ERIC Educational Resources Information Center
Goldwasser, M. R.; Leal, O.
1979-01-01
Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)
Multidimensional Screening as a Pharmacology Laboratory Experience.
ERIC Educational Resources Information Center
Malone, Marvin H.; And Others
1979-01-01
A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…
ERIC Educational Resources Information Center
Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish
2016-01-01
Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…
Consumer-Oriented Laboratory Activities: A Manual for Secondary Science Students.
ERIC Educational Resources Information Center
Anderson, Jacqueline; McDuffie, Thomas E., Jr.
This document provides a laboratory manual for use by secondary level students in performing consumer-oriented laboratory experiments. Each experiment includes an introductory question outlining the purpose of the investigation, a detailed discussion, detailed procedures, questions to be answered upon completing the experiment, and information for…
Inducing Mutations in "Paramecium": An Inquiry-Based Approach
ERIC Educational Resources Information Center
Elwess, Nancy L.; Latourelle, Sandra L.
2004-01-01
A major challenge in teaching any college level general genetics course including a laboratory component is having the students actively understand the research part of an experiment as well as develop the necessary laboratory skills. This laboratory experience furthers the students' knowledge of genetics while improving their laboratory skills.…
Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments
NASA Technical Reports Server (NTRS)
Davis, M. H.
1977-01-01
The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.
A Laboratory Experiment for Rapid Determination of the Stability of Vitamin C
ERIC Educational Resources Information Center
Adem, Seid M.; Lueng, Sam H.; Elles, Lisa M. Sharpe; Shaver, Lee Alan
2016-01-01
Experiments in laboratory manuals intended for general, organic, and biological (GOB) chemistry laboratories include few opportunities for students to engage in instrumental methods of analysis. Many of these students seek careers in modern health-related fields where experience in spectroscopic techniques would be beneficial. A simple, rapid,…
ERIC Educational Resources Information Center
Southam, Daniel C.; Shand, Bradley; Buntine, Mark A.; Kable, Scott H.; Read, Justin R.; Morris, Jonathan C.
2013-01-01
An assessment of the acylation of ferrocene laboratory exercise across three successive years resulted in a significant fluctuation in student perception of the experiment. This perception was measured by collecting student responses to an instrument immediately after the experiment, which includes Likert and open-ended responses from the student.…
A teaching intervention for reading laboratory experiments in college-level introductory chemistry
NASA Astrophysics Data System (ADS)
Kirk, Maria Kristine
The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.
ERIC Educational Resources Information Center
Goldman, Corey A., Ed.
The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume includes 13 papers: "Non-Radioactive DNA Hybridization Experiments for the…
ERIC Educational Resources Information Center
Zabzdyr, Jennifer L.; Lillard, Sheri J.
2001-01-01
Introduces a laboratory experiment for determining blood alcohol content using a combination of instrumental analysis and forensic science. Teaches the importance of careful laboratory technique and that experiments are conducted for a reason. Includes the procedure of the experiment. (Contains 17 references.) (YDS)
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2010 CFR
2010-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2011 CFR
2011-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2012 CFR
2012-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2013 CFR
2013-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
10 CFR 60.143 - Monitoring and testing waste packages.
Code of Federal Regulations, 2014 CFR
2014-01-01
... package monitoring program shall include laboratory experiments which focus on the internal condition of... the laboratory experiments. (d) The waste package monitoring program shall continue as long as...
A GC-MS Analysis of an S[subscript N]2 Reaction for the Organic Laboratory
ERIC Educational Resources Information Center
Clennan, Malgorzata M.; Clennan, Edward L.
2005-01-01
The S[subscript N]2 reaction of 1-bromohexane and 1-bromobutane with potassium acetate is introduced to address the shortage of suitable laboratory experiments in organic laboratory. The experiment offers a review of some common laboratory techniques including the use of infrared spectroscopy to identify functional groups, the use of GC-MS…
Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.
ERIC Educational Resources Information Center
Noble, Richard D.
1979-01-01
Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)
Child Guidance for Child Caregivers: Student Laboratory Manual.
ERIC Educational Resources Information Center
Texas Tech Univ., Lubbock. Home Economics Curriculum Center.
Designed to enhance student knowledge of and skills in child guidance in group care settings, this manual provides 50 laboratory experiences for five units. Units cover foundations and assumptions (2 laboratory experiences), developmental factors (8), indirect guidance (14), direct guidance (14), and strategies (12). Each unit includes performance…
Laser Speckle Photography: Some Simple Experiments for the Undergraduate Laboratory.
ERIC Educational Resources Information Center
Bates, B.; And Others
1986-01-01
Describes simple speckle photography experiments which are easy to set up and require only low cost standard laboratory equipment. Included are procedures for taking single, double, and multiple exposures. (JN)
The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1990-01-01
A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.
An Upper Level Laboratory Course of Integrated Experiments
ERIC Educational Resources Information Center
Rose, T. L.; Seyse, R. J.
1974-01-01
Discusses the development of a one-year laboratory course in an effort to provide a link between traditional laboratories devoted to a single area of chemistry and the total involvement of a single narrow research project. Included are outlines of 32-hour lectures and 11 experiments performed in the integrated course. (CC)
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…
The performance assessment of undergraduate students in physics laboratory by using guided inquiry
NASA Astrophysics Data System (ADS)
Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.
2018-03-01
The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.
ERIC Educational Resources Information Center
Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.
2007-01-01
A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…
Laboratory development and testing of spacecraft diagnostics
NASA Astrophysics Data System (ADS)
Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric
2017-10-01
The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.
Multiweek cell culture project for use in upper-level biology laboratories.
Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D
2012-06-01
This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.
Some Experiments with Biological Applications for the Elementary Laboratory
ERIC Educational Resources Information Center
Kammer, D. W.; Williams, J. A.
1975-01-01
Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)
Computers in the General Physics Laboratory.
ERIC Educational Resources Information Center
Preston, Daryl W.; Good, R. H.
1996-01-01
Provides ideas and outcomes for nine computer laboratory experiments using a commercial eight-bit analog to digital (ADC) interface. Experiments cover statistics; rotation; harmonic motion; voltage, current, and resistance; ADC conversions; temperature measurement; single slit diffraction; and radioactive decay. Includes necessary schematics. (MVL)
ERIC Educational Resources Information Center
Miller, Tyson A.; Spangler, Michael; Burdette, Shawn C.
2011-01-01
A two-period organic laboratory experiment that includes fluorescence sensing is presented. The pH-sensitive sensor MorphFl is prepared using a Mannich reaction between a fluorescein derivative and the iminium ion of morpholine. During the first laboratory, students prepare MorphFl. The second session begins with characterizing the sensor using…
Statistical Analysis Tools for Learning in Engineering Laboratories.
ERIC Educational Resources Information Center
Maher, Carolyn A.
1990-01-01
Described are engineering programs that have used automated data acquisition systems to implement data collection and analyze experiments. Applications include a biochemical engineering laboratory, heat transfer performance, engineering materials testing, mechanical system reliability, statistical control laboratory, thermo-fluid laboratory, and a…
Recovery of Silver and Cobalt from Laboratory Wastes.
ERIC Educational Resources Information Center
Foust, Donald F.
1984-01-01
Procedures for recovering silver and cobalt from laboratory wastes (including those resulting from student experiments) are presented. The procedures are generally applicable since only common, inexpensive laboratory reagents are needed. (JN)
Inexpensive Audio Activities: Earbud-based Sound Experiments
NASA Astrophysics Data System (ADS)
Allen, Joshua; Boucher, Alex; Meggison, Dean; Hruby, Kate; Vesenka, James
2016-11-01
Inexpensive alternatives to a number of classic introductory physics sound laboratories are presented including interference phenomena, resonance conditions, and frequency shifts. These can be created using earbuds, economical supplies such as Giant Pixie Stix® wrappers, and free software available for PCs and mobile devices. We describe two interference laboratories (beat frequency and two-speaker interference) and two resonance laboratories (quarter- and half-wavelength). Lastly, a Doppler laboratory using rotating earbuds is explained. The audio signal captured by all experiments is analyzed on free spectral analysis software and many of the experiments incorporate the unifying theme of measuring the speed of sound in air.
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
NASA Astrophysics Data System (ADS)
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-06-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However, logistical constraints (most especially related to funding) place significant limitations on the ability of schools to provide and maintain high-quality science laboratory experiences and equipment. One potential solution that has recently been the subject of growing interest is the use of remotely accessible laboratories to either supplant, or more commonly to supplement, conventional hands-on laboratories. Remote laboratories allow students and teachers to use high-speed networks, coupled with cameras, sensors, and controllers, to carry out experiments on real physical laboratory apparatus that is located remotely from the student. Research has shown that when used appropriately this can bring a range of potential benefits, including the ability to share resources across multiple institutions, support access to facilities that would otherwise be inaccessible for cost or technical reasons, and provide augmentation of the experimental experience. Whilst there has been considerable work on evaluating the use of remote laboratories within tertiary education, consideration of their role within secondary school science education is much more limited. This paper describes trials of the use of remote laboratories within secondary schools, reporting on the student and teacher reactions to their interactions with the laboratories. The paper concludes that remote laboratories can be highly beneficial, but considerable care must be taken to ensure that their design and delivery address a number of critical issues identified in this paper.
An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience
ERIC Educational Resources Information Center
Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.
2003-01-01
In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…
ERIC Educational Resources Information Center
Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.
2013-01-01
Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…
ERIC Educational Resources Information Center
Scharfenberg, Franz-Josef; Bogner, Franz X.; Klautke, Siegfried
2007-01-01
In an effort to overcome deficiencies in teaching molecular biology at school, a workshop in an out-of-school laboratory including only authentic experiments was developed. Evaluation of 337 A-level 12th graders followed a quasi-experimental design, with one hands-on group, two non-experimental control groups (at school/in the laboratory), and one…
Operational plans for life science payloads - From experiment selection through postflight reporting
NASA Technical Reports Server (NTRS)
Mccollum, G. W.; Nelson, W. G.; Wells, G. W.
1976-01-01
Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.
Forest Herbicide Washoff From Foliar Applications
J.L. Michael; Kevin L. Talley; H.C. Fishburn
1992-01-01
Field and laboratory experiments were conducted to develop and test methods for determining washoff of foliar applied herbicides typically used in forestry in the South.Preliminary results show good agreement between results of laboratory methods used and observations from field experiments on actual precipitation events. Methods included application of...
ERIC Educational Resources Information Center
Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta
2018-01-01
A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…
Compilation of current high energy physics experiments - Sept. 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addis, L.; Odian, A.; Row, G. M.
1978-09-01
This compilation of current high-energy physics experiments is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and the nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. Nominally, the compilation includes summaries of all high-energy physics experiments at the above laboratories that were approved (and not subsequently withdrawn) before about June 1978, and had not completed taking of data by 1 January 1975. The experimental summaries are supplemented with three indexes to the compilation, several vocabulary lists giving names or abbreviations used, and a short summary ofmore » the beams at each of the laboratories (except Rutherford). The summaries themselves are included on microfiche. (RWR)« less
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, R. V.; Hollinden, A. B.
1973-01-01
The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.
Developing an online chemistry laboratory for non-chemistry majors
NASA Astrophysics Data System (ADS)
Poole, Jacqueline H.
Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.
NASA Astrophysics Data System (ADS)
Gregori, G.; Reville, B.; Miniati, F.
2015-11-01
The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.
Including Non-Traditional Instrumentation in Undergraduate Environmental Chemistry Courses
ERIC Educational Resources Information Center
Jenkins, J. David; Orvis, Jessica N.; Smith, C. Jimmy; Manley, Citabria; Rice, Jeanette K. 2
2004-01-01
Non-traditional instrumentation was obtained for Georgia Southern undergraduates to attain fundamental environmental education through unique laboratory experiences. In this context, the method for including a direct mercury analyzer into both major and non-major environmental laboratories is reported.
ERIC Educational Resources Information Center
Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler
2016-01-01
General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…
The Vinyl Acetate Content of Packaging Film: A Quantitative Infrared Experiment.
ERIC Educational Resources Information Center
Allpress, K. N.; And Others
1981-01-01
Presents an experiment used in laboratory technician training courses to illustrate the quantitative use of infrared spectroscopy which is based on industrial and laboratory procedures for the determination of vinyl acetate levels in ethylene vinyl acetate packaging films. Includes three approaches to allow for varying path lengths (film…
2003-05-07
KENNEDY SPACE CENTER, FLA. - The crystals visible in this laboratory dish were part of an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presented are physics experiments, laboratory procedures, demonstrations, and classroom materials/activities. Experiments include: speed of sound in carbon dioxide; inverse square law; superluminal velocities; and others. Equipment includes: current switch; electronic switch; and pinhole camera. Discussion of mechanics of walking is also included.…
ERIC Educational Resources Information Center
Shaw, Roosevelt; Severin, Ashika; Balfour, Miguel; Nettles, Columbus
2005-01-01
Two Diels-Alder reactions are described that are suitable for a MORE (microwave-induced organic reaction enhanced) experiment in the organic chemistry laboratory course. A second experiment in which the splitting patterns of the vinyl protons in the nuclear magnetic resonance (NMR) spectra of two MORE adducts are used in conjunction with molecular…
Safety in the Chemical Laboratory: Learning How to Run Safer Undergraduate Laboratories.
ERIC Educational Resources Information Center
Mohrig, Jerry R.
1983-01-01
Discusses responsibilities for providing safe experiments and for teaching about safety. Provides lists of references on chemical safety and regulated/potential carcinogens. Also discusses general laboratory safety procedures including waste disposal and recycling of solvents. (JM)
ERIC Educational Resources Information Center
Seilheimer, Steven D.
1988-01-01
Outlines procedures for developing a microcomputer laboratory for use by students in an academic organization, based on experiences at Niagara University. The four phases described include: (1) needs assessment; (2) establishment, including software and hardware selection and physical facilities; (3) operation, including staffing, maintenance,…
Laboratory Experiences in an Introduction to Natural Science Course.
ERIC Educational Resources Information Center
Barnard, Sister Marquita
1984-01-01
Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1995-01-01
The purpose of this study is to support Russian space flight experiments carried out on rats flown aboard Space Shuttle Mission SLS-2. The Russian experiments were designed to determine the effects of space flight on immunological parameters. The Russian experiment included the first in-flight dissection of rodents that allowed the determination of kinetics of when space flight affected immune responses. The support given the Russians by this laboratory was to carry out assays for immunologically important cytokines that could not readily be carried out in their home laboratories. These included essays of interleukin-1, interleukin-6, interferon-gamma and possibly other cytokines.
Inter-laboratory comparison of the in vivo comet assay including three image analysis systems.
Plappert-Helbig, Ulla; Guérard, Melanie
2015-12-01
To compare the extent of potential inter-laboratory variability and the influence of different comet image analysis systems, in vivo comet experiments were conducted using the genotoxicants ethyl methanesulfonate and methyl methanesulfonate. Tissue samples from the same animals were processed and analyzed-including independent slide evaluation by image analysis-in two laboratories with extensive experience in performing the comet assay. The analysis revealed low inter-laboratory experimental variability. Neither the use of different image analysis systems, nor the staining procedure of DNA (propidium iodide vs. SYBR® Gold), considerably impacted the results or sensitivity of the assay. In addition, relatively high stability of the staining intensity of propidium iodide-stained slides was found in slides that were refrigerated for over 3 months. In conclusion, following a thoroughly defined protocol and standardized routine procedures ensures that the comet assay is robust and generates comparable results between different laboratories. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish
2016-06-01
Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.
Greener Approaches to Undergraduate Chemistry Experiments.
ERIC Educational Resources Information Center
Kirchhoff, Mary, Ed.; Ryan, Mary Ann, Ed.
This laboratory manual introduces the idea of Green Chemistry, which is the design of chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Instructional samples are included to help teachers integrate green chemistry into the college chemistry curriculum. Each laboratory includes: (1) a…
Using the Tritium Plasma Experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capability of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 x 10(exp 19) ions/((sq cm)(s)) and a plasma temperature of about 15 eV using a plasma that includes tritium. With the closure of the Tritium Research Laboratory at Livermore, the experiment was moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory. An experimental program has been initiated there using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. A considerable lack of data exists in these areas for many of the materials, especially beryllium, being considered for use in ITER. Not only will basic material behavior with respect to safety issues in the divertor environment be examined, but innovative techniques for optimizing performance with respect to tritium safety by material modification and process control will be investigated. Supplementary experiments will be carried out at the Idaho National Engineering Laboratory and Sandia National Laboratory to expand and clarify results obtained on the Tritium Plasma Experiment.
High-temperature Y267 EPDM elastomer field and laboratory experiences, September 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirasuna, Alan R.; Friese, Gilbert J.; Stephens, Clifford A.
1982-10-08
High performance elastomers were developed for hostile geothermal environments which clearly advance the state-of-the-art. The Y267 EPDM compound is eminently successful and has accumulated broad laboratory and field test experience. Over 15 separate tests are reviewed with about 95% performed independently by other organizations. The tests include a broad spectrum of environments with temperatures in excess of 320 C (608 F), differential pressures up to 138 MPa (20,000 psi) and in fluids including brine, oils, isobutane, and others.
Computer Series, 17: Bits and Pieces, 5.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1981-01-01
Contains short descriptions of computer programs or hardware that simulate laboratory instruments or results of kinetics experiments, including ones that include experiment error, numerical simulation, first-order kinetic mechanisms, a game for decisionmaking, and simulated mass spectrophotometers. (CS)
ERIC Educational Resources Information Center
Powers, Jennifer L.; Andrews, Carla S.; St. Antoine, Caroline C.; Jain, Swapan S.; Bevilacqua, Vicky L. H.
2005-01-01
Electrophoresis is a valuable tool for biochemists, yet this technique is often not included in biochemistry laboratory curricula owing to time constraints or lack of equipment. Protein structure is also a topic of interest in many disciplines, yet most undergraduate lab experiments focus only on primary structure. In this experiment, students use…
Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory
ERIC Educational Resources Information Center
Romo-Kroger, C. M.
2012-01-01
Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…
ERIC Educational Resources Information Center
Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi
2015-01-01
This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…
Classroom Experiences in an Engineering Design Graphics Course with a CAD/CAM Extension.
ERIC Educational Resources Information Center
Barr, Ronald E.; Juricic, Davor
1997-01-01
Reports on the development of a new CAD/CAM laboratory experience for an Engineering Design Graphics (EDG) course. The EDG curriculum included freehand sketching, introduction to Computer-Aided Design and Drafting (CADD), and emphasized 3-D solid modeling. Reviews the project and reports on the testing of the new laboratory components which were…
Applied Physics Laboratory, An Experimental Program for Aerospace Education, 12th Year.
ERIC Educational Resources Information Center
Abramson, David A.
This physics laboratory manual is the result of curriculum development begun at Aviation High School (New York City) in 1967. It represents a semester of advanced laboratory work for those students who have completed the usual course in physics. The 91 laboratory experiments included in the manual have been developed and modified through use for…
V-Sipal - a Virtual Laboratory for Satellite Image Processing and Analysis
NASA Astrophysics Data System (ADS)
Buddhiraju, K. M.; Eeti, L.; Tiwari, K. K.
2011-09-01
In this paper a virtual laboratory for the Satellite Image Processing and Analysis (v-SIPAL) being developed at the Indian Institute of Technology Bombay is described. v-SIPAL comprises a set of experiments that are normally carried out by students learning digital processing and analysis of satellite images using commercial software. Currently, the experiments that are available on the server include Image Viewer, Image Contrast Enhancement, Image Smoothing, Edge Enhancement, Principal Component Transform, Texture Analysis by Co-occurrence Matrix method, Image Indices, Color Coordinate Transforms, Fourier Analysis, Mathematical Morphology, Unsupervised Image Classification, Supervised Image Classification and Accuracy Assessment. The virtual laboratory includes a theory module for each option of every experiment, a description of the procedure to perform each experiment, the menu to choose and perform the experiment, a module on interpretation of results when performed with a given image and pre-specified options, bibliography, links to useful internet resources and user-feedback. The user can upload his/her own images for performing the experiments and can also reuse outputs of one experiment in another experiment where applicable. Some of the other experiments currently under development include georeferencing of images, data fusion, feature evaluation by divergence andJ-M distance, image compression, wavelet image analysis and change detection. Additions to the theory module include self-assessment quizzes, audio-video clips on selected concepts, and a discussion of elements of visual image interpretation. V-SIPAL is at the satge of internal evaluation within IIT Bombay and will soon be open to selected educational institutions in India for evaluation.
ERIC Educational Resources Information Center
Norton, Cynthia G.; Gildensoph, Lynne H.; Phillips, Martha M.; Wygal, Deborah D.; Olson, Kurt H.; Pellegrini, John J.; Tweeten, Kathleen A.
1997-01-01
Describes the reform of an introductory biology curriculum to reverse high attrition rates. Objectives include fostering self-directed learning, emphasizing process over content, and offering laboratory experiences that model the way to acquire scientific knowledge. Teaching methods include discussion, group mentoring, laboratory sections, and…
ERIC Educational Resources Information Center
Juricic, Davor; Barr, Ronald E.
1996-01-01
Reports on a project that extended the Engineering Design Graphics curriculum to include instruction and laboratory experience in computer-aided design, analysis, and manufacturing (CAD/CAM). Discusses issues in project implementation, including introduction of finite element analysis to lower-division students, feasibility of classroom prototype…
Hie, Liana; Chang, Jonah J; Garg, Neil K
2015-03-10
A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The experiment employs heterocyclic substrates, which are important pharmaceutical building blocks. Thus, this laboratory procedure exposes students to a variety of contemporary topics in organic chemistry, including transition metal-catalyzed cross-couplings, green chemistry, and the importance of heterocycles in drug discovery, none of which are well represented in typical undergraduate organic chemistry curricula. The experimental protocol uses commercially available reagents and is useful in both organic and inorganic instructional laboratories.
The Laboratory-Based Economics Curriculum.
ERIC Educational Resources Information Center
King, Paul G.; LaRoe, Ross M.
1991-01-01
Describes the liberal arts, computer laboratory-based economics program at Denison University (Ohio). Includes as goals helping students to (1) understand deductive arguments, (2) learn to apply theory in real-world situations, and (3) test and modify theory when necessary. Notes that the program combines computer laboratory experiments for…
Grass shrimp are abundant, ecologically important inhabitants of estuarine ecosystems; adults and embryos have been used extensively in laboratory experiments, including studies of the impacts of environmental toxicants. However, optimal laboratory feeding conditions for grass sh...
Measuring meaningful learning in the undergraduate chemistry laboratory
NASA Astrophysics Data System (ADS)
Galloway, Kelli R.
The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from these studies revealed students' narrow cognitive expectations for learning that go largely unmet by their experiences and diverse affective expectations and experiences. Concurrently, a qualitative study was carried out to describe and characterize students' cognitive and affective experiences in the undergraduate chemistry laboratory. Students were video recorded while performing one of their regular laboratory experiments and then interviewed about their experiences. The students' descriptions of their learning experiences were characterized by their overreliance on following the experimental procedure correctly rather than developing process-oriented problem solving skills. Future research could use the MLLI to intentionally compare different types of laboratory curricula or environments.
Challenges in Small Screening Laboratories: SaaS to the rescue
Lemmon, Vance P.; Jia, Yuanyuan; Shi, Yan; Holbrook, S. Douglas; Bixby, John L; Buchser, William
2012-01-01
The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signalling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA screening of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Managing experimental workflow and library data, along with the extensive amount of experimental results is challenging. For academic laboratories generating large data sets from experiments using thousands of perturbagens, a laboratory information management system (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with a Software As A Service (SAAS) LIMS to ensure the quality of its experiments and workflows. The article discusses this application in detail, and how the system was selected and integrated into the laboratory. The advantages of SaaS are described. PMID:21631415
NASA Astrophysics Data System (ADS)
Gatlin, Todd Adam
Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the interaction of 1) prior experiences, 2) training, 3) beliefs about the nature of knowledge, 4) beliefs about the nature of laboratory work, and 5) involvement in the laboratory setting. Further GTAs' self-images are malleable and susceptible to change through their laboratory teaching experiences. Overall, this dissertation contributes to chemistry education by providing a model useful for exploring GTAs' development of a self-image in laboratory teaching. This work may assist laboratory instructors and coordinators in reconsidering, when applicable, GTA training and support. This work also holds considerable implications for how teaching experiences are conceptualized as part of the chemistry graduate education experience. Findings suggest that appropriate teaching experiences may contribute towards better preparing graduate students for their journey in becoming scientists.
Are There Feasible Alternatives to Laboratory Animals?
ERIC Educational Resources Information Center
Rowan, A. N.
1976-01-01
Discusses several alternatives to the use of laboratory animals in investigating biomedical problems. Alternatives include tissue culture, use of plant and bacterial material, redesigning experiments, and construction of mathematical and computer models. (CS)
Developing laboratory networks: a practical guide and application.
Kirk, Carol J; Shult, Peter A
2010-01-01
The role of the public health laboratory (PHL) in support of public health response has expanded beyond testing to include a number of other core functions, such as emergency response, training and outreach, communications, laboratory-based surveillance, and laboratory data management. These functions can only be accomplished by a network that includes public health and other agency laboratories and clinical laboratories. It is a primary responsibility of the PHL to develop and maintain such a network. In this article, we present practical recommendations-based on 17 years of network development experience-for the development of statewide laboratory networks. These recommendations, and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of laboratory networks will enhance each state's public health system and is critical to the development of a robust national Laboratory Response Network.
NASA Astrophysics Data System (ADS)
Ramlo, Susan E.
Microcomputer-based laboratories (MBLs) have been defined as software that uses an electronic probe to collect information about a physical system and then converts that information into graphical systems in real-time. Realtime Physics Laboratories (RTP) are an example of laboratories that combine the use of MBLs with collaboration and guided-inquiry. RTP Mechanics Laboratories include both laboratory activities and laboratory homework for the first semester of college freshman physics courses. Prior research has investigated the effectiveness of the RTP laboratories as a package (laboratory activities with laboratory homework). In this study, an experimental-treatment had students complete both the RTP laboratory activity and the associated laboratory homework during the same laboratory period. Observations of this treatment indicated that students primarily consulted the laboratory instructor and referred to their completed laboratory activity while completing the homework in their collaborative groups. In the control-treatment, students completed the laboratory homework outside the laboratory period. Measures of force and motion conceptual understanding included the Force and Motion Conceptual Understanding (FMCE), a 47 multiple-choice question test. Analyses of the FMCE indicated that it is both a reliable and a valid measure of force and motion conceptual understanding. A distinct, five-factor structure for the FMCE post-test answers reflected specific concepts related to force and motion. However, the three FMCE pretest factors were less distinct. Analysis of the experimental-treatment, compared to a control-treatment, included multiple regression analysis with covariates of age, prior physics-classroom experience, and the three FMCE pretest factors. Criterion variables included each of the five post-test factors, the total laboratory homework score, and a group of seven exam questions. The results were all positive, in favor of the experimental-treatment. However, the results were significant only with the criterions of the FMCE post-test factor "Concepts Regarding Newton's First and Second Laws" and the laboratory homework score. The interaction between the treatments and prior physics-classroom experience was not significant. Implications of the qualitative and quantitative findings are discussed.
ERIC Educational Resources Information Center
GRITTNER, FRANK; PAVLAT, RUSSELL
THE KNOWLEDGE ACCUMULATED FROM THE EXPERIENCE OF INSTALLING MANY LANGUAGE LABORATORIES UNDER THE TITLE III, NDEA PROGRAM FORMS THE BASIS FOR THE GUIDELINES PRESENTED IN THIS BULLETIN. THE DOCUMENT INCLUDES A SUMMARY OF CONDITIONS DESIRABLE PRIOR TO THE PURCHASE OF A LABORATORY, SAMPLE SPECIFICATIONS FOR EACH COMPONENT OF THE LAB, SPECIFICATIONS…
Hydrocode predictions of collisional outcomes: Effects of target size
NASA Technical Reports Server (NTRS)
Ryan, Eileen V.; Asphaug, Erik; Melosh, H. J.
1991-01-01
Traditionally, laboratory impact experiments, designed to simulate asteroid collisions, attempted to establish a predictive capability for collisional outcomes given a particular set of initial conditions. Unfortunately, laboratory experiments are restricted to using targets considerably smaller than the modelled objects. It is therefore necessary to develop some methodology for extrapolating the extensive experimental results to the size regime of interest. Results are reported obtained through the use of two dimensional hydrocode based on 2-D SALE and modified to include strength effects and the fragmentation equations. The hydrocode was tested by comparing its predictions for post-impact fragment size distributions to those observed in laboratory impact experiments.
Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William
2011-11-01
The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers
ERIC Educational Resources Information Center
Walczak, Mary M.; Lantz, Juliette M.
2004-01-01
The case of Well Wishes involves students in a thorough examination of the interaction among nitrogen-composed species in the septic systems and well water, which helps to clean household water. The case supports the attainment of five goals for students, and can be analyzed through classroom discussions or laboratory experiments.
Overview of Heavy Ion Fusion Accelerator Research in the U. S.
NASA Astrophysics Data System (ADS)
Friedman, Alex
2002-12-01
This article provides an overview of current U.S. research on accelerators for Heavy Ion Fusion, that is, inertial fusion driven by intense beams of heavy ions with the goal of energy production. The concept, beam requirements, approach, and major issues are introduced. An overview of a number of new experiments is presented. These include: the High Current Experiment now underway at Lawrence Berkeley National Laboratory; studies of advanced injectors (and in particular an approach based on the merging of multiple beamlets), being investigated experimentally at Lawrence Livermore National Laboratory); the Neutralized (chamber) Transport Experiment being assembled at Lawrence Berkeley National Laboratory; and smaller experiments at the University of Maryland and at Princeton Plasma Physics Laboratory. The comprehensive program of beam simulations and theory is outlined. Finally, prospects and plans for further development of this promising approach to fusion energy are discussed.
Preparation for microgravity: The role of the microgravity materials science laboratory
NASA Technical Reports Server (NTRS)
Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.
1988-01-01
A laboratory dedicated to ground based materials processing in preparation for space flight was established at the NASA Lewis Research Center. Experiments are performed to delineate the effects of gravity on processes of both scientific and commercial interest. Processes are modeled physically and mathematically. Transport model systems are used where possible to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymers reactions. The laboratory contains apparatus which functionally duplicates apparatus available for flight experiments and other pieces instrumented specifically to allow process characterization. Materials addressed include metals, alloys, salts, glasses, ceramics, and polymers. The Microgravity Materials Science Laboratory is staffed by engineers and technicians from a variety of disciplines and is open to users from industry and academia as well as the government. Examples will be given of the laboratory apparatus typical experiments and results.
Introductory Oceanography Taught as a Laboratory Science--An Experiment That Worked.
ERIC Educational Resources Information Center
Anderson, Franz E.
1979-01-01
Describes a college level introductory oceanography course that incorporates a hands-on laboratory component. The activities include the determination of density and buoyancy, light transmission in sea water, and wave refraction. (MA)
NASA's Planetary Aeolian Laboratory: Status and Update
NASA Astrophysics Data System (ADS)
Williams, D. A.; Smith, J. K.
2017-05-01
This presentation provides a status update on the operational capabilities and funding plans by NASA for the Planetary Aeolian Laboratory located at NASA Ames Research Center, including details for those proposing future wind tunnel experiments.
NASA Astrophysics Data System (ADS)
Rubinson, Judith F.; Neyer-Hilvert, Jennifer
1997-09-01
A laboratory experiment using a gas chromatography/mass selective detection method has been developed for the isolation, identification, and quantitation of fatty acid content of commercial fats and oils. Results for corn, nutmeg, peanut, and safflower oils are compared with literature values, and the results for corn oil are compared for two different trials of the experiment. In addition, a number of variations on the experiment are suggested including possible extension of the experiment for use in an instrumental analysis course.
ARC Cell Science Validation (CS-V) Payload Overview
NASA Technical Reports Server (NTRS)
Gilkerson, Nikita
2017-01-01
Automated cell biology system for laboratory and International Space Station (ISS) National Laboratory research. Enhanced cell culture platform that provides undisturbed culture maintenance, including feedback temperature control, medical grade gas supply, perfusion nutrient delivery and removal of waste, and automated experiment manipulations. Programmable manipulations include: media feeds change out, injections, fraction collections, fixation, flow rate, and temperature modification within a one-piece sterile barrier flow path. Cassette provides 3 levels of containment and allows Crew access to the bioculture chamber and flow path assembly for experiment initiation, refurbishment, or sample retrieval and preservation.
Modeling Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Drake, R. P.; Grosskopf, Michael; Bauerle, Matthew; Kruanz, Carolyn; Keiter, Paul; Malamud, Guy; Crash Team
2013-10-01
The understanding of high energy density systems can be advanced by laboratory astrophysics experiments. Computer simulations can assist in the design and analysis of these experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport and electron heat conduction. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Radiative shocks experiments, Kelvin-Helmholtz experiments, Rayleigh-Taylor experiments, plasma sheet, and interacting jets experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Laboratory directed research and development program, FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-02-01
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides themore » resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.« less
Making Connections in the Undergraduate Laboratory.
ERIC Educational Resources Information Center
Poole, Bobbie J.; Kidder, Stanley Q.
1996-01-01
Describes a strategy used in a meteorology course to increase its relevance to students' lives. Involves combining the lecture and laboratory portions of the course and including a Connections section in the lab report in which students comment on the connections they saw between the coursework, the laboratory exercises, and their own experience.…
Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories
ERIC Educational Resources Information Center
Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.
2012-01-01
This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…
ERIC Educational Resources Information Center
Raimist, Roger J.
Designed to assist the teacher who wishes to use marine organisms for biological laboratory investigations, this manual includes general information on maintaining marine aquaria and collecting marine organisms as well as five tested laboratory exercises. The exercises deal with the measurement of oxygen consumption (giving techniques for…
ERIC Educational Resources Information Center
Conlon, Michael P.; Mullins, Paul
2011-01-01
The Computer Science Department at Slippery Rock University created a laboratory for its Computer Networks and System Administration and Security courses under relaxed financial constraints. This paper describes the department's experience designing and using this laboratory, including lessons learned and descriptions of some student projects…
Graphing techniques for materials laboratory using Excel
NASA Technical Reports Server (NTRS)
Kundu, Nikhil K.
1994-01-01
Engineering technology curricula stress hands on training and laboratory practices in most of the technical courses. Laboratory reports should include analytical as well as graphical evaluation of experimental data. Experience shows that many students neither have the mathematical background nor the expertise for graphing. This paper briefly describes the procedure and data obtained from a number of experiments such as spring rate, stress concentration, endurance limit, and column buckling for a variety of materials. Then with a brief introduction to Microsoft Excel the author explains the techniques used for linear regression and logarithmic graphing.
ERIC Educational Resources Information Center
Fakayode, Sayo O.; King, Angela G.; Yakubu, Mamudu; Mohammed, Abdul K.; Pollard, David A.
2012-01-01
This article presents a guided-inquiry (GI) hands-on determination of Fe in food samples including plantains, spinach, lima beans, oatmeal, Frosted Flakes cereal (generic), tilapia fish, and chicken using flame atomic absorption spectroscopy (FAAS). The utility of the GI experiment, which is part of an instrumental analysis laboratory course,…
Some Experiments with Thin Prisms.
ERIC Educational Resources Information Center
Fernando, P. C. B.
