is affected by the pulsation from particular frequency. In this study, the threshold Strouhal number (St) is 0.11. No significant heat transfer enhancement was obtained for St < 0.11. The thermal resistance is smaller each time due to the newly forming thermal boundary layers. Heat transfer coefficient increases due to decrease thermal resistance. This study shows that maximum enhancement in heat transfer due to pulsations occurs in St = 0.169. Results show the configuration geometry has an important effect on the heat transfer performances in pulsed impinging jet. Heat transfer enhancement can be described to reflect flow by the confinement plate.
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
Exhaust heated hydrogen and oxygen producing catalytic converter for combustion engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiber, E.T.
1977-07-26
A steam generator is provided in operative association with a source of water and the exhaust system of a combustion engine including an air induction system provided with primary fuel inlet structure and supplemental fuel inlet structure. The steam generator derives its heat for converting water into steam from the exhaust system of the combustion engine and the steam generator includes a steam outlet communicated with and opening into one end of an elongated tubular housing disposed in good heat transfer relation with the exhaust system of the combustion engine and having a gas outlet at its other end communicatedmore » with the supplemental fuel inlet of the induction system. The tubular housing has iron filings disposed therein and is in such heat transfer relation with the exhaust system of the combustion engine so as to elevate the temperature of steam passing therethrough and to heat the iron filings to the extent that passage of the heated steam over the heated filings will result in hydrogen and oxygen gas being produced in the tubular housing for subsequent passage to the supplemental fuel inlet of the combustion engine induction system.« less
Hol C Y; Chen, B C; Tsai, Y H; Ma, C; Wen, M Y
2015-11-01
This paper investigates the thermal transport in hollow microscale and nanoscale spheres subject to electrical heat source using nontraditional thermal transport model. Working as supercapacitor electrodes, carbon hollow micrometer- and nanometer-sized spheres needs excellent heat transfer characteristics to maintain high specific capacitance, long cycle life, and high power density. In the nanoscale regime, the prediction of heat transfer from the traditional heat conduction equation based on Fourier's law deviates from the measured data. Consequently, the electrical heat source-induced heat transfer characteristics in hollow micrometer- and nanometer-sized spheres are studied using nontraditional thermal transport model. The effects of parameters on heat transfer in the hollow micrometer- and nanometer-sized spheres are discussed in this study. The results reveal that the heat transferred into the spherical interior, temperature and heat flux in the hollow sphere decrease with the increasing Knudsen number when the radius of sphere is comparable to the mean free path of heat carriers.
Suppression of the sonic heat transfer limit in high-temperature heat pipes
NASA Astrophysics Data System (ADS)
Dobran, Flavio
1989-08-01
The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.
Power generation plant integrating concentrated solar power receiver and pressurized heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakadjian, Bartev B; Flynn, Thomas J; Hu, Shengteng
A power plant includes a solar receiver heating solid particles, a standpipe receiving solid particles from the solar receiver, a pressurized heat exchanger heating working fluid by heat transfer through direct contact with heated solid particles flowing out of the bottom of the standpipe, and a flow path for solid particles from the bottom of the standpipe into the pressurized heat exchanger that is sealed by a pressure P produced at the bottom of the standpipe by a column of heated solid particles of height H. The flow path may include a silo or surge tank comprising a pressure vesselmore » connected to the bottom of the standpipe, and a non-mechanical valve. The power plant may further include a turbine driven by heated working fluid discharged from the pressurized heat exchanger, and a compressor driven by the turbine.« less
Effects of rotation on coolant passage heat transfer. Volume 1: Coolant passages with smooth walls
NASA Technical Reports Server (NTRS)
Hajek, T. J.; Wagner, J. H.; Johnson, B. V.; Higgins, A. W.; Steuber, G. D.
1991-01-01
An experimental program was conducted to investigate heat transfer and pressure loss characteristics of rotating multipass passages, for configurations and dimensions typical of modern turbine blades. The immediate objective was the generation of a data base of heat transfer and pressure loss data required to develop heat transfer correlations and to assess computational fluid dynamic techniques for rotating coolant passages. Experiments were conducted in a smooth wall large scale heat transfer model.
FILM-30: A Heat Transfer Properties Code for Water Coolant
DOE Office of Scientific and Technical Information (OSTI.GOV)
MARSHALL, THERON D.
2001-02-01
A FORTRAN computer code has been written to calculate the heat transfer properties at the wetted perimeter of a coolant channel when provided the bulk water conditions. This computer code is titled FILM-30 and the code calculates its heat transfer properties by using the following correlations: (1) Sieder-Tate: forced convection, (2) Bergles-Rohsenow: onset to nucleate boiling, (3) Bergles-Rohsenow: partially developed nucleate boiling, (4) Araki: fully developed nucleate boiling, (5) Tong-75: critical heat flux (CHF), and (6) Marshall-98: transition boiling. FILM-30 produces output files that provide the heat flux and heat transfer coefficient at the wetted perimeter as a function ofmore » temperature. To validate FILM-30, the calculated heat transfer properties were used in finite element analyses to predict internal temperatures for a water-cooled copper mockup under one-sided heating from a rastered electron beam. These predicted temperatures were compared with the measured temperatures from the author's 1994 and 1998 heat transfer experiments. There was excellent agreement between the predicted and experimentally measured temperatures, which confirmed the accuracy of FILM-30 within the experimental range of the tests. FILM-30 can accurately predict the CHF and transition boiling regimes, which is an important advantage over current heat transfer codes. Consequently, FILM-30 is ideal for predicting heat transfer properties for applications that feature high heat fluxes produced by one-sided heating.« less
Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
Tonkovich, Anna Lee Y [Pasco, WA; Wang, Yong [Richland, WA; Wegeng, Robert S [Richland, WA; Gao, Yufei [Kennewick, WA
2003-04-01
The present invention is a method and apparatus (vessel) for providing a heat transfer rate from a reaction chamber through a wall to a heat transfer chamber substantially matching a local heat transfer rate of a catalytic thermal chemical reaction. The key to the invention is a thermal distance defined on a cross sectional plane through the vessel inclusive of a heat transfer chamber, reaction chamber and a wall between the chambers. The cross sectional plane is perpendicular to a bulk flow direction of the reactant stream, and the thermal distance is a distance between a coolest position and a hottest position on the cross sectional plane. The thermal distance is of a length wherein the heat transfer rate from the reaction chamber to the heat transfer chamber substantially matches the local heat transfer rate.
System and method for cooling a superconducting rotary machine
Ackermann, Robert Adolf [Schenectady, NY; Laskaris, Evangelos Trifon [Schenectady, NY; Huang, Xianrui [Clifton Park, NY; Bray, James William [Niskayuna, NY
2011-08-09
A system for cooling a superconducting rotary machine includes a plurality of sealed siphon tubes disposed in balanced locations around a rotor adjacent to a superconducting coil. Each of the sealed siphon tubes includes a tubular body and a heat transfer medium disposed in the tubular body that undergoes a phase change during operation of the machine to extract heat from the superconducting coil. A siphon heat exchanger is thermally coupled to the siphon tubes for extracting heat from the siphon tubes during operation of the machine.
Effects of Pin Detached Space on Heat Transfer and Pin-Fin Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siw, Sin Chien; Chyu, Minking K.; Shih, Tom I. -P.
