DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamont, Stephen Philip; Brisson, Marcia; Curry, Michael
2011-02-17
Nuclear forensics assessments to determine material process history requires careful comparison of sample data to both measured and modeled nuclear material characteristics. Developing centralized databases, or nuclear forensics libraries, to house this information is an important step to ensure all relevant data will be available for comparison during a nuclear forensics analysis and help expedite the assessment of material history. The approach most widely accepted by the international community at this time is the implementation of National Nuclear Forensics libraries, which would be developed and maintained by individual nations. This is an attractive alternative toan international database since it providesmore » an understanding that each country has data on materials produced and stored within their borders, but eliminates the need to reveal any proprietary or sensitive information to other nations. To support the concept of National Nuclear Forensics libraries, the United States Department of Energy has developed a model library, based on a data dictionary, or set of parameters designed to capture all nuclear forensic relevant information about a nuclear material. Specifically, information includes material identification, collection background and current location, analytical laboratories where measurements were made, material packaging and container descriptions, physical characteristics including mass and dimensions, chemical and isotopic characteristics, particle morphology or metallurgical properties, process history including facilities, and measurement quality assurance information. While not necessarily required, it may also be valuable to store modeled data sets including reactor burn-up or enrichment cascade data for comparison. It is fully expected that only a subset of this information is available or relevant to many materials, and much of the data populating a National Nuclear Forensics library would be process analytical or material accountability measurement data as opposed to a complete forensic analysis of each material in the library.« less
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the U.S. Government`s certifying authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy complex and at nuclear facilities around the world. New challenges include: environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasismore » on requirements for characterization of waste materials, and difficulties in transporting nuclear materials and international factors, including IAEA influences. During these changing times, it is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
Nuclear Forensics: A Methodology Applicable to Nuclear Security and to Non-Proliferation
NASA Astrophysics Data System (ADS)
Mayer, K.; Wallenius, M.; Lützenkirchen, K.; Galy, J.; Varga, Z.; Erdmann, N.; Buda, R.; Kratz, J.-V.; Trautmann, N.; Fifield, K.
2011-09-01
Nuclear Security aims at the prevention and detection of and response to, theft, sabotage, unauthorized access, illegal transfer or other malicious acts involving nuclear material. Nuclear Forensics is a key element of nuclear security. Nuclear Forensics is defined as a methodology that aims at re-establishing the history of nuclear material of unknown origin. It is based on indicators that arise from known relationships between material characteristics and process history. Thus, nuclear forensics analysis includes the characterization of the material and correlation with production history. To this end, we can make use of parameters such as the isotopic composition of the nuclear material and accompanying elements, chemical impurities, macroscopic appearance and microstructure of the material. In the present paper, we discuss the opportunities for attribution of nuclear material offered by nuclear forensics as well as its limitations. Particular attention will be given to the role of nuclear reactions. Such reactions include the radioactive decay of the nuclear material, but also reactions with neutrons. When uranium (of natural composition) is exposed to neutrons, plutonium is formed, as well as 236U. We will illustrate the methodology using the example of a piece of uranium metal that dates back to the German nuclear program in the 1940's. A combination of different analytical techniques and model calculations enables a nuclear forensics interpretation, thus correlating the material characteristics with the production history.
Defense Threat Reduction Agency Radiochemical Needs
NASA Astrophysics Data System (ADS)
Walsh, Michael A. R.; Velazquez, Daniel L.
2009-08-01
The United States Government (USG) first developed nuclear forensics-related capabilities to analyze radiological and nuclear materials, including underground nuclear test debris and interdicted materials. Nuclear forensics is not a new mission for Department of Defense (DoD). The department's existing nuclear forensics capability is the result of programs that span six (6) decades and includes activities to assess foreign nuclear weapons testing activities, monitor and verify nuclear arms control treaties, and to support intelligence and law enforcement activities. Today, nuclear forensics must support not only weapons programs and nuclear smuggling incidents, but also the scientific analysis and subsequent attribution of terrorists' use of radiological or nuclear materials/devices. Nuclear forensics can help divulge the source of origin of nuclear materials, the type of design for an interdicted or detonated device, as well as the pathway of the materials or device to the incident. To accomplish this mission, the USG will need trained radiochemists and nuclear scientists to fill new positions and replace the retiring staff.
Special nuclear materials cutoff exercise: Issues and lessons learned. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Libby, R.A.; Segal, J.E.; Stanbro, W.D.
1995-08-01
This document is appendices D-J for the Special Nuclear Materials Cutoff Exercise: Issues and Lessons Learned. Included are discussions of the US IAEA Treaty, safeguard regulations for nuclear materials, issue sheets for the PUREX process, and the LANL follow up activity for reprocessing nuclear materials.
Radiation sensitive devices and systems for detection of radioactive materials and related methods
Kotter, Dale K
2014-12-02
Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.
NASA Astrophysics Data System (ADS)
Whittle, Karl
2016-06-01
Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.
Code of Federal Regulations, 2012 CFR
2012-01-01
.... Nuclear Materials and Equipment * Nuclear Regulatory Commission, Office of International Programs, Tel. (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...
Code of Federal Regulations, 2014 CFR
2014-01-01
.... Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors, Enrichment, Reprocessing, Fuel Fabrication, and Heavy Water...-6050. 10 CFR 205.300 through 205.379 and part 590. Nuclear Materials and Equipment * Nuclear Regulatory...
Nuclear reference materials to meet the changing needs of the global nuclear community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, H.R.; Gradle, C.G.; Narayanan, U.I.
New Brunswick Laboratory (NBL) serves as the US Government`s Certifying Authority for nuclear reference materials and measurement calibration standards. In this role, NBL provides nuclear reference materials certified for chemical and/or isotopic compositions traceable to a nationally accepted, internationally compatible reference base. Emphasis is now changing as to the types of traceable nuclear reference materials needed as operations change within the Department of Energy (DOE) complex and at nuclear facilities around the world. Environmental and waste minimization issues, facilities and materials transitioning from processing to storage modes with corresponding changes in the types of measurements being performed, emphasis on requirementsmore » for characterization of waste materials, difficulties in transporting nuclear materials, and International factors, including International Atomic Energy Agency (IAEA) inspection of excess US nuclear materials, are all contributing influences. During these changing times, ft is critical that traceable reference materials be provided for calibration or validation of the performance of measurement systems. This paper will describe actions taken and planned to meet the changing reference material needs of the global nuclear community.« less
Advanced Insider Threat Mitigation Workshop Instructional Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Philip; Larsen, Robert; O'Brien, Mike
Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing theirmore » effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.« less
Nuclear War and Science Teaching.
ERIC Educational Resources Information Center
Hobson, Art
1983-01-01
Suggests that science-related material on nuclear war be included in introductory courses. Lists nuclear war topics for physics, psychology, sociology, biology/ecology, chemistry, geography, geology/meteorology, mathematics, and medical science. Also lists 11 lectures on nuclear physics which include nuclear war topics. (JN)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, James J.; Wall, Donald; Wittman, Richard S.
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less
ERIC Educational Resources Information Center
Johnson, Christopher
1982-01-01
Material about nuclear disarmament and the arms race should be included in secondary school curricula. Teachers can present this technical, controversial, and frightening material in a balanced and comprehensible way. Resources for instructional materials are listed. (PP)
Title list of documents made publicly available, October 1-31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
This monthly publication describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). It includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) non-docketed material received and published. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number index. Seven docketed items are included which pertain to licensing, radioactive waste, nuclear power plant design. The 26 non-docketed items include committee reports; NRC correspondence, issuances, and reports; inspections and deficiency findings; and waste management documents.
A Uniform Framework of Global Nuclear Materials Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.; Mangan, D.L.; Sanders, T.L
1999-04-20
Global Nuclear Materials Management (GNMM) anticipates and supports a growing international recognition of the importance of uniform, effective management of civilian, excess defense, and nuclear weapons materials. We expect thereto be a continuing increase in both the number of international agreements and conventions on safety, security, and transparency of nuclear materials, and the number of U.S.-Russian agreements for the safety, protection, and transparency of weapons and excess defense materials. This inventory of agreements and conventions may soon expand into broad, mandatory, international programs that will include provisions for inspection, verification, and transparency, To meet such demand the community must buildmore » on the resources we have, including State agencies, the IAEA and regional organizations. By these measures we will meet the future expectations for monitoring and inspection of materials, maintenance of safety and security, and implementation of transparency measures.« less
Nuclear reactor shield including magnesium oxide
Rouse, Carl A.; Simnad, Massoud T.
1981-01-01
An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.
Nuclear forensics of a non-traditional sample: Neptunium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav
Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less
Nuclear forensics of a non-traditional sample: Neptunium
Doyle, Jamie L.; Schwartz, Daniel; Tandon, Lav
2016-05-16
Recent nuclear forensics cases have focused primarily on plutonium (Pu) and uranium (U) materials. By definition however, nuclear forensics can apply to any diverted nuclear material. This includes neptunium (Np), an internationally safeguarded material like Pu and U, that could offer a nuclear security concern if significant quantities were found outside of regulatory control. This case study couples scanning electron microscopy (SEM) with quantitative analysis using newly developed specialized software, to evaluate a non-traditional nuclear forensic sample of Np. Here, the results of the morphological analyses were compared with another Np sample of known pedigree, as well as other traditionalmore » actinide materials in order to determine potential processing and point-of-origin.« less
Norman, Eric B.; Prussin, Stanley G.
2007-10-02
A method and a system for detecting the presence of special nuclear materials in a container. The system and its method include irradiating the container with an energetic beam, so as to induce a fission in the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
The Science of Nuclear Materials: A Modular, Laboratory-based Curriculum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahill, C.L., E-mail: cahill@gwu.edu; Feldman, G.; Briscoe, W.J.
The development of a curriculum for nuclear materials courses targeting students pursuing Master of Arts degrees at The George Washington University is described. The courses include basic concepts such as radiation and radioactivity as well as more complex topics such the nuclear fuel cycle, nuclear weapons, radiation detection and technological aspects of non-proliferation.
The Use of Basalt, Basalt Fibers and Modified Graphite for Nuclear Waste Repository - 12150
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulik, V.I.; Biland, A.B.
2012-07-01
New materials enhancing the isolation of radioactive waste and spent nuclear fuel are continuously being developed.. Our research suggests that basalt-based materials, including basalt roving chopped basalt fiber strands, basalt composite rebar and materials based on modified graphite, could be used for enhancing radioactive waste isolation during the storage and disposal phases and maintaining it during a significant portion of the post-closure phase. The basalt vitrification process of nuclear waste is a viable alternative to glass vitrification. Basalt roving, chopped basalt fiber strands and basalt composite rebars can significantly increase the strength and safety characteristics of nuclear waste and spentmore » nuclear fuel storages. Materials based on MG are optimal waterproofing materials for nuclear waste containers. (authors)« less
ERIC Educational Resources Information Center
Delaware Univ., Newark. Coll. of Education.
This publication includes several activities regarding the use of nuclear power plants and possible effects on the environment. The materials are designed for secondary school students and include reference materials and masters for transparencies. (RH)
Inverse Analysis of Irradiated NuclearMaterial Gamma Spectra via Nonlinear Optimization
NASA Astrophysics Data System (ADS)
Dean, Garrett James
Nuclear forensics is the collection of technical methods used to identify the provenance of nuclear material interdicted outside of regulatory control. Techniques employed in nuclear forensics include optical microscopy, gas chromatography, mass spectrometry, and alpha, beta, and gamma spectrometry. This dissertation focuses on the application of inverse analysis to gamma spectroscopy to estimate the history of pulse irradiated nuclear material. Previous work in this area has (1) utilized destructive analysis techniques to supplement the nondestructive gamma measurements, and (2) been applied to samples composed of spent nuclear fuel with long irradiation and cooling times. Previous analyses have employed local nonlinear solvers, simple empirical models of gamma spectral features, and simple detector models of gamma spectral features. The algorithm described in this dissertation uses a forward model of the irradiation and measurement process within a global nonlinear optimizer to estimate the unknown irradiation history of pulse irradiated nuclear material. The forward model includes a detector response function for photopeaks only. The algorithm uses a novel hybrid global and local search algorithm to quickly estimate the irradiation parameters, including neutron fluence, cooling time and original composition. Sequential, time correlated series of measurements are used to reduce the uncertainty in the estimated irradiation parameters. This algorithm allows for in situ measurements of interdicted irradiated material. The increase in analysis speed comes with a decrease in information that can be determined, but the sample fluence, cooling time, and composition can be determined within minutes of a measurement. Furthermore, pulse irradiated nuclear material has a characteristic feature that irradiation time and flux cannot be independently estimated. The algorithm has been tested against pulse irradiated samples of pure special nuclear material with cooling times of four minutes to seven hours. The algorithm described is capable of determining the cooling time and fluence the sample was exposed to within 10% as well as roughly estimating the relative concentrations of nuclides present in the original composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.
Confinement of Radioactive Materials at Defense Nuclear Facilities
2004-10-01
The design of defense nuclear facilities includes systems whose reliable operation is vital to the protection of the public, workers, and the...final safety-class barrier to the release of hazardous materials with potentially serious public consequences. The Defense Nuclear Facilities Safety...the public at certain defense nuclear facilities . This change has resulted in downgrading of the functional safety classification of confinement
``Cats and Dogs'' disposition at Sandia: Last of the legacy materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
STRONG,WARREN R.; JACKSON,JOHN L.
Over the past 12 months, Sandia National Laboratories, New Mexico (SNL/NM), has successfully conducted an evaluation of its nuclear material holdings. As a result, approximately 46% of these holdings (36% by mass) have been reclassified as no defined use (NDU). Reclassification as NDU allows Sandia to determine the final disposition of a significant percentage of its legacy nuclear material. Disposition will begin some time in mid CY2000. This reclassification and the proposed disposition of the material has resulted in an extensive coordination effort lead by the Nuclear Materials Management Team (NMMT), which includes the nuclear material owners, the Radioactive Waste/Nuclearmore » Material Disposition Department (7135), and DOE Albuquerque Operations Office. The process of identifying and reclassifying the cats and dogs or miscellaneous lots of nuclear material has also presented a number of important lessons learned for other sites in the DOE complex.« less
Structural integrity of materials in nuclear service: a bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heddleson, F.A.
This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.
Compositions and methods for treating nuclear fuel
Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M
2013-08-13
Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
Compositions and methods for treating nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K
Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA
2009-05-05
A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA
2009-01-27
A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Norman, Eric B [Oakland, CA; Prussin, Stanley G [Kensington, CA
2009-01-06
A method and a system for detecting the presence of special nuclear materials in a suspect container. The system and its method include irradiating the suspect container with a beam of neutrons, so as to induce a thermal fission in a portion of the special nuclear materials, detecting the gamma rays that are emitted from the fission products formed by the thermal fission, to produce a detector signal, comparing the detector signal with a threshold value to form a comparison, and detecting the presence of the special nuclear materials using the comparison.
Title list of documents made publicly available, December 1-31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report includes the information received and published by the U.S. Nuclear Regulatory Commission (NRC) in December 1997. It includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. This series of documents is indexed by author, corporate source, and report number. This report includes six docketed items and 24 non-docketed items.
Anomaly detection applied to a materials control and accounting database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteson, R.; Spanks, L.; Yarbro, T.
An important component of the national mission of reducing the nuclear danger includes accurate recording of the processing and transportation of nuclear materials. Nuclear material storage facilities, nuclear chemical processing plants, and nuclear fuel fabrication facilities collect and store large amounts of data describing transactions that involve nuclear materials. To maintain confidence in the integrity of these data, it is essential to identify anomalies in the databases. Anomalous data could indicate error, theft, or diversion of material. Yet, because of the complex and diverse nature of the data, analysis and evaluation are extremely tedious. This paper describes the authors workmore » in the development of analysis tools to automate the anomaly detection process for the Material Accountability and Safeguards System (MASS) that tracks and records the activities associated with accountable quantities of nuclear material at Los Alamos National Laboratory. Using existing guidelines that describe valid transactions, the authors have created an expert system that identifies transactions that do not conform to the guidelines. Thus, this expert system can be used to focus the attention of the expert or inspector directly on significant phenomena.« less
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Advanced research workshop: nuclear materials safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jardine, L J; Moshkov, M M
The Advanced Research Workshop (ARW) on Nuclear Materials Safety held June 8-10, 1998, in St. Petersburg, Russia, was attended by 27 Russian experts from 14 different Russian organizations, seven European experts from six different organizations, and 14 U.S. experts from seven different organizations. The ARW was conducted at the State Education Center (SEC), a former Minatom nuclear training center in St. Petersburg. Thirty-three technical presentations were made using simultaneous translations. These presentations are reprinted in this volume as a formal ARW Proceedings in the NATO Science Series. The representative technical papers contained here cover nuclear material safety topics on themore » storage and disposition of excess plutonium and high enriched uranium (HEU) fissile materials, including vitrification, mixed oxide (MOX) fuel fabrication, plutonium ceramics, reprocessing, geologic disposal, transportation, and Russian regulatory processes. This ARW completed discussions by experts of the nuclear materials safety topics that were not covered in the previous, companion ARW on Nuclear Materials Safety held in Amarillo, Texas, in March 1997. These two workshops, when viewed together as a set, have addressed most nuclear material aspects of the storage and disposition operations required for excess HEU and plutonium. As a result, specific experts in nuclear materials safety have been identified, know each other from their participation in t he two ARW interactions, and have developed a partial consensus and dialogue on the most urgent nuclear materials safety topics to be addressed in a formal bilateral program on t he subject. A strong basis now exists for maintaining and developing a continuing dialogue between Russian, European, and U.S. experts in nuclear materials safety that will improve the safety of future nuclear materials operations in all the countries involved because of t he positive synergistic effects of focusing these diverse backgrounds of nuclear experience on a common objectiveÑthe safe and secure storage and disposition of excess fissile nuclear materials.« less
Title list of documents made publicly available. Volume 17, No. 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.
Title list of documents made publicly available, September 1--30, 1994. Volume 16, No. 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-11-01
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.
Title list of documents made publicly available, November 1--30, 1994. Volume 16, No. 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1995-01-01
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.
Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging
NASA Astrophysics Data System (ADS)
Barty, C. P. J.
2015-10-01
Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.
Title list of documents made publicly available: December 1--31, 1996. Volume 18, Number 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-03-01
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principal Documents.
Title List of documents made publicly available, September 1--30, 1993. Volume 15, No. 9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate Source, Report Number, and Cross Reference of Enclosures to Principals Documents.
Title list of documents made publicly available: November 1--30, 1997. Volume 19, Number 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document is a monthly publication containing descriptions of information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. The following indexes are included: Personal Author, Corporate source, Report Number, and Cross Reference of Enclosures to Principal Documents.
The nuclear arsenals and nuclear disarmament.
Barnaby, F
1998-01-01
Current world stockpiles of nuclear weapons and the status of treaties for nuclear disarmament and the ultimate elimination of nuclear weapons are summarised. The need for including stockpiles of civil plutonium in a programme for ending production and disposing of fissile materials is emphasized, and the ultimate difficulty of disposing of the last few nuclear weapons discussed.
Title list of documents made publicly available July 1-31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This monthly publication describes the information received and published by the U.S. Nuclear Regulatory Commission (US NRC). This includes information on docketed material associated with civilian nuclear power plants and other uses of radioactive materials, and non-docketed material published by the US NRC pertinent to it`s role as a regulatory agency.
Nuclear Forensics and Attribution: A National Laboratory Perspective
NASA Astrophysics Data System (ADS)
Hall, Howard L.
2008-04-01
Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.
U.S. and Russian Collaboration in the Area of Nuclear Forensics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristo, M J
2007-10-22
Nuclear forensics has become increasingly important in the fight against illicit trafficking in nuclear and other radioactive materials. The illicit trafficking of nuclear materials is, of course, an international problem; nuclear materials may be mined and milled in one country, manufactured in a second country, diverted at a third location, and detected at a fourth. There have been a number of articles in public policy journals in the past year that call for greater interaction between the U. S. and the rest of the world on the topic of nuclear forensics. Some believe that such international cooperation would help providemore » a more certain capability to identify the source of the nuclear material used in a terrorist event. An improved international nuclear forensics capability would also be important as part of the IAEA verification toolkit, particularly linked to increased access provided by the additional protocol. A recent study has found that, although international progress has been made in securing weapons-usable HEU and Pu, the effort is still insufficient. They found that nuclear material, located in 40 countries, could be obtained by terrorists and criminals and used for a crude nuclear weapon. Through 2006, the IAEA Illicit Trafficking Database had recorded a total of 607 confirmed events involving illegal possession, theft, or loss of nuclear and other radioactive materials. Although it is difficult to predict the future course of such illicit trafficking, increasingly such activities are viewed as significant threats that merit the development of special capabilities. As early as April, 1996, nuclear forensics was recognized at the G-8 Summit in Moscow as an important element of an illicit nuclear trafficking program. Given international events over the past several years, the value and need for nuclear forensics seems greater than ever. Determining how and where legitimate control of nuclear material was lost and tracing the route of the material from diversion through interdiction are important goals for nuclear forensics and attribution. It is equally important to determine whether additional devices or materials that pose a threat to public safety are also available. Finding the answer to these questions depends on determining the source of the material and its method of production. Nuclear forensics analysis and interpretation provide essential insights into methods of production and sources of illicit radioactive materials. However, they are most powerful when combined with other sources of information, including intelligence and traditional detective work. The certainty of detection and punishment for those who remove nuclear materials from legitimate control provides the ultimate deterrent for such diversion and, ultimately, for the intended goal of such diversion, including nuclear terrorism or proliferation. Consequently, nuclear forensics is an integral part of 'nuclear deterrence' in the 21st century. Nuclear forensics will always be limited by the diagnostic information inherent in the interdicted material. Important markers for traditional forensics (fingerprints, stray material, etc.) can be eliminated or obscured, but many nuclear materials have inherent isotopic or chemical characteristics that serve as unequivocal markers of specific sources, production processes, or transit routes. The information needed for nuclear forensics goes beyond that collected for most commercial and international verification activities. Fortunately, the international nuclear engineering enterprise has a restricted number of conspicuous process steps that makes the interpretation process easier. Ultimately, though, it will always be difficult to distinguish between materials that reflect similar source or production histories, but are derived from disparate sites. Due to the significant capital costs of the equipment and the specialized expertise of the personnel, work in the field of nuclear forensics has been restricted so far to a handful of national and international laboratories. There are a limited number of specialists who have experience working with interdicted nuclear materials and affiliated evidence. Therefore, a knowledge management system that utilizes information resources relevant to nuclear forensic and attribution signatures, processes, origins, and pathways, allowing subject matter experts to access the right information in order to interpret forensics data and draw appropriate conclusions, is essential. In order to determine the origin, point of diversion of the nuclear material, and those responsible for the unauthorized transfer, close relationships are required between governments who maintain inventories and data of fissile or other radioactive materials. Numerous databases exist in many countries and organizations that could be valuable for the future development and application of nuclear forensics.« less
Lu.sub.1-xI.sub.3:Ce.sub.x-a scintillator for gamma-ray spectroscopy and time-of-flight pet
Shah, Kanai S [Newton, MA
2008-02-12
The present invention includes very fast scintillator materials including lutetium iodide doped with Cerium (Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma-ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma-ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... in the nuclear materials transportation field; (2) Is in an organization of the Department of Energy... EMPLOYEES RETIREMENT SYSTEM-BASIC ANNUITY Nuclear Materials Couriers § 842.902 Definitions. Agency head means the Secretary of Energy. For purposes of this subpart, agency head is also deemed to include the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities. This Part 2 includes chapters on implementation guidance for operational configuration management, implementation guidance for design reconstitution, and implementation guidance for material condition and aging management. Appendices are included on design control, examples of design information, conduct of walkdowns, and content of design information summaries.
Nuclear reactor for breeding U.sup.233
Bohanan, Charles S.; Jones, David H.; Raab, Jr., Harry F.; Radkowsky, Alvin
1976-01-01
A light-water-cooled nuclear reactor capable of breeding U.sup.233 for use in a light-water breeder reactor includes physically separated regions containing U.sup.235 fissile material and U.sup.238 fertile material and Th.sup.232 fertile material and Pu.sup.239 fissile material, if available. Preferably the U.sup.235 fissile material and U.sup.238 fertile material are contained in longitudinally movable seed regions and the Pu.sup.239 fissile material and Th.sup.232 fertile material are contained in blanket regions surrounding the seed regions.
1L Mark-IV Target Design Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koehler, Paul E.
This presentation includes General Design Considerations; Current (Mark-III) Lower Tier; Mark-III Upper Tier; Performance Metrics; General Improvements for Material Science; General Improvements for Nuclear Science; Improving FOM for Nuclear Science; General Design Considerations Summary; Design Optimization Studies; Expected Mark-IV Performance: Material Science; Expected Mark-IV Performance: Nuclear Science (Disk); Mark IV Enables Much Wider Range of Nuclear-Science FOM Gains than Mark III; Mark-IV Performance Summary; Rod or Disk? Center or Real FOV?; and Project Cost and Schedule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swift, Alicia L.
