Real-time modeling of heat distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamann, Hendrik F.; Li, Hongfei; Yarlanki, Srinivas
Techniques for real-time modeling temperature distributions based on streaming sensor data are provided. In one aspect, a method for creating a three-dimensional temperature distribution model for a room having a floor and a ceiling is provided. The method includes the following steps. A ceiling temperature distribution in the room is determined. A floor temperature distribution in the room is determined. An interpolation between the ceiling temperature distribution and the floor temperature distribution is used to obtain the three-dimensional temperature distribution model for the room.
Design of the thermal insulating test system for doors and windows of buildings
NASA Astrophysics Data System (ADS)
Yu, Yan; Qi, Jinqing; Xu, Yunwei; Wu, Hao; Ou, Jinping
2011-04-01
Thermal insulating properties of doors and widows are important parameter to measure the quality of windows and doors. This paper develops the thermal insulating test system of doors and windows for large temperature difference in winter in north of China according to national standards. This system is integrated with temperature measurement subsystem, temperature control subsystem, the heating power measurement subsystem, and heat transfer coefficient calculated subsystem. The temperature measurement subsystem includes temperature sensor which is implemented by sixty-four thermocouple sensors to measure the key positions of cold room and hot room, and the temperature acquisition unit which adopts Agilent 34901A data acquisition card to achieve self-compensation and accurate temperature capture. The temperature control subsystem including temperature controller and compressor system is used to control the temperature between 0 degree to 20 degree for hot room and -20 degree to 0 degree for cold room. The hot room controller uses fuzzy control algorithm to achieve accurate control of temperature and the cold room controller firstly uses compressor to achieve coarse control and then uses more accurate temperature controller unit to obtain constant temperature(-20 degree). The heating power measurement is mainly to get the heat power of hot room heating devices. After above constant temperature environment is constructed, software of the test system is developed. Using software, temperature data and heat power data can be accurately got and then the heat transfer coefficient, representing the thermal insulating properties of doors and widows, is calculated using the standard formula. Experimental results show that the test system is simple, reliable and precise. It meets the testing requirements of national standard and has a good application prospect.
Seasonal mapping of NICU temperature.
Thomas, Karen A; Magbalot, Almita; Shinabarger, Kelley; Mokhnach, Larisa; Anderson, Marilyn; Diercks, Kristi; Millar, April; Thorngate, Lauren; Walker, Wendy; Dilback, Nancy; Berkan, Maureen
2010-04-01
To create a thermal map of ambient air, radiant, and evaporative temperatures and humidity throughout the NICU nursery by season across a calendar year. Each cubicle of the 32-bed NICU, distributed across 5 rooms, in a level III nursery was measured. Temperatures were recorded at a consistent time on one day during January, April, July, and October. An electronic monitor (QUESTemp degrees 34; Quest Technologies, Oconomowoc, Wisconsin) was used to measure dry bulb, wet bulb, and globe thermometer temperatures. Analysis of variance revealed statistically significant (P < .000) differences in season, room, and season by room interaction. Room ambient air temperatures differed by less than 2 degrees F across season. Radiant temperature paralleled air temperature. Humidity, the predominant difference across season, produced evaporative temperatures considerably lower than room air temperature, and the gradient between mean nursery dry bulb temperature and wet bulb temperature was 9.3 degrees F in summer and 16.8 degrees F in winter. The thermal map revealed seasonal thermal differences, particularly in humidity level and evaporative temperature. Room temperature alone does not reflect the total thermal environment. Recommendations include periodic assessment of nurseries along with air, evaporative, and radiant temperatures as well as humidity to fully appreciate the impact of the thermal environment on infants.
Seasonal mapping of NICU temperature.
Thomas, Karen A; Magbalot, Almita; Shinabarger, Kelley; Mokhnach, Larisa; Anderson, Marilyn; Diercks, Kristi; Millar, April; Thorngate, Lauren; Walker, Wendy; Dilback, Nancy; Berkan, Maureen
2010-10-01
To create a thermal map of ambient air, radiant, and evaporative temperatures and humidity throughout the NICU nursery by season across a calendar year. Each cubicle of the 32-bed NICU, distributed across 5 rooms, in a level III nursery was measured. Temperatures were recorded at a consistent time on one day during January, April, July, and October. : An electronic monitor (QUESTemp ° 34; Quest Technologies, Oconomowoc, Wisconsin) was used to measure dry bulb, wet bulb, and globe thermometer temperatures. Analysis of variance revealed statistically significant (P ≤ .000) differences in season, room, and season by room interaction. Room ambient air temperatures differed by less than 2 ° F across season. Radiant temperature paralleled air temperature. Humidity, the predominant difference across season, produced evaporative temperatures considerably lower than room air temperature, and the gradient between mean nursery dry bulb temperature and wet bulb temperature was 9.3 ° F in summer and 16.8 ° F in winter. The thermal map revealed seasonal thermal differences, particularly in humidity level and evaporative temperature. Room temperature alone does not reflect the total thermal environment. Recommendations include periodic assessment of nurseries along with air, evaporative, and radiant temperatures as well as humidity to fully appreciate the impact of the thermal environment on infants.
NASA Astrophysics Data System (ADS)
Kuzhelev, Andrey A.; Strizhakov, Rodion K.; Krumkacheva, Olesya A.; Polienko, Yuliya F.; Morozov, Denis A.; Shevelev, Georgiy Yu.; Pyshnyi, Dmitrii V.; Kirilyuk, Igor A.; Fedin, Matvey V.; Bagryanskaya, Elena G.
2016-05-01
Trehalose has been recently promoted as efficient immobilizer of biomolecules for room-temperature EPR studies, including distance measurements between attached nitroxide spin labels. Generally, the structure of nitroxide influences the electron spin relaxation times, being crucial parameters for room-temperature pulse EPR measurements. Therefore, in this work we investigated a series of nitroxides with different substituents adjacent to NO-moiety including spirocyclohexane, spirocyclopentane, tetraethyl and tetramethyl groups. Electron spin relaxation times (T1, Tm) of these radicals immobilized in trehalose were measured at room temperature at X- and Q-bands (9/34 GHz). In addition, a comparison was made with the corresponding relaxation times in nitroxide-labeled DNA immobilized in trehalose. In all cases phase memory times Tm were close to 700 ns and did not essentially depend on structure of substituents. Comparison of temperature dependences of Tm at T = 80-300 K shows that the benefit of spirocyclohexane substituents well-known at medium temperatures (∼100-180 K) becomes negligible at 300 K. Therefore, unless there are specific interactions between spin labels and biomolecules, the room-temperature value of Tm in trehalose is weakly dependent on the structure of substituents adjacent to NO-moiety of nitroxide. The issues of specific interactions and stability of nitroxide labels in biological media might be more important for room temperature pulsed dipolar EPR than differences in intrinsic spin relaxation of radicals.
Method of solution preparation of polyolefin class polymers for electrospinning processing included
NASA Technical Reports Server (NTRS)
Rabolt, John F. (Inventor); Givens, Steven R. (Inventor); Lee, Keun-Hyung (Inventor)
2011-01-01
A process to make a polyolefin fiber which has the following steps: mixing at least one polyolefin into a solution at room temperature or a slightly elevated temperature to form a polymer solution and electrospinning at room temperature said polymer solution to form a fiber.
Practical and efficient magnetic heat pump
NASA Technical Reports Server (NTRS)
Brown, G. V.
1978-01-01
Method for pumping heat magnetically at room temperature is more economical than existing refrigeration systems. Method uses natural magneto-thermal effect of gadolinium metal to establish temperature gradient across length of tube. Regenerative cyclic process in which gadolinium sample is magnetized and gives off heat at one end of tube, and then is demagnetized at other end to absorb heat has established temperature gradients of 144 degrees F in experiments near room temperature. Other materials with large magnetothermal effects can be used below room temperature. Possible commercial applications include freeze-drying and food processing, cold storage, and heating and cooling of buildings, plants, and ships.
Room-temperature storage of medications labeled for refrigeration.
Cohen, Victor; Jellinek, Samantha P; Teperikidis, Leftherios; Berkovits, Elliot; Goldman, William M
2007-08-15
Data regarding the recommended maximum duration that refrigerated medications available in hospital pharmacies may be stored safely at room temperature were collected and compiled in a tabular format. During May and June of 2006, the prescribing information for medications labeled for refrigeration as obtained from the supplier were reviewed for data addressing room-temperature storage. Telephone surveys of the products' manufacturers were conducted when this information was not available in the prescribing information. Medications were included in the review if they were labeled to be stored at 2-8 degrees C and purchased by the pharmacy department for uses indicated on the hospital formulary. Frozen antibiotics thawed in the refrigerator and extemporaneously compounded medications were excluded. Information was compiled and arranged in tabular format. The U.S. Pharmacopeia's definition of room temperature (20-25 degrees C [68-77 degrees F]) was used for this review. Of the 189 medications listed in AHFS Drug Information 2006 for storage in a refrigerator, 89 were present in the pharmacy department's refrigerator. Since six manufacturers were unable to provide information for 10 medications, only 79 medications were included in the review. This table may help to avoid unnecessary drug loss and expenditures due to improper storage temperatures. Information regarding the room-temperature storage of 79 medications labeled for refrigerated storage was compiled.
Fractography handbook of spaceflight metals
NASA Technical Reports Server (NTRS)
Derro, Rebecca J.
1993-01-01
This handbook was produced with the intention of providing failure analysts who work with space flight metals a reference of scanning electron microscope (SEM) fractographs of fracture surfaces produced under known condition. The metals and the fracture conditions were chosen to simulate situations that are encountered in spaceflight applications. This includes tensile overload at both room temperature and liquid nitrogen temperature, and fatigue at room temperature.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms.
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee's physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems.
Recommendations to Improve Employee Thermal Comfort When Working in 40°F Refrigerated Cold Rooms
Ceballos, Diana; Mead, Kenneth; Ramsey, Jessica
2015-01-01
Cold rooms are commonly used for food storage and preparation, and are usually kept around 40°F following food safety guidelines. Some food preparation employees may spend 8 or more hours inside cold rooms. These employees may not be aware of the risks associated with mildly cold temperatures, dampness, and limited ventilation. We performed an evaluation of cold rooms at an airline catering facility because of concerns with exposure to cold temperatures. We spoke with and observed employees in two cold rooms, reviewed daily temperature logs, evaluated employee’s physical activity, work/rest schedule, and protective clothing. We measured temperature, percent relative humidity, and air velocities at different work stations inside the cold rooms. We concluded that thermal comfort concerns perceived by cold room employees may have been the result of air drafts at their workstations, insufficient use of personal protective equipment due to dexterity concerns, work practices, and lack of knowledge about good health and safety practices in cold rooms. These moderately cold work conditions with low air velocities are not well covered in current occupational health and safety guidelines, and wind chill calculations do not apply. We provide practical recommendations to improve thermal comfort of cold room employees. Engineering control recommendations include the redesigning of air deflectors and installing of suspended baffles. Administrative controls include the changing out of wet clothing, providing hand warmers outside of cold rooms, and educating employees on cold stress. We also recommended providing more options on personal protective equipment. However, there is a need for guidelines and educational materials tailored to employees in moderately cold environments to improve thermal comfort and minimize health and safety problems. PMID:25961447
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyum, E.A.
1993-12-01
This research, the first load-controlled tension-compression fatigue testing to be performed on a MMC, extends the existing knowledge of MMC fatigue damage mechanisms to include the tension compression loading condition. To accomplish this, a (0/90)2, SCS-6/Ti-15-3 laminate was subjected to tension-tension fatigue at room temperature, and tension-compression fatigue at both room temperature and 427 deg C. Stress and strain data was taken to evaluate the macro-mechanic behavior of the material. Microscopy and fractography were performed to characterize the damage on a micro-mechanic level. On a maximum applied stress basis, the room temperature tension-tension specimens had longer fatigue lives than themore » room temperature tension-compression specimens. The room and high temperature tension-compression fatigue lives were nearly identical in the fiber-dominated high stress region of the SN curve. However, the increased ductility and diffused plasticity of the titanium matrix at 427 deg C delayed the onset and severity of matrix cracking, and thus increased the elevated temperature fatigue lives in the matrix dominated region of the SN curve. In all cases, matrix damage initiated at reaction zone cracks which nucleated both matrix plasticity and matrix cracking. Metal matrix composite, Elevated temperature, Fatigue testing, Compression, Fully-reversed, Titanium, Silicon carbide.« less
High-energy electron-induced damage production at room temperature in aluminum-doped silicon
NASA Technical Reports Server (NTRS)
Corbett, J. W.; Cheng, L. J.; Jaworowski, A.; Karins, J. P.; Lee, Y. H.; Lindstroem, L.; Mooney, P. M.; Oehrlen, G.; Wang, K. L.
1979-01-01
DLTS and EPR measurements are reported on aluminum-doped silicon that was irradiated at room temperature with high-energy electrons. Comparisons are made to comparable experiments on boron-doped silicon. Many of the same defects observed in boron-doped silicon are also observed in aluminum-doped silicon, but several others were not observed, including the aluminum interstitial and aluminum-associated defects. Damage production modeling, including the dependence on aluminum concentration, is presented.
Experimental data of the static behavior of reinforced concrete beams at room and low temperature.
Mirzazadeh, M Mehdi; Noël, Martin; Green, Mark F
2016-06-01
This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well.
Study of VTOL in ground-effect flow field including temperature effect
NASA Technical Reports Server (NTRS)
Hill, W. G.; Jenkins, R. C.; Kalemaris, S. G.; Siclari, M. J.
1982-01-01
Detailed pressure, temperature, and velocity data were obtained for twin-fan configurations in-ground-effect and flow models to aid in predicting pressures and upwash forces on aircraft surfaces were developed. For the basic experiments, 49.5 mm-diameter jets were used, oriented normal to a simulated round plane, with pressurized, heated air providing a jet. The experimental data consisted of: (1) the effect of jet height and temperature on the ground, model, and upwash pressures, and temperatures, (2) the effect of simulated aircraft surfaces on the isolated flow field, (3) the jet-induced forces on a three-dimensional body with various strakes, (4) the effects of non-uniform coannular jets. For the uniform circular jets, temperature was varied from room temperature (24 C) to 232 C. Jet total pressure was varied between 9,300 Pascals and 31,500 Pascals. For the coannular jets, intended to represent turbofan engines, fan temperature was maintained at room temperature while core temperature was varied from room temperature to 437 C. Results are presented.
The heat is on: room temperature affects laboratory equipment--an observational study.
Butler, Julia M; Johnson, Jane E; Boone, William R
2013-10-01
To evaluate the effect of ambient room temperature on equipment typically used in in vitro fertilization (IVF). We set the control temperature of the room to 20 °C (+/-0.3) and used CIMScan probes to record temperatures of the following equipment: six microscope heating stages, four incubators, five slide warmers and three heating blocks. We then increased the room temperature to 26 °C (+/-0.3) or decreased it to 17 °C (+/-0.3) and monitored the same equipment again. We wanted to determine what role, if any, changing room temperature has on equipment temperature fluctuation. There was a direct relationship between room temperature and equipment temperature stability. When room temperature increased or decreased, equipment temperature reacted in a corresponding manner. Statistical differences between equipment were found when the room temperature changed. What is also noteworthy is that temperature of equipment responded within 5 min to a change in room temperature. Clearly, it is necessary to be aware of the affect of room temperature on equipment when performing assisted reproductive procedures. Room and equipment temperatures should be monitored faithfully and adjusted as frequently as needed, so that consistent culture conditions can be maintained. If more stringent temperature control can be achieved, human assisted reproduction success rates may improve.
Experimental data of the static behavior of reinforced concrete beams at room and low temperature
Mirzazadeh, M. Mehdi; Noël, Martin; Green, Mark F.
2016-01-01
This article provides data on the static behavior of reinforced concrete at room and low temperature including, strength, ductility, and crack widths of the reinforced concrete. The experimental data on the application of digital image correlation (DIC) or particle image velocimetry (PIV) in measuring crack widths and the accuracy and precision of DIC/PIV method with temperature variations when is used for measuring strains is provided as well. PMID:27158650
High-resolution ionization detector and array of such detectors
McGregor, Douglas S [Ypsilanti, MI; Rojeski, Ronald A [Pleasanton, CA
2001-01-16
A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.
Guo, Yu-Ming; Wang, Jia-Jia; Li, Guo-Xing; Zheng, Ya-An; He, Wichmann; Pan, Xiao-Chuan
2009-08-01
To explore the association between ambient average temperature and hospital emergency room visits for cardiovascular diseases (International Classification of Diseases, Tenth Vision ICD-10: I00 - I99) in Beijing, China. Data was collected on daily hospital emergency room visits for cardiovascular diseases from Peking University Third Hospital, including meteorological data (daily average temperature, relative humidity, wind speed, and atmospheric pressure) from the China Meteorological Data Sharing Service System, and on air pollution from the Beijing Municipal Environmental Monitoring Center. Time-stratified case-crossover design was used to analyze data on 4 seasons. After adjusting data on air pollution, 1 degree ( degrees C) increase of ambient average temperature would associate with the emergency room visits of odds ratio (ORs) as 1.282 (95%CI: 1.250 - 1.315), 1.027 (95%CI: 1.001 - 1.055), 0.661 (95%CI: 0.637 - 0.687), and 0.960 (95%CI: 0.937 - 0.984) in spring, summer, autumn, and winter respectively. After controlling the influence of relative humidity, wind speed, and atmospheric pressure, 1 degrees C increase in the ambient average temperature would be associated with the emergency room visits on ORs value as 1.423 (95%CI: 1.377 - 1.471), 1.082 (95%CI: 1.041 - 1.124), 0.633 (95%CI: 0.607 - 0.660) and 0.971 (95%CI: 0.944 - 1.000) in spring, summer, autumn, and winter respectively. These data on outcomes suggested that the elevated level of ambient temperature would increase the hospital emergency room visits for cardiovascular diseases in spring and summer while the elevated level of ambient temperature would decrease the hospital emergency room visits for the cardiovascular diseases in autumn and winter, suggesting that patients with cardiovascular diseases should pay attention to the climate change.
Wistrand, Camilla; Söderquist, Bo; Magnusson, Anders; Nilsson, Ulrica
2015-01-01
In clinical practice, patients who are awake often comment that cold surgical skin disinfectant is unpleasant. This is not only a problem of patients' experience; heat loss during the disinfection process is a problem that can result in hypothermia. Evidence for the efficacy of preheated disinfection is scarce. We tested whether preheated skin disinfectant was non-inferior to room-temperature skin disinfectant on reducing bacterial colonization during pacemaker implantation. This randomized, controlled, non-inferiority trial included 220 patients allocated to skin disinfection with preheated (36 °C) or room-temperature (20 °C) chlorhexidine solution in 70 % ethanol. Cultures were obtained by swabbing at 4 time-points; 1) before skin disinfection (skin surface), 2) after skin disinfection (skin surface), 3) after the incision (subcutaneously in the wound), and 4) before suturing (subcutaneously in the wound). The absolute difference in growth between patients treated with preheated versus room-temperature skin disinfectant was zero (90 % CI -0.101 to 0.101; preheated: 30 of 105 [28.6 %] vs. room-temperature: 32 of 112 [28.6 %]). The pre-specified margin for statistical non-inferiority in the protocol was set at 10 % for the preheated disinfectant. There were no significant differences between groups regarding SSIs three month postoperatively, which occurred in 0.9 % (1 of 108) treated with preheated and 1.8 % (2 of 112) treated with room-temperature skin disinfectant. Preheated skin disinfection is non-inferior to room-temperature disinfection in bacterial reduction. We therefore suggest that preheated skin disinfection become routine in clean surgery. The study is registered at ClinicalTrials.gov (NCTO2260479).
Integrated research in constitutive modelling at elevated temperatures, part 1
NASA Technical Reports Server (NTRS)
Haisler, W. E.; Allen, D. H.
1986-01-01
Topics covered include: numerical integration techniques; thermodynamics and internal state variables; experimental lab development; comparison of models at room temperature; comparison of models at elevated temperature; and integrated software development.
Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping
2015-08-07
A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.
On the Role of Dimensionless Elastic Fracture Mechanics.
1985-07-03
34.’ . . . .- . . - . . . - ... - . .. . . . . . -8-.V 6. B.M. Wundt , "A Unified Interpretation of Room Temperature Strength of Notched...207s (1948). D.H. Winne and B.M. Wundt , Application of the Griffith-Irwin theory of crack propagation to the bursting behavior of disks, including... Wundt , A unified interpretation of room-temperature strength of notched specimens as influenced by their size. Metals Engng. Conf., ASME Paper No
Protocols for dry DNA storage and shipment at room temperature
Ivanova, Natalia V; Kuzmina, Masha L
2013-01-01
The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica® DNAstable® plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at −20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica® provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica® at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at −20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. PMID:23789643
Jaisutti, Rawat; Lee, Minkyung; Kim, Jaeyoung; Choi, Seungbeom; Ha, Tae-Jun; Kim, Jaekyun; Kim, Hyoungsub; Park, Sung Kyu; Kim, Yong-Hoon
2017-03-15
Ultrasensitive room-temperature operable gas sensors utilizing the photocatalytic activity of Na-doped p-type ZnO (Na:ZnO) nanoflowers (NFs) are demonstrated as a promising candidate for diabetes detection. The flowerlike Na:ZnO nanoparticles possessing ultrathin hierarchical nanosheets were synthesized by a facile solution route at a low processing temperature of 40 °C. It was found that the Na element acting as a p-type dopant was successfully incorporated in the ZnO lattice. On the basis of the synthesized p-type Na:ZnO NFs, room-temperature operable chemiresistive-type gas sensors were realized, activated by ultraviolet (UV) illumination. The Na:ZnO NF gas sensors exhibited high gas response (S of 3.35) and fast response time (∼18 s) and recovery time (∼63 s) to acetone gas (100 ppm, UV intensity of 5 mW cm -2 ), and furthermore, subppm level (0.2 ppm) detection was achieved at room temperature, which enables the diagnosis of various diseases including diabetes from exhaled breath.
Pyroelectric effect and lattice thermal conductivity of InN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Hansdah, Gopal; Sahoo, Bijay Kumar
2018-06-01
The built-in-polarization (BIP) of InN/GaN heterostructures enhances Debye temperature, phonon mean free path and thermal conductivity of the heterostructure at room temperature. The variation of thermal conductivities (kp: including polarization mechanism and k: without polarization mechanism) with temperature predicts the existence of a transition temperature (Tp) between primary and secondary pyroelectric effect. Below Tp, kp is lower than k; while above Tp, kp is significantly contributed from BIP mechanism due to thermal expansion. A thermodynamic theory has been proposed to explain the result. The room temperature thermal conductivity of InN/GaN heterostructure with and without polarization is respectively 32 and 48 W m-1 K-1. The temperature Tp and room temperature pyroelectric coefficient of InN has been predicted as 120 K and -8.425 μC m-2 K-1, respectively which are in line with prior literature studies. This study suggests that thermal conductivity measurement in InN/GaN heterostructures can help to understand the role of phonons in pyroelectricity.
[Studies on the health standard for room temperature in cold regions].
Meng, Z L
1990-03-01
The microclimate of 205 rooms of single storey houses in four new rural residential districts in coastal and inland Shandong was monitored and studied the blood circulation of the finger, skin temperature, sweating function and other physiological indexes among 2,401 peasants. We interrogated their personal sensation to cold and warmth. The count was done by the application of thermal equilibrium index (TEI), predicted 4-hour Sweat Rate (P4SR) and the uncomfortable index. The standard room temperature is recommended as follows. In rural area in winter the appropriate room temperature is 14-16 degrees C, the comfortable room temperature is 16-20 degrees C, the lowest room temperature must not be below 14 degrees C. In summer the appropriate room temperature is 25-28 degrees C, the comfortable room temperature is 26-27 degrees C, the highest temperature must not be above 28 degrees C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.
Mathews, Irimpan I.; Allison, Kim; Robbins, Thomas; ...
2017-08-23
The crystal structure of the trans-acyltransferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for sample delivery directly into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes on polyketide synthase reaction dynamics are discussed.
... hives, including hives caused by exposure to cold temperatures and by rubbing the skin. Cyproheptadine is also ... of reach of children. Store it at room temperature and away from excess heat and moisture (not ...
Composites comprising novel RTIL-based polymers, and methods of making and using same
Gin, Douglas; Carlisle, Trevor; Noble, Richard; Nicodemus, Garret; McDanel, William; Cowan, Matthew
2017-06-27
The invention includes compositions comprising curable imidazolium-functionalized poly(room-temperature ionic liquid) copolymers and homopolymers. The invention further includes methods of preparing and using the compositions of the invention. The invention further includes novel methods of preparing thin, supported, room-temperature ionic liquid-containing polymeric films on a porous support. In certain embodiments, the methods of the invention avoid the use of a gutter layer, which greatly reduces the overall gas permeance and selectivity of the composite membrane. In other embodiments, the films of the invention have increased gas selectivity and permeance over films prepared using methods described in the prior art.
Reference breast temperature: proposal of an equation.
Souza, Gladis Aparecida Galindo Reisemberger de; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso Neto, Carlos; Neves, Eduardo Borba
2015-01-01
To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies.
Protocols for dry DNA storage and shipment at room temperature.
Ivanova, Natalia V; Kuzmina, Masha L
2013-09-01
The globalization of DNA barcoding will require core analytical facilities to develop cost-effective, efficient protocols for the shipment and archival storage of DNA extracts and PCR products. We evaluated three dry-state DNA stabilization systems: commercial Biomatrica(®) DNAstable(®) plates, home-made trehalose and polyvinyl alcohol (PVA) plates on 96-well panels of insect DNA stored at 56 °C and at room temperature. Controls included unprotected samples that were stored dry at room temperature and at 56 °C, and diluted samples held at 4 °C and at -20 °C. PCR and selective sequencing were performed over a 4-year interval to test the condition of DNA extracts. Biomatrica(®) provided better protection of DNA at 56 °C and at room temperature than trehalose and PVA, especially for diluted samples. PVA was the second best protectant after Biomatrica(®) at room temperature, whereas trehalose was the second best protectant at 56 °C. In spite of lower PCR success, the DNA stored at -20 °C yielded longer sequence reads and stronger signal, indicating that temperature is a crucial factor for DNA quality which has to be considered especially for long-term storage. Although it is premature to advocate a transition to DNA storage at room temperature, dry storage provides an additional layer of security for frozen samples, protecting them from degradation in the event of freezer failure. All three forms of DNA preservation enable shipment of dry DNA and PCR products between barcoding facilities. © 2013 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Davis, Don D , Jr; Stevens, George L , Jr; Moore, Dewey; Stokes, George M
1953-01-01
Equations are presented for the attenuation characteristics of several types of mufflers. Experimental curves of attenuation plotted against frequency are presented for 77 different mufflers and the results are compared with theory. The experiments were made at room temperature without flow and the sound source was a loud-speaker. A method is given for including the tail pipe in the calculations. The application of the theory to the design of engine-exhaust mufflers is discussed, and charts have been included for the assistance of the designer.
Fabrication and evaluation of cold/formed/weldbrazed beta-titanium skin-stiffened compression panels
NASA Technical Reports Server (NTRS)
Royster, D. M.; Bales, T. T.; Davis, R. C.; Wiant, H. R.
1983-01-01
The room temperature and elevated temperature buckling behavior of cold formed beta titanium hat shaped stiffeners joined by weld brazing to alpha-beta titanium skins was determined. A preliminary set of single stiffener compression panels were used to develop a data base for material and panel properties. These panels were tested at room temperature and 316 C (600 F). A final set of multistiffener compression panels were fabricated for room temperature tests by the process developed in making the single stiffener panels. The overall geometrical dimensions for the multistiffener panels were determined by the structural sizing computer code PASCO. The data presented from the panel tests include load shortening curves, local buckling strengths, and failure loads. Experimental buckling loads are compared with the buckling loads predicted by the PASCO code. Material property data obtained from tests of ASTM standard dogbone specimens are also presented.
Room temperature current injection polariton light emitting diode with a hybrid microcavity.
Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa
2011-07-13
The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.
On the temperature prediction in a fire escape passage
NASA Astrophysics Data System (ADS)
Casano, G.; Piva, S.
2017-11-01
Fire safety engineering requires a detailed understanding of fire behaviour and of its effects on structures and people. Many factors may condition the fire scenario, as for example, heat transfer between the flame and the boundary structures. Currently advanced numerical codes for the prediction of the fire behaviour are available. However, these solutions often require heavy calculations and long times. In this context analytical solutions can be useful for a fast analysis of simplified schematizations. After that, it is more effective the final utilization of the advanced fire codes. In this contribution, the temperature in a fire escape passage, separated with a thermally resistant wall from a fire room, is analysed. The escape space is included in a building where the neighbouring rooms are at a constant undisturbed temperature. The presence of the neighbouring rooms is considered with an equivalent heat transfer coefficient, in a boundary condition of the third type. An analytical solution is used to predict the temperature distribution during the fire. It allows to obtain useful information on the temperature reached in the escape area in contact with a burning room; it is useful also for a fast choice of the thermal characteristics of a firewall.
High Accuracy Thermal Expansion Measurement At Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Stallcup, Michael; Presson, Joan; Tucker, James; Daspit, Gregory; Nein, Max
2003-01-01
A new, interferometer based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program. Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.
High Accuracy Thermal Expansion Measurement at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Tucker, Jim; Despit, Gregory; Stallcup, Michael; Presson, Joan; Nein, Max
2003-01-01
A new, interferometer-based system for measuring thermal expansion to an absolute accuracy of 20 ppb or better at cryogenic temperatures has been developed. Data from NIST Copper SRM 736 measured from room temperature to 15 K will be presented along with data from many other materials including beryllium, ULE, Zerodur, and composite materials. Particular attention will be given to a study by the Space Optics Manufacturing Technology Center (SOMTC) investigating the variability of ULE and beryllium materials used in the AMSD program Approximately 20 samples of each material, tested from room temperature to below 30 K are compared as a function of billet location.
Allison, Kim; Robbins, Thomas; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Khosla, Chaitan; DeMirci, Hasan; McPhillips, Scott E.; Hollenbeck, Michael; Soltis, Michael; Cohen, Aina E.
2017-01-01
The crystal structure of the trans-acyltrans-ferase (AT) from the disorazole polyketide synthase (PKS) was determined at room temperature to a resolution of 2.5 Å using a new method for the direct delivery of the sample into an X-ray free-electron laser. A novel sample extractor efficiently delivered limited quantities of microcrystals directly from the native crystallization solution into the X-ray beam at room temperature. The AT structure revealed important catalytic features of this core PKS enzyme, including the occurrence of conformational changes around the active site. The implications of these conformational changes for polyketide synthase reaction dynamics are discussed. PMID:28832129
Reference breast temperature: proposal of an equation
de Souza, Gladis Aparecida Galindo Reisemberger; Brioschi, Marcos Leal; Vargas, José Viriato Coelho; Morais, Keli Cristiane Correia; Dalmaso, Carlos; Neves, Eduardo Borba
2015-01-01
ABSTRACT Objective To develop an equation to estimate the breast reference temperature according to the variation of room and core body temperatures. Methods Four asymptomatic women were evaluated for three consecutive menstrual cycles. Using thermography, the temperature of breasts and eyes was measured as indirect reference of core body and room temperatures. To analyze the thermal behavior of the breasts during the cycle, the core body and room temperatures were normalized by means of a mathematical equation. Results We performed 180 observations and the core temperature had the highest correlation with the breast temperature, followed by room temperature. The proposed prediction model could explain 45.3% of the breast temperature variation, with variable room temperature variable; it can be accepted as a way to estimate the reference breast temperature at different room temperatures. Conclusion The average breast temperature in healthy women had a direct relation with the core and room temperature and can be estimated mathematically. It is suggested that an equation could be used in clinical practice to estimate the normal breast reference temperature in young women, regardless of the day of the cycle, therefore assisting in evaluation of anatomical studies. PMID:26761549
Development of magnetostrictive active members for control of space structures
NASA Technical Reports Server (NTRS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-01-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Development of magnetostrictive active members for control of space structures
NASA Astrophysics Data System (ADS)
Johnson, Bruce G.; Avakian, Kevin M.; Fenn, Ralph C.; Gaffney, Monique S.; Gerver, Michael J.; Hawkey, Timothy J.; Boudreau, Donald J.
1992-08-01
The goal of this Phase 2 Small Business Innovative Research (SBIR) project was to determine the technical feasibility of developing magnetostrictive active members for use as truss elements in space structures. Active members control elastic vibrations of truss-based space structures and integrate the functions of truss structure element, actively controlled actuator, and sensor. The active members must control structural motion to the sub-micron level and, for many proposed space applications, work at cryogenic temperatures. Under this program both room temperature and cryogenic temperature magnetostrictive active members were designed, fabricated, and tested. The results of these performance tests indicated that room temperature magnetostrictive actuators feature higher strain, stiffness, and force capability with lower amplifier requirements than similarly sized piezoelectric or electrostrictive active members, at the cost of higher mass. Two different cryogenic temperature magnetostrictive materials were tested at liquid nitrogen temperatures, both with larger strain capability than the room temperature magnetostrictive materials. The cryogenic active member development included the design and fabrication of a cryostat that allows operation of the cryogenic active member in a space structure testbed.
Botha, Sabine; Nass, Karol; Barends, Thomas R M; Kabsch, Wolfgang; Latz, Beatrice; Dworkowski, Florian; Foucar, Lutz; Panepucci, Ezequiel; Wang, Meitian; Shoeman, Robert L; Schlichting, Ilme; Doak, R Bruce
2015-02-01
Recent advances in synchrotron sources, beamline optics and detectors are driving a renaissance in room-temperature data collection. The underlying impetus is the recognition that conformational differences are observed in functionally important regions of structures determined using crystals kept at ambient as opposed to cryogenic temperature during data collection. In addition, room-temperature measurements enable time-resolved studies and eliminate the need to find suitable cryoprotectants. Since radiation damage limits the high-resolution data that can be obtained from a single crystal, especially at room temperature, data are typically collected in a serial fashion using a number of crystals to spread the total dose over the entire ensemble. Several approaches have been developed over the years to efficiently exchange crystals for room-temperature data collection. These include in situ collection in trays, chips and capillary mounts. Here, the use of a slowly flowing microscopic stream for crystal delivery is demonstrated, resulting in extremely high-throughput delivery of crystals into the X-ray beam. This free-stream technology, which was originally developed for serial femtosecond crystallography at X-ray free-electron lasers, is here adapted to serial crystallography at synchrotrons. By embedding the crystals in a high-viscosity carrier stream, high-resolution room-temperature studies can be conducted at atmospheric pressure using the unattenuated X-ray beam, thus permitting the analysis of small or weakly scattering crystals. The high-viscosity extrusion injector is described, as is its use to collect high-resolution serial data from native and heavy-atom-derivatized lysozyme crystals at the Swiss Light Source using less than half a milligram of protein crystals. The room-temperature serial data allow de novo structure determination. The crystal size used in this proof-of-principle experiment was dictated by the available flux density. However, upcoming developments in beamline optics, detectors and synchrotron sources will enable the use of true microcrystals. This high-throughput, high-dose-rate methodology provides a new route to investigating the structure and dynamics of macromolecules at ambient temperature.
Red Phosphorescence from Benzo[2,1,3]thiadiazoles at Room Temperature.
Gutierrez, Gregory D; Sazama, Graham T; Wu, Tony; Baldo, Marc A; Swager, Timothy M
2016-06-03
We describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.
Mercuric iodine room temperature gamma-ray detectors
NASA Technical Reports Server (NTRS)
Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.
1990-01-01
high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.