1980-01-01
Described are several experiments, for a course in geometrical optics or for a college physics laboratory, which have a bearing on ophthalmic optics. Experiments include the single thin prism, crossed prisms, and the prismatic power of a lens. (Author/DS)
Experiment definition phase shuttle laboratory LDRL 10.6 experiment
NASA Technical Reports Server (NTRS)
1974-01-01
System optimization is reported along with mission and parameter requirements. Link establishment and maintenance requirements are discussed providing an acquisition and tracking scheme. The shuttle terminal configurations are considered and are included in the experiment definition.
NASA Technical Reports Server (NTRS)
Trolinger, J. D.; Lal, R. B.; Batra, A. K.; Mcintosh, D.
1991-01-01
The first International Microgravity Laboratory (IML-1), scheduled for spaceflight in early 1992 includes a crystal-growth-from-solution experiment which is equipped with an array of optical diagnostics instrumentation which includes transmission and reflection holography, tomography, schlieren, and particle image displacement velocimetry. During the course of preparation for this spaceflight experiment we have performed both experimentation and analysis for each of these diagnostics. In this paper we describe the work performed in the development of holographic particle image displacement velocimetry for microgravity application which will be employed primarily to observe and quantify minute convective currents in the Spacelab environment and also to measure the value of g. Additionally, the experiment offers a unique opportunity to examine physical phenomena which are normally negligible and not observable. A preliminary analysis of the motion of particles in fluid was performed and supporting experiments were carried out. The results of the analysis and the experiments are reported.
ERIC Educational Resources Information Center
Robertson, Katherine
2016-01-01
The benefits of undergraduate research are well documented, and many colleges and universities include a senior research requirement for graduation. In addition, most science curricula attempt to include discoverystyle, laboratory components to prepare students for their research experiences and to expose them to research methods in different…
Second United States Microgravity Laboratory: One Year Report. Volume 1
NASA Technical Reports Server (NTRS)
Vlasse, M (Editor); McCauley, D. (Editor); Walker, C. (Editor)
1998-01-01
This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
Second United States Microgravity Laboratory: One Year Report. Volume 2
NASA Technical Reports Server (NTRS)
Vlasse, M. (Editor); McCauley, D. (Editor); Walker, C. (Editor)
1998-01-01
This document reports the one year science results for the important and highly successful Second United States Microgravity Laboratory (USML-2). The USML-2 mission consisted of a pressurized Spacelab module where the crew performed experiments. The mission also included a Glovebox where the crew performed additional experiments for the investigators. Together, about 36 major scientific experiments were performed, advancing the state of knowledge in fields such as fluid physics, solidification of metals, alloys, and semiconductors, combustion, and the growth of protein crystals. The results demonstrate the range of quality science that can be conducted utilizing orbital laboratories in microgravity and provide a look forward to a highly productive Space Station era.
Experiential learning in control systems laboratories and engineering project management
NASA Astrophysics Data System (ADS)
Reck, Rebecca Marie
Experiential learning is a process by which a student creates knowledge through the insights gained from an experience. Kolb's model of experiential learning is a cycle of four modes: (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation. His model is used in each of the three studies presented in this dissertation. Laboratories are a popular way to apply the experiential learning modes in STEM courses. Laboratory kits allow students to take home laboratory equipment to complete experiments on their own time. Although students like laboratory kits, no previous studies compared student learning outcomes on assignments using laboratory kits with existing laboratory equipment. In this study, we examined the similarities and differences between the experiences of students who used a portable laboratory kit and students who used the traditional equipment. During the 2014- 2015 academic year, we conducted a quasi-experiment to compare students' achievement of learning outcomes and their experiences in the instructional laboratory for an introductory control systems course. Half of the laboratory sections in each semester used the existing equipment, while the other sections used a new kit. We collected both quantitative data and qualitative data. We did not identify any major differences in the student experience based on the equipment they used. Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended outcomes of the course or laboratory. In this study, I identified a common set of laboratory objectives, concepts, and components of a laboratory apparatus for undergraduate control systems laboratories. During the summer of 2015, a panel of 40 control systems faculty members, from a variety of institutions, completed a multi-round Delphi survey in order to bring them toward consensus on the common aspects of their laboratories. The following winter, 45 additional faculty members and practitioners from the control systems community completed a follow-up survey to gather feedback on the results of the Delphi survey. During the Delphi study, the panelists identified 15 laboratory objectives, 26 concepts, and 15 components that were common in their laboratories. Then in both the Delphi survey and follow-up survey each participant rated the importance of each of these items. While the average ratings differed slightly between the two groups, the order of each set of items was compared with two different tests and the order was found to be similar. Some of the common and important learning objectives include connecting theory to what is implemented and observed in the laboratory, designing controllers, and modeling and simulating systems. The most common component in both groups was Math-Works software. Some of the common concepts include block diagrams, stability, and PID control. Defining common aspects of undergraduate control systems laboratories enables common development, detailed comparisons, and simplified adaptation of equipment and experiments between campuses and programs. Throughout an undergraduate program in engineering, there are multiple opportunities for hands-on laboratory experiences that are related to course content. However, a similarly immersive experience for project management graduate students is harder to incorporate for all students in a course at once. This study explores an experiential learning opportunity for graduate students in engineering management or project management programs. The project management students enroll in a project management course. Undergraduate students interested in working on a project with a real customer enroll in a different projects course. Two students from the project management course function as project managers and lead a team of undergraduate students in the second course through a project. I studied how closely the project management experience in these courses aligns with engineering project management in industry. In the spring of 2015, I enrolled in the project management course at a large Midwestern university. I used analytic autoethnography to compare my experiences in the course with my experiences as a project engineer at a large aerospace company. I found that the experience in the course provided an authentic and comprehensive opportunity to practice most of the skills listed in the Project Management Book of Knowledge (an industry standard) as necessary for project managers. Some components of the course that made it successful: I was the project manager for the whole term, I worked with a real client, and the team defined and delivered the project before the end of the semester.
Laboratory simulation of space plasma phenomena*
NASA Astrophysics Data System (ADS)
Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.
2017-12-01
Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.
ERIC Educational Resources Information Center
Brewer, Sharon E.; Cinel, Bruno; Harrison, Michelle; Mohr, Christina L.
2013-01-01
In delivering chemistry courses by distance, a key challenge is to offer the learner an authentic and meaningful laboratory experience that still provides the rigour required to continue on in science. To satisfy this need, two distance general chemistry laboratory courses appropriate for Bachelor of Science (B.Sc.) students, including chemistry…
ERIC Educational Resources Information Center
Salerno, Theresa A.
2009-01-01
A multiplex allele-specific PCR analysis was developed to identify six "common" genotypes: AA, AO, BB, BO, OO, and AB. This project included a pre-laboratory exercise that provided active learning experiences and developed critical thinking skills. This laboratory resulted in many successful analyses, which were verified by student knowledge of…
Gorodetsky, B N; Kalyada, T V; Petrov, S V
2015-01-01
This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.
NASA Astrophysics Data System (ADS)
Ghatty, Sundara L.
Over the past decade, there has been a dramatic rise in online delivery of higher education in the United States. Recent developments in web technology and access to the internet have led to a vast increase in online courses. For people who work during the day and whose complicated lives prevent them from taking courses on campus, online courses are the only alternatives by which they may achieve their goals in education. The laboratory courses are the major requirements for college and university students who want to pursue degree and certification programs in science. It is noted that there is a lack of laboratory courses in online physics courses. The present study addressed the effectiveness of a virtual science laboratory in physics instruction in terms of learning outcomes, attitudes, and self-efficacy of students in a Historically Black University College. The study included fifty-eight students (36 male and 22 female) of different science majors who were enrolled in a general physics laboratory course. They were divided into virtual and traditional groups. Three experiments were selected from the syllabus. The traditional group performed one experiment in a traditional laboratory, while the virtual group performed the same experiment in a virtual laboratory. For the second experiment, the use of laboratories by both groups was exchanged. Learner's Assessment Test (LAT), Attitudes Toward Physics Laboratories (ATPL), and Self-Efficacy Survey (SES) instruments were used. Additionally, quantitative methods such as an independent t-test, a paired t-test, and correlation statistics were used to analyze the data. The results of the first experiment indicated the learning outcomes were higher in the Virtual Laboratory than in the traditional laboratory, whereas there was no significant difference in learning outcomes with either type of lab instruction. However, significant self-efficacy gains were observed. Students expressed positive attitudes in terms of liking as well as interests in performing experiments in virtual laboratories. No gender differences were observed in learning outcomes or self-efficacy. The results of the study indicated that virtual laboratories may be a substitute for traditional laboratories to some extent, and may play a vital role in online science courses.
Best, Michele; Sakande, Jean
2016-01-01
The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state's public health system and is critical to the development of a robust national laboratory response network to meet global health security threats.
2016-01-01
The role of national health laboratories in support of public health response has expanded beyond laboratory testing to include a number of other core functions such as emergency response, training and outreach, communications, laboratory-based surveillance and data management. These functions can only be accomplished by an efficient and resilient national laboratory network that includes public health, reference, clinical and other laboratories. It is a primary responsibility of the national health laboratory in the Ministry of Health to develop and maintain the national laboratory network in the country. In this article, we present practical recommendations based on 17 years of network development experience for the development of effective national laboratory networks. These recommendations and examples of current laboratory networks, are provided to facilitate laboratory network development in other states. The development of resilient, integrated laboratory networks will enhance each state’s public health system and is critical to the development of a robust national laboratory response network to meet global health security threats. PMID:28879137
2003-06-09
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew take a look at the Japanese Experiment Module (JEM) pressure module in the Space Station Processing Facility. A research laboratory, the pressurized module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo and is Japan's primary contribution to the Station. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
ERIC Educational Resources Information Center
Summerlin, Lee B., Ed.
In the Skylab student project, high school students submitted proposals for experiments that could be performed on board Skylab by the astronauts. This book describes the experiments designed by the students and reports what happened to those experiments in the space laboratory. The student experiments included studies of the central nervous…
Simulations of Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Kuranz, Carolyn; Manuel, Mario; Keiter, Paul; Drake, R. P.
2014-10-01
Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster/talk will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, imploding bubbles, and interacting jet experiments. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via Grant DEFC52-08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0001840, and by the National Laser User Facility Program, Grant Number DE-NA0000850.
ERIC Educational Resources Information Center
Openshaw, Peter
1988-01-01
Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)
The Safe use of Radioactive Isotopes in Teaching Experiments
ERIC Educational Resources Information Center
Hawcroft, D. M.; Stewart, J. C.
1974-01-01
This article briefly discusses some of the dangers involved in the use of radioisotopes and includes a comprehensive list of precautions and laboratory rules for use during radiobiology experiments. (Author)
Materials Laboratory Classes for First Year Undergraduates
ERIC Educational Resources Information Center
Fahy, F. W.
1975-01-01
Describes a combined demonstration and student experiment course to illustrate fundamental techniques, instrumentation, and concise report writing. Describes experiments including tensile tests, heat treatment, equilibrium diagram, microexamination, strain measurement, and recrystallization. (GH)
Virtual Laboratories to Achieve Higher-Order Learning in Fluid Mechanics
NASA Astrophysics Data System (ADS)
Ward, A. S.; Gooseff, M. N.; Toto, R.
2009-12-01
Bloom’s higher-order cognitive skills (analysis, evaluation, and synthesis) are recognized as necessary in engineering education, yet these are difficult to achieve in traditional lecture formats. Laboratory components supplement traditional lectures in an effort to emphasize active learning and provide higher-order challenges, but these laboratories are often subject to the constraints of (a) increasing student enrollment, (b) limited funding for operational, maintenance, and instructional expenses and (c) increasing demands on undergraduate student credit requirements. Here, we present results from a pilot project implementing virtual (or online) laboratory experiences as an alternative to a traditional laboratory experience in Fluid Mechanics, a required third year course. Students and faculty were surveyed to identify the topics that were most difficult, and virtual laboratory and design components developed to supplement lecture material. Each laboratory includes a traditional lab component, requiring student analysis and evaluation. The lab concludes with a design exercise, which imposes additional problem constraints and allows students to apply their laboratory observations to a real-world situation.
Understanding behavioral responses of fish to pheromones in natural freshwater environments
Johnson, Nicholas S.; Li, Weiming
2010-01-01
There is an abundance of experimental studies and reviews that describe odorant-mediated behaviors of fish in laboratory microcosms, but research in natural field conditions has received considerably less attention. Fish pheromone studies in laboratory settings can be highly productive and allow for controlled experimental designs; however, laboratory tanks and flumes often cannot replicate all the physical, physiological and social contexts associated with natural environments. Field experiments can be a critical step in affirming and enhancing understanding of laboratory discoveries and often implicate the ecological significance of pheromones employed by fishes. When findings from laboratory experiments have been further tested in field environments, often different and sometimes contradictory conclusions are found. Examples include studies of sea lamprey (Petromyzon marinus) mating pheromones and fish alarm substances. Here, we review field research conducted on fish pheromones and alarm substances, highlighting the following topics: (1) contradictory results obtained in laboratory and field experiments, (2) how environmental context and physiological status influences behavior, (3) challenges and constraints of aquatic field research and (4) innovative techniques and experimental designs that advance understanding of fish chemical ecology through field research.
Teaching pediatric laboratory medicine to pathology residents.
Pysher, Theodore J; Bach, Philip R; Geaghan, Sharon M; Hamilton, Marilyn S; Laposata, Michael; Lockitch, Gillian; Brugnara, Carlo; Coffin, Cheryl M; Pasquali, Marzia; Rinaldo, Piero; Roberts, William L; Rutledge, Joe C; Ashwood, Edward R; Blaylock, Robert C; Campos, Joseph M; Goldsmith, Barbara; Jones, Patricia M; Lim, Megan; Meikle, A Wayne; Perkins, Sherrie L; Perry, Deborah A; Petti, Cathy A; Rogers, Beverly B; Steele, Paul E; Weiss, Ronald L; Woods, Gail
2006-07-01
Laboratory data are essential to the medical care of fetuses, infants, children, and adolescents. However, the performance and interpretation of laboratory tests on specimens from these patients, which may constitute a significant component of the workload in general hospitals and integrated health care systems as well as specialized perinatal or pediatric centers, present unique challenges to the clinical pathologist and the laboratory. Therefore, pathology residents should receive training in pediatric laboratory medicine. Children's Health Improvement through Laboratory Diagnostics, a group of pathologists and laboratory scientists with interest and expertise in pediatric laboratory medicine, convened a task force to develop a list of curriculum topics, key resources, and training experiences in pediatric laboratory medicine for trainees in anatomic and clinical pathology or straight clinical pathology residency programs and in pediatric pathology fellowship programs. Based on the experiences of 11 training programs, we have compiled a comprehensive list of pediatric topics in the areas of clinical chemistry, endocrinology, hematology, urinalysis, coagulation medicine, transfusion medicine, immunology, microbiology and virology, biochemical genetics, cytogenetics and molecular diagnostics, point of care testing, and laboratory management. This report also includes recommendations for training experiences and a list of key texts and other resources in pediatric laboratory medicine. Clinical pathologists should be trained to meet the laboratory medicine needs of pediatric patients and to assist the clinicians caring for these patients with the selection and interpretation of laboratory studies. This review helps program directors tailor their curricula to more effectively provide this training.
The Kosmos-1129 biosatellite. [experiments in biological effects of space flight
NASA Technical Reports Server (NTRS)
Nikitin, S. A.
1980-01-01
A number of experiments, designed by participating specialists from several countries, are described. The experiments included studies in biorhythm, stress, body parts, behavior, ontogenesis, and gravitational preference. The biological subjects of the experiments were retrieved immediately after the landing of the satellite and examined in a field laboratory.
Laboratory Experiments for Undergraduate Instruction in Economics.
ERIC Educational Resources Information Center
Wells, Donald A.
1991-01-01
Describes the generation and use of experimental data in teaching economics. Includes a double oral auction experiment and a monopoly pricing experiment. Concludes that such experiments allow the instructor to see what the students have learned, how they reason, and what parts of the material have proved difficult. (DK)
NASA Technical Reports Server (NTRS)
1974-01-01
The analysis of data from the cosmic dust experiment on three NASA missions is discussed. These missions were Mariner IV, OGO III, and Lunar Explorer 35. The analysis effort has included some work in the laboratory of the physics of microparticle hypervelocity impact. This laboratory effort was initially aimed at the calibration and measurements of the different sensors being used in the experiment. The latter effort was conducted in order to better understand the velocity and mass distributions of the picogram sized ejecta particles.
Waste Disposal in the Laboratory: Teaching Responsibility and Safety.
ERIC Educational Resources Information Center
Allen, Ralph O.
1983-01-01
Discusses the generation, collection, and disposal of hazardous and other wastes in the chemistry laboratory. Offers suggestions related to these three areas to provide a safe teaching environment, including minimizing amounts of reagents used (and potentially wasted) by scaling down experiments. (JN)
A Membrane Gas Separation Experiment for the Undergraduate Laboratory.
ERIC Educational Resources Information Center
Davis, Richard A.; Sandall, Orville C.
1991-01-01
Described is a membrane experiment that provides students with experience in fundamental engineering skills such as mass balances, modeling, and using the computer as a research tool. Included are the experimental design, theory, method of solution, sample calculations, and conclusions. (KR)
Take-Home Experiments for Large Lecture Classes.
ERIC Educational Resources Information Center
Johnston, Bradley G.; Schroeer, Juergen M.
1992-01-01
Suggests seven take-home experiments geared toward the topic of energy that can be utilized in large, general-education physics classes that do not include laboratory sessions. An appendix provides details for the experiment to measure the heat of fusion of water. (MDH)
Open-Ended Laboratory Investigations with Drosophila.
ERIC Educational Resources Information Center
Mertens, Thomas R.
1983-01-01
Background information, laboratory procedures (including matings performed), and results are presented for an open-ended investigation using the fruitfly Drosophila melanogaster. Once data are collected, students develop hypotheses to explain results as well as devise additional experiments to test their hypotheses. Calculation of chi-square for…
Use of HyperCard to Simulate a Tissue Culture Laboratory.
ERIC Educational Resources Information Center
Nester, Bradley S.; Turney, Tully H.
1992-01-01
Describes the use of a Macintosh computer and HyperCard software to create an introduction to cell culture techniques that closely approximates a hands-on laboratory experiment. Highlights include data acquisition, data analysis, the generation of growth curves, and electronic modeling. (LRW)
10 More States Enact Laws on Vandalizing Animal Laboratories.
ERIC Educational Resources Information Center
Blumenstyk, Goldie
1991-01-01
Twenty-two states now specifically outlaw such activities as entering a research laboratory without permission, releasing animals, disrupting experiments, and removing documents and photographs related to research. Several expand the definition of criminal activity to include videotaping or photographing facility interiors. Penalties vary by…
ERIC Educational Resources Information Center
Friedstein, Harriet, Ed.
1981-01-01
Lists commercially available audiovisual materials by subject area. Includes title, producer (addresses given), catalog number, format (film, filmstrip, cassette, slides), and prices. Subject areas include: elements; equilibrium; gases; laboratory techniques and experiments; general chemistry; introductory materials (including mathematics); and…
How To...Activities in Meteorology.
ERIC Educational Resources Information Center
Nimmer, Donald N.; Sagness, Richard L.
This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly meteorology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) making a thermometer; (2) air/space relationship; (3) weight of air; (4) barometers; (5) particulates; (6) evaporation;…
Experiences from the National Institute of Nursing Research: Summer Genetics Institute 2004.
Whitt, Karen J
2005-02-01
The National Institute of Nursing Research (NINR) Summer Genetics Institute (SGI) prepares nurses with training in molecular genetics for use in clinical practice, research, and education. Experiences from the SGI 2004 are recounted. More than 35 genetic experts from National Institutes of Health and surrounding universities in Washington, D.C., provided lecture and laboratory experiences. The lecture portion of the SGI focused on the molecular aspect of genetics and the laboratory component included experiments designed to provide an understanding of genetic approaches for diagnostic and research purposes. The SGI prepares nurses with the genetic foundation to meet the healthcare challenges of the future.
NASA Astrophysics Data System (ADS)
Nikolic, Sasha; Suesse, Thomas F.; McCarthy, Timothy J.; Goldfinch, Thomas L.
2017-11-01
Minimal research papers have investigated the use of student evaluations on the laboratory, a learning medium usually run by teaching assistants with little control of the content, delivery and equipment. Finding the right mix of teaching assistants for the laboratory can be an onerous task due to the many skills required including theoretical and practical know-how, troubleshooting, safety and class management. Using larger classes with multiple teaching assistants, a team-based teaching (TBT) format may be advantageous. A rigorous three-year study across twenty-five courses over repetitive laboratory classes is analysed using a multi-level statistical model considering students, laboratory classes and courses. The study is used to investigate the effectiveness of the TBT format, and quantify the influence each demonstrator has on the laboratory experience. The study found that TBT is effective and the lead demonstrator most influential, influencing up to 55% of the laboratory experience evaluation.
NASA Technical Reports Server (NTRS)
1972-01-01
Details are provided for scheduling, cost estimates, and support research and technology requirements for a space shuttle supported manned research laboratory to conduct selected communication and navigation experiments. A summary of the candidate program and its time phasing is included, as well as photographs of the 1/20 scale model of the shuttle supported Early Comm/Nav Research Lab showing the baseline, in-bay arrangement and the out-of-bay configuration.
Benchmarking study of the MCNP code against cold critical experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitaraman, S.
1991-01-01
The purpose of this study was to benchmark the widely used Monte Carlo code MCNP against a set of cold critical experiments with a view to using the code as a means of independently verifying the performance of faster but less accurate Monte Carlo and deterministic codes. The experiments simulated consisted of both fast and thermal criticals as well as fuel in a variety of chemical forms. A standard set of benchmark cold critical experiments was modeled. These included the two fast experiments, GODIVA and JEZEBEL, the TRX metallic uranium thermal experiments, the Babcock and Wilcox oxide and mixed oxidemore » experiments, and the Oak Ridge National Laboratory (ORNL) and Pacific Northwest Laboratory (PNL) nitrate solution experiments. The principal case studied was a small critical experiment that was performed with boiling water reactor bundles.« less
How To...Activities in Physical Oceanography.
ERIC Educational Resources Information Center
Nimmer, Donald N.; Sagness, Richard L.
This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly oceanology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) comparison of water hardness; (2) preparation of fresh water from sea water; (3) determination of water pressure; (4)…
Science Education: An Experiment in Facilitating the Learning of Neurophysiology.
ERIC Educational Resources Information Center
Levitan, Herbert
1981-01-01
Summarizes the experiences of a zoology professor attempting to construct a student-centered course in neurophysiology. Various aspects of the organization and conduct of the course are described, including the beginning experience, topics of interest, lecture, laboratory, computer simulation, examinations, student lectures. Evaluation of the…
On the Application of Simple Experiments to the Teaching of ChE Thermodynamics
ERIC Educational Resources Information Center
McNeil, Kenneth M.
1978-01-01
This article describes the undergraduate ChE thermodynamics course at Drexel University and the reasons for incorporating a series of laboratory experiments into the course. Included is a list of lecture topics and a description of each of the experiments. (BB)
Evaluation of the Use of Remote Laboratories for Secondary School Science Education
ERIC Educational Resources Information Center
Lowe, David; Newcombe, Peter; Stumpers, Ben
2013-01-01
Laboratory experimentation is generally considered central to science-based education. Allowing students to "experience" science through various forms of carefully designed practical work, including experimentation, is often claimed to support their learning and motivate their engagement while fulfilling specific curriculum requirements. However,…
Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F
2016-09-01
In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Integrating teaching and authentic research in the field and laboratory settings
NASA Astrophysics Data System (ADS)
Daryanto, S.; Wang, L.; Kaseke, K. F.; Ravi, S.
2016-12-01
Typically authentic research activities are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research activities both in the field and in the laboratory. We worked with students from both US and abroad without strong science background to utilize advanced environmental sensors and statistical tool to conduct innovative projects. The students include one from Namibia and two local high school students in Indianapolis (through Project SEED, Summer Experience for the Economically Disadvantaged). They conducted leaf potential measurements, isotope measurements and meta-analysis. The experience showed us the great potential of integrating teaching and research in both field and laboratory settings.
Realtime monitoring of bridge scour using remote monitoring technology
DOT National Transportation Integrated Search
2011-02-01
The research performed in this project focuses on the application of instruments including accelerometers : and tiltmeters to monitor bridge scour. First, two large scale laboratory experiments were performed. One : experiment is the simulation of a ...
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presents chemistry experiments, laboratory procedures, demonstrations, and classroom materials/activities. These include: experiments on colloids, processing of uranium ore, action of heat on carbonates; color test for phenols and aromatic amines; solvent properties of non-electrolytes; stereoscopic applications/methods; a valency balance;…
NASA Astrophysics Data System (ADS)
Akı, Fatma Nur; Gürel, Zeynep
2017-02-01
The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.
Shrink-film microfluidic education modules: Complete devices within minutes.
Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle
2011-06-01
As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as "laboratory on-chip" applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments-all in the context of addressing real-world challenges by making their own lab-on-chip devices.
Laboratory Research. [spectroscopic analysis, photochemical reactions, and proton irradiation of ice
NASA Technical Reports Server (NTRS)
Donn, B.
1981-01-01
To properly interpret the rapidly growing body of data from comet observations, many types of laboratory measurements are needed. These include: (1) molecular spectroscopy in the visible, ultraviolet, infrared and microwave region of the spectra; (2) laser fluorescent spectroscopy of photofragments; (3) laboratory cross-section or reaction rate measurements using flow tube techniques, fluorescent spectroscopy detection for neutrals and ion-molecule reaction techniques; (4) experiments to simulate solar-wind interactions with comets; (5) studies of the properties and behavior of ice mixtures; (6) experiments on the sublimation rate of ice, and the phase transition from amorphous to crystalline ice; (7) investigations of the irradiation of ice; and (8) the electron impact dissociation and excitation of molecules of cometary interest. A nearly completed experiment on the proton irradiation of ice is described.
NASA Technical Reports Server (NTRS)
Srinivas, R.; Schaefer, D. A.
1992-01-01
The Crystal Growth Furnace (CGF) system configuration for the First United States Microgravity Laboratory (USML-1) mission is reviewed, and the planned on-orbit experiments are briefly described. The CGF is configured to accommodate four scientific experiments involving crystal growth which are based on the classical Bridgman method and CVT method, including vapor transport crystal growth of mercury cadmium telluride; crystal growth of mercury zinc telluride by directional solidification; seeded Bridgman growth of zinc-doped cadmium telluride; and Bridgman growth of selenium-doped gallium arsenide.
A laboratory medicine residency training program that includes clinical consultation and research.
Spitzer, E D; Pierce, G F; McDonald, J M
1990-04-01
We describe a laboratory medicine residency training program that includes ongoing interaction with both clinical laboratories and clinical services as well as significant research experience. Laboratory medicine residents serve as on-call consultants in the interpretation of test results, design of testing strategies, and assurance of test quality. The consultative on-call beeper system was evaluated and is presented as an effective method of clinical pathology training that is well accepted by the clinical staff. The research component of the residency program is also described. Together, these components provide training in real-time clinical problem solving and prepare residents for the changing technological environment of the clinical laboratory. At the completion of the residency, the majority of the residents are qualified laboratory subspecialists and are also capable of running an independent research program.
Physics Lab Experiments and Correlated Computer Aids. Teacher Edition.
ERIC Educational Resources Information Center
Gottlieb, Herbert H.
Forty-nine physics experiments are included in the teacher's edition of this laboratory manual. Suggestions are given in margins for preparing apparatus, organizing students, and anticipating difficulties likely to be encountered. Sample data, graphs, calculations, and sample answers to leading questions are also given for each experiment. It is…
ERIC Educational Resources Information Center
Blackledge, Robert D.
1974-01-01
Describes an experiment which can be used to test for the use of accelerants in the origin of a fire. Involves distillation and gas liquid chromatography to identify the accelerants, thus combining two experiments ordinarily included in the beginning organic laboratory. (SLH)
Learning to Think in a Math Lab.
ERIC Educational Resources Information Center
Charbonneau, Manon P.
This document begins with a discussion of the author's approach to instruction in a mathematics laboratory. This discussion includes an enumeration of types of desirable or necessary equipment and advice on the management of a laboratory. The author examines issues related to achievement and readiness for more traditional school experiences in…
Microgravity Environment Description Handbook
NASA Technical Reports Server (NTRS)
DeLombard, Richard; McPherson, Kevin; Hrovat, Kenneth; Moskowitz, Milton; Rogers, Melissa J. B.; Reckart, Timothy
1997-01-01
The Microgravity Measurement and Analysis Project (MMAP) at the NASA Lewis Research Center (LeRC) manages the Space Acceleration Measurement System (SAMS) and the Orbital Acceleration Research Experiment (OARE) instruments to measure the microgravity environment on orbiting space laboratories. These laboratories include the Spacelab payloads on the shuttle, the SPACEHAB module on the shuttle, the middeck area of the shuttle, and Russia's Mir space station. Experiments are performed in these laboratories to investigate scientific principles in the near-absence of gravity. The microgravity environment desired for most experiments would have zero acceleration across all frequency bands or a true weightless condition. This is not possible due to the nature of spaceflight where there are numerous factors which introduce accelerations to the environment. This handbook presents an overview of the major microgravity environment disturbances of these laboratories. These disturbances are characterized by their source (where known), their magnitude, frequency and duration, and their effect on the microgravity environment. Each disturbance is characterized on a single page for ease in understanding the effect of a particular disturbance. The handbook also contains a brief description of each laboratory.
Simple Laboratory Experiment for Illustrating Soil Respiration.
ERIC Educational Resources Information Center
Hattey, J. A.; Johnson, G. V.
1997-01-01
Describes an experiment to illustrate the effect of food source and added nutrients (N) on microbial activity in the soil. Supplies include air-dried soil, dried plant material, sources of carbon and nitrogen, a trap such as KOH, colored water, and a 500-mL Erlenmeyer flask. Includes a diagram of an incubation chamber to demonstrate microbial…
A Spectrophotometric Study of the Permanganate-Oxalate Reaction: An Analytical Laboratory Experiment
ERIC Educational Resources Information Center
Kalbus, Gene E.; Lieu, Van T.; Kalbus, Lee H.
2004-01-01
The spectrophotometric method assists in the study of potassium permanganate-oxalate reaction. Basic analytical techniques and rules are implemented in the experiment, which can also include the examination of other compounds oxidized by permanganate.
ERIC Educational Resources Information Center
Cantwell, Frederick F.; Brown, David W.
1981-01-01
Describes a three-hour liquid chromatography experiment involving rapid separation of colored compounds in glass columns packed with a nonpolar absorbent. Includes apparatus design, sample preparation, experimental procedures, and advantages for this determination. (SK)
The space shuttle payload planning working groups. Volume 10: Space technology
NASA Technical Reports Server (NTRS)
1973-01-01
The findings and recommendations of the Space Technology group of the space shuttle payload planning activity are presented. The elements of the space technology program are: (1) long duration exposure facility, (2) advanced technology laboratory, (3) physics and chemistry laboratory, (4) contamination experiments, and (5) laser information/data transmission technology. The space technology mission model is presented in tabular form. The proposed experiments to be conducted by each test facility are described. Recommended approaches for user community interfacing are included.
Resource Letter SPE-1: Single-Photon Experiments in the Undergraduate Laboratory
NASA Astrophysics Data System (ADS)
Galvez, Enrique J.
2014-11-01
This Resource Letter lists undergraduate-laboratory adaptations of landmark optical experiments on the fundamentals of quantum physics. Journal articles and websites give technical details of the adaptations, which offer students unique hands-on access to testing fundamental concepts and predictions of quantum mechanics. A selection of the original research articles that led to the implementations is included. These developments have motivated a rethinking of the way quantum mechanics is taught, so this Resource Letter also lists textbooks that provide these new approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, P; Bonin, TA; Newman, JF
The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.
ZAP! Adapted: Incorporating design in the introductory electromagnetism lab
NASA Astrophysics Data System (ADS)
McNeil, J. A.
2002-04-01
In the last decade the Accreditation Board of Engineering and Technology(ABET) significantly reformed the criteria by which engineering programs are accredited. The new criteria are called Engineering Criteria 2000 (EC2000). Not surprisingly, engineering design constitutes an essential component of these criteria. The Engineering Physics program at the Colorado School of Mines (CSM) underwent an ABET general review and site visit in the fall of 2000. In preparation for this review and as part of a campus-wide curriculum reform the Physics Department was challenged to include elements of design in its introductory laboratories. As part of the background research for this reform, several laboratory programs were reviewed including traditional and studio modes as well as a course used by Cal Tech and MIT called "ZAP!" which incorporates design activities well-aligned with the EC2000 criteria but in a nontraditional delivery mode. CSM has adapted several ZAP! experiments to a traditional laboratory format while attempting to preserve significant design experiences. The new laboratory forms an important component of the reformed course which attempts to respect the psychological principles of learner-based education. This talk reviews the reformed introductory electromagnetism course and how the laboratories are integrated into the pedagogy along with design activities. In their new form the laboratories can be readily adopted by physics departments using traditional delivery formats.
ERIC Educational Resources Information Center
School Science Review, 1984
1984-01-01
Presents 28 activities, games, demonstrations, experiments, and computer programs for biology, chemistry, physics, and conservation education. Background information, laboratory procedures, equipment lists, and instructional strategies are included. Topics include nature conservation, chickens in school, human anatomy, nitrogen cycle, mechanism…
Laboratory exercises on oscillation modes of pipes
NASA Astrophysics Data System (ADS)
Haeberli, Willy
2009-03-01
This paper describes an improved lab setup to study the vibrations of air columns in pipes. Features of the setup include transparent pipes which reveal the position of a movable microphone inside the pipe; excitation of pipe modes with a miniature microphone placed to allow access to the microphone stem for open, closed, or conical pipes; and sound insulation to avoid interference between different setups in a student lab. The suggested experiments on the modes of open, closed, and conical pipes, the transient response of a pipe, and the effect of pipe diameter are suitable for introductory physics laboratories, including laboratories for nonscience majors and music students, and for more advanced undergraduate laboratories. For honors students or for advanced laboratory exercises, the quantitative relation between the resonance width and damping time constant is of interest.
Modeling Laser-Driven Laboratory Astrophysics Experiments Using the CRASH Code
NASA Astrophysics Data System (ADS)
Grosskopf, Michael; Keiter, P.; Kuranz, C. C.; Malamud, G.; Trantham, M.; Drake, R.
2013-06-01
Laser-driven, laboratory astrophysics experiments can provide important insight into the physical processes relevant to astrophysical systems. The radiation hydrodynamics code developed by the Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan has been used to model experimental designs for high-energy-density laboratory astrophysics campaigns on OMEGA and other high-energy laser facilities. This code is an Eulerian, block-adaptive AMR hydrodynamics code with implicit multigroup radiation transport and electron heat conduction. The CRASH model has been used on many applications including: radiative shocks, Kelvin-Helmholtz and Rayleigh-Taylor experiments on the OMEGA laser; as well as laser-driven ablative plumes in experiments by the Astrophysical Collisionless Shocks Experiments with Lasers (ACSEL) collaboration. We report a series of results with the CRASH code in support of design work for upcoming high-energy-density physics experiments, as well as comparison between existing experimental data and simulation results. This work is funded by the Predictive Sciences Academic Alliances Program in NNSA-ASC via grant DEFC52- 08NA28616, by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850.
Simulations of Laboratory Astrophysics Experiments using the CRASH code
NASA Astrophysics Data System (ADS)
Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul
2015-11-01
Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.