There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navymore » while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.« less
Nuclear regulatory legislation: 102d Congress. Volume 1, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include: The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, andmore » environmental protection.« less
Nuclear regulatory legislation, 102d Congress. Volume 2, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-01
This document is a compilation of nuclear regulatory legislation and other relevant material through the 102d Congress, 2d Session. This compilation has been prepared for use as a resource document, which the NRC intends to update at the end of every Congress. The contents of NUREG-0980 include The Atomic Energy Act of 1954, as amended; Energy Reorganization Act of 1974, as amended, Uranium Mill Tailings Radiation Control Act of 1978; Low-Level Radioactive Waste Policy Act; Nuclear Waste Policy Act of 1982; and NRC Authorization and Appropriations Acts. Other materials included are statutes and treaties on export licensing, nuclear non-proliferation, andmore » environmental protection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gavrylyuk, V. I.; Scherbachenko, A. M.; Bazavov, D. A.
2001-01-01
The George Kuzmycz Training Center for Physical Protection, Control and Accounting (GKTC) was established in 1998 in a collaborative endeavor of the State Nuclear Regulatory Administration of Ukraine, the Ukrainian Academy of Sciences, and the U.S. Department of Energy. Located at the Institute for Nuclear Research in Kyiv, the GKTC provides theoretical and practical training in physical protection, control, and accounting techniques and systems that are employed to reduce the risk of unauthorized use, theft, or diversion of weapons-usable nuclear material. Participants in GKTC workshops and courses include nuclear facility specialists as well as officials of the State's regulatory authorities.more » Recently, the training scope has been broadened to include students from other nations in the region.« less
Keeping the Momentum and Nuclear Forensics at Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, Robert Ernest; Dion, Heather M.; Dry, Donald E.
LANL has 70 years of experience in nuclear forensics and supports the community through a wide variety of efforts and leveraged capabilities: Expanding the understanding of nuclear forensics, providing training on nuclear forensics methods, and developing bilateral relationships to expand our understanding of nuclear forensic science. LANL remains highly supportive of several key organizations tasked with carrying forth the Nuclear Security Summit messages: IAEA, GICNT, and INTERPOL. Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous programs including safeguards accountancy verification measurements. Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable formore » nuclear material and environmental forensic characterization. Los Alamos National Laboratory uses numerous means to validate and independently verify that measurement data quality objectives are met. Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).« less
Cladding material, tube including such cladding material and methods of forming the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and highmore » temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.« less
The Importance of International Technical Nuclear Forensics to Deter Illicit Trafficking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D K
2007-01-30
Illicit trafficking of nuclear materials is a transboundary problem that requires a cooperative approach involving international nuclear forensics to ensure all states understand the threat posed by nuclear smuggling as well as a means to best deter the movement of nuclear contraband. To achieve the objectives, all cases involving illicit trafficking of nuclear and radiological materials must be vigorously pursued and prosecuted when appropriate. The importance of outreach and formal government-to-government relationships with partner nations affected by nuclear trafficking cannot be under-estimated. States that are situated on smuggling routes may be well motivated to counter nuclear crimes to bolster theirmore » own border and transportation security as well as strengthen their economic and political viability. National law enforcement and atomic energy agencies in these states are aggressively pursuing a comprehensive strategy to counter nuclear smuggling through increasing reliance on technical nuclear forensics. As part of these activities, it is essential that these organizations be given adequate orientation to the best practices in this emerging discipline including the categorization of interdicted nuclear material, collection of traditional and nuclear forensic evidence, data analysis using optimized analytical protocols, and how to best fuse forensics information with reliable case input to best develop a law enforcement or national security response. The purpose of formalized USG relationship is to establish an institutional framework for collaboration in international forensics, improve standards of forensics practice, conduct joint exercises, and pursue case-work that benefits international security objectives. Just as outreach and formalized relationships are important to cultivate international nuclear forensics, linking nuclear forensics to ongoing national assistance in border and transpiration security, including port of entry of entry monitoring, nuclear safeguards, and emerging civilian nuclear power initiatives including the Global Nuclear Energy Partnership are crucial components of a successful nuclear detection and security architecture. Once illicit shipments of nuclear material are discovered at a border, the immediate next question will be the nature and the source of the material, as well as the identity of the individual(s) involved in the transfer as well as their motivations. The Nuclear Smuggling International Technical Working Group (ITWG) is a forum for the first responder, law enforcement, policy, and diplomatic community to partner with nuclear forensics experts worldwide to identify requirements and develop technical solutions in common. The ITWG was charted in 1996 and since that time approximately 30 member states and organizations have participated in 11 annual international meetings. The ITWG also works closely with the IAEA to provide countries with support for forensic analyses. Priorities include the development of common protocols for the collection of nuclear forensic evidence and laboratory investigations, organization of forensic round-robin analytical exercises and technical forensic assistance to requesting nations. To promote the science of nuclear forensics within the ITWG the Nuclear Forensics Laboratory Group was organized in 2004. A Model Action Plan for nuclear forensics was developed by the ITWG and published as an IAEA Nuclear security Series document to guide member states in their own forensics investigations. Through outreach, formalized partnerships, common approaches and security architectures, and international working groups, nuclear forensics provides an important contribution to promoting nuclear security and accountability.« less
Title list of documents made publicly available, April 1--30 1997, Vol. 19, No. 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.B.
This report describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes: (1) material associated with civilian nuclear power plants and other uses of radioactive materials and (2) material received and published by NRC pertinent to its role as a regulatory agency. In this report, 7 items of the first type are included, and 25 regulatory type items are listed. The report is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.
Spring design for use in the core of a nuclear reactor
Willard, Jr., H. James
1993-01-01
A spring design particularly suitable for use in the core of a nuclear reactor includes one surface having a first material oriented in a longitudinal direction, and another surface having a second material oriented in a transverse direction. The respective surfaces exhibit different amounts of irraditation induced strain.
Nuclear materials 1993 annual report. Volume 8, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-05-01
This annual report of the US Nuclear Regulatory Commission`s Office for Analysis and Evaluation of Operational Data (AEOD) describes activities conducted during 1993. The report is published in two parts. NUREG-1272, Vol. 8, No. 1, covers power reactors and presents an overview of the operating experience of the nuclear power industry from the NRC perspective, including comments about the trends of some key performance measures. The report also includes the principal findings and issues identified in AEOD studies over the past year and summarizes information from such sources as licensee event reports, diagnostic evaluations, and reports to the NRC`s Operationsmore » Center. NUREG-1272, Vol. 8, No. 2, covers nuclear materials and presents a review of the events and concerns during 1993 associated with the use of licensed material in nonreactor applications, such as personnel overexposures and medical misadministrations. Note that the subtitle of No. 2 has been changed from ``Nonreactors`` to ``Nuclear Materials.`` Both reports also contain a discussion of the Incident Investigation Team program and summarize both the Incident Investigation Team and Augmented Inspection Team reports. Each volume contains a list of the AEOD reports issued from 1980 through 1993.« less
MSTD 2007 Publications and Patents
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, W E
2008-04-01
The Materials Science and Technology Division (MSTD) supports the central scientific and technological missions of the Laboratory, and at the same time, executes world-class, fundamental research and novel technological development over a wide range of disciplines. Our organization is driven by the institutional needs in nuclear weapons stockpile science, high-energy-density science, nuclear reactor science, and energy and environment science and technology. We maintain expertise and capabilities in many diverse areas, including actinide science, electron microscopy, laser-materials interactions, materials theory, simulation and modeling, materials synthesis and processing, materials science under extreme conditions, ultrafast materials science, metallurgy, nanoscience and technology, nuclear fuelsmore » and energy security, optical materials science, and surface science. MSTD scientists play leadership roles in the scientific community in these key and emerging areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, E G
This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kornreich, Drew E; Vaidya, Rajendra U; Ammerman, Curtt N
Integrated Computational Materials Engineering (ICME) is a novel overarching approach to bridge length and time scales in computational materials science and engineering. This approach integrates all elements of multi-scale modeling (including various empirical and science-based models) with materials informatics to provide users the opportunity to tailor material selections based on stringent application needs. Typically, materials engineering has focused on structural requirements (stress, strain, modulus, fracture toughness etc.) while multi-scale modeling has been science focused (mechanical threshold strength model, grain-size models, solid-solution strengthening models etc.). Materials informatics (mechanical property inventories) on the other hand, is extensively data focused. All of thesemore » elements are combined within the framework of ICME to create architecture for the development, selection and design new composite materials for challenging environments. We propose development of the foundations for applying ICME to composite materials development for nuclear and high-radiation environments (including nuclear-fusion energy reactors, nuclear-fission reactors, and accelerators). We expect to combine all elements of current material models (including thermo-mechanical and finite-element models) into the ICME framework. This will be accomplished through the use of a various mathematical modeling constructs. These constructs will allow the integration of constituent models, which in tum would allow us to use the adaptive strengths of using a combinatorial scheme (fabrication and computational) for creating new composite materials. A sample problem where these concepts are used is provided in this summary.« less
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
New Non-Intrusive Inspection Technologies for Nuclear Security and Nonproliferation
NASA Astrophysics Data System (ADS)
Ledoux, Robert J.
2015-10-01
Comprehensive monitoring of the supply chain for nuclear materials has historically been hampered by non-intrusive inspection systems that have such large false alarm rates that they are impractical in the flow of commerce. Passport Systems, Inc. (Passport) has developed an active interrogation system which detects fissionable material, high Z material, and other contraband in land, sea and air cargo. Passport's design utilizes several detection modalities including high resolution imaging, passive radiation detection, effective-Z (EZ-3D™) anomaly detection, Prompt Neutrons from Photofission (PNPF), and Nuclear Resonance Fluorescence (NRF) isotopic identification. These technologies combine to: detect fissionable, high-Z, radioactive and contraband materials, differentiate fissionable materials from high-Z shielding materials, and isotopically identify actinides, Special Nuclear Materials (SNM), and other contraband (e.g. explosives, drugs, nerve agents). Passport's system generates a 3-D image of the scanned object which contains information such as effective-Z and density, as well as a 2-D image and isotopic and fissionable information for regions of interest.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Y.; Gohar, Y.; Maynard, C.
1989-04-01
KAOS/LIB-V: A library of processed nuclear responses for neutronics analyses of nuclear systems has been generated. The library was prepared using the KAOS-V code and nuclear data from ENDF/B-V. The library includes kerma (kinetic energy released in materials) factors and other nuclear response functions for all materials presently of interest in fusion and fission applications for 43 nonfissionable and 15 fissionable isotopes and elements. The nuclear response functions include gas production and tritium-breeding functions, and all important reaction cross sections. KAOS/LIB-V employs the VITAMIN-E weighting function and energy group structure of 174 neutron groups. Auxiliary nuclear data bases, e.g., themore » Japanese evaluated nuclear data library JENDL-2 were used as a source of isotopic cross sections when these data are not provided in ENDF/B-V files for a natural element. These are needed mainly to estimate average quantities such as effective Q-values for the natural element. This analysis of local energy deposition was instrumental in detecting and understanding energy balance deficiencies and other problems in the ENDF/B-V data. Pertinent information about the library and a graphical display of the main nuclear response functions for all materials in the library are given. 35 refs.« less
Nuclear Resonance Fluorescence and Isotopic Mapping of Containers
NASA Astrophysics Data System (ADS)
Johnson, Micah S.; McNabb, Dennis P.
2009-03-01
National security programs have expressed interest in developing systems to isotopically map shipping containers, fuel assemblies, and waste barrels for various materials including special nuclear material (SNM). Current radiographic systems offer little more than an ambiguous density silhouette of a container's contents. In this paper we will present a system being developed at LLNL to isotopically map containers using the nuclear resonance fluorescence (NRF) method. Recent experimental measurements on NRF strengths in SNM are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, J M; Ehinger, M H; Joseph, C
1978-10-01
Development work on a computerized system for nuclear materials control and accounting in a nuclear fuel reprocessing plant is described and evaluated. Hardware and software were installed and tested to demonstrate key measurement, measurement control, and accounting requirements at accountability input/output points using natural uranium. The demonstration included a remote data acquisition system which interfaces process and special instrumentation to a cenral processing unit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balatsky, G.I.; Severe, W.R.; Leonard, L.
2007-07-01
Illicit trafficking in nuclear and radioactive materials is far from a new issue. Reports of nuclear materials offered for sale as well as mythical materials such as red mercury date back to the 1960's. While such reports were primarily scams, it illustrates the fact that from an early date there were criminal elements willing to sell nuclear materials, albeit mythical ones, to turn a quick profit. In that same time frame, information related to lost and abandoned radioactive sources began to be reported. Unlike reports on nuclear material of that era, these reports on abandoned sources were based in factmore » - occasionally associated with resulting injury and death. With the collapse of the Former Soviet Union, illicit trafficking turned from a relatively unnoticed issue to one of global concern. Reports of unsecured nuclear and radiological material in the states of the Former Soviet Union, along with actual seizures of such material in transit, gave the clear message that illicit trafficking was now a real and urgent problem. In 1995, the IAEA established an Illicit Trafficking Data Base to keep track of confirmed instances. Illicit Trafficking is deemed to include not only radioactive materials that have been offered for sale or crossed international boarders, but also such materials that are no longer under appropriate regulatory control. As an outcome of 9/11, the United States took a closer look at illicit nuclear trafficking as well as a reassessment of the safety and security of nuclear and other radioactive materials both in the United States and Globally. This reassessment launched heightened controls and security domestically and increased our efforts internationally to prevent illicit nuclear trafficking. This reassessment also brought about the Global Threat Reduction Initiative which aims to further reduce the threats of weapons usable nuclear materials as well those of radioactive sealed sources. This paper will focus on the issues related to a subset of the materials involved in illicit trafficking in nuclear and radioactive materials, that of radioactive sealed sources. The focus on radioactive sealed sources is based on our belief that insufficient attention has been paid to trafficking incidents involving such sources which constitute the majority of trafficking cases. According to the IAEA's Illicit Trafficking Data Base, as of December 31 2005 there were 827 confirmed cases reporting by the participating states, including 250 incidents (or 30%) involved nuclear and other radioactive materials and 566 (or 68%) involved other radioactive materials, mostly radioactive sources, and radioactively contaminated materials. Experts in the Lugar Survey on Proliferation Threat and Response (June 2005) agreed that an attack with a Radiological Dispersion Device (RDD) was the most probable form of nuclear terrorism the world could expect over the next decade. At the same time radiological materials are used in wide a variety of applications, located in virtually every country and in general, radiological materials are far easier to access than nuclear materials. It has become increasingly obvious that the lack of a cradle-to-grave approach for sealed radioactive sources that have reached the end of their useful life is the main reason that sources are abandoned. It appears that the questions will ultimately become whether industry will impose additional regulations upon itself and become self-regulating with respect to repatriating radioactive material at the end of service life, or whether national authorities at some point will take actions and regulate the industry. Argentina, which is one of the most advanced countries regarding control of radiological sources adopted additional measures to safeguard its radiological materials to a level comparable to that proscribed for nuclear materials. This approach, while highly successful, has led to some minor unforeseen consequences, namely insufficient funds to implement all regulations in full and a lack of inspectors and appropriate equipment to assure compliance This is not an unusual outcome. Regulations imposed by a national regulatory authority may be technically excellent, but their implementation may provide a funding challenge. A more practical approach may be to have the industry to impose regulations upon itself, which could be accomplished within the economics of the industries involved. (authors)« less
1996 NRC annual report. Volume 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-10-01
This 22nd annual report of the US Nuclear Regulatory Commission (NRC) describes accomplishments, activities, and plans made during Fiscal Year 1996 (FH 1996)--October 1, 1995, through September 30, 1996. Significant activities that occurred early in FY 1997 are also described, particularly changes in the Commission and organization of the NRC. The mission of the NRC is to ensure that civilian uses of nuclear materials in the US are carried out with adequate protection of public health and safety, the environment, and national security. These uses include the operation of nuclear power plants and fuel cycle plants and medical, industrial, andmore » research applications. Additionally, the NRC contributes to combating the proliferation of nuclear weapons material worldwide. The NRC licenses and regulates commercial nuclear reactor operations and research reactors and other activities involving the possession and use of nuclear materials and wastes. It also protects nuclear materials used in operation and facilities from theft or sabotage. To accomplish its statutorily mandated regulatory mission, the NRC issues rules and standards, inspects facilities and operations, and issues any required enforcement actions.« less
Semi-annual report on strategic special nuclear material inventory differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-01-01
This periodic report of Inventory Differences covers the period October 1, 1976, through March 31, 1977 for Department of Energy (DOE) and DOE contractor facilities possessing significant quantities of Strategic Special Nuclear Material (SSNM). Included in this report are the low enriched uranium inventory differences for DOE's gaseous diffusion plant cascades. (LK)
Processing fissile material mixtures containing zirconium and/or carbon
Johnson, Michael Ernest; Maloney, Martin David
2013-07-02
A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.
Space Exploration Initiative Fuels, Materials and Related Nuclear Propulsion Technologies Panel
NASA Technical Reports Server (NTRS)
Bhattacharyya, S. K.; Olsen, C.; Cooper, R.; Matthews, R. B.; Walter, C.; Titran, R. J.
1993-01-01
This report was prepared by members of the Fuels, Materials and Related Technologies Panel, with assistance from a number of industry observers as well as laboratory colleagues of the panel members. It represents a consensus view of the panel members. This report was not subjected to a thorough review by DOE, NASA or DoD, and the opinions expressed should not be construed to represent the official position of these organizations, individually or jointly. Topics addressed include: requirement for fuels and materials development for nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP); overview of proposed concepts; fuels technology development plan; materials technology development plan; other reactor technology development; and fuels and materials requirements for advanced propulsion concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.
Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official Nuclear Forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with nearly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI) (Figure 1). Besidesmore » providing a network of nuclear forensics laboratories that are able to assist the global community during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. Past efforts to advance nuclear forensic science have also included scenarios that asked laboratories to adapt conventional forensics methods (e.g. DNA, fingerprints, tool marks, and document comparisons) for collecting and preserving evidence comingled with radioactive materials.« less
Effect of Nuclear Radiation on Materials at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Schwanbeck, C. A.
1965-01-01
The tensile properties for 33 polycrystalline structural materials including aluminum, titanium, nickel and iron alloys were obtained at -256.5 C (30 deg R) after irradiation exposure at this temperature to 10(exp 17) nvt (E greater than 0.5 Mev), at -256.5 C without previous irradiation, and at approximately 27 C (540 deg R) without previous irradiation. The data were evaluated statistically to permit identification of cryogenic effects and nuclear-cryogenic effects. A number of conclusions were drawn regarding suitability of certain of the materials for use in nuclear-cryogenic applications and regarding the need for further investigation.
Retrospective Imaging and Characterization of Nuclear Material.
Hayes, Robert B; Sholom, Sergey
2017-08-01
Modern techniques for detection of covert nuclear material requires some combination of real time measurement and/or sampling of the material. More common is real time measurement of the ionizing emission caused by radioactive decay or through the materials measured in response to external interrogation radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simple collimated detectors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, "How you can measure something that is not there?" The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demonstrated to be fully capable of providing both previous source spatial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or luminescence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker personnel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy information comes through dose depth profile results that are functions of the incident radiation energies.
Conventional and Non-Conventional Nuclear Material Signatures
NASA Astrophysics Data System (ADS)
Gozani, Tsahi
2009-03-01
The detection and interdiction of concealed special nuclear material (SNM) in all modes of transport is one of the most critical security issues facing the United States and the rest of the world. In principle, detection of nuclear materials is relatively easy because of their unique properties: all of them are radioactive and all emit some characteristic gamma rays. A few emit neutrons as well. These signatures are the basis for passive non-intrusive detection of nuclear materials. The low energy of the radiations necessitates additional means of detection and validation. These are provided by high-energy x-ray radiography and by active inspection based on inducing nuclear reactions in the nuclear materials. Positive confirmation that a nuclear material is present or absent can be provided by interrogation of the inspected object with penetrating probing radiation, such as neutrons and photons. The radiation induces specific reactions in the nuclear material yielding, in turn, penetrating signatures which can be detected outside the inspected object. The "conventional" signatures are first and foremost fission signatures: prompt and delayed neutrons and gamma rays. Their intensity (number per fission) and the fact that they have broad energy (non-discrete, though unique) distributions and certain temporal behaviors are key to their use. The "non- conventional" signatures are not related to the fission process but to the unique nuclear structure of each element or isotope in nature. This can be accessed through the excitation of isotopic nuclear levels (discrete and continuum) by neutron inelastic scattering or gamma resonance fluorescence. Finally there is an atomic signature, namely the high atomic number (Z>74), which obviously includes all the nuclear materials and their possible shielding. The presence of such high-Z elements can be inferred by techniques using high-energy x rays. The conventional signatures have been addressed in another article. Non-conventional signatures and some of their current or potential uses will be discussed here.
Administrator Highlights U.S.-Georgian Nuclear Security Cooperation in Tbilisi
Thomas D'Agostino
2017-12-09
NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." In order to meet that challenge, the President's FY2011 Budget Request includes close to $2.7 billion for the National Nuclear Security Administration's Defense Nuclear Nonproliferation program -- an increase of 25.7 percent over FY2010. Included in that request is NNSA's Second Line of Defense (SLD) program, which works around the world to strengthen the capability of foreign governments to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime shipping system.
Administrator Highlights U.S.-Georgian Nuclear Security Cooperation in Tbilisi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas D'Agostino
2010-07-16
NNSA Administrator Thomas D'Agostino highlighted the strong U.S.-Georgian cooperation on nuclear security issues during a day-long visit to the Republic of Georgia in mid-June. He briefed the media at availability at the Tbilisi airport. In April 2009, President Obama outlined an ambitious agenda to secure vulnerable nuclear material around the world within four years, calling the danger of a terrorist acquiring nuclear weapons "the most immediate and extreme threat to global security." In this year's State of the Union, he called the threat of nuclear weapons, "the greatest danger to the American people." In order to meet that challenge, themore » President's FY2011 Budget Request includes close to $2.7 billion for the National Nuclear Security Administration's Defense Nuclear Nonproliferation program -- an increase of 25.7 percent over FY2010. Included in that request is NNSA's Second Line of Defense (SLD) program, which works around the world to strengthen the capability of foreign governments to deter, detect, and interdict illicit trafficking in nuclear and other radioactive materials across international borders and through the global maritime shipping system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.
A Training Manual for Nuclear Medicine Technologists.
ERIC Educational Resources Information Center
Simmons, Guy H.; Alexander, George W.
This manual was prepared for a training program in Nuclear Medicine Technology at the University of Cincinnati. Instructional materials for students enrolled in these courses in the training program include: Nuclear Physics and Instrumentation, Radionuclide Measurements, Radiation Protection, and Tracer Methodology and Radiopharmaceuticals. (CS)
Toward the framework and implementation for clearance of materials from regulated facilities.
Chen, S Y; Moeller, D W; Dornsife, W P; Meyer, H R; Lamastra, A; Lubenau, J O; Strom, D J; Yusko, J G
2005-08-01
The disposition of solid materials from nuclear facilities has been a subject of public debate for several decades. The primary concern has been the potential health effects resulting from exposure to residual radioactive materials to be released for unrestricted use. These debates have intensified in the last decade as many regulated facilities are seeking viable management decisions on the disposition of the large amounts of materials potentially containing very low levels of residual radioactivity. Such facilities include the nuclear weapons complex sites managed by the U.S. Department of Energy, commercial power plants licensed by the U.S. Nuclear Regulatory Commission (NRC), and other materials licensees regulated by the NRC or the Agreement States. Other facilities that generate radioactive material containing naturally occurring radioactive materials (NORM) or technologically enhanced NORM (TENORM) are also seeking to dispose of similar materials that may be radioactively contaminated. In contrast to the facilities operated by the DOE and the nuclear power plants licensed by the U.S. Nuclear Regulatory Commission, NORM and TENORM facilities are regulated by the individual states. Current federal laws and regulations do not specify criteria for releasing these materials that may contain residual radioactivity of either man-made or natural origin from regulatory controls. In fact, the current regulatory scheme offers no explicit provision to permit materials being released as "non-radioactive," including those that are essentially free of contamination. The only method used to date with limited success has been case-by-case evaluation and approval. In addition, there is a poorly defined and inconsistent regulatory framework for regulating NORM and TENORM. Some years ago, the International Atomic Energy Agency introduced the concept of clearance, that is, controlling releases of any such materials within the regulatory domain. This paper aims to clarify clearance as an important disposition option for solid materials, establish the framework and basis of release, and discuss resolutions regarding the implementation of such a disposition option.
Lithium Ion Batteries Used for Nuclear Forensics
NASA Astrophysics Data System (ADS)
Johnson, Erik B.; Stapels, Christopher J.; Chen, X. Jie; Whitney, Chad; Holbert, Keith E.; Christian, James F.