Adequacy of solar energy to keep babies warm.
Daga, S R; Sequera, D; Goel, S; Desai, B; Gajendragadkar, A
1996-02-01
Solar energy could be used as an alternate energy source for keeping neonates warm especially in tropical countries. The present study investigated the efficacy of solar powered room heating system. Referral center for neonatal care. A fluid system heated by solar panels and circulated into a room was used to maintain room temperature. A servocontrolled heating device was used to regulate and maintain desired room temperature. Neonatal rectal temperature and room temperature. Infants between 1750-2250 g were observed to require a mean room temperature of 32.5 degrees C to maintain normothermia. In 85 infants less than 1500 g, of the 5050 infant temperature records, only 3% showed a record less than 36 degrees C. Solar powered room heating is effective in maintaining infant temperature and is cost-effective as compared to the existing warming devices.
NASA Technical Reports Server (NTRS)
Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)
1999-01-01
Ceramics are protected from high temperature degradation, including high temperature, oxidative, aeroconvective degradation by a high temperature and oxidation resistant coating of a room temperature curing, hydrolyzed and partially condensed liquid polyorganosiloxane to the surface of the ceramic. The liquid polyorganosiloxane is formed by the hydrolysis and partial condensation of an alkyltrialkoxysilane with water or a mixture of an alkyltrialkoxysilane and a dialkyldialkoxysilane with water. The liquid polyorganosiloxane cures at room temperature on the surface of the ceramic to form a hard, protective, solid coating which forms a high temperature environment, and is also used as an adhesive for adhering a repair plug in major damage to the ceramic. This has been found useful for protecting and repairing porous, rigid ceramics of a type used on reentry space vehicles.
Temperature effects on the mechanical properties of annealed and HERF 304L stainless steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, Bonnie R.
2004-11-01
The effect of temperature on the tensile properties of annealed 304L stainless steel and HERF 304L stainless steel forgings was determined by completing experiments over the moderate range of -40 F to 160 F. Temperature effects were more significant in the annealed material than the HERF material. The tensile yield strength of the annealed material at -40 F averaged twenty two percent above the room temperature value and at 160 F averaged thirteen percent below. The tensile yield strength for the three different geometry HERF forgings at -40 F and 160 F changed less than ten percent from room temperature.more » The ultimate tensile strength was more temperature dependent than the yield strength. The annealed material averaged thirty six percent above and fourteen percent below the room temperature ultimate strength at -40 F and 160 F, respectively. The HERF forgings exhibited similar, slightly lower changes in ultimate strength with temperature. For completeness and illustrative purposes, the stress-strain curves are included for each of the tensile experiments conducted. The results of this study prompted a continuation study to determine tensile property changes of welded 304L stainless steel material with temperature, documented separately.« less
Wright, Caradee Y.; Street, Renée A.; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N.; Mathee, Angela
2017-01-01
Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2–4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed ‘realfeel’ temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of ‘stuffiness’ and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat–health impact warning categories of ‘caution’ and ‘extreme caution’. PMID:28067816
Wright, Caradee Y; Street, Renée A; Cele, Nokulunga; Kunene, Zamantimande; Balakrishna, Yusentha; Albers, Patricia N; Mathee, Angela
2017-01-06
Increased temperatures affect human health and vulnerable groups including infants, children, the elderly and people with pre-existing diseases. In the southern African region climate models predict increases in ambient temperature twice that of the global average temperature increase. Poor ventilation and lack of air conditioning in primary health care clinics, where duration of waiting time may be as long as several hours, pose a possible threat to patients seeking primary health care. Drawing on information measured by temperature loggers installed in eight clinics in Giyani, Limpopo Province of South Africa, we were able to determine indoor temperatures of waiting rooms in eight rural primary health care facilities. Mean monthly temperature measurements inside the clinics were warmer during the summer months of December, January and February, and cooler during the autumn months of March, April and May. The highest mean monthly temperature of 31.4 ± 2.7 °C was recorded in one clinic during February 2016. Maximum daily indoor clinic temperatures exceeded 38 °C in some clinics. Indoor temperatures were compared to ambient (outdoor) temperatures and the mean difference between the two showed clinic waiting room temperatures were higher by 2-4 °C on average. Apparent temperature (AT) incorporating relative humidity readings made in the clinics showed 'realfeel' temperatures were >4 °C higher than measured indoor temperature, suggesting a feeling of 'stuffiness' and discomfort may have been experienced in the waiting room areas. During typical clinic operational hours of 8h00 to 16h00, mean ATs fell into temperature ranges associated with heat-health impact warning categories of 'caution' and 'extreme caution'.
NASA Astrophysics Data System (ADS)
Gendelis, S.; Jakovičs, A.
2010-01-01
Numerical mathematical modelling of the indoor thermal conditions and of the energy losses for separate rooms is an important part of the analysis of the heat-exchange balance and energy efficiency in buildings. The measurements of heat transfer coefficients for bounding structures, the air-tightness tests and thermographic diagnostics done for a building allow the influence of those factors to be predicted more correctly in developed numerical models. The temperature distribution and airflows in a typical room (along with the heat losses) were calculated for different heater locations and solar radiation (modelled as a heat source) through the window, as well as various pressure differences between the openings in opposite walls. The airflow velocities and indoor temperature, including its gradient, were also analysed as parameters of thermal comfort conditions. The results obtained show that all of the listed factors have an important influence on the formation of thermal comfort conditions and on the heat balance in a room.
Gehrich, Alan Paul; Hill, Micah J; McWilliams, Grant D E; Larsen, Wilma; McCartin, Tamarin
2012-01-01
Urodynamic studies, routinely performed in women with lower urinary tract symptoms, have a large impact on clinical decision making. Unfortunately, these studies are insensitive in reproducing idiopathic detrusor overactivity (IDO). We set out to examine whether serial cystometry with different distending fluid temperatures could better reproduce symptoms. Eighty-six women were enrolled in a double-blinded, randomized, crossover study. Two cystometries were performed in series, starting with either body temperature fluid (BTF) or room temperature fluid (RTF) and then repeating cystometry with the other temperature fluid. Primary outcomes included first sensation, first urge, and maximum cystometric capacity. Secondary outcomes included subjective sensation of bladder discomfort and the incidence of IDO. In aggregate, the temperature of the fluid did not affect volumes of bladder sensation. There were no differences in self-reported bladder irritation or IDO between the different temperature fluids. There was a significant carryover effect with BTF. BTF administered first reached sensory thresholds at lower volumes than when it was administered second after RTF. Room temperature fluid cystometry showed no statistical difference in volume between first fill and second fill. Idiopathic detrusor overactivity contractions were seen in 9% of studies and were not affected by period or temperature. These data suggest that BTF and RTF independently do not affect bladder sensory thresholds. The periodicity in combination with varying fluid temperature is of greater impact. This study documents that changes in temperature of the distending fluid from BTF to RTF or vice versa likely do not provoke IDO contractions.
Hazard analysis and critical control point evaluation of school food programs in Bahrain.
Ali, A A; Spencer, N J
1996-03-01
Hazard analyses were conducted in six food preparation sites and 16 school canteens in the State of Bahrain. Sandwiches made with cheese, meat, eggs, liver, and beef burgers were prepared in small shops or a bakery outside schools. Foods were cooked between 4 and 5 A.M. Time-temperature exposure during cooking was adequate to kill vegetative microbes and their spores, but potential for recontamination existed from the hands of food workers, utensils, and cloths and sponges used for wiping. All foods were left at room temperature before they were transported in vans to schools where they were also kept at room temperature between 17 degrees C and 41 degrees C. Air temperature inside the canteens during this investigation was between 18.5 and 28 degrees C with a relative humidity of 65 to 70%. Hazard analyses, which included observation of operations inside school canteens and sites of food preparation, measuring temperatures, and interviewing workers and consumers (teachers, students) were carried out. Hazards were primarily associated with preparation of foods long before they were consumed, physical touching of products, and holding foods at room temperature after preparation. Holding foods at room temperature would have allowed germination of bacterial spores and multiplication of microbes. Reheating of foods was not practiced. Health promoters must be aware of these hazards and need to educate food workers, administrators, and the public on the methods of prevention.
2012-05-01
molten salts can be employed over a wide range of applications, which include solvents, 7 electrolytes , 8 pharmaceuticals and therapeutics,9 and...waxy, hygroscopic solid at room temperature, where the additional products in the HP series exist as liquids at room 9 temperature. In general...compressed aluminum pans. Melting and decomposition points for solids were measured by DSC from 40 to 400 oC at a scan rate of 5 ºC/min. IR spectra
Targeted Delivery of Carbon Nanotubes to Cancer Cells
2009-01-01
were thiolated by incubation for 1 h at room temperature with a 20:1 molar excess of Traut’s reagent. After incubation, the reaction was quenched...0.1 mM EDTA, pH 7.4. The thiolated MAb was conjugated to the activated NA at a molar ratio of 1:2 for 2 h at room temperature with gentle shaking...previous reports, this was achieved by coating CNTs with biocompatible compounds, such as hydrophilic uncharged polymers including poly-(ethylene glycol
Mechanical Alloying for Making Thermoelectric Compounds
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo; Fleurial, Jean-Pierre; Snyder, Jeffrey; Blair, Richard; May, Andrew
2007-01-01
An economical room-temperature mechanical alloying process has been shown to be an effective means of making a homogeneous powder that can be hot-pressed to synthesize a thermoelectric material having reproducible chemical composition. The synthesis of a given material consists of the room temperature thermomechanical-alloying process followed b y a hot-pressing process. Relative to synthesis of nominally the same material by a traditional process that includes hot melting, this s ynthesis is simpler and yields a material having superior thermoelect ric properties.
Red phosphorescence from benzo[2,1,3]thiadiazoles at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutierrez, Gregory D.; Sazama, Graham T.; Wu, Tony
2016-05-23
In this paper, we describe the red phosphorescence exhibited by a class of structurally simple benzo[2,1,3]thiadiazoles at room temperature. The photophysical properties of these molecules in deoxygenated cyclohexane, including their absorption spectra, steady-state photoluminescence and excitation spectra, and phosphorescence lifetimes, are presented. Finally, time-dependent density functional theory calculations were carried out to better understand the electronic excited states of these benzo[2,1,3]thiadiazoles and why they are capable of phosphorescence.
Thirty Years of Near Room Temperature Magnetic Cooling: Where we are Today and Future Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
K.A. Gschneidner, Jr; V.K. Pecharsky'
2008-05-01
The seminal study by Brown in 1976 showed that it was possible to use the magnetocaloric effect to produce a substantial cooling effect near room temperature. About 15 years later Green et al. built a device which actually cooled a load other than the magnetocaloric material itself and the heat exchange fluid. The major breakthrough, however, occurred in 1997 when the Ames Laboratory/Astronautics proof-of-principle refrigerator showed that magnetic refrigeration was competitive with conventional gas compression cooling. Since then, over 25 magnetic cooling units have been built and tested throughout the world. The current status of near room temperature magnetic coolingmore » is reviewed, including a discussion of the major problems facing commercialization and potential solutions thereof. The future outlook for this revolutionary technology is discussed.« less
The influence of room temperature on Mg isotope measurements by MC-ICP-MS.
Zhang, Xing-Chao; Zhang, An-Yu; Zhang, Zhao-Feng; Huang, Fang; Yu, Hui-Min
2018-03-24
We observed that the accuracy and precision of magnesium (Mg) isotope analyses could be affected if the room temperature oscillated during measurements. To achieve high quality Mg isotopic data, it is critical to evaluate how the unstable room temperature affects Mg isotope measurements by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). We measured the Mg isotopes for the reference material DSM-3 using MC-ICP-MS under oscillating room temperatures in spring. For a comparison, we also measured the Mg isotopes under stable room temperatures, which was achieved by the installation of an improved temperature control system in the laboratory. The δ 26 Mg values measured under oscillating room temperatures have a larger deviation (δ 26 Mg from -0.09 to 0.08‰, with average δ 26 Mg = 0.00 ± 0.08 ‰) than those measured under a stable room temperature (δ 26 Mg from -0.03 to 0.03‰, with average δ 26 Mg = 0.00 ± 0.02 ‰) using the same MC-ICP-MS system. The room temperature variation can influence the stability of MC-ICP-MS. Therefore, it is critical to keep the room temperature stable to acquire high precise and accurate isotopic data when using MC-ICP-MS, especially when using the sample-standard bracketing (SSB) correction method. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Blunck, R. D.; Krantz, D. E.
1974-01-01
An account of activities and data gathered in the Room Temperature Stretch Forming of One-third Scale External Tank Bulkhead Gores for space shuttle study, and a tooling design and production cost study are reported. The following study phases are described: (1) the stretch forming of three approximately one-third scale external tank dome gores from single sheets of 2219-T37 aluminum alloy; (2) the designing of a full scale production die, including a determination of tooling requirements; and (3) the determination of cost per gore at the required production rates, including manufacturing, packaging, and shipping.
Zahmakıran, Mehmet; Philippot, Karine; Özkar, Saim; Chaudret, Bruno
2012-01-14
Dimethylamine-borane, (CH(3))(2)NHBH(3), has been considered as one of the attractive materials for the efficient storage of hydrogen, which is still one of the key issues in the "Hydrogen Economy". In a recent communication we have reported the synthesis and characterization of 3-aminopropyltriethoxysilane stabilized ruthenium(0) nanoparticles with the preliminary results for their catalytic performance in the dehydrogenation of dimethylamine-borane at room temperature. Herein, we report a complete work including (i) effect of initial [APTS]/[Ru] molar ratio on both the size and the catalytic activity of ruthenium(0) nanoparticles, (ii) collection of extensive kinetic data under non-MTL conditions depending on the substrate and catalyst concentrations to define the rate law of Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane at room temperature, (iii) determination of activation parameters (E(a), ΔH(#) and ΔS(#)) for Ru(0)/APTS-catalyzed dehydrogenation of dimethylamine-borane; (iv) demonstration of the catalytic lifetime of Ru(0)/APTS nanoparticles in the dehydrogenation of dimethylamine-borane at room temperature, (v) testing the bottlability and reusability of Ru(0)/APTS nanocatalyst in the room-temperature dehydrogenation of dimethylamine-borane, (vi) quantitative carbon disulfide (CS(2)) poisoning experiments to find a corrected TTO and TOF values on a per-active-ruthenium-atom basis, (vii) a summary of extensive literature review for the catalysts tested in the catalytic dehydrogenation of dimethylamine-borane as part of the results and discussions.
Method of doping organic semiconductors
Kloc, Christian Leo [Constance, DE; Ramirez, Arthur Penn [Summit, NJ; So, Woo-Young [New Providence, NJ
2012-02-28
A method includes the steps of forming a contiguous semiconducting region and heating the region. The semiconducting region includes polyaromatic molecules. The heating raises the semiconducting region to a temperature above room temperature. The heating is performed in the presence of a dopant gas and the absence of light to form a doped organic semiconducting region.
EEAP boiler and chiller study II at Fort Sam Houston, San Antonio, Texas. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The following assumptions and estimates were used in the modeling of the existing buildings which are served by the boilers and chillers included in this study. (1) The Trace 600 weather data for San Antonio, Texas was used in all of the computer simulations. (2) The Trace 600 computer simulations were performed for the months of January through December to determine annual HVAC equipment energy consumptions. (3) A special holiday schedule was created to incorporate the additional holidays that military personnel living in the area 1300 barracks buildings receive. This schedule includes the seven standard holidays plus the period frommore » December 17 through 31. The standard seven day holiday schedule was used for all other areas. (4) All building dimensions and construction data were determined from as-built drawings when available, or from field measurements taken during the site visit. (5) Design room temperatures for comfort conditions (thermostat setpoints) were obtained from CEMP-E (9 December 1991) Chapter 13, Section 3. These temperatures were 78 deg F, 50% relative humidity for cooling and 70 deg F for heating. No cooling or heating temperature setback control was included in the simulations. The design room conditions for the hospital were determined as follows: Surgery / Critical Care 68 deg F, 55%; Ancillary 72 deg F, 50%; Nursing / Patient Care 76 deg F, 50%; and Computer Room 72 deg F, 50%. (6) The shading coefficient for all windows with interior shading devices was estimated at 0.67 per ASHRAE data. (7) The number of people in each building or room was estimated from interviews with post personnel or field notes taken during the site visit. The sensible and latent heat gain rates used for the people in each room were taken from ASHRAE data.« less
Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping.
Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A; Debelius, Justine; Morton, James T; Hyde, Embriette; Robbins-Pianka, Adam; Knight, Rob
2017-01-01
The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria , grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., "bloomed") at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called "Deblur" to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has been shown not to obscure physiologically relevant microbiome differences between comparison groups, there are still changes in specific bacterial taxa, notably, in members of the class Gammaproteobacteria , that can make microbiome profiles difficult to interpret. Here we identify the most problematic taxa and show that removing sequences from just a few fast-growing taxa is sufficient to correct microbiome profiles.
Correcting for Microbial Blooms in Fecal Samples during Room-Temperature Shipping
Amir, Amnon; McDonald, Daniel; Navas-Molina, Jose A.; Debelius, Justine; Morton, James T.; Hyde, Embriette; Robbins-Pianka, Adam
2017-01-01
ABSTRACT The use of sterile swabs is a convenient and common way to collect microbiome samples, and many studies have shown that the effects of room-temperature storage are smaller than physiologically relevant differences between subjects. However, several bacterial taxa, notably members of the class Gammaproteobacteria, grow at room temperature, sometimes confusing microbiome results, particularly when stability is assumed. Although comparative benchmarking has shown that several preservation methods, including the use of 95% ethanol, fecal occult blood test (FOBT) and FTA cards, and Omnigene-GUT kits, reduce changes in taxon abundance during room-temperature storage, these techniques all have drawbacks and cannot be applied retrospectively to samples that have already been collected. Here we performed a meta-analysis using several different microbiome sample storage condition studies, showing consistent trends in which specific bacteria grew (i.e., “bloomed”) at room temperature, and introduce a procedure for removing the sequences that most distort analyses. In contrast to similarity-based clustering using operational taxonomic units (OTUs), we use a new technique called “Deblur” to identify the exact sequences corresponding to blooming taxa, greatly reducing false positives and also dramatically decreasing runtime. We show that applying this technique to samples collected for the American Gut Project (AGP), for which participants simply mail samples back without the use of ice packs or other preservatives, yields results consistent with published microbiome studies performed with frozen or otherwise preserved samples. IMPORTANCE In many microbiome studies, the necessity to store samples at room temperature (i.e., remote fieldwork) and the ability to ship samples without hazardous materials that require special handling training, such as ethanol (i.e., citizen science efforts), is paramount. However, although room-temperature storage for a few days has been shown not to obscure physiologically relevant microbiome differences between comparison groups, there are still changes in specific bacterial taxa, notably, in members of the class Gammaproteobacteria, that can make microbiome profiles difficult to interpret. Here we identify the most problematic taxa and show that removing sequences from just a few fast-growing taxa is sufficient to correct microbiome profiles. PMID:28289733
Phase dependent fracture and damage evolution of polytetrafluoroethylene (PTFE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. N.; Rae, P.; Orler, E. B.
2004-01-01
Compared with other polymers, polytetrafluoroethylene (PTFE) presents several advantages for load-bearing structural components including higher strength at elevated temperatures and higher toughness at lowered temperatures. Failure sensitive applications of PTFE include surgical implants, aerospace components, and chemical barriers. Polytetrafluoroethylene is semicrystalline in nature with their linear chains forming complicated phases near room temperature and ambient pressure. The presence of three unique phases near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a comprehensive and systematic study of fracture and damage evolution in PTFE to elicit the effects of temperature-inducedmore » phase on fracture mechanisms. The fracture behavior of PTFE is observed to undergo transitions from brittle-fracture below 19 C to ductile-fracture with crazing and some stable crack growth to plastic flow aver 30 C. The bulk failure properties are correlated to failure mechanisms through fractography and analysis of the crystalline structure.« less
Room temperature single-photon detectors for high bit rate quantum key distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.
How mothers keep their babies warm.
Bacon, C J; Bell, S A; Clulow, E E; Beattie, A B
1991-01-01
Details of room temperature, clothing, and bedding used by night and by day and in winter and in summer were recorded for 649 babies aged 8 to 26 weeks. Room temperature at night was significantly related to outside temperature and duration of heating. Total insulation was significantly related to outside temperature and to minimum room temperature, but there was wide variation in insulation at the same room temperature. High levels of insulation for a given room temperature were found particularly at night and in winter, and were associated with the use of thick or doubled duvets and with swaddling. At least half the babies threw off some or all of their bedding at night, and at least a quarter sweated. Younger mothers and mothers in the lower social groups put more bedclothes over their babies, and the latter also kept their rooms warmer. Many mothers kept their babies warmer during infections. PMID:2039255
The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior
NASA Astrophysics Data System (ADS)
Kucukgok, Bahadir; Wu, Xuewang; Wang, Xiaojia; Liu, Zhiqiang; Ferguson, Ian T.; Lu, Na
2016-02-01
The III-Nitrides are promising candidate for high efficiency thermoelectric (TE) materials and devices due to their unique features which includes high thermal stability. A systematic study of the room temperature TE properties of metalorganic chemical vapor deposition grown InxGa1-xN were investigated for x = 0.07 to 0.24. This paper investigated the role of indium composition on the TE properties of InGaN alloys in particular the structural properties for homogenous material that did not show significant phase separation. The highest Seebeck and power factor values of 507 μV K-1 and 21.84 × 10-4 Wm-1K-1 were observed, respectively for In0.07Ga0.93N at room temperature. The highest value of figure-of-merit (ZT) was calculated to be 0.072 for In0.20Ga0.80N alloy at room temperature.
Te Kulve, Marije; Schlangen, Luc J M; Schellen, Lisje; Frijns, Arjan J H; van Marken Lichtenbelt, Wouter D
2017-06-01
Indoor temperature and light exposure are known to affect body temperature, productivity and alertness of building occupants. However, not much is known about the interaction between light and temperature exposure and the relationship between morning light induced alertness and its effect on body temperature. Light intensity and room temperature during morning office hours were investigated under strictly controlled conditions. In a randomized crossover study, two white light conditions (4000K, either bright 1200lx or dim 5lx) under three different room temperatures (26, 29 and 32°C) were investigated. A lower room temperature increased the core body temperature (CBT) and lowered skin temperature and the distal-proximal temperature gradient (DPG). Moreover, a lower room temperature reduced the subjective sleepiness and reaction time on an auditory psychomotor vigilance task (PVT), irrespective of the light condition. Interestingly, the morning bright light exposure did affect thermophysiological parameters, i.e. it decreased plasma cortisol, CBT and proximal skin temperature and increased the DPG, irrespective of the room temperature. During the bright light session, subjective sleepiness decreased irrespective of the room temperature. However, the change in sleepiness due to the light exposure was not related to these physiological changes. Copyright © 2017 Elsevier Inc. All rights reserved.
Strain Measurement System Developed for Biaxially Loaded Cruciform Specimens
NASA Technical Reports Server (NTRS)
Krause, David L.
2000-01-01
A new extensometer system developed at the NASA Glenn Research Center at Lewis Field measures test area strains along two orthogonal axes in flat cruciform specimens. This system incorporates standard axial contact extensometers to provide a cost-effective high-precision instrument. The device was validated for use by extensive testing of a stainless steel specimen, with specimen temperatures ranging from room temperature to 1100 F. In-plane loading conditions included several static biaxial load ratios, plus cyclic loadings of various waveform shapes, frequencies, magnitudes, and durations. The extensometer system measurements were compared with strain gauge data at room temperature and with calculated strain values for elevated-temperature measurements. All testing was performed in house in Glenn's Benchmark Test Facility in-plane biaxial load frame.
NASA Technical Reports Server (NTRS)
Elbuluk, Malik E.
2003-01-01
Electronics designed for low temperature operation will result in more efficient systems than room temperature. This improvement is a result of better electronic, electrical, and thermal properties of materials at low temperatures. In particular, the performance of certain semiconductor devices improves with decreasing temperature down to ultra-low temperature (-273 'C). The Low Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electrical components and systems suitable for applications in deep space missions. Research is being conducted on devices and systems for use down to liquid helium temperatures (-273 'C). Some of the components that are being characterized include semiconductor switching devices, resistors, magnetics, and capacitors. The work performed this summer has focused on the evaluation of silicon-, silicon-germanium- and gallium-Arsenide-based (GaAs) bipolar, MOS and CMOS discrete components and integrated circuits (ICs), from room temperature (23 'C) down to ultra low temperatures (-263 'C).
Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.
1979-12-01
ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers
Optical characterization of semiconductor materials by using FTIR-PAS
NASA Astrophysics Data System (ADS)
Arévalo, Fabiola; Saavedra, Renato; Paulraj, M.
2008-11-01
In this paper we discuss the procedures for photoacoustic measurements for semiconducting materials, including bulk samples like Gallium Antimonide (GaSb). The optical absorption at photon energies near the band gap was measured at room temperature using Fourier Transform Infrared Photoacoustic spectroscopy (FTIR-PAS). Measurements were performed using a NEXUS 670 FTIR-spectrometer (from Thermo Nicolet) with a MTEC model 300 PA cell (MTEC Photoacoustics, Inc.). Optical properties of the studied samples were determined from their room temperature PA spectra and band gaps were calculated directly from absorption spectra
Ihlefeld, Jon F; Foley, Brian M; Scrymgeour, David A; Michael, Joseph R; McKenzie, Bonnie B; Medlin, Douglas L; Wallace, Margeaux; Trolier-McKinstry, Susan; Hopkins, Patrick E
2015-03-11
Dynamic control of thermal transport in solid-state systems is a transformative capability with the promise to propel technologies including phononic logic, thermal management, and energy harvesting. A solid-state solution to rapidly manipulate phonons has escaped the scientific community. We demonstrate active and reversible tuning of thermal conductivity by manipulating the nanoscale ferroelastic domain structure of a Pb(Zr0.3Ti0.7)O3 film with applied electric fields. With subsecond response times, the room-temperature thermal conductivity was modulated by 11%.
Inelastic deformation of metal matrix composites: Plasticity and damage mechanisms, part 2
NASA Technical Reports Server (NTRS)
Majumdar, B. S.; Newaz, G. M.
1992-01-01
The inelastic deformation mechanisms for the SiC (SCS-6)/Ti-15-3 system were studied at 538 C (1000 F) using a combination of mechanical measurements and detailed microstructural examinations. The objectives were to evaluate the contributions of plasticity and damage to the overall MMC response, and to compare the room temperature and elevated temperature deformation behaviors. Four different laminates were studied: (0)8, (90)8,(+ or -45)2s, and (0/90)2s, with the primary emphasis on the unidirectional (0)8, and (90)8 systems. The elevated temperature responses were similar to those at room temperature, involving a two-stage elastic-plastic type of response for the (0)8 system, and a characteristic three-stage deformation response for the (90)8 and (+ or -45)2s systems. The primary effects of elevated temperatures included: (1) reduction in the 'yield' and failure strengths; (2) plasticity through diffused slip rather than concentrated planar slip (which occurred at room temperature); and (3) time-dependent deformation. The inelastic deformation mechanism for the (0)8 MMC was dominated by plasticity at both temperatures. For the (90)8 and (+ or -45)2s MMCs, a combination of damage and plasticity contributed to the deformation at both temperatures.
Effect of Time and Temperature on Transformation Toughened Zirconias.
1987-06-01
room temperature. High temperature mechanical tests performed vere stress rupture and stepped temperature stress rupture. The results of the tests...tetragonal precipitates will spontaneously transform to the monoclinic phae due to the lattice mismatch stress if they become larger than about 0.2 on, with...specimens, including fast fracture and fracture toughness testing. High temper- ture testing consisting of stress rupture and stepped temperature stress
Wax, Joseph R; Pinette, Michael G; Carpenter, Molly; Chard, Renée; Blackstone, Jacquelyn; Cartin, Angelina
2005-10-01
To determine whether pain associated with second trimester genetic amniocentesis is decreased by using subfreezing rather than room temperature needles. Subjects were randomized to a -14 degrees C or room temperature (20-22 degrees C) 22-gauge spinal needle. Patients, blinded to allocation, recorded anticipated and actual pain before and after the procedure, respectively, using a 0-10 visual analog scale with 0 = no pain and 10 = excruciating pain. Thirty-three subjects were randomized to room temperature and 29 subjects to subfreezing needles. Anticipated pain was similar in room temperature, 5.1 +/- 1.7, and subfreezing groups, 4.9 +/- 2.0, respectively (p = 0.6). Actual pain was also similar in the room temperature, 3.6 +/- 2.0, and subfreezing groups, 2.8 +/- 2.0, respectively (p = 0.14). Similar numbers of subjects in the room temperature and subfreezing groups reported less actual pain (20 vs. 18), greater actual pain (4 vs. 4) or no difference in pain (9 vs. 5) than anticipated (p = 0.6). A subfreezing 22-gauge spinal needle does not decrease perceived pain associated with second trimester genetic amniocentesis.
Room Temperature and Elevated Temperature Composite Sandwich Joint Testing
NASA Technical Reports Server (NTRS)
Walker, Sandra P.
1998-01-01
Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1988-01-01
Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)
Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates
NASA Astrophysics Data System (ADS)
Krishnamurthy, Aarti Krishna
Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.
Microcontroller based automatic temperature control for oyster mushroom plants
NASA Astrophysics Data System (ADS)
Sihombing, P.; Astuti, T. P.; Herriyance; Sitompul, D.
2018-03-01
In the cultivation of Oyster Mushrooms need special treatment because oyster mushrooms are susceptible to disease. Mushroom growth will be inhibited if the temperature and humidity are not well controlled because temperature and inertia can affect mold growth. Oyster mushroom growth usually will be optimal at temperatures around 22-28°C and humidity around 70-90%. This problem is often encountered in the cultivation of oyster mushrooms. Therefore it is very important to control the temperature and humidity of the room of oyster mushroom cultivation. In this paper, we developed an automatic temperature monitoring tool in the cultivation of oyster mushroom-based Arduino Uno microcontroller. We have designed a tool that will control the temperature and humidity automatically by Android Smartphone. If the temperature increased more than 28°C in the room of mushroom plants, then this tool will turn on the pump automatically to run water in order to lower the room temperature. And if the room temperature of mushroom plants below of 22°C, then the light will be turned on in order to heat the room. Thus the temperature in the room oyster mushrooms will remain stable so that the growth of oyster mushrooms can grow with good quality.
Influence of perfusate temperature on nasal potential difference.
Bronsveld, Inez; Vermeulen, François; Sands, Dorotha; Leal, Teresinha; Leonard, Anissa; Melotti, Paola; Yaakov, Yasmin; de Nooijer, Roel; De Boeck, Kris; Sermet, Isabelle; Wilschanski, Michael; Middleton, Peter G
2013-08-01
Nasal potential difference (NPD) quantifies abnormal ion transport in cystic fibrosis. It has gained acceptance as an outcome measure for the investigation of new therapies. To quantify the effect of solution temperature on NPD, we first examined the effect of switching from room temperature (20-25°C) to warmed (32-37°C) solutions and vice versa during each perfusion step. Secondly, standard protocols were repeated at both temperatures in the same subjects. Changing solution temperature did not alter NPD during perfusion with Ringer's solution (<1 mV) (p>0.1). During perfusion with zero chloride solution, changing from room temperature to warmed solutions tended to decrease absolute NPD (i.e. it became less negative) by 0.9 mV (p>0.1); changing from warmed to room temperature increased NPD by 2.1 mV (p<0.05). During isoprenaline perfusion, changing from room temperature to warmed solutions increased NPD by 1.5 mV (p<0.01) and from warmed to room temperature decreased NPD by 1.4 mV (p<0.05). For full protocols at room temperature or warmed in the same subjects, mean values were similar (n = 24). During warmed perfusion, group results for total chloride response had a larger standard deviation. As this increased variability will probably decrease the power of trials, this study suggests that solutions at room temperature should be recommended for the measurement of NPD.
Room temperature organic magnets derived from sp3 functionalized graphene.
Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek
2017-02-20
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp 3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp 2 -conjugated diradical motifs embedded in an sp 3 matrix and superexchange interactions via -OH functionalization.
Room temperature organic magnets derived from sp3 functionalized graphene
Tuček, Jiří; Holá, Kateřina; Bourlinos, Athanasios B.; Błoński, Piotr; Bakandritsos, Aristides; Ugolotti, Juri; Dubecký, Matúš; Karlický, František; Ranc, Václav; Čépe, Klára; Otyepka, Michal; Zbořil, Radek
2017-01-01
Materials based on metallic elements that have d orbitals and exhibit room temperature magnetism have been known for centuries and applied in a huge range of technologies. Development of room temperature carbon magnets containing exclusively sp orbitals is viewed as great challenge in chemistry, physics, spintronics and materials science. Here we describe a series of room temperature organic magnets prepared by a simple and controllable route based on the substitution of fluorine atoms in fluorographene with hydroxyl groups. Depending on the chemical composition (an F/OH ratio) and sp3 coverage, these new graphene derivatives show room temperature antiferromagnetic ordering, which has never been observed for any sp-based materials. Such 2D magnets undergo a transition to a ferromagnetic state at low temperatures, showing an extraordinarily high magnetic moment. The developed theoretical model addresses the origin of the room temperature magnetism in terms of sp2-conjugated diradical motifs embedded in an sp3 matrix and superexchange interactions via –OH functionalization. PMID:28216636
Polymer-stabilized liquid crystal blue phases.
Kikuchi, Hirotsugu; Yokota, Masayuki; Hisakado, Yoshiaki; Yang, Huai; Kajiyama, Tisato
2002-09-01
Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.
NASA Technical Reports Server (NTRS)
Shannon, J. L., Jr.; Rzasnicki, W.
1977-01-01
Data are presented which were developed in support of a structural assessment of NASA-LEWIS' 10-foot by 10-foot supersonic wind tunnel, critical portions of which are fabricated from rolled and welded 1 1/4 inch thick A-285 steel plate. Test material was flame cut from the tunnel wall and included longitudinal and circumferential weld joints. Parent metal, welds, and weld heat affected zone were tested. Tensile strength and fracture toughness were determined at -20 F, the estimated lowest tunnel operating temperature. Crack growth rates were measured at room temperature, where growth rates in service are expected to be highest.
Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus
Zaromb, S.
1994-06-21
Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus
Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu
2017-03-21
Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.
NASA Astrophysics Data System (ADS)
Courts, S. Scott; Krause, John
2012-06-01
Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.
The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogatemore » measures for human occupancy and activity in the patient rooms using both indoor air CO₂ concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10⁶ data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections.« less
Transient natural ventilation of a room with a distributed heat source
NASA Astrophysics Data System (ADS)
Fitzgerald, Shaun D.; Woods, Andrew W.
We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.
Shelf-life of bioprosthetic heart valves: a structural and mechanical study.
Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M
1997-04-01
This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.
Thermally actuated wedge block
Queen, Jr., Charles C.
1980-01-01
This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.
O'Brien, H. Jr.; Hupf, H.B.; Wanek, P.M.
The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free /sup 125/I/sup -/ is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.
Instantaneous radioiodination of rose bengal at room temperature and a cold kit therefor
O'Brien, Jr., Harold A.; Hupf, Homer B.; Wanek, Philip M.
1981-01-01
The disclosure relates to the radioiodination of rose bengal at room temperature and a cold-kit therefor. A purified rose bengal tablet is stirred into acidified ethanol at or near room temperature, until a suspension forms. Reductant-free .sup.125 I.sup.- is added and the resulting mixture stands until the exchange label reaction occurs at room temperature. A solution of sterile isotonic phosphate buffer and sodium hydroxide is added and the final resulting mixture is sterilized by filtration.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Nandi, Prithwish K.; Kawazoe, Yoshiyuki; Ramaniah, Lavanya M.