Experiment definition phase shuttle laboratory. LDRL-10.6 experiment
NASA Technical Reports Server (NTRS)
1976-01-01
The work completed on the experiment definition phase of the shuttle laboratory LDRL 10.6 micrometers experiment from 27 September 1975 to 26 January 1976 was reported. This work included progress in the following areas: (1) optomechanical system: completion of detail drawings, completion of the beryllium subassembly, fabrication, checking, and weighing of approximately 95% of the detailed parts, dry film lubrication of the bearings and gears, and initiation of assembly of the gimbals; (2) optics: update of the detailed optical layout, receipt of nine mirrors and the pre-expander; (3) miscellaneous: delivery of draft material for the final report, completion of optical testing of the 10.6 micrometers receiver, and receipt, assembly, and checkout of NASA test console.
Long-Range (Forster) Electronic Energy Transfer: A Laboratory Experiment.
ERIC Educational Resources Information Center
Berkovic, G.
1984-01-01
An experiment which measures the steady-state fluorescence of pyrene (the donor) in the presence of varying concentrations of acridine orange (the acceptor) in ethyline glycol solutions is described. Background information, equipment needed, and procedures used are included. (JN)
Planning for Space Station Freedom laboratory payload integration
NASA Technical Reports Server (NTRS)
Willenberg, Harvey J.; Torre, Larry P.
1989-01-01
Space Station Freedom is being developed to support extensive missions involving microgravity research and applications. Requirements for on-orbit payload integration and the simultaneous payload integration of multiple mission increments will provide the stimulus to develop new streamlined integration procedures in order to take advantage of the increased capabilities offered by Freedom. The United States Laboratory and its user accommodations are described. The process of integrating users' experiments and equipment into the United States Laboratory and the Pressurized Logistics Modules is described. This process includes the strategic and tactical phases of Space Station utilization planning. The support that the Work Package 01 Utilization office will provide to the users and hardware developers, in the form of Experiment Integration Engineers, early accommodation assessments, and physical integration of experiment equipment, is described. Plans for integrated payload analytical integration are also described.
Some new tests at the Gottingen laboratory
NASA Technical Reports Server (NTRS)
1921-01-01
The tests at the Gottingen laboratory included: friction tests on a surface treated with omelette, verification tests on the M.V.A. 356 wing, and comparative tests of wing no. 36 at the Eiffel laboratory. The examination of all these experiments leads to the belief that, at large incidences, the speeds registered by the suction manometer of the testing chamber of the Eiffel laboratory wind tunnel are, owing to pressure drop, greater than the actual speeds. Therefore, the values of k(sub x) and k(sub y) measured at the Eiffel laboratory at large incidences are too low.
[The future of clinical laboratory database management system].
Kambe, M; Imidy, D; Matsubara, A; Sugimoto, Y
1999-09-01
To assess the present status of the clinical laboratory database management system, the difference between the Clinical Laboratory Information System and Clinical Laboratory System was explained in this study. Although three kinds of database management systems (DBMS) were shown including the relational model, tree model and network model, the relational model was found to be the best DBMS for the clinical laboratory database based on our experience and developments of some clinical laboratory expert systems. As a future clinical laboratory database management system, the IC card system connected to an automatic chemical analyzer was proposed for personal health data management and a microscope/video system was proposed for dynamic data management of leukocytes or bacteria.
Improving Lab Sample Management - POS/MCEARD
"Scientists face increasing challenges in managing their laboratory samples, including long-term storage of legacy samples, tracking multiple aliquots of samples for many experiments, and linking metadata to these samples. Other factors complicating sample management include the...
An Experiment on a Physical Pendulum and Steiner's Theorem
ERIC Educational Resources Information Center
Russeva, G. B.; Tsutsumanova, G. G.; Russev, S. C.
2010-01-01
Introductory physics laboratory curricula usually include experiments on the moment of inertia, the centre of gravity, the harmonic motion of a physical pendulum, and Steiner's theorem. We present a simple experiment using very low cost equipment for investigating these subjects in the general case of an asymmetrical test body. (Contains 3 figures…
Smoking and Health Experiments, Demonstrations, and Exhibits.
ERIC Educational Resources Information Center
Center for Disease Control (DHEW/PHS), Atlanta, GA.
This booklet of experiments was compiled from various teachers' guides in response to the many requests from students for help in preparing smoking demonstrations and exhibits. The booklet is divided into three sections. Part 1 illustrates a number of experiments, most of which require some laboratory equipment. Part 2 includes a number of…
Laboratory Experience in Outdoor Education. Senior Student Teaching Experience.
ERIC Educational Resources Information Center
Northern Illinois Univ., Oregon. Lorado Taft Field Campus.
This guide describes the outdoor education practicum required of student teachers at Northern Illinois University (NIU). This 5-day residential experience is held at the Lorado Taft Field Campus (branch of NIU), established in 1951 to train teachers in outdoor education. Course objectives include: (1) to help student teachers gain knowledge about…
A "Greenhouse Gas" Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert
2014-01-01
This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…
Synthesis and Characterization of Metal Complexes with Schiff Base Ligands
ERIC Educational Resources Information Center
Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.
2016-01-01
In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…
Inorganic Analyses in Water Quality Control Programs. Training Manual.
ERIC Educational Resources Information Center
Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.
This document is a lecture/laboratory manual dealing with the analysis of selected inorganic pollutants. The manual is an instructional aid for classroom presentations to those with little or no experience in the field, but having one year (or equivalent) of college level inorganic chemistry and having basic laboratory skills. Topics include:…
ERIC Educational Resources Information Center
Clausen, Thomas P.
2011-01-01
The Fisher esterification reaction is ideally suited for the undergraduate organic laboratory because it is easy to carry out and often involves a suitable introduction to basic laboratory techniques including extraction, distillation, and simple spectroscopic (IR and NMR) analyses. Here, a Fisher esterification reaction is described in which the…
Laboratory simulation of organic geochemical processes.
NASA Technical Reports Server (NTRS)
Eglinton, G.
1972-01-01
Discussion of laboratory simulations that are important to organic geochemistry in that they provide direct evidence relating to geochemical cycles involving carbon. Reviewed processes and experiments include reactions occurring in the geosphere, particularly, short-term diagenesis of biolipids and organochlorine pesticides in estuarine muds, as well as maturation of organic matter in ancient sediments.
Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project
ERIC Educational Resources Information Center
Tribe, Lorena; Barja, Beatriz C.
2004-01-01
A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…
Studies on the diagnosis and treatment of human filariasis in Rhodesia.
Goldsmid, J M; Rogers, S
1976-07-10
Experiences in Rhodesia with various recovery techniques available for the laboratory diagnosis of infections with Dipetalonema perstans and Wuchereria bancrofti are discussed. A diagnostic laboratory regimen for routine filarial investigations is suggested. Included are preliminary observations on the use of mebendazole (Vermox) for the treatment of D. perstans infections.
Outreach Plans for Storm Peak Laboratory
NASA Astrophysics Data System (ADS)
Hallar, A. G.; McCubbin, I. B.
2006-12-01
The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.
ERIC Educational Resources Information Center
Reigh, Darryel L.
1976-01-01
Describes a set of laboratory experiments that illustrate proteolytic enzyme action and specific properties of bromolain, including some insights into the active site mechanism of peptide hydrolysis. (MLH)
NASA Technical Reports Server (NTRS)
Welch, J. D.
1975-01-01
The preliminary design of an experiment for landmark recognition and tracking from the Shuttle/Advanced Technology Laboratory is described. It makes use of parallel coherent optical processing to perform correlation tests between landmarks observed passively with a telescope and previously made holographic matched filters. The experimental equipment including the optics, the low power laser, the random access file of matched filters and the electro-optical readout device are described. A real time optically excited liquid crystal device is recommended for performing the input non-coherent optical to coherent optical interface function. A development program leading to a flight experiment in 1981 is outlined.
Matrix Treatment of Ray Optics.
ERIC Educational Resources Information Center
Quon, W. Steve
1996-01-01
Describes a method to combine two learning experiences--optical physics and matrix mathematics--in a straightforward laboratory experiment that allows engineering/physics students to integrate a variety of learning insights and technical skills, including using lasers, studying refraction through thin lenses, applying concepts of matrix…
View from My Classroom: A Spectrophotometry Unit for Advanced Chemistry Students.
ERIC Educational Resources Information Center
Diehl-Jones, Susan M.
1983-01-01
Rationale, objectives, and instructional strategies for a directed study course on spectrophotometry are provided. Descriptions of three experiments and four student research projects are also provided. Objectives, laboratory procedures, advantages, and disadvantages for the experiments and projects are included. (JN)
Sociological aspects of permanent manned occupancy of space.
Bluth, B J
1981-01-01
The author examines human experiences with isolation and confined groups to determine the sociological aspects of social isolation in space. Precedent experiences include Antarctic stations, oceanographic research vessels, submarines, undersea laboratories, and space simulators. The Soviet experience with multiple-person crews on the Salyut 6 space station is explored. Sociological aspects of isolation and confinement aboard a space station include physiological stress, social and psychological stress, group size and composition, group organization, architectural programming, privacy, and work/rest scheduling.
NASA Astrophysics Data System (ADS)
Spencer, V. K.; Solie, D. J.
2010-12-01
Bush Physics for the 21st Century (BP21) is a distance education physics course offered through the Interior Aleutians Campus of the University of Alaska Fairbanks. It provides an opportunity for rural Alaskan high school and community college students, many of whom have no other access to advanced science courses, to earn university science credit. The curriculum is mathematically rigorous and includes a laboratory component to prepare students who wish to pursue science and technology careers. The laboratory component has been developed during the past 3 years. Students learn lab safety, basic laboratory technique, experiment components and group collaboration. Experiments have place-based themes and involve skills that translate to rural Alaska when possible. Preliminary data on the general effectiveness of the labs have been analyzed and used to improve the course.
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…
ERIC Educational Resources Information Center
John, E.
1975-01-01
Describes a variety of laboratory experiments including carbon dioxide reduction, animal respiration, atmospheric pressure determination, and others, that can be performed using discarded syringes. (GS)
NASA Astrophysics Data System (ADS)
Schulman, Kathleen M.
This study fills a gap in the research literature regarding the types of instructional support provided by instructors in online introductory chemistry laboratory courses that employ chemistry simulations as laboratory exercises. It also provides information regarding students' perceptions of the effectiveness of that instructional support. A multiple case study methodology was used to carry out the research. Two online introductory chemistry courses were studied at two community colleges. Data for this study was collected using phone interviews with faculty and student participants, surveys completed by students, and direct observation of the instructional designs of instructional support in the online Blackboard web sites and the chemistry simulations used by the participating institutions. The results indicated that the instructors provided multiple types of instructional support that correlated with forms of effective instructional support identified in the research literature, such as timely detailed feedback, detailed instructions for the laboratory experiments, and consistency in the instructional design of lecture and laboratory course materials, including the chemistry lab simulation environment. The students in one of these courses identified the following as the most effective types of instructional support provided: the instructor's feedback, opportunities to apply chemistry knowledge in the chemistry lab exercises, detailed procedures for the simulated laboratory exercises, the organization of the course Blackboard sites and the chemistry lab simulation web sites, and the textbook homework web sites. Students also identified components of instructional support they felt were missing. These included a desire for more interaction with the instructor, more support for the simulated laboratory exercises from the instructor and the developer of the chemistry simulations, and faster help with questions about the laboratory exercises or experimental calculations. Students believed that having this additional instructional support would lead to increased understanding of the laboratory exercises, allowing them to complete them with less difficulty, and giving them increased access to the instructor. Recommendations for the instructors of these two courses include: increased participation in the online course environment, increased emphasis on laboratory safety, and increased emphasis on the differences between simulated and real life chemistry laboratory experiments.
NASA Astrophysics Data System (ADS)
Newcomb, D. E.; McKeen, R. G.
1983-12-01
This report documents over 2 years of research efforts to characterize asphalt-rubber mixtures to be used in Stress-Absorbing Membrane Interlayers (SAMI). The purpose of these SAMIs is to retard or prevent reflection cracking in asphalt-concrete overlays. Several laboratory experiments and one field trial were conducted to define significant test methods and parameters for incorporation into construction design and specification documents. Test methods used in this study included a modified softening point test, force-ductility, and Schweyer viscosity. Variables investigated included (1) Laboratory-mixing temperature; (2) Rubber type; (3) Laboratory storage time; (4) Laboratory storage condition; (5) Laboratory batch replication; (6) Laboratory mixing time; (7) Field mixing time; (8) Laboratory test temperature; (9) Force-Ductility elongation rates; and (10) Asphalt grade. It was found that mixing temperature, mixing time, rubber type, and asphalt grade all have significant effects upon the behavior of asphalt-rubber mixtures. Significant variability was also noticed in different laboratory batch replications. Varying laboratory test temperature and force-ductility elongation rate revealed further differences in asphalt-rubber mixtures.
Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences
NASA Astrophysics Data System (ADS)
Barrett, D.
2005-12-01
The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences to the scientific community and interviews/classroom observations of teachers to determine the transfer of knowledge from the teacher to the students through the implementation of their Action Plans into their classroom.
Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kress, R.L.; Jansen, J.F.; Love, L.J.
1996-09-01
To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators,more » hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.« less
A new approach to electrophoresis in space
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.
1990-01-01
Previous electrophoresis experiments performed in space are reviewed. There is sufficient data available from the results of these experiments to show that they were designed with incomplete knowledge of the fluid dynamics of the process including electrohydrodynamics. Redesigning laboratory chambers and operating procedures developed on Earth for space without understanding both the advantages and disadvantages of the microgravity environment has yielded poor separations of both cells and proteins. However, electrophoreris is still an important separation tool in the laboratory and thermal convection does limit its performance. Thus, there is a justification for electrophoresis but the emphasis of future space experiments must be directed toward basic research with model experiments to understand the microgravity environment and fluid analysis to test the basic principles of the process.
Solute and heat transport model of the Henry and Hilleke laboratory experiment
Langevin, C.D.; Dausman, A.M.; Sukop, M.C.
2010-01-01
SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.
How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning
NASA Astrophysics Data System (ADS)
Raviv, Ayala; Cohen, Sarit; Aflalo, Ester
2017-07-01
Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.
EDITORIAL: Interrelationship between plasma phenomena in the laboratory and in space
NASA Astrophysics Data System (ADS)
Koepke, Mark
2008-07-01
The premise of investigating basic plasma phenomena relevant to space is that an alliance exists between both basic plasma physicists, using theory, computer modelling and laboratory experiments, and space science experimenters, using different instruments, either flown on different spacecraft in various orbits or stationed on the ground. The intent of this special issue on interrelated phenomena in laboratory and space plasmas is to promote the interpretation of scientific results in a broader context by sharing data, methods, knowledge, perspectives, and reasoning within this alliance. The desired outcomes are practical theories, predictive models, and credible interpretations based on the findings and expertise available. Laboratory-experiment papers that explicitly address a specific space mission or a specific manifestation of a space-plasma phenomenon, space-observation papers that explicitly address a specific laboratory experiment or a specific laboratory result, and theory or modelling papers that explicitly address a connection between both laboratory and space investigations were encouraged. Attention was given to the utility of the references for readers who seek further background, examples, and details. With the advent of instrumented spacecraft, the observation of waves (fluctuations), wind (flows), and weather (dynamics) in space plasmas was approached within the framework provided by theory with intuition provided by the laboratory experiments. Ideas on parallel electric field, magnetic topology, inhomogeneity, and anisotropy have been refined substantially by laboratory experiments. Satellite and rocket observations, theory and simulations, and laboratory experiments have contributed to the revelation of a complex set of processes affecting the accelerations of electrons and ions in the geospace plasma. The processes range from meso-scale of several thousands of kilometers to micro-scale of a few meters to kilometers. Papers included in this special issue serve to synthesise our current understanding of processes related to the coupling and feedback at disparate scales. Categories of topics included here are (1) ionospheric physics and (2) Alfvén-wave physics, both of which are related to the particle acceleration responsible for auroral displays, (3) whistler-mode triggering mechanism, which is relevant to radiation-belt dynamics, (4) plasmoid encountering a barrier, which has applications throughout the realm of space and astrophysical plasmas, and (5) laboratory investigations of the entire magnetosphere or the plasma surrounding the magnetosphere. The papers are ordered from processes that take place nearest the Earth to processes that take place at increasing distances from Earth. Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modeling and/or laboratory experiments. Observations from space-borne instruments are typically interpreted using theoretical models developed to predict the properties and dynamics of space and astrophysical plasmas. The usefulness of customized laboratory experiments for providing confirmation of theory by identifying, isolating, and studying physical phenomena efficiently, quickly, and economically has been demonstrated in the past. The benefits of laboratory experiments to investigating space-plasma physics are their reproducibility, controllability, diagnosability, reconfigurability, and affordability compared to a satellite mission or rocket campaign. Certainly, the plasma being investigated in a laboratory device is quite different from that being measured by a spaceborne instrument; nevertheless, laboratory experiments discover unexpected phenomena, benchmark theoretical models, develop physical insight, establish observational signatures, and pioneer diagnostic techniques. Explicit reference to such beneficial laboratory contributions is occasionally left out of the citations in the space-physics literature in favor of theory-paper counterparts and, thus, the scientific support that laboratory results can provide to the development of space-relevant theoretical models is often under-recognized. It is unrealistic to expect the dimensional parameters corresponding to space plasma to be matchable in the laboratory. However, a laboratory experiment is considered well designed if the subset of parameters relevant to a specific process shares the same phenomenological regime as the subset of analogous space parameters, even if less important parameters are mismatched. Regime boundaries are assigned by normalizing a dimensional parameter to an appropriate reference or scale value to make it dimensionless and noting the values at which transitions occur in the physical behavior or approximations. An example of matching regimes for cold-plasma waves is finding a 45° diagonal line on the log--log CMA diagram along which lie both a laboratory-observed wave and a space-observed wave. In such a circumstance, a space plasma and a lab plasma will support the same kind of modes if the dimensionless parameters are scaled properly (Bellan 2006 Fundamentals of Plasma Physics (Cambridge: Cambridge University Press) p 227). The plasma source, configuration geometry, and boundary conditions associated with a specific laboratory experiment are characteristic elements that affect the plasma and plasma processes that are being investigated. Space plasma is not exempt from an analogous set of constraining factors that likewise influence the phenomena that occur. Typically, each morphologically distinct region of space has associated with it plasma that is unique by virtue of the various mechanisms responsible for the plasma's presence there, as if the plasma were produced by a unique source. Boundary effects that typically constrain the possible parameter values to lie within one or more restricted ranges are inescapable in laboratory plasma. The goal of a laboratory experiment is to examine the relevant physics within these ranges and extrapolate the results to space conditions that may or may not be subject to any restrictions on the values of the plasma parameters. The interrelationship between laboratory and space plasma experiments has been cultivated at a low level and the potential scientific benefit in this area has yet to be realized. The few but excellent examples of joint papers, joint experiments, and directly relevant cross-disciplinary citations are a direct result of the emphasis placed on this interrelationship two decades ago. Building on this special issue Plasma Physics and Controlled Fusion plans to create a dedicated webpage to highlight papers directly relevant to this field published either in the recent past or in the future. It is hoped that this resource will appeal to the readership in the laboratory-experiment and space-plasma communities and improve the cross-fertilization between them.
Artist concept drawings of STS-47 and STS-50 Spacelab (SL) experiments
NASA Technical Reports Server (NTRS)
1992-01-01
Artist concept drawings of STS-47 Endeavour, Orbiter Vehicle 105, Spacelab Japan (SL-J) and STS-50 Columbia, Orbiter Vehicle (OV) 102, United States Microgravity Laboratory 1 (USML-1) experiments include glovebox (41097) and lower body negative pressure (LBNP) device (41098).
Amperometric Determination of Glucose at Parts per Million Levels with Immobilized Glucose Oxidase.
ERIC Educational Resources Information Center
Sittampalam, G.; Wilson, G. S.
1982-01-01
An experiment on the operation and utility of an amperometric immobilized enzyme electrode (or probe) is described, including advantages of the experiment, equipment, reagents, preparation of phosphate buffer, enzyme immobilization techniques, laboratory procedures, precautions, and discussion of experimental results. (SK)
Base-Catalyzed Linkage Isomerization: An Undergraduate Inorganic Kinetics Experiment.
ERIC Educational Resources Information Center
Jackson, W. G.; And Others
1981-01-01
Describes kinetics experiments completed in a single two-hour laboratory period at 25 degrees Centigrade of nitrito to nitro rearrangement, based on the recently discovered base-catalysis path. Includes information on synthesis and characterization of linkage isomers, spectrophotometric techniques, and experimental procedures. (SK)
Experiential Exposure to the Pharmacy Profession as a Minority Recruitment Tool.
ERIC Educational Resources Information Center
Walker, Paul C.
1988-01-01
Student attitudes, perceptions, and achievement motivation were assessed before and after participation in a nine-month series of professional experiences, including community and hospital practice experience with minority pharmacists, basic science laboratory exposure and career development counseling. Experiential exposure significantly improved…
Designing Effective Undergraduate Research Experiences
NASA Astrophysics Data System (ADS)
Severson, S.
2010-12-01
I present a model for designing student research internships that is informed by the best practices of the Center for Adaptive Optics (CfAO) Professional Development Program. The dual strands of the CfAO education program include: the preparation of early-career scientists and engineers in effective teaching; and changing the learning experiences of students (e.g., undergraduate interns) through inquiry-based "teaching laboratories." This paper will focus on the carry-over of these ideas into the design of laboratory research internships such as the CfAO Mainland internship program as well as NSF REU (Research Experiences for Undergraduates) and senior-thesis or "capstone" research programs. Key ideas in maximizing student learning outcomes and generating productive research during internships include: defining explicit content, scientific process, and attitudinal goals for the project; assessment of student prior knowledge and experience, then following up with formative assessment throughout the project; setting reasonable goals with timetables and addressing motivation; and giving students ownership of the research by implementing aspects of the inquiry process within the internship.
Laboratory experiments in the study of the chemistry of the outer planets.
Scattergood, T W
1987-01-01
The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.
ERIC Educational Resources Information Center
Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto
2010-01-01
This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…
Making Comparisons: Ratios. Topical Module for Use in a Mathematics Laboratory Setting.
ERIC Educational Resources Information Center
Andersen, Lyle; And Others
The objectives of this module on making comparisons and ratios include using ratios to compare sets of objects and expressing ratios as decimals or fractions in lowest terms. The module provides six experiments. An envelope of manipulatives accompanies each of the first three experiments. The fourth experiment requires a multispeed bicycle. The…
Computer Programs for Chemistry Experiments I and II.
ERIC Educational Resources Information Center
Reynard, Dale C.
This unit of instruction includes nine laboratory experiments. All of the experiments are from the D.C. Health Revision of the Chemical Education Materials Study (CHEMS) with one exception. Program six is the lab from the original version of the CHEMS program. Each program consists of three parts (1) the lab and computer hints, (2) the description…
ERIC Educational Resources Information Center
Peterlin, Primoz
2010-01-01
Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…
ERIC Educational Resources Information Center
Herga, Nataša Rizman; Cagran, Branka; Dinevski, Dejan
2016-01-01
Understanding chemistry includes the ability to think on three levels: the macroscopic level, the symbolic level, and the level of particles--sub-microscopic level. Pupils have the most difficulty when trying to understand the sub-microscopic level because it is outside their range of experience. A virtual laboratory enables a simultaneous…
APL - North Pacific Acoustic Laboratory
2011-09-01
including marine mammals ) measurements in the NE Pacific Ocean. The Laboratory consists of the legacy SOSUS hydrophone receiver network in the...exposure in the marine environment. Philippine Sea- Ambient noise levels measured during the 2010-2011 Philippine Sea experiment on the Scripps...sound speed perturbations and the characteristics of the ambient acoustic noise field. Scattering and diffraction resulting from internal waves and
ERIC Educational Resources Information Center
Soares, Cristina; Correia, Manuela; Delerue-Matos, Cristina; Barroso, M. Fátima
2017-01-01
This paper reports a laboratorial internship included in the Portuguese Science and Technology promotion program "Internships for Young People in Laboratories (Ciência Viva no Laboratório)", which provided high school students an opportunity to approach the reality of scientific and technological research in a higher education…
ERIC Educational Resources Information Center
Hollenbeck, Jessica J.; Wixson, Emily N.; Geske, Grant D.; Dodge, Matthew W.; Tseng, T. Andrew; Clauss, Allen D.; Blackwell, Helen E.
2006-01-01
The transformation of 346 chemistry courses into a training experience that could provide undergraduate students with a skill set essential for a research-based chemistry career is presented. The course has an innovative structure that connects undergraduate students with graduate research labs at the semester midpoint and also includes new,…
Space plasma physics at the Applied Physics Laboratory over the past half-century
NASA Technical Reports Server (NTRS)
Potemra, Thomas A.
1992-01-01
An overview is given of space-plasma experiments conducted at the Applied Physics Laboratory (APL) at Johns Hopkins University including observational campaigns and the instrumentation developed. Specific space-plasma experiments discussed include the study of the radiation environment in the Van Allen radiation belt with solid-state proton detectors. Also described are the 5E-1 satellites which acquired particle and magnetic-field data from earth orbit. The Triad satellite and its magnetometer system were developed for high-resolution studies of the earth's magnetic field, and APL contributions to NASA's Interplanetary Monitoring Platforms are listed. The review mentions the International Ultraviolet Explorer, the Atmosphere Explorer mission, and the Active Magnetic Particle Tracer Explorers mission. Other recent programs reviewed include a high-latitude satellite, contributions to the Voyager mission, and radar studies of space plasmas.
NASA Astrophysics Data System (ADS)
Krystyniak, Rebecca A.
2001-12-01
This study explored the effect of participation by second-semester general chemistry students in an extended open-inquiry laboratory investigation on their use of science process skills and confidence in performing specific aspects of laboratory investigations. In addition, verbal interactions of a student lab team among team members and with their instructor over three open-inquiry laboratory sessions and two non-inquiry sessions were investigated. Instruments included the Test of Integrated Skills (TIPS), a 36-item multiple-choice instrument, and the Chemistry Laboratory Survey (CLS), a researcher co-designed 20-item 8-point instrument. Instruments were administered at the beginning and close of the semester to 157 second-semester general chemistry students at the two universities; students at only one university participated in open-inquiry activity. A MANCOVA was performed to investigate relationships among control and experimental students, TIPS, and CLS post-test scores. Covariates were TIPS and CLS pre-test scores and prior high school and college science experience. No significant relationships were found. Wilcoxen analyses indicated both groups showed increase in confidence; experimental-group students with below-average TIPS pre-test scores showed a significant increase in science process skills. Transcribed audio tapes of all laboratory-based verbal interactions were analyzed. Coding categories, developed using the constant comparison method, led to an inter-rater reliability of .96. During open-inquiry activities, the lab team interacted less often, sought less guidance from their instructor, and talked less about chemistry concepts than during non-inquiry activities. Evidence confirmed that students used science process skills and engaged in higher-order thinking during both types of activities. A four-student focus shared their experiences with open-inquiry activities, indicating that they enjoyed the experience, viewed it as worthwhile, and believed it helped them gain understanding of the nature of chemistry research. Research results indicate that participation in open-inquiry laboratory increases student confidence and, for some students, the ability to use science process skills. Evidence documents differences in student laboratory interactions and behavior that are attributable to the type of laboratory experience. Further research into aspects of open-inquiry laboratory experiences is recommended.
Shrink-film microfluidic education modules: Complete devices within minutes
Nguyen, Diep; McLane, Jolie; Lew, Valerie; Pegan, Jonathan; Khine, Michelle
2011-01-01
As advances in microfluidics continue to make contributions to diagnostics and life sciences, broader awareness of this expanding field becomes necessary. By leveraging low-cost microfabrication techniques that require no capital equipment or infrastructure, simple, accessible, and effective educational modules can be made available for a broad range of educational needs from middle school demonstrations to college laboratory classes. These modules demonstrate key microfluidic concepts such as diffusion and separation as well as “laboratory on-chip” applications including chemical reactions and biological assays. These modules are intended to provide an interdisciplinary hands-on experience, including chip design, fabrication of functional devices, and experiments at the microscale. Consequently, students will be able to conceptualize physics at small scales, gain experience in computer-aided design and microfabrication, and perform experiments—all in the context of addressing real-world challenges by making their own lab-on-chip devices. PMID:21799715
Using the tritium plasma experiment to evaluate ITER PFC safety
NASA Astrophysics Data System (ADS)
Longhurst, Glen R.; Anderl, Robert A.; Bartlit, John R.; Causey, Rion A.; Haines, John R.
1993-06-01
The Tritium Plasma Experiment was assembled at Sandia National Laboratories, Livermore and is being moved to the Tritium Systems Test Assembly facility at Los Alamos National Laboratory to investigate interactions between dense plasmas at low energies and plasma-facing component materials. This apparatus has the unique capabilty of replicating plasma conditions in a tokamak divertor with particle flux densities of 2 × 1023 ions/m2.s and a plasma temperature of about 15 eV using a plasma that includes tritium. An experimental program has been initiated using the Tritium Plasma Experiment to examine safety issues related to tritium in plasma-facing components, particularly the ITER divertor. Those issues include tritium retention and release characteristics, tritium permeation rates and transient times to coolant streams, surface modification and erosion by the plasma, the effects of thermal loads and cycling, and particulate production. An industrial consortium led by McDonnell Douglas will design and fabricate the test fixtures.
Quiroga, Maria del Mar; Price, Nicholas SC
2016-01-01
Lecture content and practical laboratory classes are ideally complementary. However, the types of experiments that have led to our detailed understanding of sensory neuroscience are often not amenable to classroom experimentation as they require expensive equipment, time-consuming surgeries, specialized experimental techniques, and the use of animals. While sometimes feasible in small group teaching, these experiments are not suitable for large cohorts of students. Previous attempts to expose students to sensory neuroscience experiments include: the use of electrophysiology preparations in invertebrates, data-driven simulations that do not replicate the experience of conducting an experiment, or simply observing an experiment in a research laboratory. We developed an online simulation of a visual neuroscience experiment in which extracellular recordings are made from a motion sensitive neuron. Students have control over stimulation parameters (direction and contrast) and can see and hear the action potential responses to stimuli as they are presented. The simulation provides an intuitive way for students to gain insight into neurophysiology, including experimental design, data collection and data analysis. Our simulation allows large cohorts of students to cost-effectively “experience” the results of animal research without ethical concerns, to be exposed to realistic data variability, and to develop their understanding of how sensory neuroscience experiments are conducted. PMID:27980465
Proceedings of the Symposium Teaching Cardiovascular Physiology Outside the Lecture Hall.
ERIC Educational Resources Information Center
Michael, Joel A.; Rovick, Allen A., Eds.
1983-01-01
Provided are 10 papers presented during a symposium on teaching cardiovascular physiology outside the lecture hall. Topics addressed include a mechanical model of the cardiovascular system for effective teaching, separate course for experiments in cardiovascular physiology, selective laboratory (alternative to cookbook experiments), cardiovascular…
A Practical and Convenient Diffusion Apparatus: An Undergraduate Physical Chemistry Experiment.
ERIC Educational Resources Information Center
Clifford, Ben; Ochiai, E. I.
1980-01-01
Described is a diffusion apparatus to be used in an undergraduate physical chemistry laboratory experiment to determine the diffusion coefficients of aqueous solutions of sucrose and potassium dichromate. Included is the principle of the method, apparatus design and description, and experimental procedure. (Author/DS)
Laboratory Experiments with Okapi: Participation in the TREC Programme.
ERIC Educational Resources Information Center
Robertson, S. E.; And Others
1997-01-01
Summarizes the development of information retrieval evaluation ideas, describes the design of the TREC (Text Retrieval Conference) experiments, and discusses the Okapi team's participation in TREC. Highlights include the Cranfield projects that tested the principles of information retrieval system design, test collections, weighting functions,…
ERIC Educational Resources Information Center
Foster, N.; And Others
1985-01-01
Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)
The Wisconsin Plasma Astrophysics Laboratory
NASA Astrophysics Data System (ADS)
Forest, C. B.; Flanagan, K.; Brookhart, M.; Clark, M.; Cooper, C. M.; Désangles, V.; Egedal, J.; Endrizzi, D.; Khalzov, I. V.; Li, H.; Miesch, M.; Milhone, J.; Nornberg, M.; Olson, J.; Peterson, E.; Roesler, F.; Schekochihin, A.; Schmitz, O.; Siller, R.; Spitkovsky, A.; Stemo, A.; Wallace, J.; Weisberg, D.; Zweibel, E.
2015-10-01
> provide an ideal testbed for a range of astrophysical experiments, including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds and more. This article describes the capabilities of WiPAL, along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.
ERIC Educational Resources Information Center
Pinkney, J. N.; And Others
1976-01-01
Describes eleven laboratory experiments, including the catalytic effect of copper in zinc-acid reaction; a study of the rate of polymerization of some aldehydes; and a demonstration automatic potentiometric titrator. (MLH)
Between Industry and Academia: A Physicist's Experiences at The Aerospace Corporation
NASA Astrophysics Data System (ADS)
Camparo, James
2005-03-01
The Aerospace Corporation is a nonprofit company whose purposes are exclusively scientific: to provide research, development, and advisory services for space programs that serve the national interest, primarily the Air Force's Space and Missile Systems Center and the National Reconnaissance Office. The corporation's laboratory has a staff of about 150 scientists who conduct research in fields ranging from Space Sciences to Material Sciences and from Analytical Chemistry to Atomic Physics. As a consequence, Aerospace stands midway between an industrial research laboratory, focused on product development, and academic/national laboratories focused on basic science. Drawing from Dr. Camparo's personal experiences, the presentation will discuss advantages and disadvantages of a career at Aerospace, including the role of publishing in peer-reviewed journals and the impact of work on family life. Additionally, the presentation will consider the balance between basic physics, applied physics, and engineering in the work at Aerospace. Since joining Aerospace in 1981, Dr. Camparo has worked as an atomic physicist specializing in the area of atomic clocks, and has had the opportunity to experiment and publish on a broad range of research topics including: the stochastic-field/atom interaction, radiation effects on semiconductor materials, and stellar scintillation.
Selecting automation for the clinical chemistry laboratory.
Melanson, Stacy E F; Lindeman, Neal I; Jarolim, Petr
2007-07-01
Laboratory automation proposes to improve the quality and efficiency of laboratory operations, and may provide a solution to the quality demands and staff shortages faced by today's clinical laboratories. Several vendors offer automation systems in the United States, with both subtle and obvious differences. Arriving at a decision to automate, and the ensuing evaluation of available products, can be time-consuming and challenging. Although considerable discussion concerning the decision to automate has been published, relatively little attention has been paid to the process of evaluating and selecting automation systems. To outline a process for evaluating and selecting automation systems as a reference for laboratories contemplating laboratory automation. Our Clinical Chemistry Laboratory staff recently evaluated all major laboratory automation systems in the United States, with their respective chemistry and immunochemistry analyzers. Our experience is described and organized according to the selection process, the important considerations in clinical chemistry automation, decisions and implementation, and we give conclusions pertaining to this experience. Including the formation of a committee, workflow analysis, submitting a request for proposal, site visits, and making a final decision, the process of selecting chemistry automation took approximately 14 months. We outline important considerations in automation design, preanalytical processing, analyzer selection, postanalytical storage, and data management. Selecting clinical chemistry laboratory automation is a complex, time-consuming process. Laboratories considering laboratory automation may benefit from the concise overview and narrative and tabular suggestions provided.