2013-10-01
Nuclear forensics includes the study of materials used for the attribution a nuclear event. Analysis of the nuclear reaction products resulting both from the weapon and the material in the vicinity of the event provides data needed to identify the source of the nuclear material and the weapon design. The spectral information of the neutrons produced by the event provides information on the weapon configuration. The lithium battery provides a unique platform for nuclear forensics, as the Li-6 content is highly sensitive to neutrons, while the battery construction consists of various layers of materials. Each of these materials represents an element for a threshold detector scheme, where isotopes are produced in the battery components through various nuclear reactions that require a neutron energy above a fundamental threshold energy. This study looks into means for extracting neutron spectral information by understanding the isotopic concentration prior to and after exposure. The radioisotopes decay through gamma and beta emission, and radiation spectrometers have been used to measure the radiation spectra from the neutron exposed batteries. The batteries were exposed to various known neutron fields, and analysis was conducted to reconstruct the incident neutron spectra. This project is supported by the Defense Threat Reduction Agency, grant number HDTRA1-11-1-0028.
Semi-annual report on strategic special nuclear material inventory differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-07-01
The generally small differences between the amounts of nuclear materials charged to Department of Energy facilities and the amounts that could be physically inventoried are tabulated and explained. Inventory Differences data cover the period from April 1, 1977, through September 30, 1977. Certain identified accounting corrections for data from earlier periods are included. (LK)
Qualification of submerged-arc narrow strip cladding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.
1975-08-01
An unique narrow strip cladding process for use on both plate and forging material for nuclear components was developed. The qualification testing of this low-heat input process for cladding nuclear components, including those of SA508 Class 2 material is described. The theory that explains the acceptable results of these tests is also given. (auth)
Qualification of submerged-arc narrow strip cladding process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, P.S.; Gottschling, J.D.; Jeffers, G.K.
1976-03-01
Babcock and Wilcox has developed an unique narrow strip cladding process for use on both plate and forging material for nuclear components. The qualification testing of this low-heat input process for cladding nuclear components is described, including those of SA508 Class 2 material. The theory that explains the acceptable results of these tests is also given.
10 CFR 110.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... zirconium, rotor and bellows equipment, maraging steel, nuclear reactor related equipment, including process... 10 Energy 2 2010-01-01 2010-01-01 false Purpose and scope. 110.1 Section 110.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.B.
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.
Title of documents made publicly available, August 1--31, 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanez, V.E.
1996-10-01
This publication describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes: (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Andrea Beth
2004-07-01
This is a case study of the NuMAC nuclear accountability system developed at a private fuel fabrication facility. This paper investigates nuclear material accountability and safeguards by researching expert knowledge applied in the system design and development. Presented is a system developed to detect and deter the theft of weapons grade nuclear material. Examined is the system architecture that includes: issues for the design and development of the system; stakeholder issues; how the system was built and evolved; software design, database design, and development tool considerations; security and computing ethics. (author)
Transportation of hazardous materials
DOT National Transportation Integrated Search
1986-07-01
This report discusses transportation of all hazardous materials (commodities, : radioactive materials including spent nuclear fuel, and hazardous wastes) that : travel by truck, rail, water, or air. The Office of Technology Assessment (OTA) : has ide...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberto, J.; Diaz de la Rubia, T.; Gibala, R.
2006-10-01
The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 newmore » nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.« less
ERIC Educational Resources Information Center
Totten, Sam; Alexander, Susan
1985-01-01
Intended for elementary, secondary, and college teachers, this listing cites print materials dealing with nuclear warfare. Included are nonfiction, fiction, journals, newsletters, curriculum materials, and organizations. (RM)
Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.
2016-09-16
The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.
The Nuclear Forensics International Technical Working Group (ITWG) recently completed its fourth Collaborative Materials Exercise (CMX-4) in the 21 year history of the Group. This was also the largest materials exercise to date, with participating laboratories from 16 countries or international organizations. Moreover, exercise samples (including three separate samples of low enriched uranium oxide) were shipped as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. In all, over 30 analytical techniques were applied to characterize exercise materials, for which ten of those techniques weremore » applied to ITWG exercises for the first time. We performed an objective review of the state of practice and emerging application of analytical techniques of nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The hearing addresses nuclear smuggling and the role of international crime organizations in the proliferation of cruise and ballistic missiles. The demise of the Soviet Union has weakened the control in Russia over nuclear materials. Statements of government officials are included along with documents submitted for the record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management.
Radioactive materials released from nuclear power plants. Volume 13, Annual report 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Lucadamo, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1992 have been compiled and reported. The summary data for the years 1973 through 1991 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1992 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1989: Volume 10
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1989 have been compiled and reported. The summary data for the years 1970 through 1988 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1989 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1993. Volume 14
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Lucadamo, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1993 have been compiled and reported. The summary data for the years 1974 through 1992 are included for comparison. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1993 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
15 CFR 783.1 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.1 Reporting requirements. (a) Initial... this part), if you were engaged in any of the civil nuclear fuel cycle-related activities described in... hard-rock mines, including those that were closed down during calendar year 2008, (up to and including...
15 CFR 783.1 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.1 Reporting requirements. (a) Initial... this part), if you were engaged in any of the civil nuclear fuel cycle-related activities described in... hard-rock mines, including those that were closed down during calendar year 2008, (up to and including...
15 CFR 783.1 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.1 Reporting requirements. (a) Initial... this part), if you were engaged in any of the civil nuclear fuel cycle-related activities described in... hard-rock mines, including those that were closed down during calendar year 2008, (up to and including...
15 CFR 783.1 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.1 Reporting requirements. (a) Initial... this part), if you were engaged in any of the civil nuclear fuel cycle-related activities described in... hard-rock mines, including those that were closed down during calendar year 2008, (up to and including...
15 CFR 783.1 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.1 Reporting requirements. (a) Initial... this part), if you were engaged in any of the civil nuclear fuel cycle-related activities described in... hard-rock mines, including those that were closed down during calendar year 2008, (up to and including...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Schanfein
Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxidemore » (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).« less
After Action Report - Kazakhstan NSDD July 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Caterina; Eppich, Gary; Kips, Ruth
On Monday 20 July, Caterina Fox, Ruth Kips and Kim Knight were invited to participate in Kazakhstan's nuclear material inventory management working group meeting coordinated by Alexander Vasilliev as nuclear forensics subject matter experts. The meeting included participants from Kazakhstan's nuclear regulatory agency (CAESC, the Committee on Atomic and Energetic Supervision and Control) and 3 institutes 1. Institute of Nuclear Physics, INP (Almaty), 2. National Nuclear Center, NNC (Kurchatov), and 3. Ulba Metallurgical Plant, UMP (Oskemen). CAESC requested attendance of an MC&A expert, an IT Specialist, and a Physical Security Specialist from each site. The general meeting concerned considerations formore » creating unified or compatible systems for nuclear material inventory management. NSDD representatives provided an overview of nuclear forensics and presented considerations for developments of inventory management that might be synergistic with future consideration of development of a National Nuclear Forensics Library to support nuclear forensics investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, David L.; Love, Tracia L.; Rochau, Gary Eugene
2005-01-01
Concerns over the illicit trafficking of radiological and nuclear materials were focused originally on the lack of security and accountability of such material throughout the former Soviet states. This is primarily attributed to the frequency of events that have occurred involving the theft and trafficking of critical material components that could be used to construct a Radiological Dispersal Device (RDD) or even a rudimentary nuclear device. However, with the continued expansion of nuclear technology and the deployment of a global nuclear fuel cycle these materials have become increasingly prevalent, affording a more diverse inventory of dangerous materials and dual-use items.more » To further complicate the matter, the list of nuclear consumers has grown to include: (1) Nation-states that have gone beyond the IAEA agreed framework and additional protocols concerning multiple nuclear fuel cycles and processes that reuse the fuel through reprocessing to exploit technologies previously confined to the more industrialized world; (2) Terrorist organizations seeking to acquire nuclear and radiological material due to the potential devastation and psychological effect of their use; (3) Organized crime, which has discovered a lucrative market in trafficking of illicit material to international actors and/or countries; and (4) Amateur smugglers trying to feed their families in a post-Soviet era. An initial look at trafficking trends of this type seems scattered and erratic, localized primarily to a select group of countries. This is not necessarily the case. The success with which other contraband has been smuggled throughout the world suggests that nuclear trafficking may be carried out with relative ease along the same routes by the same criminals or criminal organizations. Because of the inordinately high threat posed by terrorist or extremist groups acquiring the ingredients for unconventional weapons, it is necessary that illicit trafficking of these materials be better understood as to prepare for the sustained global development of the nuclear fuel cycle. Conversely, modeling and analyses of this activity must not be limited in their scope to loosely organized criminal smuggling, but address the problem as a commercial, industrial project for the covert development of nuclear technologies and unconventional weapon development.« less
A New Program to Teach Nuclear and Radiochemistry to Undergraduates.
ERIC Educational Resources Information Center
Catchen, Gary L.; Canelos, James
1988-01-01
Follows the development of a course in nuclear and radiochemistry at Penn State. Lists specific nuclear science topics covered in the undergraduate level course. Describes audio-visual materials that have been developed for the course and includes a survey of students taking the course. (ML)
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Retrospective Imaging and Characterization of Nuclear Material
Hayes, Robert B.; Sholom, Sergey
2017-08-01
Modern techniques for detection of covert nuclear ma-terial requires some combination of real time measurement and/or sampling of the material. More common is real time measure-ment of the ionizing emission caused by radioactive decay or through the materials measured in response to external interroga-tion radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simplemore » collimated detec-tors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, “How you can measure something that is not there?” The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demon-strated to be fully capable of providing both previous source spa-tial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or lumines-cence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker person-nel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy infor-mation comes through dose depth profile results that are func-tions of the incident radiation energies.« less
Retrospective Imaging and Characterization of Nuclear Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Robert B.; Sholom, Sergey
Modern techniques for detection of covert nuclear ma-terial requires some combination of real time measurement and/or sampling of the material. More common is real time measure-ment of the ionizing emission caused by radioactive decay or through the materials measured in response to external interroga-tion radiation. One can expose the suspect material with various radiation types, including high energy photons such as x rays or with larger particles such as neutrons and muons, to obtain images or measure nuclear reactions induced in the material. Stand-off detection using imaging modalities similar to those in the medical field can be accomplished, or simplemore » collimated detec-tors can be used to localize radioactive materials. In all such cases, the common feature is that some or all of the nuclear materials have to be present for the measurement, which makes sense; as one might ask, “How you can measure something that is not there?” The current work and results show how to do exactly that: characterize nuclear materials after they have been removed from an area leaving no chemical trace. This new approach is demon-strated to be fully capable of providing both previous source spa-tial distribution and emission energy grouping. The technique uses magnetic resonance for organic insulators and/or lumines-cence techniques on ubiquitous refractory materials similar in theory to the way the nuclear industry carries out worker person-nel dosimetry. Spatial information is obtained by acquiring gridded samples for dosimetric measurements, while energy infor-mation comes through dose depth profile results that are func-tions of the incident radiation energies.« less
Inspection applications with higher electron beam energies
NASA Astrophysics Data System (ADS)
Norman, D. R.; Jones, J. L.; Yoon, W. Y.; Haskell, K. J.; Sterbentz, J. W.; Zabriskie, J. M.; Hunt, A. W.; Harmon, F.; Kinlaw, M. T.
2005-12-01
The Idaho National Laboratory has developed prototype shielded nuclear material detection systems based on pulsed photonuclear assessment (PPA) techniques for the inspection of cargo containers. During this work, increased nuclear material detection capabilities have been demonstrated at higher electron beam energies than those allowed by federal regulations for cargo inspection. This paper gives a general overview of a nuclear material detection system, the PPA technique and discusses the benefits of using these higher energies. This paper also includes a summary of the numerical and test results from LINAC operations up to 24 MeV and discusses some of the federal energy limitations associated with cargo inspection.
Downgrade of the Savannah River Sites FB-Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
SADOWSKI, ED; YOURCHAK, RANDY; PRETZELLO MARJI
2005-07-05
This paper will discuss the Safeguards & Security (S&S) activities that resulted in the downgrade of the Savannah River Site's FB-Line (FBL) from a Category I Material Balance Area (MBA) in a Material Access Area (MAA) to a Category IV MBA in a Property Protection Area (PPA). The Safeguards activities included measurement of final product items, transferal of nuclear material to other Savannah River Site (SRS) facilities, discard of excess nuclear material items, and final measurements of holdup material. The Security activities included relocation and destruction of classified documents and repositories, decertification of a classified computer, access control changes, updatesmore » to planning documents, deactivation and removal of security systems, Human Reliability Program (HRP) removals, and information security training for personnel that will remain in the FBL PPA.« less
Structural Materials and Fuels for Space Power Plants
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Busby, Jeremy; Porter, Douglas
2008-01-01
A fission reactor combined with Stirling convertor power generation is one promising candidate in on-going Fission Surface Power (FSP) studies for future lunar and Martian bases. There are many challenges for designing and qualifying space-rated nuclear power plants. In order to have an affordable and sustainable program, NASA and DOE designers want to build upon the extensive foundation in nuclear fuels and structural materials. This talk will outline the current Fission Surface Power program and outline baseline design options for a lunar power plant with an emphasis on materials challenges. NASA first organized an Affordable Fission Surface Power System Study Team to establish a reference design that could be scrutinized for technical and fiscal feasibility. Previous papers and presentations have discussed this study process in detail. Considerations for the reference design included that no significant nuclear technology, fuels, or material development were required for near term use. The desire was to build upon terrestrial-derived reactor technology including conventional fuels and materials. Here we will present an overview of the reference design, Figure 1, and examine the materials choices. The system definition included analysis and recommendations for power level and life, plant configuration, shielding approach, reactor type, and power conversion type. It is important to note that this is just one concept undergoing refinement. The design team, however, understands that materials selection and improvement must be an integral part of the system development.
Remote Sensing Laboratory - RSL
None
2018-01-16
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.
Remote Sensing Laboratory - RSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-11-06
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less
Nuclear fuels for very high temperature applications
NASA Astrophysics Data System (ADS)
Lundberg, L. B.; Hobbins, R. R.
The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.
Inherently safe passive gas monitoring system
Cordaro, Joseph V.; Bellamy, John Stephen; Shuler, James M.; Shull, Davis J.; Leduc, Daniel R.
2016-09-06
Generally, the present disclosure is directed to gas monitoring systems that use inductive power transfer to safely power an electrically passive device included within a nuclear material storage container. In particular, the electrically passive device can include an inductive power receiver for receiving inductive power transfer through a wall of the nuclear material storage container. The power received by the inductive power receiver can be used to power one or more sensors included in the device. Thus, the device is not required to include active power generation components such as, for example, a battery, that increase the risk of a spark igniting flammable gases within the container.
Code System to Calculate Tornado-Induced Flow Material Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
ANDRAE, R. W.
1999-11-18
Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form amore » complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shuaishuai; Fifield, Leonard S.; Bowler, Nicola
Cross-linked polyethylene (XLPE) cable insulation material undergoes simultaneous, accelerated thermal and gamma-radiation aging to simulate the long-term aging environment within nuclear power plants (NPPs). A variety of materials characterization tests, including scanning electron microscopy, thermo-gravimetric analysis, differential scanning calorimetry, oxidation induction time, gel-fraction and dielectric properties measurement, are conducted on pristine and differently aged XLPE samples. A preliminary model of one possible aging mechanism of XLPE cable insulation material under gamma radiation at elevated temperature of 115 °C is suggested.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Definitions. 95.5 Section 95.5 Energy NUCLEAR REGULATORY... Department of Defense, the department of Energy, the Central Intelligence Agency, and the Nuclear Regulatory..., or the use of special nuclear material in the production of energy, but shall not include data...
The state of nuclear forensics
NASA Astrophysics Data System (ADS)
Kristo, Michael J.; Tumey, Scott J.
2013-01-01
Nuclear terrorism has been identified as one of the most serious security threats facing the world today. Many countries, including the United States, have incorporated nuclear forensic analysis as a component of their strategy to prevent nuclear terrorism. Nuclear forensics involves the laboratory analysis of seized illicit nuclear materials or debris from a nuclear detonation to identify the origins of the material or weapon. Over the years, a number of forensic signatures have been developed to improve the confidence with which forensic analysts can draw conclusions. These signatures are validated and new signatures are discovered through research and development programs and in round-robin exercises among nuclear forensic laboratories. The recent Nuclear Smuggling International Technical Working Group Third Round Robin Exercise and an on-going program focused on attribution of uranium ore concentrate provide prime examples of the current state of nuclear forensics. These case studies will be examined and the opportunities for accelerator mass spectrometry to play a role in nuclear forensics will be discussed.
LONG TERM OPERATION ISSUES FOR ELECTRICAL CABLE SYSTEMS IN NUCLEAR POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fifield, Dr Leonard S; Duckworth, Robert C; Glass III, Dr. Samuel W.
Nuclear power plants contain hundreds of kilometers of electrical cables including cables used for power, for instrumentation, and for control. It is essential that safety-related cable systems continue to perform following a design-basis event. Wholesale replacement of electrical cables in existing plants facing licensing period renewal is both impractical and cost-prohibitive. It is therefore important to understand the long term aging of cable materials to have confidence that aged cables will perform when needed. It is equally important in support of cable aging management to develop methods to evaluate the health of installed cables and inform selective cable replacement decisions.more » The most common insulation materials for electrical cables in nuclear power plants are cross-linked polyethylene and ethylene-propylene rubber. The mechanical properties of these materials degrade over time in the presence of environmental stresses including heat, gamma irradiation, and moisture. Mechanical degradation of cable insulation beyond a certain threshold is unacceptable because it can lead to insulation cracking, exposure of energized conductors, arcing and burning or loss of the ability of the cable system to function during a design-basis accident. While thermal-, radiation-, and moisture-related degradation of polymer insulation materials has been extensively studied over the last few decades, questions remain regarding the long-term performance of cable materials in nuclear plant-specific environments. Identified knowledge gaps include an understanding of the temperature-dependence of activation energies for thermal damage and an understanding of the synergistic effects of radiation and thermal stress on polymer degradation. Many of the outstanding questions in the aging behavior of cable materials relate to the necessity of predicting long-term field degradation using accelerated aging results from the laboratory. Materials degrade faster under more extreme conditions, but extension of behavior to long term degradation under more mild conditions, such as those experienced by most installed cables in nuclear power plants, is complicated by the fact that different degradation mechanisms may be involved in extreme and mild scenarios. The discrepancy in predicted results from short term, more extreme exposure and actual results from longer term, more mild exposures can be counter intuitive. For instance, due to the attenuation of oxidation penetration in material samples rapidly aged through exposure to high temperatures, the bulk of the samples may be artificially protected from thermal aging. In another example, simultaneous exposure of cable insulation material to heat and radiation may actually lead to less damage at higher temperatures than may be observed at lower temperatures. The Light Water Reactor Sustainability program of the United States (US) Department of Energy Office (DOE) of Nuclear Energy is funding research to increase the predictive understanding of electrical cable material aging and degradation in existing nuclear power plants in support of continued safe operation of plants beyond their initial license periods. This research includes the evaluation and development of methods to assess installed cable condition.« less
Nondestructive evaluation of nuclear-grade graphite
NASA Astrophysics Data System (ADS)
Kunerth, D. C.; McJunkin, T. R.
2012-05-01
The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.
Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.
1983-01-01
A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.
Tungsten - Yttrium Based Nuclear Structural Materials
NASA Astrophysics Data System (ADS)
Ramana, Chintalapalle; Chessa, Jack; Martinenz, Gustavo
2013-04-01
The challenging problem currently facing the nuclear science community in this 21st century is design and development of novel structural materials, which will have an impact on the next-generation nuclear reactors. The materials available at present include reduced activation ferritic/martensitic steels, dispersion strengthened reduced activation ferritic steels, and vanadium- or tungsten-based alloys. These materials exhibit one or more specific problems, which are either intrinsic or caused by reactors. This work is focussed towards tungsten-yttrium (W-Y) based alloys and oxide ceramics, which can be utilized in nuclear applications. The goal is to derive a fundamental scientific understanding of W-Y-based materials. In collaboration with University of Califonia -- Davis, the project is designated to demonstrate the W-Y based alloys, ceramics and composites with enhanced physical, mechanical, thermo-chemical properties and higher radiation resistance. Efforts are focussed on understanding the microstructure, manipulating materials behavior under charged-particle and neutron irradiation, and create a knowledge database of defects, elemental diffusion/segregation, and defect trapping along grain boundaries and interfaces. Preliminary results will be discussed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for special nuclear material of moderate strategic significance. 74.41 Section 74.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for special nuclear material of low strategic significance. 74.31 Section 74.31 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Special Nuclear Material of Low...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherkas, Dmytro
2011-10-01
As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, andmore » lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Kyle J.; Williams, Laura S.; Jones, Anthony M.
The 2010 ratification of the New START Treaty has been widely regarded as a noteworthy national security achievement for both the Obama administration and the Medvedev-Putin regime, but deeper cuts are envisioned under future arms control regimes. Future verification needs will include monitoring the storage of warhead components and fissile materials and verifying dismantlement of warheads, pits, secondaries, and other materials. From both the diplomatic and technical perspectives, verification under future arms control regimes will pose new challenges. Since acceptable verification technology must protect sensitive design information and attributes, non-nuclear non-sensitive signatures may provide a significant verification tool without themore » use of additional information barriers. The use of electromagnetic signatures to monitor nuclear material storage containers is a promising technology with the potential to fulfill these challenging requirements. Research performed at Pacific Northwest National Laboratory (PNNL) has demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to confirm the presence of specific components on a “yes/no” basis without revealing classified information. Arms control inspectors might use this technique to verify the presence or absence of monitored items, including both nuclear and non-nuclear materials. Although additional research is needed to study signature aspects such as uniqueness and investigate container-specific scenarios, the technique potentially offers a rapid and cost-effective tool to verify reduction and dismantlement of U.S. and Russian nuclear weapons.« less
Predicting the remaining service life of concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clifton, J.F.
1991-11-01
Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST)more » is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.« less
X-ray backscatter imaging of nuclear materials
Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel
2014-09-30
The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.
Title list of documents made publicly available, June 1-30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document is a monthly publication describing information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, {open_quotes}docketed{close_quotes} does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records.
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
10 CFR 74.51 - Nuclear material control and accounting for strategic special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for strategic special nuclear material. 74.51 Section 74.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL Formula Quantities of Strategic Special Nuclear...
A long view of global plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, R.L. Jr.
1995-10-01
Dealing with the large and growing world inventories of fissile materials from all sources is a major part of the long term challenge of limiting the danger from nuclear weapons. Providing clean, safe nuclear power may also be needed to prevent conditions from arising which could lead to large scale nuclear weapon (re)armament. ADTT technologies might reconcile the seeming dilemma of providing nuclear power while maintaining a very low world inventory of nuclear materials which can be used in weapons. This vision for ADTT should be tested in a variety of ways, including comparisons with competing approaches and with othermore » objectives. Such testing is one part of constructing a path for a decades-long, worldwide implementation campaign for ADTT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, Darrell; Poinssot, Christophe; Begg, Bruce
Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less
Applications of nuclear physics
NASA Astrophysics Data System (ADS)
Hayes, A. C.
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
Hayes-Sterbenz, Anna Catherine
2017-01-10
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
Applications of nuclear physics.
Hayes, A C
2017-02-01
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applications of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.
Applications of nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine
Today the applications of nuclear physics span a very broad range of topics and fields. This review discusses a number of aspects of these applications, including selected topics and concepts in nuclear reactor physics, nuclear fusion, nuclear non-proliferation, nuclear-geophysics, and nuclear medicine. The review begins with a historic summary of the early years in applied nuclear physics, with an emphasis on the huge developments that took place around the time of World War II, and that underlie the physics involved in designs of nuclear explosions, controlled nuclear energy, and nuclear fusion. The review then moves to focus on modern applicationsmore » of these concepts, including the basic concepts and diagnostics developed for the forensics of nuclear explosions, the nuclear diagnostics at the National Ignition Facility, nuclear reactor safeguards, and the detection of nuclear material production and trafficking. The review also summarizes recent developments in nuclear geophysics and nuclear medicine. The nuclear geophysics areas discussed include geo-chronology, nuclear logging for industry, the Oklo reactor, and geo-neutrinos. The section on nuclear medicine summarizes the critical advances in nuclear imaging, including PET and SPECT imaging, targeted radionuclide therapy, and the nuclear physics of medical isotope production. Lastly, each subfield discussed requires a review article unto itself, which is not the intention of the current review; rather, the current review is intended for readers who wish to get a broad understanding of applied nuclear physics.« less
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
15 CFR 783.4 - Deadlines for submission of reports and amendments.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS § 783.4 Deadlines for... location that commenced one or more of the civil nuclear fuel cycle-related activities described in § 783.1... activities involving uranium hard-rock mines must include any such mines that were closed down during...
Electrorefiner system for recovering purified metal from impure nuclear feed material
Berger, John F.; Williamson, Mark A.; Wiedmeyer, Stanley G.; Willit, James L.; Barnes, Laurel A.; Blaskovitz, Robert J.