2012-01-01
Heat transfer and pressure characteristics in a rectangular channel with pin-fin arrays of partial detachment from one of the endwalls have been experimentally studied. The overall channel geometry (W=76.2 mm, E=25.4 mm) simulates an internal cooling passage of wide aspect ratio (3:1) in a gas turbine airfoil. With a given pin diameter, D=6.35 mm=¼E, three different pin-fin height-to-diameter ratios, H/D=4, 3, and 2, were examined. Each of these three cases corresponds to a specific pin array geometry of detachment spacing (C) between the pin tip and one of the endwalls, i.e., C/D=0, 1, 2, respectively. The Reynolds number, based onmore » the hydraulic diameter of the unobstructed cross-section and the mean bulk velocity, ranges from 10,000 to 25,000. The experiment employs a hybrid technique based on transient liquid crystal imaging to obtain the distributions of the local heat transfer coefficient over all of the participating surfaces, including the endwalls and all the pin elements. Experimental results reveal that the presence of a detached space between the pin tip and the endwall has a significant effect on the convective heat transfer and pressure loss in the channel. The presence of pin-to-endwall spacing promotes wall-flow interaction, generates additional separated shear layers, and augments turbulent transport. In general, an increase in detached spacing, or C/D, leads to lower heat transfer enhancement and pressure drop. However, C/D=1, i.e., H/D=3, of a staggered array configuration exhibits the highest heat transfer enhancement, followed by the cases of C/D=0 and C/D=2, i.e., H/D=4 or 2, respectively.« less
NASA Technical Reports Server (NTRS)
Herman, Cila
1996-01-01
Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.
Modeling of the heat transfer performance of plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Ding, Shurong; Huo, Yongzhong; Yan, XiaoQing
2009-08-01
Considering the mutual actions between fuel particles and the metal matrix, the three-dimensional finite element models are developed to simulate the heat transfer behaviors of dispersion nuclear fuel plates. The research results indicate that the temperatures of the fuel plate might rise more distinctly with considering the particle swelling and the degraded surface heat transfer coefficients with increasing burnup; the local heating phenomenon within the particles appears when their thermal conductivities are too low. With rise of the surface heat transfer coefficients, the temperatures within the fuel plate decrease; the temperatures of the fuel plate are sensitive to the variations of the heat transfer coefficients whose values are lower, but their effects are weakened and slight when the heat transfer coefficients increase and reach a certain extent. Increasing the heat generation rate leads to elevating the internal temperatures. The temperatures and the maximum temperature differences within the plate increase along with the particle volume fractions. The surface thermal flux goes up along with particle volume fractions and heat generation rates, but the effects of surface heat transfer coefficients are not evident.
NASA Astrophysics Data System (ADS)
Kılıç, Bayram; İpek, Osman
2017-02-01
In this study, heat transfer rate and effectiveness of corrugated plate heat exchangers having different chevron angles were investigated experimentally. Chevron angles of plate heat exchangers are β = 30° and β = 60°. For this purpose, experimentally heating system used plate heat exchanger was designed and constructed. Thermodynamic analysis of corrugated plate heat exchangers having different chevron angles were carried out. The heat transfer rate and effectiveness values are calculated. The experimental results are shown that heat transfer rate and effectiveness values for β = 60° is higher than that of the other. Obtained experimental results were graphically presented.
Heat Transfer in Glass, Aluminum, and Plastic Beverage Bottles
ERIC Educational Resources Information Center
Clark, William M.; Shevlin, Ryan C.; Soffen, Tanya S.
2010-01-01
This paper addresses a controversy regarding the effect of bottle material on the thermal performance of beverage bottles. Experiments and calculations that verify or refute advertising claims and represent an interesting way to teach heat transfer fundamentals are described. Heat transfer coefficients and the resistance to heat transfer offered…
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.
1979-01-01
Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.
Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert
2004-01-01
A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
2016-04-28
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Using geothermal energy to heat a portion of a formation for an in situ heat treatment process
Pieterson, Roelof; Boyles, Joseph Michael; Diebold, Peter Ulrich
2010-06-08
Methods of using geothermal energy to treat subsurface formations are described herein. Methods for using geothermal energy to treat a subsurface treatment area containing or proximate to hydrocarbons may include producing geothermally heated fluid from at least one subsurface region. Heat from at least a portion of the geothermally heated fluid may be transferred to the subsurface treatment area to heat the subsurface treatment area. At least some hydrocarbon fluids may be produced from the formation.
Seebacher, F
2000-03-21
Thermally-induced changes in heart rate and blood flow in reptiles are believed to be of selective advantage by allowing animal to exert some control over rates of heating and cooling. This notion has become one of the principal paradigms in reptilian thermal physiology. However, the functional significance of changes in heart rate is unclear, because the effect of heart rate and blood flow on total animal heat transfer is not known. I used heat transfer theory to determine the importance of heat transfer by blood flow relative to conduction. I validated theoretical predictions by comparing them with field data from two species of lizard, bearded dragons (Pogona barbata) and lace monitors (Varanus varius). Heart rates measured in free-ranging lizards in the field were significantly higher during heating than during cooling, and heart rates decreased with body mass. Convective heat transfer by blood flow increased with heart rate. Rates of heat transfer by both blood flow and conduction decreased with mass, but the mass scaling exponents were different. Hence, rate of conductive heat transfer decreased more rapidly with increasing mass than did heat transfer by blood flow, so that the relative importance of blood flow in total animal heat transfer increased with mass. The functional significance of changes in heart rate and, hence, rates of heat transfer, in response to heating and cooling in lizards was quantified. For example, by increasing heart rate when entering a heating environment in the morning, and decreasing heart rate when the environment cools in the evening a Pogona can spend up to 44 min longer per day with body temperature within its preferred range. It was concluded that changes in heart rate in response to heating and cooling confer a selective advantage at least on reptiles of mass similar to that of the study animals (0. 21-5.6 kg). Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Andrzejczyk, Rafał; Muszyński, Tomasz
2016-12-01
The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.
Heat exchanger device and method for heat removal or transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P
2015-03-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P [San Ramon, CA
2012-07-24
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
Koplow, Jeffrey P
2013-12-10
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Heat exchanger device and method for heat removal or transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koplow, Jeffrey P.
2015-12-08
Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.
Tunable heat transfer with smart nanofluids.
Bernardin, Michele; Comitani, Federico; Vailati, Alberto
2012-06-01
Strongly thermophilic nanofluids are able to transfer either small or large quantities of heat when subjected to a stable temperature difference. We investigate the bistability diagram of the heat transferred by this class of nanofluids. We show that bistability can be exploited to obtain a controlled switching between a conductive and a convective regime of heat transfer, so as to achieve a controlled modulation of the heat flux.
Dynamic modeling of temperature change in outdoor operated tubular photobioreactors.
Androga, Dominic Deo; Uyar, Basar; Koku, Harun; Eroglu, Inci
2017-07-01
In this study, a one-dimensional transient model was developed to analyze the temperature variation of tubular photobioreactors operated outdoors and the validity of the model was tested by comparing the predictions of the model with the experimental data. The model included the effects of convection and radiative heat exchange on the reactor temperature throughout the day. The temperatures in the reactors increased with increasing solar radiation and air temperatures, and the predicted reactor temperatures corresponded well to the measured experimental values. The heat transferred to the reactor was mainly through radiation: the radiative heat absorbed by the reactor medium, ground radiation, air radiation, and solar (direct and diffuse) radiation, while heat loss was mainly through the heat transfer to the cooling water and forced convection. The amount of heat transferred by reflected radiation and metabolic activities of the bacteria and pump work was negligible. Counter-current cooling was more effective in controlling reactor temperature than co-current cooling. The model developed identifies major heat transfer mechanisms in outdoor operated tubular photobioreactors, and accurately predicts temperature changes in these systems. This is useful in determining cooling duty under transient conditions and scaling up photobioreactors. The photobioreactor design and the thermal modeling were carried out and experimental results obtained for the case study of photofermentative hydrogen production by Rhodobacter capsulatus, but the approach is applicable to photobiological systems that are to be operated under outdoor conditions with significant cooling demands.