2018-05-01
Through density functional theory simulations with the generalized gradient approximation, confirmed by the more sophisticated hybrid functional, we predict the triggering of d0 ferromagnetism in C doped Y2O3 at a hole density of 3.36 ×1021c m-3 (one order less than the critical hole density of ZnO) having magnetic moment of 2.0 μB per defect with ferromagnetic coupling large enough to promote room-temperature ferromagnetism. The persistence of ferromagnetism at room temperature is established through computation of the Curie temperature by the mean field approximation and ab initio molecular dynamics simulations. The induced magnetic moment is mainly contributed by the 2 p orbital of the impurity C and the 2 p orbital of O and we quantitatively and extensively demonstrate through the analysis of density of states and ferromagnetic coupling that the Stoner criterion is satisfied to activate room-temperature ferromagnetism. As the system is stable at room temperature, C doped Y2O3 has feasible defect formation energy and ferromagnetism survives for the choice of hybrid exchange functional, and at room temperature we strongly believe that C doped Y2O3 can be tailored as a room-temperature diluted magnetic semiconductor for spintronic applications.
NASA Technical Reports Server (NTRS)
Brandon, Erik J.; West, William C.; Smart, Marshall C.; Korenblit, Yair; Kajdos, Adam; Kvit, Alexander; Jagiello, Jacek; Yushin, Gleb
2012-01-01
Electrochemical double-layer capacitors are finding increased use in a wide range of energy storage applications, particularly where high pulse power capabilities are required. Double-layer capacitors store charge at a liquid/solid interface, making them ideal for low temperature power applications, due to the facile kinetic processes associated with the rearrangement of the electrochemical double-layer at these temperatures. Potential low temperature applications include hybrid and electric vehicles, operations in polar regions, high altitude aircraft and aerospace avionics, and distributed environmental and structural health monitoring. State-of-the-art capacitors can typically operate to -40 C, with a subsequent degradation in power performance below room temperature. However, recent efforts focused on advanced electrolyte and electrode systems can enable operation to temperatures as low as -70 C, with capacities similar to room temperature values accompanied by reasonably low equivalent series resistances. This presentation will provide an overview of recent development efforts to extend and improve the wide temperature performance of these devices.
NASA Astrophysics Data System (ADS)
Datta, Amlan; Moed, Demi; Becla, Piotr; Overholt, Matthew; Motakef, Shariar
2016-10-01
Thallium bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. However, several critical issues need to be addressed before deployment of this material for long-term field applications can be realized. In this paper, progress made towards solving some of these challenges is discussed. The most significant factors for achieving long-term performance stability for TlBr devices include residual stress as generated during crystal growth and fabrication processes, surface conditions, and the choice of contact metal. Modifications to the commonly used traveling molten zone growth technique for TlBr crystals can significantly minimize the stresses generated by large temperature gradients near the melt-solid interface of the growing crystal. Plasma processing techniques were introduced for the first time to modify the Br-etched TlBr surfaces, which resulted in improvements to the surface conditions, and consequently the spectroscopic response of the detectors. Palladium electrodes resulted a 20-fold improvement in the room-temperature device lifetime when compared to its Br-etched Pt counterpart.
Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature.
Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J; van Helvoort, Antonius T J; Fimland, Bjørn-Ove; Weman, Helge
2018-04-11
Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibilities for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode and room-temperature lasing from 890 to 990 nm, utilizing a novel design of single nanowires with GaAsSb-based multiple axial superlattices as a gain medium under optical pumping. The control of lasing wavelength via compositional tuning with excellent room-temperature lasing performance is shown to result from the unique nanowire structure with efficient gain material, which delivers a low lasing threshold of ∼6 kW/cm 2 (75 μJ/cm 2 per pulse), a lasing quality factor as high as 1250, and a high characteristic temperature of ∼129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way toward future nanoscale integrated optoelectronic systems with superior performance.
Factors affecting the energy consumption of two refrigerator-freezers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, J.Y.; Kelley, G.E.
Two refrigerator-freezers, one with a top-mounted freezer and one with side-by-side doors, were tested in the laboratory to determine the sensitivity of their energy consumption to various operational factors. Room temperature, room humidity, door openings, and the setting of the anti-sweat heater switch were the factors examined. The results indicated that the room temperature and door openings had a significantly greater effect on energy consumption than the other two factors. More detailed tests were then performed under different room temperature and door-opening combinations. The relationship of door openings and the equivalent test room temperature was established. Finally, the effect onmore » energy of different temperature settings was studied. Test results are presented and discussed.« less
Elshoff, Jan-Peer; Timmermann, Lars; Schmid, Miriam; Arth, Christoph; Komenda, Michael; Brunnert, Marcus; Bauer, Lars
2013-12-01
Rotigotine transdermal patch is approved for the treatment of early and advanced idiopathic Parkinson's disease (PD) and moderate-to-severe idiopathic restless legs syndrome (RLS). A cold chain manufacturing and distribution process was temporarily implemented in 2008, as this reduced the crystal formation reported within patches stored at room temperature. In order to overcome the crystallization issue and meet EMA and FDA requirements, a new room temperature stable formulation was developed. The three studies reported here were conducted to determine whether the new room temperature stable patch demonstrated similar bioavailability and adhesiveness to the original and intermediate patches. Data are reported from three cross-over studies that compared the original, cold chain and room temperature stable patch. Two open-label bioequivalence studies investigated the 2 mg/24 h dosage in healthy individuals (SP951, n = 52 [Clinicaltrials.gov: NCT00881894]; SP0987, n = 50 [NCT01059903]) and a double-blind patch adhesiveness study investigated the 8 mg/24 h dosage in patients with PD (SP1066, n = 56 [NCT01338896]). Plasma concentration-time curves and geometric means for pharmacokinetic parameters were similar for the cold chain vs. original patch in SP951 (AUC(0-tz): 2.68 vs. 2.71 ng/mL*h; point estimate: 0.99 [90% confidence interval (CI): 0.91, 1.07]) (Cmax: 0.131 vs. 0.136 ng/mL; 0.96 [0.89, 1.04]) and for the room temperature stable vs. cold chain patch in SP0987 (AUC(0-tz): 4.51 vs. 4.87 ng/mL*h; 0.90 [0.84, 0.97]) (Cmax: 0.23 vs. 0.23 ng/mL; 0.95 [0.88, 1.02]). In both studies, 90% CIs for ratios of AUC(0-tz) and Cmax were within the bioequivalence acceptance range (0.8-1.25). In SP1066, overall median adhesiveness scores were similar for cold chain (0.5 [range: 0-4]) and room temperature stable (0 [0-4]) formulations. These results demonstrated bioequivalence and indicated similar adhesiveness of the approved room temperature stable rotigotine patch with the original and cold chain patches. Potential limitations include the enrolment of healthy volunteers in the bioequivalence studies, as these individuals were likely to be younger than the general PD or RLS population.
Advanced Control Surface Seal Development for Future Space Vehicles
NASA Technical Reports Server (NTRS)
DeMange, J. J.; Dunlap, P. H., Jr.; Steinetz, B. M.
2004-01-01
NASA s Glenn Research Center (GRC) has been developing advanced high temperature structural seals since the late 1980's and is currently developing seals for future space vehicles as part of the Next Generation Launch Technology (NGLT) program. This includes control surface seals that seal the edges and hinge lines of movable flaps and elevons on future reentry vehicles. In these applications, the seals must operate at temperatures above 2000 F in an oxidizing environment, limit hot gas leakage to protect underlying structures, endure high temperature scrubbing against rough surfaces, and remain flexible and resilient enough to stay in contact with sealing surfaces for multiple heating and loading cycles. For this study, three seal designs were compared against the baseline spring tube seal through a series of compression tests at room temperature and 2000 F and flow tests at room temperature. In addition, canted coil springs were tested as preloaders behind the seals at room temperature to assess their potential for improving resiliency. Addition of these preloader elements resulted in significant increases in resiliency compared to the seals by themselves and surpassed the performance of the baseline seal at room temperature. Flow tests demonstrated that the seal candidates with engineered cores had lower leakage rates than the baseline spring tube design. However, when the seals were placed on the preloader elements, the flow rates were higher as the seals were not compressed as much and therefore were not able to fill the groove as well. High temperature tests were also conducted to asses the compatibility of seal fabrics against ceramic matrix composite (CMC) panels anticipated for use in next generation launch vehicles. These evaluations demonstrated potential bonding issues between the Nextel fabrics and CMC candidates.
Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof
Sikka, Vinod K.
1992-01-01
A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.
Fatigue and fracture mechanical behavior for Chinese A508-3 steel at room temperature
NASA Astrophysics Data System (ADS)
Shi, K. K.; Xie, H.; Zheng, B.; Fu, X. L.
2018-06-01
Material, A508-3 steel, has been used in nuclear reactor vessels. In the present study, fatigue and fracture mechanical behavior of Chinese A5083 steel at room temperature are studied by mechanical material testing machine (MTS). Test data of material’s mechanical behavior including uniaxial tension, low cycle fatigue (LCF), threshold value of stress intensity factor (SIF) range, fatigue crack growth (FCG), and fracture toughness is generated and given for further study. It is worth noting that the model in predicting FCG of material from LCF parameters is verified and discussed.
Production of methyl-vinyl ketone from levulinic acid
Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI
2011-06-14
A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.
Johnson, Lacey; Tan, Shereen; Jenkins, Emily; Wood, Ben; Marks, Denese C
2018-04-01
Alternatives to room temperature storage of platelets (PLTs) are of interest to support blood banking logistics. The aim of this study was to compare the presence of biologic response modifiers (BRMs) in PLT concentrates stored under conventional room temperature conditions with refrigerated or cryopreserved PLTs. A three-arm pool-and-split study was carried out using buffy coat-derived PLTs stored in 30% plasma/70% SSP+. The three matched treatment arms were as follows: room temperature (20-24°C), cold (2-6°C), and cryopreserved (-80°C with DMSO). Liquid-stored PLTs were tested over a 21-day period, while cryopreserved PLTs were tested immediately after thawing and reconstitution in 30% plasma/70% SSP+ and after storage at room temperature. Coagulation factor activity was comparable between room temperature and cold PLTs, with the exception of protein S, while cryopreserved PLTs had reduced Factor (F)V and FVIII activity. Cold-stored PLTs retained α-granule proteins better than room temperature or cryopreserved PLTs. Cryopreservation resulted in 10-fold higher microparticle generation than cold-stored PLTs, but both groups contained significantly more microparticles than those stored at room temperature. The supernatant from both cold and cryopreserved PLTs initiated faster clot formation and thrombin generation than room temperature PLTs. Cold storage and cryopreservation alter the composition of the soluble fraction of stored PLTs. These differences in coagulation proteins, cytokines, and microparticles likely influence both the hemostatic capacity of the components and the auxiliary functions. © 2017 AABB.
Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1
Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; Shukla, Sudhanshu; Ager, Joel W.; Lo, Cynthia S.; Jalan, Bharat
2017-01-01
Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of significant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 104 S cm−1. Significantly, these films show room temperature mobilities up to 120 cm2 V−1 s−1 even at carrier concentrations above 3 × 1020 cm−3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III–N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality. PMID:28474675
Proposal for a room-temperature diamond maser
Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao
2015-01-01
The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758
Wide bandgap BaSnO 3 films with room temperature conductivity exceeding 10 4 S cm -1
Prakash, Abhinav; Xu, Peng; Faghaninia, Alireza; ...
2017-05-05
Wide bandgap perovskite oxides with high room temperature conductivities and structural compatibility with a diverse family of organic/inorganic perovskite materials are of sign ificant interest as transparent conductors and as active components in power electronics. Such materials must also possess high room temperature mobility to minimize power consumption and to enable high-frequency applications. Here, we report n-type BaSnO 3 films grown using hybrid molecular beam epitaxy with room temperature conductivity exceeding 10 4 S cm -1 . Significantly, these films show room temperature mobilities up to 120 cm 2 V -1 s -1 even at carrier concentrations abovemore » 3 × 10 20 cm -3 together with a wide bandgap (3 eV). We examine the mobility-limiting scattering mechanisms by calculating temperature-dependent mobility, and Seebeck coefficient using the Boltzmann transport framework and ab-initio calculations. These results place perovskite oxide semiconductors for the first time on par with the highly successful III-N system, thereby bringing all-transparent, high-power oxide electronics operating at room temperature a step closer to reality.« less
NASA Astrophysics Data System (ADS)
Jafari, Mohammad Javad; Gharari, Noradin; Azari, Mansour Rezazade; Ashrafi, Khosro
2018-04-01
Exhalation flow and room temperature can have a considerable effect on the microenvironment in the vicinity of human body. In this study, impacts of exhalation flow and room temperature on the microenvironment around a human body were investigated using a numerical simulation. For this purpose, a computational fluid dynamic program was applied to study thermal plume around a sitting human body at different room temperatures of a calm indoor room by considering the exhalation flow. The simulation was supported by some experimental measurements. Six different room temperatures (18 to 28 °C) with two nose exhalation modes (exhalation and non-exhalation) were investigated. Overhead and breathing zone velocities and temperatures were simulated in different scenarios. This study finds out that the exhalation through the nose has a significant impact on both quantitative and qualitative features of the human microenvironment in different room temperatures. At a given temperature, the exhalation through the nose can change the location and size of maximum velocity at the top of the head. In the breathing zone, the effect of exhalation through the nose on velocity and temperature distribution was pronounced for the point close to mouth. Also, the exhalation through the nose strongly influences the thermal boundary layer on the breathing zone while it only minimally influences the convective boundary layer on the breathing zone. Overall results demonstrate that it is important to take the exhalation flow into consideration in all areas, especially at a quiescent flow condition with low temperature.
Dufresne, Jaimie; Florentinus-Mefailoski, Angelique; Ajambo, Juliet; Ferwa, Ammara; Bowden, Peter; Marshall, John
2017-01-01
The tryptic peptides from ice cold versus room temperature plasma were identified by C18 liquid chromatography and micro electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Samples collected on ice showed low levels of endogenous tryptic peptides compared to the same samples incubated at room temperature. Plasma on ice contained peptides from albumin, complement, and apolipoproteins and others that were observed by the X!TANDEM and SEQUEST algorithms. In contrast to ice cold samples, after incubation at room temperature, greater numbers of tryptic peptides from well characterized plasma proteins, and from cellular proteins were observed. A total of 583,927 precursor ions and MS/MS spectra were correlated to 94,669 best fit peptides that reduced to 22,287 correlations to the best accession within a gene symbol and to 7174 correlations to at least 510 gene symbols with ≥ 5 independent MS/MS correlations (peptide counts) that showed FDR q-values ranging from E-9 (i.e. FDR = 0.000000001) to E-227. A set of 528 gene symbols identified by X!TANDEM and SEQUEST including C4B showed ≥ fivefold variation between ice cold versus room temperature incubation. STRING analysis of the protein gene symbols observed from endogenous peptides in normal plasma revealed an extensive protein-interaction network of cellular factors associated with cell signalling and regulation, the formation of membrane bound organelles, cellular exosomes and exocytosis network proteins. Taken together the results indicated that a pool of cellular proteins, or protein complexes, in plasma are apparently not stable and degrade soon after incubation at room temperature.
ZnO nanomaterials based surface acoustic wave ethanol gas sensor.
Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H
2012-08-01
ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.
Full wafer size investigation of N+ and P+ co-implanted layers in 4H-SiC
NASA Astrophysics Data System (ADS)
Blanqué, S.; Lyonnet, J.; Pérez, R.; Terziyska, P.; Contreras, S.; Godignon, P.; Mestres, N.; Pascual, J.; Camassel, J.
2005-03-01
We report a full wafer size investigation of the homogeneity of electrical properties in the case of co-implanted nitrogen and phosphorus ions in 4H-SiC semi-insulating wafers. To match standard industrial requirements, implantation was done at room temperature. To achieve a detailed electrical knowledge, we worked on a 35 mm wafer on which 77 different reticules have been processed. Every reticule includes one Hall cross, one Van der Pauw test structure and different TLM patterns. Hall measurements have been made on all 77 different reticules, using an Accent HL5500 Hall System® from BioRad fitted with an home-made support to collect data from room temperature down to about 150 K. At room temperature, we find that the sheet carrier concentration is only 1/4 of the total implanted dose while the average mobility is 80.6 cm2/Vs. The standard deviation is, typically, 1.5 cm2/Vs.
Jin, Yinghui; Tian, Jinhui; Sun, Mei; Yang, Kehu
2011-02-01
The purpose of this systematic review was to establish whether warmed irrigation fluid temperature could decrease the drop of body temperature and incidence of shivering and hypothermia. Irrigation fluid, which is used in large quantities during endoscopic surgeries at room temperature, is considered to be associated with hypothermia and shivering. It remains controversial whether using warmed irrigation fluid to replace room-temperature irrigation fluid will decrease the drop of core body temperature and the occurrence of hypothermia. A comprehensive search (computerised database searches, footnote chasing, citation chasing) was undertaken to identify all the randomised controlled trials that explored temperature of irrigation fluid in endoscopic surgery. An approach involving meta-analysis was used. We searched PubMed, EMBASE, Cochrane Library, SCI, China academic journals full-text databases, Chinese Biomedical Literature Database, Chinese scientific journals databases and Chinese Medical Association Journals for trials that meet the inclusion criteria. Study quality was assessed using standards recommended by Cochrane Library Handbook 5.0.1. Disagreement was resolved by consensus. Thirteen randomised controlled trials including 686 patients were identified. The results showed that room-temperature irrigation fluid caused a greater drop of core body temperature in patients, compared to warmed irrigation fluid (p < 0.00001; I(2) = 85%). The occurrence of shivering [odds ratio (OR) 5.13, 95% CI: 2.95-10.19, p < 0.00001; I(2) = 0%] and hypothermia (OR 22.01, 95% CI: 2.03-197.08, p = 0.01; I(2) = 64%) in the groups having warmed irrigation fluid were lower than the group of studies having room-temperature fluid. In endoscopic surgeries, irrigation fluid is recommended to be warmed to decrease the drop of core body temperature and the risk of perioperative shivering and hypothermia. Warming irrigating fluid should be considered standard practice in all endoscopic surgeries. © 2011 Blackwell Publishing Ltd.
Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun
2015-01-01
A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546
Fabrication method for a room temperature hydrogen sensor
NASA Technical Reports Server (NTRS)
Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)
2011-01-01
A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.
NASA Technical Reports Server (NTRS)
1998-01-01
Under a NASA SBIR (Small Business Innovative Research) contract with Johnson Space Center, Aspen Systems developed aerogel-based superinsulation. This super-insulation is an innovative, flexible cryogenic insulation with extremely low thermal conductivity. Potential commercial uses include cryogenic applications in the transportation, storage and transfer of cryogens; near room-temperature applications such as refrigerator insulation; and elevated temperature applications such as insulations for high- temperature industrial processes and furnaces.
Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jianhua; Yi Danqing; Su Xuping
2008-07-15
The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strengthmore » and hardness to alloy 2618 at room- and elevated-temperature.« less
NASA Astrophysics Data System (ADS)
Hussain, Maruff; Nageswara rao, P.; Singh, Dharmendra; Jayaganthan, R.
2018-04-01
The precipitation hardenable aluminium alloy (Al-Mg-Si) plates were solutionized and subjected to rolling at room temperature and liquid nitrogen temperature (RTR, CR) up to a true strain of ∼2.7. The rolled sheets were uniformly aged at room temperature and above room temperature (125 °C) to induce precipitation. The rolled and aged samples were analysed using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), hardness and tensile tests. The strength and ductility were simultaneously improved after controlled ageing of the cryorolled (CR) and room temperature rolled (RTR) samples. However, the increment in strength is more in RTR material than CR material with same ductility. Transmission electron microscopy analysis revealed the formation of ultrafine grains (UFG) filled with dislocations and nanosized precipitates in the CR and RTR conditions after ageing treatment. The behaviour of CR and RTR alloy is same under natural ageing conditions.
Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization
2012-09-01
Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization by Justin R. Bickford, Neal K. Bambha, and Wayne H. Chang...Adelphi, MD 20783-1197 ARL-TR-6169 September 2012 Near-room-temperature Mid-infrared Photoconductor Signal and Noise Characterization...temperature Mid-infrared Photoconductor Signal and Noise Characterization 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu
2014-03-21
A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.
Sealed head access area enclosure
Golden, Martin P.; Govi, Aldo R.
1978-01-01
A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.
Magnetic Properties of Fe-49Co-2V Alloy and Pure Fe at Room and Elevated Temperatures
NASA Technical Reports Server (NTRS)
De Groh, Henry C., III; Geng, Steven M.; Niedra, Janis M.; Hofer, Richard R.
2018-01-01
The National Aeronautics and Space Administration (NASA) has a need for soft magnetic materials for fission power and ion propulsion systems. In this work the magnetic properties of the soft magnetic materials Hiperco 50 (Fe-49wt%Cr-2V) and CMI-C (commercially pure magnetic iron) were examined at various temperatures up to 600 C. Toroidal Hiperco 50 samples were made from stacks of 0.35 mm thick sheet, toroidal CMI-C specimens were machined out of solid bar stock, and both were heat treated prior to testing. The magnetic properties of a Hiperco 50 sample were measured at various temperatures up to 600 C and then again after returning to room temperature; the magnetic properties of CMI-C were tested at temperatures up to 400 C. For Hiperco 50 coercivity decreased as temperature increased, and remained low upon returning to room temperature; maximum permeability improved (increased) with increasing temperature and was dramatically improved upon returning to room temperature; remanence was not significantly affected by temperature; flux density at H = 0.1 kA/m increased slightly with increasing temperature, and was about 20% higher upon returning to room temperature; flux density at H = 0.5 kA/m was insensitive to temperature. It appears that the properties of Hiperco 50 improved with increasing temperature due to grain growth. There was no significant magnetic property difference between annealed and aged CMI-C iron material; permeability tended to decrease with increasing temperature; the approximate decline in the permeability at 400 C compared to room temperature was 30%; saturation flux density, B(sub S), was approximately equal for all temperatures below 400 C; B(sub S) was lower at 400 C.
Zhang, Lei; Bao, Ying-chun
2014-11-01
This study was aimed to explore the physiological changes and the effect of heat acclimation training via a randomized control trial study. Forty healthy male volunteers were chosen and divided into experimental group and control group randomly. Those in experimental group received heat acclimation training including but not limited to meditation, unarmed run, yoga, and stepping in hot lab environment. And then, subjective feeling, rectal temperature, average skin temperature, and sweat electrolytes concentration were detected in order to describe their physiological changes. Before and after the training, both groups received some tests and their 3 000 m run-race time, nervous reaction time and subjective perception scores were recorded to evaluate the effect of acclimation training. (1) There was no difference in 3 000 m between the 2 groups in the same environment. Subjects' 3 000 m race time in experimental group was obviously shortened than that in control group in room temperature environment (t = 2.326, P < 0.05). And subjects' 3 000 m race time in experimental group was obviously shortened than that in control group in hot-humid environment (t = 4.518, P < 0.01). (2) Subjects' reaction time (RT) in experimental group was shortened than that in control group in room temperature environment (Z = 11.258, P < 0.05). And Subjects' RT in experimental group was sharply shortened than that in control group in hot-humid environment (Z = 6.519, P < 0.01). (3) No difference between the experimental and control groups was observed in subjective perception score (SPS) in room temperature environment. But subjects' SPS in experimental group was obviously lowered than that in control group and in hot-humid environment (t = 17.958, P < 0.01).(4) Anal temperature (AT) was lowered during training, while the change of mean skin temperature (MST) was not significant. Sweat sodium concentration (SSC) was lowered during training. SPS continued to decrease and entered plateau on the 13th day after training.(5) After acclimation training, the working capacity of the experimental group in hot-humid environment was over 85% of that in room temperature environment. While subjects' working capacity in control group in hot-humid environment was about 80% of that in room temperature environment. Hot-humid environment acclimation training improved the working capacity. After training, subjects' working capacity in hot-humid environment remained over 85% of that in room temperature environment, which was higher than that of those subjects who did not take part in training.
NASA Technical Reports Server (NTRS)
Leckie, Martin; Ahmad, Zakir
2010-01-01
The James Webb Space Telescope (JWST) will carry four scientific instruments, one of which is the Tunable Filter Imager (TFI), which is an instrument within the Fine Guidance Sensor. The Dual Wheel (DW) mechanism is being designed, built and tested by COM DEV Ltd. under contract from the Canadian Space Agency. The DW mechanism includes a pupil wheel (PW) holding seven coronagraphic masks and two calibration elements and a filter wheel (FW) holding nine blocking filters. The DW mechanism must operate at both room temperature and at 35K. Successful operation at 35K comprises positioning each optical element with the required repeatability, for several thousand occasions over the five year mission. The paper discusses the results of testing geared motors and bearings at the cryogenic temperature. In particular bearing retainer design and PGM-HT material, the effects of temperature gradients across bearings and the problems associated with cooling mechanisms down to cryogenic temperatures. The results of additional bearing tests are described that were employed to investigate an abnormally high initial torque experienced at cryogenic temperatures. The findings of these tests, was that the bearing retainer and the ball/race system could be adversely affected by the large temperature change from room temperature to cryogenic temperature and also the temperature gradient across the bearing. The DW mechanism is now performing successfully at both room temperature and at cryogenic temperature. The life testing of the mechanism is expected to be completed in the first quarter of 2010.
NASA Astrophysics Data System (ADS)
Grieman, F. J.; Hui, A. O.; Okumura, M.; Sander, S. P.
2017-12-01
In order to model the upper troposphere/lower stratosphere in regions containing acetone properly, the kinetics of the acetonylperoxy/hydroperoxy self-reactions and cross reaction have been studied over a wide temperature range using Infrared Kinetic Spectroscopy. We report here the determination of different rate constants for the acetonylperoxy chemistry that we obtained at 298 K compared to currently accepted values. A considerable increase in the observed HO2 self-reaction rate constant due to rate enhancement via the chaperone effect from the reaction between HO2 and the (CH3)2CO•HO2 hydrogen-bonded adduct, even at room temperature, was discovered that was previously ignored. Correct determination of the acetonylperoxy and hydroperoxy kinetics must include this dependence of the HO2 self-reaction rate on acetone concentration. Via excimer laser flash photolysis to create the radical reactants, HO2 absorption was monitored in the infrared by diode laser wavelength modulation detection simultaneously with CH3C(O)CH2O2absorption monitored in the ultraviolet at 300 nm as a function of time. Resulting decay curves were fit concurrently first over a short time scale to obtain the rate constants minimizing subsequent product reactions. Modeling/fitting with a complete reaction scheme was then performed to refine the rate constants and test their veracity. Experiments were carried out over a variety of concentrations of acetone and methanol. Although no effect due to methanol concentration was found at room temperature, the rate constant for the hydroperoxy self-reaction was found to increase linearly with acetone concentration which is interpreted as the adduct being formed and resulting in a chaperone mechanism that enhances the self-reaction rate: (CH3)2CO·HO2 + HO2 → H2O2 + O2 + (CH3)2CO Including this effect, the resulting room temperature rate constants for the cross reaction and the acetonylperoxy self-reaction were found to be 2-3 times smaller than previously reported. This complex formation/chaperone mechanism is similar to that found for methanol, but different in that it occurs at room temperature. No precursor concentration dependence was found for the acetonylperoxy radical reactions. The equilibrium constant for the complex formation will also be presented.
Widdifield, Cory M; Nilsson Lill, Sten O; Broo, Anders; Lindkvist, Maria; Pettersen, Anna; Svensk Ankarberg, Anna; Aldred, Peter; Schantz, Staffan; Emsley, Lyndon
2017-06-28
The crystal structure of the Form A polymorph of N-cyclopropyl-3-fluoro-4-methyl-5-[3-[[1-[2-[2-(methylamino)ethoxy]phenyl]cyclopropyl]amino]-2-oxo-pyrazin-1-yl]benzamide (i.e., AZD7624), determined using single-crystal X-ray diffraction (scXRD) at 100 K, contains two molecules in the asymmetric unit (Z' = 2) and has regions of local static disorder. This substance has been in phase IIa drug development trials for the treatment of chronic obstructive pulmonary disease, a disease which affects over 300 million people and contributes to nearly 3 million deaths annually. While attempting to verify the crystal structure using nuclear magnetic resonance crystallography (NMRX), we measured 13 C solid-state NMR (SSNMR) spectra at 295 K that appeared consistent with Z' = 1 rather than Z' = 2. To understand this surprising observation, we used multinuclear SSNMR ( 1 H, 13 C, 15 N), gauge-including projector augmented-wave density functional theory (GIPAW DFT) calculations, crystal structure prediction (CSP), and powder XRD (pXRD) to determine the room temperature crystal structure. Due to the large size of AZD7624 (ca. 500 amu, 54 distinct 13 C environments for Z' = 2), static disorder at 100 K, and (as we show) dynamic disorder at ambient temperatures, NMR spectral assignment was a challenge. We introduce a method to enhance confidence in NMR assignments by comparing experimental 13 C isotropic chemical shifts against site-specific DFT-calculated shift distributions established using CSP-generated crystal structures. The assignment and room temperature NMRX structure determination process also included measurements of 13 C shift tensors and the observation of residual dipolar coupling between 13 C and 14 N. CSP generated ca. 90 reasonable candidate structures (Z' = 1 and Z' = 2), which when coupled with GIPAW DFT results, room temperature pXRD, and the assigned SSNMR data, establish Z' = 2 at room temperature. We find that the polymorphic Form A of AZD7624 is maintained at room temperature, although dynamic disorder is present on the NMR timescale. Of the CSP-generated structures, 2 are found to be fully consistent with the SSNMR and pXRD data; within this pair, they are found to be structurally very similar (RMSD 16 = 0.30 Å). We establish that the CSP structure in best agreement with the NMR data possesses the highest degree of structural similarity with the scXRD-determined structure (RMSD 16 = 0.17 Å), and has the lowest DFT-calculated energy amongst all CSP-generated structures with Z' = 2.
NASA Technical Reports Server (NTRS)
Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.
2008-01-01
The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell
Room temperature chemical synthesis of lead selenide thin films with preferred orientation
NASA Astrophysics Data System (ADS)
Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan
2006-11-01
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.
NASA Astrophysics Data System (ADS)
Ohno, Yutaka; Yoshida, Hideto; Takeda, Seiji; Liang, Jianbo; Shigekawa, Naoteru
2018-02-01
The intrinsic microstructure of Si/GaAs heterointerfaces fabricated by surface-activated bonding at room temperature is examined by plane-view transmission electron microscopy (TEM) and cross-sectional scanning TEM using damage-free TEM specimens prepared only by mechanochemical etching. The bonded heterointerfaces include an As-deficient crystalline GaAs layer with a thickness of less than 1 nm and an amorphous Si layer with a thickness of approximately 3 nm, introduced by the irradiation of an Ar atom beam for surface activation before bonding. It is speculated that the interface resistance mainly originates from the As-deficient defects in the former layer.
Stability of headspace volatiles in a ‘Fallglo’ tangerine juice matrix system at room temperature
USDA-ARS?s Scientific Manuscript database
Gas chromatography systems are usually equipped with autosamplers. Samples held in the autosampler tray can stay up to one day or longer at room temperature, if the tray is not equipped with a cooling mechanism. The objective of this research was to determine if holding samples at room temperature i...
Anode for rechargeable ambient temperature lithium cells
NASA Technical Reports Server (NTRS)
Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)
1994-01-01
An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.
NASA Astrophysics Data System (ADS)
Wang, Y.; Kiefer, B.; Lee, K. K.
2010-12-01
As one of the revolutionary inventions of the 20th century, synthetic diamond has had a large impact on industry and on scientific research. However, the necessities of high pressures, high temperatures and a metal catalyst during the manufacturing of synthetic diamond make it energy consuming thus limits its availability and use. Here, we report on the synthesis of a superhard non-diamond material resulting from the compression of graphite above ~20 GPa at room temperature without the utilization of metal catalysts. The final product includes a nano-sized phase of carbon that is recoverable at ambient conditions. Furthermore, the ring cracks left on the diamond anvils suggest that the hardness of this post-graphite phase is at least comparable to that of diamond. We use high-resolution synchrotron x-ray diffraction and micro-Raman spectroscopy to monitor the structural transformation in graphite under high pressure and room temperature and find the transition to be sluggish. The possible crystal structure of the new, quenchable phase will be discussed and the time-dependent formation of this superhard post-graphite carbon will be addressed and compared to first-principle predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Room-temperature multiferroic and magnetocapacitance effects in M-type hexaferrite BaFe10.2Sc1.8O19
NASA Astrophysics Data System (ADS)
Tang, Rujun; Zhou, Hao; You, Wenlong; Yang, Hao
2016-08-01
The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe10.2Sc1.8O19 have been investigated. The results show that the magnetic moments of insulating BaFe10.2Sc1.8O19 can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominant mechanism. The above results show that the hexaferrite BaFe10.2Sc1.8O19 is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.
Sturtevant, Blake T; Davulis, Peter M; da Cunha, Mauricio Pereira
2009-04-01
This work reports on the determination of langatate elastic and piezoelectric constants and their associated temperature coefficients employing 2 independent methods, the pulse echo overlap (PEO) and a combined resonance technique (CRT) to measure bulk acoustic wave (BAW) phase velocities. Details on the measurement techniques are provided and discussed, including the analysis of the couplant material in the PEO technique used to couple signal to the sample, which showed to be an order of magnitude more relevant than the experimental errors involved in the data extraction. At room temperature, elastic and piezoelectric constants were extracted by the PEO and the CRT methods and showed results consistent to within a few percent for the elastic constants. Both raw acquired data and optimized constants, based on minimization routines applied to all the modes involved in the measurements, are provided and discussed. Comparison between the elastic constants and their temperature behavior with the literature reveals the recent efforts toward the consistent growth and characterization of LGT, in spite of significant variations (between 1 and 30%) among the constants extracted by different groups at room temperature. The density, dielectric permittivity constants, and respective temperature coefficients used in this work have also been independently determined based on samples from the same crystal boule. The temperature behavior of the BAW modes was extracted using the CRT technique, which has the advantage of not relying on temperature dependent acoustic couplants. Finally, the extracted temperature coefficients for the elastic and piezoelectric constants between room temperature and 120 degrees C are reported and discussed in this work.
Low Temperature Operation of a Switching Power Converter
NASA Technical Reports Server (NTRS)
Anglada-Sanchez, Carlos R.; Perez-Feliciano, David; Ray, Biswajit
1997-01-01
The low temperature operation of a 48 W, 50 kHz, 36/12 V pulse width modulated (PWM) buck de-de power converter designed with standard commercially available components and devices is reported. The efficiency of the converter increased from 85.6% at room temperature (300 K) to 92.0% at liquid nitrogen temperature (77 K). The variation of power MOSFET, diode rectifier, and output filter inductor loss with temperature is discussed. Relevant current, voltage. and power waveforms are also included.
NASA Astrophysics Data System (ADS)
Wu, Yunwen; Momma, Toshiyuki; Ahn, Seongki; Yokoshima, Tokihiko; Nara, Hiroki; Osaka, Tetsuya
2017-10-01
This work reports a new chemical pre-lithiation method to fabricate lithium sulfide (Li2S) cathode. This pre-lithiation process is taken place simply by dropping the organolithium reagent lithium naphthalenide (Li+Naph-) on the prepared sulfur cathode. It is the first time realizing the room temperature chemical pre-lithaition reaction attributed by the 3D nanostructured carbon nanotube (CNT) current collector. It is confirmed that the Li2S cathode fabricated at room temperature showing higher capacity and lower hysteresis than the Li2S cathode fabricated at high temperature pre-lithiation. The pre-lithiated Li2S cathode at room temperature shows stable cycling performance with a 600 mAh g-1 capacity after 100 cycles at 0.1 C-rate and high capacity of 500 mAh g-1 at 2 C-rate. This simple on-site pre-lithiation method at room temperature is demonstrated to be applicable for the in-situ pre-lithiation in a Li metal free battery.