2015-10-06
An electrorefiner system according to a non-limiting embodiment of the present invention may include a vessel configured to maintain a molten salt electrolyte and configured to receive a plurality of alternately arranged cathode and anode assemblies. The anode assemblies are configured to hold an impure nuclear feed material. Upon application of the power system, the impure nuclear feed material is anodically dissolved and a purified metal is deposited on the cathode rods of the cathode assemblies. A scraper is configured to dislodge the purified metal deposited on the cathode rods. A conveyor system is disposed at a bottom of the vessel and configured to remove the dislodged purified metal from the vessel.
Production of Synthetic Nuclear Melt Glass
Molgaard, Joshua J.; Auxier, John D.; Giminaro, Andrew V.; Oldham, Colton J.; Gill, Jonathan; Hall, Howard L.
2016-01-01
Realistic surrogate nuclear debris is needed within the nuclear forensics community to test and validate post-detonation analysis techniques. Here we outline a novel process for producing bulk surface debris using a high temperature furnace. The material developed in this study is physically and chemically similar to trinitite (the melt glass produced by the first nuclear test). This synthetic nuclear melt glass is assumed to be similar to the vitrified material produced near the epicenter (ground zero) of any surface nuclear detonation in a desert environment. The process outlined here can be applied to produce other types of nuclear melt glass including that likely to be formed in an urban environment. This can be accomplished by simply modifying the precursor matrix to which this production process is applied. The melt glass produced in this study has been analyzed and compared to trinitite, revealing a comparable crystalline morphology, physical structure, void fraction, and chemical composition. PMID:26779720
Integral isolation valve systems for loss of coolant accident protection
Kanuch, David J.; DiFilipo, Paul P.
2018-03-20
A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.
Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database containsmore » over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.« less
Insider Threat - Material Control and Accountability Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Danny H; Elwood Jr, Robert H; Roche, Charles T
2011-01-01
The technical objectives of nuclear safeguards are (1) the timely detection of diversion of significant quantities of nuclear material from peaceful uses to the manufacture of nuclear weapons or other nuclear explosive devices or for purposes unknown and (2) the deterrence of such diversion by the risk of early detection. The safeguards and security program must address both outsider threats and insider threats. Outsider threats are primarily addressed by the physical protection system. Insider threats can be any level of personnel at the site including passive or active insiders that could attempt protracted or abrupt diversion. This could occur bymore » an individual acting alone or by collusion between an individual with material control and accountability (MC&A) responsibilities and another individual who has responsibility or control within both the physical protection and the MC&A systems. The insider threat is one that must be understood and incorporated into the safeguards posture. There have been more than 18 documented cases of theft or loss of plutonium or highly enriched uranium. The insider has access, authority, and knowledge, as well as a set of attributes, that make him/her difficult to detect. An integrated safeguards program is designed as a defense-in-depth system that seeks to prevent the unauthorized removal of nuclear material, to provide early detection of any unauthorized attempt to remove nuclear material, and to rapidly respond to any attempted removal of nuclear material. The program is also designed to support protection against sabotage, espionage, unauthorized access, compromise, and other hostile acts that may cause unacceptable adverse impacts on national security, program continuity, the health and safety of employees, the public, or the environment. Nuclear MC&A play an essential role in the capabilities of an integrated safeguards system to deter and detect theft or diversion of nuclear material. An integrated safeguards system with compensating mitigation can decrease the risk of an insider performing a malicious act without detection.« less
Infra-red signature neutron detector
Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN
2009-10-13
A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.
Nuclear and radiological terrorism: continuing education article.
Anderson, Peter D; Bokor, Gyula
2013-06-01
Terrorism involving radioactive materials includes improvised nuclear devices, radiation exposure devices, contamination of food sources, radiation dispersal devices, or an attack on a nuclear power plant or a facility/vehicle that houses radioactive materials. Ionizing radiation removes electrons from atoms and changes the valence of the electrons enabling chemical reactions with elements that normally do not occur. Ionizing radiation includes alpha rays, beta rays, gamma rays, and neutron radiation. The effects of radiation consist of stochastic and deterministic effects. Cancer is the typical example of a stochastic effect of radiation. Deterministic effects include acute radiation syndrome (ARS). The hallmarks of ARS are damage to the skin, gastrointestinal tract, hematopoietic tissue, and in severe cases the neurovascular structures. Radiation produces psychological effects in addition to physiological effects. Radioisotopes relevant to terrorism include titrium, americium 241, cesium 137, cobalt 60, iodine 131, plutonium 238, califormium 252, iridium 192, uranium 235, and strontium 90. Medications used for treating a radiation exposure include antiemetics, colony-stimulating factors, antibiotics, electrolytes, potassium iodine, and chelating agents.
RADIOLOGICAL SEALED SOURCE LIBRARY: A NUCLEAR FORENSICS TOOL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canaday, Jodi; Chamberlain, David; Finck, Martha
If a terrorist were to obtain and possibly detonate a device that contained radiological material, radiological forensic analysis of the material and source capsule could provide law enforcement with valuable clues about the origin of the radiological material; this information could then provide further leads on where the material and sealed source was obtained, and the loss of control point. This information could potentially be utilized for attribution and prosecution. Analyses of nuclear forensic signatures for radiological materials are generally understood to include isotopic ratios, trace element concentrations, the time since irradiation or purification, and morphology. Radiological forensic signatures formore » sealed sources provide additional information that leverages information on the physical design and chemical composition of the source capsule and containers, physical markings indicative of an owner or manufacturer. Argonne National Laboratory (Argonne), in collaboration with Idaho National Laboratory (INL), has been working since 2003 to understand signatures that could be used to identify specific source manufacturers. These signatures include the materials from which the capsule is constructed, dimensions, weld details, elemental composition, and isotopic abundances of the radioactive material. These signatures have been compiled in a library known as the Argonne/INL Radiological Sealed Source Library. Data collected for the library has included open-source information from vendor catalogs and web pages; discussions with source manufacturers and touring of production facilities (both protected through non-disclosure agreements); technical publications; and government registries such as the U.S. Nuclear Regulatory Commission’s Sealed Source and Device Registry.« less
Rattling Nucleons: New Developments in Active Interrogation of Special Nuclear Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert C. Runkle; David L. Chichester; Scott J. Thompson
2012-01-01
Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding - special nuclear material itself, incidental materials, or intentional shielding - and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important formore » nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.« less
Rattling nucleons: New developments in active interrogation of special nuclear material
NASA Astrophysics Data System (ADS)
Runkle, Robert C.; Chichester, David L.; Thompson, Scott J.
2012-01-01
Active interrogation is a vigorous area of research and development due to its promise of offering detection and characterization capabilities of special nuclear material in environments where passive detection fails. The primary value added by active methods is the capability to penetrate shielding—special nuclear material itself, incidental materials, or intentional shielding—and advocates hope that active interrogation will provide a solution to the problem of detecting shielded uranium, which is at present the greatest obstacle to interdiction efforts. The technique also provides a unique benefit for quantifying nuclear material in high background-radiation environments, an area important for nuclear material safeguards and material accountancy. Progress has been made in the field of active interrogation on several fronts, most notably in the arenas of source development, systems integration, and the integration and exploitation of multiple fission and non-fission signatures. But penetration of interrogating radiation often comes at a cost, not only in terms of finance and dose but also in terms of induced backgrounds, system complexity, and extended measurement times (including set up and acquisition). These costs make the calculus for deciding to implement active interrogation more subtle than may be apparent. The purpose of this review is thus to examine existing interrogation methods, compare and contrast their attributes and limitations, and identify missions where active interrogation may hold the most promise.
Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign andmore » domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.« less
Hybrid nuclear reactor grey rod to obtain required reactivity worth
Miller, John V.; Carlson, William R.; Yarbrough, Michael B.
1991-01-01
Hybrid nuclear reactor grey rods are described, wherein geometric combinations of relatively weak neutron absorber materials such as stainless steel, zirconium or INCONEL, and relatively strong neutron absorber materials, such as hafnium, silver-indium cadmium and boron carbide, are used to obtain the reactivity worths required to reach zero boron change load follow. One embodiment includes a grey rod which has combinations of weak and strong neutron absorber pellets in a stainless steel cladding. The respective pellets can be of differing heights. A second embodiment includes a grey rod with a relatively thick stainless steel cladding receiving relatively strong neutron absorber pellets only. A third embodiment includes annular relatively weak netron absorber pellets with a smaller diameter pellet of relatively strong absorber material contained within the aperture of each relatively weak absorber pellet. The fourth embodiment includes pellets made of a homogeneous alloy of hafnium and a relatively weak absorber material, with the percentage of hafnium chosen to obtain the desired reactivity worth.
Radioactive materials released from nuclear power plants. Annual report, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1980 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1980 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1987 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1987 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1979 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1979 release data are compared with previous year's releases in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1984 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1984 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants: Annual report, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1985 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1985 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1988 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1988 release data are summarized in tabular form. Data covering specific radionuclides are summarized. 16 tabs.
Civilian nuclear incidents: An overview of historical, medical, and scientific aspects
Rojavin, Yuri; Seamon, Mark J; Tripathi, Ravi S; Papadimos, Thomas J; Galwankar, Sagar; Kman, Nicholas; Cipolla, James; Grossman, Michael D; Marchigiani, Raffaele; Stawicki, Stanislaw P A
2011-01-01
Given the increasing number of operational nuclear reactors worldwide, combined with the continued use of radioactive materials in both healthcare and industry, the unlikely occurrence of a civilian nuclear incident poses a small but real danger. This article provides an overview of the most important historical, medical, and scientific aspects associated with the most notable nuclear incidents to date. We have discussed fundamental principles of radiation monitoring, triage considerations, and the short- and long-term management of radiation exposure victims. The provision and maintenance of adequate radiation safety among first responders and emergency personnel are emphasized. Finally, an outline is included of decontamination, therapeutic, and prophylactic considerations pertaining to exposure to various radioactive materials. PMID:21769214
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX's photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
Civilian nuclear incidents: An overview of historical, medical, and scientific aspects.
Rojavin, Yuri; Seamon, Mark J; Tripathi, Ravi S; Papadimos, Thomas J; Galwankar, Sagar; Kman, Nicholas; Cipolla, James; Grossman, Michael D; Marchigiani, Raffaele; Stawicki, Stanislaw P A
2011-04-01
Given the increasing number of operational nuclear reactors worldwide, combined with the continued use of radioactive materials in both healthcare and industry, the unlikely occurrence of a civilian nuclear incident poses a small but real danger. This article provides an overview of the most important historical, medical, and scientific aspects associated with the most notable nuclear incidents to date. We have discussed fundamental principles of radiation monitoring, triage considerations, and the short- and long-term management of radiation exposure victims. The provision and maintenance of adequate radiation safety among first responders and emergency personnel are emphasized. Finally, an outline is included of decontamination, therapeutic, and prophylactic considerations pertaining to exposure to various radioactive materials.
Nuclear reactor support and seismic restraint with in-vessel core retention cooling features
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, Tyler A.; Edwards, Michael J.
A nuclear reactor including a lateral seismic restraint with a vertically oriented pin attached to the lower vessel head and a mating pin socket attached to the floor. Thermally insulating materials are disposed alongside the exterior surface of a lower portion of the reactor pressure vessel including at least the lower vessel head.
Issues relating to spent nuclear fuel storage on the Oak Ridge Reservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, J.A.; Turner, D.W.
1994-12-31
Currently, about 2,800 metric tons of spent nuclear fuel (SNF) is stored in the US, 1,000 kg of SNF (or about 0.03% of the nation`s total) are stored at the US Department of Energy (DOE) complex in Oak Ridge, Tennessee. However small the total quantity of material stored at Oak Ridge, some of the material is quite singular in character and, thus, poses unique management concerns. The various types of SNF stored at Oak Ridge will be discussed including: (1) High-Flux Isotope Reactor (HFIR) and future Advanced Neutron Source (ANS) fuels; (2) Material Testing Reactor (MTR) fuels, including Bulk Shieldingmore » Reactor (BSR) and Oak Ridge Research Reactor (ORR) fuels; (3) Molten Salt Reactor Experiment (MSRE) fuel; (4) Homogeneous Reactor Experiment (HRE) fuel; (5) Miscellaneous SNF stored in Oak Ridge National Laboratory`s (ORNL`s) Solid Waste Storage Areas (SWSAs); (6) SNF stored in the Y-12 Plant 9720-5 Warehouse including Health. Physics Reactor (HPRR), Space Nuclear Auxiliary Power (SNAP-) 10A, and DOE Demonstration Reactor fuels.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-27
...; Zion Nuclear Power Station, Units 1 and 2; Exemption From Certain Physical Security Requirements 1.0... the ZNPS Physical Security Plan (PSP) for the protection of the nuclear material while in transit to... the new physical security requirements in 10 CFR 73.55. The December 2, 2010, letter included...
JAEA's actions and contributions to the strengthening of nuclear non-proliferation
NASA Astrophysics Data System (ADS)
Suda, Kazunori; Suzuki, Mitsutoshi; Michiji, Toshiro
2012-06-01
Japan, a non-nuclear weapons state, has established a commercial nuclear fuel cycle including LWRs, and now is developing a fast neutron reactor fuel cycle as part of the next generation nuclear energy system, with commercial operation targeted for 2050. Japan Atomic Energy Agency (JAEA) is the independent administrative agency for conducting comprehensive nuclear R&D in Japan after the merger of Japan Atomic Energy Research Institute (JAERI) and Japan Nuclear Cycle Development Institute (JNC). JAEA and its predecessors have extensive experience in R&D, facility operations, and safeguards development and implementation for new types of nuclear facilities for the peaceful use of nuclear energy. As the operator of various nuclear fuel cycle facilities and numerous nuclear materials, JAEA makes international contributions to strengthen nuclear non-proliferation. This paper provides an overview of JAEA's development of nuclear non-proliferation and safeguards technologies, including remote monitoring of nuclear facilities, environmental sample analysis methods and new efforts since the 2010 Nuclear Security Summit in Washington D.C.
Revolution in nuclear detection affairs
NASA Astrophysics Data System (ADS)
Stern, Warren M.
2014-05-01
The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovative application of anomaly detection algorithms.
Audit Report on "The Department's Management of Nuclear Materials Provided to Domestic Licensees"
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The objective if to determine whether the Department of Energy (Department) was adequately managing its nuclear materials provided to domestic licensees. The audit was performed from February 2007 to September 2008 at Department Headquarters in Washington, DC, and Germantown, MD; the Oak Ridge Office and the Oak Ridge National Laboratory in Oak Ridge, TN. In addition, we visited or obtained data from 40 different non-Departmental facilities in various states. To accomplish the audit objective, we: (1) Reviewed Departmental and Nuclear Regulatory Commission (NRC) requirements for the control and accountability of nuclear materials; (2) Analyzed a Nuclear Materials Management and Safeguardsmore » System (NMMSS) report with ending inventory balances for Department-owned nuclear materials dated September 30, 2007, to determine the amount and types of nuclear materials located at non-Department domestic facilities; (3) Held discussions with Department and NRC personnel that used NMMSS information to determine their roles and responsibilities related to the control and accountability over nuclear materials; (4) Selected a judgmental sample of 40 non-Department domestic facilities; (5) Met with licensee officials and sent confirmations to determine whether their actual inventories of Department-owned nuclear materials were consistent with inventories reported in the NMMSS; and, (6) Analyzed historical information related to the 2004 NMMSS inventory rebaselining initiative to determine the quantity of Department-owned nuclear materials that were written off from the domestic licensees inventory balances. This performance audit was conducted in accordance with generally accepted Government auditing standards. Those standards require that we plan and perform the audit to obtain sufficient, appropriate evidence to provide a reasonable basis for our findings and conclusions based on our audit objective. We believe that the evidence obtained provides a reasonable basis for our findings and conclusions based on our audit objectives. The audit included tests of controls and compliance with laws and regulations related to managing the Department-owned nuclear materials provided to non-Departmental domestic licensees. Because our review was limited it would not necessarily have disclosed all internal control deficiencies that may have existed at the time of our audit. We examined the establishment of performance measures in accordance with Government Performance and Results Act of 1993, as they related to the audit objective. We found that the Department had established performance measures related to removing or disposing of nuclear materials and radiological sources around the world. We utilized computer generated data during our audit and performed procedures to validate the reliability of the information as necessary to satisfy our audit objective. As noted in the report, we questioned the reliability of the NMMSS data.« less
Special nuclear material simulation device
Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.
2014-08-12
An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.
Nuclear reactor neutron shielding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speaker, Daniel P; Neeley, Gary W; Inman, James B
A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactormore » cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.« less
Ceramicrete stabilization of U-and Pu-bearing materials
Wagh, Arun S.; Maloney, M. David; Thompson, Gary H.
2007-11-13
A method of stabilizing nuclear material is disclosed. Oxides or halides of actinides and/or transuranics (TRUs) and/or hydrocarbons and/or acids contaminated with actinides and/or TRUs are treated by adjusting the pH of the nuclear material to not less than about 5 and adding sufficient MgO to convert fluorides present to MgF.sub.2; alumina is added in an amount sufficient to absorb substantially all hydrocarbon liquid present, after which a binder including MgO and KH.sub.2PO.sub.4 is added to the treated nuclear material to form a slurry. Additional MgO may be added. A crystalline radioactive material is also disclosed having a binder of the reaction product of calcined MgO and KH.sub.2PO.sub.4 and a radioactive material of the oxides and/or halides of actinides and/or transuranics (TRUs). Acids contaminated with actinides and/or TRUs, and/or actinides and/or TRUs with or without oils and/or greases may be encapsulated and stabilized by the binder.
To discuss illicit nuclear trafficking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balatsky, Galya I; Severe, William R; Wallace, Richard K
2010-01-01
The Illicit nuclear trafficking panel was conducted at the 4th Annual INMM workshop on Reducing the Risk from Radioactive and Nuclear Materials on February 2-3, 2010 in Washington DC. While the workshop occurred prior to the Nuclear Security Summit, April 12-13 2010 in Washington DC, some of the summit issues were raised during the workshop. The Communique of the Washington Nuclear Security Summit stated that 'Nuclear terrorism is one of the most challenging threats to international security, and strong nuclear security measures are the most effective means to prevent terrorists, criminals, or other unauthorized actors from acquiring nuclear materials.' Themore » Illicit Trafficking panel is one means to strengthen nuclear security and cooperation at bilateral, regional and multilateral levels. Such a panel promotes nuclear security culture through technology development, human resources development, education and training. It is a tool which stresses the importance of international cooperation and coordination of assistance to improve efforts to prevent and respond to incidents of illicit nuclear trafficking. Illicit trafficking panel included representatives from US government, an international organization (IAEA), private industry and a non-governmental organization to discuss illicit nuclear trafficking issues. The focus of discussions was on best practices and challenges for addressing illicit nuclear trafficking. Terrorism connection. Workshop discussions pointed out the identification of terrorist connections with several trafficking incidents. Several trafficking cases involved real buyers (as opposed to undercover law enforcement agents) and there have been reports identifying individuals associated with terrorist organizations as prospective plutonium buyers. Some specific groups have been identified that consistently search for materials to buy on the black market, but no criminal groups were identified that specialize in nuclear materials or isotope smuggling. In most cases, sellers do not find legitimate buyers; however, there have been specific cases where sellers did find actual terrorist group representatives. There appears to be a connection between terrorist groups engaged in trafficking conventional arms and explosives components that are also looking for both nuclear materials and radioisotopes. Sale opportunities may create additional demand for such materials. As we can observe from Figure 1, many cases in the mid-90s involved kilogram quantities of material. There were smaller amounts of material moved in 2001, 2003 and 2006. While we have seen less trafficking cases involving PujHEU in recent years, the fact that it continues at all is troubling. The trafficking cases can be presented through their life cycle: Diversion of materials leads to Trafficker and then to Terrorist/Proliferator. Most of the information we have in trafficking cases is on the Trafficker. In 16 cases reported by the IAEA, there are 10 prosecutions of the involved trafficker. However, there are no confirmed diversions of material recorded in any of the 18 seizures. Most seizures were sting operations performed by law enforcement or security agents with no actual illicit end-user involved.« less
Nuclear Safety. Technical progress journal, April--June 1996: Volume 37, No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhlheim, M D
1996-01-01
This journal covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.
Nuclear Safety. Technical progress journal, January--March 1994: Volume 35, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, E G
1994-01-01
This is a journal that covers significant issues in the field of nuclear safety. Its primary scope is safety in the design, construction, operation, and decommissioning of nuclear power reactors worldwide and the research and analysis activities that promote this goal, but it also encompasses the safety aspects of the entire nuclear fuel cycle, including fuel fabrication, spent-fuel processing and handling, and nuclear waste disposal, the handling of fissionable materials and radioisotopes, and the environmental effects of all these activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
Radioactive materials released from nuclear power plants. Annual report 1991, Volume 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1991 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1991 release data are summarized in tabular form. Data Covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report, 1982. Volume 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1982 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1982 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Volume 11: Annual report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Doty, K.; Congemi, J.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1990 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1990 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commerical light water reactors during 1978 have been compiled and reported. Data on soild waste shipments as well as selected operating information have been included. This report supplements earlier annual reports by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1978 release data are compared with previous years releases in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report 1981. Vol. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Benkovitz, C.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1981 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1981 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Radioactive materials released from nuclear power plants. Annual report, 1983. Volume 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tichler, J.; Norden, K.
Releases of radioactive materials in airborne and liquid effluents from commercial light water reactors during 1983 have been compiled and reported. Data on solid waste shipments as well as selected operating information have been included. This report supplements earlier annual reports issued by the former Atomic Energy Commission and the Nuclear Regulatory Commission. The 1983 release data are summarized in tabular form. Data covering specific radionuclides are summarized.
Composite neutron absorbing coatings for nuclear criticality control
Wright, Richard N.; Swank, W. David; Mizia, Ronald E.
2005-07-19
Thermal neutron absorbing composite coating materials and methods of applying such coating materials to spent nuclear fuel storage systems are provided. A composite neutron absorbing coating applied to a substrate surface includes a neutron absorbing layer overlying at least a portion of the substrate surface, and a corrosion resistant top coat layer overlying at least a portion of the neutron absorbing layer. An optional bond coat layer can be formed on the substrate surface prior to forming the neutron absorbing layer. The neutron absorbing layer can include a neutron absorbing material, such as gadolinium oxide or gadolinium phosphate, dispersed in a metal alloy matrix. The coating layers may be formed by a plasma spray process or a high velocity oxygen fuel process.
78 FR 38739 - Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0109] Special Nuclear Material Control and Accounting... Guide (RG) 5.29, ``Special Nuclear Material Control and Accounting Systems for Nuclear Power Plants... material control and accounting. This guide applies to all nuclear power plants. ADDRESSES: Please refer to...
Commercial Nuclear Steam-Electric Power Plants, Part II
ERIC Educational Resources Information Center
Shore, Ferdinand J.
1974-01-01
Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)
THE GLOBAL ZERO MOVEMENT: A ROAD TO NOWHERE
2016-02-08
Agency ( IAEA ) to ensure continued compliance. Sixth recommendation: The United States must not adopt the concept of de- alerting its nuclear...nuclear weapons or moving fissile material in violation of NPT. These discussions should include intelligence community, law enforcement, and IAEA as
Code of Federal Regulations, 2010 CFR
2010-01-01
...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...
Code of Federal Regulations, 2011 CFR
2011-01-01
...: (301) 594-4715. 21 U.S.C. 301 et seq. Natural Gas and Electric Power Department of Energy, Office of.... (301) 415-2344, Fax: (301) 415-2395. 10 CFR part 110. Nuclear Technologies and Services Which Contribute to the Production of Special Nuclear Material (Snm). Technologies Covered Include Nuclear Reactors...