Direct-contact closed-loop heat exchanger
Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael
1984-01-01
A high temperature heat exchanger with a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
NASA Astrophysics Data System (ADS)
Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong
2017-10-01
The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.
Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
Phillips, Benjamin A.; Zawacki, Thomas S.
1996-12-03
Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.
Thermophysical properties of lunar media. II - Heat transfer within the lunar surface layer
NASA Technical Reports Server (NTRS)
Cremers, C. J.
1974-01-01
Heat transfer within the lunar surface layer depends on several thermophysical properties of the lunar regolith, including the thermal conductivity, the specific heat, the thermal diffusivity, and the thermal parameter. Results of property measurements on simulated lunar materials are presented where appropriate as well as measurements made on the actual samples themselves. The variation of temperature on the moon with depth is considered, taking into account various times of the lunar day. The daily variation in temperature drops to about 1 deg at a depth of only 0.172 meters. The steady temperature on the moon below this depth is 225 K.
Gas sampling system for a mass spectrometer
Taylor, Charles E; Ladner, Edward P
2003-12-30
The present invention relates generally to a gas sampling system, and specifically to a gas sampling system for transporting a hazardous process gas to a remotely located mass spectrometer. The gas sampling system includes a capillary tube having a predetermined capillary length and capillary diameter in communication with the supply of process gas and the mass spectrometer, a flexible tube surrounding and coaxial with the capillary tube intermediate the supply of process gas and the mass spectrometer, a heat transfer tube surrounding and coaxial with the capillary tube, and a heating device in communication the heat transfer tube for substantially preventing condensation of the process gas within the capillary tube.
NASA Technical Reports Server (NTRS)
Howe, John T.; Yang, Lily
1991-01-01
A heat-shield-material response code predicting the transient performance of a material subject to the combined convective and radiative heating associated with the hypervelocity flight is developed. The code is dynamically interactive to the heating from a transient flow field, including the effects of material ablation on flow field behavior. It accomodates finite time variable material thickness, internal material phase change, wavelength-dependent radiative properties, and temperature-dependent thermal, physical, and radiative properties. The equations of radiative transfer are solved with the material and are coupled to the transfer energy equation containing the radiative flux divergence in addition to the usual energy terms.
NASA Astrophysics Data System (ADS)
Liu, Jing-cheng; Wei, Xiu-ting; Zhou, Zhi-yong; Wei, Zhen-wen
2018-03-01
The fluid-structure interaction performance of plate-fin heat exchanger (PFHE) with serrated fins in large scale air-separation equipment was investigated in this paper. The stress and deformation of fins were analyzed, besides, the interaction equations were deduced by Galerkin method. The governing equations of fluid flow and heat transfer in PFHE were deduced by finite volume method (FVM). The distribution of strain and stress were calculated in large scale air separation equipment and the coupling situation of serrated fins under laminar situation was analyzed. The results indicated that the interactions between fins and fluid flow in the exchanger have significant impacts on heat transfer enhancement, meanwhile, the strain and stress of fins includes dynamic pressure of the sealing head and flow impact with the increase of flow velocity. The impacts are especially significant at the conjunction of two fins because of the non-alignment fins. It can be concluded that the soldering process and channel width led to structure deformation of fins in the exchanger, and degraded heat transfer efficiency.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
NASA Astrophysics Data System (ADS)
Akmal, N.; Sagheer, M.; Hussain, S.
2018-05-01
The present study gives an account of the heat transfer characteristics of the squeezing flow of a nanofluid between two flat plates with upper plate moving vertically and the lower in the horizontal direction. Tiwari and Das nanofluid model has been utilized to give a comparative analysis of the heat transfer in the Cu-water and Al2O3-water nanofluids with entropy generation. The modeling is carried out with the consideration of Lorentz forces to observe the effect of magnetic field on the flow. The Joule heating effect is included to discuss the heat dissipation in the fluid and its effect on the entropy of the system. The nondimensional ordinary differential equations are solved using the Keller box method to assess the numerical results which are presented by the graphs and tables. An interesting observation is that the entropy is generated more near the lower plate as compared with that at the upper plate. Also, the heat transfer rate is found to be higher for the Cu nanoparticles in comparison with the Al2O3 nanoparticles.
NASA Astrophysics Data System (ADS)
Pechenegov, Yu. Ya.; Mrakin, A. N.
2017-09-01
Recommendations are presented on calculating interphase heat transfer in gas-disperse systems of plants for thermochemical conversion of ground solid fuel. An analysis is made of the influence of the gas release of fuel particles on the heat transfer during their heating. It is shown that in the processes of thermal treatment of oil shales, the presence of gas release reduces substantially the intensity of interphase heat transfer compared to the heat transfer in the absence of thermochemical decomposition of the solid phase.
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.
2000-01-01
A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.
Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.
Zhou, Zhanru; Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.
Evaluation of Correlations of Flow Boiling Heat Transfer of R22 in Horizontal Channels
Fang, Xiande; Li, Dingkun
2013-01-01
The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels. PMID:23956695
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.
Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo
2013-01-01
To accurately predict the stability of thiamine nitrate as a model drug in pharmaceutical products under uncontrolled temperature conditions, the average reaction rate constant was determined, taking into account the heat transfer from the atmosphere to the product. The stability tests of thiamine nitrate in the three packages with different heat transfers were performed under non-isothermal conditions. The stability data observed were compared with the predictions based on a newly developed method, showing that the stability was well predicted by the method involving the heat transfer. By contrast, there were some deviations observed from the predicted data, without considering heat transfer in the packages with low heat transfer. The above-mentioned result clearly shows that heat transfer should be considered to ensure accurate prediction of the stability of commercial pharmaceutical products under non-isothermal atmospheres.
Summary of experimental heat-transfer results from the turbine hot section facility
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Yeh, Fredrick C.
1993-01-01
Experimental data from the turbine Hot Section Facility are presented and discussed. These data include full-coverage film-cooled airfoil results as well as special instrumentation results obtained at simulated real engine conditions. Local measurements of airfoil wall temperature, airfoil gas-path static-pressure distribution, and local heat-transfer coefficient distributions are presented and discussed. In addition, measured gas and coolant temperatures and pressures are presented. These data are also compared with analyses from Euler and boundary-layer codes.
Dual nozzle aerodynamic and cooling analysis study. [dual throat and dual expander nozzles
NASA Technical Reports Server (NTRS)
Meagher, G. M.
1980-01-01
Geometric, aerodynamic flow field, performance prediction, and heat transfer analyses are considered for two advanced chamber nozzle concepts applicable to Earth-to-orbit engine systems. Topics covered include improvements to the dual throat aerodynamic and performance prediction program; geometric and flow field analyses of the dual expander concept; heat transfer analysis of both concepts, and engineering analysis of data from the NASA/MSFC hot-fire testing of a dual throat thruster model thrust chamber assembly. Preliminary results obtained are presented in graphs.