Hydrogen-atmosphere induction furnace has increased temperature range
NASA Technical Reports Server (NTRS)
Caves, R. M.; Gresslin, C. H.
1966-01-01
Improved hydrogen-atmosphere induction furnace operates at temperatures up to 5,350 deg F. The furnace heats up from room temperature to 4,750 deg F in 30 seconds and cools down to room temperature in 2 minutes.
Kalema, T; Viot, M
2014-02-01
The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; ...
2015-03-02
The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogatemore » measures for human occupancy and activity in the patient rooms using both indoor air CO₂ concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10⁶ data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections.« less
Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent
2015-01-01
The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogate measures for human occupancy and activity in the patient rooms using both indoor air CO2 concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ∼8×106 data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for hospital environments, where they can impact patient health and the survival and spread of healthcare associated infections. PMID:25729898
Heated Ultrasound Gel and Patient Satisfaction with Bedside Ultrasound Studies: The HUGS Trial
Krainin, Benjamin M.; Thaut, Lane C.; April, Michael D.; Curtis, Ryan A.; Kaelin, Andrea L.; Hardy, Garrett B.; Weymouth, Wells L.; Srichandra, Jonathan; Chin, Eric J.; Summers, Shane M.
2017-01-01
Introduction Our goal was to determine if heated gel for emergency department (ED) bedside ultrasonography improves patient satisfaction compared to room-temperature gel. Methods We randomized a convenience sample of ED patients determined by their treating physician to require a bedside ultrasound (US) study to either heated gel (102.0° F) or room-temperature gel (82.3° F). Investigators performed all US examinations. We informed all subjects that the study entailed investigation into various measures to improve patient satisfaction with ED US examinations but did not inform them of our specific focus on gel temperature. Investigators wore heat-resistant gloves while performing the examinations to blind themselves to the gel temperature. After completion of the US, subjects completed a survey including the primary outcome measure of patient satisfaction as measured on a 100-mm visual analogue scale (VAS). A secondary outcome was patient perceptions of sonographer professionalism measured by an ordinal scale (1–5). Results We enrolled 124 subjects; 120 completed all outcome measures. Of these, 59 underwent randomization to US studies with room-temperature gel and 61 underwent randomization to heated US gel. Patient 100-mm VAS satisfaction scores were 83.9 among patients undergoing studies with room-temperature gel versus 87.6 among subjects undergoing studies with heated gel (effect size 3.7, 95% confidence interval −1.3–8.6). There were similarly no differences between the two arms with regard to patient perceptions of sonographer professionalism. Conclusion The use of heated ultrasound gel appears to have no material impact on the satisfaction of ED patients undergoing bedside ultrasound studies. PMID:29085538
Sancak, Banu; Colakoglu, Sule; Acikgoz, Ziya Cibali; Arikan, Sevtap
2005-08-01
Production of chlamydospores is one of the phenotypic features used to differentiate Candida albicans and Candida dubliniensis. C. albicans produces few chlamydospores on only cornmeal/rice-Tween agar at room temperature, whereas C. dubliniensis produces abundant chlamydospores at this temperature both on cornmeal agar and some other commonly used media. We tried to determine whether the room temperature is the main factor that induces chlamydospore production of C. dubliniensis, regardless of the medium used. For this purpose, 100 C. albicans and 24 C. dubliniensis isolates were tested for chlamydospore production at room temperature and at 37 degrees C on some routinely used media, including eosin-methylene blue agar (EMB), nutrient agar (NA), nutrient broth (NB), and also on an investigational medium, phenol red agar (PR). At 37 degrees C, none of the isolates produced chlamydospores on any of the tested media. At 26 degrees C, all C. dubliniensis isolates produced abundant chlamydospores and pseudohyphae after 24-48 h on all tested media. At this incubation temperature, all C. albicans isolates failed to produce chlamydospores and pseudohyphae on EMB, NA, and NB, whereas 2 of the C. albicans isolates produced a few chlamydospores on PR. We also observed that all C. dubliniensis isolates tested on EMB and PR produced rough colonies with a hyphal fringe around the colonies, whereas none of the C. albicans isolates showed this property. In conclusion, incubation at 26 degrees C may play the key role for production of abundant chlamydospores and pseudohyphae by C. dubliniensis. Comprehensive molecular studies are needed to clarify the genetic basis of this observation. Using EMB and PR may be an inexpensive, a time-saving, and a simple way of presumptive identification of C. dubliniensis based on chlamydospore formation and colony morphology.
Use of CFD modelling for analysing air parameters in auditorium halls
NASA Astrophysics Data System (ADS)
Cichowicz, Robert
2017-11-01
Modelling with the use of numerical methods is currently the most popular method of solving scientific as well as engineering problems. Thanks to the use of computer methods it is possible for example to comprehensively describe the conditions in a given room and to determine thermal comfort, which is a complex issue including subjective sensations of the persons in a given room. The article presents the results of measurements and numerical computing that enabled carrying out the assessment of environment parameters, taking into consideration microclimate, temperature comfort, speeds in the zone of human presence and dustiness in auditory halls. For this purpose measurements of temperature, relative humidity and dustiness were made with the use of a digital microclimate meter and a laser dust particles counter. Thanks to the above by using the application DesignBuilder numerical computing was performed and the obtained results enabled determining PMV comfort indicator in selected rooms.
The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues.
Ji, Xiaoli; Wang, Min; Li, Lingling; Chen, Fang; Zhang, Yanyang; Li, Qian; Zhou, Junmei
2017-10-01
High-quality biosamples are valuable resources for biomedical research. However, some tissues are stored without being sectioned into small aliquots and have to undergo repeated freeze-thaw cycles throughout prolonged experimentation. Little is known regarding the effects of repeated freeze-thaw cycles on the quality of biomolecules in tissues. The aim of this study was to evaluate the impact of repeated freeze-thaw (at room temperature or on ice) cycles on biomolecules and gene expression in four different types of tissues. Each fresh tissue was sectioned into seven aliquots and snap-frozen before undergoing repeated freeze-thaw cycles at room temperature or on ice. Biomolecules were extracted and analyzed. Both relative and absolute quantification were used to detect the changes in gene expression. The results indicated that the impact of repeated freeze-thaw cycles on RNA integrity varied by tissue type. Gene expression, including the housekeeping gene, was affected in RNA-degraded samples according to absolute quantification rather than relative quantification. Furthermore, our results suggest that thawing on ice could protect RNA integrity compared with thawing at room temperature. No obvious degradation of protein or DNA was observed with repeated freeze-thaw cycles either at room temperature or on ice. This research provides ample evidence for the necessity of sectioning fresh tissues into small aliquots before snap-freezing, thus avoiding degradation of RNA and alteration of gene expression resulting from repeated freeze-thaw cycles. For frozen tissue samples that were already in storage and had to be used repeatedly during their lifecycle, thawing on ice or sectioned at ultralow temperature is recommended.
Kan, Hao; Li, Min; Song, Zhilong; Liu, Sisi; Zhang, Baohui; Liu, Jingyao; Li, Ming-Yu; Zhang, Guangzu; Jiang, ShengLin; Liu, Huan
2017-11-15
Low dimensional nanomaterials have emerged as candidates for gas sensors owing to their unique size-dependent properties. In this paper, Bi 2 S 3 nanobelts were synthesized via a facile solvothermal process and spin-coated onto alumina substrates at room temperature. The conductometric devices can even sensitively response to the relatively low concentrations of NO 2 at room temperature, and their sensing performance can be effectively enhanced by the ligand exchange treatment with inorganic salts. The Pb(NO 3 ) 2 -treated device exhibited superior sensing performance of 58.8 under 5ppm NO 2 at room-temperature, with the response and recovery time of 28 and 106s. The competitive adsorption of NO 2 against O 2 on Bi 2 S 3 nanobelts, with the enhancement both in gas adsorption and charge transfer caused by the porous network of the very thin Bi 2 S 3 nanobelts, can be a reasonable explanation for the improved performance at room temperature. Their sensitive room-temperature response behaviors combined with the excellent solution processability, made Bi 2 S 3 nanobelts very attractive for the construction of low-cost gas sensors with lower power consumption. Copyright © 2017 Elsevier Inc. All rights reserved.
Ex vivo instability of glycated albumin: A role for autoxidative glycation.
Jeffs, Joshua W; Ferdosi, Shadi; Yassine, Hussein N; Borges, Chad R
2017-09-01
Ex vivo protein modifications occur within plasma and serum (P/S) samples due to prolonged exposure to the thawed state-which includes temperatures above -30 °C. Herein, the ex vivo glycation of human serum albumin from healthy and diabetic subjects was monitored in P/S samples stored for hours to months at -80 °C, -20 °C, and room temperature, as well as in samples subjected to multiple freeze-thaw cycles, incubated at different surface area-to-volume ratios or under different atmospheric compositions. A simple dilute-and-shoot method utilizing trap-and-elute LC-ESI-MS was employed to determine the relative abundances of the glycated forms of albumin-including forms of albumin bearing more than one glucose molecule. Significant increases in glycated albumin were found to occur within hours at room temperature, and within days at -20 °C. These increases continued over a period of 1-2 weeks at room temperature and over 200 days at -20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin-suggesting a role for oxidative glycation in the ex vivo glycation of albumin. Copyright © 2017 Elsevier Inc. All rights reserved.
Gockel, Christine; Kolb, Peter M.; Werth, Lioba
2014-01-01
Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725
Gockel, Christine; Kolb, Peter M; Werth, Lioba
2014-01-01
Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.
Short-term hot hardness characteristics of rolling-element steels
NASA Technical Reports Server (NTRS)
Chevalier, J. L.; Dietrich, M. W.; Zaretsky, E. V.
1972-01-01
Short-term hot hardness studies were performed with five vacuum-melted steels at temperatures from 294 to 887 K (70 to 1140 F). Based upon a minimum Rockwell C hardness of 58, the temperature limitation on all materials studied was dependent on the initial room temperature hardness and the tempering temperature of each material. For the same room temperature hardness, the short-term hot hardness characteristics were identical and independent of material composition. An equation was developed to predict the short-term hardness at temperature as a function of initial room temperature hardness for AISI 52100, as well as the high-speed tool steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Leigang; Boullay, Philippe; Lu, Ping
2017-02-01
Room-temperature (RT) multiferroics, possessing ferroelectricity and ferromagnetism simultaneously at RT, hold great promise in miniaturized devices including sensors, actuators, transducers, and multi-state memories. In this work, we report a novel 2D layered RT multiferroic system with self-assembled layered supercell structure consisting of two mismatch-layered sub-lattices of [Bi 3O 3+δ] and [MO 2] 1.84 (M=Al/Mn, simply named as BAMO), i.e., alternative layered stacking of two mutually incommensurate sublattices made of a three-layer-thick Bi-O slab and a one-layer-thick Al/Mn-O octahedra slab along the out-of-plane direction. Strong room-temperature multiferroic responses, e.g., ferromagnetic and ferroelectric properties, have been demonstrated and attributed to the highlymore » anisotropic 2D nature of the non-ferromagnetic and ferromagnetic sublattices which are highly mismatched. The work demonstrates an alternative design approach for new 2D layered oxide materials that hold promises as single-phase multiferroics, 2D oxides with tunable bandgaps, and beyond.« less
Electrospray-printed nanostructured graphene oxide gas sensors
NASA Astrophysics Data System (ADS)
Taylor, Anthony P.; Velásquez-García, Luis F.
2015-12-01
We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.
Electrospray-printed nanostructured graphene oxide gas sensors.
Taylor, Anthony P; Velásquez-García, Luis F
2015-12-18
We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.
2011-01-01
Background Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD). Methods The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software Code_Saturne® (http://www.code-saturne.org) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. Results We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows. Conclusions CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments. PMID:21371304
Beauchêne, Christian; Laudinet, Nicolas; Choukri, Firas; Rousset, Jean-Luc; Benhamadouche, Sofiane; Larbre, Juliette; Chaouat, Marc; Benbunan, Marc; Mimoun, Maurice; Lajonchère, Jean-Patrick; Bergeron, Vance; Derouin, Francis
2011-03-03
Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD). The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software Code_Saturne® (http://www.code-saturne.org) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations. We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows. CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.
Evaluation results of the 700 deg C Chinese strain gauges. [for gas turbine engine
NASA Technical Reports Server (NTRS)
Hobart, H. F.
1985-01-01
Gauges fabricated from specially developed Fe-Cr-Al-V-Ti-Y alloy wire in the Republic of China were evaluated for use in static strain measurement of hot gas turbine engines. Gauge factor variation with temperature, apparent strain, and drift were included. Results of gauge factor versus temperature tests show gauge factor decreasing with increasing temperature. The average slope is -3-1/2 percent/100 K, with an uncertainty band of + or - 8 percent. Values of room temperature gauge factor for the Chinese and Kanthal A-1 gauges averaged 2.73 and 2.12, respectively. The room temperature gauge factor of the Chinese gauges was specified to be 2.62. The apparent strain data for both the Chinese alloy and Kanthal A-1 showed large cycle to cycle nonrepeatability. All apparent strain curves had a similar S-shape, first going negative and then rising to positive value with increasing temperatures. The mean curve for the Chinese gauges between room temperature and 100 K had a total apparent strain of 1500 microstrain. The equivalent value for Kanthal A-1 was about 9000 microstrain. Drift tests at 950 K for 50 hr show an average drift rate of about -9 microstrain/hr. Short-term (1 hr) rates are higher, averaging about -40 microstrain for the first hour. In the temperature range 700 to 870 K, however, short-term drift rates can be as high as 1700 microstrain for the first hour. Therefore, static strain measurements in this temperature range should be avoided.
Stability of alemtuzumab solutions at room temperature.
Goldspiel, Justin T; Goldspiel, Barry R; Grimes, George J; Yuan, Peng; Potti, Gopal
2013-03-01
The 24-hour stability of alemtuzumab solutions prepared at concentrations not included in the product label and stored in glass or polyolefin containers at room temperature was evaluated. Triplicate solutions of alemtuzumab (6.67, 40, and 120 μg/mL) in 0.9% sodium chloride were prepared in either glass bottles or polyolefin containers and stored at room temperature under normal fluorescent lighting conditions. The solutions were analyzed by a validated stability-indicating high-performance liquid chromatography (HPLC) assay at time zero and 8, 14, and 24 hours after preparation; solution pH values were measured and the containers visually inspected at all time points. Stability was defined as the retention of ≥90% of the initial alemtuzumab concentration. HPLC analysis indicated that the percentage of the initial alemtuzumab concentration retained was >90% for all solutions evaluated, with no significant changes over the study period. The most dilute alemtuzumab solution (6.67 μg/mL) showed some degradation (91% of the initial concentration retained at hour 24), whereas the retained concentration was >99% for all other preparations throughout the study period. Solution pH values varied by drug concentration but did not change significantly over 24 hours. No evidence of particle formation was detected in any solution by visual inspection at any time during the study. Solutions of alemtuzumab 6.67 μg/mL stored in glass bottles and solutions of 40 and 120 μg/mL stored in polyolefin containers were stable for at least 24 hours at room temperature.
High-Temperature Modal Survey of a Hot-Structure Control Surface
NASA Technical Reports Server (NTRS)
Spivey, Natalie Dawn
2010-01-01
Ground vibration tests or modal surveys are routinely conducted for supporting flutter analysis for subsonic and supersonic vehicles; however, for hypersonic vehicle applications, thermoelastic vibration testing techniques are not well established and are not routinely performed for supporting hypersonic flutter analysis. New high-temperature material systems, fabrication technologies and high-temperature sensors expand the opportunities to develop advanced techniques for performing ground vibration tests at elevated temperatures. High-temperature materials have the unique property of increasing in stiffness when heated. When these materials are incorporated into a hot-structure, which includes metallic components that decrease in stiffness with increasing temperature, the interaction between the two materials systems needs to be understood because that interaction could ultimately affect the hypersonic flutter analysis. Performing a high-temperature modal survey will expand the research database for hypersonics and will help build upon the understanding of the dual material interaction. This paper will discuss the vibration testing of the Carbon-Silicon Carbide Ruddervator Subcomponent Test Article which is a truncated version of the full-scale X-37 hot-structure control surface. In order to define the modal characteristics of the test article during the elevated-temperature modal survey, two series of room-temperature modal test configurations had to be performed. The room-temperature test series included one with the test article suspended from a bungee cord (free-free) and the second with it mounted on the strongback (fixed boundary condition) in NASA Dryden's Flight Loads Lab large nitrogen test chamber.
Nawrocki, Michael A; McLaughlin, Ron; Hendrix, P K
2005-01-01
To document the magnitude of temperature elevation obtained with heated lavage solutions during abdominal lavage, 18 dogs were lavaged with sterile isotonic saline intraoperatively (i.e., during a celiotomy). In nine dogs, room-temperature saline was used. In the remaining nine dogs, saline heated to 43+/-2 degrees C (110+/-4 degrees F) was used. Esophageal, rectal, and tympanic temperatures were recorded every 60 seconds for 15 minutes after initiation of the lavage. Temperature levels decreased in dogs lavaged with room-temperature saline. Temperature levels increased significantly in dogs lavaged with heated saline after 2 to 6 minutes of lavage, and temperatures continued to increase throughout the 15-minute lavage period.
Use of infrared thermography to assess the influence of high environmental temperature on rabbits.
de Lima, V; Piles, M; Rafel, O; López-Béjar, M; Ramón, J; Velarde, A; Dalmau, A
2013-10-01
The aim of this work was to ascertain if infrared thermography (IRT) can be used on rabbits to assess differences in surface body temperature when they are subjected to two different environmental temperatures outside the comfort zone. Rabbits housed in room A were maintained at a temperature of below 30°C and rabbits in room B at a temperature of above 32°C for a year. Faeces were collected six times during the year to assess stress by means of faecal cortisol metabolites (FCM). The assessment of IRT was carried out to assess maximum and minimum temperatures on the eyes, nose and ears. FCM concentration was higher in room B than A, to confirm that stress conditions were higher in room B. Significant differences in IRT were found between the animals housed in both rooms. It was observed that it was more difficult for animals from room B to maintain a regular heat loss. Although all the body zones used to assess temperature with IRT gave statistical differences, the correlations found between the eyes, nose and ears were moderate, suggesting that they were giving different information. In addition, differences up to 3.36°C were found in the eye temperature of rabbits housed in the same room, with a clear effect of their position in relation to extractors and heating equipments. Therefore, IRT could be a good tool to assess heat stress in animals housed on typical rabbit farm buildings, giving a measure of how the animal is perceiving a combination of humidity, temperature and ventilation. Some face areas were better for analysing images. Minimum temperature on eyes and temperatures on nose are suggested to assess heat losses and critical areas of the farm for heat stress in rabbits. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy transfer simulation for radiantly heated and cooled enclosures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, K.S.; Zhang, P.
1996-11-01
This paper presents the development of a three-dimensional mathematical model to compute heat transfer within a radiantly heated or cooled room, which then calculates the mass-averaged room air temperature and the wall surface temperature distributions. The radiation formulation used in the model accommodates arbitrary placement of walls and objects within the room. The convection model utilizes Nusselt number correlations published in the open literature. The complete energy transfer model is validated by comparing calculated room temperatures to temperatures measured in a radiantly heated room. This three-dimensional model may be applied to a building to assist the heating/cooling system design engineermore » in sizing a radiant heating/cooling system. By coupling this model with a thermal comfort model, the comfort levels throughout the room can be easily and efficiently mapped for a given radiant heater/cooler location. In addition, obstacles such as airplanes, trucks, furniture, and partitions can be easily incorporated to determine their effect on the radiant heating system performance.« less
Room-Temperature Processing of TiOx Electron Transporting Layer for Perovskite Solar Cells.
Deng, Xiaoyu; Wilkes, George C; Chen, Alexander Z; Prasad, Narasimha S; Gupta, Mool C; Choi, Joshua J
2017-07-20
In order to realize high-throughput roll-to-roll manufacturing of flexible perovskite solar cells, low-temperature processing of all device components must be realized. However, the most commonly used electron transporting layer in high-performance perovskite solar cells is based on TiO 2 thin films processed at high temperature (>450 °C). Here, we demonstrate room temperature solution processing of the TiO x layer that performs as well as the high temperature TiO 2 layer in perovskite solar cells, as evidenced by a champion solar cell efficiency of 16.3%. Using optical spectroscopy, electrical measurements, and X-ray diffraction, we show that the room-temperature processed TiO x is amorphous with organic residues, and yet its optical and electrical properties are on par with the high-temperature TiO 2 . Flexible perovskite solar cells that employ a room-temperature TiO x layer with a power conversion efficiency of 14.3% are demonstrated.
NASA Astrophysics Data System (ADS)
Bettinger, J. S.; Piamonteze, C.; Chopdekar, R. V.; Liberati, M.; Arenholz, E.; Suzuki, Y.
2009-10-01
We have used x-ray magnetic circular dichroism (XMCD) in conjunction with multiplet simulations to directly probe the origin of photomagnetism in nanocrystalline (Mn,Zn,Fe)3O4 . A photomagnetic effect at room temperature has been observed in these films with HeNe illumination. We have verified an intervalence charge transfer among octahedral Fe cations to account for the increase in magnetization observed at and above room temperature in small magnetic fields. Using XMCD, we demonstrate that the dichroism of Fe in octahedral sites increases by 18% at room temperature, while the dichroism of Fe in tetrahedral sites does not change.
Room-temperature ferromagnetism observed in C-/N-/O-implanted MgO single crystals
NASA Astrophysics Data System (ADS)
Li, Qiang; Ye, Bonian; Hao, Yingping; Liu, Jiandang; Zhang, Jie; Zhang, Lijuan; Kong, Wei; Weng, Huimin; Ye, Bangjiao
2013-01-01
MgO single crystals were implanted with 70 keV C/N/O ions at room temperature with respective doses of 2 × 1016 and 2 × 1017 ions/cm2. All samples with high-dose implantation showed room temperature hysteresis in magnetization loops. Magnetization and slow positron annihilation measurements confirmed that room temperature ferromagnetism in O-implanted samples was attributed to the presence of Mg vacancies. Furthermore, the introduction of C or N played more effective role in ferromagnetic performance than Mg vacancies. Moreover, the magnetic moment possibly occurred from the localized wave function of unpaired electrons and the exchange interaction formed a long-range magnetic order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedi, R. K.; Saini, Rajan; Mahajan, Aman
2010-12-01
Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.
Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo
2018-05-01
Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.
NASA Technical Reports Server (NTRS)
Schacham, S. E.; Mena, R. A.; Haugland, E. J.; Alterovitz, S. A.
1993-01-01
A technique for determination of room-temperature two-dimensional electron gas (2DEG) concentration and mobility in heterostructures is presented. Using simultaneous fits of the longitudinal and transverse voltages as a function of applied magnetic field, we were able to separate the parameters associated with the 2DEG from those of the parallel layer. Comparison with the Shubnikov-de Haas data derived from measurements at liquid helium temperatures proves that the analysis of the room-temperature data provides an excellent estimate of the 2DEG concentration. In addition we were able to obtain for the first time the room-temperature mobility of the 2DEG, an important parameter to device application. Both results are significantly different from those derived from conventional Hall analysis.
Low void content autoclave molded titanium alloy and polyimide graphite composite structures.
NASA Technical Reports Server (NTRS)
Vaughan, R. W.; Jones, R. J.; Creedon, J. F.
1972-01-01
This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.
Sadler, Theodore R; Khodavirdi, Ani C
2015-07-01
Handling and maintenance of biological tissues for nucleic acid and/or protein analysis has long been a challenge because of the perceived instability of these molecules at room temperature if not preserved or processed. Structural damage and compromised integrity of aforementioned biomolecules subsequent to preservation have also posed difficulties in their use in research. The development of technologies employing nonfixative methods with the capability to store at room temperature have been of growing interest. Our previous publication exploring preservation of proteins by desiccation challenged the convention of their unstable nature. Herein, we report the results of quantitative and qualitative analyses of RNA from tissue samples that were desiccated and stored at room temperature for up to 3 months. Our results indicate that viable RNA can be obtained from dehydrated ex vivo tissue samples that have been stored at room temperature.
NASA Astrophysics Data System (ADS)
Tao, Hong; Ma, Zhibin; Yang, Guang; Wang, Haoning; Long, Hao; Zhao, Hongyang; Qin, Pingli; Fang, Guojia
2018-03-01
Tin oxide (SnO2) film with high mobility and good transmittance has been reported as a promising semiconductor material for high performance perovskite solar cells (PSCs). In this study, ultrathin SnO2 film synthesized by radio frequency magnetron sputtering (RFMS) method at room temperature was employed as hole blocking layer for planar PSCs. The room-temperature sputtered SnO2 film not only shows favourable energy band structure but also improves the surface topography of fluorine doped SnO2 (FTO) substrate and perovskite (CH3NH3PbI3) layer. Thus, this SnO2 hole blocking layer can efficiently promote electron transport and suppress carrier recombination. Furthermore, the best efficiency of 13.68% was obtained for planar PSC with SnO2 hole blocking layer prepared at room temperature. This research highlights the room-temperature preparation process of hole blocking layer in PSC and has a certain reference significance for the usage of flexible and low-cost substrates.
Structure determination of an integral membrane protein at room temperature from crystals in situ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Axford, Danny; Foadi, James; Imperial College London, London SW7 2AZ
2015-05-14
The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samplesmore » and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.« less
NASA Technical Reports Server (NTRS)
Fritz, L. J.; Koster, W. P.
1977-01-01
Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.
Broad-gain (Δλ/λ0~0.4), temperature-insensitive (T<0~510K) quantum cascade lasers.
Fujita, Kazuue; Furuta, Shinichi; Dougakiuchi, Tatsuo; Sugiyama, Atsushi; Edamura, Tadataka; Yamanishi, Masamichi
2011-01-31
Broad-gain operation of λ~8.7 μm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.
Electromagnon Resonance at Room Temperature with Gigantic Magnetochromism
NASA Astrophysics Data System (ADS)
Shishikura, H.; Tokunaga, Y.; Takahashi, Y.; Masuda, R.; Taguchi, Y.; Kaneko, Y.; Tokura, Y.
2018-04-01
The elementary excitation characteristic of magnetoelectric (ME) multiferroics is a magnon endowed with electric activity, which is referred to as an electromagnon. The electromagnon resonance mediated by the bilinear exchange coupling potentially exhibits strong terahertz light-matter interaction with optical properties different from the conventional magnon excitation. Here we report the robust electromagnon resonance on helimagnetic Y -type hexaferrites in a wide temperature range including room temperature. Furthermore, the efficient magnetic field controls of the electromagnon are demonstrated on the flexible spin structure of these compounds, leading to the generation or annihilation of the resonance as well as the large resonance energy shift. These terahertz characteristics of the electromagnon exemplify the versatile magneto-optical functionality driven by the ME coupling in multiferroics, paving a way for possible terahertz applications as well as terahertz control of a magnetic state of matter.
Basu, Rupa; Gavin, Lyndsay; Pearson, Dharshani; Ebisu, Keita; Malig, Brian
2018-04-01
The association between ambient temperature and morbidity has been explored previously. However, the association between temperature and mental health-related outcomes, including violence and self-harm, remains relatively unexamined. For the period 2005-2013, we obtained daily counts of mental health-related emergency room visits involving injuries with an external cause for 16 California climate zones from the California Office of Statewide Health Planning and Development and combined them with data on mean apparent temperature, a combination of temperature and humidity. Using Poisson regression models, we estimated climate zone-level associations and then used random-effects meta-analyses to produce overall estimates. Analyses were stratified by season (warm: May-October; cold: November-April), race/ethnicity, and age. During the warm season, a 10°F (5.6°C) increase in same-day mean apparent temperature was associated with 4.8% (95% confidence interval (CI): 3.6, 6.0), 5.8% (95% CI: 4.5, 7.1), and 7.9% (95% CI: 7.3, 8.4) increases in the risk of emergency room visits for mental health disorders, self-injury/suicide, and intentional injury/homicide, respectively. High temperatures during the cold season were also positively associated with these outcomes. Variations were observed by race/ethnicity, age group, and sex, with Hispanics, whites, persons aged 6-18 years, and females being at greatest risk for most outcomes. Increasing mean apparent temperature was found to have acute associations with mental health outcomes and intentional injuries, and these findings warrant further study in other locations.
Ultra-Low-Cost Room Temperature SiC Thin Films
NASA Technical Reports Server (NTRS)
Faur, Maria
1997-01-01
The research group at CSU has conducted theoretical and experimental research on 'Ultra-Low-Cost Room Temperature SiC Thin Films. The effectiveness of a ultra-low-cost room temperature thin film SiC growth technique on Silicon and Germanium substrates and structures with applications to space solar sells, ThermoPhotoVoltaic (TPV) cells and microelectronic and optoelectronic devices was investigated and the main result of this effort are summarized.
Negative differential resistance in GaN nanocrystals above room temperature.
Chitara, Basant; Ivan Jebakumar, D S; Rao, C N R; Krupanidhi, S B
2009-10-07
Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is approximately 7 V above room temperature.
Neutron absorbing room temperature vulcanizable silicone rubber compositions
Zoch, Harold L.
1979-11-27
A neutron absorbing composition comprising a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide.
Novel Nanocomposite Structures as Active and Passive Barrier Materials
2010-06-01
during the course of this ARO-funded project. The development of a novel polymer material based on a diol-functionalized room-temperature ionic liquid ...material based on a diol-functionalized room- temperature ionic liquid (RTIL) monomer led to fabrication of membranes, which were tested for their...stimulant vapor. Technical Report A polymerizable room-temperature ionic liquid (4, Figure 1) was chosen as the starting material for making poly(RTIL
Darban, D A; Gowen, S R; Pembroke, B; Mahar, A N
2005-03-01
Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26-29 degrees C and in glasshouse at 20-32 degrees C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 degrees C/d, accumulating each day above a base temperature of 10 degrees C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures.
Darban, D.A.; Gowen, S.R.; Pembroke, B.; Mahar, A.N.
2005-01-01
Growth room and glasshouse experiment was conducted to investigate the effect of constant and fluctuating temperatures on the development of Pasteuria penetrans a hyperparasite of root-knot nematodes. Tomato plants (Lycopersicon esculentum Mill) were inoculated with Meloidogyne javanica second-stage juveniles attached with endospores of P. penetrans and were grown in growth room at 26–29 °C and in glasshouse at 20–32 °C. The tomato plants were sampled from the growth room after 600 degree-days based on 17 °C/d, accumulating each day above a base temperature of 10 °C and from the glasshouse after 36 calendar days. Temperature affected the development of P. penetrans directly. The rate of development at constant temperature in growth room was faster than that in the glasshouse at fluctuating temperatures. PMID:15682497
Johnston, L J; Brumm, M C; Moeller, S J; Pohl, S; Shannon, M C; Thaler, R C
2013-07-01
The objective of this investigation was to determine the effect of a reduced nocturnal temperature (RNT) regimen on performance of weaned pigs and energy consumption during the nursery phase of production. The age of weaned pigs assigned to experiments ranged from 16 to 22 d. In Exp. 1, 3 stations conducted 2 trials under a common protocol that provided data from 6 control rooms (CON; 820 pigs) and 6 RNT rooms (818 pigs). Two mirror-image nursery rooms were used at each station. Temperature in the CON room was set to 30°C for the first 7 d, then reduced by 2°C per week through the remainder of the experiment. Room temperature settings were held constant throughout the day and night. The temperature setting in the RNT room was the same as CON during the first 7 d, but beginning on the night of d 7, the room temperature setting was reduced 6°C from the daytime temperature from 1900 to 0700 h. The use of heating fuel and electricity were measured weekly in each room. Overall, ADG (0.43 kg), ADFI (0.62 kg), and G:F (0.69) were identical for CON and RNT rooms. Consumption of heating fuel [9,658 vs. 7,958 British thermal units (Btu)·pig(-1)·d(-1)] and electricity (0.138 vs. 0.125 kilowatt-hour (kWh)·pig(-1)·d(-1)] were not statistically different for CON and RNT rooms, respectively. In Exp. 2, 4 stations conducted at least 2 trials that provided data from 9 CON rooms (2,122 pigs) and 10 RNT rooms (2,176 pigs). Experimental treatments and protocols were the same as Exp. 1, except that the RNT regimen was imposed on the night of d 5 and the targeted nighttime temperature reduction was 8.3°C. Neither final pig BW (21.8 vs. 21.5 kg; SE = 0.64), ADG (0.45 vs. 0.44 kg; SE = 0.016), ADFI (0.61 vs. 0.60 kg; SE = 0.019), nor G:F (0.75 vs. 0.75; SE = 0.012) were different for pigs housed in CON or RNT rooms, respectively. Consumption of heating fuel and electricity was consistently reduced in RNT rooms for all 4 stations. Consumption of heating fuel (10,019 vs. 7,061 Btu·pig(-1)·d(-1); SE = 1,467) and electricity (0.026 vs. 0.021 kWh·pig-1·d-1; SE = 0.004) were lower (P < 0.05) in the RNT rooms compared with CON rooms. This represents a 30% reduction in heating fuel use and a 20% reduction in electrical use with no differences in pig growth performance or health. From these experiments, we conclude that imposing a RNT regimen from 1900 to 0700 h is effective in reducing energy costs in the nursery without compromising pig performance, which will reduce production costs and decrease emissions of greenhouse gases.
Low-temperature operation of a Buck DC/DC converter
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
Low-temperature (77 K) operation of a 42/28 V, 175 W, 50 kHz PWM Buck DC/DC converter designed with commercially available components is reported. Overall, the converter losses decreased at 77 K compared to room temperature operation. A full-load efficiency of 97 percent was recorded at liquid-nitrogen temperature, compared to 95.8 percent at room temperature. Power MOSFET operation improved significantly where as the output rectifier operation deteriorated at low-temperature. The performance of the output filter inductor and capacitor did not change significantly at 77 K compared to room temperature performance. It is possible to achieve high-density and high efficiency power conversion at low-temperatures due to improved electronic, electrical and thermal properties of materials.
Cryogenic adhesives and sealants: Abstracted publications
NASA Technical Reports Server (NTRS)
Williamson, F. R.; Olien, N. A.
1977-01-01
Abstracts of primary documents containing original experimental data on the properties of adhesives and sealants at cryogenic temperatures are presented. The most important references mentioned in each document are cited. In addition, a brief annotation is given for documents considered secondary in nature, such as republications or variations of original reports, progress reports leading to final reports included as primary documents, and experimental data on adhesive properties at temperatures between about 130 K and room temperature.
2009-09-10
Howard University 2300 6th Street NW, Room 1016 Washington, D.C. 20059 Air Force Office of Scientific Research 875 North Randolph Street Room 3112...Department of Electrical Engineering, Howard University , Washington, DC 20059 Room temperature quantum efficiencies of Ag/n-Si composite...at the Howard University CREST Center for Nanomaterials Characterization Science and Processing Technology were used in this investigation. The
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.
2002-01-01
Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.