LIFE Materials: Overview of Fuels and Structural Materials Issues Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J
2008-09-08
The National Ignition Facility (NIF) project, a laser-based Inertial Confinement Fusion (ICF) experiment designed to achieve thermonuclear fusion ignition and burn in the laboratory, is under construction at the Lawrence Livermore National Laboratory (LLNL) and will be completed in April of 2009. Experiments designed to accomplish the NIF's goal will commence in late FY2010 utilizing laser energies of 1 to 1.3 MJ. Fusion yields of the order of 10 to 20 MJ are expected soon thereafter. Laser initiated fusion-fission (LIFE) engines have now been designed to produce nuclear power from natural or depleted uranium without isotopic enrichment, and from spentmore » nuclear fuel from light water reactors without chemical separation into weapons-attractive actinide streams. A point-source of high-energy neutrons produced by laser-generated, thermonuclear fusion within a target is used to achieve ultra-deep burn-up of the fertile or fissile fuel in a sub-critical fission blanket. Fertile fuels including depleted uranium (DU), natural uranium (NatU), spent nuclear fuel (SNF), and thorium (Th) can be used. Fissile fuels such as low-enrichment uranium (LEU), excess weapons plutonium (WG-Pu), and excess highly-enriched uranium (HEU) may be used as well. Based upon preliminary analyses, it is believed that LIFE could help meet worldwide electricity needs in a safe and sustainable manner, while drastically shrinking the nation's and world's stockpile of spent nuclear fuel and excess weapons materials. LIFE takes advantage of the significant advances in laser-based inertial confinement fusion that are taking place at the NIF at LLNL where it is expected that thermonuclear ignition will be achieved in the 2010-2011 timeframe. Starting from as little as 300 to 500 MW of fusion power, a single LIFE engine will be able to generate 2000 to 3000 MWt in steady state for periods of years to decades, depending on the nuclear fuel and engine configuration. Because the fission blanket in a fusion-fission hybrid system is subcritical, a LIFE engine can burn any fertile or fissile nuclear material, including un-enriched natural or depleted U and SNF, and can extract a very high percentage of the energy content of its fuel resulting in greatly enhanced energy generation per metric ton of nuclear fuel, as well as nuclear waste forms with vastly reduced concentrations of long-lived actinides. LIFE engines could thus provide the ability to generate vast amounts of electricity while greatly reducing the actinide content of any existing or future nuclear waste and extending the availability of low cost nuclear fuels for several thousand years. LIFE also provides an attractive pathway for burning excess weapons Pu to over 99% FIMA (fission of initial metal atoms) without the need for fabricating or reprocessing mixed oxide fuels (MOX). Because of all of these advantages, LIFE engines offer a pathway toward sustainable and safe nuclear power that significantly mitigates nuclear proliferation concerns and minimizes nuclear waste. An important aspect of a LIFE engine is the fact that there is no need to extract the fission fuel from the fission blanket before it is burned to the desired final level. Except for fuel inspection and maintenance process times, the nuclear fuel is always within the core of the reactor and no weapons-attractive materials are available outside at any point in time. However, an important consideration when discussing proliferation concerns associated with any nuclear fuel cycle is the ease with which reactor fuel can be converted to weapons usable materials, not just when it is extracted as waste, but at any point in the fuel cycle. Although the nuclear fuel remains in the core of the engine until ultra deep actinide burn up is achieved, soon after start up of the engine, once the system breeds up to full power, several tons of fissile material is present in the fission blanket. However, this fissile material is widely dispersed in millions of fuel pebbles, which can be tagged as individual accountable items, and thus made difficult to divert in large quantities. Several topical reports are being prepared on the materials and processes required for the LIFE engine. Specific materials of interest include: (1) Baseline TRISO Fuel (TRISO); (2) Inert Matrix Fuel (IMF) & Other Alternative Solid Fuels; (3) Beryllium (Be) & Molten Lead Blankets (Pb/PbLi); (4) Molten Salt Coolants (FLIBE/FLiNaBe/FLiNaK); (5) Molten Salt Fuels (UF4 + FLIBE/FLiNaBe); (6) Cladding Materials for Fuel & Beryllium; (7) ODS FM Steel (ODS); (8) Solid First Wall (SFW); and (9) Solid-State Tritium Storage (Hydrides).« less
Nuclear Resonance Fluorescence for Materials Assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quiter, Brian J.; Ludewigt, Bernhard; Mozin, Vladimir
This paper discusses the use of nuclear resonance fluorescence (NRF) techniques for the isotopic and quantitative assaying of radioactive material. Potential applications include age-dating of an unknown radioactive source, pre- and post-detonation nuclear forensics, and safeguards for nuclear fuel cycles Examples of age-dating a strong radioactive source and assaying a spent fuel pin are discussed. The modeling work has ben performed with the Monte Carlo radiation transport computer code MCNPX, and the capability to simulate NRF has bee added to the code. Discussed are the limitations in MCNPX?s photon transport physics for accurately describing photon scattering processes that are importantmore » contributions to the background and impact the applicability of the NRF assay technique.« less
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
10 CFR 74.15 - Nuclear material transaction reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material transaction reports. 74.15 Section 74.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.15 Nuclear material transaction reports. (a...
Radiation Resistant Electrical Insulation Materials for Nuclear Reactors: Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duckworth, Robert C.; Aytug, Tolga; Paranthaman, M. Parans
The instrument and control cables in future nuclear reactors will be exposed to temperatures, dose rates, and accumulated doses exceeding those originally anticipated for the 40-year operational life of the nuclear power plant fleet. The use of nanocomposite dielectrics as insulating material for such cables has been considered a route to performance improvement. In this project, nanoparticles were developed and successfully included in three separate material systems [cross-linked polyvinyl alcohol (PVA/XLPVA), cross-linked polyethylene (PE/XLPE), and polyimide (PI)], and the chemical, electrical, and mechanical performance of each was analyzed as a function of environmental exposure and composition. Improvements were found inmore » each material system; however, refinement of each processing pathway is needed, and the consequences of these refinements in the context of thermal, radiation, and moisture exposures should be evaluated before transferring knowledge to industry.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Purpose. 75.1 Section 75.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions... under these US/IAEA Safeguards treaties. These obligations include providing information to the IAEA on...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Purpose. 75.1 Section 75.1 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions... under these US/IAEA Safeguards treaties. These obligations include providing information to the IAEA on...
Method and apparatus for measuring nuclear magnetic properties
Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.
1987-12-01
A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.
Method and apparatus for measuring nuclear magnetic properties
Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander
1987-01-01
A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.
Code of Federal Regulations, 2011 CFR
2011-01-01
... enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33... NUCLEAR MATERIAL Special Nuclear Material of Low Strategic Significance § 74.33 Nuclear material control... strategic significance. (a) General performance objectives. Each licensee who is authorized by this chapter...
Materials for Active Engagement in Nuclear and Particle Physics Courses
NASA Astrophysics Data System (ADS)
Loats, Jeff; Schwarz, Cindy; Krane, Ken
2013-04-01
Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... quantities of strategic special nuclear material, special nuclear material of moderate strategic significance, or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... shipment of formula quantities of strategic special nuclear material, special nuclear material of moderate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn
In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less
Keegan, Elizabeth; Kristo, Michael J.; Toole, Kaitlyn; ...
2015-12-24
In Nuclear Forensic Science, analytical chemists join forces with nuclear physicists, material scientists, radiochemists, and traditional forensic scientists, as well as experts in nuclear security, nuclear safeguards, law enforcement, and policy development, in an effort to deter nuclear smuggling. Nuclear forensic science, or “nuclear forensics,” aims to answer questions about nuclear material found outside of regulatory control, questions such as ‘where did this material come from?’ and ‘what is the intended use of the material?’ In this Feature, we provide a general overview of nuclear forensics, selecting examples of key “nuclear forensic signatures” which have allowed investigators to determine themore » identity of unknown nuclear material in real investigations.« less
Hrncir, Tomas; Strazovec, Roman; Zachar, Matej
2017-09-07
The decommissioning of nuclear installations represents a complex process resulting in the generation of large amounts of waste materials containing various concentrations of radionuclides. Selection of an appropriate strategy of management of the mentioned materials strongly influences the effectiveness of decommissioning process keeping in mind safety, financial and other relevant aspects. In line with international incentives for optimization of radioactive material management, concepts of recycling and reuse of materials are widely discussed and applications of these concepts are analysed. Recycling of some portion of these materials within nuclear sector (e.g. scrap metals or concrete rubble) seems to be highly desirable from economical point of view and may lead to conserve some disposal capacity. However, detailed safety assessment along with cost/benefit calculations and feasibility study should be developed in order to prove the safety, practicality and cost effectiveness of possible recycling scenarios. Paper discussed the potential for recycling of slightly radioactive metals arising from decommissioning of NPPs within nuclear sector in Slovakia. Various available recycling scenarios are introduced and method for overall assessment of various recycling scenarios is outlined including the preliminary assessment of safety and financial aspects. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herron, Kerry Gale; Jenkins-Smith, Hank C.
2008-01-01
We analyze and compare findings from identical national surveys of the US general public on nuclear security and terrorism administered by telephone and Internet in mid-2007. Key areas of investigation include assessments of threats to US security; valuations of US nuclear weapons and nuclear deterrence; perspectives on nuclear proliferation, including the specific cases of North Korea and Iran; and support for investments in nuclear weapons capabilities. Our analysis of public views on terrorism include assessments of the current threat, progress in the struggle against terrorism, preferences for responding to terrorist attacks at different levels of assumed casualties, and support formore » domestic policies intended to reduce the threat of terrorism. Also we report findings from an Internet survey conducted in mid 2007 that investigates public views of US energy security, to include: energy supplies and reliability; energy vulnerabilities and threats, and relationships among security, costs, energy dependence, alternative sources, and research and investment priorities. We analyze public assessments of nuclear energy risks and benefits, nuclear materials management issues, and preferences for the future of nuclear energy in the US. Additionally, we investigate environmental issues as they relate to energy security, to include expected implications of global climate change, and relationships among environmental issues and potential policy options.« less
Nuclear Technology. Course 31: Quality Assurance Practices. Module 31-5, Nonconforming Materials.
ERIC Educational Resources Information Center
Pritchard, Jim; Espy, John
This fifth in a series of eight modules for a course titled Quality Assurance Practices describes the essential elements of a nonconforming material control system, including purpose and application. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…
Revolution in nuclear detection affairs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stern, Warren M.
The detection of nuclear or radioactive materials for homeland or national security purposes is inherently difficult. This is one reason detection efforts must be seen as just one part of an overall nuclear defense strategy which includes, inter alia, material security, detection, interdiction, consequence management and recovery. Nevertheless, one could argue that there has been a revolution in detection affairs in the past several decades as the innovative application of new technology has changed the character and conduct of detection operations. This revolution will likely be most effectively reinforced in the coming decades with the networking of detectors and innovativemore » application of anomaly detection algorithms.« less
Title list of documents made publicly available: June 1--30, 1995. Volume 17, Number 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-01
This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.B.
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed, material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index and amore » Report Number Index.« less
Title list of documents made publicly available: April 1--30, 1996. Volume 18, Number 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-06-01
This publication describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index.
NASA Technical Reports Server (NTRS)
1976-01-01
The approach of matching technology areas with various themes needs was not effective for the materials and thermal control discipline because of the diversity of requirements for each. Top priorities were evolved from the advanced space transportation system and the space power platform because these are essential building blocks in fulfilling some of the other themes. Important needs identified include life long-life cryogenic cooling systems for sensors, masers, and other devices and the needs for lightweight nuclear shielding materials for nuclear electric propulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This monthly publication contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and a Report Number Index. NRC documents that are publicly available may be examined without charge atmore » the NRC Public Document Room (PDR).« less
Overview of NRC Proactive Management of Materials Degradation (PMMD) Program
NASA Astrophysics Data System (ADS)
Carpenter, C. E. Gene; Hull, Amy; Oberson, Greg
Materials degradation phenomena, if not appropriately managed, have the potential to adversely impact the design functionality and safety margins of nuclear power plant (NPP) systems, structures and components (SSCs). Therefore, the U.S. Nuclear Regulatory Commission (NRC) has initiated an over-the-horizon multi-year research Proactive Management of Materials Degradation (PMMD) Research Program, which is presently evaluating longer time frames (i.e., 80 or more years) and including passive long-lived SSCs beyond the primary piping and core internals, such as concrete containment and cable insulation. This will allow the NRC to (1) identify significant knowledge gaps and new forms of degradation; (2) capture current knowledge base; and, (3) prioritize materials degradation research needs and directions for future efforts. This effort is being accomplished in collaboration with the U.S. Department of Energy's (DOE) LWR Sustainability (LWRS) program. This presentation will discuss the activities to date, including results, and the path forward.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-06
... designed to minimize proliferation risks world-wide, including the Nuclear Non- Proliferation Treaty, the U... and licensees ensure that they comply with requirements designed to minimize proliferation risks... NRC's regulations on physical security, information security, material control and accounting, cyber...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, E.B.
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index. The docketed information contained in the Title List includes the information formerly issued through the Department of Energy publication Power Reactor Docket Information, last published in January 1979.« less
Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1988-04-01
This report describes the environmental radiological monitoring programs conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1987. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstreams from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 34 tabs.« less
Browns Ferry Nuclear Plant annual radiological environmental operating report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1990. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less
Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant (BFN) in 1989. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiationmore » levels. Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts if plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in river sediment would result in no measurable increase over background in the dose to the general public. 4 refs., 2 figs., 2 tabs.« less
Annual radiological environmental operating report, Browns Ferry Nuclear Plant, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
This report describes the environmental radiological monitoring program conducted by TVA in the vicinity of Browns Ferry Nuclear Plant in 1988. The program includes the collection of samples from the environment and the determination of the concentrations of radioactive materials in the samples. Samples are taken from stations in the general area of the plant and from areas not influenced by plant operations. Station locations are selected after careful consideration of the weather patterns and projected radiation doses to the various areas around the plant. Material sampled includes air, water, milk, foods, vegetation, soil, fish, sediment, and direct radiation levels.more » Results from stations near the plant are compared with concentrations from control stations and with preoperational measurements to determine potential impacts of plant operations. The vast majority of the exposures calculated from environmental samples were contributed by naturally occurring radioactive materials or from materials commonly found in the environment as a result of atmospheric nuclear weapons fallout. Small amounts of Co-60 were found in sediment samples downstream from the plant. This activity in stream sediment would result in no measurable increase over background in the dose to the general public. 3 refs., 2 figs., 2 tabs.« less
Structural materials issues for the next generation fission reactors
NASA Astrophysics Data System (ADS)
Chant, I.; Murty, K. L.
2010-09-01
Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrington, P.B.
1979-05-01
The International Training Course on Physical Protection of Nuclear Facilities and Materials was intended for representatives from the developing countries who are responsible for preparing regulations and designing and assessing physical protection systems. The first part of the course consists of lectures on the objectives, organizational characteristics, and licensing and regulations requirements of a state system of physical protection. Since the participants may have little experience in nuclear energy, background information is provided on the topics of nuclear materials, radiation hazards, reactor systems, and reactor operations. Transportation of nuclear materials is addressed and emphasis is placed on regulations. Included inmore » these discussions are presentations by guest speakers from countries outside the United States of America who present their countries' threat to nuclear facilities. Effectiveness evaluation methodology is introduced to the participants by means of instructions which teach them how to use logic trees and the EASI (Estimate of Adversary Sequence Interruption) program. The following elements of a physical protection system are discussed: barriers, protective force, intrusion detection systems, communications, and entry-control systems. Total systems concepts of physical protection system design are emphasized throughout the course. Costs, manpower/technology trade-offs, and other practical considerations are discussed. Approximately one-third of the course is devoted to practical exercises during which the attendees participatein problem solving. A hypothetical nuclear facility is introduced, and the attendees participate in the conceptual design of a physical protection system for the facility.« less
Title list of documents made publicly available, July 1--31, 1996: Volume 18, No. 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This monthly publication describes information received and published by US NRC. This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. Following indexes are included: personal author, corporate source, report number, and cross reference of enclosures to principal documents.
Ablation study of tungsten-based nuclear thermal rocket fuel
NASA Astrophysics Data System (ADS)
Smith, Tabitha Elizabeth Rose
The research described in this thesis has been performed in order to support the materials research and development efforts of NASA Marshall Space Flight Center (MSFC), of Tungsten-based Nuclear Thermal Rocket (NTR) fuel. The NTR was developed to a point of flight readiness nearly six decades ago and has been undergoing gradual modification and upgrading since then. Due to the simplicity in design of the NTR, and also in the modernization of the materials fabrication processes of nuclear fuel since the 1960's, the fuel of the NTR has been upgraded continuously. Tungsten-based fuel is of great interest to the NTR community, seeking to determine its advantages over the Carbide-based fuel of the previous NTR programs. The materials development and fabrication process contains failure testing, which is currently being conducted at MSFC in the form of heating the material externally and internally to replicate operation within the nuclear reactor of the NTR, such as with hot gas and RF coils. In order to expand on these efforts, experiments and computational studies of Tungsten and a Tungsten Zirconium Oxide sample provided by NASA have been conducted for this dissertation within a plasma arc-jet, meant to induce ablation on the material. Mathematical analysis was also conducted, for purposes of verifying experiments and making predictions. The computational method utilizes Anisimov's kinetic method of plasma ablation, including a thermal conduction parameter from the Chapman Enskog expansion of the Maxwell Boltzmann equations, and has been modified to include a tangential velocity component. Experimental data matches that of the computational data, in which plasma ablation at an angle shows nearly half the ablation of plasma ablation at no angle. Fuel failure analysis of two NASA samples post-testing was conducted, and suggestions have been made for future materials fabrication processes. These studies, including the computational kinetic model at an angle and the ablation of the NASA sample, could be applied to an atmospheric reentry body, reentering at a ballistic trajectory at hypersonic velocities.
Introduction to Pits and Weapons Systems (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautz, D.
2012-07-02
A Nuclear Explosive Package includes the Primary, Secondary, Radiation Case and related components. This is the part of the weapon that produces nuclear yield and it converts mechanical energy into nuclear energy. The pit is composed of materials that allow mechanical energy to be converted to electromagnetic energy. Fabrication processes used are typical of any metal fabrication facility: casting, forming, machining and welding. Some of the materials used in pits include: Plutonium, Uranium, Stainless Steel, Beryllium, Titanium, and Aluminum. Gloveboxes are used for three reasons: (1) Protect workers and public from easily transported, finely divided plutonium oxides - (a) Plutoniummore » is very reactive and produces very fine particulate oxides, (b) While not the 'Most dangerous material in the world' of Manhattan Project lore, plutonium is hazardous to health of workers if not properly controlled; (2) Protect plutonium from reactive materials - (a) Plutonium is extremely reactive at ambient conditions with several components found in air: oxygen, water, hydrogen, (b) As with most reactive metals, reactions with these materials may be violent and difficult to control, (c) As with most fabricated metal products, corrosion may significantly affect the mechanical, chemical, and physical properties of the product; and (3) Provide shielding from radioactive decay products: {alpha}, {gamma}, and {eta} are commonly associated with plutonium decay, as well as highly radioactive materials such as {sup 241}Am and {sup 238}Pu.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Konynenburg, R.A.; Kundig, K.J.A.; Lyman, W.S.
1990-06-01
This report combines six work units performed in FY`85--86 by the Copper Development Association and the International Copper Research Association under contract with the University of California. The work includes literature surveys and state-of-the-art summaries on several considerations influencing the feasibility of the use of copper-base materials for fabricating high-level nuclear waste packages for the proposed repository in tuff rock at Yucca Mountain, Nevada. The general conclusion from this work was that copper-base materials are viable candidates for inclusion in the materials selection process for this application. 55 refs., 48 figs., 22 tabs.
Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodson, Boyd McLean
1999-12-01
Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permitmore » a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.« less
10 CFR 1017.9 - Nuclear material determinations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...
10 CFR 1017.9 - Nuclear material determinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...
10 CFR 1017.9 - Nuclear material determinations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...
10 CFR 1017.9 - Nuclear material determinations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...
10 CFR 1017.9 - Nuclear material determinations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Nuclear material determinations. 1017.9 Section 1017.9... NUCLEAR INFORMATION Initially Determining What Information Is Unclassified Controlled Nuclear Information § 1017.9 Nuclear material determinations. (a) The Secretary may determine that a material other than...
Krachler, Michael; Alvarez-Sarandes, Rafael; Van Winckel, Stefaan
Accurate analytical data reinforces fundamentally the meaningfulness of nuclear fuel performance assessments and nuclear waste characterization. Regularly lacking matrix-matched certified reference materials, quality assurance of elemental and isotopic analysis of nuclear materials remains a challenging endeavour. In this context, this review highlights various dedicated experimental approaches envisaged at the European Commission-Joint Research Centre-Institute for Transuranium Elements to overcome this limitation, mainly focussing on the use of high resolution-inductively coupled plasma-optical emission spectrometry (HR-ICP-OES) and sector field-inductively coupled plasma-mass spectrometry (SF-ICP-MS). However, also α- and γ-spectrometry are included here to help characterise extensively the investigated actinide solutions for their actual concentration, potential impurities and isotopic purity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-11-01
The Board`s mission is to ensure that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment. The annual report of the Board presents information on regulatory requirements; nuclear facilities, from uranium mines to nuclear power plants and related operations; regulation of nuclear materials; radioactive waste management; compliance monitoring; research; non-proliferation, safeguards and security; international activities, and public information. A financial statement is also included.
Sohns, C.W.; Nodine, R.N.; Wallace, S.A.
1999-05-04
A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.
Nuclear Chemistry, Science (Experimental): 5316.62.
ERIC Educational Resources Information Center
Williams, Russell R.
This nuclear chemistry module includes topics on atomic structure, instability of the nucleus, detection strengths and the uses of radioactive particles. Laboratory work stresses proper use of equipment and safe handling of radioactive materials. Students with a strong mathematics background may consider this course as advanced work in chemistry.…
U.S. Nuclear Cooperation with India: Issues for Congress
2010-09-30
to supply uranium,” The Hindu, January 25, 2009; Kazakhstan might start uranium exports to India in 2009,” Panorama , February 6, 2009. “Chennai Daily...93-485 amended Section 123 d. to include agreements that covered reactors producing more than 5 MW thermal or special nuclear material connected
U.S. Nuclear Cooperation With India: Issues for Congress
2009-12-17
January 25, 2009; Kazakhstan might start uranium exports to India in 2009,” Panorama , February 6, 2009. “Chennai Daily Report: India, Kazakhstan Set...Section 123 d. to include agreements that covered reactors producing more than 5 MW thermal or special nuclear material connected therewith. 121 United
10 CFR 110.102 - Hearing docket.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Hearing docket. 110.102 Section 110.102 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Hearings § 110.102 Hearing docket. For each hearing, the Secretary will maintain a docket which will include the hearing...
10 CFR 73.21 - Protection of Safeguards Information: Performance requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... maintain an information protection system that includes the applicable measures for Safeguards Information specified in § 73.22 related to: Power reactors; a formula quantity of strategic special nuclear material; transportation of or delivery to a carrier for transportation of a formula quantity of strategic special nuclear...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachner, Katherine M.; Mladineo, Stephen V.
The NNSA Material Protection, Control, and Accounting (MPC&A) program has been engaged for fifteen years in upgrading the security of nuclear materials in Russia. Part of the effort has been to establish the conditions necessary to ensure the long-term sustainability of nuclear security. A sustainable program of nuclear security requires the creation of an indigenous infrastructure, starting with sustained high level government commitment. This includes organizational development, training, maintenance, regulations, inspections, and a strong nuclear security culture. The provision of modern physical protection, control, and accounting equipment to the Russian Federation alone is not sufficient. Comprehensive infrastructure projects support themore » Russian Federation's ability to maintain the risk reduction achieved through upgrades to the equipment. To illustrate the contributions to security, and challenges of implementation, this paper discusses the history and next steps for an indigenous Tamper Indication Device (TID) program, and a Radiation Portal Monitoring (RPM) program.« less
The Role of Ceramics in a Resurgent Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J
2006-02-28
With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, A.M.; Marra, J.E.; Wilmarth, W.R.
2013-07-01
The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less
Director`s series on proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, K.C.; Price, M.E.
1994-10-17
This series is an occasional publication of essays on the topics of nuclear, chemical, biological, and missile proliferation. Essays contained in this document include: Key issues on NPT renewal and extension, Africa and nuclear nonproliferation, Kenya`s views on the NPT, Prospects for establishing a zone free of weapons of mass destruction in the middle east, effects of a special nuclear weapon materials cut-off convention, and The UK view of NPT renewal.
10 CFR 70.42 - Transfer of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 70.41 - Authorized use of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...
10 CFR 70.41 - Authorized use of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 11.15 - Application for special nuclear material access authorization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 11.15 - Application for special nuclear material access authorization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...
10 CFR 70.42 - Transfer of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...
10 CFR 70.42 - Transfer of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 70.41 - Authorized use of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...
10 CFR 70.42 - Transfer of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...
10 CFR 70.42 - Transfer of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Transfer of special nuclear material. 70.42 Section 70.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.42 Transfer of special...
10 CFR 70.41 - Authorized use of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...
10 CFR 70.41 - Authorized use of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Authorized use of special nuclear material. 70.41 Section 70.41 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Acquisition, Use and Transfer of Special Nuclear Material, Creditors' Rights § 70.41 Authorized use of special...
10 CFR 74.17 - Special nuclear material physical inventory summary report.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material physical inventory summary report. 74.17 Section 74.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL NUCLEAR MATERIAL General Reporting and Recordkeeping Requirements § 74.17 Special nuclear...
10 CFR 11.15 - Application for special nuclear material access authorization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...
10 CFR 11.15 - Application for special nuclear material access authorization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...
10 CFR 11.15 - Application for special nuclear material access authorization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Application for special nuclear material access authorization. 11.15 Section 11.15 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material...