Making the Nanoworld Accessible: Nanoscience Education Using Scanning Probe Methods
NASA Astrophysics Data System (ADS)
Knorr, Daniel; Killgore, Jason; Gray, Tomoko; Ginger, David; Wei, Joseph; Chen, Yeechi; Sarikaya, Mehmet; Fong, Hanson; Griffith, Tom; Overney, Rene
2008-03-01
A partnership between researchers and educators at the University of Washington, North Seattle Community College and two companies, Nanosurf, AG and nanoScience Instruments has been forged to develop a nationally replicable model of a sustainable and up-to-date undergraduate teaching laboratory of scanning probe microscopy (SPM) methods applied to nanoscience and nanotechnology. Within this partnership a new paradigm of operating and maintaining a SPM laboratory has been developed that provides a truly hands-on experience in a classroom laboratory setting with a small student to instrument ratio involving a variety of SPM techniques and topics. To date, we have run a first successful undergraduate laboratory workshop, where students were able to have extensive hands-on experience on five SPM modes of operation including: electrostatic force microscopy involving photovoltaic polymeric materials, tunneling microscopy and the determination of the workfunction, and nanolithography using the dip-pen method. http://depts.washington.edu/nanolab/NUE/UNIQUE/NUE/UNIQUE.htm
Magnetic turbulence in a table-top laser-plasma relevant to astrophysical scenarios
NASA Astrophysics Data System (ADS)
Chatterjee, Gourab; Schoeffler, Kevin M.; Kumar Singh, Prashant; Adak, Amitava; Lad, Amit D.; Sengupta, Sudip; Kaw, Predhiman; Silva, Luis O.; Das, Amita; Kumar, G. Ravindra
2017-06-01
Turbulent magnetic fields abound in nature, pervading astrophysical, solar, terrestrial and laboratory plasmas. Understanding the ubiquity of magnetic turbulence and its role in the universe is an outstanding scientific challenge. Here, we report on the transition of magnetic turbulence from an initially electron-driven regime to one dominated by ion-magnetization in a laboratory plasma produced by an intense, table-top laser. Our observations at the magnetized ion scale of the saturated turbulent spectrum bear a striking resemblance with spacecraft measurements of the solar wind magnetic-field spectrum, including the emergence of a spectral kink. Despite originating from diverse energy injection sources (namely, electrons in the laboratory experiment and ion free-energy sources in the solar wind), the turbulent spectra exhibit remarkable parallels. This demonstrates the independence of turbulent spectral properties from the driving source of the turbulence and highlights the potential of small-scale, table-top laboratory experiments for investigating turbulence in astrophysical environments.
Framework for leadership and training of Biosafety Level 4 laboratory workers.
Le Duc, James W; Anderson, Kevin; Bloom, Marshall E; Estep, James E; Feldmann, Heinz; Geisbert, Joan B; Geisbert, Thomas W; Hensley, Lisa; Holbrook, Michael; Jahrling, Peter B; Ksiazek, Thomas G; Korch, George; Patterson, Jean; Skvorak, John P; Weingartl, Hana
2008-11-01
Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person's independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed.
Framework for Leadership and Training of Biosafety Level 4 Laboratory Workers
Anderson, Kevin; Bloom, Marshall E.; Estep, James E.; Feldmann, Heinz; Geisbert, Joan B.; Geisbert, Thomas W.; Hensley, Lisa; Holbrook, Michael; Jahrling, Peter B.; Ksiazek, Thomas G.; Korch, George; Patterson, Jean; Skvorak, John P.; Weingartl, Hana
2008-01-01
Construction of several new Biosafety Level 4 (BSL-4) laboratories and expansion of existing operations have created an increased international demand for well-trained staff and facility leaders. Directors of most North American BSL-4 laboratories met and agreed upon a framework for leadership and training of biocontainment research and operations staff. They agreed on essential preparation and training that includes theoretical consideration of biocontainment principles, practical hands-on training, and mentored on-the-job experiences relevant to positional responsibilities as essential preparation before a person’s independent access to a BSL-4 facility. They also agreed that the BSL-4 laboratory director is the key person most responsible for ensuring that staff members are appropriately prepared for BSL-4 operations. Although standardized certification of training does not formally exist, the directors agreed that facility-specific, time-limited documentation to recognize specific skills and experiences of trained persons is needed. PMID:18976549
A Research-Based Science Teacher Education Program for a Competitive Tomorrow
NASA Astrophysics Data System (ADS)
Clary, R. M.; Hamil, B.; Beard, D. J.; Chevalier, D.; Dunne, J.; Saebo, S.
2009-12-01
A united commitment between the College of Education and the College of Arts and Sciences at Mississippi State University, in partnership with local high-need school districts, has the goal of increasing the number of highly qualified science teachers through authentic science research experiences. The departments of Geosciences, Biological Sciences, Chemistry, and Physics offer undergraduate pre-service teachers laboratory experiences in science research laboratories, including 1) paleontological investigations of Cretaceous environments, 2) NMR studies of the conformation of tachykinin peptides, 3) FHA domains as regulators of cell signaling in plants, 4) intermediate energy nuclear physics studies, and 5) computational studies of cyclic ketene acetals. Coordinated by the Department of Curriculum and Instruction, these research experiences involve extensive laboratory training in which the pre-teacher participants matriculate through a superior education curriculum prior to administrating their individual classrooms. Participants gain valuable experience in 1) performing literature searches and reviews; 2) planning research projects; 3) recording data; 4) presenting laboratory results effectively; and 5) writing professional scientific manuscripts. The research experience is available to pre-service teachers who are science education majors with a declared second major in a science (i.e., geology, biology, physics, or chemistry). Students are employed part-time in various science university laboratories, with work schedules arranged around their individual course loads. While the focus of this endeavor is upon undergraduate pre-service teachers, the researchers also target practicing science teachers from the local high-need school districts. A summer workshop provides practicing science teachers with a summative laboratory experience in several scientific disciplines. Practicing teachers also are provided lesson plans and ideas to transform their classrooms into active-learning environments which focus upon authentic research. Although in its first year, this program has resulted in several requests from workshop participants for additional information and researcher engagement for individual classrooms. The pre-service teachers are highly engaged, and some participants have presented research at peer-reviewed professional conferences. The goals for the enrolled pre-service and practicing teachers include the development of critical thinking problem-solving skills, and an increase in motivation and excitement for science teaching. The extensive science research background and enthusiasm should translate directly into Mississippi’s high-need science classrooms, and increase the number of K-12 students interested in STEM education as a major.
Experiment definition phase shuttle laboratory LDRL-10.6 experiment
NASA Technical Reports Server (NTRS)
1975-01-01
This report for the Experiment Definition Phase of the Shuttle Laboratory LDRL 10.6 Micrometer Experiment covers period 27 June through 26 September 1975. Activities during the fifth quarter included: (1) reevaluation of system obscuration ratio with a subsequent reduction of this ratio from 0.417 to 0.362, (2) completion of detail drawings for the 6X pre-expander, (3) completion of detail drawings for the nine mirrors that comprise pointing and tracking optomechanical subsystem, (4) continuation of detailing of mechanical portions of CMSS and modifications to accommodate new obscuration ratio, (5) qualitative operation of the optomechanical subsystem of the 10.6 um receiver achieved under experiment measurement task; receiver fully integrated and operation demonstrated over a 10 km experimental link, and (6) data collection task initiated to begin preparation of link analysis volumes.
The Point-of-Care Laboratory in Clinical Microbiology
Michel-Lepage, Audrey; Boyer, Sylvie; Raoult, Didier
2016-01-01
SUMMARY Point-of-care (POC) laboratories that deliver rapid diagnoses of infectious diseases were invented to balance the centralization of core laboratories. POC laboratories operate 24 h a day and 7 days a week to provide diagnoses within 2 h, largely based on immunochromatography and real-time PCR tests. In our experience, these tests are conveniently combined into syndrome-based kits that facilitate sampling, including self-sampling and test operations, as POC laboratories can be operated by trained operators who are not necessarily biologists. POC laboratories are a way of easily providing clinical microbiology testing for populations distant from laboratories in developing and developed countries and on ships. Modern Internet connections enable support from core laboratories. The cost-effectiveness of POC laboratories has been established for the rapid diagnosis of tuberculosis and sexually transmitted infections in both developed and developing countries. PMID:27029593
Bridging simulations and experiment in shock and ramp induced phenomena
NASA Astrophysics Data System (ADS)
Flicker, Dawn
2014-03-01
The high pressure materials physics program at Sandia's Z facility includes strong collaboration between theory, simulations and experiments. This multi-disciplinary approach has led to new insights in many cases. Several examples will be discussed to illustrate the benefits of bridging simulations and experiments. Results will be chosen from recent work on the xenon equation of state, phase change in MgO, shock induced chemistry in CO2 and tantalum strength. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
X-Ray Spectroscopic Laboratory Experiments in Support of the X-Ray Astronomy Program
NASA Technical Reports Server (NTRS)
Kahn, Steven M.
1997-01-01
Our program is to perform a series of laboratory investigations designed to resolved significant atomic physics uncertainties that limit the interpretation of cosmic X-ray spectra. Specific goals include a quantitative characterization of Fe L-shell spectra; the development of new techniques to simulate Maxwellian plasmas using an Electron Beam Ion Trap (EBIT); and the measurement of dielectronic recombination rates for photoionized gas. New atomic calculations have also been carried out in parallel with the laboratory investigations.
NASA Astrophysics Data System (ADS)
Supalo, Cary Alan
2010-11-01
Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all of the participating students, but each of the types of data sets provided evidence of benefit for varying subgroups of participants. It is the expectation of the ILAB team that continuing to implement adaptive/assistive technologies for BLV students in science laboratory classrooms will foster enhanced opportunities in science classes and professions.
ERIC Educational Resources Information Center
Wulfson, Stephen, Ed.
1987-01-01
Provides a review of four science software programs. Includes topics such as plate tectonics, laboratory experiment simulations, the human body, and light and temperature. Contains information on ordering and reviewers' comments. (ML)
Educating Laboratory Science Learners at a Distance Using Interactive Television
ERIC Educational Resources Information Center
Reddy, Christopher
2014-01-01
Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…
NASA Astrophysics Data System (ADS)
Langenkämper, A.; Defay, X.; Ferreiro Iachellini, N.; Kinast, A.; Lanfranchi, J.-C.; Lindner, E.; Mancuso, M.; Mondragón, E.; Münster, A.; Ortmann, T.; Potzel, W.; Schönert, S.; Strauss, R.; Ulrich, A.; Wawoczny, S.; Willers, M.
2018-04-01
The Physics Department of the Technical University of Munich operates a shallow underground detector laboratory in Garching, Germany. It provides ˜ 160 {m^2} of laboratory space which is shielded from cosmic radiation by ˜ 6 m of gravel and soil, corresponding to a shielding of ˜ 15 {m.w.e.} . The laboratory also houses a cleanroom equipped with work- and wetbenches, a chemical fumehood as well as a spin-coater and a mask-aligner for photolithographic processing of semiconductor detectors. Furthermore, the shallow underground laboratory runs two high-purity germanium detector screening stations, a liquid argon cryostat and a ^3 He-^4 He dilution refrigerator with a base temperature of ≤ 12-14 mK . The infrastructure provided by the shallow laboratory is particularly relevant for the characterization of CaWO_4 target crystals for the CRESST-III experiment, detector fabrication and assembly for rare event searches. Future applications of the laboratory include detector development in the framework of coherent neutrino nucleus scattering experiments (ν -cleus) and studying its potential as a site to search for MeV-scale dark matter with gram-scale cryogenic detectors.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. - The crystals visible in this laboratory dish were part of an experiment carried on mission STS-107. Several experiments were found during the search for Columbia debris. Included in the Commercial ITA Biomedical Experiments payload on mission STS-107 are urokinase cancer research, microencapsulation of drugs, the Growth of Bacterial Biofilm on Surfaces during Spaceflight (GOBBSS), and tin crystal formation.
The Laser Communications Relay Demonstration Experiment Program
NASA Technical Reports Server (NTRS)
Israel, Dave
2017-01-01
This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASAs Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.
The Laser Communications Relay Demonstration Experiment Program
NASA Technical Reports Server (NTRS)
Israel, David J.; Edwards, Bernard L.; Moores, John D.; Piazzolla, Sabino; Merritt, Scott
2017-01-01
This paper elaborates on the Laser Communications Relay Demonstration (LCRD) Experiment Program, which will engage in a number of pre-determined experiments and also call upon a wide variety of experimenters to test new laser communications technology and techniques, and to gather valuable data. LCRD is a joint project between NASA's Goddard Space Flight Center (GSFC), the Jet Propulsion Laboratory (JPL), and the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL). LCRD will test the functionality in various settings and scenarios of optical communications links from a GEO (Geosynchronous Earth Orbit) payload to ground stations in Southern California and Hawaii over a two-year period following launch in 2019. The LCRD investigator team will execute numerous experiments to test critical aspects of laser communications activities over real links and systems, collecting data on the effects of atmospheric turbulence and weather on performance and communications availability. LCRD will also incorporate emulations of target scenarios, including direct-to-Earth (DTE) links from user spacecraft and optical relay providers supporting user spacecraft. To supplement and expand upon the results of these experiments, the project also includes a Guest Experimenters Program, which encourages individuals and groups from government agencies, academia and industry to propose diverse experiment ideas.
Laboratory experiments from the toy store
NASA Technical Reports Server (NTRS)
Mcclelland, H. T.
1992-01-01
The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.
Preparation and Spectrophotometric Analysis of Hexaamminenickel(II) Chloride.
ERIC Educational Resources Information Center
Wieder, Grace M.
1986-01-01
Describes an experiment developed at Brooklyn College (New York) in which the preparation and ammonia analysis of an amminenickel(II) chloride is extended to include a spectrophotometric analysis for nickel. Discusses the materials needed and the procedure for the experiment which takes nine hours of laboratory work. (TW)
Life's Lessons in the Lab: A Summer of Learning from Undergraduate Research Experiences
ERIC Educational Resources Information Center
Nadelson, Louis S.; Warner, Don; Brown, Eric
2015-01-01
Research experiences for undergraduates (REUs) seek to increase the participating students' knowledge and perceptions of scientific research through engagement in laboratory research and related activities. Various REU outcomes have been investigated including influence on participants' content knowledge, career plans, and general perceptions of…
Spectroscopy of Sound Transmission in Solid Samples
ERIC Educational Resources Information Center
Campbell, Dean J.; Peterson, Joshua P.; Fitzjarrald, Tamara J.
2013-01-01
These laboratory experiments are designed to familiarize students with concepts of spectroscopy by using sound waves. Topics covered in these experiments include the structure of nitinol alloys and polymer chain stiffness as a function of structure and temperature. Generally, substances that are stiffer or have higher symmetry at the molecular…
ADVANCED PLACEMENT PROGRAM IN PHYSICS.
ERIC Educational Resources Information Center
MACGREGOR, ROBERT; AND OTHERS
PROBLEMS OF PRESENTING A COLLEGE-LEVEL PHYSICS COURSE IN HIGH SCHOOL ARE CONSIDERED. FOR POSSIBLE SOLUTIONS IT DRAWS UPON THE EXPERIENCES OF THE SCHOOLS WHICH HAVE INCLUDED SUCH COURSES IN THEIR CURRICULUMS. THE FOLLOWING SUGGESTIONS ARE MADE--(1) MORE LABORATORY EXPERIENCE SHOULD BE PROVIDED THAN IS USUAL IN REGULAR COURSES. (2) HEAVY…
Quantification of Tea Flavonoids by High Performance Liquid Chromatography
ERIC Educational Resources Information Center
Freeman, Jessica D.; Niemeyer, Emily D.
2008-01-01
We have developed a laboratory experiment that uses high performance liquid chromatography (HPLC) to quantify flavonoid levels in a variety of commercial teas. Specifically, this experiment analyzes a group of flavonoids known as catechins, plant-derived polyphenolic compounds commonly found in many foods and beverages, including green and black…
ERIC Educational Resources Information Center
Bidlingmeyer, Brian A.; Warren, F. Vincent, Jr.
1984-01-01
Background information, materials needed, laboratory procedures, and typical results are provided for five high performance liquid chromatography experiments (three isocratic and two step gradient separations). Suggestions for further experimentation are also provided, including quantitative determinations and separation of charged solutes. (JN)
Determination of Log K[subscript ow] Values for Four Drugs
ERIC Educational Resources Information Center
Harris, Mark F.; Logan, Jennifer L.
2014-01-01
Though many undergraduates are interested in medicine, relatively few experiments related to drug design and development are included in introductory chemistry laboratory courses. In this experiment, aqueous solutions of four different drugs (acetaminophen, caffeine, phenacetin, and sulfanilamide) are extracted using 1-octanol, a mimic of the…
Marketing Library and Information Services: Comparing Experiences at Large Institutions.
ERIC Educational Resources Information Center
Noel, Robert; Waugh, Timothy
This paper explores some of the similarities and differences between publicizing information services within the academic and corporate environments, comparing the marketing experiences of Abbot Laboratories (Illinois) and Indiana University. It shows some innovative online marketing tools, including an animated gif model of a large, integrated…
A Modern and Interactive Approach to Learning Laser and Optical Communications.
ERIC Educational Resources Information Center
Minasian, Robert; Alameh, Kamal
2002-01-01
Discusses challenges in teaching lasers and optical communications to engineers, including the prohibitive cost of laboratory experiments, and describes the development of a computer-based photonics simulation experiment module which provides students with an understanding and visualization of how lasers can be modulated in telecommunications.…
ERIC Educational Resources Information Center
Sibbernsen, Kendra J.
2010-01-01
One of the long-standing general undergraduate education requirements common to many colleges and universities is a science course with a laboratory experience component. One of the objectives frequently included in the description of most of these courses is that a student will understand the nature and processes of scientific inquiry. However,…
Flotation of Mineral and Dyes: A Laboratory Experiment for Separation Method Molecular Hitchhikers
ERIC Educational Resources Information Center
Rappon, Tim; Sylvestre, Jarrett A.; Rappon, Manit
2016-01-01
Flotation as a method of separation is widely researched and is applied in many industries. It has been used to address a wide range of environmental issues including treatment of wastewater, recovery of heavy metals for recycling, extraction of minerals in mining, and so forth. This laboratory attempts to show how such a simple method can be used…
Rowland, Kevin C; Joy, Anita
2015-03-01
Reports on the status of dental education have concluded that there is a need for various types of curricular reform, making recommendations that include better integration of basic, behavioral, and clinical sciences, increased case-based teaching, emphasis on student-driven learning, and creation of lifelong learners. Dental schools faced with decreasing contact hours, increasing teaching material, and technological advancements have experimented with alternate curricular strategies. At Southern Illinois University School of Dental Medicine, curricular changes have begun with a series of integrated biomedical sciences courses. During the process of planning and implementing the integrated courses, a novel venue-the gross anatomy laboratory-was used to introduce all Year 1 students to critical thinking, self-directed learning, and the scientific method. The venture included student-driven documentation of anatomical variations encountered in the laboratory using robust scientific methods, thorough literature review, and subsequent presentation of findings in peer review settings. Students responded positively, with over 75% agreeing the experience intellectually challenged them. This article describes the process of re-envisioning the gross anatomy laboratory as an effective venue for small group-based, student-driven projects that focus on key pedagogical concepts to encourage the development of lifelong learners.
NASA Technical Reports Server (NTRS)
Sheppard, Albert P.; Wood, Joan M.
1976-01-01
Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.
ERIC Educational Resources Information Center
Bernstein, Jesse
2003-01-01
Explains the difference between traditional and inquiry-based chemistry experiments. Modifies a traditional cookbook laboratory for determining molar volume of gas to include inquiry. Also discusses methods for assessment. (Author/NB)
Preparation for microgravity - The role of the Microgravity Material Science Laboratory
NASA Technical Reports Server (NTRS)
Johnston, J. Christopher; Rosenthal, Bruce N.; Meyer, Maryjo B.; Glasgow, Thomas K.
1988-01-01
Experiments at the NASA Lewis Research Center's Microgravity Material Science Laboratory using physical and mathematical models to delineate the effects of gravity on processes of scientific and commercial interest are discussed. Where possible, transparent model systems are used to visually track convection, settling, crystal growth, phase separation, agglomeration, vapor transport, diffusive flow, and polymer reactions. Materials studied include metals, alloys, salts, glasses, ceramics, and polymers. Specific technologies discussed include the General Purpose furnace used in the study of metals and crystal growth, the isothermal dendrite growth apparatus, the electromagnetic levitator/instrumented drop tube, the high temperature directional solidification furnace, the ceramics and polymer laboratories and the center's computing facilities.
Ground-Laboratory to In-Space Atomic Oxygen Correlation for the PEACE Polymers
NASA Astrophysics Data System (ADS)
Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; de Groh, Kim K.; Banks, Bruce A.
2009-01-01
The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were forty-one different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although space flight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground-laboratory erosion yield values. Using the PEACE polymers' asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.
Plans and Recent Developments for Fluid Physics Experiments Aboard the ISS
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Motil, Brian J.
2016-01-01
From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensable laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center for Fluid Physics, NASA GRC is developing and testing the Pack Bed Reactor Experiment (PBRE), Zero Boil Off (ZBOT) Two Phase Flow Separator Experiment (TPFSE), Multiphase Flow Heat Transfer (MFHT) Experiment and the Electro-HydroDynamic (EHD) experiment. An overview each experiment, including its objectives, concept and status will be presented. In addition, data will be made available after a nominal period to NASAs Physical Science Informatics PSI database to the scientific community to enable additional analyses of results.
Design, development and fabrication of a Solar Experiment Alignment Sensor (SEAS)
NASA Technical Reports Server (NTRS)
Bancroft, J. R.; Fain, M. Z.; Johnson, D. F.
1971-01-01
The design, development and testing of a laboratory SEAS (Solar Experiment Alignment Sensor) system are presented. The system is capable of overcoming traditional alignment and calibration problems to permit pointing anywhere on the solar disc to an accuracy of five arc seconds. The concept, development and laboratory testing phases of the program are discussed, and particular attention has been given to specific problems associated with selection of materials, and components. The conclusions summarize performance capability and discuss areas for further study including the effects of solar limb darkening and effects of annual variations in the apparent solar diameter.
Variety of Sedimentary Process and Distribution of Tsunami Deposits in Laboratory Experiments
NASA Astrophysics Data System (ADS)
Yamaguchi, N.; Sekiguchi, T.
2017-12-01
As an indicator of the history and magnitude of paleotsunami events, tsunami deposits have received considerable attention. To improve the identification and interpretation of paleotsunami deposits, an understanding of sedimentary process and distribution of tsunami deposits is crucial. Recent detailed surveys of onshore tsunami deposits including the 2004 Indian Ocean tsunami and the 2011 Tohoku-oki tsunami have revealed that terrestrial topography causes a variety of their features and distributions. Therefore, a better understanding of possible sedimentary process and distribution on such influential topographies is required. Flume experiments, in which sedimentary conditions can be easily controlled, can provide insights into the effects of terrestrial topography as well as tsunami magnitude on the feature of tsunami deposits. In this presentation, we report laboratory experiments that focused on terrestrial topography including a water body (e.g. coastal lake) on a coastal lowland and a cliff. In both cases, the results suggested relationship between the distribution of tsunami deposits and the hydraulic condition of the tsunami flow associated with the terrestrial topography. These experiments suggest that influential topography would enhance the variability in thickness of tsunami deposits, and thus, in reconstructions of paleotsunami events using sedimentary records, we should take into account such anomalous distribution of tsunami deposits. Further examination of the temporal sequence of sedimentary process in laboratory tsunamis may improve interpretation and estimation of paleotsunami events.
A collaborative exercise on DNA methylation based body fluid typing.
Jung, Sang-Eun; Cho, Sohee; Antunes, Joana; Gomes, Iva; Uchimoto, Mari L; Oh, Yu Na; Di Giacomo, Lisa; Schneider, Peter M; Park, Min Sun; van der Meer, Dieudonne; Williams, Graham; McCord, Bruce; Ahn, Hee-Jung; Choi, Dong Ho; Lee, Yang Han; Lee, Soong Deok; Lee, Hwan Young
2016-10-01
A collaborative exercise on DNA methylation based body fluid identification was conducted by seven laboratories. For this project, a multiplex methylation SNaPshot reaction composed of seven CpG markers was used for the identification of four body fluids, including blood, saliva, semen, and vaginal fluid. A total of 30 specimens were prepared and distributed to participating laboratories after thorough testing. The required experiments included four increasingly complex tasks: (1) CE of a purified single-base extension reaction product, (2) multiplex PCR and multiplex single-base extension reaction of bisulfite-modified DNA, (3) bisulfite conversion of genomic DNA, and (4) extraction of genomic DNA from body fluid samples. In tasks 2, 3 and 4, one or more mixtures were analyzed, and specimens containing both known and unknown body fluid sources were used. Six of the laboratories generated consistent body fluid typing results for specimens of bisulfite-converted DNA and genomic DNA. One laboratory failed to set up appropriate conditions for capillary analysis of reference single-base extension products. In general, variation in the values obtained for DNA methylation analysis between laboratories increased with the complexity of the required experiments. However, all laboratories concurred on the interpretation of the DNA methylation profiles produced. Although the establishment of interpretational guidelines on DNA methylation based body fluid identification has yet to be performed, this study supports the addition of DNA methylation profiling to forensic body fluid typing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.
2014-12-01
The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.
Feasibility analysis of gravitational experiments in space
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.
1977-01-01
Experiments on gravitation and general relativity suggested by different workers in the past ten or more years are reviewed, their feasibility examined, and the advantages of performing them in space were studied. The experiments include: (1) the gyro relativity experiment; (2) experiments to test the equivalence of gravitational and inertial mass; (3) an experiment to look for nongeodesic motion of spinning bodies in orbit around the earth; (4) experiments to look for changes of the gravitational constant G with time; (5) a variety of suggestions; laboratory tests of experimental gravity; and (6) gravitational wave experiments.
Zhao, Jian; Hu, Dong-mei; Yu, Da-de; Dong, Ming-liang; Li, Yun; Fan, Ying-ming; Wang, Yan-wei; Zhang, Jin-feng
2016-05-01
Comprehensive laboratory courses, which enable students to aptly apply theoretic knowledge and master experiment skills, play an important role in the present educational reform of laboratory courses. We utilized human ABO blood type as the experimental subject, and designed the experiment--"Molecular Genotyping of Human ABO Blood Type and Analysis of Population Genetic Equilibrium". In the experiment, DNA in mucosal cells is extracted from students' saliva, and each student's genotype is identified using a series of molecular genetics technologies, including PCR amplification of target fragments, enzymatic digestion, and electrophoretic separation. Then, taking the whole class as an analogous Mendel population, a survey of genotype frequency of ABO blood type is conducted, followed with analyses of various population genetic parameters using Popgene. Through the open laboratory course, students can not only master molecular genetic experimental skills, but also improve their understanding of theoretic knowledge through independent design and optimization of molecular techniques. After five years of research and practice, a stable experimental system of molecular genetics has been established to identify six genotypes of ABO blood types, namely I(A)I(A), I(A)i, I(B)I(B), I(B)i, I(A)I(B) and ii. Laboratory courses of molecular and population genetics have been integrated by calculating the frequencies of the six genotypes and three multiple alleles and testing population genetic equilibrium. The goal of the open laboratory course with independent design and implementation by the students has been achieved. This laboratory course has proved effective and received good reviews from the students. It could be applied as a genetics laboratory course for the biology majors directly, and its ideas and methods could be promoted and applied to other biological laboratory courses.
NASA Technical Reports Server (NTRS)
Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.
1993-01-01
There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradshaw, S.P.
1994-12-31
In our tenth year of educational service and outreach, Oak Ridge National Laboratory`s Ecological and Physical Science Study Center (EPSSC) provides hands-on, inquiry-based science activities for area students and teachers. Established in 1984, the EPSSC now hosts over 20,000 student visits. Designed to foster a positive attitude towards science, each unit includes activities which reinforce the science concept being explored. Outdoor science units provide field experience at the Department of Energy`s Oak Ridge National Environmental Research Park and outreach programs are offered on-site in area schools. Other programs are offered as extensions of the EPSSC core programs, including on-site studentmore » science camps, all-girl programs, outreach science camps, student competitions, teacher in-service presentations and teacher workshops.« less
Bayesian model calibration of ramp compression experiments on Z
NASA Astrophysics Data System (ADS)
Brown, Justin; Hund, Lauren
2017-06-01
Bayesian model calibration (BMC) is a statistical framework to estimate inputs for a computational model in the presence of multiple uncertainties, making it well suited to dynamic experiments which must be coupled with numerical simulations to interpret the results. Often, dynamic experiments are diagnosed using velocimetry and this output can be modeled using a hydrocode. Several calibration issues unique to this type of scenario including the functional nature of the output, uncertainty of nuisance parameters within the simulation, and model discrepancy identifiability are addressed, and a novel BMC process is proposed. As a proof of concept, we examine experiments conducted on Sandia National Laboratories' Z-machine which ramp compressed tantalum to peak stresses of 250 GPa. The proposed BMC framework is used to calibrate the cold curve of Ta (with uncertainty), and we conclude that the procedure results in simple, fast, and valid inferences. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
The International Microgravity Laboratory, a Spacelab for materials and life sciences
NASA Technical Reports Server (NTRS)
Snyder, Robert S.
1992-01-01
The material science experiments performed on the International Microgravity Laboratory (IML-1), which is used to perform investigations which require the low gravity environment of space, are discussed. These experiments, the principal investigator, and associated organization are listed. Whether the experiment was a new development or was carried on an earlier space mission, such as the third Spacelab (SL-3) or the Shuttle Middeck, is also noted. The two major disciplines of materials science represented on IML-1 were the growth of crystals from the melt, solution, or vapor and the study of fluids (liquids and gases) in a reduced gravity environment. The various facilities on board IML-1 and their related experiments are described. The facilities include the Fluids Experiment System (FES) Vapor Crystal Growth System (VCGS) Organic Crystal Growth Facility (OCGF), Cryostat (CRY), and the Critical Point Facility (CPF).
Recent Darrieus vertical axis wind turbine aerodynamical experiments at Sandia National Laboratories
NASA Technical Reports Server (NTRS)
Klimas, P. C.
1981-01-01
Experiments contributing to the understanding of the aerodynamics of airfoils operating in the vertical axis wind turbine (VAWT) environment are described. These experiments are ultimately intended to reduce VAWT cost of energy and increase system reliability. They include chordwise pressure surveys, circumferential blade acceleration surveys, effects of blade camber, pitch and offset, blade blowing, and use of sections designed specifically for VAWT application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles, R.W.; Holley, C.E. Jr.; Tester, J.W.
1980-02-01
The Los Alamos Scientific Laboratory is pursuing laboratory and field experiments in the development of the Hot Dry Rock concept of geothermal energy. The field program consists of experiments in a hydraulically fractured region of low permeability in which hot rock is intercepted by two wellbores. These experiments are designed to test reservoir engineering parameters such as: heat extraction rates, water loss rates, flow characteristics including impedance and buoyancy, seismic activity and fluid chemistry. Laboratory experiments have been designed to provide information on the mineral reactivity which may be encountered in the field program. Two experimental circulation systems have beenmore » built to study the rates of dissolution and alteration in dynamic flow. Solubility studies have been done in agitated systems. To date, pure minerals, samples of the granodiorite from the actual reservoir and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to observations made in field experiments done in a hot dry rock reservoir at a depth of approximately 3 km with initial rock temperatures of 150 to 200/sup 0/C.« less
Outsourcing of Academic Clinical Laboratories
Mrak, Robert E.; Parslow, Tristram G.; Tomaszewski, John E.
2018-01-01
American hospitals are increasingly turning to service outsourcing to reduce costs, including laboratory services. Studies of this practice have largely focused on nonacademic medical centers. In contrast, academic medical centers have unique practice environments and unique mission considerations. We sought to elucidate and analyze clinical laboratory outsourcing experiences in US academic medical centers. Seventeen chairs of pathology with relevant experience were willing to participate in in-depth interviews about their experiences. Anticipated financial benefits from joint venture arrangements often eroded after the initial years of the agreement, due to increased test pricing, management fees, duplication of services in support of inpatients, and lack of incentive for utilization control on the part of the for-profit partner. Outsourcing can preclude development of lucrative outreach programs; such programs were successfully launched in several cases after joint ventures were either avoided or terminated. Common complaints included poor test turnaround time and problems with test quality (especially in molecular pathology, microbiology, and flow cytometry), leading to clinician dissatisfaction. Joint ventures adversely affected retention of academically oriented clinical pathology faculty, with adverse effects on research and education, which further exacerbated clinician dissatisfaction due to lack of available consultative expertise. Resident education in pathology and in other disciplines (especially infectious disease) suffered both from lack of on-site laboratory capabilities and from lack of teaching faculty. Most joint ventures were initiated with little or no input from pathology leadership, and input from pathology leadership was seen to have been critical in those cases where such arrangements were declined or terminated. PMID:29637086
NASA Technical Reports Server (NTRS)
Winkler, C. E. (Editor)
1973-01-01
The involvement of the Marshall Space Flight Center's Space Sciences Laboratory in the Skylab program from the early feasibility studies through the analysis and publication of flight scientific and technical results is described. This includes mission operations support, the Apollo telescope mount, materials science/manufacturing in space, optical contamination, environmental and thermal criteria, and several corollary measurements and experiments.
JPL-20171130-EARTHf-0001-DIY Glacier Modeling with Virtual Earth System Laboratory
2017-11-30
Eric Larour, JPL Climate Scientist, explains the NASA research tool "VESL" -- Virtual Earth System Laboratory -- that allows anyone to run their own climate experiment. The user can use a slider to simulate and increase or decrease in the amount of snowfall on a particular glacier then see a video of the results, including the glacier melting's effect on sea level.
Compact, Automated, Frequency-Agile Microspectrofluorimeter
NASA Technical Reports Server (NTRS)
Fernandez, Salvador M.; Guignon, Ernest F.
1995-01-01
Compact, reliable, rugged, automated cell-culture and frequency-agile microspectrofluorimetric apparatus developed to perform experiments involving photometric imaging observations of single live cells. In original application, apparatus operates mostly unattended aboard spacecraft; potential terrestrial applications include automated or semiautomated diagnosis of pathological tissues in clinical laboratories, biomedical instrumentation, monitoring of biological process streams, and portable instrumentation for testing biological conditions in various environments. Offers obvious advantages over present laboratory instrumentation.
Safety Precautions and Operating Procedures in an (A)BSL-4 Laboratory: 2. General Practices.
Mazur, Steven; Holbrook, Michael R; Burdette, Tracey; Joselyn, Nicole; Barr, Jason; Pusl, Daniela; Bollinger, Laura; Coe, Linda; Jahrling, Peter B; Lackemeyer, Matthew G; Wada, Jiro; Kuhn, Jens H; Janosko, Krisztina
2016-10-03
Work in a biosafety level 4 (BSL-4) containment laboratory requires time and great attention to detail. The same work that is done in a BSL-2 laboratory with non-high-consequence pathogens will take significantly longer in a BSL-4 setting. This increased time requirement is due to a multitude of factors that are aimed at protecting the researcher from laboratory-acquired infections, the work environment from potential contamination and the local community from possible release of high-consequence pathogens. Inside the laboratory, movement is restricted due to air hoses attached to the mandatory full-body safety suits. In addition, disinfection of every item that is removed from Class II biosafety cabinets (BSCs) is required. Laboratory specialists must be trained in the practices of the BSL-4 laboratory and must show high proficiency in the skills they are performing. The focus of this article is to outline proper procedures and techniques to ensure laboratory biosafety and experimental accuracy using a standard viral plaque assay as an example procedure. In particular, proper techniques to work safely in a BSL-4 environment when performing an experiment will be visually emphasized. These techniques include: setting up a Class II BSC for experiments, proper cleaning of the Class II BSC when finished working, waste management and safe disposal of waste generated inside a BSL-4 laboratory, and the removal of inactivated samples from inside a BSL-4 laboratory to the BSL-2 laboratory.