Simple and advanced ferromagnet/molecule spinterfaces
NASA Astrophysics Data System (ADS)
Gruber, M.; Ibrahim, F.; Djedhloul, F.; Barraud, C.; Garreau, G.; Boukari, S.; Isshiki, H.; Joly, L.; Urbain, E.; Peter, M.; Studniarek, M.; Da Costa, V.; Jabbar, H.; Bulou, H.; Davesne, V.; Halisdemir, U.; Chen, J.; Xenioti, D.; Arabski, J.; Bouzehouane, K.; Deranlot, C.; Fusil, S.; Otero, E.; Choueikani, F.; Chen, K.; Ohresser, P.; Bertran, F.; Le Fèvre, P.; Taleb-Ibrahimi, A.; Wulfhekel, W.; Hajjar-Garreau, S.; Wetzel, P.; Seneor, P.; Mattana, R.; Petroff, F.; Scheurer, F.; Weber, W.; Alouani, M.; Beaurepaire, E.; Bowen, M.
2016-10-01
Spin-polarized charge transfer between a ferromagnet and a molecule can promote molecular ferromagnetism 1, 2 and hybridized interfacial states3, 4. Observations of high spin-polarization of Fermi level states at room temperature5 designate such interfaces as a very promising candidate toward achieving a highly spin-polarized, nanoscale current source at room temperature, when compared to other solutions such as half-metallic systems and solid-state tunnelling over the past decades. We will discuss three aspects of this research. 1) Does the ferromagnet/molecule interface, also called an organic spinterface, exhibit this high spin-polarization as a generic feature? Spin-polarized photoemission experiments reveal that a high spin-polarization of electronics states at the Fermi level also exist at the simple interface between ferromagnetic cobalt and amorphous carbon6. Furthermore, this effect is general to an array of ferromagnetic and molecular candidates7. 2) Integrating molecules with intrinsic properties (e.g. spin crossover molecules) into a spinterface toward enhanced functionality requires lowering the charge transfer onto the molecule8 while magnetizing it1,2. We propose to achieve this by utilizing interlayer exchange coupling within a more advanced organic spinterface architecture. We present results at room temperature across the fcc Co(001)/Cu/manganese phthalocyanine (MnPc) system9. 3) Finally, we discuss how the Co/MnPc spinterface's ferromagnetism stabilizes antiferromagnetic ordering at room temperature onto subsequent molecules away from the spinterface, which in turn can exchange bias the Co layer at low temperature10. Consequences include tunnelling anisotropic magnetoresistance across a CoPc tunnel barrier11. This augurs new possibilities to transmit spin information across organic semiconductors using spin flip excitations12.
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery rooms...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
Warming of intravenous and irrigation fluids for preventing inadvertent perioperative hypothermia.
Campbell, Gillian; Alderson, Phil; Smith, Andrew F; Warttig, Sheryl
2015-04-13
Inadvertent perioperative hypothermia (a drop in core temperature to below 36°C) occurs because of interference with normal temperature regulation by anaesthetic drugs, exposure of skin for prolonged periods and receipt of large volumes of intravenous and irrigation fluids. If the temperature of these fluids is below core body temperature, they can cause significant heat loss. Warming intravenous and irrigation fluids to core body temperature or above might prevent some of this heat loss and subsequent hypothermia. To estimate the effectiveness of preoperative or intraoperative warming, or both, of intravenous and irrigation fluids in preventing perioperative hypothermia and its complications during surgery in adults. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 2), MEDLINE Ovid SP (1956 to 4 February 2014), EMBASE Ovid SP (1982 to 4 February 2014), the Institute for Scientific Information (ISI) Web of Science (1950 to 4 February 2014), Cumulative Index to Nursing and Allied Health Literature (CINAHL) EBSCOhost (1980 to 4 February 2014) and reference lists of identified articles. We also searched the Current Controlled Trials website and ClinicalTrials.gov. We included randomized controlled trials or quasi-randomized controlled trials comparing fluid warming methods versus standard care or versus other warming methods used to maintain normothermia. Two review authors independently extracted data from eligible trials and settled disputes with a third review author. We contacted study authors to ask for additional details when needed. We collected data on adverse events only if they were reported in the trials. We included in this review 24 studies with a total of 1250 participants. The trials included various numbers and types of participants. Investigators used a range of methods to warm fluids to temperatures between 37°C and 41°C. We found that evidence was of moderate quality because descriptions of trial design were often unclear, resulting in high or unclear risk of bias due to inappropriate or unclear randomization and blinding procedures. These factors may have influenced results in some way. Our protocol specified the risk of hypothermia as the primary outcome; as no trials reported this, we decided to include data related to mean core temperature. The only secondary outcome reported in the trials that provided useable data was shivering. Evidence was unclear regarding the effects of fluid warming on bleeding. No data were reported on our other specified outcomes of cardiovascular complications, infection, pressure ulcers, bleeding, mortality, length of stay, unplanned intensive care admission and adverse events.Researchers found that warmed intravenous fluids kept the core temperature of study participants about half a degree warmer than that of participants given room temperature intravenous fluids at 30, 60, 90 and 120 minutes, and at the end of surgery. Warmed intravenous fluids also further reduced the risk of shivering compared with room temperature intravenous fluidsInvestigators reported no statistically significant differences in core body temperature or shivering between individuals given warmed and room temperature irrigation fluids. Warm intravenous fluids appear to keep patients warmer during surgery than room temperature fluids. It is unclear whether the actual differences in temperature are clinically meaningful, or if other benefits or harms are associated with the use of warmed fluids. It is also unclear if using fluid warming in addition to other warming methods confers any benefit, as a ceiling effect is likely when multiple methods of warming are used.
OMNY PIN—A versatile sample holder for tomographic measurements at room and cryogenic temperatures
NASA Astrophysics Data System (ADS)
Holler, M.; Raabe, J.; Wepf, R.; Shahmoradian, S. H.; Diaz, A.; Sarafimov, B.; Lachat, T.; Walther, H.; Vitins, M.
2017-11-01
Nowadays ptychographic tomography in the hard x-ray regime, i.e., at energies above about 2 keV, is a well-established measurement technique. At the Paul Scherrer Institut, currently two instruments are available: one is measuring at room temperature and atmospheric pressure, and the other, the so-called OMNY (tOMography Nano crYo) instrument, is operating at ultra-high vacuum and offering cryogenic sample temperatures down to 10 K. In this manuscript, we present the sample mounts that were developed for these instruments. Aside from excellent mechanical stability and thermal conductivity, they also offer highly reproducible mounting. Various types were developed for different kinds of samples and are presented in detail, including examples of how specimens can be mounted on these holders. We also show the first hard x-ray ptychographic tomography measurements of high-pressure frozen biological samples, in the present case Chlamydomonas cells, the related sample pins and preparation steps. For completeness, we present accessories such as transportation containers for both room temperature and cryogenic samples and a gripper mechanism for automatic sample changing. The sample mounts are not limited to x-ray tomography or hard x-ray energies, and we believe that they can be very useful for other instrumentation projects.
Correlation between structural, electrical and magnetic properties of GdMnO3 bulk ceramics
NASA Astrophysics Data System (ADS)
Samantaray, S.; Mishra, D. K.; Pradhan, S. K.; Mishra, P.; Sekhar, B. R.; Behera, Debdhyan; Rout, P. P.; Das, S. K.; Sahu, D. R.; Roul, B. K.
2013-08-01
This paper reports the effect of sintering temperature on ferroelectric properties of GdMnO3 (GMO) bulk ceramics at room temperature prepared by the conventional solid state reaction route following slow step sintering schedule. Ferroelectric hysteresis loop as well as sharp dielectric anomaly in pure (99.999%) GMO sintered ceramics has been clearly observed. Samples sintered at 1350 °C become orthorhombic with Pbnm space group and showed frequency independent sharp dielectric anomalies at 373 K and a square type of novel ferroelectric hysteresis loop was observed at room temperature. Interestingly, dielectric anomalies and ferroelectric behavior were observed to be dependent upon sintering temperature of GdMnO3. Room temperature dielectric constant (ɛr) value at different frequencies is observed to be abnormally high. The magnetic field and temperature dependent magnetization show antiferromagnetic behavior at 40 K for both 1350 °C and 1700 °C sintered GMO. Present findings showed the possibility of application of GdMnO3 at room temperature as multifunctional materials.
Le Floch, Jean-Michel; Fan, Y; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E
2014-03-01
Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.
Design, Fabrication, Characterization and Modeling of Integrated Functional Materials
2013-10-01
coated microwire to change the temperature of an FBG. We show below that the proposed sensor probe, with a relatively poor thermal coupling with FBG...Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales, including enhanced...nanocomposites as compared to bulk polycrystalline materials, in addition to similar thermal conductivities , results in enhanced room temperature ZT as
2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
Room temperature polariton light emitting diode with integrated tunnel junction.
Brodbeck, S; Jahn, J-P; Rahimi-Iman, A; Fischer, J; Amthor, M; Reitzenstein, S; Kamp, M; Schneider, C; Höfling, S
2013-12-16
We present a diode incorporating a large number (12) of GaAs quantum wells that emits light from exciton-polariton states at room temperature. A reversely biased tunnel junction is placed in the cavity region to improve current injection into the device. Electroluminescence studies reveal two polariton branches which are spectrally separated by a Rabi splitting of 6.5 meV. We observe an anticrossing of the two branches when the temperature is lowered below room temperature as well as a Stark shift of both branches in a bias dependent photoluminescence measurement.
Data mining of space heating system performance in affordable housing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Xiaoxin; Yan, Da; Hong, Tianzhen
The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less
Data mining of space heating system performance in affordable housing
Ren, Xiaoxin; Yan, Da; Hong, Tianzhen
2015-02-16
The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seong W. Lee
During this reporting period, the literature survey including the gasifier temperature measurement literature, the ultrasonic application and its background study in cleaning application, and spray coating process are completed. The gasifier simulator (cold model) testing has been successfully conducted. Four factors (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. The Analysis of Variance (ANOVA) was applied to analyze the test data. The analysis shows that all four factors are significant to the temperature measurements in the gasifier simulator (cold model). The regression analysis for the case with the normalizedmore » room temperature shows that linear model fits the temperature data with 82% accuracy (18% error). The regression analysis for the case without the normalized room temperature shows 72.5% accuracy (27.5% error). The nonlinear regression analysis indicates a better fit than that of the linear regression. The nonlinear regression model's accuracy is 88.7% (11.3% error) for normalized room temperature case, which is better than the linear regression analysis. The hot model thermocouple sleeve design and fabrication are completed. The gasifier simulator (hot model) design and the fabrication are completed. The system tests of the gasifier simulator (hot model) have been conducted and some modifications have been made. Based on the system tests and results analysis, the gasifier simulator (hot model) has met the proposed design requirement and the ready for system test. The ultrasonic cleaning method is under evaluation and will be further studied for the gasifier simulator (hot model) application. The progress of this project has been on schedule.« less
Cold Temperatures Increase Cold Hardiness in the Next Generation Ophraella communa Beetles
Zhou, Zhong-Shi; Rasmann, Sergio; Li, Min; Guo, Jian-Ying; Chen, Hong-Song; Wan, Fang-Hao
2013-01-01
The leaf beetle, Ophraella communa, has been introduced to control the spread of the common ragweed, Ambrosia artemisiifolia, in China. We hypothesized that the beetle, to be able to track host-range expansion into colder climates, can phenotypically adapt to cold temperatures across generations. Therefore, we questioned whether parental experience of colder temperatures increases cold tolerance of the progeny. Specifically, we studied the demography, including development, fecundity, and survival, as well as physiological traits, including supercooling point (SCP), water content, and glycerol content of O. communa progeny whose parents were maintained at different temperature regimes. Overall, the entire immature stage decreased survival of about 0.2%–4.2% when parents experienced cold temperatures compared to control individuals obtained from parents raised at room temperature. However, intrinsic capacity for increase (r), net reproductive rate (R 0) and finite rate of increase (λ) of progeny O. communa were maximum when parents experienced cold temperatures. Glycerol contents of both female and male in progeny was significantly higher when maternal and paternal adults were cold acclimated as compared to other treatments. This resulted in the supercooling point of the progeny adults being significantly lower compared to beetles emerging from parents that experienced room temperatures. These results suggest that cold hardiness of O. communa can be promoted by cold acclimation in previous generation, and it might counter-balance reduced survival in the next generation, especially when insects are tracking their host-plants into colder climates. PMID:24098666
NASA Astrophysics Data System (ADS)
Kesler, Michael Steiner
Titanium aluminides are of interest as a candidate material for aerospace turbine applications due to their high strength to weight ratio. gamma-TiAl + alpha2-Ti3Al alloys have recently been incorporated in the low pressure turbine region but their loss of strength near 750C limits their high temperature use. Additions of Nb have been shown to have several beneficial effects in gamma+alpha2 alloys, including enhancements in strength and ductility of the gamma-phase, along with the stabilization of the cubic BCC beta-phase at forging temperatures allowing for thermomechanical processing. In the ternary Ti-Al-Nb system at high Nb-contents above approximately 10at%, there exists a two-phase gamma-TiAl + sigma-Nb2Al region at and above current service temperature for the target application. Limited research has been conducted on the mechanical properties of alloys with this microstructure, though they have demonstrated excellent high temperature strength, superior to that of gamma+alpha2 alloys. Because the sigma-phase does not deform at room temperature, high volume fractions of this phase result in poor toughness and no tensile elongation. Controlling the microstructural morphology by disconnecting the brittle matrix through heat treatments has improved the toughness at room temperature. In this study, attempts to further improve the mechanical properties of these alloys were undertaken by reducing the volume fraction of the sigma-phase and controlling the scale of the gamma+sigma microstructure through the aging of a meta-stable parent phase, the beta- phase, that was quenched-in to room temperature. Additions of beta-stabilizing elements, Cr and Mo, were needed in order to quench-in the beta-phase. The room temperature mechanical properties were evaluated by compression, Vickers' indentation and single edge notch bend tests at room temperature. The formation of the large gamma-laths at prior beta- phase grain boundaries was found to be detrimental to ductility due to strain localization in this coarsened region of the microstructure. Furthermore, samples aged from beta- phase single crystals proved to have excellent combinations of strength and ductility under compression. In the single crystals, microcracking did not develop until much larger plastic strains were reached. Lowering the volume fraction of the sigma-phase proved to enhance the fracture toughness in these alloys. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
The effect of high indoor temperatures on self-perceived health of elderly persons.
van Loenhout, J A F; le Grand, A; Duijm, F; Greven, F; Vink, N M; Hoek, G; Zuurbier, M
2016-04-01
Exposure to high ambient temperatures leads to an increase in mortality and morbidity, especially in the elderly. This relationship is usually assessed with outdoor temperature, even though the elderly spend most of their time indoors. Our study investigated the relationship between indoor temperature and heat-related health problems of elderly individuals. The study was conducted in the Netherlands between April and August 2012. Temperature and relative humidity were measured continuously in the living rooms and bedrooms of 113 elderly individuals. Respondents were asked to fill out an hourly diary during three weeks with high temperature and one cold reference week, and a questionnaire at the end of these weeks, on health problems that they experienced due to heat. During the warmest week of the study period (14-20 August), average living room and bedroom temperatures were approximately 5°C higher than during the reference week. More than half of the respondents perceived their indoor climate as too warm during this week. The most reported symptoms were thirst (42.7%), sleep disturbance (40.6%) and excessive sweating (39.6%). There was a significant relationship between both indoor and outdoor temperatures with the number of hours that heat-related health problems were reported per day. For an increase of 1°C of indoor temperature, annoyance due to heat and sleep disturbance increased with 33% and 24% respectively. Outdoor temperature was associated with smaller increases: 13% and 11% for annoyance due to heat and sleep disturbance, respectively. The relationship between outdoor temperature and heat-related health problems disappeared when indoor and outdoor temperatures were included in one model. The relationship with heat-related health problems in the elderly is stronger with indoor (living room and bedroom) temperature than with outdoor temperature. This should be taken into account when looking for measures to reduce heat exposure in this vulnerable group. Copyright © 2015 Elsevier Inc. All rights reserved.
Entanglement and Bell's inequality violation above room temperature in metal carboxylates
NASA Astrophysics Data System (ADS)
Souza, A. M.; Soares-Pinto, D. O.; Sarthour, R. S.; Oliveira, I. S.; Reis, M. S.; Brandão, P.; Dos Santos, A. M.
2009-02-01
In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu2(O2CH)4}{Cu(O2CH)2(2-methylpyridine)2} , and we have found this to be above room temperature (Te˜630K) . Furthermore, the results show that the system remains maximally entangled until close to ˜100K and the Bell’s inequality is violated up to nearly room temperature (˜290K) .
Entanglement and Bell's inequality violation above room temperature in metal carboxylates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souza, A M; Soares-Pinto, D O; Sarthour, R S
In the present work we show that a particular family of materials, the metal carboxylates, may have entangled states up to very high temperatures. From magnetic-susceptibility measurements, we have estimated the critical temperature below which entanglement exists in the copper carboxylate {Cu-2(O2CH)(4)}{Cu(O2CH)(2)(2-methylpyridine)(2)}, and we have found this to be above room temperature (T-e similar to 630 K). Furthermore, the results show that the system remains maximally entangled until close to similar to 100 K and the Bell's inequality is violated up to nearly room temperature (similar to 290 K).
NASA Astrophysics Data System (ADS)
Zhang, Linfang; Wang, Jingmin; Hua, Hui; Jiang, Chengbao; Xu, Huibin
2014-09-01
Some off-stoichiometric Ni-Mn-Ga alloys undergo a coupled magnetostructural transition from ferromagnetic martensite to paramagnetic austenite, giving rise to the large magnetocaloric effect. However, the magnetostructural transitions of Ni-Mn-Ga alloys generally take place at temperatures higher than room temperature. Here, we report that by the partial substitution of In for Ga, the paramagnetic austenite phase is well stabilized, and the magnetostructural transition can be tailored around room temperature. Sizable magnetic entropy change and adiabatic temperature change were induced by magnetic field change in the vicinity of the magnetostructural transition of the In-doped Ni-Mn-Ga alloys.
Evaluation of Ultra High Pressure (UHP) Firefighting in a Room-and-Contents Fire
2017-03-15
Burn Room and Hangar Temperature Prior to Ignition ............................................... 18 Figure 12. Effect of Temperature on Normalized...Figure 20. Maximum Average Temperature and Heat Flux ......................................................... 22 Figure 21. Effect of Maximum Average...Aspirated Ceiling Temperature .................................... 23 Figure 22. Effect of Maximum Average Floor Heat Flux on Extinguishment Quantity
Stability of procalcitonin at room temperature.
Milcent, Karen; Poulalhon, Claire; Fellous, Christelle Vauloup; Petit, François; Bouyer, Jean; Gajdos, Vincent
2014-01-01
The aim was to assess procalcitonin (PCT) stability after two days of storage at room temperature. Samples were collected from febrile children aged 7 to 92 days and were rapidly frozen after sampling. PCT levels were measured twice after thawing: immediately (named y) and 48 hours later after storage at room temperature (named x). PCT values were described with medians and interquartile ranges or by categorizing them into classes with thresholds 0.25, 0.5, and 2 ng/mL. The relationship between x and y PCT levels was analyzed using fractional polynomials in order to predict the PCT value immediately after thawing (named y') from x. A significant decrease in PCT values was observed after 48 hours of storage at room temperature, either in median, 30% lowering (p < 0.001), or as categorical variable (p < 0.001). The relationship between x and y can be accurately modeled with a simple linear model: y = 1.37 x (R2 = 0.99). The median of the predicted PCT values y' was quantitatively very close to the median of y and the distributions of y and y' across categories were very similar and not statistically different. PCT levels noticeably decrease after 48 hours of storage at room temperature. It is possible to pre- dict accurately effective PCT values from the values after 48 hours of storage at room temperature with a simple statistical model.
NASA Astrophysics Data System (ADS)
Hrutkay, Kyle
Haynes 230 and Inconel 617 are austenitic nickel based superalloys, which are candidate structural materials for next generation high temperature nuclear reactors. High temperature deformation behavior of Haynes 230 and Inconel 617 have been investigated at the microstructural level in order to gain a better understanding of mechanical properties. Tensile tests were performed at strain rates ranging from 10-3-10-5 s -1 at room temperature, 600 °C, 800 °C and 950 °C. Subsequent microstructural analysis, including Scanning Electron Microscopy, Transmission Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, and X-Ray Diffraction were used to relate the microstructural evolution at high temperatures to that of room temperature samples. Grain sizes and precipitate morphologies were used to determine high temperature behavior and fracture mechanics. Serrated flow was observed at intermediate and high temperatures as a result of discontinuous slip and dynamic recrystallization. The amplitude of serration increased with a decrease in the strain rate and increase in the temperature. Dynamic strain ageing was responsible for serrations at intermediate temperatures by means of a locking and unlocking phenomenon between dislocations and solute atoms. Dynamic recrystallization nucleated by grain and twin bulging resulting in a refinement of grain size. Existing models found in the literature were discussed to explain both of these phenomena.
Graphene-based room-temperature implementation of a modified Deutsch-Jozsa quantum algorithm.
Dragoman, Daniela; Dragoman, Mircea
2015-12-04
We present an implementation of a one-qubit and two-qubit modified Deutsch-Jozsa quantum algorithm based on graphene ballistic devices working at room temperature. The modified Deutsch-Jozsa algorithm decides whether a function, equivalent to the effect of an energy potential distribution on the wave function of ballistic charge carriers, is constant or not, without measuring the output wave function. The function need not be Boolean. Simulations confirm that the algorithm works properly, opening the way toward quantum computing at room temperature based on the same clean-room technologies as those used for fabrication of very-large-scale integrated circuits.
Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures.
Ozaki, H; Enomoto-Koshimizu, H; Tochihara, Y; Nakamura, K
1998-09-01
This study was conducted to evaluate physiological reaction and manual performance during exposure to warm (30 degrees C) and cool (10 degrees C) environments after exposure to very low temperatures (-25 degrees C). Furthermore, this experiment was conducted to study whether it is desirable to remove cold-protective jackets in warmer rooms after severe cold exposure. Eight male students remained in an extremely cold room for 20 min, after which they transferred into either the warm room or the cool room for 20 min. This pattern was repeated three times, and the total cold exposure time was 60 min. In the warm and cool rooms, the subjects either removed their cold-protective jackets (Condition A), or wore them continuously (Condition B). Rectal temperature, skin temperatures, manual performance, blood pressure, thermal, comfort and pain sensations were measured during the experiment. The effects of severe cold on almost all measurements in the cool (10 degrees C) environment were greater than those in the warm (30 degrees C) environment under both clothing conditions. The effects of severe cold on all measurements under Condition A except rectal temperature and toe skin temperature were significantly greater than those under Condition B in the cool environment but, not at all differences between Condition A and Condition B in the warm environments were significant. It was recognized that to remove cold-protective jackets in the cool room (10 degrees C) after severe cold exposure promoted the effects of severe cold. When rewarming in the warm resting room (30 degrees C), the physiological and psychological responses and manual performance were not influenced by the presence or absence of cold-protective clothing. These results suggest that it is necessary for workers to make sure to rewarm in the warm room outside of the cold storage and continue to wear cold-protective clothing in the cool room.
Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures
NASA Astrophysics Data System (ADS)
Bosyj, Christopher
An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.
NASA Technical Reports Server (NTRS)
Raju, B. B.; Camarda, C. J.; Cooper, P. A.
1979-01-01
Seventy-nine graphite/polyimide compression specimens were tested to investigate experimentally the IITRI test method for determining compressive properties of composite materials at room and elevated temperatures (589 K (600 F)). Minor modifications were made to the standard IITRI fixture and a high degree of precision was maintained in specimen fabrication and load alignment. Specimens included four symmetric laminate orientations. Various widths were tested to evaluate the effect of width on measured modulus and strength. In most cases three specimens of each width were tested at room and elevated temperature and a polynomial regression analysis was used to reduce the data. Scatter of replicate tests and back-to-back strain variations were low, and no specimens failed by instability. Variation of specimen width had a negligible effect on the measured ultimate strengths and initial moduli of the specimens. Measured compressive strength and stiffness values were sufficiently high for the material to be considered a usable structural material at temperatures as high as 589 K (600 F).
Crystal Growth and Characterization of CdTe Grown by Vertical Gradient Freeze
NASA Technical Reports Server (NTRS)
Su, Ching-Hua; Lehoczky, S. L.; Raghothamachar, B.; Dudley, M.
2007-01-01
In this study, crystals of CdTe were grown from melts by the unseeded vertical gradient freeze method. The quality of grown crystal were studied by various characterization techniques including Synchrotron White Beam X-ray Topography (SWBXT), chemical analysis by glow discharge mass spectroscopy (GDMS), low temperature photoluminescence (PL), and Hall measurements. The SWBXT images from various angles show nearly strain-free grains, grains with inhomogeneous strains, as well as twinning nucleated in the shoulder region of the boule. The GDMS chemical analysis shows the contamination of Ga at a level of 3900 ppb, atomic. The low temperature PL measurement exhibits the characteristic emissions of a Ga-doped sample. The Hall measurements show a resistivity of 1 x l0(exp 7) ohm-cm at room temperature to 3 x 10(exp 9) ohm-cm at 78K with the respective hole and electron concentration of 1.7 x 10(exp 9) cm(exp -3) and 3.9 x 10(exp 7) cm(exp -3) at room temperature.
Tuning magnetic spirals beyond room temperature with chemical disorder
NASA Astrophysics Data System (ADS)
Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
2016-12-01
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature.
Tuning magnetic spirals beyond room temperature with chemical disorder
Morin, Mickaël; Canévet, Emmanuel; Raynaud, Adrien; Bartkowiak, Marek; Sheptyakov, Denis; Ban, Voraksmy; Kenzelmann, Michel; Pomjakushina, Ekaterina; Conder, Kazimierz; Medarde, Marisa
2016-01-01
In the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application. Here we demonstrate that the onset temperature of the spiral phase in the perovskite YBaCuFeO5 can be increased by more than 150 K through a controlled manipulation of the Fe/Cu chemical disorder. Moreover, we show that this novel mechanism can stabilize the magnetic spiral state of YBaCuFeO5 above the symbolic value of 25 °C at zero magnetic field. Our findings demonstrate that the properties of magnetic spirals, including its wavelength and stability range, can be engineered through the control of chemical disorder, offering a great potential for the design of materials with magnetoelectric properties beyond room temperature. PMID:27982127
Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers.
Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A Giles; Linfield, Edmund H; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo
2018-04-05
Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.
Room-temperature nine-µm-wavelength photodetectors and GHz-frequency heterodyne receivers
NASA Astrophysics Data System (ADS)
Palaferri, Daniele; Todorov, Yanko; Bigioli, Azzurra; Mottaghizadeh, Alireza; Gacemi, Djamal; Calabrese, Allegra; Vasanelli, Angela; Li, Lianhe; Davies, A. Giles; Linfield, Edmund H.; Kapsalidis, Filippos; Beck, Mattias; Faist, Jérôme; Sirtori, Carlo
2018-04-01
Room-temperature operation is essential for any optoelectronics technology that aims to provide low-cost, compact systems for widespread applications. A recent technological advance in this direction is bolometric detection for thermal imaging, which has achieved relatively high sensitivity and video rates (about 60 hertz) at room temperature. However, owing to thermally induced dark current, room-temperature operation is still a great challenge for semiconductor photodetectors targeting the wavelength band between 8 and 12 micrometres, and all relevant applications, such as imaging, environmental remote sensing and laser-based free-space communication, have been realized at low temperatures. For these devices, high sensitivity and high speed have never been compatible with high-temperature operation. Here we show that a long-wavelength (nine micrometres) infrared quantum-well photodetector fabricated from a metamaterial made of sub-wavelength metallic resonators exhibits strongly enhanced performance with respect to the state of the art up to room temperature. This occurs because the photonic collection area of each resonator is much larger than its electrical area, thus substantially reducing the dark current of the device. Furthermore, we show that our photonic architecture overcomes intrinsic limitations of the material, such as the drop of the electronic drift velocity with temperature, which constrains conventional geometries at cryogenic operation. Finally, the reduced physical area of the device and its increased responsivity allow us to take advantage of the intrinsic high-frequency response of the quantum detector at room temperature. By mixing the frequencies of two quantum-cascade lasers on the detector, which acts as a heterodyne receiver, we have measured a high-frequency signal, above four gigahertz (GHz). Therefore, these wide-band uncooled detectors could benefit technologies such as high-speed (gigabits per second) multichannel coherent data transfer and high-precision molecular spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata-Solvas, E.; Jayaseelan, D.; Lin, Hua-Tay
2013-01-01
Flexural strengths at room temperature, at 1400 C in air and at room temperature after 1 h oxidation at 1400 C were determined for ZrB2- and HfB2-based ultra-high temperature ceramics (UHTCs). Defects caused by electrical discharge machining (EDM) lowered measured strengths significantly and were used to calculate fracture toughness via a fracture mechanics approach. ZrB2 with 20 vol.% SiC had room temperature strength of 700 90 MPa, fracture toughness of 6.4 0.6 MPa, Vickers hardness at 9.8 N load of 21.1 0.6 GPa, 1400 C strength of 400 30 MPa and room temperature strength after 1 h oxidation at 1400more » C of 678 15 MPa with an oxide layer thickness of 45 5 m. HfB2 with 20 vol.% SiC showed room temperature strength of 620 50 MPa, fracture toughness of 5.0 0.4 MPa, Vickers hardness at 9.8 N load of 27.0 0.6 GPa, 1400 C strength of 590 150 MPa and room temperature strength after 1 h oxidation at 1400 C of 660 25 MPa with an oxide layer thickness of 12 1 m. 2 wt.% La2O3 addition to UHTCs slightly reduced mechanical performance while increasing tolerance to property degradation after oxidation and effectively aided internal stress relaxation during spark plasma sintering (SPS) cooling, as quantified by X-ray diffraction (XRD). Slow crack growth was suggested as the failure mechanism at high temperatures as a consequence of sharp cracks formation during oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Rujun, E-mail: tangrj@suda.edu.cn, E-mail: yanghao@nuaa.edu.cn; Zhou, Hao; You, Wenlong
2016-08-22
The room-temperature multiferroic and magnetocapacitance (MC) effects of polycrystalline M-type hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} have been investigated. The results show that the magnetic moments of insulating BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} can be manipulated by the electric field at room temperature, indicating the existence of magnetoelectric coupling. Moreover, large MC effects are also observed around the room temperature. A frequency dependence analysis shows that the Maxwell-Wagner type magnetoresistance effect is the dominant mechanism for MC effects at low frequencies. Both the magnetoelectric-type and non-magnetoelectric-type spin-phonon couplings contribute to the MC effects at high frequencies with the former being the dominantmore » mechanism. The above results show that the hexaferrite BaFe{sub 10.2}Sc{sub 1.8}O{sub 19} is a room-temperature multiferroic material that can be potentially used in magnetoelectric devices.« less
Crystal induced phosphorescence from Benz(a)anthracene microcrystals at room temperature
NASA Astrophysics Data System (ADS)
Maity, Samir; Mazumdar, Prativa; Shyamal, Milan; Sahoo, Gobinda Prasad; Misra, Ajay
2016-03-01
Pure organic compounds that are also phosphorescent at room temperature are very rare in literature. Here, we report efficient phosphorescence emission from aggregated hydrosol of Benz(a)anthracene (BaA) at room temperature. Aggregated hydrosol of BaA has been synthesized by re-precipitation method and SDS is used as morphology directing agent. Morphology of the particles is characterized using optical and scanning electronic microcopy (SEM). Photophysical properties of the aggregated hydrosol are carried out using UV-vis, steady state and time resolved fluorescence study. The large stoke shifted structured emission from aggregated hydrosol of BaA has been explained due to phosphorescence emission of BaA at room temperature. In the crystalline state, the restricted intermolecular motions (RIM) such as rotations and vibrations are activated by crystal lattice. This rigidification effect makes the chromophore phosphorescent at room temperature. The possible stacking arrangement of the neighboring BaA within the aggregates has been substantiated by computing second order Fukui parameter as local reactivity descriptors. Computational study also reveals that the neighboring BaA molecules are present in parallel slipped conformation in its aggregated crystalline form.
Quantitative Investigation of Room-Temperature Breakdown Effects in Pixelated TlBr Detectors
NASA Astrophysics Data System (ADS)
Koehler, Will; He, Zhong; Thrall, Crystal; O'Neal, Sean; Kim, Hadong; Cirignano, Leonard; Shah, Kanai
2014-10-01
Due to favorable material properties such as high atomic number (Tl: 81, Br: 35), high density ( 7.56 g/cm3), and a wide band gap (2.68 eV), thallium-bromide (TlBr) is currently under investigation for use as an alternative room-temperature semiconductor gamma-ray spectrometer. TlBr detectors can achieve less than 1% FWHM energy resolution at 662 keV, but these results are limited to stable operation at - 20°C. After days to months of room-temperature operation, ionic conduction causes these devices to fail. This work correlates the varying leakage current with alpha-particle and gamma-ray spectroscopic performances at various operating temperatures. Depth-dependent photopeak centroids exhibit time-dependent transient behavior, which indicates trapping sites form near the anode surface during room-temperature operation. After refabrication, similar performance and functionality of failed detectors returned.
Giant Room-Temperature Magnetodielectric Response in a MOF at 0.1 Tesla.
Chen, Li-Hong; Guo, Jiang-Bin; Wang, Xuan; Dong, Xin-Wei; Zhao, Hai-Xia; Long, La-Sheng; Zheng, Lan-Sun
2017-11-01
A giant room-temperature magnetodielectric (MD) response upon the application of a small magnetic field is of fundamental importance for the practical application of a new generation of devices. Here, the giant room-temperature magnetodielectric response is demonstrated in the metal-organic framework (MOF) of [NH 2 (CH 3 ) 2 ] n [Fe III Fe II (1- x ) Ni II x (HCOO) 6 ] n (x ≈ 0.63-0.69) (1) with its MD coefficient remaining between -20% and -24% in the 300-410 K temperature range, even at 0.1 T. Because a room-temperature magnetodielectric response has never been observed in MOFs, the present work not only provides a new type of magnetodielectric material but also takes a solid step toward the practical application of MOFs in a new generation of devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Room-temperature creation and spin-orbit torque-induced manipulation of skyrmions in thin film
NASA Astrophysics Data System (ADS)
Yu, Guoqiang; Upadhyaya, Pramey; Li, Xiang; Li, Wenyuan; Im, Se Kwon K.; Fan, Yabin; Wong, Kin L.; Tserkovnyak, Yaroslav; Amiri, Pedram Khalili; Wang, Kang L.
Magnetic skyrmions, which are topologically protected spin texture, are promising candidates for ultra-low energy and ultra-high density magnetic data storage and computing applications1, 2. To date, most experiments on skyrmions have been carried out at low temperatures. The choice of materials available is limited and there is a lack of electrical means to control of skyrmions. Here, we experimentally demonstrate a method for creating skyrmion bubbles phase in the ferromagnetic thin film at room temperature. We further demonstrate that the created skyrmion bubbles can be manipulated by electric current. This room-temperature creation and manipulation of skyrmion in thin film is of particular interest for applications, being suitable for room-temperature operation and compatible with existing semiconductor manufacturing tools. 1. Nagaosa, N., Tokura, Y. Nature Nanotechnology 8, 899-911 (2013). 2. Fert, A., et al., Nature Nanotechnology 8, 152-156 (2013).