Experimental study of high-performance cooling system pipeline diameter and working fluid amount
NASA Astrophysics Data System (ADS)
Nemec, Patrik; Malcho, Milan; Hrabovsky, Peter; Papučík, Štefan
2016-03-01
This work deals with heat transfer resulting from the operation of power electronic components. Heat is removed from the mounting plate, which is the evaporator of the loop thermosyphon to the condenser and by natural convection is transferred to ambient. This work includes proposal of cooling device - loop thermosyphon, with its construct and follow optimization of cooling effect. Optimization proceeds by selecting the quantity of working fluid and selection of diameters vapour line and liquid line of loop thermosyphon.
Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drost, Kevin; Jovanovic, Goran; Paul, Brian
2015-09-30
The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).
NASA Astrophysics Data System (ADS)
Hosseinian, A.; Meghdadi Isfahani, A. H.
2018-04-01
In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.
An advanced model of heat and mass transfer in the protective clothing - verification
NASA Astrophysics Data System (ADS)
Łapka, P.; Furmański, P.
2016-09-01
The paper presents an advanced mathematical and numerical models of heat and mass transfer in the multi-layers protective clothing and in elements of the experimental stand subjected to either high surroundings temperature or high radiative heat flux emitted by hot objects. The model included conductive-radiative heat transfer in the hygroscopic porous fabrics and air gaps as well as conductive heat transfer in components of the stand. Additionally, water vapour diffusion in the pores and air spaces as well as phase transition of the bound water in the fabric fibres (sorption and desorption) were accounted for. The thermal radiation was treated in the rigorous way e.g.: semi-transparent absorbing, emitting and scattering fabrics were assumed a non-grey and all optical phenomena at internal or external walls were modelled. The air was assumed transparent. Complex energy and mass balance as well as optical conditions at internal or external interfaces were formulated in order to find exact values of temperatures, vapour densities and radiation intensities at these interfaces. The obtained highly non-linear coupled system of discrete equation was solve by the in-house iterative algorithm which was based on the Finite Volume Method. The model was then successfully partially verified against the results obtained from commercial software for simplified cases.
Pento, Robert; Marks, James E.; Staffanson, Clifford D.
2000-01-01
A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.
Kiani, Hossein; Sun, Da-Wen; Zhang, Zhihang
2012-11-01
It has been proven that ultrasound irradiation can enhance the rate of heat transfer processes. The objective of this work was to study the heat transfer phenomenon, mainly the heat exchange at the surface, as affected by ultrasound irradiation around a stationary copper sphere (k=386W m(-1)K(-1), C(p)=384J kg(-1)K(-1), ρ=8660kg m(-3)) during cooling. The sphere (0.01m in diameter) was immersed in an ethylene glycol-water mixture (-10°C) in an ultrasonic cooling system that included a refrigerated circulator, a flow meter, an ultrasound generator and an ultrasonic bath. The temperature of the sphere was recorded using a data logger equipped with a T-type thermocouple in the center of the sphere. The temperature of the cooling medium was also monitored by four thermocouples situated at different places in the bath. The sphere was located at different positions (0.02, 0.04 and 0.06m) above the transducer surface of the bath calculated considering the center of the sphere as the center of the reference system and was exposed to different intensities of ultrasound (0, 120, 190, 450, 890, 1800, 2800, 3400 and 4100W m(-2)) during cooling. The frequency of the ultrasound was 25kHz. It was demonstrated that ultrasound irradiation can increase the rate of heat transfer significantly, resulting in considerably shorter cooling times. Higher intensities caused higher cooling rates, and Nu values were increased from about 23-27 to 25-108 depending on the intensity of ultrasound and the position of the sphere. However, high intensities of ultrasound led to the generation of heat at the surface of the sphere, thus limiting the lowest final temperature achieved. An analytical solution was developed considering the heat generation and was fitted to the experimental data with R(2) values in the range of 0.910-0.998. Visual observations revealed that both cavitation and acoustic streaming were important for heat transfer phenomenon. Cavitation clouds at the surface of the sphere were the main cause of heating effect. The results showed that closer distances to the transducer surface showed higher cooling rates. On the other hand, despite having a bigger distance from the transducer, when the sphere was located close to the gas-liquid interface the enhancement factor of heat transfer was higher. Ultrasound irradiation showed promising effect for the enhancement of convective heat transfer rate during immersion cooling. More investigations are required to demonstrate the behavior of ultrasound assisted heat transfer and resolve the proper way of the application of ultrasound to assist the cooling and/or freezing processes. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Vanfossen, G. James; Simoneau, Robert J.
1994-01-01
The effect of velocity gradient on stagnation region heat transfer augmentation by free stream turbulence was investigated. Heat transfer was measured in the stagnation region of four models with elliptical leading edges with ratios of major to minor axes of 1:1, 1.5:1, 2.25:1, and 3:1. Four geometrically similar, square bar, square mesh, biplane grids were used to generate free stream turbulence with different intensities and length. Heat transfer measurements were made for the following ranges of parameters: Reynolds number, based on leading edge diameter, 37,000 to 228,000; dimensionless leading edge velocity gradient, 1.20 to 1.80; turbulence intensity, 1.1 to 15.9%; and length scale to leading edge diameter ratio, 0.05 to 0.30. Stagnation point heat transfer augmentation by free stream turbulence can be predicted using a modified version of a previously developed correlation for a circular leading edge. Heat transfer augmentation was independent of body shape at the stagnation point. The heat transfer distribution down-stream from the stagnation point can be predicted using the normalized laminar heat transfer distribution.
Varying heating in dawsonite zones in hydrocarbon containing formations
Vinegar, Harold J [Bellaire, TX; Xie, Xueying [Houston, TX; Miller, David Scott [Katy, TX
2009-07-07
A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.
Alkali Metal Heat Pipe Life Issues
NASA Technical Reports Server (NTRS)
Reid, Robert S.
2004-01-01
One approach to space fission power system design is predicated on the use of alkali metal heat pipes, either as radiator elements, thermal management components, or as part of the core primary heat-transfer system. This synopsis characterizes long-life core heat pipes. References are included where more detailed information can be found. Specifics shown here are for demonstrational purposes and do not necessarily reflect current Project Prometheus point designs.
Numerical simulation of heat transfer in metal foams
NASA Astrophysics Data System (ADS)
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
NASA Technical Reports Server (NTRS)
Liechty, Derek S.
2008-01-01
An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.
NASA Astrophysics Data System (ADS)
Zeinali Heris, Saeed; Noie, Seyyed Hossein; Talaii, Elham; Sargolzaei, Javad
2011-12-01
In this article, laminar flow-forced convective heat transfer of Al2O3/water nanofluid in a triangular duct under constant wall temperature condition is investigated numerically. In this investigation, the effects of parameters, such as nanoparticles diameter, concentration, and Reynolds number on the enhancement of nanofluids heat transfer is studied. Besides, the comparison between nanofluid and pure fluid heat transfer is achieved in this article. Sometimes, because of pressure drop limitations, the need for non-circular ducts arises in many heat transfer applications. The low heat transfer rate of non-circular ducts is one the limitations of these systems, and utilization of nanofluid instead of pure fluid because of its potential to increase heat transfer of system can compensate this problem. In this article, for considering the presence of nanoparticl: es, the dispersion model is used. Numerical results represent an enhancement of heat transfer of fluid associated with changing to the suspension of nanometer-sized particles in the triangular duct. The results of the present model indicate that the nanofluid Nusselt number increases with increasing concentration of nanoparticles and decreasing diameter. Also, the enhancement of the fluid heat transfer becomes better at high Re in laminar flow with the addition of nanoparticles.