NASA Astrophysics Data System (ADS)
Keith, D.; Dykema, J. A.; Keutsch, F. N.
2017-12-01
Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., < 1 kg of 0.3 µm radius CaCO3 particles) at can be injected; while, the propellers allow the gondola to move at speeds up to 3 m/sec relative to the local air mass driving the gondola back forth through the volume to measure properties of the perturbed air mass. This presentation will provide an overview of the experiment including (a) a systems engineering perspective from high-level scientific questions through instrument selection, mission design, and proposed operations and data analysis; (b) instruments, include current status of integration testing; (c) payload engineering including structure, power and mass budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.
Princeton Plasma Physics Laboratory Annual Site Environmental Report for Calendar Year 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.D. Levine; V.L. Finley
1998-03-01
The results of the 1996 environmental surveillance and monitoring program for the Princeton Plasma Physics Laboratory (PPPL) are presented and discussed. The purpose of this report is to provide the US Department of Energy and the public with information on the level of radioactive and nonradioactive pollutants, if any, that are added to the environment as a result of PPPL's operations. During Calendar Year 1996, PPPL's Tokamak Fusion Test Reactor (TFTR) continued to conduct fusion experiments. Having set a world record on November 2, 1994, by achieving approximately 10.7 million watts of controlled fusion power during the deuterium-tritium (D-T) plasmamore » experiments, researchers turned their attention to studying plasma science experiments, which included ''enhanced reverse shear techniques.'' Since November 1993, more than 700 tritium-fueled experiments were conducted, which generated more than 4 x 10(superscript 20) neutrons and 1.4 gigajoules of fusion energy. In 1996, the overall performance of Princeton Plasma Physics Laboratory was rated ''excellent'' by the US Department of Energy in the Laboratory Appraisal report issued in early 1997. The report cited the Laboratory's consistently excellent scientific and technological achievements and its successful management practices, which included high marks for environmental management, employee health and safety, human resources administration, science education, and communications. Groundwater investigations continued under a voluntary agreement with the New Jersey Department of Environmental Protection. PPPL monitored for the presence of nonradiological contaminants, mainly volatile organic compounds (components of degreasing solvents) and petroleum hydrocarbons (past leaks of releases of diesel fuel from underground storage tanks). Also, PPPL's radiological monitoring program characterized the ambient, background levels of tritium in the environment and from the TFTR stack; the data are presented in this report. During 1996, PPPL completed the removal of contaminated soil from two locations that were identified through the monitoring program: petroleum hydrocarbons along a drainage swale and chromium adjacent to the cooling tower.« less
Contents of the JPL Distributed Active Archive Center (DAAC) archive, version 2-91
NASA Technical Reports Server (NTRS)
Smith, Elizabeth A. (Editor); Lassanyi, Ruby A. (Editor)
1991-01-01
The Distributed Active Archive Center (DAAC) archive at the Jet Propulsion Laboratory (JPL) includes satellite data sets for the ocean sciences and global change research to facilitate multidisciplinary use of satellite ocean data. Parameters include sea surface height, surface wind vector, sea surface temperature, atmospheric liquid water, and surface pigment concentration. The Jet Propulsion Laboratory DAAC is an element of the Earth Observing System Data and Information System (EOSDIS) and will be the United States distribution site for the Ocean Topography Experiment (TOPEX)/POSEIDON data and metadata.
Inquiry-Based Experiments for Large-Scale Introduction to PCR and Restriction Enzyme Digests
ERIC Educational Resources Information Center
Johanson, Kelly E.; Watt, Terry J.
2015-01-01
Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are…
Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry
ERIC Educational Resources Information Center
Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.
2014-01-01
Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…
A Process Dynamics and Control Experiment for the Undergraduate Laboratory
ERIC Educational Resources Information Center
Spencer, Jordan L.
2009-01-01
This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…
ERIC Educational Resources Information Center
Furlan, Ping Y.
2009-01-01
This manuscript reports on efforts to introduce beginning college students to the modern nanoscience field. These include: implementing selected experiments into sequencing core first-year and second-year chemistry laboratory courses; providing students with a first research experience; and engaging them in service learning and outreach programs…
Ssengooba, Willy; Gelderbloem, Sebastian J; Mboowa, Gerald; Wajja, Anne; Namaganda, Carolyn; Musoke, Philippa; Mayanja-Kizza, Harriet; Joloba, Moses Lutaakome
2015-01-15
Despite the recent innovations in tuberculosis (TB) and multi-drug resistant TB (MDR-TB) diagnosis, culture remains vital for difficult-to-diagnose patients, baseline and end-point determination for novel vaccines and drug trials. Herein, we share our experience of establishing a BSL-3 culture facility in Uganda as well as 3-years performance indicators and post-TB vaccine trials (pioneer) and funding experience of sustaining such a facility. Between September 2008 and April 2009, the laboratory was set-up with financial support from external partners. After an initial procedure validation phase in parallel with the National TB Reference Laboratory (NTRL) and legal approvals, the laboratory registered for external quality assessment (EQA) from the NTRL, WHO, National Health Laboratories Services (NHLS), and the College of American Pathologists (CAP). The laboratory also instituted a functional quality management system (QMS). Pioneer funding ended in 2012 and the laboratory remained in self-sustainability mode. The laboratory achieved internationally acceptable standards in both structural and biosafety requirements. Of the 14 patient samples analyzed in the procedural validation phase, agreement for all tests with NTRL was 90% (P <0.01). It started full operations in October 2009 performing smear microscopy, culture, identification, and drug susceptibility testing (DST). The annual culture workload was 7,636, 10,242, and 2,712 inoculations for the years 2010, 2011, and 2012, respectively. Other performance indicators of TB culture laboratories were also monitored. Scores from EQA panels included smear microscopy >80% in all years from NTRL, CAP, and NHLS, and culture was 100% for CAP panels and above regional average scores for all years with NHLS. Quarterly DST scores from WHO-EQA ranged from 78% to 100% in 2010, 80% to 100% in 2011, and 90 to 100% in 2012. From our experience, it is feasible to set-up a BSL-3 TB culture laboratory with acceptable quality performance standards in resource-limited countries. With the demonstrated quality of work, the laboratory attracted more research groups and post-pioneer funding, which helped to ensure sustainability. The high skilled experts in this research laboratory also continue to provide an excellent resource for the needed national discussion of the laboratory and quality management systems.
Ultraviolet Radiation Induction of Mutation in Penicillium Claviforme.
ERIC Educational Resources Information Center
New, June; Jolley, Ray
1986-01-01
Cites reasons why Penicillium claviforme is an exceptionally good species for ultraviolet induced mutation experiments. Provides a set of laboratory instructions for teachers and students. Includes a discussion section. (ML)
Wet Labs, Computers, and Spreadsheets.
ERIC Educational Resources Information Center
Durham, Bill
1990-01-01
Described are some commonly encountered chemistry experiments that have been modified for computerized data acquisition. Included are exercises in radioactivity, titration, calorimetry, kinetics, and electrochemistry. Software considerations and laboratory procedures are discussed. (CW)
Studies of the differential absorption rocket experiment. [to measure atmospheric electron density
NASA Technical Reports Server (NTRS)
Ginther, J. C.; Smith, L. G.
1975-01-01
Investigations of the ionosphere, in the rocket program of the Aeronomy Laboratory, include a propagation experiment, the data from which may be analyzed in several modes. This report considers in detail the differential absorption experiment. The sources of error and limitations of sensitivity are discussed. Methods of enhancing the performance of the experiment are described. Some changes have been made in the system and the improvement demonstrated. Suggestions are made for further development of the experiment.
Spacelab experiments on space motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1987-01-01
Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurements of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.
Spacelab experiments on space motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1985-01-01
Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurement of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which 4 observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, A.J.; Gillow, J.B.
1993-09-01
Microbial processes involved in gas generation from degradation of the organic constituents of transuranic waste under conditions expected at the Waste Isolation Pilot Plant (WIPP) repository are being investigated at Brookhaven National Laboratory. These laboratory studies are part of the Sandia National Laboratories -- WIPP Gas Generation Program. Gas generation due to microbial degradation of representative cellulosic waste was investigated in short-term (< 6 months) and long-term (> 6 months) experiments by incubating representative paper (filter paper, paper towels, and tissue) in WIPP brine under initially aerobic (air) and anaerobic (nitrogen) conditions. Samples from the WIPP surficial environment and undergroundmore » workings harbor gas-producing halophilic microorganisms, the activities of which were studied in short-term experiments. The microorganisms metabolized a variety of organic compounds including cellulose under aerobic, anaerobic, and denitrifying conditions. In long-term experiments, the effects of added nutrients (trace amounts of ammonium nitrate, phosphate, and yeast extract), no nutrients, and nutrients plus excess nitrate on gas production from cellulose degradation.« less
Spacelab experiments on space motion sickness.
Oman, C M
1987-01-01
Recent research results from ground and flight experiments on motion sickness and space sickness conducted by the Man Vehicle Laboratory are reviewed. New tools developed include a mathematical model for motion sickness, a method for quantitative measurements of skin pallor and blush in ambulatory subjects, and a magnitude estimation technique for ratio scaling of nausea or discomfort. These have been used to experimentally study the time course of skin pallor and subjective symptoms in laboratory motion sickness. In prolonged sickness, subjects become hypersensitive to nauseogenic stimuli. Results of a Spacelab-1 flight experiment are described in which four observers documented the stimulus factors for and the symptoms/signs of space sickness. The clinical character of space sickness differs somewhat from acute laboratory motion sickness. However SL-1 findings support the view that space sickness is fundamentally a motion sickness. Symptoms were subjectively alleviated by head movement restriction, maintenance of a familiar orientation with respect to the visual environment, and wedging between or strapping onto surfaces which provided broad contact cues confirming the absence of body motion.
Inquiry-based experiments for large-scale introduction to PCR and restriction enzyme digests.
Johanson, Kelly E; Watt, Terry J
2015-01-01
Polymerase chain reaction and restriction endonuclease digest are important techniques that should be included in all Biochemistry and Molecular Biology laboratory curriculums. These techniques are frequently taught at an advanced level, requiring many hours of student and faculty time. Here we present two inquiry-based experiments that are designed for introductory laboratory courses and combine both techniques. In both approaches, students must determine the identity of an unknown DNA sequence, either a gene sequence or a primer sequence, based on a combination of PCR product size and restriction digest pattern. The experimental design is flexible, and can be adapted based on available instructor preparation time and resources, and both approaches can accommodate large numbers of students. We implemented these experiments in our courses with a combined total of 584 students and have an 85% success rate. Overall, students demonstrated an increase in their understanding of the experimental topics, ability to interpret the resulting data, and proficiency in general laboratory skills. © 2015 The International Union of Biochemistry and Molecular Biology.
White, Harold B; Usher, David C
2015-01-01
Undergraduates having their first research experience frequently have little idea of what to expect. Institutions offering summer research experiences attempt to address this issue through programs that introduce students to the process and culture of science. However, didactic approaches frequently bore students who prefer more interactive sessions. We describe a "Pass-the-Problem" case study approach that engages groups of students in useful discussions about the research environment they are entering. The cases presented here include keeping a thorough laboratory notebook, balancing laboratory and personal time demands, anxiety about formal presentations, unexpected federal regulatory inspection, working in a lab with limited funds, being used as a technician rather than a researcher, frustration with failed experiments, effects of promotion and tenure on laboratory atmosphere, the importance of reading the research literature, and questioning a career in science. These cases alert students to different situations they might encounter and stimulate discussion about how to deal with them. © 2015 The International Union of Biochemistry and Molecular Biology.
Birdcage volume coils and magnetic resonance imaging: a simple experiment for students.
Vincent, Dwight E; Wang, Tianhao; Magyar, Thalia A K; Jacob, Peni I; Buist, Richard; Martin, Melanie
2017-01-01
This article explains some simple experiments that can be used in undergraduate or graduate physics or biomedical engineering laboratory classes to learn how birdcage volume radiofrequency (RF) coils and magnetic resonance imaging (MRI) work. For a clear picture, and to do any quantitative MRI analysis, acquiring images with a high signal-to-noise ratio (SNR) is required. With a given MRI system at a given field strength, the only means to change the SNR using hardware is to change the RF coil used to collect the image. RF coils can be designed in many different ways including birdcage volume RF coil designs. The choice of RF coil to give the best SNR for any MRI study is based on the sample being imaged. The data collected in the simple experiments show that the SNR varies as inverse diameter for the birdcage volume RF coils used in these experiments. The experiments were easily performed by a high school student, an undergraduate student, and a graduate student, in less than 3 h, the time typically allotted for a university laboratory course. The article describes experiments that students in undergraduate or graduate laboratories can perform to observe how birdcage volume RF coils influence MRI measurements. It is designed for students interested in pursuing careers in the imaging field.
[Cellular transplantation laboratory: a new field of action for nurses].
Corradi, Maria Inês; da Silva, Sandra Honorato
2008-01-01
This article presents the experience of a nurse at a cellular transplantation laboratory. This laboratory goal is to isolate insulin producing cells for human transplantation. The nurse, as a member of an interdisciplinary team, took part in the planning of all work processes: working procedures and team training. The main activities under the nurse responsibilities include contamination control, on-the-job training and evaluation of the Quality of the procedures developed by the interdisciplinary team. Results have shown the effectiveness of the nurses' work in this new field.
PLACE: an open-source python package for laboratory automation, control, and experimentation.
Johnson, Jami L; Tom Wörden, Henrik; van Wijk, Kasper
2015-02-01
In modern laboratories, software can drive the full experimental process from data acquisition to storage, processing, and analysis. The automation of laboratory data acquisition is an important consideration for every laboratory. When implementing a laboratory automation scheme, important parameters include its reliability, time to implement, adaptability, and compatibility with software used at other stages of experimentation. In this article, we present an open-source, flexible, and extensible Python package for Laboratory Automation, Control, and Experimentation (PLACE). The package uses modular organization and clear design principles; therefore, it can be easily customized or expanded to meet the needs of diverse laboratories. We discuss the organization of PLACE, data-handling considerations, and then present an example using PLACE for laser-ultrasound experiments. Finally, we demonstrate the seamless transition to post-processing and analysis with Python through the development of an analysis module for data produced by PLACE automation. © 2014 Society for Laboratory Automation and Screening.
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2008-09-01
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2009-02-01
QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. The model uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C
2016-01-01
The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. © 2015 The International Union of Biochemistry and Molecular Biology.
NASA Technical Reports Server (NTRS)
Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.
2011-01-01
The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.
NASA Astrophysics Data System (ADS)
Pope, Sandi R.; Tolleson, Tonya D.; Williams, R. Jill; Underhill, Russell D.; Deal, S. Todd
1998-06-01
At Georgia Southern University, we offer a sophomore-level introductory biochemistry course that is aimed at nutrition and chemistry education majors. The laboratory portion of this course has long lacked an experimental introduction to enzymes. We have developed a simple enzyme assay utilizing lactase enzyme from crushed LactAid tablets and a 5% lactose solution ("synthetic milk"). In the experiment, the students assay the activity of the enzyme on the "synthetic milk" at pHs of approximately 1, 6, and 8 with the stated goal of determining where lactose functions in the digestive tract. The activity of the lactase may be followed chromatographically or spectrophotometrically. The experiment, which is actually a simple pH assay, is easily implemented in allied health chemistry laboratory courses and readily lends itself to adaptation for more complex kinetic assays in upper-level biochemistry laboratory courses. The experimental details, including a list of required supplies and hints for implementation, are provided.
The Microgravity Science Glovebox
NASA Technical Reports Server (NTRS)
Baugher, Charles R.; Primm, Lowell (Technical Monitor)
2001-01-01
The Microgravity Science Glovebox (MSG) provides scientific investigators the opportunity to implement interactive experiments on the International Space Station. The facility has been designed around the concept of an enclosed scientific workbench that allows the crew to assemble and operate an experimental apparatus with participation from ground-based scientists through real-time data and video links. Workbench utilities provided to operate the experiments include power, data acquisition, computer communications, vacuum, nitrogen. and specialized tools. Because the facility work area is enclosed and held at a negative pressure with respect to the crew living area, the requirements on the experiments for containment of small parts, particulates, fluids, and gasses are substantially reduced. This environment allows experiments to be constructed in close parallel with bench type investigations performed in groundbased laboratories. Such an approach enables experimental scientists to develop hardware that more closely parallel their traditional laboratory experience and transfer these experiments into meaningful space-based research. When delivered to the ISS the MSG will represent a significant scientific capability that will be continuously available for a decade of evolutionary research.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios
2017-04-01
Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. One reference frame descriptions (Eulerian or Lagrangian) yield useful results but restrict the theoretical understanding of the process as differences between the two phases (liquid and solid) are not explicitly accounted. Recently, affordable Inertial Measurement Units (IMUs) that can be embedded in coarse (100 mm diameter scale) natural or artificial particles became available. These sensors are subjected to technical limitations when deployed for natural sediment transport. However, they give us the ability to measure for the first time the inertial dynamics (acceleration and angular velocity) of moving sediment grains under fluvial transport. Theoretically, the assumption of an ideal (IMU), rigidly attached at the centre of the mass of a sediment particle can simplify greatly the derivation of a general Eulerian-Lagrangian (E-L) model. This approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. Simplified versions of the E-L model have been evaluated in laboratory experiments using real-IMUs [Maniatis et. al 2015]. Here, experimental results are presented relevant to the evaluation of the complete E-L model. Artificial particles were deployed in a series of laboratory and field experiments. The particles are equipped with an IMU capable of recording acceleration at ± 400 g and angular velocities at ± 1200 rads/sec ranges. The sampling frequency ranges from 50 to 200 Hz for the total IMU measurement. Two sets of laboratory experiments were conducted in a 0.9m wide laboratory flume. The first is a set of entrainment threshold experiments using two artificial particles: a spherical of D=90mm (A) and an ellipsoid with axes of 100, 70 and 30 mm (B). For the second set of experiments, a spherical artificial enclosure of D=75 mm (C) was released to roll freely in a (> threshold for entrainment) flow and over surfaces of different roughness. Finally, the coarser spherical and elliptical sensor- assemblies (A and B) were deployed in a steep mountain stream during active sediment transport flow conditions. The results include the calculation of the inertial acceleration, the instantaneous particle velocity and the total kinetic energy of the mobile particle (including the rotational component using gyroscope measurements). The comparison of the field deployments with the laboratory experiments suggests that E-L model can be generalised from laboratory to natural conditions. Overall, the inertia of individual coarse particles is a statistically significant effect for all the modes of sediment transport (entrainment, translation, deposition) in both natural and laboratory regimes. Maniatis et. al 2015: "Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements", J. Hydraulic Engineering, 04016097
Overview of the National Ignition Campaign (NIC)
NASA Astrophysics Data System (ADS)
Moses, Edward
2010-11-01
The 192-beam National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is now operational. NIF has conducted 192-beam implosion experiments with energies as high as 1.2 MJ and has also demonstrated the unprecedented energy and pulse shaping control required for ignition experiments. The successful commissioning of the NIF laser is the first step in demonstrating inertial confinement fusion (ICF) ignition in the laboratory. The NIF ignition program is executed via the National Ignition Campaign (NIC)---a partnership between Los Alamos National Laboratory, Lawrence Berkeley Laboratory, LLNL, General Atomics, the University of Rochester Laboratory for Laser Energetics, Sandia National Laboratories, the Massachusetts Institute of Technology, and other national and international partners. The NIC relies on a novel integrated experimental and computational program to tune the target to the conditions required for indirect-drive ignition. This approach breaks the tuning process into four phases. The first two phases involve tuning of the hohlraum and capsule to produce the correct radiation drive, symmetry, and shock timing conditions. The third phase consists of layered cryogenic implosions conducted with a 50%/49%/1% mixture of tritium, hydrogen, and deuterium (THD) respectively. The reduced yield from these THD targets allows the full diagnostic suite to be employed and the presence of the required temperature and fuel areal density to be verified. The final step is DT ignition implosions with expected gains of 10-20. DT ignition experiments will be conducted with Elaser ˜1.2 MJ. Laser energies of 1.8 MJ should be available for subsequent experiments. This talk will review the multi-phase tuning approach to the ignition effort, including the physics issues associated with the various steps, and current and future plans for the NIF ignition program.
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Navarro-Gonzalez, Rafael; Freissinet, Caroline; McKay, Christopher P.; Archer, P. Douglas, Jr.; Buch, Arnaud; Coll, Patrice; Eigenbrode, Jennifer L.; Franz, Heather B.; Glavin, Daniel P.;
2014-01-01
The Sampl;e Analysis at Mars (sam) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen bearing compounds during the pyrolysis of surface materials from the three sites at Gale Crater. Preliminary detections of nitrogen species include No, HCN, ClCN, and TFMA ((trifluoro-N-methyl-acetamide), Confirmation of indigenous Martian nitrogen-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate a compound that has also been identified by SAM in Mars solid samples.
Lianidou, Evi; Ahmad-Nejad, Parviz; Ferreira-Gonzalez, Andrea; Izuhara, Kenji; Cremonesi, Laura; Schroeder, Maria-Eugenia; Richter, Karin; Ferrari, Maurizio; Neumaier, Michael
2014-09-25
Molecular techniques are becoming commonplace in the diagnostic laboratory. Their applications influence all major phases of laboratory medicine including predisposition/genetic risk, primary diagnosis, therapy stratification and prognosis. Readily available laboratory hardware and wetware (i.e. consumables and reagents) foster rapid dissemination to countries that are just establishing molecular testing programs. Appropriate skill levels extending beyond the technical procedure are required for analytical and diagnostic proficiency that is mandatory in molecular genetic testing. An international committee (C-CMBC) of the International Federation for Clinical Chemistry (IFCC) was established to disseminate skills in molecular genetic testing in member countries embarking on the respective techniques. We report the ten-year experience with different teaching and workshop formats for beginners in molecular diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bogner, Donna Ed.
1987-01-01
Provides suggestions for two exercises designed to assist and involve students in understanding chemical concepts. Includes a laboratory experiment for determining the Ksp of a saturated solution of calcium sulfate and a scheme for naming oxyacids and their salts. (ML)
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presents background information, laboratory procedures, classroom materials/activities, and chemistry experiments. Topics include sublimation, electronegativity, electrolysis, experimental aspects of strontianite, halide test, evaluation of present and future computer programs in chemistry, formula building, care of glass/saturated calomel…
Parasite Manipulation of Host Behaviour: Acanthocephalans and Shrimps in the Laboratory.
ERIC Educational Resources Information Center
Brown, A. F.; Thompson, D. B. A.
1986-01-01
Describes three experiments for undergraduates which illustrate associations of parasites with their host. Includes a table of parasite-induced alterations of selected host species. Instructional suggestions are also provided. (ML)
The Demonstration and Science Experiments (DSX) Mission
NASA Astrophysics Data System (ADS)
McCollough, J. P., II; Johnston, W. R.; Starks, M. J.; Albert, J.
2015-12-01
In 2016, the Air Force Research Laboratory will launch its Demonstration and Science Experiments mission to investigate wave-particle interactions and the particle and space environment in medium Earth orbit (MEO). The DSX spacecraft includes three experiment packages. The Wave Particle Interaction Experiment (WPIx) will perform active and passive investigations involving VLF waves and their interaction with plasma and energetic electrons in MEO. The Space Weather Experiment (SWx) includes five particle instruments to survey the MEO electron and proton environment. The Space Environmental Effects Experiment (SFx) will investigate effects of the MEO environment on electronics and materials. We will describe the capabilities of the DSX science payloads, science plans, and opportunities for collaborative studies such as conjunction observations and far-field measurements.
The design and development of a space laboratory to conduct magnetospheric and plasma research
NASA Technical Reports Server (NTRS)
Rosen, A.
1974-01-01
A design study was conducted concerning a proposed shuttle-borne space laboratory for research on magnetospheric and plasma physics. A worldwide survey found two broad research disciplines of interest: geophysical studies of the dynamics and structure of the magnetosphere (including wave characteristics, wave-particle interactions, magnetospheric modifications, beam-plasma interactions, and energetic particles and tracers) and plasma physics studies (plasma physics in space, wake and sheath studies, and propulsion and devices). The Plasma Physics and Environmental Perturbation Laboratory (PPEPL) designed to perform experiments in these areas will include two 50-m booms and two maneuverable subsatellites, a photometer array, standardized proton, electron, and plasma accelerators, a high-powered transmitter for frequencies above 100 kHz, a low-power transmitter for VLF and below, and complete diagnostic packages. Problem areas in the design of a space plasma physics laboratory are indicated.
Communications Middleware for Tactical Environments: Observations, Experiences, and Lessons Learned
2009-12-12
posi- tion at the Engineering Department of the University of Ferrara , Italy . His research interests include distributed and mobile computing, QoS...science engineering from the Uni- versity of Padova, Italy , in 2005. She continued her studies at the University of Ferrara , where she gained a Master’s...Stefanelli, University of Ferrara Jesse Kovach, U.S. Army Research Laboratory James Hanna, U.S. Air Force Research Laboratory Communications Middleware
NASA Astrophysics Data System (ADS)
Wietsma, T. W.; Oostrom, M.; Foster, N. S.
2003-12-01
Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.
Workshop summary. Biomedical and Space-Related Research with Heavy Ions at the BEVALAC
NASA Technical Reports Server (NTRS)
Schimmerling, W.; Curtis, S. B.
1989-01-01
The authors provide an overview of papers presented at a workshop on Biomedical and Space-Related Research with Heavy Ions at the BEVALAC at Lawrence Berkeley Laboratory. Goals of the meeting were to determine the critical experiments using heavy ions as probes in radiation physics, radiation chemistry, macromolecular and cellular biology, evolution science, basic neurophysiology, and medical therapies; how beam lines and facilities at Lawrence Berkeley Laboratory can be improved for these experiments; and implications in priorities and funding for national policy. Workshop topics included physics and facilities, cellular and molecular biology, tissue radiobiology, and the future of heavy ion research.
An Economic Model and Experiments to Understand Aluminum-Cerium Alloy Recycling
NASA Astrophysics Data System (ADS)
Iyer, Ananth V.; Lim, Heejong; Rios, Orlando; Sims, Zachary; Weiss, David
2018-04-01
We provide an economic model to understand the impact of adoption, sorting and pricing of scrap on the recycling of a new aluminum-cerium (AlCe) alloy for use in engine blocks in the automobile industry. The goal of the laboratory portion of this study is to investigate possible effects of cerium contamination on well-established aluminum recycling streams. Our methodology includes three components: (1) focused data gathering from industry supply chain participants, (2) experimental data through laboratory experiments to understand the impact of cerium on existing alloys and (3) an economic model to understand pricing incentives on a recycler's separation of AlCe engine blocks.
Earth Science (A Process Approach), Section 1: The Water Cycle.
ERIC Educational Resources Information Center
Campbell, K. C.; And Others
Included is a collection of earth science laboratory activities, which may provide the junior or senior high school science teacher with ideas for activities in his program. The included 48 experiments are grouped into these areas: properties of matter; evaporation; atmospheric moisture and condensation; precipitation; moving water, subsurface…
ERIC Educational Resources Information Center
Lee, Tom E.; And Others
This compilation of resource units concerns the latest developments in space biology. Some of the topics included are oxygen consumption, temperature, radiation, rhythms, weightlessness, acceleration and vibration stress, toxicity, and sensory and perceptual problems. Many of the topics are interdisciplinary and relate biology, physiology,…
Using the Computer as a Laboratory Instrument.
ERIC Educational Resources Information Center
Collings, Peter J.; Greenslade, Thomas B., Jr.
1989-01-01
Reports experiences during a two-year period in introducing the computer to the laboratory and students to the computer as a laboratory instrument. Describes a working philosophy, data acquisition system, and experiments. Summarizes the laboratory procedures of nine experiments, covering mechanics, heat, electromagnetism, and optics. (YP)
Exploratory study of the acceptance of two individual practical classes with remote labs
NASA Astrophysics Data System (ADS)
Tirado-Morueta, Ramón; Sánchez-Herrera, Reyes; Márquez-Sánchez, Marco A.; Mejías-Borrero, Andrés; Andujar-Márquez, José Manuel
2018-03-01
Remote lab experiences are proliferating in higher education, although there are still few studies that manage to build a theoretical framework for educational assessment and design of this technology. In order to explore to what extent the use of facilitators of proximity to the laboratory and the autonomy of the experiment makes remote laboratories a technology accepted by students, two remote labs different yet similar educational conditions in laboratories are used. A sample of 98 undergraduate students from a degree course in Energy Engineering was used for this study; 57 of these students ran experiments in a laboratory of electrical machines and 41 in a photovoltaic systems laboratory. The data suggest using conditions that facilitate the proximity of the laboratory and the autonomy in the realisation of the experiment; in both laboratories the experience was positively valued by the students. Also, data suggest that the types of laboratory and experiment have influences on usability - autonomy and lab proximity - perceived by students.
ERIC Educational Resources Information Center
NEUBERGER, HANS; NICHOLAS, GEORGE
INCLUDED IN THIS MANUAL WRITTEN FOR SECONDARY SCHOOL AND COLLEGE TEACHERS ARE DESCRIPTIONS OF DEMONSTRATION MODELS, EXPERIMENTS PERTAINING TO SOME OF THE FUNDAMENTAL AND APPLIED METEOROLOGICAL CONCEPTS, AND INSTRUCTIONS FOR MAKING SIMPLE WEATHER OBSERVATIONS. THE CRITERIA FOR SELECTION OF TOPICS WERE EASE AND COST OF CONSTRUCTING APPARATUS AS WELL…
Hunter, Adam; Dayalan, Saravanan; De Souza, David; Power, Brad; Lorrimar, Rodney; Szabo, Tamas; Nguyen, Thu; O'Callaghan, Sean; Hack, Jeremy; Pyke, James; Nahid, Amsha; Barrero, Roberto; Roessner, Ute; Likic, Vladimir; Tull, Dedreia; Bacic, Antony; McConville, Malcolm; Bellgard, Matthew
2017-01-01
An increasing number of research laboratories and core analytical facilities around the world are developing high throughput metabolomic analytical and data processing pipelines that are capable of handling hundreds to thousands of individual samples per year, often over multiple projects, collaborations and sample types. At present, there are no Laboratory Information Management Systems (LIMS) that are specifically tailored for metabolomics laboratories that are capable of tracking samples and associated metadata from the beginning to the end of an experiment, including data processing and archiving, and which are also suitable for use in large institutional core facilities or multi-laboratory consortia as well as single laboratory environments. Here we present MASTR-MS, a downloadable and installable LIMS solution that can be deployed either within a single laboratory or used to link workflows across a multisite network. It comprises a Node Management System that can be used to link and manage projects across one or multiple collaborating laboratories; a User Management System which defines different user groups and privileges of users; a Quote Management System where client quotes are managed; a Project Management System in which metadata is stored and all aspects of project management, including experimental setup, sample tracking and instrument analysis, are defined, and a Data Management System that allows the automatic capture and storage of raw and processed data from the analytical instruments to the LIMS. MASTR-MS is a comprehensive LIMS solution specifically designed for metabolomics. It captures the entire lifecycle of a sample starting from project and experiment design to sample analysis, data capture and storage. It acts as an electronic notebook, facilitating project management within a single laboratory or a multi-node collaborative environment. This software is being developed in close consultation with members of the metabolomics research community. It is freely available under the GNU GPL v3 licence and can be accessed from, https://muccg.github.io/mastr-ms/.
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Greco, E. V.
1973-01-01
The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.
Synthesis of noble metal nanoparticles
NASA Astrophysics Data System (ADS)
Bahadory, Mozhgan
Improved methods were developed for the synthesis of noble metal nanoparticles. Laboratory experiments were designed for introducing of nanotechnology into the undergraduate curriculum. An optimal set of conditions for the synthesis of clear yellow colloidal silver was investigated. Silver nanoparticles were obtained by borohydride reduction of silver nitrate, a method which produces particles with average size of 12+/-2 nm, determined by Transmission Electron Microscopy (TEM). The plasmon absorbance is at 397 nm and the peak width at half maximum (PWHM) is 70-75 nm. The relationship between aggregation and optical properties was determined along with a method to protect the particles using polyvinylpyrrolidone (PVP). A laboratory experiment was designed in which students synthesize yellow colloidal silver, estimate particle size using visible spectroscopy, and study aggregation effects. The synthesis of the less stable copper nanoparticles is more difficult because copper nanopaticles are easily oxidized. Four methods were used for the synthesis of copper nanoparticles, including chemical reduction with sodium borohydride, sodium borohydride with potassium iodide, isopropyl alcohol with cetyltrimethylammonium bormide (CTAB) and reducing sugars. The latter method was also the basis for an undergraduate laboratory experiment. For each reaction, the dependence of stability of the copper nanoparticles on reagent concentrations, additives, relative amounts of reactants, and temperature is explored. Atomic force microscopy (AFM), TEM and UV-Visible Spectroscopy were used to characterize the copper nanoparticles. A laboratory experiment to produce copper nanoparticles from household chemicals was developed.
Apoptosis as the focus of an authentic research experience in a cell physiology laboratory.
Byrd, Shere K
2016-06-01
Curriculum-embedded independent research is a high-impact teaching practice that has been shown to increase student engagement and learning. This article describes a multiweek laboratory project for an upper-division undergraduate cell physiology laboratory using apoptosis via the mitochondrial pathway as the overarching theme. Students did literature research on apoptotic agents that acted via the mitochondrial pathway. Compounds ranged from natural products such as curcumin to synthetic compounds such as etoposide. Groups of two to three students planned a series of experiments using one of three cultured cell lines that required them to 1) learn to culture cells; 2) determine treatment conditions, including apoptotic agent solubility and concentration ranges that had been reported in the literature; 3) choose two methods to validate/quantify apoptotic capacity of the reagent; and 4) attempt to "rescue" cells from undergoing apoptosis using one of several available compounds/methods. In essence, given some reagent and equipment constraints, students designed an independent experiment to highlight the effects of different apoptotic agents on cells in culture. Students presented their experimental designs as in a laboratory group meeting and their final findings as a classroom "symposium." This exercise can be adapted to many different types of laboratories with greater or lesser equipment and instrumentation constraints, incorporates several core cell physiology methods, and encourages key experimental design and critical thinking components of independent research. Copyright © 2016 The American Physiological Society.
Astromaterials Research Office (KR) Overview
NASA Technical Reports Server (NTRS)
Draper, David S.