IMPROVED TECHNNOLOGY TO PREVENT ILLICIT TRAFFICKING IN NUCLEAR MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, J H
2005-07-20
The proliferation of nuclear, chemical, and biological weapons (collectively known as weapons of mass destruction, or WMD) and the potential acquisition and use of WMD against the world by terrorists are extremely serious threats to international security. These threats are complex and interrelated. There are myriad routes to weapons of mass destruction--many different starting materials, material sources, and production processes. There are many possible proliferators--threshold countries, rogue states, state-sponsored or transnational terrorists groups, domestic terrorists, and even international crime organizations. Motives for acquiring and using WMD are similarly wide ranging--from a desire to change the regional power balance, deny accessmore » to a strategic area, or alter international policy to extortion, revenge, or hate. Because of the complexity of this threat landscape, no single program, technology, or capability--no silver bullet--can solve the WMD proliferation and terrorism problem. An integrated program is needed that addresses the WMD proliferation and terrorism problem from end to end, from prevention to detection, reversal, and response, while avoiding surprise at all stages, with different activities directed specifically at different types of WMD and proliferators. Radiation detection technologies are an important tool in the prevention of proliferation. A variety of new developments have enabled enhanced performance in terms of energy resolution, spatial resolution, predictive modeling and simulation, active interrogation, and ease of operation and deployment in the field. The radiation properties of nuclear materials, particularly highly enriched uranium (HEU), make the detection of smuggled nuclear materials technically difficult. A number of efforts are under way to devise improved detector materials and instruments and to identify novel signatures that could be detected. Key applications of this work include monitoring for radioactive materials at choke points, searching for nuclear materials, and developing instruments for response personnel.« less
Systems and methods for harvesting and storing materials produced in a nuclear reactor
Heinold, Mark R.; Dayal, Yogeshwar; Brittingham, Martin W.
2016-04-05
Systems produce desired isotopes through irradiation in nuclear reactor instrumentation tubes and deposit the same in a robust facility for immediate shipping, handling, and/or consumption. Irradiation targets are inserted and removed through inaccessible areas without plant shutdown and placed in the harvesting facility, such as a plurality of sealable and shipping-safe casks and/or canisters. Systems may connect various structures in a sealed manner to avoid release of dangerous or unwanted matter throughout the nuclear plant, and/or systems may also automatically decontaminate materials to be released. Useable casks or canisters can include plural barriers for containment that are temporarily and selectively removable with specially-configured paths inserted therein. Penetrations in the facilities may limit waste or pneumatic gas escape and allow the same to be removed from the systems without over-pressurization or leakage. Methods include processing irradiation targets through such systems and securely delivering them in such harvesting facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Klaus; Glaser, Alexander
Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Here, analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realisticallymore » achieve. Lastly, it also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less
Glaser, Alexander; Mayer, Klaus
2016-06-01
Whenever nuclear material is found out of regulatory control, questions on the origin of the material, on its intended use, and on hazards associated with the material need to be answered. Analytical and interpretational methodologies have been developed in order to exploit measurable material properties for gaining information on the history of the nuclear material. This area of research is referred to as nuclear forensic science or, in short, nuclear forensics.This chapter reviews the origins, types, and state-of-the-art of nuclear forensics; discusses the potential roles of nuclear forensics in supporting nuclear security; and examines what nuclear forensics can realistically achieve.more » It also charts a path forward, pointing at potential applications of nuclear forensic methodologies in other areas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfaltzgraff, Robert L
2006-10-22
This conference's focus was the peaceful uses of the atom and their implications for nuclear science, energy security, nuclear medicine and national security. The conference also provided the setting for the presentation of the prestigious Enrico Fermi Prize, a Presidential Award which recognizes the contributions of distinguished members of the scientific community for a lifetime of exceptional achievement in the science and technology of nuclear, atomic, molecular, and particle interactions and effects. An impressive group of distinguished speakers addressed various issues that included: the impact and legacy of the Eisenhower Administrationâs âAtoms for Peaceâ concept, the current and future rolemore » of nuclear power as an energy source, the challenges of controlling and accounting for existing fissile material, and the horizons of discovery for particle or high-energy physics. The basic goal of the conference was to examine what has been accomplished over the past fifty years as well as to peer into the future to gain insights into what may occur in the fields of nuclear energy, nuclear science, nuclear medicine, and the control of nuclear materials.« less
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Persons using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission contracts. 70.11 Section 70.11 Energy NUCLEAR... using special nuclear material under certain Department of Energy and Nuclear Regulatory Commission...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, Jon M.; Marsden, Oliva; Pellegrini, Kristi L.
Founded in 1996 upon the initiative of the “Group of 8” governments (G8), the Nuclear Forensics International Technical Working Group (ITWG) is an ad hoc organization of official nuclear forensics practitioners (scientists, law enforcement, and regulators) that can be called upon to provide technical assistance to the global community in the event of a seizure of nuclear or radiological materials. The ITWG is supported by and is affiliated with roughly 40 countries and international partner organizations including the International Atomic Energy Agency (IAEA), EURATOM, INTERPOL, EUROPOL, and the United Nations Interregional Crime and Justice Research Institute (UNICRI). Besides providing amore » network of nuclear forensics laboratories that are able to assist law enforcement during a nuclear smuggling event, the ITWG is also committed to the advancement of the science of nuclear forensic analysis, largely through participation in periodic table top and Collaborative Materials Exercises (CMXs). Exercise scenarios use “real world” samples with realistic forensics investigation time constraints and reporting requirements. These exercises are designed to promote best practices in the field and test, evaluate, and improve new technical capabilities, methods and techniques in order to advance the science of nuclear forensics. The ITWG recently completed its fourth CMX in the 20 year history of the organization. This was also the largest materials exercise to date, with participating laboratories from 16 countries or organizations. Three samples of low enriched uranium were shipped to these laboratories as part of an illicit trafficking scenario, for which each laboratory was asked to conduct nuclear forensic analyses in support of a fictitious criminal investigation. An objective review of the State Of Practice and Art of international nuclear forensic analysis based upon the outcome of this most recent exercise is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunch, Kyle J.; Jones, Anthony M.; Ramuhalli, Pradeep
The ratification and ongoing implementation of the New START Treaty have been widely regarded as noteworthy global security achievements for both the Obama Administration and the Putin (formerly Medvedev) regime. But deeper cuts that move beyond the United States and Russia to engage the P-5 and other nuclear weapons possessor states are envisioned under future arms control regimes, and are indeed required for the P-5 in accordance with their Article VI disarmament obligations in the Nuclear Non-Proliferation Treaty. Future verification needs will include monitoring the cessation of production of new fissile material for weapons, monitoring storage of warhead components andmore » fissile materials and verifying dismantlement of warheads, pits, secondary stages, and other materials. A fundamental challenge to implementing a nuclear disarmament regime is the ability to thwart unauthorized material diversion throughout the dismantlement and disposition process through strong chain of custody implementation. Verifying the declared presence, or absence, of nuclear materials and weapons components throughout the dismantlement and disposition lifecycle is a critical aspect of the disarmament process. From both the diplomatic and technical perspectives, verification under these future arms control regimes will require new solutions. Since any acceptable verification technology must protect sensitive design information and attributes to prevent the release of classified or other proliferation-sensitive information, non-nuclear non-sensitive modalities may provide significant new verification tools which do not require the use of additional information barriers. Alternative verification technologies based upon electromagnetic and acoustics could potentially play an important role in fulfilling the challenging requirements of future verification regimes. For example, researchers at the Pacific Northwest National Laboratory (PNNL) have demonstrated that low frequency electromagnetic signatures of sealed metallic containers can be used to rapidly confirm the presence of specific components on a yes/no basis without revealing classified information. PNNL researchers have also used ultrasonic measurements to obtain images of material microstructures which may be used as templates or unique identifiers of treaty-limited items. Such alternative technologies are suitable for application in various stages of weapons dismantlement and often include the advantage of an inherent information barrier due to the inability to extract classified weapon design information from the collected data. As a result, these types of technologies complement radiation-based verification methods for arms control. This article presents an overview of several alternative verification technologies that are suitable for supporting a future, broader and more intrusive arms control regime that spans the nuclear weapons disarmament lifecycle. The general capabilities and limitations of each verification modality are discussed and example technologies are presented. Potential applications are defined in the context of the nuclear material and weapons lifecycle. Example applications range from authentication (e.g., tracking and signatures within the chain of custody from downloading through weapons storage, unclassified templates and unique identification) to verification of absence and final material disposition.« less
Taking Steps to Protect Against the Insider Threat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pope, Noah Gale; Williams, Martha; Lewis, Joel
2015-10-16
Research reactors are required (in accordance with the Safeguards Agreement between the State and the IAEA) to maintain a system of nuclear material accounting and control for reporting quantities of nuclear material received, shipped, and held on inventory. Enhancements to the existing accounting and control system can be made at little additional cost to the facility, and these enhancements can make nuclear material accounting and control useful for nuclear security. In particular, nuclear material accounting and control measures can be useful in protecting against an insider who is intent on unauthorized removal or misuse of nuclear material or misuse ofmore » equipment. An enhanced nuclear material accounting and control system that responds to nuclear security is described in NSS-25G, Use of Nuclear Material Accounting and Control for Nuclear Security Purposes at Facilities, which is scheduled for distribution by the IAEA Department of Nuclear Security later this year. Accounting and control measures that respond to the insider threat are also described in NSS-33, Establishing a System for Control of Nuclear Material for Nuclear Security Purposes at a Facility During Storage, Use and Movement, and in NSS-41, Preventive and Protective Measures against Insider Threats (originally issued as NSS-08), which are available in draft form. This paper describes enhancements to existing material control and accounting systems that are specific to research reactors, and shows how they are important to nuclear security and protecting against an insider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, T.
The Nuclear Forensics Analysis Center (NFAC) is part of Savannah River National Laboratory (SRNL) and is one of only two USG National Laboratories accredited to perform nuclear forensic analyses to the requirements of ISO 17025. SRNL NFAC is capable of analyzing nuclear and radiological samples from bulk material to ultra-trace samples. NFAC provides analytical support to the FBI's Radiological Evidence Examination Facility (REEF), which is located within SRNL. REEF gives the FBI the capability to perform traditional forensics on material that is radiological and/or is contaminated. SRNL is engaged in research and development efforts to improve the USG technical nuclearmore » forensics capabilities. Research includes improving predictive signatures and developing a database containing comparative samples.« less
10 CFR 70.20 - General license to own special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...
10 CFR 70.20 - General license to own special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...
10 CFR 70.20 - General license to own special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 70.20 - General license to own special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 70.20 - General license to own special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General license to own special nuclear material. 70.20 Section 70.20 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20 General license to own special nuclear material. A general license is...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
10 CFR 110.9 - List of Nuclear Material under NRC export licensing authority.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false List of Nuclear Material under NRC export licensing authority. 110.9 Section 110.9 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL General Provisions § 110.9 List of Nuclear Material under NRC export licensing...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwantes, J. M.; Marsden, O.; Reilly, D.
Abstract The Nuclear Forensics International Technical Working Group is a community of nuclear forensic practitioners who respond to incidents involving nuclear and other radioactive material out of regulatory control. The Group is dedicated to advancing nuclear forensic science in part through periodic participation in materials exercises. The Group completed its fourth Collaborative Materials Exercise in 2015 in which laboratories from 15 countries and one multinational organization analyzed three samples of special nuclear material in support of a mock nuclear forensic investigation. This special section of the Journal for Radioanalytical and Nuclear Chemistry is devoted to summarizing highlights from this exercise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Raymond; Watson, Erica E.; Morris, Frederic A.
2009-10-07
The Global Threat Reduction Initiative (GTRI) reduces and protects vulnerable nuclear and radiological material located at civilian sites worldwide. The GTRI program has worked successfully to remove and protect nuclear and radioactive materials, including orphaned and disused high-activity sources, and is now working to ensure sustainability. Internationally, over 40 countries are cooperating with GTRI to enhance the security of radiological materials. GTRI is now seeking to develop and enhance sustainability by coordinating its resources with those of the partner country, other donor countries, and international organizations such as the International Atomic Energy Agency (IAEA).
Arc-Heater Facility for Hot Hydrogen Exposure of Nuclear Thermal Rocket Materials
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Wang,Ten-See; Hickman, Robert; Panda, Binayak; Dobson, Chris; Osborne, Robin; Clifton, Scooter
2006-01-01
A hyper-thermal environment simulator is described for hot hydrogen exposure of nuclear thermal rocket material specimens and component development. This newly established testing capability uses a high-power, multi-gas, segmented arc-heater to produce high-temperature pressurized hydrogen flows representative of practical reactor core environments and is intended to serve. as a low cost test facility for the purpose of investigating and characterizing candidate fueUstructura1 materials and improving associated processing/fabrication techniques. Design and development efforts are thoroughly summarized, including thermal hydraulics analysis and simulation results, and facility operating characteristics are reported, as determined from a series of baseline performance mapping tests.
Reactor pressure vessel head vents and methods of using the same
Gels, John L; Keck, David J; Deaver, Gerald A
2014-10-28
Internal head vents are usable in nuclear reactors and include piping inside of the reactor pressure vessel with a vent in the reactor upper head. Piping extends downward from the upper head and passes outside of the reactor to permit the gas to escape or be forcibly vented outside of the reactor without external piping on the upper head. The piping may include upper and lowers section that removably mate where the upper head joins to the reactor pressure vessel. The removable mating may include a compressible bellows and corresponding funnel. The piping is fabricated of nuclear-reactor-safe materials, including carbon steel, stainless steel, and/or a Ni--Cr--Fe alloy. Methods install an internal head vent in a nuclear reactor by securing piping to an internal surface of an upper head of the nuclear reactor and/or securing piping to an internal surface of a reactor pressure vessel.
10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...
10 CFR 70.20a - General license to possess special nuclear material for transport.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...
10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...
10 CFR 110.21 - General license for the export of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...
10 CFR 110.21 - General license for the export of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...
10 CFR 70.20a - General license to possess special nuclear material for transport.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...
10 CFR 70.20a - General license to possess special nuclear material for transport.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...
10 CFR 110.21 - General license for the export of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...
10 CFR 70.20a - General license to possess special nuclear material for transport.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...
10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...
10 CFR 70.20a - General license to possess special nuclear material for transport.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General license to possess special nuclear material for transport. 70.20a Section 70.20a Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL General Licenses § 70.20a General license to possess special nuclear material for...
10 CFR 110.21 - General license for the export of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...
10 CFR 110.21 - General license for the export of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General license for the export of special nuclear material. 110.21 Section 110.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Licenses § 110.21 General license for the export of special nuclear material. (a...
10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...
10 CFR Appendix M to Part 110 - Categorization of Nuclear Material d
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Categorization of Nuclear Material d M Appendix M to Part 110 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXPORT AND IMPORT OF NUCLEAR EQUIPMENT AND MATERIAL Pt. 110, App. M Appendix M to Part 110—Categorization of Nuclear Material d [From IAEA INFCIRC/225...
Nuclear reactor fuel containment safety structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosewell, M.P.
A nuclear reactor fuel containment safety structure is disclosed and is shown to include an atomic reactor fuel shield with a fuel containment chamber and exhaust passage means, and a deactivating containment base attached beneath the fuel reactor shield and having exhaust passages, manifold, and fluxing and control material and vessels. 1 claim, 8 figures.
Nuclear Experiments You Can Do...from Edison.
ERIC Educational Resources Information Center
Benrey, Ronald M.
This booklet discusses some of the basic facts about nuclear energy and provides eight experiments related to these facts. The experiments (which include lists of materials needed and procedures used) involve: (1) an oil-drop model of a splitting atom; (2) a domino model of a chain reaction; (3) observing radioactivity with an electroscope; (4)…
Code of Federal Regulations, 2014 CFR
2014-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Commission. 2.(a) For facilities designed for producing substantial amounts of electricity and having a rated... nuclear occurrence or series of occurrences at the location or in the course of transportation causing... radioactive material. (b) Any occurrence including an extraordinary nuclear occurrence or series of...
Code of Federal Regulations, 2014 CFR
2014-01-01
..., including Additional Protocols, designed to ensure that special nuclear materials and other related nuclear... headquarters in Luxembourg. Euratom establishes and administers safeguards designed to ensure that special... the aggregation exceeds the APP parameter set forth in ECCN 4A003.b. (v) “600 series” items may not be...
Ceramics in nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chikalla, T D; Mendel, J E
1979-05-01
Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)
ERIC Educational Resources Information Center
Journal of Chemical Education, 1981
1981-01-01
Presented is the second part of a bibliographic listing of commercially available audiovisual materials for chemistry. Information includes producer (with addresses), catalog number, format (slides, cassettes, filmstrips, films), and price for items in these categories: matter and energy, nuclear chemistry, periodic table, solids and crystals,…
Code of Federal Regulations, 2010 CFR
2010-10-01
... for access to, or control over, special nuclear material. Applicant means an individual who has... facility is eligible to access, produce, use or store classified information, or special nuclear material... of special nuclear material; or use of special nuclear material in the production of energy, but...
Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Holzemer; Alan Carvo
2012-04-01
Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material hasmore » been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.« less
Nuclear Power Now and in the Near Future
NASA Astrophysics Data System (ADS)
Burchill, William
2006-04-01
The presentation will describe the present status of nuclear power in the United States including its operating, economic, and safety record. This status report will be based on publicly-available records of the U.S. Department of Energy, the U.S. Nuclear Regulatory Commission, and the Institute of Nuclear Power Operations. The report will provide a brief description and state the impact of both the Three Mile Island and Chernobyl accidents. It will list the lessons learned and report significant improvements in U.S. nuclear power plants. The major design differences between Chernobyl and U.S. nuclear reactors will be discussed. The presentation will project the near future of nuclear power considering the 2005 Energy Bill, initiatives by the U.S. Department of Energy and industry, and public opinions. Issues to be considered include plant operating safety, disposition of nuclear waste, protection against proliferation of potential weapons materials, economic performance, environmental impact and protection, and advanced nuclear reactor designs and fuel cycle options. The risk of nuclear power plant operations will be compared to risks presented by other industrial activities.
Summary of NR Program Prometheus Efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Ashcroft; C Eshelman
2006-02-08
The Naval Reactors Program led work on the development of a reactor plant system for the Prometheus space reactor program. The work centered on a 200 kWe electric reactor plant with a 15-20 year mission applicable to nuclear electric propulsion (NEP). After a review of all reactor and energy conversion alternatives, a direct gas Brayton reactor plant was selected for further development. The work performed subsequent to this selection included preliminary nuclear reactor and reactor plant design, development of instrumentation and control techniques, modeling reactor plant operational features, development and testing of core and plant material options, and development ofmore » an overall project plan. Prior to restructuring of the program, substantial progress had been made on defining reference plant operating conditions, defining reactor mechanical, thermal and nuclear performance, understanding the capabilities and uncertainties provided by material alternatives, and planning non-nuclear and nuclear system testing. The mission requirements for the envisioned NEP missions cannot be accommodated with existing reactor technologies. Therefore concurrent design, development and testing would be needed to deliver a functional reactor system. Fuel and material performance beyond the current state of the art is needed. There is very little national infrastructure available for fast reactor nuclear testing and associated materials development and testing. Surface mission requirements may be different enough to warrant different reactor design approaches and development of a generic multi-purpose reactor requires substantial sacrifice in performance capability for each mission.« less
MC and A instrumentation catalog
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neymotin, L.; Sviridova, V.
1998-06-01
In 1981 and 1985, two editions of a catalog of non-destructive nuclear measurement instrumentation, and material control and surveillance equipment, were published by Brookhaven National Laboratory (BNL). The last edition of the catalog included one hundred and twenty-five entries covering a wide range of devices developed in the US and abroad. More than ten years have elapsed since the publication of the more recent Catalog. Devices described in it have undergone significant modifications, and new devices have been developed. Therefore, in order to assist specialists in the field of Material Control and Accounting (MC and A), a new catalog hasmore » been created. Work on this instrumentation catalog started in 1997 as a cooperative effort of Brookhaven National Laboratory (BNL), operated by Brookhaven Science Associates under contract to the US Department of Energy, and the All-Russian Research Institute of Automatics (VNIIA), subordinate institute of the Atomic Energy Ministry of the Russian Federation, within the collaborative US-Russia Material Protection, Control, and Accounting (MPC and A) Program. Most of the equipment included in the Catalog are non-destructive assay (NDA) measurement devices employed for purposes of accounting, confirmation, and verification of nuclear materials. Other devices also included in the Catalog are employed in the detection and deterrence of unauthorized access to or removal of nuclear materials (material control: containment and surveillance). Equipment found in the Catalog comprises either: (1) complete devices or systems that can be used for MC and A applications; or (2) parts or components of complete systems, such as multi-channel analyzers, detectors, neutron generators, and software. All devices are categorized by their status of development--from prototype to serial production.« less
48 CFR 970.4402-4 - Nuclear material transfers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...
48 CFR 970.4402-4 - Nuclear material transfers.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...
48 CFR 970.4402-4 - Nuclear material transfers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...
48 CFR 970.4402-4 - Nuclear material transfers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...
48 CFR 970.4402-4 - Nuclear material transfers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Nuclear material transfers... 970.4402-4 Nuclear material transfers. (a) Management and operating contractors, in preparing... nuclear material, shall be required to assure that each such subcontract or agreement contains a— (1...
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
Review of nuclear pharmacy practice in hospitals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawada, T.K.; Tubis, M.; Ebenkamp, T.
1982-02-01
An operational profile for nuclear pharmacy practice is presented, and the technical and professional role of nuclear pharmacists is reviewed. Key aspects of nuclear pharmacy practice in hospitals discussed are the basic facilities and equipment for the preparation, quality control, and distribution of radioactive drug products. Standards for receiving, storing, and processing radioactive material are described. The elements of a radiopharmaceutical quality assurance program, including the working procedures, documentation systems, data analysis, and specific control tests, are presented. Details of dose preparation and administration and systems of inventory control for radioactive products are outlined.
Code of Federal Regulations, 2012 CFR
2012-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
10 CFR 73.6 - Exemptions for certain quantities and kinds of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nuclear material. 73.6 Section 73.6 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION... special nuclear material. A licensee is exempt from the requirements of 10 CFR part 26 and §§ 73.20, 73.25, 73.26, 73.27, 73.45, 73.46, 73.70 and 73.72 with respect to the following special nuclear material...
Code of Federal Regulations, 2010 CFR
2010-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
Code of Federal Regulations, 2011 CFR
2011-01-01
... over nuclear facilities and materials under the Atomic Energy Act. 8.4 Section 8.4 Energy NUCLEAR... nuclear facilities and materials under the Atomic Energy Act. (a) By virtue of the Atomic Energy Act of... Atomic Energy Act of 1954 sets out a pattern for licensing and regulation of certain nuclear materials...
An analysis of international nuclear fuel supply options
NASA Astrophysics Data System (ADS)
Taylor, J'tia Patrice
As the global demand for energy grows, many nations are considering developing or increasing nuclear capacity as a viable, long-term power source. To assess the possible expansion of nuclear power and the intricate relationships---which cover the range of economics, security, and material supply and demand---between established and aspirant nuclear generating entities requires models and system analysis tools that integrate all aspects of the nuclear enterprise. Computational tools and methods now exist across diverse research areas, such as operations research and nuclear engineering, to develop such a tool. This dissertation aims to develop methodologies and employ and expand on existing sources to develop a multipurpose tool to analyze international nuclear fuel supply options. The dissertation is comprised of two distinct components: the development of the Material, Economics, and Proliferation Assessment Tool (MEPAT), and analysis of fuel cycle scenarios using the tool. Development of MEPAT is aimed for unrestricted distribution and therefore uses publicly available and open-source codes in its development when possible. MEPAT is built using the Powersim Studio platform that is widely used in systems analysis. MEPAT development is divided into three modules focusing on: material movement; nonproliferation; and economics. The material movement module tracks material quantity in each process of the fuel cycle and in each nuclear program with respect to ownership, location and composition. The material movement module builds on techniques employed by fuel cycle models such as the Verifiable Fuel Cycle Simulation (VISION) code developed at the Idaho National Laboratory under the Advanced Fuel Cycle Initiative (AFCI) for the analysis of domestic fuel cycle. Material movement parameters such as lending and reactor preference, as well as fuel cycle parameters such as process times and material factors are user-specified through a Microsoft Excel(c) data spreadsheet. The material movement module is the largest of the three, and the two other modules that assess nonproliferation and economics of the options are dependent on its output. Proliferation resistance measures from literature are modified and incorporated in MEPAT. The module to assess the nonproliferation of the supply options allows the user to specify defining attributes for the fuel cycle processes, and determines significant quantities of materials as well as measures of proliferation resistance. The measure is dependent on user-input and material information. The economics module allows the user to specify costs associated with different processes and other aspects of the fuel cycle. The simulation tool then calculates economic measures that relate the cost of the fuel cycle to electricity production. The second part of this dissertation consists of an examination of four scenarios of fuel supply option using MEPAT. The first is a simple scenario illustrating the modules and basic functions of MEPAT. The second scenario recreates a fuel supply study reported earlier in literature, and compares MEPAT results with those reported earlier for validation. The third, and a rather realistic, scenario includes four nuclear programs with one program entering the nuclear energy market. The fourth scenario assesses the reactor options available to the Hashemite Kingdom of Jordan, which is currently assessing available options to introduce nuclear power in the country. The methodology developed and implemented in MEPAT to analyze the material, proliferation and economics of nuclear fuel supply options is expected to help simplify and assess different reactor and fuel options available to utilities, government agencies and international organizations.
Analysis of Material Sample Heated by Impinging Hot Hydrogen Jet in a Non-Nuclear Tester
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Foote, John; Litchford, Ron
2006-01-01
A computational conjugate heat transfer methodology was developed and anchored with data obtained from a hot-hydrogen jet heated, non-nuclear materials tester, as a first step towards developing an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective and thermal radiative, and conjugate heat transfers. Predicted hot hydrogen jet and material surface temperatures were compared with those of measurement. Predicted solid temperatures were compared with those obtained with a standard heat transfer code. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.