NASA Technical Reports Server (NTRS)
Kim, Jungho
2004-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across the array during boiling. The instantaneous heat transfer into the substrate was numerically determined and subtracted from the supplied heat to obtain the wall to liquid heat flux.
Simulations of Turbine Cooling Flows Using a Multiblock-Multigrid Scheme
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Ameri, Ali A.; Rigby, David L.
1996-01-01
Results from numerical simulations of air flow and heat transfer in a 'branched duct' geometry are presented. The geometry contains features, including pins and a partition, as are found in coolant passages of turbine blades. The simulations were performed using a multi-block structured grid system and a finite volume discretization of the governing equations (the compressible Navier-Stokes equations). The effects of turbulence on the mean flow and heat transfer were modeled using the Baldwin-Lomax turbulence model. The computed results are compared to experimental data. It was found that the extent of some regions of high heat transfer was somewhat under predicted. It is conjectured that the underlying reason is the local nature of the turbulence model which cannot account for upstream influence on the turbulence field. In general, however, the comparison with the experimental data is favorable.
NASA Technical Reports Server (NTRS)
Rodi, Patrick E.; Dolling, David S.
1992-01-01
A combined experimental/computational study has been performed of sharp fin induced shock wave/turbulent boundary layer interactions at Mach 5. The current paper focuses on the experiments and analysis of the results. The experimental data include mean surface heat transfer, mean surface pressure distributions and surface flow visualization for fin angles of attack of 6, 8, 10, 12, 14 and 16-degrees at Mach 5 under a moderately cooled wall condition. Comparisons between the results and correlations developed earlier show that Scuderi's correlation for the upstream influence angle (recast in a conical form) is superior to other such correlations in predicting the current results, that normal Mach number based correlations for peak pressure heat transfer are adequate and that the initial heat transfer peak can be predicted using pressure-interaction theory.
NASA Astrophysics Data System (ADS)
Pagliarini, G.; Vocale, P.; Mocerino, A.; Rainieri, S.
2017-01-01
Passive convective heat transfer enhancement techniques are well known and widespread tool for increasing the efficiency of heat transfer equipment. In spite of the ability of the first principle approach to forecast the macroscopic effects of the passive techniques for heat transfer enhancement, namely the increase of both the overall heat exchanged and the head losses, a first principle analysis based on energy, momentum and mass local conservation equations is hardly able to give a comprehensive explanation of how local modifications in the boundary layers contribute to the overall effect. A deeper insight on the heat transfer enhancement mechanisms can be instead obtained within a second principle approach, through the analysis of the local exergy dissipation phenomena which are related to heat transfer and fluid flow. To this aim, the analysis based on the second principle approach implemented through a careful consideration of the local entropy generation rate seems the most suitable, since it allows to identify more precisely the cause of the loss of efficiency in the heat transfer process, thus providing a useful guide in the choice of the most suitable heat transfer enhancement techniques.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
NASA Astrophysics Data System (ADS)
Sergis, Antonis; Hardalupas, Yannis
2011-05-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.
Sergis, Antonis; Hardalupas, Yannis
2011-05-19
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
NASA Astrophysics Data System (ADS)
Babu, C. Rajesh; Kumar, P.; Rajamohan, G.
2017-07-01
Computation of fluid flow and heat transfer in an economizer is simulated by a porous medium approach, with plain tubes having a horizontal in-line arrangement and cross flow arrangement in a coal-fired thermal power plant. The economizer is a thermal mechanical device that captures waste heat from the thermal exhaust flue gasses through heat transfer surfaces to preheat boiler feed water. In order to evaluate the fluid flow and heat transfer on tubes, a numerical analysis on heat transfer performance is carried out on an 110 t/h MCR (Maximum continuous rating) boiler unit. In this study, thermal performance is investigated using the computational fluid dynamics (CFD) simulation using ANSYS FLUENT. The fouling factor ε and the overall heat transfer coefficient ψ are employed to evaluate the fluid flow and heat transfer. The model demands significant computational details for geometric modeling, grid generation, and numerical calculations to evaluate the thermal performance of an economizer. The simulation results show that the overall heat transfer coefficient 37.76 W/(m2K) and economizer coil side pressure drop of 0.2 (kg/cm2) are found to be conformity within the tolerable limits when compared with existing industrial economizer data.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
2011-01-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932
Liquid-Infused Smooth Surface for Improved Condensation Heat Transfer.
Tsuchiya, Hirotaka; Tenjimbayashi, Mizuki; Moriya, Takeo; Yoshikawa, Ryohei; Sasaki, Kaichi; Togasawa, Ryo; Yamazaki, Taku; Manabe, Kengo; Shiratori, Seimei
2017-09-12
Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase. Recently, slippery liquid-infused surfaces (SLIPS) have been investigated, because of their high water sliding ability and surface smoothness originating from the liquid layer. However, even on SLIPS, condensed water droplets are eventually pinned to degrade their heat-transfer properties after extended use, because the rough base layer is exposed as infused liquid is lost. Herein, we report a liquid-infused smooth surface named "SPLASH" (surface with π electron interaction liquid adsorption, smoothness, and hydrophobicity) to overcome the problems derived from the rough structures in previous approaches to obtain stable, high heat-transfer performance. The SPLASH displayed a maximum condensation heat-transfer coefficient that was 175% higher than that of an uncoated substrate. The SPLASH also showed higher heat-transfer performance and more stable dropwise condensation than superhydrophobic surfaces and SLIPS from the viewpoints of condensed water droplet mobility and the thermodynamic energy barrier for nucleation. The effects of liquid-infused surface roughness and liquid viscosity on condensation heat transfer were investigated to compare heat-transfer performance. This research will aid industrial applications using vapor condensation.
Forced Convective Heat Transfer of Aqueous Al₂O₃ Nanofluid Through Shell and Tube Heat Exchanger.
Haque, A K M Mahmudul; Kim, Sedong; Kim, Junhyo; Noh, Jungpil; Huh, Sunchul; Choi, Byeongkeun; Chung, Hanshik; Jeong, Hyomin
2018-03-01
This study presents the forced convective heat transfer of a nanofluid consisting of distilled water and different weight concentrations (1 wt% and 2 wt%) of Al2O3 nanoparticles flowing in a vertical shell and tube heat exchanger under counter flow and laminar flow regime with certain constant heat flaxes (at 20 °C, 30 °C, 40 °C and 50 °C). The Al2O3 nanoparticles of about 50 nm diameter are used in the present study. Stability of aqueous Al2O3 nanofluids, TEM, thermal conductivity, temperature differences, heat transfer rate, T-Q diagrams, LMTD and convective heat transfer coefficient are investigated experimentally. Experimental results emphasize the substantial enhancement of heat transfer due to the Al2O3 nanoparticles presence in the nanofluid. Heat transfer rate for distilled water and aqueous nanofluids are calculated after getting an efficient setup which shows 19.25% and 35.82% enhancement of heat transfer rate of 1 wt% and 2 wt% aqueous Al2O3 nanofluids as compared to that of distilled water. Finally, the analysis shows that though there are 27.33% and 59.08% enhancement of 1 wt% Al2O3 and 2 wt% Al2O3 respectively as compared to that of distilled water at 30 °C, convective heat transfer coefficient decreases with increasing heat flux of heated fluid in this experimental setup.