2014-01-01
The fundamental goal of our research is to understand the origin and evolution of the solar system, particularly the terrestrial, "rocky" bodies. Our research involves analysis of, and experiments on, astromaterials in order to understand their nature, sources, and processes of formation. Our state-of-the-art analytical laboratories include four electron microbeam laboratories for mineral analysis, four spectroscopy laboratories for chemical and mineralogical analysis, and four mass spectrometry laboratories for isotopic analysis. Other facilities include the experimental impact laboratory and both 1-atm gas mixing and high-pressure experimental petrology laboratories. Recent research has emphasized a diverse range of topics, including: Study of the solar system's primitive materials, such as carbonaceous chondrites and interplanetary dust; Study of early solar system chronology using short-lived radioisotopes and early nebular processes through detailed geochemical and isotopic characterizations; Study of large-scale planetary differentiation and evolution via siderophile and incompatible trace element partitioning, magma ocean crystallization simulations, and isotopic systematics; Study of the petrogenesis of Martian meteorites through petrographic, isotopic, chemical, and experimental melting and crystallization studies; Interpretation of remote sensing data, especially from current robotic lunar and Mars missions, and study of terrestrial analog materials; Study of the role of organic geochemical processes in the evolution of astromaterials and the extent to which they constrain the potential for habitability and the origin of life.
ERIC Educational Resources Information Center
Parrott, Annette
2000-01-01
Introduces a 2-day laboratory experiment on scientific inquiry and the environment. Studies antlion classification and investigates anatomy, habitat, life cycle, behavior, and other properties of antlions. Adapted for different grade levels and includes a scientific journal report. (YDS)
ERIC Educational Resources Information Center
School Science Review, 1983
1983-01-01
Presents chemistry experiments, laboratory procedures, demonstrations, teaching suggestions, and classroom materials/activities. These include: game for teaching ionic formulas; method for balancing equations; description of useful redox series; computer programs (with listings) for water electrolysis simulation and for determining chemical…
ERIC Educational Resources Information Center
Piearce, Trevor; And Others
1988-01-01
Provides explanations of 15 experiments, laboratory activities, demonstrations, and lessons for use in instruction. Includes information on Daphnia, wild garlic, crystals, gas chromatographs, bleaches, alcohols, reactivity series, chemistry formula, electronic keyboards and waveforms, interference and diffraction gravity, Moire fringe patterns,…
More Bits and Pieces: A Second Physics Miscellany
ERIC Educational Resources Information Center
Siddons, J. C.
1976-01-01
Described are five physics experiments utilizing inexpensive, readily available materials or materials normally found in a physics laboratory. Included are investigations of electrical charge, sound detection, thermal expansion, doppler effects, and the cycloid. (SL)
ERIC Educational Resources Information Center
School Science Review, 1984
1984-01-01
Presents 26 activities, experiments, demonstrations, games, and computer programs for biology, chemistry, and physics. Background information, laboratory procedures, equipment lists, and instructional strategies are given. Topics include eye measurements, nutrition, soil test tube rack, population dynamics, angular momentum, transition metals,…
Code of Federal Regulations, 2011 CFR
2011-01-01
...) State agricultural experiment stations; (b) Colleges and universities (including junior colleges offering an associate's degree); (c) University research foundations; (d) Other research institutions and organizations; (e) Federal agencies; (f) National laboratories; (g) Private organizations or corporations; (h...
Code of Federal Regulations, 2012 CFR
2012-01-01
...) State agricultural experiment stations; (b) Colleges and universities (including junior colleges offering an associate's degree); (c) University research foundations; (d) Other research institutions and organizations; (e) Federal agencies; (f) National laboratories; (g) Private organizations or corporations; (h...
Code of Federal Regulations, 2014 CFR
2014-01-01
...) State agricultural experiment stations; (b) Colleges and universities (including junior colleges offering an associate's degree); (c) University research foundations; (d) Other research institutions and organizations; (e) Federal agencies; (f) National laboratories; (g) Private organizations or corporations; (h...
Code of Federal Regulations, 2013 CFR
2013-01-01
...) State agricultural experiment stations; (b) Colleges and universities (including junior colleges offering an associate's degree); (c) University research foundations; (d) Other research institutions and organizations; (e) Federal agencies; (f) National laboratories; (g) Private organizations or corporations; (h...
NASA Technical Reports Server (NTRS)
Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce
1989-01-01
A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.
Investigation of beam-plasma interactions
NASA Technical Reports Server (NTRS)
Olsen, Richard C.
1987-01-01
Data from the SCATHA satellite was analyzed to solve the problems of establishing electrical contact between a satellite and the ambient plasma. The original focus of the work was the electron gun experiments conducted near the geosynchronous orbit, which resulted in observations which bore a startling similarity to observations of the SEPAC experiments on SPACELAB 1. The study has evolved to include the ion gun experiments on SCATHA, a modest laboratory effort in hollow cathode performance, and preparation for flight experiments pertinent to tether technology. These areas are addressed separately.
The US/USSR Biological Satellite Program: COSMOS 936 Mission Overview
NASA Technical Reports Server (NTRS)
Souza, K. A.
1978-01-01
On August 3, 1977, the Soviet Union launched Cosmos 936, an unmanned spacecraft carrying biology and physics experiments from 9 countries, including both the Soviet Union and U.S. The launch marked the second time the Soviet Union has flown U.S. experiments aboard one of its spacecraft, the first being Cosmos 782 launched Nov. 25, 1975, which remained in orbit 19.5 days. Aboard Cosmos 936 were: 30 young male Wistar SPF rats, 20 of which was exposed to hypogravity during flight while the remainder were subjected to a l x g acceleration by continuous configuration; 2) experiments with plants and fruit flies; 3) radiation physics experiments; and 4) a heat convection experiment. After 18.5 days in orbit, the spacecraft landed in central Asia where a Soviet recovery team began experiment operations, including animal autopsies, within 4.5 hr of landing. Half of the animals were autopsied at the recovery site and the remainder returned to Moscow and allowed to readapt to terrestrial gravity for 25 days after which they, too, were autopsied. Specimens for U.S. were initially prepared at the recovery site or Soviet laboratories and transferred to U.S. laboratories for complete analyses. An overview of the mission focusing on preflight, on-orbit, and postflight activities pertinent to the seven U.S. experiments aboard Cosmos 936 will be presented.
NASA Technical Reports Server (NTRS)
Szuszczewicz, E. P.; Bateman, T. T.
1996-01-01
We have conducted a laboratory investigation into the physics of plasma expansions and their associated energization processes. We studied single- and multi-ion plasma processes in self-expansions, and included light and heavy ions and heavy/light mixtures to encompass the phenomenological regimes of the solar and polar winds and the AMPTE and CRRES chemical release programs. The laboratory experiments provided spatially-distributed time-dependent measurements of total plasma density, temperature, and density fluctuation power spectra with the data confirming the long-theorized electron energization process in an expanding cloud - a result that was impossible to determine in spaceborne experiments (as e.g., in the CRRES program). These results provided the missing link in previous laboratory and spaceborne programs. confirming important elements in our understanding of such solar-terrestrial processes as manifested in expanding plasmas in the solar wind (e.g., CMES) and in ionospheric outflow in plasmaspheric fluctuate refilling after a storm. The energization signatures were seen in an entire series of runs that varied the ion species (Ar', Xe', Kr' and Ne'), and correlative studies included spectral analyses of electrostatic waves collocated with the energized electron distributions. In all cases wave energies were most intense during the times in which the suprathermal populations were present, with wave intensity increasing with the intensity of the suprathermal electron population. This is consistent with theoretical expectations wherein the energization process is directly attributable to wave particle interactions. No resonance conditions were observed, in an overall framework in which the general wave characteristics were broadband with power decreasing with increasing frequency.
Miller, Nathan A; Chen, Xi; Stillman, Jonathon H
2014-01-01
In biological systems energy serves as the ultimate commodity, often determining species distributions, abundances, and interactions including the potential impact of invasive species on native communities. The Asian clam Potamocorbula amurensis invaded the San Francisco Estuary (SFE) in 1986 and is implicated in the decline of native fish species through resource competition. Using a combined laboratory/field study we examined how energy expenditure in this clam is influenced by salinity, temperature and food availability. Measures of metabolism were made at whole organism (metabolic rate) and biochemical (pyruvate kinase (PK) and citrate synthase (CS) enzyme activities) levels. We found in the field, over the course of a year, the ratio of PK to CS was typically 1.0 suggesting that aerobic and fermentative metabolism were roughly equivalent, except for particular periods characterized by low salinity, higher temperatures, and intermediate food availabilities. In a 30-day laboratory acclimation experiment, however, neither metabolic rate nor PK:CS ratio was consistently influenced by the same variables, though the potential for fermentative pathways did predominate. We conclude that in field collected animals, the addition of biochemical measures of energetic state provide little additional information to the previously measured whole organism metabolic rate. In addition, much of the variation in the laboratory remained unexplained and additional variables, including reproductive stage or body condition may influence laboratory-based results. Further study of adult clams must consider the role of organismal condition, especially reproductive state, in comparisons of laboratory experiments and field observations.
Deetz, C O; Scott, M G; Ladenson, J H; Seyoum, M; Hassan, A; Kreisel, F H; Nguyen, T T; Frater, J L
2013-02-01
With proper logistical support and sponsorship, a laboratory in an industrialized nation might be able to act as a reference laboratory for clinicians based in a developing country. We built on previous experience in the clinical laboratory to see whether a specialized histopathology service (hematopathology) could be provided to a developing country without the expertise or experience to do it in country. Over an 13-year period, 582 cases from 579 individuals were analyzed. Principal pathologic findings included acute leukemia in 84 cases (14%), dyspoiesis in one or more of the hematopoietic lineages in 65 cases (11%, including three cases with high-grade myelodysplasia), 23 cases (4%) with findings suspicious for a chronic myeloproliferative disorder, 35 cases (6%) with findings suspicious for a lymphoproliferative disorder, and infectious organisms (presumably Leishmania in most instances) in 9 (1%) of cases. Specimens from 45 cases (8%) were unsatisfactory owing to extreme hemodilution and/or specimen degeneration. With proper support, a medical laboratory in an industrialized nation may serve as a reference facility for a developing nation. The use of existing infrastructure may be remarkably effective to achieve optimal turnaround time. Although the lack of ancillary studies and follow-up biopsies limit the ability to achieve a definitive diagnosis in many cases, this must be viewed in the context of the limited ability to diagnose or manage hematopoietic neoplasia in developing nations. © 2012 Blackwell Publishing Ltd.
Inter-disciplinary Interactions in Underground Laboratories
NASA Astrophysics Data System (ADS)
Wang, J. S.; Bettini, A.
2010-12-01
Many of underground facilities, ranging from simple cavities to fully equipped laboratories, have been established worldwide (1) to evaluate the impacts of emplacing nuclear wastes in underground research laboratories (URLs) and (2) to measure rare physics events in deep underground laboratories (DULs). In this presentation, we compare similarities and differences between URLs and DULs in focus of site characterization, in quantification of quietness, and in improvement of signal to noise ratios. The nuclear waste URLs are located primarily in geological medium with potentials for slow flow/transport and long isolation. The URL medium include plastic salt, hard rock, soft clay, volcanic tuff, basalt and shale, at over ~500 m where waste repositories are envisioned to be excavated. The majority of URLs are dedicated facilities excavated after extensive site characterization. The focuses are on fracture distributions, heterogeneity, scaling, coupled processes, and other fundamental issues of earth sciences. For the physics DULs, the depth/overburden thickness is the main parameter that determines the damping of cosmic rays, and that, consequently, should be larger than, typically, 800m. Radioactivity from rocks, neutron flux, and radon gas, depending on local rock and ventilation conditions (largely independent of depth), are also characterized at different sites to quantify the background level for physics experiments. DULs have been constructed by excavating dedicated experimental halls and service cavities near to a road tunnel (horizontal access) or in a mine (vertical access). Cavities at shallower depths are suitable for experiments on neutrinos from artificial source, power reactors or accelerators. Rocks stability (depth dependent), safe access, and utility supply are among factors of main concerns for DULs. While the focuses and missions of URLs and DULs are very different, common experience and lessons learned may be useful for ongoing development of new facilities needed for next generation of underground assessments and experiments. There are growing interests in developing multi-disciplinary programs in DULs and some URLs have rooms set aside for physics experiments. Examples of DULs and URLs with interactions between earth sciences and physics include Gran Sasso in Italy, Kaimioka in Japan, Canfranc in Spain, LSBB in France, WIPP in New Mexico, DUSEL in South Dakota, and Jing Ping deep tunnel underground laboratory proposal in China. Instruments of common interests include interferometers, laser strain meters, seismic networks, tiltmeters, gravimeters, magnetometers, and other sensors to detect signals over different frequencies and water chemical analyses, including radon concentrations. Radon emissions are of concern for physics experiments and are studied as possible precursors of earthquakes. Measuring geoneutrino flux and energy spectrum in different locations is of interests to both physics and earth sciences. The contributions of U and Th in the crust and the mantle to the energy production in the Earth can be studied. One final note is that our ongoing reviews are aimed to contribute to technological innovations anticipated through inter-disciplinary interactions.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Tunable Optical Delay in Doppler-Broadened Cesium Vapor
2010-12-01
family v Acknowledgements I would like to express my sincere appreciation to my advisor Professor Glen Perram, for his guidance and support through the...including Eric Guild, Michael Cox, and Paul Stanczak. In the laboratory no experiment is complete without technical issues– I would like to thank laboratory...especially Greg Pitz and Cliff Sulham. I greatly appreciate Professor John Howell from the University of Rochester for his discussions on slow light in al
TPF coronagraph instrument design
NASA Technical Reports Server (NTRS)
Shaklan, S B.; Balasubramanian, K.; Ceperly, D.; Green, J.; Hoppe, D.; Lay, O. P.; Lisman, P. D.; Mouroulis, P. Z.
2005-01-01
For the past 2 years, NASA has invested substantial resources to study the design and performance of the Terrestrial Planet Finder Coronagraph (TPF-C). The work, led by the Jet Propulsion Laboratory with collaboration from Goddard Space Flight Center and several university and commercial entities, encompasses observatory design, performance modeling, materials characterization, primary mirror studies, and a significant technology development effort including a high-contrast imaging testbed that has achieved 1e-9 contrast in a laboratory experiment.
Rules of good practice in the care of laboratory animals used in biomedical research.
Valanzano, Angelina
2004-01-01
In recent years, the use of laboratory animals has decreased as a result of the adoption of alternative methods such as in vitro experiments and simulation studies. Nonetheless, animal models continue to be necessary in many fields of biomedical research, giving rise to ethical issues regarding the treatment of these animals. In the present work, a general overview of the rules of good practise in caring for laboratory animals is provided, focussing on housing conditions and the proper means of handling animals, including the importance of the relationship or "bond" between the researcher and the animal.
NASA Technical Reports Server (NTRS)
Trauger, John
2008-01-01
Topics include and overview, science objectives, study objectives, coronagraph types, metrics, ACCESS observatory, laboratory validations, and summary. Individual slides examine ACCESS engineering approach, ACCESS gamut of coronagraph types, coronagraph metrics, ACCESS Discovery Space, coronagraph optical layout, wavefront control on the "level playing field", deformable mirror development for HCIT, laboratory testbed demonstrations, high contract imaging with the HCIT, laboratory coronagraph contrast and stability, model validation and performance predictions, HCIT coronagraph optical layout, Lyot coronagraph on the HCIT, pupil mapping (PIAA), shaped pupils, and vortex phase mask experiments on the HCIT.
Analysis of pre-service physics teacher skills designing simple physics experiments based technology
NASA Astrophysics Data System (ADS)
Susilawati; Huda, C.; Kurniawan, W.; Masturi; Khoiri, N.
2018-03-01
Pre-service physics teacher skill in designing simple experiment set is very important in adding understanding of student concept and practicing scientific skill in laboratory. This study describes the skills of physics students in designing simple experiments based technologicall. The experimental design stages include simple tool design and sensor modification. The research method used is descriptive method with the number of research samples 25 students and 5 variations of simple physics experimental design. Based on the results of interviews and observations obtained the results of pre-service physics teacher skill analysis in designing simple experimental physics charged technology is good. Based on observation result, pre-service physics teacher skill in designing simple experiment is good while modification and sensor application are still not good. This suggests that pre-service physics teacher still need a lot of practice and do experiments in designing physics experiments using sensor modifications. Based on the interview result, it is found that students have high enough motivation to perform laboratory activities actively and students have high curiosity to be skilled at making simple practicum tool for physics experiment.
Searching for a dark photon with DarkLight
Corliss, R.
2016-07-30
Here, we describe the current status of the DarkLight experiment at Jefferson Laboratory. DarkLight is motivated by the possibility that a dark photon in the mass range 10 to 100 MeV/c 2 could couple the dark sector to the Standard Model. DarkLight will precisely measure electron proton scattering using the 100 MeV electron beam of intensity 5 mA at the Jefferson Laboratory energy recovering linac incident on a windowless gas target of molecular hydrogen. We will detect the complete final state including scattered electron, recoil proton, and e +e - pair. A phase-I experiment has been funded and is expectedmore » to take data in the next eighteen months. The complete phase-II experiment is under final design and could run within two years after phase-I is completed. The DarkLight experiment drives development of new technology for beam, target, and detector and provides a new means to carry out electron scattering experiments at low momentum transfers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Thomas Martin; Celik, Cihangir; McMahan, Kimberly L.
This benchmark experiment was conducted as a joint venture between the US Department of Energy (DOE) and the French Commissariat à l'Energie Atomique (CEA). Staff at the Oak Ridge National Laboratory (ORNL) in the US and the Centre de Valduc in France planned this experiment. The experiment was conducted on October 11, 2010 in the SILENE critical assembly facility at Valduc. Several other organizations contributed to this experiment and the subsequent evaluation, including CEA Saclay, Lawrence Livermore National Laboratory (LLNL), the Y-12 National Security Complex (NSC), Babcock International Group in the United Kingdom, and Los Alamos National Laboratory (LANL). Themore » goal of this experiment was to measure neutron activation and thermoluminescent dosimeter (TLD) doses from a source similar to a fissile solution critical excursion. The resulting benchmark can be used for validation of computer codes and nuclear data libraries as required when performing analysis of criticality accident alarm systems (CAASs). A secondary goal of this experiment was to qualitatively test performance of two CAAS detectors similar to those currently and formerly in use in some US DOE facilities. The detectors tested were the CIDAS MkX and the Rocky Flats NCD-91. These detectors were being evaluated to determine whether they would alarm, so they were not expected to generate benchmark quality data.« less
Curriculum Guide for Interpreter Training.
ERIC Educational Resources Information Center
Sternberg, Martin L. A.; And Others
Presented is a curriculum guide for the training of interpreters for the deaf consisting of 15 sections to be used as individual units or comprising a two part, 1 year course. The full course uses the text, Interpreting for Deaf People, as a guide and includes laboratory and practicum experiences. Curriculum guidelines include specific aims such…
NASA Technical Reports Server (NTRS)
Stern, J. C.; Navarro-Gonzales, R.; Freissinet, C.; McKay, C. P.; Archer, P. D., Jr.; Buch, A.; Brunner, A. E.; Coll, P.; Eigenbrode, J. L.; Franz, H. B.;
2014-01-01
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected both reduced and oxidized nitrogen-bearing compounds during the pyrolysis of surface materials at Yellowknife Bay in Gale Crater. Preliminary detections of nitrogen species include NO, HCN, ClCN, CH3CN, and TFMA (trifluoro-N-methyl-acetamide). Confirmation of indigenous Martian N-bearing compounds requires quantifying N contribution from the terrestrial derivatization reagents (e.g. N-methyl-N-tertbutyldimethylsilyltrifluoroacetamide, MTBSTFA and dimethylformamide, DMF) carried for SAM's wet chemistry experiment that contribute to the SAM background. Nitrogen species detected in the SAM solid sample analyses can also be produced during laboratory pyrolysis experiments where these reagents are heated in the presence of perchlorate, a compound that has also been identified by SAM in Mars solid samples.
Detection of soil microorganism in situ by combined gas chromatography mass spectrometry
NASA Technical Reports Server (NTRS)
Alexander, M.; Duxbury, J. M.; Francis, A. J.; Adamson, J.
1972-01-01
Experimental tests were made to determine whether analysis of volatile metabolic products, formed in situ, is a viable procedure for an extraterrestrial life detection system. Laboratory experiments, carried out under anaerobic conditions with addition of carbon source, extended to include a variety of soils and additional substrates. In situ experiments were conducted without amendment using a vacuum sampling system.
Logical Experimental Design and Execution in the Biomedical Sciences.
Holder, Daniel J; Marino, Michael J
2017-03-17
Lack of reproducibility has been highlighted as a significant problem in biomedical research. The present unit is devoted to describing ways to help ensure that research findings can be replicated by others, with a focus on the design and execution of laboratory experiments. Essential components for this include clearly defining the question being asked, using available information or information from pilot studies to aid in the design the experiment, and choosing manipulations under a logical framework based on Mill's "methods of knowing" to build confidence in putative causal links. Final experimental design requires systematic attention to detail, including the choice of controls, sample selection, blinding to avoid bias, and the use of power analysis to determine the sample size. Execution of the experiment is done with care to ensure that the independent variables are controlled and the measurements of the dependent variables are accurate. While there are always differences among laboratories with respect to technical expertise, equipment, and suppliers, execution of the steps itemized in this unit will ensure well-designed and well-executed experiments to answer any question in biomedical research. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Two Non Linear Dynamics Plasma Astrophysics Experiments At LANL
NASA Astrophysics Data System (ADS)
Intrator, T.; Weber, T.; Feng, Y.; Sears, J.; Smith, R. J.; Swan, H.; Hutchinson, T.; Boguski, J.; Gao, K.; Chapdelaine, L.; Dunn, J. P.
2013-12-01
Two laboratory experiments at Los Alamos National Laboratory (LANL) have been built to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics that include currents, MHD forces and instabilities, sheared flows and shocks, along with creation and annihilation of magnetic field. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, that are observed to kink, bounce, merge and reconnect, shred, and reform in complicated ways. We show recent movies from a large detailed data set that describe the 3D magnetic structure and helicity budget of a driven and dissipative system that spontaneously self saturates a kink instability. The Magnetized Shock Experiment (MSX) uses a Field reversed configuration (FRC) that is ejected at high speed and then stagnated onto a stopping mirror field, which drives a collisionless magnetized shock. A plasmoid accelerator will also access super critical shocks at much larger Alfven Mach numbers. Unique features include access to parallel, oblique and perpendicular shocks, in regions much larger than ion gyro radius and inertial length, large magnetic and fluid Reynolds numbers, and volume for turbulence.
NASA Astrophysics Data System (ADS)
Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.
2016-12-01
Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the volatility of the aerosol, and compare observed SOA yields to other OFR and smog chamber SOA generation methods. Additionally, estimates of OH radical exposure in the OFR during different vehicle experiments of varying fuel type and speed were observed to vary as determined from a high-NOx and variable humidity calibration set.
ERIC Educational Resources Information Center
School Science Review, 1982
1982-01-01
Describes laboratory procedures, demonstrations, and classroom materials, including "diet poker" (nutrition game); an experiment on enzyme characteristics; demonstrations of yeast anaerobic respiration and color preference in Calliphora larvae; method to extract eugenol from clove oil to show antibiotic properties; and Benedict's test.…
ERIC Educational Resources Information Center
Science and Children, 1981
1981-01-01
Reviews four science curriculum materials. "Human Issues in Science" presents social consequences of science and technological developments. "Experiences in Science" contains duplicating masters to supplement basic science programs. "Outdoor Areas as Learning Laboratories" includes activities for local environments. "The Science Cookbook" uses…
ERIC Educational Resources Information Center
Schlenker, Richard M.
This document presents a series of physics experiments which allow students to determine the value of unknown electrical capacitors. The exercises include both parallel and series connected capacitors. (SL)
ERIC Educational Resources Information Center
Foster, John; And Others
1986-01-01
Presents a set of laboratory experiments that can assist students in the detection of carbon dioxide. Offers a variation of the supported drop method of carbon dioxide detection that provides readily visible positive results. Includes background information on carbon dioxide. (ML)
ERIC Educational Resources Information Center
School Science Review, 1981
1981-01-01
Outlines several laboratory procedures and demonstrations including electric fields using sawdust, experiments with capacitors, particle spacing in a vapor and a liquid, metrology, momentum, Moire patterns and interference fringes, equipping for practical electronics, and using programmable calculators for rapid plotting of graphs. (DS)
ERIC Educational Resources Information Center
Knight, Ruth
1984-01-01
Discusses various ways in which snacks are used as the focal point of science lessons. They include writing a laboratory report after experimenting (and eating) lollipops and preparing peanut butter and jelly sandwiches following the exact directions supplied by students. (JN)
Kinetics of the Fading of Phenolphthalein in Alkaline Solution.
ERIC Educational Resources Information Center
Nicholson, Lois
1989-01-01
Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)
Recording 360 Degree Holograms in the Undergraduate Laboratory
ERIC Educational Resources Information Center
Stirn, Bradley A.
1975-01-01
Describes an experiment for recording holograms using a minimum of costly apparatus. Includes a description of apparatus and materials, the procedure for recording the hologram, the processing of the hologram, and the reconstruction of the image. (GS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, K.; Eudy, L.
This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.
Bullet Impact Safety Study of PBX-9502
NASA Astrophysics Data System (ADS)
Ferranti, Louis
2013-06-01
A new small arms capability for performing bullet impact testing into energetic materials has recently been activated at Lawrence Livermore National Laboratory located in the High Explosives Applications Facility (HEAF). The initial capability includes 0.223, 0.30, and 0.50 testing calibers with the flexibility to add other barrels in the near future. An initial test series has been performed using the 0.50 caliber barrel shooting bullets into targets using the TATB based explosive PBX-9502 and shows an expected non-violent reaction. Future experiments to evaluate the safety of new explosive formulations to bullet impact are planned. A highlight of the new capability along with discussion of the initial experiments to date will be presented including future areas of research. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)
NASA Technical Reports Server (NTRS)
Kakad, Yogendra P.
1992-01-01
This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.
The chemistry teaching laboratory: The student perspective
NASA Astrophysics Data System (ADS)
Polles, John Steven
In this study, I investigated the Student/learner's experiences in the chemistry teaching laboratory and the meaning that she or he derived from these experiences. This study sought to answer these questions: (1) What was the students experience in the teaching laboratory?, (2) What aspects of the laboratory experience did the student value?, and (3) What beliefs did the student hold concerning the role of the laboratory experience in developing her or his understanding of chemistry? Students involved in an introductory chemistry course at Purdue University were asked to complete a two-part questionnaire consisting of 16 scaled response and 5 free response items, and 685 did so. Fourteen students also participated in a semi-structured individual interview. The questionnaire and interview were designed to probe the students' perceived experience and answer the above questions. I found that students possess strong conceptions of the laboratory experience: a pre-conception that colors their experience from the outset, and a post-conception that is a mix of positive and negative reflections. I also found that the learner deeply holds an implicit value in the laboratory experience. The other major finding was that the students' lived experience is dramatically shaped or influenced by external agencies, primarily the faculty (and by extension the teaching assistants). There is much debate in the extant literature over the learning value of the science teaching laboratory, but it is all from the perspective of faculty, curriculum designers, and administrators. This study adds the students' voice to the argument.
NASA Astrophysics Data System (ADS)
Civitarese, O.; Fushimi, K. J.; Mosquera, M. E.
2016-12-01
Weakly interacting massive particles (WIMPs) are possible components of the Universe’s dark matter (DM). The detection of WIMPs is signaled by the recoil of the atomic nuclei which form a detector. CoGeNT at the Soudan Underground Laboratory (SUL) and DAMA at the Laboratori Nazionali del Gran Sasso (LNGS) have reported data on annual modulation of signals attributed to WIMPs. Both experiments are located in laboratories in the Northern Hemisphere. DM detectors are planned to operate (or already operate) in laboratories in the Southern Hemisphere, including SABRE at Stawell Underground Physics Laboratory (SUPL) in Australia, and DM-ICE in Antarctica. In this work we have analyzed the dependence of diurnal and annual modulation of signals, pertaining to the detection of WIMP, on the coordinates of the laboratory, for experiments which may be performed in the planned new Agua Negra Deep Experimental Site (ANDES) underground facility, to be built in San Juan, Argentina. We made predictions for NaI and Ge-type detectors placed in ANDES, to compare with DAMA, CoGeNT, SABRE and DM-ICE arrays, and found that the diurnal modulation of the signals, at the ANDES site, is amplified at its maximum value, both for NaI (Ge)-type detectors, while the annual modulation remains unaffected by the change in coordinates from north to south.
Experience of maintaining laboratory educational website's sustainability
Dimenstein, Izak B.
2016-01-01
Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular “niche of knowledge.” This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining “Grossing Technology in Surgical Pathology” (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal. PMID:27688928
Experience of maintaining laboratory educational website's sustainability.
Dimenstein, Izak B
2016-01-01
Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.
Garcia, Ediberto; Newfang, Daniel; Coyle, Jayme P; Blake, Charles L; Spencer, John W; Burrelli, Leonard G; Johnson, Giffe T; Harbison, Raymond D
2018-07-01
Three independently conducted asbestos exposure evaluations were conducted using wire gauze pads similar to standard practice in the laboratory setting. All testing occurred in a controlled atmosphere inside an enclosed chamber simulating a laboratory setting. Separate teams consisting of a laboratory technician, or technician and assistant simulated common tasks involving wire gauze pads, including heating and direct wire gauze manipulation. Area and personal air samples were collected and evaluated for asbestos consistent with the National Institute of Occupational Safety Health method 7400 and 7402, and the Asbestos Hazard Emergency Response Act (AHERA) method. Bulk gauze pad samples were analyzed by Polarized Light Microscopy and Transmission Electron Microscopy to determine asbestos content. Among air samples, chrysotile asbestos was the only fiber found in the first and third experiments, and tremolite asbestos for the second experiment. None of the air samples contained asbestos in concentrations above the current permissible regulatory levels promulgated by OSHA. These findings indicate that the level of asbestos exposure when working with wire gauze pads in the laboratory setting is much lower than levels associated with asbestosis or asbestos-related lung cancer and mesothelioma. Copyright © 2018. Published by Elsevier Inc.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Graves, Van; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high-Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×1012 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
A free-jet Hg target operating in a high magnetic field intersecting a high-power proton beam
NASA Astrophysics Data System (ADS)
Van Graves; Spampinato, Philip; Gabriel, Tony; Kirk, Harold; Simos, Nicholas; Tsang, Thomas; McDonald, Kirk; Peter Titus; Fabich, Adrian; Haseroth, Helmut; Lettry, Jacques
2006-06-01
A proof-of-principal experiment to investigate the interaction of a proton beam, high magnetic field, and high- Z target is planned to take place at CERN in early 2007. This experiment is part of the Muon Collider Collaboration, with participants from Brookhaven National Laboratory, Princeton University, Massachusetts Institute Of Technology, European Organization for Nuclear Research-CERN, Rutherford Appleton Laboratory, and Oak Ridge National Laboratory. An unconstrained mercury jet target system that interacts with a high power (1 MW) proton beam in a high magnetic field (15 T) is being designed. The Hg jet diameter is 1-cm with a velocity up to 20 m/s. A laser optical diagnostic system will be incorporated into the target design to permit observation of the dispersal of the jet resulting from interaction with a 24 GeV proton beam with up to 20×10 12 ppp. The target system includes instruments for sensing mercury vapor, temperature, flow rate, and sump tank level, and the means to position the jet relative to the magnetic axis of a solenoid and the proton beam. The design considerations for the system include all issues dealing with safely handling approximately 23 l of Hg, transporting the target system and the mercury to CERN, decommissioning the experiment, and returning the mildly activated equipment and Hg to the US.
Jiao, Jialong; Ren, Huilong; Adenya, Christiaan Adika; Chen, Chaohe
2017-01-01
Wave-induced motion and load responses are important criteria for ship performance evaluation. Physical experiments have long been an indispensable tool in the predictions of ship’s navigation state, speed, motions, accelerations, sectional loads and wave impact pressure. Currently, majority of the experiments are conducted in laboratory tank environment, where the wave environments are different from the realistic sea waves. In this paper, a laboratory tank testing system for ship motions and loads measurement is reviewed and reported first. Then, a novel large-scale model measurement technique is developed based on the laboratory testing foundations to obtain accurate motion and load responses of ships in realistic sea conditions. For this purpose, a suite of advanced remote control and telemetry experimental system was developed in-house to allow for the implementation of large-scale model seakeeping measurement at sea. The experimental system includes a series of technique sensors, e.g., the Global Position System/Inertial Navigation System (GPS/INS) module, course top, optical fiber sensors, strain gauges, pressure sensors and accelerometers. The developed measurement system was tested by field experiments in coastal seas, which indicates that the proposed large-scale model testing scheme is capable and feasible. Meaningful data including ocean environment parameters, ship navigation state, motions and loads were obtained through the sea trial campaign. PMID:29109379
Science in space with the Space Station
NASA Technical Reports Server (NTRS)
Banks, Peter M.
1987-01-01
The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.
[The need for experiments using primates from a scientific point of view].
Kaup, F J
2007-03-01
Concerning the public discussion on animal experiments using primates, various research fields are demonstrated where non-human primates are necessary for certain scientific reasons at this time. Non-human Primates are used in Germany mainly in regulatory toxicology and pharmaceutical safety studies.A small amount is disposed in different fields of biological or biomedical basic research. This includes in particular neurosciences and infection research. 2006 New and Old World monkeys were needed in Germany in 2005. No chimpanzees are used anymore as laboratory animals in Germany since many years. Several examples are presented to demonstrate that certain research fields need non-human primates as laboratory animals in the foreseeable future.
Hassoulas, J
2012-03-29
Extensive experimental research on various aspects of heart transplantation was undertaken during the first 2 decades. An overview of this work is presented, and some still unpublished work has been included. Experimental laboratory investigation was an integral activity of the cardiac transplantation programme at the University of Cape Town over these years, and has remained so ever since. These studies provided invaluable fundamental information upon which future clinical work was based. It is therefore necessary to briefly mention and discuss this information, most of which has been published in detail by the various investigators concerned.
Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines
NASA Astrophysics Data System (ADS)
Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.
2014-12-01
A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.
Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.
2014-01-01
Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier. PMID:24591509
Spell, Rachelle M; Guinan, Judith A; Miller, Kristen R; Beck, Christopher W
2014-01-01
Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are poorly defined. To guide future reform efforts in this area, we conducted a national survey of biology faculty members to determine 1) their definitions of authentic research experiences in laboratory classes, 2) the extent of authentic research experiences currently experienced in their laboratory classes, and 3) the barriers that prevent incorporation of authentic research experiences into these classes. Strikingly, the definitions of authentic research experiences differ among faculty members and tend to emphasize either the scientific process or the discovery of previously unknown data. The low level of authentic research experiences in introductory biology labs suggests that more development and support is needed to increase undergraduate exposure to research experiences. Faculty members did not cite several barriers commonly assumed to impair pedagogical reform; however, their responses suggest that expanded support for development of research experiences in laboratory classes could address the most common barrier.
2014-01-01
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world. PMID:24501431
Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B
2014-01-14
A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.
The Master level optics laboratory at the Institute of Optics
NASA Astrophysics Data System (ADS)
Adamson, Per
2017-08-01
The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.
QUAGMIRE v1.3: a quasi-geostrophic model for investigating rotating fluids experiments
NASA Astrophysics Data System (ADS)
Williams, P. D.; Haine, T. W. N.; Read, P. L.; Lewis, S. R.; Yamazaki, Y. H.