Room-temperature ferroelectricity of SrTiO{sub 3} films modulated by cation concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fang; Zhang, Qinghua; Yang, Zhenzhong
2015-08-24
The room-temperature ferroelectricity of SrTiO{sub 3} is promising for oxide electronic devices controlled by multiple fields. An effective way to control the ferroelectricity is highly demanded. Here, we show that the off-centered antisite-like defects in SrTiO{sub 3} films epitaxially grown on Si (001) play the determinative role in the emergence of room-temperature ferroelectricity. The density of these defects changes with the film cation concentration sensitively, resulting in a varied coercive field of the ferroelectric behavior. Consequently, the room-temperature ferroelectricity of SrTiO{sub 3} films can be effectively modulated by tuning the temperature of metal sources during the molecular beam epitaxy growth.more » Such an easy and reliable modulation of the ferroelectricity enables the flexible engineering of multifunctional oxide electronic devices.« less
Room temperature continuous wave mid-infrared VCSEL operating at 3.35 μm
NASA Astrophysics Data System (ADS)
Jayaraman, V.; Segal, S.; Lascola, K.; Burgner, C.; Towner, F.; Cazabat, A.; Cole, G. D.; Follman, D.; Heu, P.; Deutsch, C.
2018-02-01
Tunable vertical cavity surface emitting lasers (VCSELs) offer a potentially low cost tunable optical source in the 3-5 μm range that will enable commercial spectroscopic sensing of numerous environmentally and industrially important gases including methane, ethane, nitrous oxide, and carbon monoxide. Thus far, achieving room temperature continuous wave (RTCW) VCSEL operation at wavelengths beyond 3 μm has remained an elusive goal. In this paper, we introduce a new device structure that has enabled RTCW VCSEL operation near the methane absorption lines at 3.35 μm. This device structure employs two GaAs/AlGaAs mirrors wafer-bonded to an optically pumped active region comprising compressively strained type-I InGaAsSb quantum wells grown on a GaSb substrate. This substrate is removed in processing, as is one of the GaAs mirror substrates. The VCSEL structure is optically pumped at room temperature with a CW 1550 nm laser through the GaAs substrate, while the emitted 3.3 μm light is captured out of the top of the device. Power and spectrum shape measured as a function of pump power exhibit clear threshold behavior and robust singlemode spectra.
Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature
NASA Astrophysics Data System (ADS)
Ren, Dingding; Ahtapodov, Lyubomir; Nilsen, Julie S.; Yang, Jianfeng; Gustafsson, Anders; Huh, Junghwan; Conibeer, Gavin J.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge
2018-04-01
Semiconductor nanowire lasers can produce guided coherent light emission with miniaturized geometry, bringing about new possibility for a variety of applications including nanophotonic circuits, optical sensing, and on-chip and chip-to-chip optical communications. Here, we report on the realization of single-mode room-temperature lasing from 890 nm to 990 nm utilizing a novel design of single nanowires with GaAsSb-based multiple superlattices as gain medium under optical pumping. The wavelength tunability with comprehensively enhanced lasing performance is shown to result from the unique nanowire structure with efficient gain materials, which delivers a lasing quality factor as high as 1250, a reduced lasing threshold ~ 6 kW cm-2 and a high characteristic temperature ~ 129 K. These results present a major advancement for the design and synthesis of nanowire laser structures, which can pave the way towards future nanoscale integrated optoelectronic systems with stunning performance.
Correlation between ferromagnetism and defects in MgO nanocrystals studied by positron annihilation
NASA Astrophysics Data System (ADS)
Wang, D. D.; Chen, Z. Q.; Li, C. Y.; Li, X. F.; Cao, C. Y.; Tang, Z.
2012-07-01
High purity MgO nanopowders were pressed into pellets and annealed in air from 100 to 1400 °C. Variation of the microstructures was investigated by X-ray diffraction and positron annihilation spectroscopy. Annealing induces an increase in the MgO grain size from 27 to 60 nm with temperature increasing up to 1400 °C. Positron annihilation measurements reveal vacancy defects including Mg vacancies, vacancy clusters, microvoids and large pores in the grain boundary region. Rapid recovery of Mg monovacancies and vacancy clusters was observed after annealing above 1200 °C. Room temperature ferromagnetism was observed for MgO nanocrystals annealed at 100, 700, and 1000 °C. However, after 1400 °C annealing, MgO nanocrystals turn into diamagnetic. Our results suggest that the room temperature ferromagnetism in MgO nanocrystals might originate from the interfacial defects.
Room-temperature ferroelectricity in CuInP 2S 6 ultrathin flakes
Liu, Fucai; You, Lu; Seyler, Kyle L.; ...
2016-08-11
In this study, two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP 2S 6 (CIPS) with a transition temperature of ~320 K. Switchable polarization is observed in thin CIPS of ~4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio ofmore » ~100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.« less
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
Liu, Fucai; You, Lu; Seyler, Kyle L.; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T.; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M.; Wang, Junling; Liu, Zheng
2016-01-01
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity. PMID:27510418
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
NASA Astrophysics Data System (ADS)
Liu, Fucai; You, Lu; Seyler, Kyle L.; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T.; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M.; Wang, Junling; Liu, Zheng
2016-08-01
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ~320 K. Switchable polarization is observed in thin CIPS of ~4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ~100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.
Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes.
Liu, Fucai; You, Lu; Seyler, Kyle L; Li, Xiaobao; Yu, Peng; Lin, Junhao; Wang, Xuewen; Zhou, Jiadong; Wang, Hong; He, Haiyong; Pantelides, Sokrates T; Zhou, Wu; Sharma, Pradeep; Xu, Xiaodong; Ajayan, Pulickel M; Wang, Junling; Liu, Zheng
2016-08-11
Two-dimensional (2D) materials have emerged as promising candidates for various optoelectronic applications based on their diverse electronic properties, ranging from insulating to superconducting. However, cooperative phenomena such as ferroelectricity in the 2D limit have not been well explored. Here, we report room-temperature ferroelectricity in 2D CuInP2S6 (CIPS) with a transition temperature of ∼320 K. Switchable polarization is observed in thin CIPS of ∼4 nm. To demonstrate the potential of this 2D ferroelectric material, we prepare a van der Waals (vdW) ferroelectric diode formed by CIPS/Si heterostructure, which shows good memory behaviour with on/off ratio of ∼100. The addition of ferroelectricity to the 2D family opens up possibilities for numerous novel applications, including sensors, actuators, non-volatile memory devices, and various vdW heterostructures based on 2D ferroelectricity.
Scalable architecture for a room temperature solid-state quantum information processor.
Yao, N Y; Jiang, L; Gorshkov, A V; Maurer, P C; Giedke, G; Cirac, J I; Lukin, M D
2012-04-24
The realization of a scalable quantum information processor has emerged over the past decade as one of the central challenges at the interface of fundamental science and engineering. Here we propose and analyse an architecture for a scalable, solid-state quantum information processor capable of operating at room temperature. Our approach is based on recent experimental advances involving nitrogen-vacancy colour centres in diamond. In particular, we demonstrate that the multiple challenges associated with operation at ambient temperature, individual addressing at the nanoscale, strong qubit coupling, robustness against disorder and low decoherence rates can be simultaneously achieved under realistic, experimentally relevant conditions. The architecture uses a novel approach to quantum information transfer and includes a hierarchy of control at successive length scales. Moreover, it alleviates the stringent constraints currently limiting the realization of scalable quantum processors and will provide fundamental insights into the physics of non-equilibrium many-body quantum systems.
NASA Astrophysics Data System (ADS)
Tsuchiya, B.; Bandow, S.; Nagata, S.; Saito, K.; Tokunaga, K.; Morita, K.
Hydrogen (H)- and water (H2O)-storage and desorption characteristics of 25 nm thick Pt films onLi2ZrO3composite materials, exposed to normal air at room temperature, have been investigated by means of elastic recoil detection (ERD), Rutherford backscattering spectrometry (RBS), weight gain measurement (WGM), and thermal desorption spectroscopy (TDS) techniques. It was found by the ERD and TDS that H and H2O were absorbed into the Pt-coated Li2ZrO3 in air at room temperature and desorbed from it in vacuum at much low temperatures of approximately 317 and 309 K, respectively. In addition, the WGM and TDS spectra revealed that the absorption and desorption characters ofsome gases such as CH4, CO, and CO2including H as well as H2Ointo the Li2ZrO3 bulk were improved by Pt deposition.
A Stable Room-Temperature Luminescent Biphenylmethyl Radical.
Ai, Xin; Chen, Yingxin; Feng, Yuting; Li, Feng
2018-03-05
There is only one family of room-temperature luminescent radicals, the triphenylmethyl radicals, to date. Herein, we synthesize a new stable room-temperature luminescent radical, (N-carbazolyl)bis(2,4,6-tirchlorophenyl)methyl radical (CzBTM), which has improved properties compared to the triphenylmethyl radicals. X-ray crystallography, electron paramagnetic resonance spectroscopy, and magnetic susceptibility measurements confirmed the radical structure. CzBTM shows room-temperature deep-red to near-infrared emission in various solutions. Both thermal and photo stability were significantly enhanced by the replacement of trichlorobenzene by the carbazole moiety. The electroluminescence results of CzBTM verify its potential application to circumvent the problem of triplet harvesting in traditional fluorescent OLEDs. A new family of stable luminescent radicals based on CzBTM is anticipated. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Collaborative Research: Polymeric Multiferroics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Shenqiang
2017-04-20
The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamentalmore » understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.« less
Lu, Qing; Zhao, Qi; Yang, Tianye; Zhai, Chengbo; Wang, Dongxue; Zhang, Mingzhe
2018-04-18
In this work, oxygen-doped boron nitride nanoparticles with room-temperature ferromagnetism have been synthesized by a new, facile, and efficient method. There are no metal magnetic impurities in the nanoparticles analyzed by X-ray photoelectron spectroscopy. The boron nitride nanoparticles exhibit a parabolic shape with increase in the reaction time. The saturation magnetization value reaches a maximum of 0.2975 emu g -1 at 300 K when the reaction time is 12 h, indicating that the Curie temperature ( T C ) is higher than 300 K. Combined with first-principles calculation, the coupling between B 2p orbital, N 2p orbital, and O 2p orbital in the conduction bands is the main origin of room-temperature ferromagnetism and also proves that the magnetic moment changes according the oxygen-doping content change. Compared with other room temperature ferromagnetic semiconductors, boron nitride nanoparticles have widely potential applications in spintronic devices because of high temperature oxidation resistance and excellent chemical stability.
Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature
2011-01-01
A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature. PMID:21781339
Room-temperature magnetoelectric multiferroic thin films and applications thereof
Katiyar, Ram S; Kuman, Ashok; Scott, James F.
2014-08-12
The invention provides a novel class of room-temperature, single-phase, magnetoelectric multiferroic (PbFe.sub.0.67W.sub.0.33O.sub.3).sub.x (PbZr.sub.0.53Ti.sub.0.47O.sub.3).sub.1-x (0.2.ltoreq.x.ltoreq.0.8) (PFW.sub.x-PZT.sub.1-x) thin films that exhibit high dielectric constants, high polarization, weak saturation magnetization, broad dielectric temperature peak, high-frequency dispersion, low dielectric loss and low leakage current. These properties render them to be suitable candidates for room-temperature multiferroic devices. Methods of preparation are also provided.
NASA Astrophysics Data System (ADS)
Park, Chang-Soo; Lee, Kyung Su; Chu, Dongil; Lee, Juwon; Shon, Yoon; Kim, Eun Kyu
2017-12-01
We report the room temperature ferromagnetic properties of graphene adsorbed by cobalt oxide using electrochemical method. The cobalt oxide doping onto graphene was carried out in 0.1 M LiCoO2/DI-water solution. The doped graphene thin film was determined to be a single layer from Raman analysis. The CoO doped graphene has a clear ferromagnetic hysteresis at room temperature and showed a remnant magnetization, 128.2 emu/cm3. The temperature dependent conductivity of the adsorbed graphene showed the semiconducting behavior and a band gap opening of 0.12 eV.
Long-term hot-hardness characteristics of five through-hardened bearing steels
NASA Technical Reports Server (NTRS)
Anderson, N. E.
1978-01-01
Five vacuum-melted bearing steels tempered to various room temperature hardnesses: AISI 52100 and the tool steels AISI M-1, AISI M-50, Halmo, and WB-49 were studied. Hardness measurements were taken on AISI 52100 at room temperature and at elevated temperatures after soaking it at temperatures to 478 K (400 F) for as long as 1000 hours. Hardness measurements were also taken on the tool steels after soaking them at temperatures to 700 K (800 F) for as long at 1000 hours. None of the tool steel tempered during soaking and AISI 52100 did not temper when soaked at 366 K (200 F) for 1000 hours. However, AISI 52100 that was initially hardened to room temperature hardness of 62.5 or 64.5 lost hardness during the first 500 hours of the 1000-hour soak tests at temperatures greater than 394 K (250 F), but it maintained its hardness during the final 500 hours of soaking. Similarly, AISI 52100 initially hardened to room temperature hardness of 60.5 lost hardness during the first 500 hours of the 1000-hour soaking at temperatures greater than 422 K (300 F), but it maintained its hardness during the final 500 hours of soaking.
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
46 CFR 111.01-15 - Temperature ratings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS... is assumed for all rotating electrical machinery in boiler rooms, engine rooms, auxiliary machinery...-rotating electrical equipment in boiler rooms, in engine rooms, in auxiliary machinery rooms, and on...
Self-locking threaded fasteners
Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.
1996-01-01
A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy.
Zhang, Zunting; Qiao, Jinfeng; Wang, Ding; Han, Ling; Ding, Ru
2014-05-01
A new concise, facile method for synthesis of isoflavones was accomplished in moderate to good yields for 3-iodochromones or 3-bromochromones and arylzinc bromides via Negishi cross-coupling reaction catalyzed by NiCl(2)/PPh(3) or NiCl(2)(PPh(3))(2) at room temperature. The Isoflavone core was synthesized in four steps in good yield, starting from commercially available 2-hydroxyacetophenone and aromatic bromide. Three steps of the procedure were carried out at room temperature.
Temperature autocontrol system for the coud%eacute; room of the 1.2 m telescope
NASA Astrophysics Data System (ADS)
Zhang, Jian-Hua
The setting up of temperature autocontrol system for the coudé room of the 1.2 m telescope at Yunnan Observatory and realizing the airflow autocirculation, purified the air, keeping the temperature in the coudé room constantly by autocontrol the heater, and then keeping the optical system in the best condition are introduced in this paper. The autocontrol system is designed and developed at the basis of having only the air circulator and the heater controlled by hand.
Advancing the Capabilities of an Authentic Ex Vivo Model of Primary Human Prostate Cancer
2014-10-01
maintained the PTEN expression of the native tissues after 5 days in culture. Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant...room temperature 1 h room temperature 30 min room temperature Abcam, Cambridge, MA, USA p63 SMA CD68 PSMA Mouse monoclonal Mouse monoclonal Mouse...Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant glands as expected in both native tissue and in TSCs after 5 days.47
Multi-Dimensional, Non-Pyrolyzing Ablation Test Problems
NASA Technical Reports Server (NTRS)
Risch, Tim; Kostyk, Chris
2016-01-01
Non-pyrolyzingcarbonaceous materials represent a class of candidate material for hypersonic vehicle components providing both structural and thermal protection system capabilities. Two problems relevant to this technology are presented. The first considers the one-dimensional ablation of a carbon material subject to convective heating. The second considers two-dimensional conduction in a rectangular block subject to radiative heating. Surface thermochemistry for both problems includes finite-rate surface kinetics at low temperatures, diffusion limited ablation at intermediate temperatures, and vaporization at high temperatures. The first problem requires the solution of both the steady-state thermal profile with respect to the ablating surface and the transient thermal history for a one-dimensional ablating planar slab with temperature-dependent material properties. The slab front face is convectively heated and also reradiates to a room temperature environment. The back face is adiabatic. The steady-state temperature profile and steady-state mass loss rate should be predicted. Time-dependent front and back face temperature, surface recession and recession rate along with the final temperature profile should be predicted for the time-dependent solution. The second problem requires the solution for the transient temperature history for an ablating, two-dimensional rectangular solid with anisotropic, temperature-dependent thermal properties. The front face is radiatively heated, convectively cooled, and also reradiates to a room temperature environment. The back face and sidewalls are adiabatic. The solution should include the following 9 items: final surface recession profile, time-dependent temperature history of both the front face and back face at both the centerline and sidewall, as well as the time-dependent surface recession and recession rate on the front face at both the centerline and sidewall. The results of the problems from all submitters will be collected, summarized, and presented at a later conference.
NASA Technical Reports Server (NTRS)
Favor, R. J.; Maykuth, D. J.; Bartlett, E. S.; Mindlin, H.
1972-01-01
A program to determine the characteristics of two coated columbium alloy systems for spacecraft structures is discussed. The alloy was evaluated as coated base material, coated butt-welded material, and material thermal/pressure cycled prior to testing up to 30 cycles. Evaluation was by means of tensile tests covering the temperature range to 2400 F. Design allowables were computed and are presented as tables of data. The summary includes a room temperature property table, effect of temperature curves, and typical stress-strain curves.
NASA Astrophysics Data System (ADS)
Chowdhury, Ataur
Magnetic and magnetooptic properties of multilayers critically depend on detailed magnetic and structural ordering of the interface. To study these properties in Tb/Fe multilayers, samples with varying layer thicknesses were fabricated by planar magnetic sputtering on polyester substrates. Mossbauer effect spectra were recorded at different temperatures ranging between 20 K and 300 K. The results show that perpendicular magnetic anisotropy (PMA) increases as temperature decreases for samples that show parallel anisotropy at room temperature, and for samples that show strong PMA at room temperature, no significant change in PMA is observed at low temperature (<100 K). Hyperfine field of samples that display parallel anisotropy at room temperature shows oscillatory behavior, reminiscent of RKKY oscillations, at low temperatures (<100 K). Plausible causes of these properties will be discussed in the paper.
Conformational variation of proteins at room temperature is not dominated by radiation damage
Russi, Silvia; González, Ana; Kenner, Lillian R.; ...
2017-01-01
Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less
Conformational variation of proteins at room temperature is not dominated by radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russi, Silvia; González, Ana; Kenner, Lillian R.
Protein crystallography data collection at synchrotrons is routinely carried out at cryogenic temperatures to mitigate radiation damage. Although damage still takes place at 100 K and below, the immobilization of free radicals increases the lifetime of the crystals by approximately 100-fold. Recent studies have shown that flash-cooling decreases the heterogeneity of the conformational ensemble and can hide important functional mechanisms from observation. These discoveries have motivated increasing numbers of experiments to be carried out at room temperature. However, the trade-offs between increased risk of radiation damage and increased observation of alternative conformations at room temperature relative to cryogenic temperature havemore » not been examined. A considerable amount of effort has previously been spent studying radiation damage at cryo-temperatures, but the relevance of these studies to room temperature diffraction is not well understood. Here, the effects of radiation damage on the conformational landscapes of three different proteins ( T. danielli thaumatin, hen egg-white lysozyme and human cyclophilin A) at room (278 K) and cryogenic (100 K) temperatures are investigated. Increasingly damaged datasets were collected at each temperature, up to a maximum dose of the order of 10 7 Gy at 100 K and 10 5 Gy at 278 K. Although it was not possible to discern a clear trend between damage and multiple conformations at either temperature, it was observed that disorder, monitored by B-factor-dependent crystallographic order parameters, increased with higher absorbed dose for the three proteins at 100 K. At 278 K, however, the total increase in this disorder was only statistically significant for thaumatin. A correlation between specific radiation damage affecting side chains and the amount of disorder was not observed. Lastly, this analysis suggests that elevated conformational heterogeneity in crystal structures at room temperature is observed despite radiation damage, and not as a result thereof.« less
Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon
2016-08-10
We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.
The effect of ultraviolet irradiation on the ultra-thin HfO{sub 2} based CO gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karaduman, Irmak; Barin, Özlem; Acar, Selim
2015-11-07
In this work, an effort has been made to fabricate ultrathin HfO{sub 2}/Al{sub 2}O{sub 3} sample by atomic layer deposition method for the fast detection of CO gas at room temperature. The effect of the operating temperature and the UV light on the gas sensing characteristics has been studied. We investigated the optimum operating temperature for the sample by sensing 25 ppm CO and CO{sub 2} gases from room temperature to 150 °C for 10 °C steps. The maximum response was obtained at 150 °C for both gases in the measurement temperature range. Also, the photoresponse measurements clearly show the effect of UV lightmore » on the sample. At room temperature, sensor showed superior response (14%) for 5 ppm CO gas. The response time of sensor is 6 s to 5 ppm CO gas concentration. The ultrathin HfO{sub 2} based sample shows acceptable gas sensitivity for 5 ppm CO gas at room temperature under UV light irradiation.« less
ERIC Educational Resources Information Center
Fogle, Pamela W.
1991-01-01
Public relations issues arising from the University of Utah's controversial announcement of research claiming achievement of nuclear fusion at room temperature are discussed. They include problems occurring before and after the initial press conference, secrecy vs. openness, research ethics, and effects lasting past the original incident and…
UTILITY OF ZEOLITES IN HAZARDOUS METAL REMOVAL FROM WATER
Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...
NASA Astrophysics Data System (ADS)
Das, Kushal; Lehmann, Torsten
2014-07-01
The effect of ultra low operating temperature on mismatch among identically designed Silicon-on-Sapphire CMOS devices is investigated in detail from a circuit design view point. The evolution of transistor matching properties for different operating conditions at both room and 4.2 K temperature are presented. The statistical analysis reveals that mismatch at low temperature is effectively unrelated to that at room temperature, which disagrees with previously published literature. The measurement data was used to extract key transistor parameters and the consequence of temperature lowering on their respective variance is estimated. We find that standard deviation of the threshold-voltage mismatch deteriorates by a factor ∼2 at 4.2 K temperature. Similar to room temperature operation, mismatch at 4.2 K is bias point dependent and the degradation of matching at very low temperature depends to some extent on how the bias point shifts upon cooling.
Mann, J E; Smith, L; Brashears, M M
2004-07-01
To provide pork processors with valuable data to validate the critical limits set for temperature during pork fabrication and grinding, a study was conducted to determine the growth of Salmonella serotypes and background flora at various temperatures. Growth of Salmonella Typhimurium and Salmonella Enteritidis and of background flora was monitored in ground pork and boneless pork chops held at various temperatures to determine growth patterns. Case-ready modified atmosphere packaged ground pork and fresh whole pork loins were obtained locally. Boneless chops and ground pork were inoculated with a cocktail mixture of streptomycin-resistant Salmonella to facilitate recovery in the presence of background flora. Samples were held at 4.4, 7.2C, and 10 degrees C and at room temperature (22.2 to 23.3 degrees C) to mimic typical processing and holding temperatures observed in pork processing environments. Salmonella counts were determined at regular intervals over 12 and 72 h for both room and refrigeration temperatures. No significant growth of Salmonella (P < 0.05) was observed in boneless pork chops held at refrigeration temperatures. However, Salmonella in boneless pork chops held at room temperature had grown significantly by 8 h. Salmonella grew at faster rates in ground pork. Significant growth was observed at 6, 24. and 72 h when samples were held at room temperature, 10 degrees C, and 7.2 degrees C, respectively. No significant growth was observed at 4.4 degrees C. Background flora in ground pork samples increased significantly after 10 h at room temperature and after 12 h for samples held at 10 and 7.2 degrees C. Background flora in samples held at refrigeration temperatures did not increase until 72 h. Background flora in the boneless chops increased significantly after 6 h at room temperature and after 24 h when held at 10 and 4.4 degrees C. These results illustrate that meat processors can utilize a variety of time and temperature combinations as critical limits to minimize Salmonella growth during production and storage of raw pork products.
Ambient temperature influences the neural benefits of exercise.
Maynard, Mark E; Chung, Chasity; Comer, Ashley; Nelson, Katharine; Tran, Jamie; Werries, Nadja; Barton, Emily A; Spinetta, Michael; Leasure, J Leigh
2016-02-15
Many of the neural benefits of exercise require weeks to manifest. It would be useful to accelerate onset of exercise-driven plastic changes, such as increased hippocampal neurogenesis. Exercise represents a significant challenge to the brain because it produces heat, but brain temperature does not rise during exercise in the cold. This study tested the hypothesis that exercise in cold ambient temperature would stimulate hippocampal neurogenesis more than exercise in room or hot conditions. Adult female rats had exercise access 2h per day for 5 days at either room (20 °C), cold (4.5 °C) or hot (37.5 °C) temperature. To label dividing hippocampal precursor cells, animals received daily injections of BrdU. Brains were immunohistochemically processed for dividing cells (Ki67+), surviving cells (BrdU+) and new neurons (doublecortin, DCX) in the hippocampal dentate gyrus. Animals exercising at room temperature ran significantly farther than animals exercising in cold or hot conditions (room 1490 ± 400 m; cold 440 ± 102 m; hot 291 ± 56 m). We therefore analyzed the number of Ki67+, BrdU+ and DCX+ cells normalized for shortest distance run. Contrary to our hypothesis, exercise in either cold or hot conditions generated significantly more Ki67+, BrdU+ and DCX+ cells compared to exercise at room temperature. Thus, a limited amount of running in either cold or hot ambient conditions generates more new cells than a much greater distance run at room temperature. Taken together, our results suggest a simple means by which to augment exercise effects, yet minimize exercise time. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Agrawal, A. V.; Kumar, R.; Venkatesan, S.; Zakhidov, A.; Zhu, Z.; Bao, Jiming; Kumar, Mahesh; Kumar, Mukesh
2017-08-01
The increased usage of hydrogen as a next generation clean fuel strongly demands the parallel development of room temperature and low power hydrogen sensors for their safety operation. In this work, we report strong evidence for preferential hydrogen adsorption at edge-sites in an edge oriented vertically aligned 3-D network of MoS2 flakes at room temperature. The vertically aligned edge-oriented MoS2 flakes were synthesised by a modified CVD process on a SiO2/Si substrate and confirmed by Scanning Electron Microscopy. Raman spectroscopy and PL spectroscopy reveal the signature of few-layer MoS2 flakes in the sample. The sensor's performance was tested from room temperature to 150 °C for 1% hydrogen concentration. The device shows a fast response of 14.3 s even at room temperature. The sensitivity of the device strongly depends on temperature and increases from ˜1% to ˜11% as temperature increases. A detail hydrogen sensing mechanism was proposed based on the preferential hydrogen adsorption at MoS2 edge sites. The proposed gas sensing mechanism was verified by depositing ˜2-3 nm of ZnO on top of the MoS2 flakes that partially passivated the edge sites. We found a decrease in the relative response of MoS2-ZnO hybrid structures. This study provides a strong experimental evidence for the role of MoS2 edge-sites in the fast hydrogen sensing and a step closer towards room temperature, low power (0.3 mW), hydrogen sensor development.
NASA Astrophysics Data System (ADS)
Floch, Jean-Michel Le; Bara, Romain; Hartnett, John G.; Tobar, Michael E.; Mouneyrac, David; Passerieux, Damien; Cros, Dominique; Krupka, Jerzy; Goy, Philippe; Caroopen, Sylvain
2011-05-01
Dielectric resonators are key components for many microwave and millimeter wave applications, including high-Q filters and frequency-determining elements for precision frequency synthesis. These often depend on the quality of the dielectric material. The commonly used material for building the best cryogenic microwave oscillators is sapphire. However, sapphire is becoming a limiting factor for higher frequency designs. It is, then, important to find new candidates that can fulfill the requirements for millimeter wave low noise oscillators at room and cryogenic temperatures. These clocks are used as a reference in many fields, such as modern telecommunication systems, radio astronomy (very-long-baseline interferometry), and precision measurements at the quantum limit. High resolution measurements were taken of the temperature-dependence of the electromagnetic properties of a polycrystalline diamond disk at temperatures between 35 and 330 K at microwave to submillimeter wave frequencies. The cryogenic measurements were made using a TE01δ dielectric mode resonator placed inside a vacuum chamber connected to a single-stage pulse-tube cryocooler. The high frequency characterization was performed at room temperature using a combination of a quasi-optical two-lens transmission setup, a Fabry-Perot cavity, and a whispering gallery mode resonator excited with waveguides. Our CVD diamond sample exhibits a decreasing loss tangent with increasing frequencies. We compare the results with well known crystals. This comparison makes it clear that polycrystalline diamond could be an important material for generating stable frequencies at millimeter waves.
Liu, Guanxiong; Debnath, Bishwajit; Pope, Timothy R; Salguero, Tina T; Lake, Roger K; Balandin, Alexander A
2016-10-01
The charge-density-wave (CDW) phase is a macroscopic quantum state consisting of a periodic modulation of the electronic charge density accompanied by a periodic distortion of the atomic lattice in quasi-1D or layered 2D metallic crystals. Several layered transition metal dichalcogenides, including 1T-TaSe 2 , 1T-TaS 2 and 1T-TiSe 2 exhibit unusually high transition temperatures to different CDW symmetry-reducing phases. These transitions can be affected by the environmental conditions, film thickness and applied electric bias. However, device applications of these intriguing systems at room temperature or their integration with other 2D materials have not been explored. Here, we demonstrate room-temperature current switching driven by a voltage-controlled phase transition between CDW states in films of 1T-TaS 2 less than 10 nm thick. We exploit the transition between the nearly commensurate and the incommensurate CDW phases, which has a transition temperature of 350 K and gives an abrupt change in current accompanied by hysteresis. An integrated graphene transistor provides a voltage-tunable, matched, low-resistance load enabling precise voltage control of the circuit. The 1T-TaS 2 film is capped with hexagonal boron nitride to provide protection from oxidation. The integration of these three disparate 2D materials in a way that exploits the unique properties of each yields a simple, miniaturized, voltage-controlled oscillator suitable for a variety of practical applications.
Reversible photoinduced spectral change in Eu2O3 at room temperature
NASA Astrophysics Data System (ADS)
Mochizuki, Shosuke; Nakanishi, Tauto; Suzuki, Yuya; Ishi, Kimihiro
2001-12-01
When Eu2O3 powder compact and film are irradiated with ultraviolet (UV) laser light in a vacuum, their photoluminescence (PL) spectra change from a red sharp-line structure to a white broad band, which can be clearly seen with the naked eye. After removing the UV laser light, the white PL continues for more than several months at room temperature under room light, in spite of any changes of atmosphere. By irradiating with the same UV laser light at room temperature under O2 gas atmosphere, the original red PL state reappears. Such a reversible phenomenon may well yield materials for white-light-emitting devices and erasable optical storage.
NASA Astrophysics Data System (ADS)
Narita, Fumio; Fox, Marina; Mori, Kotaro; Takeuchi, Hiroki; Kobayashi, Takuya; Omote, Kenji
2017-11-01
This paper studies the energy harvesting characteristics of piezoelectric laminates consisting of barium titanate (BaTiO3) and copper (Cu) from room temperature to cryogenic/high temperatures both experimentally and numerically. First, the output voltages of the piezoelectric BaTiO3/Cu laminates were measured from room temperature to a cryogenic temperature (77 K). The output power was evaluated for various values of load resistance. The results showed that the maximum output power density is approximately 2240 nW cm-3. The output voltages of the BaTiO3/Cu laminates were also measured from room temperature to a higher temperature (333 K). To discuss the output voltages of the BaTiO3/Cu laminates due to temperature changes, phase field and finite element simulations were combined. A phase field model for grain growth was used to generate grain structures. The phase field model was then employed for BaTiO3 polycrystals, coupled with the time-dependent Ginzburg-Landau theory and the oxygen vacancies diffusion, to calculate the temperature-dependent piezoelectric coefficient and permittivity. Using these properties, the output voltages of the BaTiO3/Cu laminates from room temperature to both 77 K and 333 K were analyzed by three dimensional finite element methods, and the results are presented for several grain sizes and oxygen vacancy densities. It was found that electricity in the BaTiO3 ceramic layer is generated not only through the piezoelectric effect caused by a thermally induced bending stress but also by the temperature dependence of the BaTiO3 piezoelectric coefficient and permittivity.
Shin, Hangsik
2016-12-01
Pulse rate variability (PRV) is a promising physiological and analytic technique used as a substitute for heart rate variability (HRV). PRV is measured by pulse wave from various devices including mobile and wearable devices but HRV is only measured by an electrocardiogram (ECG). The purpose of this study was to evaluate PRV and HRV at various ambient temperatures and elaborate on the interchangeability of PRV and HRV. Twenty-eight healthy young subjects were enrolled in the experiment. We prepared temperature-controlled rooms and recorded the ECG and photoplethysmography (PPG) under temperature-controlled, constant humidity conditions. The rooms were kept at 17, 25, and 38 °C as low, moderate, and high ambient temperature environments, respectively. HRV and PRV were derived from the synchronized ECG and PPG measures and they were studied in time and frequency domain analysis for PRV/HRV ratio and pulse transit time (PTT). Similarity and differences between HRV and PRV were determined by a statistical analysis. PRV/HRV ratio analysis revealed that there was a significant difference between HRV and PRV for a given ambient temperature; this was with short-term variability measures such as SDNN SDSD or RMSSD, and HF-based variables including HF, LF/HF and normalized HF. In our analysis the absolute value of PTT was not significantly influenced by temperature. Standard deviation of PTT, however, showed significant difference not only between low and moderate temperatures but also between low and high temperatures. Our results suggest that ambient temperature induces a significant difference in PRV compared to HRV and that the difference becomes greater at a higher ambient temperature.
Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.
Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride
Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; ...
2016-12-19
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.
NASA Astrophysics Data System (ADS)
Sukanto, H.; Budiana, E. P.; Putra, B. H. H.
2016-03-01
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.
Aspects of fracture mechanics in cryogenic model design. Part 2: NTF materials
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Lisagor, W. B.
1983-01-01
Results of fatigue crack growth and fracture toughness tests conducted on three candidate materials are presented. Fatigue crack growth and fracture toughness tests were conducted on NITRONIC 40 at room temperature and -275 F. Fracture toughness tests were also conducted on Vascomax 200 and 250 maraging steel from room temperature to -320 F. NITRONIC 40 was used to make the Pathfinder 1 model. The fatigue crack growth rate tests were conducted at room temperature and -275 F on three-point notch bend specimens. The fracture toughness tests on the as received and stress relieved materials at -275 F were conducted on the center crack tension specimens. Toughness tests were also conducted on Vascomax CVM-200 and CVM-250 maraging steel from room temperature to -320 F using round and rectangular compact specimens.
Room temperature synthesis of agarose/sol-gel glass pieces with tailored interconnected porosity.
Cabañas, M V; Peña, J; Román, J; Vallet-Regí, M
2006-09-01
An original shaping technique has been applied to prepare porous bodies at room temperature. Agarose, a biodegradable polysaccharide, was added as binder of a sol-gel glass in powder form, yielding an easy to mold paste. Interconnected tailored porous bodies can be straightforwardly prepared by pouring the slurry into a polymeric scaffold, previously designed by stereolitography, which is subsequently eliminated by alkaline dissolution at room temperature. The so obtained pieces behave like a hydrogel with an enhanced consistency that makes them machinable and easy to manipulate. These materials generate an apatite-like layer when immersed in a simulated body fluid, indicating a potential in vivo bioactivity. The proposed method can be applied to different powdered materials to produce pieces, at room temperature, with various shapes and sizes and with tailored interconnected porosity.
Nibhanipudi, Kumara; Hassen, Getaw Worku; Smith, Arthur
2009-11-01
The objective of this study was to determine whether a combination of nebulized albuterol and ipratropium with warmed humidified oxygen would be more beneficial when compared to the same combination with humidified oxygen at room temperature. Albuterol alone was tested in the same settings. All patients between 6 and 17 years of age who presented to a pediatric emergency department in the winter months with acute exacerbation of bronchial asthma were given a combination of nebulized albuterol and ipratropium with warmed or room temperature humidified oxygen. Peak flow was measured before and after the treatment. Sixty patients were enrolled in the study, with 15 subjects in each group. The mean increase in peak flow in the albuterol-ipratropium with warm humidified oxygen group was 52.6, and in the albuterol-ipratropium with humidified oxygen at room temperature group, it was 26.2. The results of the albuterol with warmed humidified oxygen and with humidified oxygen at room temperature groups were 20.6 and 34.3, respectively. The differences between the groups were statistically significant. Our study shows that warmed humidified oxygen given along with the combination of nebulized albuterol and ipratropium is more beneficial for pediatric patients having an acute exacerbation of bronchial asthma in the winter months when compared to nebulized albuterol alone with warmed humidified oxygen, nebulized albuterol alone with room temperature humidified oxygen, or a combination of nebulized albuterol and ipratropium with room temperature humidified oxygen.