Convective heat transfer from a pulsating radial jet reattachment (PRJR) nozzle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pak, J.Y.; James, D.L.; Parameswaran, S.
1999-07-01
Impinging jets of fluid have been used to cool, heat or dry surfaces in many industries including high temperature gas turbines, paper and glass manufacturing, textile drying, and electronic components. Jets may be broadly classified as either inline or radial. Inline jets typically have some type of circular or planer opening through which the fluid exits. The circular opening may be converging, well rounded, or of the same diameter as the nozzle or tube through which the fluid is delivered. Here, a numerical investigation for air exiting a Pulsating Radial Jet Reattachment (PRJR) nozzle was performed with various flow andmore » geometric conditions. The transient ensemble averaged Navier-Stokes equation with the standard {kappa}-{epsilon} turbulence model and the standard transient turbulent energy equation were solved to predict the velocity, pressure, and temperature distributions as a function of the pulsation rate, nondimensionalized nozzle-to-plate spacing, amplitude ratio, exit angle and gap Reynolds number. Sinusoidal profile, square and triangular pulsation profiles were simulated to determine the effect on the convective heat transfer during pulsation of nozzle. Grid movement is coupled to the flow field in a manner by a grid convection. Calculated reattachment radii for various conditions correlated well with previously obtained experimental results. Calculated convective heat transfer coefficients and surface pressure profiles for various geometric and flow conditions were compared with experimental results. Convective heat transfer coefficient calculations matched the experimental values very well outside the reattachment regions and underpredicted the convective heat transfer data underneath the nozzle in the dead water region and on the reattachment radius.« less
Thermally Conductive Metal-Tube/Carbon-Composite Joints
NASA Technical Reports Server (NTRS)
Copeland, Robert J.
2004-01-01
An improved method of fabricating joints between metal and carbon-fiber-based composite materials in lightweight radiators and heat sinks has been devised. Carbon-fiber-based composite materials have been used in such heat-transfer devices because they offer a combination of high thermal conductivity and low mass density. Metal tubes are typically used to carry heat-transfer fluids to and from such heat-transfer devices. The present fabrication method helps to ensure that the joints between the metal tubes and the composite-material parts in such heat-transfer devices have both (1) the relatively high thermal conductances needed for efficient transfer of heat and (2) the flexibility needed to accommodate differences among thermal expansions of dissimilar materials in operation over wide temperature ranges. Techniques used previously to join metal tubes with carbon-fiber-based composite parts have included press fitting and bonding with epoxy. Both of these prior techniques have been found to yield joints characterized by relatively high thermal resistances. The present method involves the use of a solder (63 percent Sn, 37 percent Pb) to form a highly thermally conductive joint between a metal tube and a carbon-fiber-based composite structure. Ordinarily, the large differences among the coefficients of thermal expansion of the metal tube, solder, and carbon-fiber-based composite would cause the solder to pull away from the composite upon post-fabrication cooldown from the molten state. In the present method, the structure of the solder is modified (see figure) to enable it to deform readily to accommodate the differential thermal expansion.
SHOOT performance testing. [Superfluid Helium On-Orbit Transfer Flight Demonstration
NASA Technical Reports Server (NTRS)
Dipirro, M. J.; Shirron, P. J.; Volz, S. M.; Schein, M. E.
1991-01-01
The Superfluid Helium On-Orbit Transfer (SHOOT) Flight Demonstration is a shuttle attached payload designed to demonstrate the technology necessary to resupply liquid helium dewars in space. Many SHOOT components will also have use in other aerospace cryogenic systems. The first of two SHOOT dewar systems has been fabricated. The ground performance testing of this dewar is described. The performance tests include measurements of heat leak, impedances of the two vent lines, heat pulse mass gauging accuracy, and superfluid transfer parameters such as flow rate and efficiency. A laboratory dewar was substituted for the second flight dewar for the transfer tests. These tests enable a precise analytical model of the transfer process to be verified. SHOOT performance is thus quantified, except for components such as the liquid acquisition devices and a phase separator which cannot be verified in one gravity.
NASA Astrophysics Data System (ADS)
Tao, Y. B.; Liu, Y. W.; Gao, F.; Chen, X. Y.; He, Y. L.
2009-09-01
An anisotropic porous media model for mesh regenerator used in pulse tube refrigerator (PTR) is established. Formulas for permeability and Forchheimer coefficient are derived which include the effects of regenerator configuration and geometric parameters, oscillating flow, operating frequency, cryogenic temperature. Then, the fluid flow and heat transfer performances of mesh regenerator are numerically investigated under different mesh geometric parameters and material properties. The results indicate that the cooling power of the PTR increases with the increases of specific heat capacity and density of the regenerator mesh material, and decreases with the increases of penetration depth and thermal conductivity ratio ( a). The cooling power at a = 0.1 is 0.5-2.0 W higher than that at a = 1. Optimizing the filling scale of different mesh configurations (such as 75% #200 twill and 25% #250 twill) and adopting multi segments regenerator with stainless steel meshes at the cold end can enhance the regenerator's efficiency and achieve better heat transfer performance.
Conceptual design of free-piston Stirling conversion system for solar power units
NASA Astrophysics Data System (ADS)
Loktionov, Iu. V.
A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.
Development of soft-sphere contact models for thermal heat conduction in granular flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, A. B.; Pannala, S.; Ma, Z.
2016-06-08
Conductive heat transfer to flowing particles occurs when two particles (or a particle and wall) come into contact. The direct conduction between the two bodies depends on the collision dynamics, namely the size of the contact area and the duration of contact. For soft-sphere discrete-particle simulations, it is computationally expensive to resolve the true collision time because doing so would require a restrictively small numerical time step. To improve the computational speed, it is common to increase the 'softness' of the material to artificially increase the collision time, but doing so affects the heat transfer. In this work, two physically-basedmore » correction terms are derived to compensate for the increased contact area and time stemming from artificial particle softening. By including both correction terms, the impact that artificial softening has on the conductive heat transfer is removed, thus enabling simulations at greatly reduced computational times without sacrificing physical accuracy.« less
NASA Technical Reports Server (NTRS)
Miller, W. S.
1974-01-01
The cryogenic refrigerator thermal design calculations establish design approach and basic sizing of the machine's elements. After the basic design is defined, effort concentrates on matching the thermodynamic design with that of the heat transfer devices (heat exchangers and regenerators). Typically, the heat transfer device configurations and volumes are adjusted to improve their heat transfer and pressure drop characteristics. These adjustments imply that changes be made to the active displaced volumes, compensating for the influence of the heat transfer devices on the thermodynamic processes of the working fluid. Then, once the active volumes are changed, the heat transfer devices require adjustment to account for the variations in flows, pressure levels, and heat loads. This iterative process is continued until the thermodynamic cycle parameters match the design of the heat transfer devices. By examing several matched designs, a near-optimum refrigerator is selected.
Off-axis cooling of rotating devices using a crank-shaped heat pipe
Jankowski, Todd A.; Prenger, F. Coyne; Waynert, Joseph A.