2009-04-01
The QUAGMIRE model has recently been made freely available for public use. QUAGMIRE is a quasi-geostrophic numerical model for performing fast, high-resolution simulations of multi-layer rotating annulus laboratory experiments on a desktop personal computer. This presentation describes the model's main features. QUAGMIRE uses a hybrid finite-difference/spectral approach to numerically integrate the coupled nonlinear partial differential equations of motion in cylindrical geometry in each layer. Version 1.3 implements the special case of two fluid layers of equal resting depths. The flow is forced either by a differentially rotating lid, or by relaxation to specified streamfunction or potential vorticity fields, or both. Dissipation is achieved through Ekman layer pumping and suction at the horizontal boundaries, including the internal interface. The effects of weak interfacial tension are included, as well as the linear topographic beta-effect and the quadratic centripetal beta-effect. Stochastic forcing may optionally be activated, to represent approximately the effects of random unresolved features. A leapfrog time stepping scheme is used, with a Robert filter. Flows simulated by the model agree well with those observed in the corresponding laboratory experiments.
Combined experiment Phase 2 data characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, M.S.; Shipley, D.E.; Young, T.S.
1995-11-01
The National Renewable Energy Laboratory`s ``Combined Experiment`` has yielded a large quantity of experimental data on the operation of a downwind horizontal axis wind turbine under field conditions. To fully utilize this valuable resource and identify particular episodes of interest, a number of databases were created that characterize individual data events and rotational cycles over a wide range of parameters. Each of the 59 five-minute data episodes collected during Phase 11 of the Combined Experiment have been characterized by the mean, minimum, maximum, and standard deviation of all data channels, except the blade surface pressures. Inflow condition, aerodynamic force coefficient,more » and minimum leading edge pressure coefficient databases have also been established, characterizing each of nearly 21,000 blade rotational cycles. In addition, a number of tools have been developed for searching these databases for particular episodes of interest. Due to their extensive size, only a portion of the episode characterization databases are included in an appendix, and examples of the cycle characterization databases are given. The search tools are discussed and the FORTRAN or C code for each is included in appendices.« less
A program for the investigation of the Multibody Modeling, Verification, and Control Laboratory
NASA Technical Reports Server (NTRS)
Tobbe, Patrick A.; Christian, Paul M.; Rakoczy, John M.; Bulter, Marlon L.
1993-01-01
The Multibody Modeling, Verification, and Control (MMVC) Laboratory is under development at NASA MSFC in Huntsville, Alabama. The laboratory will provide a facility in which dynamic tests and analyses of multibody flexible structures representative of future space systems can be conducted. The purpose of the tests are to acquire dynamic measurements of the flexible structures undergoing large angle motions and use the data to validate the multibody modeling code, TREETOPS, developed under sponsorship of NASA. Advanced control systems design and system identification methodologies will also be implemented in the MMVC laboratory. This paper describes the ground test facility, the real-time control system, and the experiments. A top-level description of the TREETOPS code is also included along with the validation plan for the MMVC program. Dynamic test results from component testing are also presented and discussed. A detailed discussion of the test articles, which manifest the properties of large flexible space structures, is included along with a discussion of the various candidate control methodologies to be applied in the laboratory.
Development of Accessible Laboratory Experiments for Students with Visual Impairments
ERIC Educational Resources Information Center
Kroes, KC; Lefler, Daniel; Schmitt, Aaron; Supalo, Cary A.
2016-01-01
The hands-on laboratory experiments are frequently what spark students' interest in science. Students who are blind or have low vision (BLV) typically do not get the same experience while participating in hands-on activities due to accessibility. Over the course of approximately nine months, common chemistry laboratory experiments were adapted and…
Do-It-Yourself Experiments for the Instructional Laboratory
ERIC Educational Resources Information Center
Craig, Norman C.; Hill, Cortland S.
2012-01-01
A new design for experiments in the general chemistry laboratory incorporates a "do-it-yourself" component for students. In this design, students perform proven experiments to gain experience with techniques for about two-thirds of a laboratory session and then spend the last part in the do-it-yourself component, applying the techniques to an…
A preliminary study of a cryogenic equivalence principle experiment on Shuttle
NASA Technical Reports Server (NTRS)
Everitt, C. W. F.; Worden, P. W., Jr.
1985-01-01
The Weak Equivalence Principle is the hypothesis that all test bodies fall with the same acceleration in the same gravitational field. The current limit on violations of the Weak Equivalence Principle, measured by the ratio of the difference in acceleration of two test masses to their average acceleration, is about 3 parts in one-hundred billion. It is anticipated that this can be improved in a shuttle experiment to a part in one quadrillion. Topics covered include: (1) studies of the shuttle environment, including interference with the experiment, interfacing to the experiment, and possible alternatives; (2) numerical simulations of the proposed experiment, including analytic solutions for special cases of the mass motion and preliminary estimates of sensitivity and time required; (3) error analysis of several noise sources such as thermal distortion, gas and radiation pressure effects, and mechanical distortion; and (4) development and performance tests of a laboratory version of the instrument.
Comparison of Some Radiation Exposures to Mars-Trip Level
2013-05-30
This graphic compares the radiation dose equivalent for several types of experiences, including a calculation for a trip from Earth to Mars based on measurements made by the RAD instrument shielded inside NASA Mars Science Laboratory spacecraft.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
...) using real-world crash data. Previous work on this subject included laboratory experiments that suggest... pairs. Procedural Matters How can I influence NHTSA's thinking on this subject? NHTSA welcomes public...
Introducing Undergraduates to a Research Laboratory
ERIC Educational Resources Information Center
Weinberg, Robert
1974-01-01
Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)
Proceedings of the 3rd Annual SCOLE Workshop
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr. (Compiler)
1987-01-01
Topics addressed include: modeling and controlling the Spacecraft Control Laboratory Experiment (SCOLE) configurations; slewing maneuvers; mathematical models; vibration damping; gravitational effects; structural dynamics; finite element method; distributed parameter system; on-line pulse control; stability augmentation; and stochastic processes.
NASA Astrophysics Data System (ADS)
Hsu, Pei-Ling; Roth, Wolff-Michael
2010-05-01
Science educators often suggest that students should learn science in ways and settings that bear family resemblance with “the real thing.” Internship in science laboratories constitutes one such way in which students may learn science and learn about science. However, very little is known about how participants experience a science internship in an “authentic” science setting (i.e., a science laboratory). Our study was designed to understand the nature of participants’ experiences of “authentic science.” Participants included 11 high school students, one high school teacher, five laboratory technicians, and two scientists. High school students practiced science alongside technicians (young scientists) in real ongoing projects of a biology laboratory. Data sources include 19 semi-structured and video-recorded interviews held after the 2-month science internship. Drawing on phenomenographic method, we identified five categories of experiential descriptions: (a) authenticity of university science, (b) channeling and connecting different communities, (c) advanced knowledge required in and lengthy procedures mobilized by university science, (d) self-exploration and reflection, and (e) comprehensive science learning. Each category’s meaning for participants and implications for science education are illustrated and discussed. This study demonstrates positive evidence of the science internship on helping students learn different dimensions of science and reflect their relationship with science. Suggestions on facilitating the partnership between secondary and postsecondary education are provided.
ERIC Educational Resources Information Center
Ural, Evrim
2016-01-01
The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…
NASA Astrophysics Data System (ADS)
Wang, Kaiwei; Wang, Xiaoping
2017-08-01
In order to enhance the practical education and hands-on experience of optoelectronics and eliminate the overlapping contents that previously existed in the experiments section adhering to several different courses, a lab course of "Applied Optoelectronics Laboratory" has been established in the College of Optical Science and Engineering, Zhejiang University. The course consists of two sections, i.e., basic experiments and project design. In section 1, basic experiments provide hands-on experience with most of the fundamental concept taught in the corresponding courses. These basic experiments including the study of common light sources such as He-Ne laser, semiconductor laser and solid laser and LED; the testing and analysis of optical detectors based on effects of photovoltaic effect, photoconduction effect, photo emissive effect and array detectors. In section 2, the course encourages students to build a team and establish a stand-alone optical system to realize specific function by taking advantage of the basic knowledge learned from section 1. Through these measures, students acquired both basic knowledge and the practical application skills. Moreover, interest in science has been developed among students.
NASA Astrophysics Data System (ADS)
Mattsson, Thomas R.; Townsend, Joshua P.; Shulenburger, Luke; Seagle, Christopher T.; Furnish, Michael D.; Fei, Yingwei
2017-06-01
For the past seven years, the Z Fundamental Science program has fostered collaboration between scientists at the national laboratories and academic research groups to utilize the Z-machine to explore properties of matter in extreme conditions. A recent example of this involves a collaboration between the Carnegie institution of Washington and Sandia to determine the properties of warm dense MgSiO3 by performing shock experiments using the Z-machine. To reach the higher densities desired, bridgmanite samples are being fabricated at Carnegie using multi-anvil presses. We will describe the preparations under way for these experiments, including pre-shot ab-initio calculations of the Hugoniot and the deployment of dual-layer flyer plates that allow for the measurement of sound velocities along the Hugoniot. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Developing teachers' understanding of molecular biology: Building a foundation for students.
Boulay, Rachel; Parisky, Alex; Campbell, Chris
2010-01-01
Molecular biology often uses participation in active research laboratories as a form of educational training. However, this approach to learning severely restricts access. As a way of addressing this need, the University of Hawaii launched a project to expand this model to include newly developed online training materials in addition to a hands-on laboratory experience. This paper further explores the process of material development and assessment plans. A pilot case study of a group of advanced biology teachers who embark on learning molecular biology over a four-month period through online training materials and working side-by-side with medical researchers in a laboratory is described. Teachers were positive in reporting about the many areas they gained instruction in although some feedback suggested that the initial online materials over-emphasised abstract concepts and laboratory techniques and did not adequately connect to the active research problems or local context of most interest to teachers and students. The experiences of the teachers are shared in an effort to gain insight on how teachers perceive their participation in the study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coffey, D. E.
2002-02-28
High Efficiency Particulate Air filtration is an essential component of the containment and ventilation systems supporting the research and development activities at the Oak Ridge National Laboratory. High Efficiency Particulate Air filters range in size from 7.6cm (3 inch) by 10.2 cm (4 inch) cylindrical shape filters to filter array assemblies up to 2.1 m (7 feet) high by 1.5 m (5 feet) wide. Spent filters are grouped by contaminates trapped in the filter media and become one of the components in the respective waste stream. Waste minimization and pollution prevention efforts are applied for both radiological and non-radiological applications.more » Radiological applications include laboratory hoods, glove boxes, and hot cells. High Efficiency Particulate Air filters also are generated from intake or pre-filtering applications, decontamination activities, and asbestos abatement applications. The disposal avenues include sanitary/industrial waste, Resource Conservation and Recovery Act and Toxic Substance Control Act, regulated waste, solid low-level waste, contact handled transuranic, and remote handled transuranic waste. This paper discusses characterization and operational experiences associated with the disposal of the spent filters across multiple applications.« less
Estimation and uncertainty analysis of dose response in an inter-laboratory experiment
NASA Astrophysics Data System (ADS)
Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.
2016-02-01
An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.
Marcucci, Emma C; Hynek, Brian M
2014-03-01
We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1-60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals.
Marcucci, Emma C; Hynek, Brian M
2014-01-01
We have completed laboratory experiments and thermochemical equilibrium models to investigate secondary mineral formation under conditions akin to volcanic, hydrothermal acid-sulfate weathering systems. Our research used the basaltic mineralogy at Cerro Negro Volcano, Nicaragua, characterized by plagioclase, pyroxene, olivine, and volcanic glass. These individual minerals and whole-rock field samples were reacted in the laboratory with 1 molal sulfuric acid at varying temperatures (65, 150, and 200°C), fluid:rock weight ratios (1:1, 4:1, and 10:1), and durations (1–60 days). Thermochemical equilibrium models were developed using Geochemist's Workbench. To understand the reaction products and fluids, we employed scanning electron microscopy/energy dispersive spectroscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectroscopy. The results of our experiments and models yielded major alteration minerals that include anhydrite, natroalunite, minor iron oxide, and amorphous Al-Si gel. We found that variations in experimental parameters did not drastically change the suite of minerals produced; instead, abundance, size, and crystallographic shape changed. Our results also suggest that it is essential to separate phases formed during experiments from those formed during fluid evaporation to fully understand the reaction processes. Our laboratory reacted and model predicted products are consistent with the mineralogy observed at places on Mars. However, our results indicate that determination of the formation conditions requires microscopic imagery and regional context, as well as a thorough understanding of contributions from both experiment precipitation and fluid evaporation minerals. PMID:26213665
Acceleration Environment of the International Space Station
NASA Technical Reports Server (NTRS)
McPherson, Kevin; Kelly, Eric; Keller, Jennifer
2009-01-01
Measurement of the microgravity acceleration environment on the International Space Station has been accomplished by two accelerometer systems since 2001. The Microgravity Acceleration Measurement System records the quasi-steady microgravity environment, including the influences of aerodynamic drag, vehicle rotation, and venting effects. Measurement of the vibratory/transient regime, comprised of vehicle, crew, and equipment disturbances, has been accomplished by the Space Acceleration Measurement System-II. Until the arrival of the Columbus Orbital Facility and the Japanese Experiment Module, the location of these sensors, and therefore, the measurement of the microgravity acceleration environment, has been limited to within the United States Laboratory. Japanese Aerospace Exploration Agency has developed a vibratory acceleration measurement system called the Microgravity Measurement Apparatus which will be deployed within the Japanese Experiment Module to make distributed measurements of the Japanese Experiment Module's vibratory acceleration environment. Two Space Acceleration Measurement System sensors from the United States Laboratory will be re-deployed to support vibratory acceleration data measurement within the Columbus Orbital Facility. The additional measurement opportunities resulting from the arrival of these new laboratories allows Principal Investigators with facilities located in these International Space Station research laboratories to obtain microgravity acceleration data in support of their sensitive experiments. The Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, has supported acceleration measurement systems and the microgravity scientific community through the processing, characterization, distribution, and archival of the microgravity acceleration data obtained from the International Space Station acceleration measurement systems. This paper summarizes the PIMS capabilities available to the International Space Station scientific community, introduces plans for extending microgravity analysis results to the newly arrived scientific laboratories, and provides summary information for known microgravity environment disturbers.
Keşapli, Mustafa; Aydin, Özgür; Esen, Hatice; Yeğin, Ayşenur; Güngör, Faruk; Yilmaz, Necat
2016-01-01
Summary Background After the introduction of modern laboratory instruments and information systems, preanalytic phase is the new field of battle. Errors in preanalytical phase account for approximately half of total errors in clinical laboratory. The objective of this study was to share an experience of an education program that was believed to be successful in decreasing the number of rejected samples received from the Emergency Department (ED). Methods An education program about laboratory procedures, quality requirements in the laboratory, patient and health-care worker safety was planned by the quality team to be performed on 36 people who were responsible for sample collection in the ED. A questionary which included 11 questions about the preanalytic phase was applied to all the attendees before and after training. The number of rejected samples per million was discovered with right proportion account over the number of accepted and rejected samples to laboratory after and before the training period. Results Most of the attendees were nurses (n: 22/55%), with over 12 years of experience in general and 2–4 years experience in the ED. Knowledge level of the attendees was calculated before training as 58.9% and after training as 91.8%. While the total rate of sample rejection before training was 2.35% (sigma value 3.37–3.50), the rate after training was 1.56% (sigma value 3.62–3.75). Conclusions Increasing the knowledge of staff has a direct positive impact on the preanalytic phase. The application of a pre-test was observed to be a feasible tool to shape group specific education programs. PMID:28356887
Aykal, Güzin; Keşapli, Mustafa; Aydin, Özgür; Esen, Hatice; Yeğin, Ayşenur; Güngör, Faruk; Yilmaz, Necat
2016-09-01
After the introduction of modern laboratory instruments and information systems, preanalytic phase is the new field of battle. Errors in preanalytical phase account for approximately half of total errors in clinical laboratory. The objective of this study was to share an experience of an education program that was believed to be successful in decreasing the number of rejected samples received from the Emergency Department (ED). An education program about laboratory procedures, quality requirements in the laboratory, patient and health-care worker safety was planned by the quality team to be performed on 36 people who were responsible for sample collection in the ED. A questionary which included 11 questions about the preanalytic phase was applied to all the attendees before and after training. The number of rejected samples per million was discovered with right proportion account over the number of accepted and rejected samples to laboratory after and before the training period. Most of the attendees were nurses (n: 22/55%), with over 12 years of experience in general and 2-4 years experience in the ED. Knowledge level of the attendees was calculated before training as 58.9% and after training as 91.8%. While the total rate of sample rejection before training was 2.35% (sigma value 3.37-3.50), the rate after training was 1.56% (sigma value 3.62-3.75). Increasing the knowledge of staff has a direct positive impact on the preanalytic phase. The application of a pre-test was observed to be a feasible tool to shape group specific education programs.
Kennedy Space Center Launch and Landing Support
NASA Technical Reports Server (NTRS)
Wahlberg, Jennifer
2010-01-01
The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.
Mizumachi, Hideyuki; Sakuma, Megumi; Ikezumi, Mayu; Saito, Kazutoshi; Takeyoshi, Midori; Imai, Noriyasu; Okutomi, Hiroko; Umetsu, Asami; Motohashi, Hiroko; Watanabe, Mika; Miyazawa, Masaaki
2018-05-03
The epidermal sensitization assay (EpiSensA) is an in vitro skin sensitization test method based on gene expression of four markers related to the induction of skin sensitization; the assay uses commercially available reconstructed human epidermis. EpiSensA has exhibited an accuracy of 90% for 72 chemicals, including lipophilic chemicals and pre-/pro-haptens, when compared with the results of the murine local lymph node assay. In this work, a ring study was performed by one lead and two naive laboratories to evaluate the transferability, as well as within- and between-laboratory reproducibilities, of EpiSensA. Three non-coded chemicals (two lipophilic sensitizers and one non-sensitizer) were tested for the assessment of transferability and 10 coded chemicals (seven sensitizers and three non-sensitizers, including four lipophilic chemicals) were tested for the assessment of reproducibility. In the transferability phase, the non-coded chemicals (two sensitizers and one non-sensitizer) were correctly classified at the two naive laboratories, indicating that the EpiSensA protocol was transferred successfully. For the within-laboratory reproducibility, the data generated with three coded chemicals tested in three independent experiments in each laboratory gave consistent predictions within laboratories. For the between-laboratory reproducibility, 9 of the 10 coded chemicals tested once in each laboratory provided consistent predictions among the three laboratories. These results suggested that EpiSensA has good transferability, as well as within- and between-laboratory reproducibility. Copyright © 2018 John Wiley & Sons, Ltd.
Project management: importance for diagnostic laboratories.
Croxatto, A; Greub, G
2017-07-01
The need for diagnostic laboratories to improve both quality and productivity alongside personnel shortages incite laboratory managers to constantly optimize laboratory workflows, organization, and technology. These continuous modifications of the laboratories should be conducted using efficient project and change management approaches to maximize the opportunities for successful completion of the project. This review aims at presenting a general overview of project management with an emphasis on selected critical aspects. Conventional project management tools and models, such as HERMES, described in the literature, associated personal experience, and educational courses on management have been used to illustrate this review. This review presents general guidelines of project management and highlights their importance for microbiology diagnostic laboratories. As an example, some critical aspects of project management will be illustrated with a project of automation, as experienced at the laboratories of bacteriology and hygiene of the University Hospital of Lausanne. It is important to define clearly beforehand the objective of a project, its perimeter, its costs, and its time frame including precise duration estimates of each step. Then, a project management plan including explanations and descriptions on how to manage, execute, and control the project is necessary to continuously monitor the progression of a project to achieve its defined goals. Moreover, a thorough risk analysis with contingency and mitigation measures should be performed at each phase of a project to minimize the impact of project failures. The increasing complexities of modern laboratories mean clinical microbiologists must use several management tools including project and change management to improve the outcome of major projects and activities. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...
Facility for the evaluation of space communications and related systems
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.
1995-01-01
NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.
The Science of Detached Bridgman Growth and Solutocapillary Convection in Solid Solution Crystals
NASA Technical Reports Server (NTRS)
Szofran, F. R.; Volz, M. P.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.
2001-01-01
Bridgman and Float-zone crystal growth experiments are planned for NASA's First Materials Science Research Rack using the European Space Agency's Materials Science Laboratory with the Low Gradient Furnace (LGF) and Float Zone Furnace with Rotating Magnetic Field (FMF) inserts, respectively. Samples will include germanium and germanium-silicon alloys with up to 10 atomic percent silicon. The Bridgman part of the investigation includes detached growth samples and so there will be a solid-liquid-gas tri-junction in those experiments just as there will be in all float-zone experiments. There are other similarities as well as significant differences between the types of growth that will be discussed. The presentation will call attention to the reasons that experiments in microgravity will provide information unattainable from Earth-based experiments.
NASA Astrophysics Data System (ADS)
Warneke, C.; Schwarz, J. P.; Yokelson, R. J.; Roberts, J. M.; Koss, A.; Coggon, M.; Yuan, B.; Sekimoto, K.
2017-12-01
A combination of a warmer, drier climate with fire-control practices over the last century have produced a situation in which we can expect more frequent fires and fires of larger magnitude in the Western U.S. and Canada. There are urgent needs to better understand the impacts of wildfire and biomass burning (BB) on the atmosphere and climate system, and for policy-relevant science to aid in the process of managing fires. The FIREX (Fire Influence on Regional and Global Environment Experiment) research effort is a multi-year, multi-agency measurement campaign focused on the impact of BB on climate and air quality from western North American wild fires, where research takes place on scales ranging from the flame-front to the global atmosphere. FIREX includes methods development and small- and large-scale laboratory and field experiments. FIREX will include: emission factor measurements from typical North American fuels in the fire science laboratory in Missoula, Montana; mobile laboratory deployments; ground site measurements at sites influenced by BB from several western states. The main FIREX effort will be a large field study with multiple aircraft and mobile labs in the fire season of 2019. One of the main advances of FIREX is the availability of various new measurement techniques that allows for smoke evaluation in unprecedented detail. The first major effort of FIREX was the fire science laboratory measurements in October 2016, where a large number of previously understudied Nitrogen containing volatile organic compounds (NVOCs) were measured using H3O+CIMS and I-CIMS instruments. The contribution of NVOCs to the total reactive Nitrogen budget and the relationship to the Nitrogen content of the fuel are investigated.
How can plants tell which way is up?
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Weise, S. E.; Kiss, H. G.
2000-01-01
Many people think of plants as essentially sessile organisms that do not actively respond to their environment. What could be further from the truth! In fact, plants are capable of a variety of movements, including the dramatic nastic responses (such as Venus fly trap closure) and the less sensational tropisms. These latter movements are directed growth responses to some type of external stimulus such as gravity (gravitropism, formerly known as geotropism) or light (phototropism). This paper describes some interesting exercises that are derived from recent work, including research that has led to experiments performed on two Space Shuttle missions in 1997 (Kiss et al. 1998). The study of tropisms can be a useful way to introduce students to plant biology in high school and introductory college courses. In our experience, students are fascinated by plant movements when they are presented in lectures and find laboratory experiences on this topic quite engaging. Laboratory work on plant tropisms can also be used to introduce important concepts in science such as hypothesis testing, quantitative analysis, and the use of statistics. The laboratory exercises described in this paper involve the higher plant Arabidopsis thaliana, which has become an important organism in molecular biology research and is the focus of an international plant genome project. Based on the material presented here, a number of plant gravitropism laboratory exercises with Arabidopsis that are simple in terms of equipment/materials and procedures can be developed. These exercises are robust in that they work well even in the hands of introductory students, and they can be expanded according to the individual instructor's needs. This paper describes two exercises that have been performed by beginning college students, and these exercises can easily be performed in biology classes in most high school settings.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
NASA Technical Reports Server (NTRS)
Fanale, F. P.; Kaula, W. M.; Mccord, T. B.; Trombka, J. L.
1977-01-01
Topics discussed include the need for: the conception and development of a wide spectrum of experiments, instruments, and vehicles in order to derive the proper return from an exploration program; the effective use of alternative methods of data acquisition involving ground-based, airborne and near Earth orbital techniques to supplement spacraft mission; and continued reduction and analysis of existing data including laboratory and theoretical studies in order to benefit fully from experiments and to build on the past programs toward a logical and efficient exploration of the solar system.
Janosko, Krisztina; Holbrook, Michael R; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B; Kuhn, Jens H; Lackemeyer, Matthew G
2016-10-03
Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure ("space") suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.
Janosko, Krisztina; Holbrook, Michael R.; Adams, Ricky; Barr, Jason; Bollinger, Laura; Newton, Je T'aime; Ntiforo, Corrie; Coe, Linda; Wada, Jiro; Pusl, Daniela; Jahrling, Peter B.; Kuhn, Jens H.; Lackemeyer, Matthew G.
2016-01-01
Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits. PMID:27768063
The Mexican Axolotl in Schools
ERIC Educational Resources Information Center
Thomas, R. M.
1976-01-01
Suggests and describes laboratory activities in which the Mexican axolotl (Ambystoma mexicanum Shaw) is used, including experiments in embryology and early development, growth and regeneration, neoteny and metamorphosis, genetics and coloration, anatomy and physiology, and behavior. Discusses care and maintenance of animals. (CS)
Striking a Balance: Experiment and Concept in Undergraduate Inorganic Chemistry.
ERIC Educational Resources Information Center
Frey, John E.
1990-01-01
Described is an inorganic chemistry course based on the premise that a balanced understanding of inorganic chemistry requires knowledge of the experimental, theoretical, and technological aspects of the subject. A detailed description of lectures and laboratories is included. (KR)
Sex in Millipedes: Laboratory Studies on Sexual Selection.
ERIC Educational Resources Information Center
Telford, S. R.; Dangerfield, J. M.
1990-01-01
Activities that consider the courtship behavior and mating patterns of millipedes are presented. The functional significance of a behavior that has evolved through indirect competition between males is discussed. The procedures for seven experiments, results, and interpretations are included. (KR)
Proceedings of the Thirteenth Annual Software Engineering Workshop
NASA Technical Reports Server (NTRS)
1988-01-01
Topics covered in the workshop included studies and experiments conducted in the Software Engineering Laboratory (SEL), a cooperative effort of NASA Goddard Space Flight Center, the University of Maryland, and Computer Sciences Corporation; software models; software products; and software tools.
Introductory Laboratory Exercises in Radiobiology
ERIC Educational Resources Information Center
Williams, J. R. Parry; Servant, D. M.
1970-01-01
Describes experiments suitable for introducing use of radioisotopes in biology. Includes demonstrations of tracing food chains, uptake of ions by plants, concentration of elements by insects, tracing photosynthetic reactions, activation analysis of copper, and somatic and genetic effects. Uses autoradiographic and counting techniques. (AL)
ERIC Educational Resources Information Center
Klein, Jessie W.; Patev, Paul
1998-01-01
Presents three experiments to introduce students to different kinds of chromatography: (1) paper chromatography; (2) gel filtration chromatography; and (3) reverse-phase liquid chromatography. Written in the form of a laboratory manual, explanations of each of the techniques, materials needed, procedures, and a glossary are included. (PVD)
Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To addre...
Fermentation: From Sensory Experience to Conceptual Understanding
ERIC Educational Resources Information Center
Moore, Eugene B.
1977-01-01
Presented is a laboratory exercise that utilizes the natural yeast carbonation method of making homemade root beer to study fermentation and the effect of variables upon the fermentation process. There are photographs, a sample data sheet, and procedural hints included. (Author/MA)
Synthesis of Aspirin: A General Chemistry Experiment.
ERIC Educational Resources Information Center
Olmsted, John III
1998-01-01
Describes the redesign of the first semester general chemistry laboratory at the college level. An organic component is included in the redesign and it provides students with explicit examples of several types of operations in which chemists engage. Contains 16 references. (DDR)
NASA Astrophysics Data System (ADS)
Krot, Yury; Beliaev, Boris; Katkovsky, Leonid
2016-10-01
Aerospace Research Department of the Institute of Applied Physical Problems at Belarusian State University has developed a prototype of the optical payload intended for a space experiment on the ISS board. The prototype includes four optical modules for the night glows observation, in particular spatial-brightness and spectral characteristics in the altitude range of 80-320 km. Objects of the interest are emitting top layers of the atmosphere including exited OH radicals, atomic and molecular oxygen and sodium layers. The goal of the space experiment is a research of night glows over different regions of the Earth and a connection with natural disasters like earthquakes, cyclones, etc. Two optical modules for spatial distribution of atomic oxygen layers along the altitude consist of input lenses, spectral interferential filters and line CCD detectors. The optical module for registration of exited OH radical emissions is formed from CCD array spectrometer. The payload includes also a panchromatic (400-900 nm) high sensitive imaging camera for observing of the glows general picture. The optical modules of the prototype have been tested and general optical characteristics were determined in laboratory conditions. A solution of an astigmatism reducing of a concave diffraction grating and a method of the second diffraction order correction were applied and improved spectrometer's optical characteristics. Laboratory equipment and software were developed to imitate a dynamic scene of the night glows in laboratory conditions including an imitation of linear spectra and the spatial distribution of emissions.
Spaceflight payload design flight experience G-408
NASA Technical Reports Server (NTRS)
Durgin, William W.; Looft, Fred J.; Sacco, Albert, Jr.; Thompson, Robert; Dixon, Anthony G.; Roberti, Dino; Labonte, Robert; Moschini, Larry
1992-01-01
Worcester Polytechnic Institute's first payload of spaceflight experiments flew aboard Columbia, STS-40, during June of 1991 and culminated eight years of work by students and faculty. The Get Away Special (GAS) payload was installed on the GAS bridge assembly at the aft end of the cargo bay behind the Spacelab Life Sciences (SLS-1) laboratory. The Experiments were turned on by astronaut signal after reaching orbit and then functioned for 72 hours. Environmental and experimental measurements were recorded on three cassette tapes which, together with zeolite crystals grown on orbit, formed the basis of subsequent analyses. The experiments were developed over a number of years by undergraduate students meeting their project requirements for graduation. The experiments included zeolite crystal growth, fluid behavior, and microgravity acceleration measurement in addition to environmental data acquisition. Preparation also included structural design, thermal design, payload integration, and experiment control. All of the experiments functioned on orbit and the payload system performed within design estimates.
The Sanford Underground Research Facility at Homestake (SURF)
Lesko, K. T.
2015-03-24
The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the Majorana Demonstrator neutrinoless double-beta decay experiment and the Berkeley and CUBED low-background counters. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark mattermore » experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability. These plans include a Generation-2 Dark Matter experiment and the US flagship neutrino experiment, LBNE.« less
ISO/IEC 17025 laboratory accreditation of NRC Acoustical Standards Program
NASA Astrophysics Data System (ADS)
Wong, George S. K.; Wu, Lixue; Hanes, Peter; Ohm, Won-Suk
2004-05-01
Experience gained during the external accreditation of the Acoustical Standards Program at the Institute for National Measurement Standards of the National Research Council is discussed. Some highlights include the preparation of documents for calibration procedures, control documents with attention to reducing future paper work and the need to maintain documentation or paper trails to satisfy the external assessors. General recommendations will be given for laboratories that are contemplating an external audit in accordance to the requirements of ISO/IEC 17025.
Astrophysical particle acceleration mechanisms in colliding magnetized laser-produced plasmas
Fox, W.; Park, J.; Deng, W.; ...
2017-08-11
Significant particle energization is observed to occur in numerous astrophysical environments, and in the standard models, this acceleration occurs alongside energy conversion processes including collisionless shocks or magnetic reconnection. Recent platforms for laboratory experiments using magnetized laser-produced plasmas have opened opportunities to study these particle acceleration processes in the laboratory. Through fully kinetic particle-in-cell simulations, we investigate acceleration mechanisms in experiments with colliding magnetized laser-produced plasmas, with geometry and parameters matched to recent high-Mach number reconnection experiments with externally controlled magnetic fields. 2-D simulations demonstrate significant particle acceleration with three phases of energization: first, a “direct” Fermi acceleration driven bymore » approaching magnetized plumes; second, x-line acceleration during magnetic reconnection of anti-parallel fields; and finally, an additional Fermi energization of particles trapped in contracting and relaxing magnetic islands produced by reconnection. Furthermore, the relative effectiveness of these mechanisms depends on plasma and magnetic field parameters of the experiments.« less
Virtual geotechnical laboratory experiments using a simulator
NASA Astrophysics Data System (ADS)
Penumadu, Dayakar; Zhao, Rongda; Frost, David
2000-04-01
The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.
Gude, Wouter T; van Engen-Verheul, Mariëtte M; van der Veer, Sabine N; de Keizer, Nicolette F; Peek, Niels
2017-04-01
To identify factors that influence the intentions of health professionals to improve their practice when confronted with clinical performance feedback, which is an essential first step in the audit and feedback mechanism. We conducted a theory-driven laboratory experiment with 41 individual professionals, and a field study in 18 centres in the context of a cluster-randomised trial of electronic audit and feedback in cardiac rehabilitation. Feedback reports were provided through a web-based application, and included performance scores and benchmark comparisons (high, intermediate or low performance) for a set of process and outcome indicators. From each report participants selected indicators for improvement into their action plan. Our unit of observation was an indicator presented in a feedback report (selected yes/no); we considered selecting an indicator to reflect an intention to improve. We analysed 767 observations in the laboratory experiment and 614 in the field study, respectively. Each 10% decrease in performance score increased the probability of an indicator being selected by 54% (OR, 1.54; 95% CI 1.29% to 1.83%) in the laboratory experiment, and 25% (OR, 1.25; 95% CI 1.13% to 1.39%) in the field study. Also, performance being benchmarked as low and intermediate increased this probability in laboratory settings. Still, participants ignored the benchmarks in 34% (laboratory experiment) and 48% (field study) of their selections. When confronted with clinical performance feedback, performance scores and benchmark comparisons influenced health professionals' intentions to improve practice. However, there was substantial variation in these intentions, because professionals disagreed with benchmarks, deemed improvement unfeasible or did not consider the indicator an essential aspect of care quality. These phenomena impede intentions to improve practice, and are thus likely to dilute the effects of audit and feedback interventions. NTR3251, pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Massambu, Charles; Mwangi, Christina
2009-06-01
The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.
Reference earth orbital research and applications investigations (blue book). Volume 3: Physics
NASA Technical Reports Server (NTRS)
1971-01-01
The definition of physics experiments to be conducted aboard the space station is presented. The four functional program elements are: (1) space physics research laboratory, (2) plasma physics and environmental perturbation laboratory, (3) cosmic ray physics laboratory, and (4) physics and chemistry laboratory. The experiments to be conducted by each facility are defined and the crew member requirements to accomplish the experiments are presented.
Nutrient fluxes across sediment-water interface in Bohai Bay Coastal Zone, China.
Mu, Di; Yuan, Dekui; Feng, Huan; Xing, Fangwei; Teo, Fang Yenn; Li, Shuangzhao
2017-01-30
Sediment cores and overlying water samples were collected at four sites in Tianjin Coastal Zone, Bohai Bay, to investigate nutrient (N, P and Si) exchanges across the sediment-water interface. The exchange fluxes of each nutrient species were estimated based on the porewater profiles and laboratory incubation experiments. The results showed significant differences between the two methods, which implied that molecular diffusion alone was not the dominant process controlling nutrient exchanges at these sites. The impacts of redox conditions and bioturbation on the nutrient fluxes were confirmed by the laboratory incubation experiments. The results from this study showed that the nutrient fluxes measured directly from the incubation experiment were more reliable than that predicted from the porewater profiles. The possible impacts causing variations in the nutrient fluxes include sewage discharge and land reclamation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Astronaut James S. Voss Performs Tasks in the Destiny Laboratory
NASA Technical Reports Server (NTRS)
2001-01-01
Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.