Code of Federal Regulations, 2010 CFR
2010-01-01
... material are synonymous: Category I is a formula quantity of strategic special nuclear material; Category II is special nuclear material of moderate strategic significance or irradiated fuel; and Category III is special nuclear material of low strategic significance. (Verbatim from Annex I to the...
Statistical Models of Fracture Relevant to Nuclear-Grade Graphite: Review and Recommendations
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bratton, Robert L.
2011-01-01
The nuclear-grade (low-impurity) graphite needed for the fuel element and moderator material for next-generation (Gen IV) reactors displays large scatter in strength and a nonlinear stress-strain response from damage accumulation. This response can be characterized as quasi-brittle. In this expanded review, relevant statistical failure models for various brittle and quasi-brittle material systems are discussed with regard to strength distribution, size effect, multiaxial strength, and damage accumulation. This includes descriptions of the Weibull, Batdorf, and Burchell models as well as models that describe the strength response of composite materials, which involves distributed damage. Results from lattice simulations are included for a physics-based description of material breakdown. Consideration is given to the predicted transition between brittle and quasi-brittle damage behavior versus the density of damage (level of disorder) within the material system. The literature indicates that weakest-link-based failure modeling approaches appear to be reasonably robust in that they can be applied to materials that display distributed damage, provided that the level of disorder in the material is not too large. The Weibull distribution is argued to be the most appropriate statistical distribution to model the stochastic-strength response of graphite.
Statistical methods for nuclear material management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen W.M.; Bennett, C.A.
1988-12-01
This book is intended as a reference manual of statistical methodology for nuclear material management practitioners. It describes statistical methods currently or potentially important in nuclear material management, explains the choice of methods for specific applications, and provides examples of practical applications to nuclear material management problems. Together with the accompanying training manual, which contains fully worked out problems keyed to each chapter, this book can also be used as a textbook for courses in statistical methods for nuclear material management. It should provide increased understanding and guidance to help improve the application of statistical methods to nuclear material managementmore » problems.« less
NASA Astrophysics Data System (ADS)
Staib, Michael; Bhopatkar, Vallary; Bittner, William; Hohlmann, Marcus; Locke, Judson; Twigger, Jessie; Gnanvo, Kondo
2012-03-01
Muon tomography for homeland security aims at detecting well-shielded nuclear contraband in cargo and imaging it in 3D. The technique exploits multiple scattering of atmospheric cosmic ray muons, which is stronger in dense, high-Z materials, e.g. enriched uranium, than in low-Z and medium-Z shielding materials. We have constructed and are operating a compact Muon Tomography Station (MTS) that tracks muons with eight 30 cm x 30 cm Triple Gas Electron Multiplier (GEM) detectors placed on the sides of a cubic-foot imaging volume. A point-of-closest-approach algorithm applied to reconstructed incident and exiting tracks is used to create a tomographic reconstruction of the material within the active volume. We discuss the performance of this MTS prototype including characterization and commissioning of the GEM detectors and the data acquisition systems. We also present experimental tomographic images of small high-Z objects including depleted uranium with and without shielding and discuss the performance of material discrimination using this method.
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, J.; Shimada, M.; Denny, B.; Pawelko, B.; Schuetz, S.; Longhurst, G.; Hatano, Y.; Hara, M.; Oya, Y.; Otsuka, T.; Katayama, K.; Konishi, S.; Noborio, K.; Yamamoto, Y.
2011-10-01
The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.
NASA Astrophysics Data System (ADS)
Gillen, K. T.; Celina, M.; Clough, R. L.
1999-10-01
Monitoring changes in material density has been suggested as a potentially useful condition monitoring (CM) method for following the aging of cable jacket and insulation materials in nuclear power plants. In this study, we compare density measurements and ultimate tensile elongation results versus aging time for most of the important generic types of commercial nuclear power plant cable materials. Aging conditions, which include thermal-only, as well as combined radiation plus thermal, were chosen such that potentially anomalous effects caused by diffusion-limited oxidation (DLO) are unimportant. The results show that easily measurable density increases occur in most important cable materials. For some materials and environments, the density change occurs at a fairly constant rate throughout the mechanical property lifetime. For cases involving so-called induction-time behavior, density increases are slow to moderate until after the induction time, at which point they begin to increase dramatically. In other instances, density increases rapidly at first, then slows down. The results offer strong evidence that density measurements, which reflect property changes under both radiation and thermal conditions, could represent a very useful CM approach.
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
29 CFR 1910.1096 - Ionizing radiation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... material, as defined in the Atomic Energy Act of 1954, as amended, under a license issued by the Nuclear... material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of 1954, as... source material, byproduct material, or special nuclear material, as defined in the Atomic Energy Act of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitdikov,I.; Zenkov, A.; Tsibulnikov, Y.
The Material Protection, Control and Accounting (MPC&A) Program has been working since 1994 with nuclear sites in Russia to upgrade the physical protection (PP) and material control and accounting (MC&A) functions at facilities containing weapons usable nuclear material. In early 2001, the MPC&A program initiated the MPC&A Operations Monitoring (MOM) Project to monitor facilities where MPC&A upgrades have been installed to provide increased confidence that personnel are present and vigilant, provide confidence that security procedures are being properly performed and provide additional assurance that nuclear materials have not been stolen. The MOM project began as a pilot project at themore » Moscow State Engineering Physics Institute (MEPhI) and a MOM system was successfully installed in October 2001. Following the success of the MEPhI pilot project, the MPC&A Program expanded the installation of MOM systems to several other Russian facilities, including the Nuclear Physics Institute (NPI) in Tomsk. The MOM system was made operational at NPI in October 2004. This paper is focused on the experience gained from operation of this system and the objectives of the MOM system. The paper also describes how the MOM system is used at NPI and, in particular, how the data is analyzed. Finally, potential expansion of the MOM system at NPI is described.« less
Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores
NASA Technical Reports Server (NTRS)
Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim
2007-01-01
A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.
5 CFR 842.208 - Firefighters, law enforcement officers, and nuclear materials couriers.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., and nuclear materials couriers. 842.208 Section 842.208 Administrative Personnel OFFICE OF PERSONNEL... ANNUITY Eligibility § 842.208 Firefighters, law enforcement officers, and nuclear materials couriers. (a... enforcement officer or nuclear materials courier totaling 25 years; or (2) After becoming age 50 and...
Risk ranking of LANL nuclear material storage containers for repackaging prioritization.
Smith, Paul H; Jordan, Hans; Hoffman, Jenifer A; Eller, P Gary; Balkey, Simon
2007-05-01
Safe handling and storage of nuclear material at U.S. Department of Energy facilities relies on the use of robust containers to prevent container breaches and subsequent worker contamination and uptake. The U.S. Department of Energy has no uniform requirements for packaging and storage of nuclear materials other than those declared excess and packaged to DOE-STD-3013-2000. This report describes a methodology for prioritizing a large inventory of nuclear material containers so that the highest risk containers are repackaged first. The methodology utilizes expert judgment to assign respirable fractions and reactivity factors to accountable levels of nuclear material at Los Alamos National Laboratory. A relative risk factor is assigned to each nuclear material container based on a calculated dose to a worker due to a failed container barrier and a calculated probability of container failure based on material reactivity and container age. This risk-based methodology is being applied at LANL to repackage the highest risk materials first and, thus, accelerate the reduction of risk to nuclear material handlers.
Spent Nuclear Fuel Disposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C.
One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less
Spent Nuclear Fuel Disposition
Wagner, John C.
2016-05-22
One interdisciplinary field devoted to achieving the end-state of used nuclear fuel (UNF) through reuse and/or permanent disposal. The reuse option aims to make use of the remaining energy content in UNF and reduce the amount of long-lived radioactive materials that require permanent disposal. The planned approach in the U.S., as well as in many other countries worldwide, is direct permanent disposal in a deep geologic repository. Used nuclear fuel is fuel that has been irradiated in a nuclear reactor to the point where it is no longer capable of sustaining operational objectives. The vast majority (by mass) of UNFmore » is from electricity generation in commercial nuclear power reactors. Furthermore, the other main source of UNF in the U.S. is the Department of Energy’s (DOE) and other federal agencies’ operation of reactors in support of federal government missions, such as materials production, nuclear propulsion, research, testing, and training. Upon discharge from a reactor, UNF emits considerable heat from radioactive decay. Some period of active on-site cooling (e.g., 2 or more years) is typically required to facilitate efficient packaging and transportation to a disposition facility. Hence, the field of UNF disposition broadly includes storage, transportation and ultimate disposition. See also: Nuclear Fission (content/nuclear-fission/458400), Nuclear Fuels (/content/nuclear-fuels/458600), Nuclear Fuel Cycle (/content/nuclear-fuel-cycle/458500), Nuclear Fuels Reprocessing (/content/nuclear-fuels-reprocessing/458700), Nuclear Power (/content/nuclear-power/459600), Nuclear Reactor (/content/nuclear-reactor/460100), Radiation (/content/radiation/566300), and Radioactive Waste Management (/content/radioactive-waste-management/568900).« less
Nuclear Fuels & Materials Spotlight Volume 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew
2016-10-01
As the nation's nuclear energy laboratory, Idaho National Laboratory brings together talented people and specialized nuclear research capability to accomplish our mission. This edition of the Nuclear Fuels and Materials Division Spotlight provides an overview of some of our recent accomplishments in research and capability development. These accomplishments include: • Evaluation and modeling of light water reactor accident tolerant fuel concepts • Status and results of recent TRISO-coated particle fuel irradiations, post-irradiation examinations, high-temperature safety testing to demonstrate the accident performance of this fuel system, and advanced microscopy to improve the understanding of fission product transport in this fuel system.more » • Improvements in and applications of meso and engineering scale modeling of light water reactor fuel behavior under a range of operating conditions and postulated accidents (e.g., power ramping, loss of coolant accident, and reactivity initiated accidents) using the MARMOT and BISON codes. • Novel measurements of the properties of nuclear (actinide) materials under extreme conditions, (e.g. high pressure, low/high temperatures, high magnetic field) to improve the scientific understanding of these materials. • Modeling reactor pressure vessel behavior using the GRIZZLY code. • New methods using sound to sense temperature inside a reactor core. • Improved experimental capabilities to study the response of fusion reactor materials to a tritium plasma. Throughout Spotlight, you'll find examples of productive partnerships with academia, industry, and government agencies that deliver high-impact outcomes. The work conducted at Idaho National Laboratory helps spur innovation in nuclear energy applications that drive economic growth and energy security. We appreciate your interest in our work here at Idaho National Laboratory, and hope that you find this issue informative.« less
DYNSYL: a general-purpose dynamic simulator for chemical processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patterson, G.K.; Rozsa, R.B.
1978-09-05
Lawrence Livermore Laboratory is conducting a safeguards program for the Nuclear Regulatory Commission. The goal of the Material Control Project of this program is to evaluate material control and accounting (MCA) methods in plants that handle special nuclear material (SNM). To this end we designed and implemented the dynamic chemical plant simulation program DYNSYL. This program can be used to generate process data or to provide estimates of process performance; it simulates both steady-state and dynamic behavior. The MCA methods that may have to be evaluated range from sophisticated on-line material trackers such as Kalman filter estimators, to relatively simplemore » material balance procedures. This report describes the overall structure of DYNSYL and includes some example problems. The code is still in the experimental stage and revision is continuing.« less
International waste management fact book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amaya, J P; LaMarche, M N; Upton, J F
1997-10-01
Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffiths, Grant; Keegan, E.; Young, E.
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Griffiths, Grant; Keegan, E.; Young, E.; ...
2018-01-06
Physical characterization is one of the most broad and important categories of techniques to apply in a nuclear forensic examination. Physical characterization techniques vary from simple weighing and dimensional measurements to complex sample preparation and scanning electron microscopy-electron backscatter diffraction analysis. This paper reports on the physical characterization conducted by several international laboratories participating in the fourth Collaborative Materials Exercise, organized by the Nuclear Forensics International Technical Working Group. Methods include a range of physical measurements, microscopy-based observations, and profilometry. In conclusion, the value of these results for addressing key investigative questions concerning two uranium dioxide pellets and a uraniummore » dioxide powder is discussed.« less
Computed tomography of radioactive objects and materials
NASA Astrophysics Data System (ADS)
Sawicka, B. D.; Murphy, R. V.; Tosello, G.; Reynolds, P. W.; Romaniszyn, T.
1990-12-01
Computed tomography (CT) has been performed on a number of radioactive objects and materials. Several unique technical problems are associated with CT of radioactive specimens. These include general safety considerations, techniques to reduce background-radiation effects on CT images and selection criteria for the CT source to permit object penetration and to reveal accurate values of material density. In the present paper, three groups of experiments will be described, for objects with low, medium and high levels of radioactivity. CT studies on radioactive specimens will be presented. They include the following: (1) examination of individual ceramic reactor-fuel (uranium dioxide) pellets, (2) examination of fuel samples from the Three Mile Island reactor, (3) examination of a CANDU (CANada Deuterium Uraniun: registered trademark) nuclear-fuel bundle which underwent a simulated loss-of-coolant accident resulting in high-temperature damage and (4) examination of a PWR nuclear-reactor fuel assembly.
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
10 CFR 72.74 - Reports of accidental criticality or loss of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... nuclear material. 72.74 Section 72.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR... accidental criticality or loss of special nuclear material. (a) Each licensee shall notify the NRC Operations...
Nuclear power in the 21st century: Challenges and possibilities.
Horvath, Akos; Rachlew, Elisabeth
2016-01-01
The current situation and possible future developments for nuclear power--including fission and fusion processes--is presented. The fission nuclear power continues to be an essential part of the low-carbon electricity generation in the world for decades to come. There are breakthrough possibilities in the development of new generation nuclear reactors where the life-time of the nuclear waste can be reduced to some hundreds of years instead of the present time-scales of hundred thousand of years. Research on the fourth generation reactors is needed for the realisation of this development. For the fast nuclear reactors, a substantial research and development effort is required in many fields--from material sciences to safety demonstration--to attain the envisaged goals. Fusion provides a long-term vision for an efficient energy production. The fusion option for a nuclear reactor for efficient production of electricity has been set out in a focussed European programme including the international project of ITER after which a fusion electricity DEMO reactor is envisaged.
NASA Astrophysics Data System (ADS)
Taranenko, L.; Janouch, F.; Owsiacki, L.
2001-06-01
This paper presents Science and Technology Center in Ukraine (STCU) activities devoted to furthering nuclear and radiation safety, which is a prioritized STCU area. The STCU, an intergovernmental organization with the principle objective of non-proliferation, administers financial support from the USA, Canada, and the EU to Ukrainian projects in various scientific and technological areas; coordinates projects; and promotes the integration of Ukrainian scientists into the international scientific community, including involving western collaborators. The paper focuses on STCU's largest project to date "Program Supporting Y2K Readiness at Ukrainian NPPs" initiated in April 1999 and designed to address possible Y2K readiness problems at 14 Ukrainian nuclear reactors. Other presented projects demonstrate a wide diversity of supported directions in the fields of nuclear and radiation safety, including reactor material improvement ("Improved Zirconium-Based Elements for Nuclear Reactors"), information technologies for nuclear industries ("Ukrainian Nuclear Data Bank in Slavutich"), and radiation health science ("Diagnostics and Treatment of Radiation-Induced Injuries of Human Biopolymers").
Densified waste form and method for forming
Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina
2015-08-25
Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate the temperature sensitive waste material in a physically densified matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haase, M.; Hine, C.; Robertson, C.
1996-12-31
Approximately five years ago, the Safe, Secure Dismantlement program was started between the US and countries of the Former Soviet Union (FSU). The purpose of the program is to accelerate progress toward reducing the risk of nuclear weapons proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This would be accomplished by strengthening the material protection, control, and accounting systems within the FSU countries. Under the US Department of Energy`s program of providing cooperative assistance to the FSU countries in the areas of Material Protection, Control, and Accounting (MPC and A), the Latvian Academy of Sciencesmore » Nuclear Research Center (LNRC) near Riga, Latvia, was identified as a candidate site for a cooperative MPC and A project. The LNRC is the site of a 5-megawatt IRT-C pool-type research reactor. This paper describes: the process involved, from initial contracting to project completion, for the physical protection upgrades now in place at the LNRC; the intervening activities; and a brief overview of the technical aspects of the upgrades.« less
Burr, Tom; Croft, Stephen; Jarman, Kenneth D.
2015-09-05
The various methods of nondestructive assay (NDA) of special nuclear material (SNM) have applications in nuclear nonproliferation, including detection and identification of illicit SNM at border crossings, and quantifying SNM at nuclear facilities for safeguards. No assay method is complete without “error bars,” which provide one way of expressing confidence in the assay result. Consequently, NDA specialists typically quantify total uncertainty in terms of “random” and “systematic” components, and then specify error bars for the total mass estimate in multiple items. Uncertainty quantification (UQ) for NDA has always been important, but it is recognized that greater rigor is needed andmore » achievable using modern statistical methods. To this end, we describe the extent to which the guideline for expressing uncertainty in measurements (GUM) can be used for NDA. Also, we propose improvements over GUM for NDA by illustrating UQ challenges that it does not address, including calibration with errors in predictors, model error, and item-specific biases. A case study is presented using low-resolution NaI spectra and applying the enrichment meter principle to estimate the U-235 mass in an item. The case study illustrates how to update the current American Society for Testing and Materials guide for application of the enrichment meter principle using gamma spectra from a NaI detector.« less
National cyclotron centre at the Institute for Nuclear Research and Nuclear Energy
NASA Astrophysics Data System (ADS)
Tonev, D.; Goutev, N.; Asova, G.; Artinyan, A.; Demerdjiev, A.; Georgiev, L. S.; Yavahchova, M.; Bashev, V.; Genchev, S. G.; Geleva, E.; Mincheva, M.; Nikolov, A.; Dimitrov, D. T.
2018-05-01
An accelerator laboratory is presently under construction in Sofia at the Institute for Nuclear Research and Nuclear Energy. The laboratory will use a TR24 type of cyclotron, which provides a possibility to accelerate a proton beam with an energy of 15 to 24 MeV and current of up to 0.4 mA. An accelerator with such parameters allows to produce a large variety of radioisotopes for development of radiopharmaceuticals. The most common radioisotopes that can be produced with such a cyclotron are PET isotopes like: 11C, 13N, 15O, 18F, 124I, 64Cu, 68Ge/68Ga, and SPECT isotopes like: 123I, 111In, 67Ga, 57Co, 99mTc. Our aim is to use the cyclotron facility for research in the fields of radiopharmacy, radiochemistry, radiobiology, nuclear physics, materials sciences, applied research, new materials and for education in all these fields including nuclear energy. Presently we perform investigations in the fields of target design for production of radioisotopes, shielding and radioprotection, new ion sources etc.
Title list of documents made publicly available. Volume 17, No. 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (3) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less
Title list of documents made publicly available, December 1--31, 1993, Volume 15, No. 12
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less
Title list of documents made publicly available: May 1--31, 1997. Volume 19, Number 5
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less
Title list of documents made publicly available, September 1-30, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the U.S. Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less
Materials Degradation and Detection (MD2): Deep Dive Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCloy, John S.; Montgomery, Robert O.; Ramuhalli, Pradeep
2013-02-01
An effort is underway at Pacific Northwest National Laboratory (PNNL) to develop a fundamental and general framework to foster the science and technology needed to support real-time monitoring of early degradation in materials used in the production of nuclear power. The development of such a capability would represent a timely solution to the mounting issues operators face with materials degradation in nuclear power plants. The envisioned framework consists of three primary and interconnected “thrust” areas including 1) microstructural science, 2) behavior assessment, and 3) monitoring and predictive capabilities. A brief state-of-the-art assessment for each of these core technology areas ismore » discussed in the paper.« less
Title list of documents made publicly available. Volume 17, No. 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The Title List of Documents Made Publicly Available is a monthly publication. It contains descriptions of the information received and generated by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and generated by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index,more » and a Report Number Index.« less
Title list of documents made publicly available, March 1--31, 1998. Volume 20, Number 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) nondocketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a personal author index, a corporate source index, and amore » report number index.« less
Title list of documents made publicly available, January 1, 1997--January 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Title List of Documents Made Publicly Available is a monthly publication. It describes the information received and published by the US Nuclear Regulatory Commission (NRC). This information includes (1) docketed material associated with civilian nuclear power plants and other uses of radioactive materials and (2) non-docketed material received and published by NRC pertinent to its role as a regulatory agency. As used here, docketed does not refer to Court dockets; it refers to the system by which NRC maintains its regulatory records. This series of documents is indexed by a Personal Author Index, a Corporate Source Index, and amore » Report Number Index.« less
DOE research and development report. Progress report, October 1980-September 1981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bingham, Carleton D.
The DOE New Brunswick Laboratory (NBL) is the US Government's Nuclear Materials Standards and Measurement Laboratory. NBL is assigned the mission to provide and maintain, as an essential part of federal statutory responsibilities related to national and international safeguards of nuclear materials for USA defense and energy programs, an ongoing capability for: the development, preparation, certification, and distribution of reference materials for the calibration and standardization of nuclear materials measurements; the development, improvement, and evaluation of nuclear materials measurement technology; the assessment and evaluation of the practice and application of nuclear materials measurement technology; expert and reliable specialized nuclear materialsmore » measurement services for the government; and technology exchange and training in nuclear materials measurement and standards. Progress reports for this fiscal year are presented under the following sections: (1) development or evaluation of measurement technology (elemental assay of uranium plutonium; isotope composition); (2) standards and reference materials (NBL standards and reference materials; NBS reference materials); and (3) evaluation programs (safeguards analytical laboratory evaluation; general analytical evaluation program; other evaluation programs).« less
Electromagnetic and nuclear radiation detector using micromechanical sensors
Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.
2000-01-01
Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.
Nuclear and radiological Security: Introduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, James Christopher
Nuclear security includes the prevention and detection of, and response to, theft, sabotage, unauthorized access, illegal transfer, or other malicious acts involving nuclear or other radioactive substances or their associated facilities. The presentation begins by discussing the concept and its importance, then moves on to consider threats--insider threat, sabotage, diversion of materials--with considerable emphasis on the former. The intrusion at Pelindaba, South Africa, is described as a case study. The distinction between nuclear security and security of radiological and portable sources is clarified, and the international legal framework is touched upon. The paper concludes by discussing the responsibilities of themore » various entities involved in nuclear security.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Application for Special Nuclear Materials License From Passport Systems, Inc., Opportunity To Request a... special nuclear material (SNM), submitted by Passport Systems, Inc. (Passport or the Applicant). The..., if approved, would authorize Passport to possess and use special nuclear materials under 10 CFR Part...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Slaughter, Dennis R.; Pohl, Bertram A.; Dougan, Arden D.; Bernstein, Adam; Prussin, Stanley G.; Norman, Eric B.
2008-04-15
A system for inspecting cargo for the presence of special nuclear material. The cargo is irradiated with neutrons. The neutrons produce fission products in the special nuclear material which generate gamma rays. The gamma rays are detecting indicating the presence of the special nuclear material.
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
10 CFR 73.28 - Security background checks for secure transfer of nuclear materials.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Security background checks for secure transfer of nuclear materials. 73.28 Section 73.28 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PHYSICAL PROTECTION OF PLANTS AND MATERIALS Physical Protection of Special Nuclear Material in Transit § 73.28 Security...
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Kwan S.
Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less
ATF Neutron Irradiation Program Technical Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geringer, J. W.; Katoh, Yutai
The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post-irradiation examination and characterization ofmore » irradiated materials and the shipment of irradiated materials to JAEA in Japan. This report discusses the technical plan of the experimental study.« less
ATF Neutron Irradiation Program Irradiation Vehicle Design Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geringer, J. W.; Katoh, Yutai; Howard, Richard H.
The Japan Atomic Energy Agency (JAEA) under the Civil Nuclear Energy Working Group (CNWG) is engaged in a cooperative research effort with the U.S. Department of Energy (DOE) to explore issues related to nuclear energy, including research on accident-tolerant fuels and materials for use in light water reactors. This work develops a draft technical plan for a neutron irradiation program on the candidate accident-tolerant fuel cladding materials and elements using the High Flux Isotope Reactor (HFIR). The research program requires the design of a detailed experiment, development of test vehicles, irradiation of test specimens, possible post irradiation examination and characterizationmore » of irradiated materials and the shipment of irradiated materials to Japan. This report discusses the conceptual design, the development and irradiation of the test vehicles.« less
The nuclear energy outlook--a new book from the OECD nuclear energy agency.
Yoshimura, Uichiro
2011-01-01
This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society
Code of Federal Regulations, 2013 CFR
2013-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... nuclear material, facility and operator licenses. (a) If the Director, Office of Nuclear Reactor... repository operations area under parts 60 or 63 of this chapter, the Director, Office of Nuclear Reactor Regulation, Director, Office of New Reactors, Director, Office of Nuclear Material Safety and Safeguards, or...
Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.
1987-11-24
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.
1989-10-03
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.