2007-01-30
The present invention is a crank-shaped heat pipe for cooling rotating machinery and a corresponding method of manufacture. The crank-shaped heat pipe comprises a sealed cylindrical tube with an enclosed inner wick structure. The crank-shaped heat pipe includes a condenser section, an adiabatic section, and an evaporator section. The crank-shape is defined by a first curve and a second curve existing in the evaporator section or the adiabatic section of the heat pipe. A working fluid within the heat pipe provides the heat transfer mechanism.
Simulation Approach for Microscale Noncontinuum Gas-Phase Heat Transfer
NASA Astrophysics Data System (ADS)
Torczynski, J. R.; Gallis, M. A.
2008-11-01
In microscale thermal actuators, gas-phase heat transfer from the heated beams to the adjacent unheated substrate is often the main energy-loss mechanism. Since the beam-substrate gap is comparable to the molecular mean free path, noncontinuum gas effects are important. A simulation approach is presented in which gas-phase heat transfer is described by Fourier's law in the bulk gas and by a wall boundary condition that equates the normal heat flux to the product of the gas-solid temperature difference and a heat transfer coefficient. The dimensionless parameters in this heat transfer coefficient are determined by comparison to Direct Simulation Monte Carlo (DSMC) results for heat transfer from beams of rectangular cross section to the substrate at free-molecular to near-continuum gas pressures. This simulation approach produces reasonably accurate gas-phase heat-transfer results for wide ranges of beam geometries and gas pressures. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
2009-07-01
presented a summary of recent research on boiling in microchannels . He addressed the topics of macro scale versus micro scale heat transfer , two phase...flow regime, flow boiling 14 heat transfer results for microchannels , heat transfer mechanisms in microchannels , and flow boiling models for... Heat Transfer Boiling In Minichannel And Microchannel Flow Passages Of Compact Evaporators, Keynote Lecture Presented at the Engineering Foundation
2010-05-11
convective heat transfer , researchers have been drawn to the high heat flux potentials of microfluidic devices. Microchannel flows, with hydraulic...novel heat transfer enhancement technique proven on the conventional scale to the mini and microchannel scales. 1.3 Background: Conventional...S.G., 2004, “Single-Phase Heat Transfer Enhancement Techniques in Microchannel and Minichannel Flows,” International Conference on Microchannels
Direct-contact closed-loop heat exchanger
Berry, G.F.; Minkov, V.; Petrick, M.
1981-11-02
A high temperature heat exchanger is disclosed which has a closed loop and a heat transfer liquid within the loop, the closed loop having a first horizontal channel with inlet and outlet means for providing direct contact of a first fluid at a first temperature with the heat transfer liquid, a second horizontal channel with inlet and outlet means for providing direct contact of a second fluid at a second temperature with the heat transfer liquid, and means for circulating the heat transfer liquid.
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.
NASA Technical Reports Server (NTRS)
Stainback, Calvin
1960-01-01
An experimental investigation was conducted to evaluate the heat-transfer characteristics of a hypersonic glide configuration having 79.5 deg of sweepback (measured in the plane of the leading edges) and 45 of dihedral. The tests were conducted at a nominal Mach number of 4.95 and a stagnation temperature of 400 F. The test-section unit Reynolds number was varied from 1.95 x 10(exp 6) to 12.24 x 10(exp 6) per foot. The results indicated that the laminar-flow heat-transfer rate to the lower surface of the model decreased as the distance from the ridge line increased except for thermocouples located near the semispan at an angle of attack of 00 with respect to the plane of the leading edges. The heat-transfer distribution (local heating rate relative to the ridge-line heating rate) was similar to the theoretical heat-transfer distribution for a two-dimensional blunt body, if the ridge line was assumed to be the stagnation line, and could be predicted by this theory provided a modified Newtonian pressure distribution was used. Except in the vicinity of the apex, the ridge-line heat-transfer rate could also be predicted from two-dimensional blunt-body heat-transfer theory provided it was assumed that the stagnation-line heat-transfer rate varied as the cosine of the effective sweep (sine of the angle of attack of the ridge line). The heat-transfer level on the lower surface and the nondimensional heat-transfer distribution around the body on the lower surface were in qualitative agreement with the results of a geometric study of highly swept delta wings with large positive dihedrals made in reference 1.
Numerical investigation of roughness effects in aircraft icing calculations
NASA Astrophysics Data System (ADS)
Matheis, Brian Daniel
2008-10-01
Icing codes are playing a role of increasing significance in the design and certification of ice protected aircraft surfaces. However, in the interest of computational efficiency certain small scale physics of the icing problem are grossly approximated by the codes. One such small scale phenomena is the effect of ice roughness on the development of the surface water film and on the convective heat transfer. This study uses computational methods to study the potential effect of ice roughness on both of these small scale phenomena. First, a two-dimensional condensed layer code is used to examine the effect of roughness on surface water development. It is found that the Couette approximation within the film breaks down as the wall shear goes to zero, depending on the film thickness. Roughness elements with initial flow separation in the air induce flow separation in the water layer at steady state, causing a trapping of the film. The amount of trapping for different roughness configurations is examined. Second, a three-dimensional incompressible Navier-Stokes code is developed to examine large scale ice roughness on the leading edge. The effect on the convective heat transfer and potential effect on the surface water dynamics is examined for a number of distributed roughness parameters including Reynolds number, roughness height, streamwise extent, roughness spacing and roughness shape. In most cases the roughness field increases the net average convective heat transfer on the leading edge while narrowing surface shear lines, indicating a choking of the surface water flow. Both effects show significant variation on the scale of the ice roughness. Both the change in heat transfer as well as the potential change in surface water dynamics are presented in terms of the development of singularities in the surface shear pattern. Of particular interest is the effect of the smooth zone upstream of the roughness which shows both a relatively large increase in convective heat transfer as well as excessive choking of the surface shear lines at the upstream end of the roughness field. A summary of the heat transfer results is presented for both the averaged heat transfer as well as the maximum heat transfer over each roughness element, indicating that the roughness Reynolds number is the primary parameter which characterizes the behavior of the roughness for the problem of interest.
Vibration-Induced Droplet Atomization
NASA Technical Reports Server (NTRS)
Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.
1999-01-01
Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance condition. This occurs when the initial acceleration of the diaphragm is higher than the critical acceleration and the driving frequency is larger than the initial resonance frequency of the diaphragm-droplet system. We have incorporated this droplet atomization device into a design for a new heat transfer cell for use in a microgravity environment. The cell is essentially a cylindrical container with a hot surface on one end and a cold surface on the other. The vibrating diaphragm is mounted in the center of the cold surface. Heat transfer occurs through droplet evaporation and condensation on the hot and cold ends of the cell. A prototype of this heat transfer cell has been built and tested. It can operate continuously and provides a modest level of heat transfer, about 20 W/sq cm. Our work during the next few years will be to optimize the design of this cell to see if we can produce a device that has significantly better performance than conventional heat exchangers and heat pipes.
Experimental Determination of in Situ Utilization of Lunar Regolith for Thermal Energy Storage
NASA Technical Reports Server (NTRS)
Richter, Scott W.