Effects of the chemical environment on the spectroscopic properties of clays: Applications for Mars
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Pieters, Carle M.
1992-01-01
Laboratory studies of Mars soil analogs pose unique problems, since soils interact readily with their environment and exhibit variable characteristics depending on the environment. We have performed a series of experiments focusing on the spectral properties of clays and how they vary as a function of composition and environment, including examination of fundamental as well as overtone absorptions, that occur in the mid- and near-IR, respectively. Smectite clays have been selected in our laboratory experiments as a primary surface analog for Mars because of their compatibility with results of the Viking biology experiments, their stability under current martian conditions, and their compatibility with reflectance spectra of Mars. We prepared a number of monoionic montmorillonites in order to examine the influence of cations on the water molecules in the clay interlayer region. Moessbauer spectra of several montmorillonites with variable amounts of interlayer iron confirm the presence of ferrihydrite.
Factors that impact clinical laboratory scientists' commitment to their work organizations.
Bamberg, Richard; Akroyd, Duane; Moore, Ti'eshia M
2008-01-01
To assess the predictive ability of various aspects of the work environment for organizational commitment. A questionnaire measuring three dimensions of organizational commitment along with five aspects of work environment and 10 demographic and work setting characteristics was sent to a national, convenience sample of clinical laboratory professionals. All persons obtaining the CLS certification by NCA from January 1, 1997 to December 31, 2006. Only respondents who worked full-time in a clinical laboratory setting were included in the database. Levels of affective, normative, and continuance organizational commitment, organizational support, role clarity, role conflict, transformational leadership behavior of supervisor, and organizational type, total years work experience in clinical laboratories, and educational level of respondents. Questionnaire items used either a 7-point or 5-point Likert response scale. Based on multiple regression analysis for the 427 respondents, organizational support and transformational leadership behavior were found to be significant positive predictors of affective and normative organizational commitment. Work setting (non-hospital laboratory) and total years of work experience in clinical laboratories were found to be significant positive predictors of continuance organizational commitment. Overall the organizational commitment levels for all three dimensions were at the neutral rating or below in the slightly disagree range. The results indicate a less than optimal level of organizational commitment to employers, which were predominantly hospitals, by CLS practitioners. This may result in continuing retention problems for hospital laboratories. The results offer strategies for improving organizational commitment via the significant predictors.
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
A Two-Week Guided Inquiry Protein Separation and Detection Experiment for Undergraduate Biochemistry
ERIC Educational Resources Information Center
Carolan, James P.; Nolta, Kathleen V.
2016-01-01
A laboratory experiment for teaching protein separation and detection in an undergraduate biochemistry laboratory course is described. This experiment, performed in two, 4 h laboratory periods, incorporates guided inquiry principles to introduce students to the concepts behind and difficulties of protein purification. After using size-exclusion…
ERIC Educational Resources Information Center
Simon, Nicole A.
2013-01-01
Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…
ERIC Educational Resources Information Center
Rowe, Laura
2017-01-01
An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…
An Example of a Laboratory Teaching Experience in a Professional Year (Plan B) Program
ERIC Educational Resources Information Center
Miller, P. J.; And Others
1978-01-01
A laboratory teaching experience (L.T.E.) was designed to focus on three teaching behaviors. It was recognized that a behavioral approach to teaching simplified its complexity by isolating specific teaching behaviors. Discusses the development and evaluation of the laboratory teaching experience. (Author/RK)
ERIC Educational Resources Information Center
Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.
2004-01-01
Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…
An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin
ERIC Educational Resources Information Center
Bailey, James A.
2011-01-01
Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…
Lewis, Russell L; Seal, Erin L; Lorts, Aimee R; Stewart, Amanda L
2017-11-01
The undergraduate biochemistry laboratory curriculum is designed to provide students with experience in protein isolation and purification protocols as well as various data analysis techniques, which enhance the biochemistry lecture course and give students a broad range of tools upon which to build in graduate level laboratories or once they begin their careers. One of the most common biochemistry protein purification experiments is the isolation and characterization of cytochrome c. Students across the country purify cytochrome c, lysozyme, or some other well-known protein to learn these common purification techniques. What this series of experiments lacks is the use of sophisticated instrumentation that is rarely available to undergraduate students. To give students a broader background in biochemical spectroscopy techniques, a new circular dichroism (CD) laboratory experiment was introduced into the biochemistry laboratory curriculum. This CD experiment provides students with a means of conceptualizing the secondary structure of their purified protein, and assessments indicate that students' understanding of the technique increased significantly. Students conducted this experiment with ease and in a short time frame, so this laboratory is conducive to merging with other data analysis techniques within a single laboratory period. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):515-520, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.
Yeast Acid Phosphatase in a Student Laboratory.
ERIC Educational Resources Information Center
Barbaric, Sloeodan; Ries, Blanka
1988-01-01
Examines the influence of enzyme and substrate concentrations, pH, temperature, and inhibitors on catalytic activity. Follows the influence of different phosphate concentrations in the growth medium on enzyme activity. Studies regulation of enzyme synthesis by repression. Includes methodology for six experiments. (MVL)
Cardiac Muscle Studies with Rat Ventricular Strips
ERIC Educational Resources Information Center
Whitten, Bert K.; Faleschini, Richard J.
1977-01-01
Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…
ERIC Educational Resources Information Center
Whitford, Dennis J.; Eisman, Greg A.
1997-01-01
The U.S. Naval Academy oceanography major is bucking the nationwide trend toward declining enrollments in science majors study tracks. Nontraditional approaches used include interdisciplinary and applied science, significant instructor experience in applying the major outside academia, hands-on laboratories in all classes, and an oceanography…
Development of germ-free plants and tissue culture
NASA Technical Reports Server (NTRS)
Venketeswaran, S.
1973-01-01
The botanical program is reported for experiments performed at the Lunar Receiving Laboratory. Papers prepared during this program are listed. The studies reported include: tissues cultured on various mediums, nutritional studies, preparation of plant cultures for Apollo 15, and pine tissue cultures.
22 CFR 1104.7 - Issuance of permits.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ability to carry research to completion, as evidenced by timely completion of theses, research reports, or... training in archaeological field, laboratory, or library research, administration, or management, including... archaeology should have had at least one year of experience in research concerning archaeological resources of...
A Laboratory Exercise in the Determination of Carbohydrate Structures.
ERIC Educational Resources Information Center
White, Bernard J.; Robyt, John F.
1988-01-01
Describes an experiment in which students are given a naturally occurring oligosaccharide as an unknown and are asked to determine both its monosaccharide composition and its structure. Discusses methods and experimental techniques including thin layer chromatography and the use of enzymes. (CW)
Pennsylvania's Energy Curriculum for the Secondary Grades: Biological Science.
ERIC Educational Resources Information Center
Pennsylvania State Dept. of Education, Harrisburg.
Described are about two dozen laboratory experiments, demonstrations and class discussions intended to supplement secondary school biology curricula with energy-related learning activities. Concepts examined in these materials include photosynthesis, energy from biomass, feeding relationships, pyrolysis, and respiration. Lessons contain notes to…
ERIC Educational Resources Information Center
Johnson, Jaclyn; Kassing, Sharon
2002-01-01
Describes cooperation with the Saint Louis Zoo to provide opportunities for elementary school students to learn about bones, how animals move, what they eat, and how much they grow. Uses biofacts which include bones, skulls, and other parts to make the laboratory a hands-on experience for students. (YDS)
10 CFR 60.140 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... and it will continue until permanent closure. (c) The program shall include in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to accomplish the objective as... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.140 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... and it will continue until permanent closure. (c) The program shall include in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to accomplish the objective as... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.140 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and it will continue until permanent closure. (c) The program shall include in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to accomplish the objective as... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.140 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... and it will continue until permanent closure. (c) The program shall include in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to accomplish the objective as... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
10 CFR 60.140 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... and it will continue until permanent closure. (c) The program shall include in situ monitoring, laboratory and field testing, and in situ experiments, as may be appropriate to accomplish the objective as... REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES...
Teaching Guidebook: An Introduction to Some Basics.
ERIC Educational Resources Information Center
Blake, Veronica M.; Dinham, Sarah M.
A teaching guide designed for use by new university teaching assistants provides help in preparing for and carrying out instructional responsibilities. Separate chapters give guidance with: preparing the course description and syllabus, including writing objectives; selecting teaching strategies (lecture, discussion, and laboratory experience);…
EPOS-WP16: A Platform for European Multi-scale Laboratories
NASA Astrophysics Data System (ADS)
Spiers, Chris; Drury, Martyn; Kan-Parker, Mirjam; Lange, Otto; Willingshofer, Ernst; Funiciello, Francesca; Rosenau, Matthias; Scarlato, Piergiorgio; Sagnotti, Leonardo; W16 Participants
2016-04-01
The participant countries in EPOS embody a wide range of world-class laboratory infrastructures ranging from high temperature and pressure experimental facilities, to electron microscopy, micro-beam analysis, analogue modeling and paleomagnetic laboratories. Most data produced by the various laboratory centres and networks are presently available only in limited "final form" in publications. As such many data remain inaccessible and/or poorly preserved. However, the data produced at the participating laboratories are crucial to serving society's need for geo-resources exploration and for protection against geo-hazards. Indeed, to model resource formation and system behaviour during exploitation, we need an understanding from the molecular to the continental scale, based on experimental data. This contribution will describe the work plans that the laboratories community in Europe is making, in the context of EPOS. The main objectives are: - To collect and harmonize available and emerging laboratory data on the properties and processes controlling rock system behaviour at multiple scales, in order to generate products accessible and interoperable through services for supporting research activities. - To co-ordinate the development, integration and trans-national usage of the major solid Earth Science laboratory centres and specialist networks. The length scales encompassed by the infrastructures included range from the nano- and micrometer levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetre sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. - To provide products and services supporting research into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution.
NASA Technical Reports Server (NTRS)
Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy
2011-01-01
The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.
Interactive virtual optical laboratories
NASA Astrophysics Data System (ADS)
Liu, Xuan; Yang, Yi
2017-08-01
Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.
French space program: report to Cospar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1975-01-01
Programs and results obtained are reviewed for all French laboratories working in areas of research related to space. Main topics include lunar specimen studies; spectroscopic planetology; space radiation; ionospheric and magnetospherics; aeronomy; meteorology, comprising the Meteosat program and the Eole experiment and earth resources investigations; geodesy; and geodynamics-research covering space biology and exobiology is also discussed. French satellites and sounding rockets are listed, as well as French experiments onboard foreign spacecraft. (GRA)
Two non linear dynamics plasma astrophysics experiments at LANL
NASA Astrophysics Data System (ADS)
Intrator, T. P.; Weber, T. E.; Feng, Y.; Sears, J. A.; Swan, H.; Hutchinson, T.; Boguski, J.; Gao, K.; Chapdelaine, L.; Dunn, J.
2013-10-01
Two laboratory experiments at Los Alamos National Laboratory (LANL) have been built to gain access to a wide range of fundamental plasma physics issues germane astro, space, and fusion plasmas. The over arching theme is magnetized plasma dynamics that include currents, MHD forces and instabilities, sheared flows and shocks, creation and annihilation of magnetic field. The Reconnection Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, that can kink, bounce, merge and reconnect, shred, and reform in complicated ways. The most recent movies from a large detailed data set describe the 3D magnetic structure and helicity budget of a driven and dissipative system that spontaneously self saturates a kink instability. The Magnetized Shock Experiment (MSX) uses a Field reversed configuration (FRC) that is ejected at high speed and then stagnated onto a stopping mirror field, which drives a collisionless magnetized shock. A plasmoid accelerator will also access super critical shocks at much larger Alfven Mach numbers. Unique features include access to parallel, oblique and perpendicular shocks, in regions much larger than ion gyro radius and inertial length, large magnetic and fluid Reynolds numbers, and volume for turbulence. Center for Magnetic Self Organization, NASA Geospace NNHIOA044I-Basic, Department of Energy DE-AC52-06NA25369.
Epistemology and expectations survey about experimental physics: Development and initial results
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.
2014-06-01
In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.
NASA Astrophysics Data System (ADS)
Keller, John; Rebar, Bryan
2012-11-01
The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.
From in vivo to in vitro: How the Guatemala STD Experiments Transformed Bodies Into Biospecimens.
Spector-Bagdady, Kayte; Lombardo, Paul A
2018-06-01
Policy Points: While most scholarship regarding the US Public Health Service's STD experiments in Guatemala during the 1940s has focused on the intentional exposure experiments, secondary research was also conducted on biospecimens collected from these subjects. These biospecimen experiments continued after the Guatemala grant ended, and the specimens were used in conjunction with those from the Tuskegee syphilis experiments for ongoing research. We argue there should be a public accounting of whether there are still biospecimens from the Guatemala and Tuskegee experiments held in US government biorepositories today. If such specimens exist, they should be retired from US government research archives because they were collected unethically as understood at the time. The US Public Health Service's Guatemala STD experiments (1946-1948) included intentional exposure to pathogens and testing of postexposure prophylaxis methods for syphilis, gonorrhea, and chancroid in over 1,300 soldiers, commercial sex workers, prison inmates, and psychiatric patients. Though the experiments had officially ended, the biospecimens collected from these subjects continued to be used for research at least into the 1950s. We analyzed historical documents-including clinical and laboratory records, correspondence, final reports, and medical records-for information relevant to these biospecimen experiments from the US National Archives. In addition, we researched material from past governmental investigations into the Guatemala STD experiments, including those of the US Presidential Commission for the Study of Bioethical Issues and the Guatemalan Comisión Presidencial para el Esclarecimiento de los Experimentos Practicados con Humanos en Guatemala. Identified spinal fluid, blood specimens, and tissue collected during the Guatemala diagnostic methodology and intentional exposure experiments were subsequently distributed to laboratories throughout the United States for use in ongoing research until at least 1957. Five psychiatric patient subjects involved in these biospecimen experiments died soon after experimental exposure to STDs. The same US government researchers working with the Guatemala biospecimens after the exposure experiments ended were also working with specimens taken from the Tuskegee syphilis study. There should be a complete public accounting of whether biospecimens from the Guatemala and Tuskegee experiments are held in US government biorepositories today. If they still exist, these specimens should be retired from such biorepositories and their future disposition determined by stakeholders, including representatives from the communities from which they were derived. © 2018 Milbank Memorial Fund.
NASA Technical Reports Server (NTRS)
Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael
1993-01-01
This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.
NASA Astrophysics Data System (ADS)
Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael
1993-12-01
This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the de-agglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle de-agglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid particle generation system was developed and characterization tests performed. The breadboard hardware emulates the functions of the GGSF solid particle cloud generator in a ground laboratory environment, but with some modifications, can be used on other platforms.
Gluskin, Rebecca Tave; Mavinkurve, Maushumi; Varma, Jay K
2014-03-01
For nearly a decade, interest groups, from politicians to economists to physicians, have touted digitization of the nation's health information. One frequently mentioned benefit is the transmission of information electronically from laboratories to public health personnel, allowing them to rapidly analyze and act on these data. Switching from paper to electronic laboratory reports (ELRs) was thought to solve many public health surveillance issues, including workload, accuracy, and timeliness. However, barriers remain for both laboratories and public health agencies to realize the full benefits of ELRs. The New York City experience highlights several successes and challenges of electronic reporting and is supported by peer-reviewed literature. Lessons learned from ELR systems will benefit efforts to standardize electronic medical records reporting to health departments.
Flint, M.R.; Bencala, K.E.; Zellweger, G.W.; Hammermeister, D.P.
1985-01-01
A twenty-four hour injection of chloride and sodium was made into Leviathan Creek, Alpine County, California to aid interpretation of the coupled interactions between physical transport processes and geochemical reactions. Leviathan Creek was chosen because it receives acid mine drainage from Leviathan Mine, an abandoned open-pit sulfur mine. Water samples were collected at 15 sites along a 4.39 kilometer reach and analyzed for chloride, sodium, sulfate and fluoride. Dissolved concentrations are presented in tabular format and time-series plots. Duplicate samples were analyzed by two laboratories: the Central Laboratory, Denver, Colorado and a research laboratory in Menlo Park, California. A tabular comparison of the analyses and plots of the differences between the two laboratories is presented. Hydrographs and instantaneous discharge measurements are included. (USGS)
Laboratory Data for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Beiersdorfer, P.; Brown, G. V.; Chen, H.; Gu, M.-F.; Kahn, S. M.; Lepson, J. K.; Savin, D. W.; Utter, S. B.
2000-01-01
Laboratory facilities have made great strides in producing large sets of reliable data for X-ray astronomy, which include ionization and recombination cross sections needed for charge balance calculations as well as the atomic data needed for interpreting X-ray line formation. We discuss data from the new generation sources and pay special attention to the LLNL electron beam ion trap experiment, which is unique in its ability to provide direct laboratory access to spectral data under precisely controlled conditions that simulate those found in many astrophysical plasmas. Examples of spectral data obtained in the 1-160 A wavelength range are given illustrating the type of laboratory X-ray data produced in support of such missions as Chandra, X-Ray Multi-Mirror telescope (XMM), Advanced Satellite for Cosmology and Astrophysics (ASCA) and Extreme Ultraviolet Explorer Satellite (EUVE).
NASA Astrophysics Data System (ADS)
Javidi, Giti
2005-07-01
This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.
NASA Astrophysics Data System (ADS)
Berger, Spencer Granett
This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the laboratory procedures. In order to test the effects of the intervention, an experimental group (N=87) completed these supplementary questions during two laboratory experiments while a control group (N=84) performed the same experiments without these additional questions. The effects of the intervention on laboratory exam performance were measured. Students in the experimental group had a higher average on the laboratory exam than students in the control group.
Criminalistics and the forensic nursing process.
Burgess, Ann Wolbert; Piatelli, Michael J; Pasqualone, Georgia
2011-06-01
Students learn science by actually performing science activities. The 12 laboratories described in this article assist students in applying the fundamental techniques germane to the field of forensic science to "solve" contrived cases and present "evidence" in a mock trial. Moreover, students are also confronted with some of the legal and ethical issues concerning the validity, reliability, and application of some forensic techniques. The pedagogical design of the laboratory course provides a rich, challenging, and interdisciplinary academic experience intended to augment and compliment the didactic forensic lecture portion of the course. This laboratory course was designed to engender, embody, and articulate one of the University's directive goals to support interdisciplinary teaching, research, and programming. Because we developed the laboratories on minimal funds, we demonstrated that it could be cost-effective. And thus, we recommend a laboratory science course be included as part of the curriculum of all forensic nursing students and practitioners. © 2011 International Association of Forensic Nurses.
2003-06-06
KENNEDY SPACE CENTER, FLA. - The container with the Japanese Experiment Module (JEM)’s pressurized module is inside the Space Station Processing Facility. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
2003-06-04
KENNEDY SPACE CENTER, FLA. - The truck transporting the Pressurized Module of the Japanese Experiment Module (JEM) to KSC’s Space Station Processing Facility arrives on Center. The National Space Development Agency of Japan (NASDA) developed the laboratory at the Tsukuba Space Center near Tokyo. The Pressurized Module is the first element of the JEM, named "Kibo" (Hope), to be delivered to KSC. The JEM is Japan's primary contribution to the Station. It will enhance the unique research capabilities of the orbiting complex by providing an additional environment for astronauts to conduct science experiments. The JEM also includes an exposed facility (platform) for space environment experiments, a robotic manipulator system, and two logistics modules. The various JEM components will be assembled in space over the course of three Shuttle missions.
US plant and radiation dosimetry experiments flown on the Soviet satellite Cosmos 1129
NASA Technical Reports Server (NTRS)
Heinrich, M. R. (Editor); Souza, K. A. (Editor)
1981-01-01
Experiments included: 30 young male Wistar SPF rats used for wide range physiological studies; experiments with plants, fungi, insects, and mammalian tissue cultures; radiation physics experiments; a heat convection study; a rat embryology experiment in which an attempt was made to breed 2 male and 5 female rats during the flight; and fertile quail eggs used to determine the effects of spaceflight on avian embryogenesis. Specimens for US experiments were initially prepared at the recovery site or in Moscow and transferred to US laboratories for complete analyses. An overview of the mission focusing on preflight, on orbit, and postflight activities pertinent to the fourteen US experiments aboard Cosmos 1129 is presented.
Remote-controlled optics experiment for supporting senior high school and undergraduate teaching
NASA Astrophysics Data System (ADS)
Choy, S. H.; Jim, K. L.; Mak, C. L.; Leung, C. W.
2017-08-01
This paper reports the development of a remote laboratory (RemoteLab) platform for practising technologyenhanced learning of optics. The development of RemoteLab enhances students' understanding of experimental methodologies and outcomes, and enable students to conduct experiments everywhere at all times. While the initial goal of the system was for physics major undergradutes, the sytem was also made available for senior secondary school students. To gauge the impact of the RemoteLab, we evaluated two groups of students, which included 109 physics 1st-year undergraduates and 11 students from a local secondary school. After the experiments, evaluation including questionnaire survey and interviews were conducted to collect data on students' perceptions on RemoteLab and implementation issues related to the platform. The surveys focused on four main topics, including user interface, experiment setup, booking system and learning process. The survey results indicated that most of the participants' views towards RemoteLab was positive.
Tomlinson, Lindsay; Boone, Laura I; Ramaiah, Lila; Penraat, Kelley A; von Beust, Barbara R; Ameri, Mehrdad; Poitout-Belissent, Florence M; Weingand, Kurt; Workman, Heather C; Aulbach, Adam D; Meyer, Dennis J; Brown, Diane E; MacNeill, Amy L; Bolliger, Anne Provencher; Bounous, Denise I
2013-09-01
The purpose of this paper by the Regulatory Affairs Committee (RAC) of the American Society for Veterinary Clinical Pathology (ASVCP) is to review the current regulatory guidances (eg, guidelines) and published recommendations for best practices in veterinary toxicologic clinical pathology, particularly in the pharmaceutical and biotechnology industries, and to utilize the combined experience of ASVCP RAC to provide updated recommendations. Discussion points include (1) instrumentation, validation, and sample collection, (2) routine laboratory variables, (3) cytologic laboratory variables, (4) data interpretation and reporting (including peer review, reference intervals and statistics), and (5) roles and responsibilities of clinical pathologists and laboratory personnel. Revision and improvement of current practices should be in alignment with evolving regulatory guidance documents, new technology, and expanding understanding and utility of clinical pathology. These recommendations provide a contemporary guide for the refinement of veterinary toxicologic clinical pathology best practices. © 2013 American Society for Veterinary Clinical Pathology.
ERIC Educational Resources Information Center
Dunnett, K.; Bartlett, P. A.
2018-01-01
It was planned to introduce online pre-laboratory session activities to a first-year undergraduate physics laboratory course to encourage a minimum level of student preparation for experiments outside the laboratory environment. A group of 16 and 17 year old laboratory work-experience students were tasked to define and design a pre-laboratory…
Solid laboratory calibration of a nonimaging spectroradiometer.
Schaepman, M E; Dangel, S
2000-07-20
Field-based nonimaging spectroradiometers are often used in vicarious calibration experiments for airborne or spaceborne imaging spectrometers. The calibration uncertainties associated with these ground measurements contribute substantially to the overall modeling error in radiance- or reflectance-based vicarious calibration experiments. Because of limitations in the radiometric stability of compact field spectroradiometers, vicarious calibration experiments are based primarily on reflectance measurements rather than on radiance measurements. To characterize the overall uncertainty of radiance-based approaches and assess the sources of uncertainty, we carried out a full laboratory calibration. This laboratory calibration of a nonimaging spectroradiometer is based on a measurement plan targeted at achieving a =10% uncertainty calibration. The individual calibration steps include characterization of the signal-to-noise ratio, the noise equivalent signal, the dark current, the wavelength calibration, the spectral sampling interval, the nonlinearity, directional and positional effects, the spectral scattering, the field of view, the polarization, the size-of-source effects, and the temperature dependence of a particular instrument. The traceability of the radiance calibration is established to a secondary National Institute of Standards and Technology calibration standard by use of a 95% confidence interval and results in an uncertainty of less than ?7.1% for all spectroradiometer bands.
Delivering a lab experience to students in remote road-less locations in Alaska
NASA Astrophysics Data System (ADS)
Spencer, Vanessa; Solie, Daniel
2010-02-01
Bush Physics is a pilot physics course offered by the University of Alaska, Fairbanks. Taught both as a distance delivery course for rural students and as a traditional course to students in Fairbanks, it is designed to prepare rural (predominantly Alaska Native) students for success in STEM programs. While the lecture portion is successfully distance-delivered using teleconference, delivering the laboratory portion effectively has been more challenging. Bush Physics has been taught twice previously to a total of 24 students who otherwise would not have had access to physics instruction. Methods utilized to help distance education students complete the laboratory credit include mailing equipment kits, emailing pictures and video descriptions, travel to certain villages to do experiments during weekends and utilizing on-site mentors. Past results and feedback have improved the laboratory section for spring 2010. We plan to use testing and student surveys to begin to quantify improvement in student mathematical ability and reasoning. )
Implementation of HIV and Tuberculosis Diagnostics: The Importance of Context
Dominique, Joyelle K.; Ortiz-Osorno, Alberto A.; Fitzgibbon, Joseph; Gnanashanmugam, Devasena; Gilpin, Christopher; Tucker, Timothy; Peel, Sheila; Peter, Trevor; Kim, Peter; Smith, Steven
2015-01-01
Background. Novel diagnostics have been widely applied across human immunodeficiency virus (HIV) and tuberculosis prevention and treatment programs. To achieve the greatest impact, HIV and tuberculosis diagnostic programs must carefully plan and implement within the context of a specific healthcare system and the laboratory capacity. Methods. A workshop was convened in Cape Town in September 2014. Participants included experts from laboratory and clinical practices, officials from ministries of health, and representatives from industry. Results. The article summarizes best practices, challenges, and lessons learned from implementation experiences across sub-Saharan Africa for (1) building laboratory programs within the context of a healthcare system; (2) utilizing experience of clinicians and healthcare partners in planning and implementing the right diagnostic; and (3) evaluating the effects of new diagnostics on the healthcare system and on patient health outcomes. Conclusions. The successful implementation of HIV and tuberculosis diagnostics in resource-limited settings relies on careful consideration of each specific context. PMID:26409272
Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students
ERIC Educational Resources Information Center
Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.
2011-01-01
This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…
A Laboratory Experiment on the Statistical Theory of Nuclear Reactions
ERIC Educational Resources Information Center
Loveland, Walter
1971-01-01
Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…
ERIC Educational Resources Information Center
Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.
2014-01-01
Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…
ERIC Educational Resources Information Center
Whitaker, Ragnhild D.; Truhlar, Laura M.; Yksel, Deniz; Walt, David R.; Williams, Mark D.
2010-01-01
The development and implementation of a research-based organic chemistry laboratory experiment is presented. The experiment was designed to simulate a scientific research environment, involve students in critical thinking, and develop the student's ability to analyze and present research-based data. In this experiment, a laboratory class…
NASA Astrophysics Data System (ADS)
Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra
2015-07-01
Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.
Plate-rate laboratory friction experiments reveal potential slip instability on weak faults
NASA Astrophysics Data System (ADS)
Ikari, M.; Kopf, A.
2016-12-01
In earthquake science, it is commonly assumed that earthquakes nucleate on strong patches or "asperities", and data from laboratory friction experiments indicate a tendency for unstable slip (exhibited as velocity-weakening frictional behavior) in strong geologic materials. However, an overwhelming amount of these experiments were conducted at driving velocities ranging from 0.1 µm/s to over 1 m/s. Less data exists for shearing experiments driven at slow velocities on the order of cm/yr (nm/s), approximating plate tectonic rates which represent the natural driving condition on plate boundary faults. Recent laboratory work using samples recovered from the Tohoku region at the Japan Trench, within the high coseismic slip region of the 2011 M9 Tohoku earthquake, showed that the fault is extremely weak with a friction coefficient < 0.2. At sliding velocities of at least 0.1 µm/s mostly velocity-strengthening friction is observed, which is favorable for stable creep, consistent with earlier work. However, shearing at an imposed rate of 8.5 cm/yr produced both velocity-weakening friction and discrete slow slip events, which are likely instances of frictional instabilities or quasi-instabilities. Here, we expand on the Tohoku experiment by conducting cm/yr friction experiments on natural gouges obtained from a variety of other major fault zones obtained by scientific drilling; these include the San Andreas Fault, Costa Rica subduction zone, Nankai Trough (Japan), Barbados subduction zone, Alpine Fault (New Zealand), southern Cascadia, and Woodlark Basin (Papua New Guinea). We focus here on weak fault materials having a friction coefficient of < 0.5. At conventional laboratory driving rates of 0.1-30 µm/s, velocity strengthening is common. However, at cm/yr driving rates we commonly observe velocity-weakening friction and slow slip events, with most samples exhibit both behaviors. These results demonstrate when fault samples are sheared at plate tectonic rates in the laboratory, which best replicates natural forcing conditions, a tendency for unstable slip is revealed. Thus, weak faults should not be considered frictionally stable, but have the ability to participate in earthquake rupture or generate events themselves.
ERIC Educational Resources Information Center
Schmidt-McCormack, Jennifer A.; Muniz, Marc N.; Keuter, Ellie C.; Shaw, Scott K.; Cole, Renée S.
2017-01-01
Well-designed laboratories can help students master content and science practices by successfully completing the laboratory experiments. Upper-division chemistry laboratory courses often present special challenges for instruction due to the instrument intensive nature of the experiments. To address these challenges, particularly those associated…
A 13-Week Research-Based Biochemistry Laboratory Curriculum
ERIC Educational Resources Information Center
Lefurgy, Scott T.; Mundorff, Emily C.
2017-01-01
Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with…
NASA Astrophysics Data System (ADS)
Light, B.; Krembs, C.
2003-12-01
Laboratory-based studies of the physical and biological properties of sea ice are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea ice and the structure of ice-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea ice and the atmosphere and sea ice and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea ice under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea ice core samples and laboratory-grown ice. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea ice microstructure to changes in temperature, assessment of the relationships between ice structure and the partitioning of solar radiation by first-year sea ice covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea ice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Materese, Christopher K.; Cruikshank, Dale P.; Sandford, Scott A.
Radiation processing of the surface ices of outer solar system bodies may result in the production of new chemical species even at low temperatures. Many of the smaller, more volatile molecules that are likely produced by the photolysis of these ices have been well characterized by laboratory experiments. However, the more complex refractory material formed in these experiments remains largely uncharacterized. In this work, we present a series of laboratory experiments in which low-temperature (15-20 K) N{sub 2}:CH{sub 4}:CO ices in relative proportions 100:1:1 are subjected to UV irradiation, and the resulting materials are studied with a variety of analyticalmore » techniques including infrared spectroscopy, X-ray absorption near-edge structure spectroscopy, gas chromatography coupled with mass spectrometry, and high-resolution mass spectroscopy. Despite the simplicity of the reactants, these experiments result in the production of a highly complex mixture of molecules from relatively low-mass volatiles (tens of daltons) to high-mass refractory materials (hundreds of daltons). These products include various carboxylic acids, nitriles, and urea, which are also expected to be present on the surface of outer solar system bodies, including Pluto and other transneptunian objects. If these compounds occur in sufficient concentrations in the ices of outer solar system bodies, their characteristic bands may be detectable in the near-infrared spectra of these objects.« less
NASA Technical Reports Server (NTRS)
Butler, J.J.; Johnson, B. C.; Rice, J. P.; Shirley, E. L.; Barnes, R.A.
2008-01-01
There is a 5 W/sq m (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18-20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underEll the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here.
Butler, J. J; Johnson, B. C; Rice, J. P; Shirley, E. L; Barnes, R. A
2008-01-01
There is a 5 W/m2 (about 0.35 %) difference between current on-orbit Total Solar Irradiance (TSI) measurements. On 18–20 July 2005, a workshop was held at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland that focused on understanding possible reasons for this difference, through an examination of the instrument designs, calibration approaches, and appropriate measurement equations. The instruments studied in that workshop included the Active Cavity Radiometer Irradiance Monitor III (ACRIM III) on the Active Cavity Radiometer Irradiance Monitor SATellite (ACRIMSAT), the Total Irradiance Monitor (TIM) on the Solar Radiation and Climate Experiment (SORCE), the Variability of solar IRradiance and Gravity Oscillations (VIRGO) on the Solar and Heliospheric Observatory (SOHO), and the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS). Presentations for each instrument included descriptions of its design, its measurement equation and uncertainty budget, and the methods used to assess on-orbit degradation. The workshop also included a session on satellite- and ground-based instrument comparisons and a session on laboratory-based comparisons and the application of new laboratory comparison techniques. The workshop has led to investigations of the effects of diffraction and of aperture area measurements on the differences between instruments. In addition, a laboratory-based instrument comparison is proposed that uses optical power measurements (with lasers that underfill the apertures of the TSI instruments), irradiance measurements (with lasers that overfill the apertures of the TSI instrument), and a cryogenic electrical substitution radiometer as a standard for comparing the instruments. A summary of the workshop and an overview of the proposed research efforts are presented here. PMID:27096120
Competency Based Modular Experiments in Polymer Science and Technology.
ERIC Educational Resources Information Center
Pearce, Eli M; And Others
1980-01-01
Describes a competency-based, modular laboratory course emphasizing the synthesis and characterization of polymers and directed toward senior undergraduate and/or first-year graduate students in science and engineering. One module, free-radical polymerization kinetics by dilatometry, is included as a sample. (CS)
Experimenting with Mathematical Biology
ERIC Educational Resources Information Center
Sanft, Rebecca; Walter, Anne
2016-01-01
St. Olaf College recently added a Mathematical Biology concentration to its curriculum. The core course, Mathematics of Biology, was redesigned to include a wet laboratory. The lab classes required students to collect data and implement the essential modeling techniques of formulation, implementation, validation, and analysis. The four labs…
From the Rainbow Crow To Polar Bears: Introducing Science Concepts through Children's Literature.
ERIC Educational Resources Information Center
Burns, John Eric
1997-01-01
Describes an activity that integrates chemistry, physics, and a Native American legend to help students imitate the thought processes of scientists who have observed chemical decomposition and the refraction of light. Includes a laboratory experiment for sugar decomposition. (DKM)
How-to-Do-It: A Practical Method for Teaching Seed Stratification.
ERIC Educational Resources Information Center
Englert, Karen M.; Shontz, Nancy N.
1989-01-01
Described is a laboratory procedure for teaching seed stratification. Materials, methods, results, and applicability of the experiment are explained. Diagrams showing the percent of total germination as a function of stratification time and the germination rate of stratified seeds are included. (RT)
User Facilities | Argonne National Laboratory
, including biology and medicine. More than 7,000 scientists conduct experiments at Argonne user facilities Transformations IGSBInstitute for Genomics and Systems Biology IMEInstitute for Molecular Engineering JCESRJoint Science Center SBCStructural Biology Center Energy.gov U.S. Department of Energy Office of Science
Food Choice in the Common Snail (Helix Aspersa).
ERIC Educational Resources Information Center
Gill, John; Howell, Pauline
1985-01-01
The easily obtained common snail shows interesting dietary preferences which can be the source of several simple experiments. Specific student instructions are given for quantitative and comparative studies using cabbage, lettuce, carrot, rutabaga, and onion. Suggestions for laboratory setup and further work are included. (DH)