1989-01-01
A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.
Safety Oversight of Decommissioning Activities at DOE Nuclear Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zull, Lawrence M.; Yeniscavich, William
2008-01-15
The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2014 CFR
2014-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2013 CFR
2013-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2011 CFR
2011-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
10 CFR 1045.17 - Classification levels.
Code of Federal Regulations, 2012 CFR
2012-01-01
... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geelhood, Bruce D.; Wogman, Ned A.
In view of the terrorist threats to the United States, the country needs to consider new vectors and weapons related to nuclear and radiological threats against our homeland. The traditional threat vectors, missiles and bombers, have expanded to include threats arriving through the flow of commerce. The new commerce-related vectors include: sea cargo, truck cargo, rail cargo, air cargo, and passenger transport. The types of weapons have also expanded beyond nuclear war-heads to include radiation dispersal devices (RDD) or “dirty” bombs. The consequences of these nuclear and radiological threats are considered. The defense against undesirable materials enter-ing our borders ismore » considered. The radiation and other signatures of potential nuclear and radio-logical threats are examined along with potential sensors to discover undesirable items in the flow of commerce. Techniques to improve detection are considered. A strategy of primary and secondary screening is proposed to rapidly clear most cargo and carefully examine suspect cargo.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geelhood, Bruce D.; Wogman, Ned A.
In view of the terrorist threats to the United States, the country needs to consider new vectors and weapons related to nuclear and radiological threats against our homeland. The traditional threat vectors, missiles and bombers, have expanded to include threats arriving through the flow of commerce. The new commerce-related vectors include: sea cargo, truck cargo, rail cargo, and passenger transport. The types of weapons have also expanded beyond nuclear warheads to include radiation dispersal devices (RDD) or ''dirty'' bombs. The consequences of these nuclear and radiological threats are considered. The defense against undesirable materials entering our borders is considered. Themore » radiation and other signatures or potential nuclear and radiological threats are examined along with potential sensors to discover undesirable items in the flow of commerce. Techniques to improve detection are considered. A strategy of primary and secondary screening is proposed to rapidly clear most cargo and carefully examine suspect cargo.« less
75 FR 44072 - Export and Import of Nuclear Equipment and Material; Updates and Clarifications
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... Energy Act. Retransfers of special nuclear material produced through the use of U.S.-obligated material... the Atomic Energy Act that apply to imports of special nuclear, source or byproduct material are... NUCLEAR REGULATORY COMMISSION 10 CFR Part 110 [NRC-2008-0567] RIN 3150-AI16 Export and Import of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
Conceptual design report: Nuclear materials storage facility renovation. Part 6, Alternatives study
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-14
The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based onmore » current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for material and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment 111-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VI - Alternatives Study, presents a study of the different storage/containment options considered for NMSF.« less
Focused technology: Nuclear propulsion
NASA Technical Reports Server (NTRS)
Miller, Thomas J.
1991-01-01
The topics presented are covered in viewgraph form and include: nuclear thermal propulsion (NTP), which challenges (1) high temperature fuel and materials, (2) hot hydrogen environment, (3) test facilities, (4) safety, (5) environmental impact compliance, and (6) concept development, and nuclear electric propulsion (NEP), which challenges (1) long operational lifetime, (2) high temperature reactors, turbines, and radiators, (3) high fuel burn-up reactor fuels, and designs, (4) efficient, high temperature power conditioning, (5) high efficiency, and long life thrusters, (6) safety, (7) environmental impact compliance, and (8) concept development.
NASA Astrophysics Data System (ADS)
H, L. SWAMI; C, DANANI; A, K. SHAW
2018-06-01
Activation analyses play a vital role in nuclear reactor design. Activation analyses, along with nuclear analyses, provide important information for nuclear safety and maintenance strategies. Activation analyses also help in the selection of materials for a nuclear reactor, by providing the radioactivity and dose rate levels after irradiation. This information is important to help define maintenance activity for different parts of the reactor, and to plan decommissioning and radioactive waste disposal strategies. The study of activation analyses of candidate structural materials for near-term fusion reactors or ITER is equally essential, due to the presence of a high-energy neutron environment which makes decisive demands on material selection. This study comprises two parts; in the first part the activation characteristics, in a fusion radiation environment, of several elements which are widely present in structural materials, are studied. It reveals that the presence of a few specific elements in a material can diminish its feasibility for use in the nuclear environment. The second part of the study concentrates on activation analyses of candidate structural materials for near-term fusion reactors and their comparison in fusion radiation conditions. The structural materials selected for this study, i.e. India-specific Reduced Activation Ferritic‑Martensitic steel (IN-RAFMS), P91-grade steel, stainless steel 316LN ITER-grade (SS-316LN-IG), stainless steel 316L and stainless steel 304, are candidates for use in ITER either in vessel components or test blanket systems. Tungsten is also included in this study because of its use for ITER plasma-facing components. The study is carried out using the reference parameters of the ITER fusion reactor. The activation characteristics of the materials are assessed considering the irradiation at an ITER equatorial port. The presence of elements like Nb, Mo, Co and Ta in a structural material enhance the activity level as well as the dose level, which has an impact on design considerations. IN-RAFMS was shown to be a more effective low-activation material than SS-316LN-IG.
Nuclear materials stewardship: Our enduring mission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isaacs, T.H.
1998-12-31
The US Department of Energy (DOE) and its predecessors have handled a remarkably wide variety of nuclear materials over the past 50 yr. Two fundamental changes have occurred that shape the current landscape regarding nuclear materials. If one recognizes the implications and opportunities, one sees that the stewardship of nuclear materials will be a fundamental and important job of the DOE for the foreseeable future. The first change--the breakup of the Soviet Union and the resulting end to the nuclear arms race--altered US objectives. Previously, the focus was on materials production, weapon design, nuclear testing, and stockpile enhancements. Now themore » attention is on dismantlement of weapons, excess special nuclear material inventories, accompanying increased concern over the protection afforded to such materials; new arms control measures; and importantly, maintenance of the safety and reliability of the remaining arsenal without testing. The second change was the raised consciousness and sense of responsibility for dealing with the environmental legacies of past nuclear arms programs. Recognition of the need to clean up radioactive contamination, manage the wastes, conduct current operations responsibly, and restore the environment have led to the establishment of what is now the largest program in the DOE. Two additional features add to the challenge and drive the need for recognition of nuclear materials stewardship as a fundamental, enduring, and compelling mission of the DOE. The first is the extraordinary time frames. No matter what the future of nuclear weapons and no matter what the future of nuclear power, the DOE will be responsible for most of the country`s nuclear materials and wastes for generations. Even if the Yucca Mountain program is successful and on schedule, it will last more than 100 yr. Second, the use, management, and disposition of nuclear materials and wastes affect a variety of nationally important and diverse objectives, from national security to the future of nuclear power in this country and abroad, to the care of the environment. Sometimes these objectives are in concert, but often they are seen as competing or being in conflict. By recognizing the corporate responsibility for these materials and the accompanying programs, national decision making will be improved.« less
Consortium for materials development in space
NASA Technical Reports Server (NTRS)
1990-01-01
The status of the Consortium for Materials Development in Space (CMDS) is reviewed. Individual CMDS materials projects and flight opportunities on suborbital and orbital carriers are outlined. Projects include: surface coatings and catalyst production; non-linear optical organic materials; physical properties of immiscible polymers; nuclear track detectors; powdered metal sintering; iron-carbon solidification; high-temperature superconductors; physical vapor transport crystal growth; materials preparation and longevity in hyperthermal oxygen; foam formation; measurement of the microgravity environment; and commercial management of space fluids.
Safeguards in Pyroprocessing: an Integrated Model Development and Measurement Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinsuo
Pyroprocessing is an electrochemical method based on the molten salt electrolyte, mainly the LiCl-KCl eutectic molten salt, to recycle the used nuclear fuel. For a conceptual design of commercial pyroprocessing facility, tons of special nuclear materials, namely U and Pu, may be involved, which could be used for non-peaceful purposes if they are diverted. Effective safeguards approaches have to be developed prior to the development and construction of a pyroprocessing facility. Present research focused on two main objectives, namely calculating the properties of nuclear species in LiCl-KCl molten salt and developing integrated model to safeguard a pyroprocessing facility. Understanding themore » characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important to understand their behaviors in an electrorefiner. The model development for the separation processes in the pyroprocessing, including electrorefining, actinide drawdown, and rare earth drawdown benefits the understanding of material transport and separation performance of these processes under various conditions. The output signals, such as potential, current, and species concentration contribute to the material balance closure and provide safeguards signatures to detect the scenarios of diversion. U and Pu are the two main elements concerned in this study due to our interest in safeguards.« less
The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
T. R. Allen; J. B. Benson; J. A. Foster
2009-05-01
To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities ismore » granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.« less
Nuclear programs in India and Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mian, Zia
India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also formore » nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.« less
Nuclear programs in India and Pakistan
NASA Astrophysics Data System (ADS)
Mian, Zia
2014-05-01
India and Pakistan launched their respective nuclear programs in the 1940s and 1950s with considerable foreign technical support, especially from the United States Atoms for Peace Program. The technology and training that was acquired served as the platform for later nuclear weapon development efforts that included nuclear weapon testing in 1974 and in 1998 by India, and also in 1998 by Pakistan - which had illicitly acquired uranium enrichment technology especially from Europe and received assistance from China. As of 2013, both India and Pakistan were continuing to produce fissile material for weapons, in the case of India also for nuclear naval fuel, and were developing a diverse array of ballistic and cruise missiles. International efforts to restrain the South Asian nuclear build-up have been largely set aside over the past decade as Pakistani support became central for the U.S. war in Afghanistan and as U.S. geopolitical and economic interests in supporting the rise of India, in part as a counter to China, led to India being exempted both from U.S non-proliferation laws and international nuclear trade guidelines. In the absence of determined international action and with Pakistan blocking the start of talks on a fissile material cutoff treaty, nuclear weapon programs in South Asia are likely to keep growing for the foreseeable future.
LANL Q2 2016 Quarterly Progress Report. Science Campaign and ICF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, Melissa Rae
2016-04-07
This progress report includes highlights for the Science Campaign and ICF about Advanced Certification and Assessment Methodologies, Implosion Hydrodynamics (C-1, SCE), Materials and Nuclear Science (C-1, C-2), Capabilities for Nuclear Intelligence, and High Energy Density Science (C-1, C-4, C-10). Upcoming meetings, briefings, and experiments are then listed for April and May.
Radiological Weapons Control: A Soviet and US Perspective. Occasional Paper 29.
ERIC Educational Resources Information Center
Issraelyan, Victor L.; Flowerree, Charles C.
Two international diplomats from the Soviet Union and the United States focus on the need for a treaty to ban the use of radiological weapons. Radiological weapons are those based on the natural decay of nuclear material such as waste from military or civilian nuclear reactors. Such devices include both weapons and equipment, other than a nuclear…
2012-01-01
reviewers, and others who read the paper and offered constructive suggestions, including Victor Utgoff, Heather Williams , and Jessica Knight of IDA...Energy Agency (IAEA) assumptions about the amount of fissile material needed to make a first- generation weapon. 6 Nuclear Threat Initiative (NTI...administration, recorded in the 2001 NPR, and was championed by the Republican presidential nominee, John McCain, in the 2008 presidential election . 15
Fundamentals of nuclear pharmacy, 3rd Ed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, G.B.
1992-01-01
This book is a standard text/reference of nuclear pharmacy. New sections in the Third Edition include: instruments used for radiation detection and measurement; disposal of radioactive materials; clinical uses of all new and existing radiopharmaceuticals; 99m Tc and 123I-labeled radiopharmaceuticals, as well as radiolabeled leukocytes, platelets, and antibodies; and up-to-date descriptions of the latest FDA regulations.
National Security in the Nuclear Age: Public Library Proposal and Booklist. May 1987 Update.
ERIC Educational Resources Information Center
Dane, Ernest B.
To increase public understanding of national security issues, this document proposes that a balanced and up-to-date collection of books and other materials on national security in the nuclear age be included in all U.S. public libraries. The proposal suggests that the books be grouped together on an identified shelf. Selection criteria for the…
PHASE I MATERIALS PROPERTY DATABASE DEVELOPMENT FOR ASME CODES AND STANDARDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Weiju; Lin, Lianshan
2013-01-01
To support the ASME Boiler and Pressure Vessel Codes and Standard (BPVC) in modern information era, development of a web-based materials property database is initiated under the supervision of ASME Committee on Materials. To achieve efficiency, the project heavily draws upon experience from development of the Gen IV Materials Handbook and the Nuclear System Materials Handbook. The effort is divided into two phases. Phase I is planned to deliver a materials data file warehouse that offers a depository for various files containing raw data and background information, and Phase II will provide a relational digital database that provides advanced featuresmore » facilitating digital data processing and management. Population of the database will start with materials property data for nuclear applications and expand to data covering the entire ASME Code and Standards including the piping codes as the database structure is continuously optimized. The ultimate goal of the effort is to establish a sound cyber infrastructure that support ASME Codes and Standards development and maintenance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lee, Majelle
2005-09-01
This Annual Site Environmental Report (ASER) for 2004 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2004 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil
2007-09-01
This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated inmore » 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.« less
Advances in Nuclear Monitoring Technologies
NASA Astrophysics Data System (ADS)
Park, Brent
2006-03-01
Homeland security requires low-cost, large-area detectors for locating and identifying weapons-usable nuclear materials and monitors for radiological isotopes that are more robust than current systems. Recent advances in electronics materials and nanotechnology, specifically organic semiconductors and inorganic quantum dots, offer potential improvements. We provide an overview of the physical processes involved in radiation detection using these new materials in the design of new device structures. Examples include recent efforts on quantum dots, as well as more traditional radiation-detecting materials such as CdZnTe and high-pressure xenon. Detector improvements demand not only new materials but also enhanced data-analysis tools that reduce false alarms and thus increase the quality of decisions. Additional computing power on hand-held platforms should enable the application of advanced algorithms to radiation-detection problems in the field, reducing the need to transmit data and thus delay analysis.
Implementation of focused ion beam (FIB) system in characterization of nuclear fuels and materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Aitkaliyeva; J. W. Madden; B. D. Miller
2014-10-01
Beginning in 2007, a program was established at the Idaho National Laboratory to update key capabilities enabling microstructural and micro-chemical characterization of highly irradiated and/or radiologically contaminated nuclear fuels and materials at scales that previously had not been achieved for these types of materials. Such materials typically cannot be contact handled and pose unique hazards to instrument operators, facilities, and associated personnel. One of the first instruments to be acquired was a Dual Beam focused ion beam (FIB)-scanning electron microscope (SEM) to support preparation of transmission electron microscopy and atom probe tomography samples. Over the ensuing years, techniques have beenmore » developed and operational experience gained that has enabled significant advancement in the ability to characterize a variety of fuel types including metallic, ceramic, and coated particle fuels, obtaining insights into in-reactor degradation phenomena not obtainable by any other means. The following article describes insights gained, challenges encountered, and provides examples of unique results obtained in adapting Dual Beam FIB technology to nuclear fuels characterization.« less
Burr, Tom; Hamada, Michael S.; Ticknor, Larry; ...
2015-01-01
The aim of nuclear safeguards is to ensure that special nuclear material is used for peaceful purposes. Historically, nuclear material accounting (NMA) has provided the quantitative basis for monitoring for nuclear material loss or diversion, and process monitoring (PM) data is collected by the operator to monitor the process. PM data typically support NMA in various ways, often by providing a basis to estimate some of the in-process nuclear material inventory. We develop options for combining PM residuals and NMA residuals (residual = measurement - prediction), using a hybrid of period-driven and data-driven hypothesis testing. The modified statistical tests canmore » be used on time series of NMA residuals (the NMA residual is the familiar material balance), or on a combination of PM and NMA residuals. The PM residuals can be generated on a fixed time schedule or as events occur.« less
Structural materials for Gen-IV nuclear reactors: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Murty, K. L.; Charit, I.
2008-12-01
Generation-IV reactor design concepts envisioned thus far cater toward a common goal of providing safer, longer lasting, proliferation-resistant and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-IV reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses and extremely corrosive environment, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This paper presents a summary of various Gen-IV reactor concepts, with emphasis on the structural materials issues depending on the specific application areas. This paper also discusses the challenges involved in using the existing materials under both service and off-normal conditions. Tasks become increasingly complex due to the operation of various fundamental phenomena like radiation-induced segregation, radiation-enhanced diffusion, precipitation, interactions between impurity elements and radiation-produced defects, swelling, helium generation and so forth. Further, high temperature capability (e.g. creep properties) of these materials is a critical, performance-limiting factor. It is demonstrated that novel alloy and microstructural design approaches coupled with new materials processing and fabrication techniques may mitigate the challenges, and the optimum system performance may be achieved under much demanding conditions.
NASA Astrophysics Data System (ADS)
Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon
2011-06-01
Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.
Heavy ion linear accelerator for radiation damage studies of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response ofmore » the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for U-238(50+) and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.« less
Heavy ion linear accelerator for radiation damage studies of materials
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Mustapha, Brahim; Ostroumov, Peter N.; Nolen, Jerry; Barcikowski, Albert; Pellin, Michael; Yacout, Abdellatif
2017-03-01
A new eXtreme MATerial (XMAT) research facility is being proposed at Argonne National Laboratory to enable rapid in situ mesoscale bulk analysis of ion radiation damage in advanced materials and nuclear fuels. This facility combines a new heavy-ion accelerator with the existing high-energy X-ray analysis capability of the Argonne Advanced Photon Source. The heavy-ion accelerator and target complex will enable experimenters to emulate the environment of a nuclear reactor making possible the study of fission fragment damage in materials. Material scientists will be able to use the measured material parameters to validate computer simulation codes and extrapolate the response of the material in a nuclear reactor environment. Utilizing a new heavy-ion accelerator will provide the appropriate energies and intensities to study these effects with beam intensities which allow experiments to run over hours or days instead of years. The XMAT facility will use a CW heavy-ion accelerator capable of providing beams of any stable isotope with adjustable energy up to 1.2 MeV/u for 238U50+ and 1.7 MeV for protons. This energy is crucial to the design since it well mimics fission fragments that provide the major portion of the damage in nuclear fuels. The energy also allows damage to be created far from the surface of the material allowing bulk radiation damage effects to be investigated. The XMAT ion linac includes an electron cyclotron resonance ion source, a normal-conducting radio-frequency quadrupole and four normal-conducting multi-gap quarter-wave resonators operating at 60.625 MHz. This paper presents the 3D multi-physics design and analysis of the accelerating structures and beam dynamics studies of the linac.
Densified waste form and method for forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garino, Terry J.; Nenoff, Tina M.; Sava Gallis, Dorina Florentina
Materials and methods of making densified waste forms for temperature sensitive waste material, such as nuclear waste, formed with low temperature processing using metallic powder that forms the matrix that encapsulates the temperature sensitive waste material. The densified waste form includes a temperature sensitive waste material in a physically densified matrix, the matrix is a compacted metallic powder. The method for forming the densified waste form includes mixing a metallic powder and a temperature sensitive waste material to form a waste form precursor. The waste form precursor is compacted with sufficient pressure to densify the waste precursor and encapsulate themore » temperature sensitive waste material in a physically densified matrix.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spears, Robert Edward; Coleman, Justin Leigh
2015-08-01
Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stressmore » and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.« less
Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, Jerry; Dion, Heather; LaMont, Stephen
A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.
Leveraging existing information for use in a National Nuclear Forensics Library (NNFL)
Davydov, Jerry; Dion, Heather; LaMont, Stephen; ...
2015-12-16
A National Nuclear Forensics Library (NNFL) assists a State to assess whether nuclear material encountered out of regulatory control is of domestic or international origin. And by leveraging nuclear material registries, nuclear enterprise records, and safeguards accountancy information, as well as existing domestic technical capability and subject-matter domain expertise, states can better assess the effort required for setting up an NNFL. For states who are largely recipients of nuclear and radiological materials and have no internal production capabilities may create an NNFL that relies on existing information rather than carry out advanced analyses on domestic materials.
Lu1-xI3:Cex--A Scintillator for gamma ray spectroscopy and time-of-flight PET
Shah, Kanai S [Newton, MA
2009-03-17
The present invention concerns very fast scintillator materials comprising lutetium iodide doped with Cerium Lu.sub.1-xI.sub.3:Ce.sub.x; LuI.sub.3:Ce). The LuI.sub.3 scintillator material has surprisingly good characteristics including high light output, high gamma ray stopping efficiency, fast response, low cost, good proportionality, and minimal afterglow that the material is useful for gamma ray spectroscopy, medical imaging, nuclear and high energy physics research, diffraction, non-destructive testing, nuclear treaty verification and safeguards, and geological exploration. The timing resolution of the scintillators of the present invention provide compositions capable of resolving the position of an annihilation event within a portion of a human body cross-section.
Limiting nuclear proliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, L.; Cecelski, L.
1978-01-01
As a result of the 1977 experience, it is shown that the U.S. no longer dominates the world nuclear market and must change its approach from coercion to persuasion. President Carter, implementing his campaign promises on nuclear nonproliferation, has used direct pressure, negotiated with nuclear suppliers, and asked for legislation to impose rigid criteria for the export of nuclear materials. Unilateral actions included the deferment of facilities for fuel reprocessing and breeder reactors, but were followed by efforts for international cooperation as the year progressed. While global non-proliferation policies reinforced with international technical cooperation are seen as admirable goals, themore » response to U.S. initiatives is not seen to be encouraging.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-07
... procedures for storing and handling radioactive materials. Thus, the impacts under the ``no action... of Special Nuclear Material AGENCY: Nuclear Regulatory Commission. ACTION: Environmental Assessment... Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Mail Stop EBB-2C40M, Rockville, MD...
10 CFR 11.11 - General requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false General requirements. 11.11 Section 11.11 Energy NUCLEAR... SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material Access Authorization § 11.11 General..., formula quantities of special nuclear material (as defined in part 73 of this chapter) subject to the...
10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...
10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...
10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...
10 CFR 11.11 - General requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false General requirements. 11.11 Section 11.11 Energy NUCLEAR... SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material Access Authorization § 11.11 General..., formula quantities of special nuclear material (as defined in part 73 of this chapter) subject to the...
10 CFR 11.11 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false General requirements. 11.11 Section 11.11 Energy NUCLEAR... SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material Access Authorization § 11.11 General..., formula quantities of special nuclear material (as defined in part 73 of this chapter) subject to the...
10 CFR 150.16 - Submission to Commission of nuclear material transaction reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Submission to Commission of nuclear material transaction reports. 150.16 Section 150.16 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.16 Submission to Commission of nuclear material transaction reports. (a...
10 CFR 11.11 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General requirements. 11.11 Section 11.11 Energy NUCLEAR... SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material Access Authorization § 11.11 General..., formula quantities of special nuclear material (as defined in part 73 of this chapter) subject to the...
10 CFR 11.11 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General requirements. 11.11 Section 11.11 Energy NUCLEAR... SPECIAL NUCLEAR MATERIAL Requirements for Special Nuclear Material Access Authorization § 11.11 General..., formula quantities of special nuclear material (as defined in part 73 of this chapter) subject to the...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 150.17 - Submission to Commission of nuclear material status reports.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...
10 CFR 76.117 - Special nuclear material of low strategic significance-Category III.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Special nuclear material of low strategic significance-Category III. 76.117 Section 76.117 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.117 Special nuclear material of low strategic...
10 CFR 50.101 - Retaking possession of special nuclear material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
10 CFR 50.101 - Retaking possession of special nuclear material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...
10 CFR 150.17 - Submission to Commission of nuclear material status reports.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...
10 CFR 50.101 - Retaking possession of special nuclear material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
10 CFR 150.17 - Submission to Commission of nuclear material status reports.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 11.16 - Cancellation of request for special nuclear material access authorization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false Cancellation of request for special nuclear material access authorization. 11.16 Section 11.16 Energy NUCLEAR REGULATORY COMMISSION CRITERIA AND PROCEDURES FOR DETERMINING ELIGIBILITY FOR ACCESS TO OR CONTROL OVER SPECIAL NUCLEAR MATERIAL Requirements for...
10 CFR 150.21 - Transportation of special nuclear material by aircraft.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Transportation of special nuclear material by aircraft. 150.21 Section 150.21 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Transportation of special nuclear material by aircraft. Except as specifically approved by the Commission no...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 150.17 - Submission to Commission of nuclear material status reports.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Submission to Commission of nuclear material status reports. 150.17 Section 150.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) EXEMPTIONS AND CONTINUED... Authority in Agreement States § 150.17 Submission to Commission of nuclear material status reports. (a...
10 CFR 76.115 - Special nuclear material of moderate strategic significance-Category II.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Special nuclear material of moderate strategic significance-Category II. 76.115 Section 76.115 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) CERTIFICATION OF GASEOUS DIFFUSION PLANTS Safeguards and Security § 76.115 Special nuclear material of moderate...
10 CFR 50.101 - Retaking possession of special nuclear material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Retaking possession of special nuclear material. 50.101 Section 50.101 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... Operations by the Commission § 50.101 Retaking possession of special nuclear material. Upon revocation of a...