1993-01-01
A Lunar Thermal Energy from Regolith (LUTHER) experiment has been designed and fabricated at the NASA Lewis Research Center to determine the feasibility of using lunar soil as thermal energy storage media. The experimental apparatus includes an alumina ceramic canister (25.4 cm diameter by 45.7 cm length) which contains simulated lunar regolith, a heater (either radiative or conductive), 9 heat shields, a heat transfer cold jacket, and 19 type B platinum rhodium thermocouples. The simulated lunar regolith is a basalt, mined and processed by the University of Minnesota, that closely resembles the lunar basalt returned to earth by the Apollo missions. The experiment will test the effects of vacuum, particle size, and density on the thermophysical properties of the regolith. The properties include melt temperature (range), specific heat, thermal conductivity, and latent heat of storage. Two separate tests, using two different heaters, will be performed to study the effect of heating the system using radiative and conductive heat transfer. The physical characteristics of the melt pattern, material compatibility of the molten regolith, and the volatile gas emission will be investigated by heating a portion of the lunar regolith to its melting temperature (1435 K) in a 10(exp -4) pascal vacuum chamber, equipped with a gas spectrum analyzer. A finite differencing SINDA model was developed at NASA Lewis Research Center to predict the performance of the LUTHER experiment. The analytical results of the code will be compared with the experimental data generated by the LUTHER experiment. The code will predict the effects of vacuum, particle size, and density has on the heat transfer to the simulated regolith.
Heat Transfer in a Thermoacoustic Process
ERIC Educational Resources Information Center
Beke, Tamas
2012-01-01
Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…
Flow and heat transfer enhancement in tube heat exchangers
NASA Astrophysics Data System (ADS)
Sayed Ahmed, Sayed Ahmed E.; Mesalhy, Osama M.; Abdelatief, Mohamed A.
2015-11-01
The performance of heat exchangers can be improved to perform a certain heat-transfer duty by heat transfer enhancement techniques. Enhancement techniques can be divided into two categories: passive and active. Active methods require external power, such as electric or acoustic field, mechanical devices, or surface vibration, whereas passive methods do not require external power but make use of a special surface geometry or fluid additive which cause heat transfer enhancement. The majority of commercially interesting enhancement techniques are passive ones. This paper presents a review of published works on the characteristics of heat transfer and flow in finned tube heat exchangers of the existing patterns. The review considers plain, louvered, slit, wavy, annular, longitudinal, and serrated fins. This review can be indicated by the status of the research in this area which is important. The comparison of finned tubes heat exchangers shows that those with slit, plain, and wavy finned tubes have the highest values of area goodness factor while the heat exchanger with annular fin shows the lowest. A better heat transfer coefficient ha is found for a heat exchanger with louvered finned and thus should be regarded as the most efficient one, at fixed pumping power per heat transfer area. This study points out that although numerous studies have been conducted on the characteristics of flow and heat transfer in round, elliptical, and flat tubes, studies on some types of streamlined-tubes shapes are limited, especially on wing-shaped tubes (Sayed Ahmed et al. in Heat Mass Transf 50: 1091-1102, 2014; in Heat Mass Transf 51: 1001-1016, 2015). It is recommended that further detailed studies via numerical simulations and/or experimental investigations should be carried out, in the future, to put further insight to these fin designs.
On the Uses of Full-Scale Schlieren Flow Visualization
NASA Astrophysics Data System (ADS)
Settles, G. S.; Miller, J. D.; Dodson-Dreibelbis, L. J.
2000-11-01
A lens-and-grid-type schlieren system using a very large grid as a light source was described at earlier APS/DFD meetings. With a field-of-view of 2.3x2.9 m (7.5x9.5 feet), it is the largest indoor schlieren system in the world. Still and video examples of several full-scale airflows and heat-transfer problems visualized thus far will be shown. These include: heating and ventilation airflows, flows due to appliances and equipment, the thermal plumes of people, the aerodynamics of an explosive trace detection portal, gas leak detection, shock wave motion associated with aviation security problems, and heat transfer from live crops. Planned future projects include visualizing fume-hood and grocery display freezer airflows and studying the dispersion of insect repellent plumes at full scale.
Heterogonous Nanofluids for Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Alammar, Khalid
2014-09-01
Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.
Air/molten salt direct-contact heat-transfer experiment and economic analysis
NASA Astrophysics Data System (ADS)
Bohn, M. S.
1983-11-01
Direct-contact heat-transfer coefficients have been measured in a pilot-scale packed column heat exchanger for molten salt/air duty. Two types of commercial tower packings were tested: metal Raschig rings and initial Pall rings. Volumetric heat-transfer coefficients were measured and appeared to depend upon air flow but not on salt flow rate. An economic analysis was used to compare the cost-effectiveness of direct-contact heat exchange with finned-tube heat exchanger in this application. Incorporating the measured volumetric heat-transfer coefficients, a direct-contact system appeared to be from two to five times as cost-effective as a finned-tube heat exchanger, depending upon operating temperature. The large cost advantage occurs for higher operating temperatures (2700(0)C), where high rates of heat transfer and flexibility in materials choice give the cost advantage to the direct-contact heat exchanger.
Moisture effects in heat transfer through clothing systems for wildland firefighters.
Lawson, Lelia K; Crown, Elizabeth M; Ackerman, Mark Y; Dale, J Douglas
2004-01-01
Wildland firefighters work in unfavourable environments involving both heat and moisture. Moisture in clothing systems worn by wildland firefighters may increase or decrease heat transfer, depending on its source and location in the clothing system, location on the body, timing of application and degree of sorption. In this experiment, 4 outerwear/underwear combinations were exposed to 1 of 5 different conditions varying on amount and location of moisture. The fabric systems were then exposed to either a high-heat-flux flame exposure (83 kW/m(2)) or a low-heat-flux radiant exposure (10 kW/m(2)). Under high-heat-flux flame exposures, external moisture tended to decrease heat transfer through the fabric systems, while internal moisture tended to increase heat transfer. Under low-heat-flux radiant exposures, internal moisture decreased heat transfer through the fabric systems. The nature and extent of such differences was fabric dependent. Implications for test protocol development are discussed.
Thermophysical fundamentals of cyclonic recirculating heating devices
NASA Astrophysics Data System (ADS)
Karpov, S. V.; Zagoskin, A. A.
2017-10-01
This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.
NASA Astrophysics Data System (ADS)
Iwasaki, Masamichi; Saito, Hiroshi; Mochizuki, Sadanari; Murata, Akira
The effect of delta-wing-vortex generators (combination of a delta wing and a delta winglet pair) on the heat transfer performance of fin-and-tube heat exchangers for vending machines has been investegated. Flow visualizations, numerical simulations and heat transfer experiments were conducted to find an optimum geometrical shape and arrangement of the vortex generators. Maximum heat transfer enhancement was achieved by the combination of (a) the delta wing with the apex angle of 86 degrees and (b) the delta winglet pair with the inline angle of 45 degrees. In relatively low Reynolds number range, about 40 % increase in heat transfer coefficient was attained with the above mentioned combination of the vortex generators compared to the ordinary heat exchangers with plain fins. It was revealed that the heat transfer enhancement was attributed to (1) the longitudinal vortexes generated by the delta wing and (2) the reduction of wake area behind the tube. It was also found that an increase in the apex angle of the delta wing brought about heat transfer enhancement, and the scale as well as the streggth of the induced longitudinal vortices played an important role in the heat transfer performance.
1981-06-01
in order that the complete theoretical solution of the effects of the Taylor- Gortler vortices on heat transfer be explained. In 1977, - R. Kahawita ...Kelleher, M.D., "Taylor- Gortler Vortices and Their Effect on Heat Transfer" Journal of Heat Transfer, V.92, pp. 101-112, February 1970. 20. Kahawita , R
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1992-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.