Fracture Sustainability Pressure, Temperature, Differential Pressure, and Aperture Closure Data
Tim Kneafsey
2016-09-30
In these data sets, the experiment time, actual date and time, room temperature, sample temperature, upstream and downstream pressures (measured independently), corrected differential pressure (measured independently and corrected for offset and room temperature) indication of aperture closure by linear variable differential transformer are presented. An indication of the sample is in the file name and in the first line of data.
Room temperature ferrimagnetism and ferroelectricity in strained, thin films of BiFe 0.5Mn 0.5O 3
Choi, Eun -Mi; Fix, Thomas; Kursumovic, Ahmed; ...
2014-10-14
In this study, highly strained films of BiFe 0.5Mn 0.5O 3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetization measurements demonstrated ferrimagnetism (T C ~ 600K), with a room temperature saturation moment (M S) of up to 90 emu/cc (~0.58μ B/f.u) on high quality (001) SrTiO 3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe 3+ and Mn 3+ . While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magneticmore » properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.« less
NASA Astrophysics Data System (ADS)
Li, Tian-tian; Bao, Na; Geng, Ai-fang; Yu, Hui; Yang, Ying; Dong, Xiang-ting
2018-02-01
For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film-ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NOx) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3-CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NOx reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NOx gas at room temperature, which would have a great development space in the gas sensor field and a great research value.
Tarrand, Jeffrey J.; Han, Xiang Y.; Kontoyiannis, Dimitrios P.; May, Gregory S.
2005-01-01
Microbiologic cultures of fungi are routinely incubated at ambient temperatures in room air, and the rate of recovery of Aspergillus species from clinical specimens is poor. Failure of current culture methods to mimic the physiologic temperature and low-oxygen environment found in hypha-laden infected tissue may underlie this poor recovery. Experiments were performed to compare the recovery of Aspergillus spp. incubated at 35°C in 6% O2-10% CO2 with that at 25°C in room air. The samples tested included Aspergillus-infected tissue specimens from a dog model and human autopsies, experimental anaerobically stressed Aspergillus inocula, and 10,062 consecutive clinical specimens. Culture at 35°C in 6% O2-10% CO2 significantly enhanced the recovery of Aspergillus spp. from the infected autopsy tissue samples. Incubation at 35°C alone resulted in approximately 10-fold-improved culture recovery from the experimentally stressed hyphae, and the 6% O2-10% CO2 atmosphere independently favored growth under temperature-matched conditions. Finally, incubation at 35°C (in room air) improved the overall recovery of Aspergillus spp. from clinical specimens by 31%. Culture at 35°C in a microaerobic atmosphere significantly enhances the recovery of Aspergillus spp. from various sources. Aspergillus hyphae growing in infected tissue appear to be adapted to the physiologic temperature and hypoxic milieu. PMID:15634998
Tarrand, Jeffrey J; Han, Xiang Y; Kontoyiannis, Dimitrios P; May, Gregory S
2005-01-01
Microbiologic cultures of fungi are routinely incubated at ambient temperatures in room air, and the rate of recovery of Aspergillus species from clinical specimens is poor. Failure of current culture methods to mimic the physiologic temperature and low-oxygen environment found in hypha-laden infected tissue may underlie this poor recovery. Experiments were performed to compare the recovery of Aspergillus spp. incubated at 35 degrees C in 6% O(2)-10% CO(2) with that at 25 degrees C in room air. The samples tested included Aspergillus-infected tissue specimens from a dog model and human autopsies, experimental anaerobically stressed Aspergillus inocula, and 10,062 consecutive clinical specimens. Culture at 35 degrees C in 6% O(2)-10% CO(2) significantly enhanced the recovery of Aspergillus spp. from the infected autopsy tissue samples. Incubation at 35 degrees C alone resulted in approximately 10-fold-improved culture recovery from the experimentally stressed hyphae, and the 6% O(2)-10% CO(2) atmosphere independently favored growth under temperature-matched conditions. Finally, incubation at 35 degrees C (in room air) improved the overall recovery of Aspergillus spp. from clinical specimens by 31%. Culture at 35 degrees C in a microaerobic atmosphere significantly enhances the recovery of Aspergillus spp. from various sources. Aspergillus hyphae growing in infected tissue appear to be adapted to the physiologic temperature and hypoxic milieu.
Nanoindentation study of bulk zirconium hydrides at elevated temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang
Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less
Nanoindentation study of bulk zirconium hydrides at elevated temperatures
Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...
2017-08-02
Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less
Helping the Older Adult to Succeed in the ESL Classroom.
ERIC Educational Resources Information Center
Hedge, Dick; And Others
Special problems of adult language learners aged 50 and older studying English as a second language include physical, social, and psychological factors. Physical factors related to aging include vision and hearing problems that adults may not be willing to admit to. Older adults may also be more sensitive to room temperature and lighting, and may…
Liu, Jun; Yuan, Yukun; Ren, Zhong; Tan, Qiulin; Xiong, Jijun
2015-01-01
The accurate characterization of the temperature-dependent permittivity of aluminum nitride (AlN) ceramic is quite critical to the application of wireless passive sensors for harsh environments. Since the change of the temperature-dependent permittivity will vary the ceramic-based capacitance, which can be converted into the change of the resonant frequency, an LC resonator, based on AlN ceramic, is prepared by the thick film technology. The dielectric properties of AlN ceramic are measured by the wireless coupling method, and discussed within the temperature range of 12 °C (room temperature) to 600 °C. The results show that the extracted relative permittivity of ceramic at room temperature is 2.3% higher than the nominal value of 9, and increases from 9.21 to 10.79, and the quality factor Q is decreased from 29.77 at room temperature to 3.61 at 600 °C within the temperature range. PMID:26370999
Self-locking threaded fasteners
Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.
1996-01-16
A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy. 13 figs.
Long-term room temperature preservation of corpse soft tissue: an approach for tissue sample storage
2011-01-01
Background Disaster victim identification (DVI) represents one of the most difficult challenges in forensic sciences, and subsequent DNA typing is essential. Collected samples for DNA-based human identification are usually stored at low temperature to halt the degradation processes of human remains. We have developed a simple and reliable procedure for soft tissue storage and preservation for DNA extraction. It ensures high quality DNA suitable for PCR-based DNA typing after at least 1 year of room temperature storage. Methods Fragments of human psoas muscle were exposed to three different environmental conditions for diverse time periods at room temperature. Storage conditions included: (a) a preserving medium consisting of solid sodium chloride (salt), (b) no additional substances and (c) garden soil. DNA was extracted with proteinase K/SDS followed by organic solvent treatment and concentration by centrifugal filter devices. Quantification was carried out by real-time PCR using commercial kits. Short tandem repeat (STR) typing profiles were analysed with 'expert software'. Results DNA quantities recovered from samples stored in salt were similar up to the complete storage time and underscored the effectiveness of the preservation method. It was possible to reliably and accurately type different genetic systems including autosomal STRs and mitochondrial and Y-chromosome haplogroups. Autosomal STR typing quality was evaluated by expert software, denoting high quality profiles from DNA samples obtained from corpse tissue stored in salt for up to 365 days. Conclusions The procedure proposed herein is a cost efficient alternative for storage of human remains in challenging environmental areas, such as mass disaster locations, mass graves and exhumations. This technique should be considered as an additional method for sample storage when preservation of DNA integrity is required for PCR-based DNA typing. PMID:21846338
Artificial oxygen transport protein
Dutton, P. Leslie
2014-09-30
This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.
Room temperature, air crystallized perovskite film for high performance solar cells
Dubey, Ashish; Kantack, Nicholas; Adhikari, Nirmal; ...
2016-05-31
For the first time, room temperature heating free growth and crystallization of perovskite films in ambient air without the use of thermal annealing is reported. Highly efficient perovskite nanorod-based solar cells were made using ITO/PEDOT:PSS/CH 3NH 3PbI 3 nanorods/PC 60BM/rhodamine/Ag. All the layers except PEDOT:PSS were processed at room temperature thereby eliminating the need for thermal treatment. Perovskite films were spin coated inside a N-2 filled glovebox and immediately were taken outside in air having 40% relative humidity (RH). Exposure to humid air was observed to promote the crystallization process in perovskite films even at room temperature. Perovskite films keptmore » for 5 hours in ambient air showed nanorod-like morphology having high crystallinity, with devices exhibiting the highest PCE of 16.83%, which is much higher than the PCE of 11.94% for traditional thermally annealed perovskite film based devices. Finally, it was concluded that moisture plays an important role in room temperature crystallization of pure perovskite nanorods, showing improved optical and charge transport properties, which resulted in high performance solar cells.« less
Non-local electrical spin injection and detection in germanium at room temperature
NASA Astrophysics Data System (ADS)
Rortais, F.; Vergnaud, C.; Marty, A.; Vila, L.; Attané, J.-P.; Widiez, J.; Zucchetti, C.; Bottegoni, F.; Jaffrès, H.; George, J.-M.; Jamet, M.
2017-10-01
Non-local carrier injection/detection schemes lie at the very foundation of information manipulation in integrated systems. This paradigm consists in controlling with an external signal the channel where charge carriers flow between a "source" and a well separated "drain." The next generation electronics may operate on the spin of carriers in addition to their charge and germanium appears as the best hosting material to develop such a platform for its compatibility with mainstream silicon technology and the predicted long electron spin lifetime at room temperature. In this letter, we demonstrate injection of pure spin currents (i.e., with no associated transport of electric charges) in germanium, combined with non-local spin detection at 10 K and room temperature. For this purpose, we used a lateral spin valve with epitaxially grown magnetic tunnel junctions as spin injector and spin detector. The non-local magnetoresistance signal is clearly visible and reaches ≈15 mΩ at room temperature. The electron spin lifetime and diffusion length are 500 ps and 1 μm, respectively, the spin injection efficiency being as high as 27%. This result paves the way for the realization of full germanium spintronic devices at room temperature.
Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride
Baig, R. B. Nasir; Verma, Sanny; Nadagouda, Mallikarjuna N.; Varma, Rajender S.
2016-01-01
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. PMID:27991593
Li, Q; Thonhauser, T
2012-10-24
The hydrogen-methane compound (H(2))(4)CH(4)-or for short H4M-is one of the most promising hydrogen-storage materials. This van der Waals compound is extremely rich in molecular hydrogen: 33.3 mass%, not including the hydrogen bound in CH(4); including it, we reach even 50.2 mass%. Unfortunately, H4M is not stable under ambient pressure and temperature, requiring either low temperature or high pressure. In this paper, we investigate the properties and structure of the molecular and crystalline forms of H4M, using ab initio methods based on van der Waals DFT (vdW-DF). We further investigate the possibility of creating the pressures required to stabilize H4M through external agents such as metal organic framework (MOF) materials and carbon nanotubes, with very encouraging results. In particular, we find that certain MOFs can create considerable pressure for H4M in their cavities, but not enough to stabilize it at room temperature, and moderate cooling is still necessary. On the other hand, we find that all the investigated carbon nanotubes can create the high pressures required for H4M to be stable at room temperature, with direct implications for new and exciting hydrogen-storage applications.
Chang, Guoqing; Xu, Su -Yang; Zheng, Hao; ...
2016-12-15
Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co 2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that,more » in the absence of spin-orbit coupling, Co 2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Lastly, our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co 2TiX compounds at high temperature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Guoqing; Xu, Su -Yang; Zheng, Hao
Topological semimetals (TSMs) including Weyl semimetals and nodal-line semimetals are expected to open the next frontier of condensed matter and materials science. Although the first inversion breaking Weyl semimetal was recently discovered in TaAs, its magnetic counterparts, i.e., the time-reversal breaking Weyl and nodal line semimetals, remain elusive. They are predicted to exhibit exotic properties distinct from the inversion breaking TSMs including TaAs. In this paper, we identify the magnetic topological semimetal states in the ferromagnetic half-metal compounds Co 2TiX (X = Si, Ge, or Sn) with Curie temperatures higher than 350 K. Our first-principles band structure calculations show that,more » in the absence of spin-orbit coupling, Co 2TiX features three topological nodal lines. The inclusion of spin-orbit coupling gives rise to Weyl nodes, whose momentum space locations can be controlled as a function of the magnetization direction. Lastly, our results not only open the door for the experimental realization of topological semimetal states in magnetic materials at room temperature, but also suggest potential applications such as unusual anomalous Hall effect in engineered monolayers of the Co 2TiX compounds at high temperature.« less
Boufouss, El Hafed; Francis, Laurent A; Kilchytska, Valeriya; Gérard, Pierre; Simon, Pascal; Flandre, Denis
2013-12-13
This paper presents an ultra-low power CMOS voltage reference circuit which is robust under biomedical extreme conditions, such as high temperature and high total ionized dose (TID) radiation. To achieve such performances, the voltage reference is designed in a suitable 130 nm Silicon-on-Insulator (SOI) industrial technology and is optimized to work in the subthreshold regime of the transistors. The design simulations have been performed over the temperature range of -40-200 °C and for different process corners. Robustness to radiation was simulated using custom model parameters including TID effects, such as mobilities and threshold voltages degradation. The proposed circuit has been tested up to high total radiation dose, i.e., 1 Mrad (Si) performed at three different temperatures (room temperature, 100 °C and 200 °C). The maximum drift of the reference voltage V(REF) depends on the considered temperature and on radiation dose; however, it remains lower than 10% of the mean value of 1.5 V. The typical power dissipation at 2.5 V supply voltage is about 20 μW at room temperature and only 75 μW at a high temperature of 200 °C. To understand the effects caused by the combination of high total ionizing dose and temperature on such voltage reference, the threshold voltages of the used SOI MOSFETs were extracted under different conditions. The evolution of V(REF) and power consumption with temperature and radiation dose can then be explained in terms of the different balance between fixed oxide charge and interface states build-up. The total occupied area including pad-ring is less than 0.09 mm2.
Taniguchi, Shohei; Green, Mark; Lim, Teck
2011-03-16
The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.
Bend strengths of reaction bonded silicon nitride prepared from dry attrition milled silicon powder
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Glasgow, T. K.
1979-01-01
Dry attrition milled silicon powder was compacted, sintered in helium, and reaction bonded in nitrogen-4 volume percent hydrogen. Bend strengths of bars with as-nitrided surfaces averaged as high as 210 MPa at room temperature and 220 MPa at 1400 C. Bars prepared from the milled powder were stronger than those prepared from as-received powder at both room temperature and at 1400 C. Room temperature strength decreased with increased milling time and 1400 C strength increased with increased milling time.
Wan, Haiying; Shi, Shifan; Bai, Litao; Shamsuzzoha, Mohammad; Harrell, J W; Street, Shane C
2010-08-01
We describe an approach to synthesize monodisperse CoPt nanoparticles with dendrimer as template by a simple chemical reduction method in aqueous solution using NaBH4 as reducing agent at room temperature. The as-made CoPt nanoparticles buried in the dendrimer matrix have the chemically disordered fcc structure and can be transformed to the fct phase after annealing at 700 degrees C. This is the first report of dendrimer-mediated room temperature synthesis of monodisperse magnetic nanoparticles in aqueous solution.
Room Temperature Monoclinic Phase in BaTiO3 Single Crystals
NASA Astrophysics Data System (ADS)
Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman
2010-03-01
BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.
Ultrahigh-sensitive sensing platform based on p-type dumbbell-like Co3O4 network
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Zhang, Tong; Zhang, Rui; Lou, Zheng; Deng, Jianan; Wang, Lili
2017-12-01
Development of high performance room temperature sensors remains a grand challenge for high demand of practical application. Metal oxide semiconductors (MOSs) have many advantages over others due to their easy functionalization, high surface area, and low cost. However, they typically need a high work temperature during sensing process. Here, p-type sensing layer is reported, consisting of pore-rich dumbbell-like Co3O4 particles (DP-Co3O4) with intrinsic high catalytic activity. The gas sensor (GS) based DP-Co3O4 catalyst exhibits ultrahigh NH3 sensing activity along with excellent stability over other structure based NH3 GSs in room temperature work environment. In addition, the unique structure of DP-Co3O4 with pore-rich and high catalytic activity endows fast gas diffusion rate and high sensitivity at room temperature. Taken together, the findings in this work highlight the merit of integrating highly active materials in p-type materials, offering a framework to develop high-sensitivity room temperature sensing platforms.
Rabadán, Adrián; Álvarez-Ortí, Manuel; Pardo, José Emilio; Alvarruiz, Andrés
2018-09-01
Chemical composition and stability parameters of three cold-pressed nut oils (almond, walnut and pistachio) were monitored for up to 16 months of storage at 5 °C, 10 °C, 20 °C and room temperature. Freshly pressed pistachio oil had lower peroxide value than almond oil and higher induction period than almond and walnut oils, indicating a higher stability. The peroxide values increased faster at room temperature than at lower temperatures during the storage time, and the highest increase was for pistachio oil stored at room temperature exposed to daylight. The induction period decreased for all three nut oils during the storage time, regardless of the storage conditions. Pistachio oil remained the most stable oil at the end of the storage time, followed by almond oil. The percentage of polyunsaturated fatty acids decreased slightly throughout the storage. Copyright © 2018 Elsevier Ltd. All rights reserved.
High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air
NASA Technical Reports Server (NTRS)
Gyekenyesi, John Z.; Bansal, Narottam P.
2000-01-01
High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.
Resonant Ultrasound Spectroscopy studies of Berea sandstone at high temperature
Davis, Eric S.; Sturtevant, Blake T.; Sinha, Dipen N.; ...
2016-09-04
Resonant Ultrasound Spectroscopy was used in this paper to determine the elastic moduli of Berea sandstone from room temperature to 478 K. Sandstone is a common component of oil reservoirs, and the temperature range was chosen to be representative of typical downhole conditions, down to about 8 km. In agreement with previous works, Berea sandstone was found to be relatively soft with a bulk modulus of approximately 6 GPa as compared to 37.5 GPa for α-quartz at room temperature and pressure. Finally, it was found that Berea sandstone undergoes a ~17% softening in bulk modulus between room temperature and 385more » K, followed by an abnormal behavior of similar stiffening between 385 K and 478 K.« less
Resonant Ultrasound Spectroscopy studies of Berea sandstone at high temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Eric S.; Sturtevant, Blake T.; Sinha, Dipen N.
Resonant Ultrasound Spectroscopy was used in this paper to determine the elastic moduli of Berea sandstone from room temperature to 478 K. Sandstone is a common component of oil reservoirs, and the temperature range was chosen to be representative of typical downhole conditions, down to about 8 km. In agreement with previous works, Berea sandstone was found to be relatively soft with a bulk modulus of approximately 6 GPa as compared to 37.5 GPa for α-quartz at room temperature and pressure. Finally, it was found that Berea sandstone undergoes a ~17% softening in bulk modulus between room temperature and 385more » K, followed by an abnormal behavior of similar stiffening between 385 K and 478 K.« less
Walsh, Darren A; Lovelock, Kevin R J; Licence, Peter
2010-11-01
The high viscosity and unusual properties of room temperature ionic liquids (RTILs) present a number of challenges when performing steady-state voltammetry and scanning electrochemical microscopy in RTILs. These include difficulties in recording steady-state currents at ultramicroelectrode surfaces due to low diffusion coefficients of redox species and problems associated with unequal diffusion coefficients of oxidised and reduced species in RTILs. In this tutorial review, we highlight the recent progress in the use of RTILs as electrolytes for ultramicroelectrode voltammetry and SECM. We describe the basic principles of ultramicroelectrode voltammetry and SECM and, using examples from the recent literature, we discuss the conditions that must be met to perform steady-state voltammetry and SECM measurements in RTILs. Finally, we briefly discuss the electrochemical insights that can be obtained from such measurements.
Abasolo, Lydia; Tobías, Aurelio; Leon, Leticia; Carmona, Loreto; Fernandez-Rueda, Jose Luis; Rodriguez, Ana Belen; Fernandez-Gutierrez, Benjamin; Jover, Juan Angel
2013-01-01
Patients with rheumatoid arthritis (RA) complain that weather conditions aggravate their symptoms. We investigated the short-term effects of weather conditions on worsening of RA and determined possible seasonal fluctuations. We conducted a case-crossover study in Madrid, Spain. Daily cases of RA flares were collected from the emergency room of a tertiary level hospital between 2004 and 2007. 245 RA patients who visited the emergency room 306 times due to RA related complaints as the main diagnostic reason were included in the study. Patients from 50 to 65 years old were 16% more likely to present a flare with lower mean temperatures. Our results support the belief that weather influences rheumatic pain in middle aged patients. Copyright © 2012 Elsevier España, S.L. All rights reserved.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation
NASA Astrophysics Data System (ADS)
Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander
2018-02-01
In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.
Borowiec, Joanna; Gillin, William P; Willis, Maureen A C; Boi, Filippo S; He, Y; Wen, J Q; Wang, S L; Schulz, Leander
2018-01-11
In this study, a direct sulfidation reaction of ammonium perrhenate (NH 4 ReO 4 ) leading to a synthesis of rhenium disulfide (ReS 2 ) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS 2 . The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS 2 with a low degree of layer stacking.
Guo, Ruixiang; Ikar'i, Tomofumi; Zhang, Jun; Minamide, Hiroaki; Ito, Hiromasa
2010-08-02
A surface-emitting THz parametric oscillator is set up to generate a narrow-linewidth, nanosecond pulsed THz-wave radiation. The THz-wave radiation is coherently detected using the frequency up-conversion in MgO: LiNbO(3) crystal. Fast frequency tuning and automatic achromatic THz-wave detection are achieved through a special optical design, including a variable-angle mirror and 1:1 telescope devices in the pump and THz-wave beams. We demonstrate a frequency-agile THz-wave parametric generation and THz-wave coherent detection system. This system can be used as a frequency-domain THz-wave spectrometer operated at room-temperature, and there are a high possible to develop into a real-time two-dimensional THz spectral imaging system.
Radiation effects in materials for optical interferometric devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koumvakalis, N.; Jani, M.G.; Halliburton, L.E.
The effects of ionizing radiation have been investigated in a series of materials commonly used in optical interferometric devices. Included in the study were three glass-ceramics (Zerodur, Cer-Vit 101, and Cer-Vit 142) and one Faraday-rotator glass (SF-57). Each glass-ceramic was irradiated at room temperature with 1.5-MeV electrons from a Van De Graaff accelerator. Similar irradiations were done on the Faraday-rotator glass at room temperature and 77 K. Optical absorption and electron spin resonance measurements provided a monitor of the radiation-induced point defects in all cases. The spectral characteristics and the production and thermal annealing behavior of these defects are described,more » and their possible effect on the performance of optical devices which incorporate these materials is considered.« less
BURNER RIG TESTING OF A500 C/SiC
2018-03-17
test program characterized the durability behavior of A500® C/SiC ceramic matrix composite material at room and elevated temperature . Specimens were...7 Figure 6. Typical Room- Temperature Tensile Stress-Versus-Strain Trace for As-Manufactured A500...Operation ......................................... 18 Figure 17. Example of the Burner Rig Temperature Profiles Used
NASA Astrophysics Data System (ADS)
Vaks, V. L.; Domracheva, E. G.; Chernyaeva, M. B.; Pripolzin, S. I.; Revin, L. S.; Tretyakov, I. V.; Anfertyev, V. A.; Yablokov, A. A.; Lukyanenko, I. A.; Sheikov, Yu. V.
2018-02-01
We show prospects for using the method of high-resolution terahertz spectroscopy for a continuous analysis of the decomposition products of energy substances in the gas phase (including short-lived ones) in a wide temperature range. The experimental setup, which includes a terahertz spectrometer for studying the thermal decomposition reactions, is described. The results of analysis of the gaseous decomposition products of energy substances by the example of ammonium nitrate heated from room temperature to 167°C are presented.
Recrystallization in Si upon ion irradiation at room temperature in Co/Si(111) thin film systems
NASA Astrophysics Data System (ADS)
Banu, Nasrin; Satpati, B.; Dev, B. N.
2018-04-01
After several decades of research it was concluded that for a constant flux recrystallization in Si upon ion irradiation is possible only at high temperature. At low temperature or at room temperature only amorphization can take place. However we have observed recrystallization in Si upon ion irradiation at room temperature in a Co/Si thin film system. The Co/Si sample was prepared by deposition of 25 nm Co on clean Si(111) substrate. An oxide layer (˜ 2nm) of cobalt at the top of the film due to air exposure. The ion irradiation was done at room temperature under high vacuum with 1MeV Si+ ion with low beam current < 400 nA. Earlier we have shown similar ion induced recrystallization in Si(100) substrate which had a sandwich Si/Ni/Si structure. This system had an epitaxial buffer Si layer on Si substrate. This study also shows that the phenomenon is independent of substrate orientation and buffer layer. We have used transmission electron microscopy (TEM) to study the recrystallization behavior.
Fujita, S; Obara, T; Tanaka, I; Yamauchi, C
1981-01-01
The relation of the rate of circulating air change to room temperature and relative humidity in animal quarters with a central air-conditioning system during heating and cooling seasons was investigated, with the results as follows: During the period of heating, the ambient temperature generally rose with a fall of relative humidity as the number of conditioned air changes per hour was increased. Vertical differences in temperature and humidity between levels of 0.5 and 1.5 m above the floor also diminished with increasing air change rate. This tendency was more conspicuous in small animals rooms with outer walls facing north and west. With increasing rate of air changes, the room temperature was prone to decline and the relative humidity to rise during the period of cooling. There were less vertical differences in temperature and humidity during this period. The velocity of air circulation within the animal quarters and its variations tended to increase progressively with increasing rate of ventilation, though the changes were modest.
Room temperature CO and H2 sensing with carbon nanoparticles.
Kim, Daegyu; Pikhitsa, Peter V; Yang, Hongjoo; Choi, Mansoo
2011-12-02
We report on a shell-shaped carbon nanoparticle (SCNP)-based gas sensor that reversibly detects reducing gas molecules such as CO and H(2) at room temperature both in air and inert atmosphere. Crystalline SCNPs were synthesized by laser-assisted reactions in pure acetylene gas flow, chemically treated to obtain well-dispersed SCNPs and then patterned on a substrate by the ion-induced focusing method. Our chemically functionalized SCNP-based gas sensor works for low concentrations of CO and H(2) at room temperature even without Pd or Pt catalysts commonly used for splitting H(2) molecules into reactive H atoms, while metal oxide gas sensors and bare carbon-nanotube-based gas sensors for sensing CO and H(2) molecules can operate only at elevated temperatures. A pristine SCNP-based gas sensor was also examined to prove the role of functional groups formed on the surface of functionalized SCNPs. A pristine SCNP gas sensor showed no response to reducing gases at room temperature but a significant response at elevated temperature, indicating a different sensing mechanism from a chemically functionalized SCNP sensor.
NASA Astrophysics Data System (ADS)
Jin, H.; Amirkhiz, B. Shalchi; Lloyd, D. J.
2018-03-01
The mechanical properties of fully annealed Al-4.6 wt pct Mg alloys with different levels of Mn and Fe have been characterized at room and superplastic forming (SPF) temperatures. The effects of Mn and Fe on the intermetallic phase, grain structure, and cavitation were investigated and correlated to the formability at different temperatures. Although both Mn and Fe contribute to the formation of Al6(Mn,Fe) phase, which refines the grain structure by particle-stimulated nucleation and Zener pinning, their effects are different. An increasing Mn reduces the room temperature formability due to the increasing number of intermetallic particles, but significantly improves the superplasticity by fine grain size-induced grain boundary sliding. Meanwhile, the Fe makes the constituent particles very coarse, resulting in reduced formability at all temperatures due to extensive cavitation. A combination of high Mn and low Fe is therefore beneficial to SPF, while low levels of both elements are good for cold forming. Consequently, the superplasticity of high-Mg aluminum alloys can be significantly improved by modifying the chemical composition with sacrifice of some room temperature formability.
NASA Astrophysics Data System (ADS)
Tyagi, A.; Penzkofer, A.; Batschauer, A.; Wolf, E.
2009-06-01
The fluorescence spectroscopic behaviour of (6R,S)-5,10-methenyltetrahydrofolate (MTHF), (6R,S)-10-formyltetrahydrofolate (10-HCO-H4folate), 10-formyldihydrofolate (10-HCO-H2folate), and 10-formylfolate (10-HCO-folate) in aqueous Tris-HCl buffer at pH 8 is studied. MTHF and 10-HCO-folate were commercially available. 10-HCO-H4folate was prepared from MTHF by hydrolysis at room temperature under anaerobic conditions. 10-HCO-H2folate was prepared by oxidation of 10-HCO-H4folate under aerobic conditions. Fluorescence quantum distributions at room temperature and fluorescence signal decays at room temperature and liquid nitrogen temperature were measured. The fluorescence lifetimes determined at room temperature (liquid nitrogen temperature) are 10 ps (2.9 ns) for MTHF, 38 ps (3.7 ns) for 10-HCO-H4folate, 80 ps (10.5 ns) for 10-HCO-H2folate, and 7.1 ns (20 ns) for 10-HCO-folate. The results are discussed in terms of dyadic (pterin-benzoyl-glutamate) photo-induced electron transfer and dyadic fluorescent dynamics.
Using sieving and pretreatment to separate plastics during end-of-life vehicle recycling.
Stagner, Jacqueline A; Sagan, Barsha; Tam, Edwin Kl
2013-09-01
Plastics continue to be a challenge for recovering materials at the end-of-life for vehicles. However, it may be possible to improve the recovery of plastics by exploiting material characteristics, such as shape, or by altering their behavior, such as through temperature changes, in relation to recovery processes and handling. Samples of a 2009 Dodge Challenger front fascia were shredded in a laboratory-scale hammer mill shredder. A 2 × 2 factorial design study was performed to determine the effect of sample shape (flat versus curved) and sample temperature (room temperature versus cryogenic temperature) on the size of the particles exiting from the shredder. It was determined that sample shape does not affect the particle size; however, sample temperature does affect the particle size. At cryogenic temperatures, the distribution of particle sizes is much narrower than at room temperature. Having a more uniform particle size could make recovery of plastic particles, such as these more efficient during the recycling of end-of-life vehicles. Samples of Chrysler minivan headlights were also shredded at room temperature and at cryogenic temperatures. The size of the particles of the two different plastics in the headlights is statistically different both at room temperature and at cryogenic temperature, and the particles are distributed narrowly. The research suggests that incremental changes in end-of-life vehicle processing could be effective in aiding materials recovery.
Room temperature growth of ZnO nanorods by hydrothermal synthesis
NASA Astrophysics Data System (ADS)
Tateyama, Hiroki; Zhang, Qiyan; Ichikawa, Yo
2018-05-01
The effect of seed layer morphology on ZnO nanorod growth at room temperature was studied via hydrothermal synthesis on seed layers with different thicknesses and further annealed at different temperatures. The change in the thickness and annealing temperature enabled us to control over a diameter of ZnO nanorods which are attributed to the changing of crystallinity and roughness of the seed layers.
IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS
Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...
Nickel-catalyzed synthesis of aryl trifluoromethyl sulfides at room temperature.
Zhang, Cheng-Pan; Vicic, David A
2012-01-11
Inexpensive nickel-bipyridine complexes were found to be active for the trifluoromethylthiolation of aryl iodides and aryl bromides at room temperature using the convenient [NMe(4)][SCF(3)] reagent. © 2011 American Chemical Society
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukanto, H., E-mail: masheher@uns.ac.id; Budiana, E. P., E-mail: budiana.e@gmail.com; Putra, B. H. H., E-mail: benedictus.hendy@gmail.com
The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004,more » the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.« less
Quality of red blood cells isolated from umbilical cord blood stored at room temperature.
Zhurova, Mariia; Akabutu, John; Acker, Jason
2012-01-01
Red blood cells (RBCs) from cord blood contain fetal hemoglobin that is predominant in newborns and, therefore, may be more appropriate for neonatal transfusions than currently transfused adult RBCs. Post-collection, cord blood can be stored at room temperature for several days before it is processed for stem cells isolation, with little known about how these conditions affect currently discarded RBCs. The present study examined the effect of the duration cord blood spent at room temperature and other cord blood characteristics on cord RBC quality. RBCs were tested immediately after their isolation from cord blood using a broad panel of quality assays. No significant decrease in cord RBC quality was observed during the first 65 hours of storage at room temperature. The ratio of cord blood to anticoagulant was associated with RBC quality and needs to be optimized in future. This knowledge will assist in future development of cord RBC transfusion product.
Electric field modulated ferromagnetism in ZnO films deposited at room temperature
NASA Astrophysics Data System (ADS)
Bu, Jianpei; Liu, Xinran; Hao, Yanming; Zhou, Guangjun; Cheng, Bin; Huang, Wei; Xie, Jihao; Zhang, Heng; Qin, Hongwei; Hu, Jifan
2018-04-01
The ZnO film deposited at room temperature, which is composed of the amorphous-phase background plus a few nanograins or nanoclusters (about 1-2 nm), exhibits room temperature ferromagnetism (FM). Such FM is found to be connected with oxygen vacancies. For the Ta/ZnO/Pt device based on the medium layer ZnO deposited at room temperature, the saturation magnetization not only is modulated between high and low resistive states by electric voltage with DC loop electric current but also increases/decreases through adjusting the magnitudes of positive/negative DC sweeping voltage. Meanwhile, the voltage-controlled conductance quantization is observed in Ta/ZnO/Pt, accompanying the voltage-controlled magnetization. However, the saturation magnetization of the Ta/ZnO/Pt device becomes smaller under positive electric voltage and returns in some extent under negative electric voltage, when the DC loop electric current is not applied.
Room Temperature Memory for Few Photon Polarization Qubits
NASA Astrophysics Data System (ADS)
Kupchak, Connor; Mittiga, Thomas; Jordan, Bertus; Nazami, Mehdi; Nolleke, Christian; Figueroa, Eden
2014-05-01
We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87Rb atoms utilizing a Λ-type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80 % using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.
Edalati, Kaveh; Horita, Zenji; Valiev, Ruslan Z
2018-04-30
Recent developments of nanostructured materials with grain sizes in the nanometer to submicrometer range have provided ground for numerous functional properties and new applications. However, in terms of mechanical properties, bulk nanostructured materials typically show poor ductility despite their high strength, which limits their use for structural applications. The present article shows that the poor ductility of nanostructured alloys can be changed to room-temperature superplastisity by a transition in the deformation mechanism from dislocation activity to grain-boundary sliding. We report the first observation of room-temperature superplasticity (over 400% tensile elongations) in a nanostructured Al alloy by enhanced grain-boundary sliding. The room-temperature grain-boundary sliding and superplasticity was realized by engineering the Zn segregation along the Al/Al boundaries through severe plastic deformation. This work introduces a new boundary-based strategy to improve the mechanical properties of nanostructured materials for structural applications, where high deformability is a requirement.
Li, Longbiao
2016-01-01
In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures. PMID:28773966
NASA Astrophysics Data System (ADS)
Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay
2015-02-01
The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.
Manna, Suman K; Dupont, Laurent; Li, Guoqiang
2016-08-11
A thermodynamically stable blue phase (BP) based on the conventional rod like nematogen is demonstrated for the first time at room temperature by only diluting a chiral-nematic mixture with the help of some nonmesogenic isotropic liquid. It is observed that addition of this isotropic liquid does not only stabilize the BPs at room temperature, but also significantly improves the temperature range (reversible during heating and cooling) of the BPs to the level of more than 28 °C. Apart from that, we have observed its microsecond electro-optic response time and, external electric field induced wavelength tuning, which are the two indispensable requirements for next generation optical devices, photonic displays, lasers, and many more. Here we propose that the isotropic liquid plays two crucial roles simultaneously. On one hand, it reduces the effective elastic moduli (EEM) of the BP mixtures and stabilizes the BPs at room temperature, and on the other hand, it increases the symmetry of the mutual orientation ordering among the neighboring unit cells of the BP. Hence, the resultant mixture becomes better resistive to some microscopic change due to the change in temperature, even over a large range.
NASA Astrophysics Data System (ADS)
O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.
2015-12-01
Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.
Lead palladium titanate: A room-temperature multiferroic
NASA Astrophysics Data System (ADS)
Gradauskaite, Elzbieta; Gardner, Jonathan; Smith, Rebecca M.; Morrison, Finlay D.; Lee, Stephen L.; Katiyar, Ram S.; Scott, James F.
2017-09-01
There have been a large number of papers on bismuth ferrite (BiFe O3 ) over the past few years, trying to exploit its room-temperature magnetoelectric multiferroic properties. Although these are attractive, BiFe O3 is not the ideal multiferroic due to weak magnetization and the difficulty in limiting leakage currents. Thus there is an ongoing search for alternatives, including such materials as gallium ferrite (GaFe O3 ). In the present work we report a comprehensive study of the perovskite PbT i1 -xP dxO3 with 0
NASA Astrophysics Data System (ADS)
Bochenek, Kamil; Basista, Michal
2015-11-01
Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.
Highly Efficient Multilayer Thermoelectric Devices
NASA Technical Reports Server (NTRS)
Boufelfel, Ali
2006-01-01
Multilayer thermoelectric devices now at the prototype stage of development exhibit a combination of desirable characteristics, including high figures of merit and high performance/cost ratios. These devices are capable of producing temperature differences of the order of 50 K in operation at or near room temperature. A solvent-free batch process for mass production of these state-of-the-art thermoelectric devices has also been developed. Like prior thermoelectric devices, the present ones have commercial potential mainly by virtue of their utility as means of controlled cooling (and/or, in some cases, heating) of sensors, integrated circuits, and temperature-critical components of scientific instruments. The advantages of thermoelectric devices for such uses include no need for circulating working fluids through or within the devices, generation of little if any noise, and high reliability. The disadvantages of prior thermoelectric devices include high power consumption and relatively low coefficients of performance. The present development program was undertaken in the hope of reducing the magnitudes of the aforementioned disadvantages and, especially, obtaining higher figures of merit for operation at and near room temperature. Accomplishments of the program thus far include development of an algorithm to estimate the heat extracted by, and the maximum temperature drop produced by, a thermoelectric device; solution of the problem of exchange of heat between a thermoelectric cooler and a water-cooled copper block; retrofitting of a vacuum chamber for depositing materials by sputtering; design of masks; and fabrication of multilayer thermoelectric devices of two different designs, denoted I and II. For both the I and II designs, the thicknesses of layers are of the order of nanometers. In devices of design I, nonconsecutive semiconductor layers are electrically connected in series. Devices of design II contain superlattices comprising alternating electron-acceptor (p)-doped and electron-donor (n)-doped, nanometer- thick semiconductor layers.
Stability of allopurinol and of five antineoplastics in suspension.
Dressman, J B; Poust, R I
1983-04-01
The stability of allopurinol, azathioprine, chlorambucil, melphalan, mercaptopurine, and thioguanine each in an extemporaneously prepared suspension was studied. Tablets of each drug were crushed, mixed with a suspending agent, and brought to a final volume of 10, 15, or 20 ml with a 2:1 mixture of simple syrup and wild cherry syrup. Suspensions were prepared in the following concentrations: allopurinol (20 mg/ml), azathioprine (50 mg/ml), chlorambucil (2 mg/ml), melphalan (2 mg/ml), mercaptopurine (50 mg/ml), and thioguanine (40 mg/ml). Using high-performance liquid chromatography or ultraviolet scans, duplicate assays were performed on each suspension periodically during storage for up to 84 days at ambient room temperature or 5 degrees C. The time required for the suspensions to drop below 90% of labeled strength was used as an indicator of drug stability. Allopurinol and azathioprine were stable for at least 56 days at room temperature and at 5 degrees C. Chlorambucil decomposed rapidly at room temperature but was stable for seven days when stored at 5 degrees C. Melphalan suspensions did not meet the stated criteria for stability even at the time of initial assay. Mercaptopurine and thioguanine were stable for 14 and 84 days, respectively, at room temperature; at 5 degrees C, assay values dropped below those obtained at room temperature. In the suspension formulation tested, allopurinol, azathioprine, mercaptopurine, and thioguanine are stable for at least 14 days at room temperature; chlorambucil suspensions should be refrigerated and discarded after seven days. Melphalan decomposes too rapidly to make this suspension formulation feasible for extemporaneous compounding.
Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B.; Tigelaar, Dean M.
2009-01-01
Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics were measured at a temperature range of 23C to 1200C. The fabrics evaluated were silica, high and low-boria content aluminoborosilicate, and silicon carbide. Properties studied included fabric break strengths from room temperature to 1200C, and bending durability after temperature conditioning at 1200C and 1400C. The interaction of the fabric and ceramic insulation was also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retained more strength and fabric durability than the other fabrics studied at high temperature.
Strength and flexibility properties of advanced ceramic fabrics
NASA Technical Reports Server (NTRS)
Sawko, P. M.; Tran, H. K.
1985-01-01
The mechanical properties of four advanced ceramic fabrics are measured at a temperature range of 23 C to 1200 C. The fabrics evaluated are silica, high-and low-boria content aluminoborosilicate, and silicon carbide. Properties studied include fabric break strengths from room temperature to 1200 C, and bending durability after temperature conditioning at 1200 C and 1400 C. The interaction of the fabric and ceramic insulation is also studied for shrinkage, appearance, bend resistance, and fabric-to-insulation bonding. Based on these tests, the low-boria content aluminoborosilicate fabric retains more strength and fabric durability than the other fabrics studied at high temperature.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
Exploring reaction pathways in the hydrothermal growth of phase-pure bismuth ferrites
NASA Astrophysics Data System (ADS)
Goldman, Abby R.; Fredricks, Jeremy L.; Estroff, Lara A.
2017-06-01
Phase-pure bismuth ferrites (BiFeO3 and Bi2Fe4O9) are grown using hydrothermal synthesis. In addition to varying the KOH, bismuth, and iron salt concentrations to tune which crystalline phases are formed, we identified that a 48 h, pre-furnace, room temperature reaction is critical for the formation of phase-pure BiFeO3. To understand the reaction pathways leading to the different bismuth ferrite phases, we investigate the changes in composition of the intermediate products as a function of reagent concentrations and room temperature reaction times. During the syntheses that included a room temperature reaction, Bi25FeO40 is formed in the intermediate products, and BiFeO3 is the majority phase of the final products. The BiFeO3 crystals grown using this method are clusters of faceted subunits. These results indicate that forming Bi25FeO40 is a productive route to the formation of BiFeO3. Bi2Fe4O9 is formed via an alternate reaction pathway that proceeded via an amorphous precursor. This improved understanding of how hydrothermal synthesis can be used to control the phase-purity and morphology of bismuth ferrites opens doors to explore the multiferroic properties of BiFeO3 with complex morphologies.
Wang, Junxiu; Xiong, Guoliang; Ma, Liang; Wang, Shihui; Zhou, Xu; Wang, Lei; Xiao, Lehui; Su, Xin; Yu, Changyuan
2017-08-15
Single-nucleotide mutation (SNM) has proven to be associated with a variety of human diseases. Development of reliable methods for the detection of SNM is crucial for molecular diagnosis and personalized medicine. The sandwich assays are widely used tools for detecting nucleic acid biomarkers due to their low cost and rapid signaling. However, the poor hybridization specificity of signal probe at room temperature hampers the discrimination of mutant and wild type. Here, we demonstrate a dynamic sandwich assay on magnetic beads for SNM detection based on the transient binding between signal probe and target. By taking the advantage of mismatch sensitive thermodynamics of transient DNA binding, the dynamic sandwich assay exhibits high discrimination factor for mutant with a broad range of salt concentration at room temperature. The beads used in this assay serve as a tool for separation, and might be helpful to enhance SNM selectivity. Flexible design of signal probe and facile magnetic separation allow multiple-mode downstream analysis including colorimetric detection and isothermal amplification. With this method, BRAF mutations in the genomic DNA extracted from cancer cell lines were tested, allowing sensitive detection of SNM at very low abundances (0.1-0.5% mutant/wild type). Copyright © 2017 Elsevier B.V. All rights reserved.
Room temperature spin valve effect in NiFe/WS2/Co junctions
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood
2016-01-01
The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes. PMID:26868638
Room temperature spin valve effect in NiFe/WS₂/Co junctions.
Iqbal, Muhammad Zahir; Iqbal, Muhammad Waqas; Siddique, Salma; Khan, Muhammad Farooq; Ramay, Shahid Mahmood
2016-02-12
The two-dimensional (2D) layered electronic materials of transition metal dichalcogenides (TMDCs) have been recently proposed as an emerging canddiate for spintronic applications. Here, we report the exfoliated single layer WS2-intelayer based spin valve effect in NiFe/WS2/Co junction from room temperature to 4.2 K. The ratio of relative magnetoresistance in spin valve effect increases from 0.18% at room temperature to 0.47% at 4.2 K. We observed that the junction resistance decreases monotonically as temperature is lowered. These results revealed that semiconducting WS2 thin film works as a metallic conducting interlayer between NiFe and Co electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierściński, K., E-mail: kamil.pierscinski@ite.waw.pl; Pierścińska, D.; Pluska, M.
2015-10-07
Room temperature, single mode, pulsed emission from two-section coupled cavity InGaAs/AlGaAs/GaAs quantum cascade laser fabricated by focused ion beam processing is demonstrated and analyzed. The single mode emission is centered at 1059.4 cm{sup −1} (9.44 μm). A side mode suppression ratio of 43 dB was achieved. The laser exhibits a peak output power of 15 mW per facet at room temperature. The stable, single mode emission is observed within temperature tuning range, exhibiting shift at rate of 0.59 nm/K.
NASA Astrophysics Data System (ADS)
Ullah, Aman; Gul, Hafiza Bushra; Ullah, Amir; Sheeraz, Muhammad; Bae, Jong-Seong; Jo, Wook; Ahn, Chang Won; Kim, Ill Won; Kim, Tae Heon
2018-01-01
A thermotropic phase boundary between non-ergodic and ergodic relaxor phases is tuned in lead-free Bi1/2Na1/2TiO3-based ceramics through a structural transition driven by compositional modification (usually named as "morphotropic approach"). The substitution of Bi(Ni1/2Ti1/2)O3 for Bi1/2(Na0.78K0.22)1/2TiO3 induces a transition from tetragonal to "metrically" cubic phase and thereby, the ergodic relaxor ferroelectric phase becomes predominant at room temperature. A shift of the transition temperature (denoted as TF-R) in the non-ergodic-to-ergodic phase transition is corroborated via temperature-dependent dielectric permittivity and loss measurements. By monitoring the chemical composition dependence of polarization-electric field and strain-electric field hysteresis loops, it is possible to track the critical concentration of Bi(Ni1/2Ti1/2)O3 where the (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Ni0.5Ti0.5)O3 ceramic undergoes the phase transition around room temperature. At the Bi(Ni0.5Ti0.5)O3 content of x = 0.050, the highest room-temperature electrostrictive coefficient of 0.030 m4/C2 is achieved with no hysteretic characteristic, which can foster the realization of actual electrostrictive devices with high operational efficiency at room temperature.
NASA Astrophysics Data System (ADS)
Nguyen, Van Son; Jubera, Véronique; Garcia, Alain; Debéda, Hélène
2015-12-01
Though semiconducting properties of ZnO have been extensively investigated under hazardous gases, research is still necessary for low-cost sensors working at room temperature. Study of printed ZnO nanopowders-based sensors has been undertaken for hydrogen detection. A ZnO paste made with commercial nanopowders is deposited onto interdigitated Pt electrodes and sintered at 400 °C. The ZnO layer structure and morphology are first examined by XRD, SEM, AFM and emission/excitation spectra prior to the study of the effect of UV-light on the electrical conduction of the semiconductor oxide. The response to hydrogen exposure is subsequently examined, showing that low UV-light provided by halogen lighting enhances the gas response and allows detection at room temperature with gas responses similar to those obtained in dark conditions at 150 °C. A gas response of 44% (relative change in current) under 300 ppm is obtained at room temperature. Moreover, it is demonstrated that very low UV-light power (15 μW/mm2) provided by the halogen lamp is sufficient to give sensitivities as high as those for much higher powers obtained with a UV LED (7.7 mW/mm2). These results are comparable to those obtained by others for 1D or 2D ZnO nanostructures working at room temperature or at temperatures up to 250 °C.
Li, Tian-tian; Bao, Na; Geng, Ai-fang; Yang, Ying; Dong, Xiang-ting
2018-01-01
For the first time, ordered mesoporous ZnO nanoparticles have been synthesized by a template method. The electroplating after chemical plating method was creatively used to form copper film on the surface of the prepared ZnO, and then a CuO film-decorated ordered porous ZnO composite (CuO/ZnO) was obtained by a high-temperature oxidation method. In2O3 was loaded into the prepared CuO film–ZnO by an ultrasonic-assisted method to sensitize the room temperature gas-sensing performance of the prepared CuO/ZnO materials. The doped In2O3 could effectively improve the gas-sensing properties of the prepared materials to nitrogen oxides (NOx) at room temperature. The 1% In2O3 doped CuO/ZnO sample (1 wt% In2O3–CuO/ZnO) showed the best gas-sensing properties whose response to 100 ppm NOx reached 82%, and the detectable minimum concentration reached 1 ppm at room temperature. The prepared materials had a good selectivity, better response, very low detection limit, and high sensitivity to NOx gas at room temperature, which would have a great development space in the gas sensor field and a great research value. PMID:29515887
Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite
NASA Astrophysics Data System (ADS)
Jyoti, Kanaujiya, Neha; Varma, G. D.
2018-05-01
Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.
Room-temperature antiferromagnetic memory resistor.
Marti, X; Fina, I; Frontera, C; Liu, Jian; Wadley, P; He, Q; Paull, R J; Clarkson, J D; Kudrnovský, J; Turek, I; Kuneš, J; Yi, D; Chu, J-H; Nelson, C T; You, L; Arenholz, E; Salahuddin, S; Fontcuberta, J; Jungwirth, T; Ramesh, R
2014-04-01
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Peng, Peng; Hu, Anming; Gerlich, Adrian P.; Liu, Yangai; Zhou, Y. Norman
2015-01-01
Metallic bonding at an interface is determined by the application of heat and/or pressure. The means by which these are applied are the most critical for joining nanoscale structures. The present study considers the feasibility of room-temperature pressureless joining of copper wires using water-based silver nanowire paste. A novel mechanism of self-generated local heating within the silver nanowire paste and copper substrate system promotes the joining of silver-to-silver and silver-to-copper without any external energy input. The localized heat energy was delivered in-situ to the interfaces to promote atomic diffusion and metallic bond formation with the bulk component temperature stays near room-temperature. This local heating effect has been detected experimentally and confirmed by calculation. The joints formed at room-temperature without pressure achieve a tensile strength of 5.7 MPa and exhibit ultra-low resistivity in the range of 101.3 nOhm·m. The good conductivity of the joint is attributed to the removal of organic compounds in the paste and metallic bonding of silver-to-copper and silver-to-silver. The water-based silver nanowire paste filler material is successfully applied to various flexible substrates for room temperature bonding. The use of chemically generated local heating may become a potential method for energy in-situ delivery at micro/nanoscale. PMID:25788019
Investigation on drug solubility enhancement using deep eutectic solvents and their derivatives.
Li, Zheng; Lee, Ping I
2016-05-30
Deep eutectic solvent (DES) is a room temperature liquid typically formed by mixing two solid compounds, such as a quaternary ammonium salt (QAS) (e.g. choline chloride) and a hydrogen bond donor (HBD) (e.g. urea or a carboxylic acid) at their eutectic composition. Very often, a range of room temperature liquids can also be obtained near the eutectic composition. Hence, it is more convenient to introduce a more general term deep eutectic solvent derivatives (DESDs) to describe a wide range of DES-like derivatives including those derived from ternary mixtures. The melting point of the mixture is lowered because the hydrogen bonding between DESD components reduces the lattice energy of components of the eutectic system. Based on the analysis of available data for 22 such choline chloride-based DES pairs, we found that the observed melting point depression can be statistically correlated with the difference between the hydrogen bonding contribution (δh) and the polar contribution (δp) to the solubility parameter of the hydrogen bond donor (HBD) component. The correlation was validated with a new DESD based on glycolic acid and choline chloride, which form DESDs at a molar ratio between 1:1 and 1:4 with DES-like properties. As a room temperature liquid, this DESD exhibits a wide range of solubility enhancement on several weakly basic poorly water-soluble drugs. For example, the solubility of itraconazole, piroxicam, lidocaine, and posaconazole has been observed to increase by 6700, 430, 28, and 6400-fold, respectively as compared to their aqueous solubility at room temperature. Furthermore, another new ternary DESD based on choline chloride, glycolic acid, and oxalic acid at a molar ratio of 1:1.6:0.4 is shown to further increase the solubility of itraconazole to a remarkable level of 5.36mg/mL (a 53,600-fold increase!). Because the components of such DESDs can include those biodegradable ones that had previously been used in formulated human products, the potential applicability of suitable DESDs to drug delivery, especially in enhancing drug solubility for topical formulations could be very attractive. Copyright © 2016 Elsevier B.V. All rights reserved.
Heat pump/refrigerator using liquid working fluid
Wheatley, John C.; Paulson, Douglas N.; Allen, Paul C.; Knight, William R.; Warkentin, Paul A.
1982-01-01
A heat transfer device is described that can be operated as a heat pump or refrigerator, which utilizes a working fluid that is continuously in a liquid state and which has a high temperature-coefficient of expansion near room temperature, to provide a compact and high efficiency heat transfer device for relatively small temperature differences as are encountered in heating or cooling rooms or the like. The heat transfer device includes a pair of heat exchangers that may be coupled respectively to the outdoor and indoor environments, a regenerator connecting the two heat exchangers, a displacer that can move the liquid working fluid through the heat exchangers via the regenerator, and a means for alternately increasing and decreasing the pressure of the working fluid. The liquid working fluid enables efficient heat transfer in a compact unit, and leads to an explosion-proof smooth and quiet machine characteristic of hydraulics. The device enables efficient heat transfer as the indoor-outdoor temperature difference approaches zero, and enables simple conversion from heat pumping to refrigeration as by merely reversing the direction of a motor that powers the device.
Chemical characterization of solid polymer electrolyte membrane surfaces in LiFePO4 half-cells
NASA Astrophysics Data System (ADS)
Kyu, Thein; He, Ruixuan; Peng, Fang; Dunn, William E.; Kyu's Group Team, Dr.
High temperature (60 °C) capacity retention of succinonitrile plasticized solid polymer electrolyte membrane (PEM) in a LiFePO4 half-cell was investigated with or without lithium bis(oxalato)borate (LiBOB) modification. Various symmetric cells and half-cells were studied under different thermal and electrochemical conditions. At room temperature cycling, the unmodified PEM in the half-cell appeared stable up to 50 cycles tested. Upon cycling at 60 °C, the capacity decays rapidly and concurrently the cell resistance increased. The chemical compositions of the solid PEM surfaces on both cathode and anode sides were analyzed. New IR bands (including those belonged to amide) were discerned on the unmodified PEM surface of the Li electrode side at 60 °C suggestive of side reaction, but no new bands develop during room temperature cycling. To our astonishment, the side reaction was effectively suppressed upon LiBOB addition (0.4 wt%) into the PEM, contributing to increased high temperature capacity retention at 60°C. Plausible mechanisms of capacity fading and improved cycling performance due to LiBOB modification are discussed.
NASA Technical Reports Server (NTRS)
Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight
2006-01-01
In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.
High-Operating Temperature HgCdTe: A Vision for the Near Future
NASA Astrophysics Data System (ADS)
Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.
2016-09-01
We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the background radiation can be reduced by 90%, then room-temperature operation is possible.
Charge-carrier mobilities in Cd(0.8)Zn(0.2)Te single crystals used as nuclear radiation detectors
NASA Technical Reports Server (NTRS)
Burshtein, Z.; Jayatirtha, H. N.; Burger, A.; Butler, J. F.; Apotovsky, B.; Doty, F. P.
1993-01-01
Charge-carrier mobilities were measured for the first time in Cd(0.8)Zn(0.2)Te single crystals using time-of-flight measurements of charge carriers produced by short (10 ns) light pulses from a frequency-doubled Nd:YAG laser (532 nm). The electron mobility displayed a T exp -1.1 dependence on the absolute temperature T in the range 200-320 K, with a room-temperature mobility of 1350 sq cm/V s. The hole mobility displayed a T exp -2.0 dependence in the same temperature range, with a room-temperature mobility of 120 sq cm/V s. Cd(0.8)Zn(0.2)Te appears to be a very favorable material for a room-temperature electronic nuclear radiation detector.
NASA Technical Reports Server (NTRS)
Dewitt, D. P.
1972-01-01
The design data for six polycrystalline dielectric materials are presented to describe the optical, thermal, and mechanical properties. The materials are aluminum oxide, calcium fluoride, magnesium fluoride, magnesium oxide, silicon dioxide, and titanium dioxide. The primary interest is in the polycrystalline state, although single crystal data are included when appropriate. The temperature range is room temperature to melting point. The wavelength range is from near ultraviolet to near infrared.
Subcritical crack growth of selected aerospace pressure vessel materials
NASA Technical Reports Server (NTRS)
Hall, L. R.; Bixler, W. D.
1972-01-01
This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.
Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature
NASA Astrophysics Data System (ADS)
Nguyen, H. S.; Han, Z.; Abdel-Baki, K.; Lafosse, X.; Amo, A.; Lauret, J.-S.; Deleporte, E.; Bouchoule, S.; Bloch, J.
2014-02-01
We report on the quantum confinement of zero-dimensional polaritons in perovskite-based microcavity at room temperature. Photoluminescence of discrete polaritonic states is observed for polaritons localized in symmetric sphere-like defects which are spontaneously nucleated on the top dielectric Bragg mirror. The linewidth of these confined states is found much sharper (almost one order of magnitude) than that of photonic modes in the perovskite planar microcavity. Our results show the possibility to study organic-inorganic cavity polaritons in confined microstructure and suggest a fabrication method to realize integrated polaritonic devices operating at room temperature.
A 2.5-2.7 THz Room Temperature Electronic Source
NASA Technical Reports Server (NTRS)
Maestrini, Alain; Mehdi, Imran; Lin, Robert; Siles, Jose Vicente; Lee, Choonsup; Gill, John; Chattopadhyay, Goutam; Schlecht, Erich; Bertrand, Thomas; Ward, John
2011-01-01
We report on a room temperature 2.5 to 2.7 THz electronic source based on frequency multipliers. The source utilizes a cascade of three frequency multipliers with W-band power amplifiers driving the first stage multiplier. Multiple-chip multipliers are utilized for the two initial stages to improve the power handling capability and a sub-micron anode is utilized for the final stage tripler. Room temperature measurements indicate that the source can put out a peak power of about 14 microwatts with more than 4 microwatts in the 2.5 to 2.7 THz range.
Room temperature ferromagnetism in non-magnetic doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Gómez-Polo, C.; Larumbe, S.; Pastor, J. M.
2013-05-01
Room-temperature ferromagnetism in non-magnetic doped TiO2 semiconductor nanoparticles is analyzed in the present work. Undoped and N-doped TiO2 nanoparticles were obtained employing sol-gel procedure using urea as the nitrogen source. The obtained gels were first dried at 70 °C and afterwards calcined in air at 300 °C. A residual carbon concentration was retained in the samples as a consequence of the organic decomposition process. Post-annealing treatments at 300 °C under air and vacuum conditions were also performed. The crystallographic structure of nanoparticles was analyzed by X-ray diffraction, obtaining a single anatase crystalline phase after the calcinations (mean nanoparticle diameters around 5-8 nm). SQUID magnetometry was employed to analyze the magnetic response of the samples. Whereas for the undoped samples synthesized with hydrolysis rate h = 6, paramagnetic like behavior is observed at room temperature, the N-doped nanoparticles (h = 3) show a weak ferromagnetic response (saturation magnetization ≈10-3 emu/g). Moreover, a clear reinforcement of the room-temperature ferromagnetism response is found with the post-annealing treatments, in particular that performed in vacuum. Thus, the results indicate the dominant role of the oxygen stoichiometry and the oxygen vacancies in the room temperature ferromagnetic response of these TiO2 nanoparticles.
UV-light-assisted ethanol sensing characteristics of g-C3N4/ZnO composites at room temperature
NASA Astrophysics Data System (ADS)
Zhai, Jiali; Wang, Tao; Wang, Chuang; Liu, Dechen
2018-05-01
A highly efficient UV-light-assisted room temperature sensor based on g-C3N4/ZnO composites were prepared by an in situ precipitation method. The thermostability, composition, structure, and morphology properties of the as-prepared g-C3N4/ZnO composites were characterized by TGA, XRD, FT-IR, TEM, and XPS, respectively. And then, we studied the ethanol (C2H5OH) sensing performance of the g-C3N4/ZnO composites at the room temperature. Compared with pure ZnO and g-C3N4, the gas sensing activity of g-C3N4/ZnO composites was greatly improved at room temperature, for example, the g-C3N4/ZnO-8% composites showed an obvious response of 121-40 ppm C2H5OH at room temperature, which was 60 times higher than the pure ZnO based on the sensors under the same condition. The great enhancement of the C2H5OH sensing properties of composites can be understood by the efficient separation of photogenerated charge carriers of g-C3N4/ZnO heterogeneous and the UV-light catalytic effect. Finally, a possible mechanism for the gas sensing activity was proposed.
NASA Astrophysics Data System (ADS)
Akbari, Edris; Karimi Taheri, Kourosh; Karimi Taheri, Ali
2018-05-01
In this research, the samples of a low carbon steel sheet were rolled up to a thickness prestrain of 67% at three different temperatures consisted of room, blue brittleness, and subzero temperature. Microhardness, SEM, and tensile tests were carried out to evaluate the static recrystallization kinetics defined by the Avrami equation, microstructural evolution, and mechanical properties. It was found that the Avrami exponent is altered with change in prestrain temperature and it achieves the value of 1 to 1. 5. Moreover, it was indicated that prestraining at subzero temperature followed by annealing at 600 °C leads to considerable enhancement in tensile properties and kinetics of static recrystallization compared to room and blue brittleness temperatures. The prestraining at blue brittleness temperature followed by annealing treatment caused, however, a higher strength and faster kinetics compared with that at room temperature. It was concluded that although from the steel ductility point of view, the blue brittleness temperature is called an unsuitable temperature, but it can be used as prestraining temperature to develop noticeable combination of strength and ductility in low carbon steel.
Microfluidic channel flow cell for simultaneous cryoelectrochemical electron spin resonance.
Wain, Andrew J; Compton, Richard G; Le Roux, Rudolph; Matthews, Sinead; Fisher, Adrian C
2007-03-01
A novel microfluidic electrochemical channel flow cell has been constructed for in situ operation in a cylindrical TE011 resonant ESR cavity under variable temperature conditions. The cell has a U-tube configuration, consisting of an inlet and outlet channel which run parallel and contain evaporated gold film working, pseudo-reference, and counter electrodes. This geometry was employed to permit use in conjunction with variable temperature apparatus which does not allow a flow-through approach. The cell is characterized qualitatively and quantitatively using the one-electron reduction of p-bromonitrobenzene in acetonitrile at room temperature as a model system, and the ESR signal-flow rate response is validated by use of three-dimensional digital simulation of the concentration profile for a stable electrogenerated radical species under hydrodynamic conditions. The cell is then used to obtain ESR spectra for a number of radical species in acetonitrile at 233 K, including the radical anions of m- and p-iodonitrobenzene, o-bromonitrobenzene, and m-nitrobenzyl chloride, the latter three being unstable at room temperature. Spectra are also presented for the radical anion of 2-chloranthraquinone and the crystal violet radical, which display improved resolution at low temperatures.
Cryogenic Temperature-Gradient Foam/Substrate Tensile Tester
NASA Technical Reports Server (NTRS)
Vailhe, Christophe
2003-01-01
The figure shows a fixture for measuring the tensile strength of the bond between an aluminum substrate and a thermally insulating polymeric foam. The specimen is meant to be representative of insulating foam on an aluminum tank that holds a cryogenic liquid. Prior to the development of this fixture, tensile tests of this type were performed on foam/substrate specimens immersed in cryogenic fluids. Because the specimens were cooled to cryogenic temperatures throughout their thicknesses, they tended to become brittle and to fracture at loads below true bond tensile strengths. The present fixture is equipped to provide a thermal gradient from cryogenic temperature at the foam/substrate interface to room temperature on the opposite foam surface. The fixture includes an upper aluminum block at room temperature and a lower aluminum block cooled to -423 F (approx. -253 C) by use of liquid helium. In preparation for a test, the metal outer surface (the lower surface) of a foam/substrate specimen is bonded to the lower block and the foam outer surface (the upper surface) of the specimen is bonded to the upper block. In comparison with the through-the-thickness cooling of immersion testing, the cryogenic-to-room-temperature thermal gradient that exists during testing on this fixture is a more realistic approximation of the operational thermal condition of sprayed insulating foam on a tank of cryogenic liquid. Hence, tensile tests performed on this fixture provide more accurate indications of operational bond tensile strengths. In addition, the introduction of the present fixture reduces the cost of testing by reducing the amount of cryogenic liquid consumed and the time needed to cool a specimen.
Khamverdi, Zahra; Vahedi, Mohammad; Abdollahzadeh, Shermin; Ghambari, Mohammad Hosein
2013-09-01
This study compared diet and regular Coca-Cola on enamel erosion in cold and room temperatures. Seventy five enamel specimens were prepared and divided into 5 equal groups (N=15) as follows: Group 1: regular beverage at room temperature, Group 2: regular beverage at refri-gerator temperature, Group 3: diet beverage at room and Group 4: diet beverage at refrige-rator temperature. The specimens were immersed in the regular or diet beverage (Coca-Cola, trade mark regd. Khoshgovar Co., Tehran, Iran) at room (20°C) or refrigerator (2°C) temperatures for 20 minutes, 3 times per day for 7 days. Specimens in the control subjects (group 5) were placed in synthetic saliva at room temperature for 7 days. The hardness of specimens was tested using Vickers test under 500 gr loads for 5 seconds. The data were analyzed using two-way ANOVA and Tukey tests. The mean and standard deviations of micro-hardness values of the studied groups were as follow: G1: 304.26±29.71, G2: 285.53±42.14, G3: 279.06±39.52, G4: 266.80±23.98 and G5: 319± 30.79. There was a significant difference in the beverage type as the main factor (p<0.05), but temperature factor and their interaction effect on enamel hardness showed no significant difference (p>0.05). Tukey tests showed that there were significant differences between control and diet groups as well as regular and diet groups. Diet Coca-Cola is more erosive than the regular type and the temperature of the beverages used had no significant influence on enamel erosion.
Khamverdi, Zahra; Vahedi, Mohammad; Abdollahzadeh, Shermin; Ghambari, Mohammad Hosein
2013-01-01
Objective: This study compared diet and regular Coca-Cola on enamel erosion in cold and room temperatures. Materials and Methods: Seventy five enamel specimens were prepared and divided into 5 equal groups (N=15) as follows: Group 1: regular beverage at room temperature, Group 2: regular beverage at refri-gerator temperature, Group 3: diet beverage at room and Group 4: diet beverage at refrige-rator temperature. The specimens were immersed in the regular or diet beverage (Coca-Cola, trade mark regd. Khoshgovar Co., Tehran, Iran) at room (20°C) or refrigerator (2°C) temperatures for 20 minutes, 3 times per day for 7 days. Specimens in the control subjects (group 5) were placed in synthetic saliva at room temperature for 7 days. The hardness of specimens was tested using Vickers test under 500 gr loads for 5 seconds. The data were analyzed using two-way ANOVA and Tukey tests. Results: The mean and standard deviations of micro-hardness values of the studied groups were as follow: G1: 304.26±29.71, G2: 285.53±42.14, G3: 279.06±39.52, G4: 266.80±23.98 and G5: 319± 30.79. There was a significant difference in the beverage type as the main factor (p<0.05), but temperature factor and their interaction effect on enamel hardness showed no significant difference (p>0.05). Tukey tests showed that there were significant differences between control and diet groups as well as regular and diet groups. Conclusion: Diet Coca-Cola is more erosive than the regular type and the temperature of the beverages used had no significant influence on enamel erosion. PMID:24910648
Experimental Study of a Hot Structure for a Reentry Vehicle
NASA Technical Reports Server (NTRS)
Pride, Richard A.; Royster, Dick M.; Helms, Bobbie F.
1960-01-01
A large structural model of a reentry vehicle has been built incorporating design concepts applicable to a radiation-cooled vehicle. Thermal-stress alleviating features of the model are discussed. Environmental tests on the model include approximately 100 cycles of loading at room temperature and 33 cycles of combined loading and-heating up to temperatures of 1,6000 F. Measured temperatures are shown for typical parts of the model. Comparisons are made between experimental and calculated deflections and strains. The structure successfully survived the heating and loading environments.
[Crisis management in pediatric anesthesia].
Takeuchi, Mamoru; Otsuka, Yoji; Taga, Naoyuki; Sato, Yuki; Iwai, Hidetaka; Okada, Osamu
2009-05-01
We describe the risk management of pediatric anesthesia. The most important risk management of pediatric anesthesia is airway and temperature management. Neonates and infants easily become hypoxic due to their insufficient functional residual capacity. Therefore airway management is most important not only during induction of anesthesia but also during maintenance of anesthesia and extubation. The management of patients' temperature, including control of room temperature should be taken into consideration. In addition, careful attention should be paid not to introduce air bubbles in any lines, especially in patients with congenital heart diseases.
Real-time monitoring of barrel thickness and barrel/screw separation using ultrasound
NASA Astrophysics Data System (ADS)
Jen, Cheng-Kuei; Zun, Zhigang; Kobayashi, Makiko
2005-03-01
Ultrasonic sensors together with a fast data acquisition system have been used to monitor the barrel thickness and barrel/screw separation during low-density polyethylene as well as high-density polyethylene extrusion in 30 mm and 50 mm twin-screw extruders. The sensors include sol-gel sprayed high temperature (HT) piezoelectric thick ceramic film ultrasonic transducers (UTs), stand-alone HTUTs and air-cooled buffer rod type sensors consisting of a room temperature UT and a non-clad or clad buffer rod to which the room temperature UT is attached. The installation and use of these sensors are non-intrusive to the extruder and non-destructive to the polymers being processed. This study has demonstrated the capability of appropriately designed ultrasonic sensors in monitoring the barrel and screw integrity at the melting, mixing and pumping zones of the extruder via barrel or flange. The merits and limitations of these sensors are discussed. The measurement speed and analysis of the sensitivity for quantitative wear measurements are also presented.
Mechanism of bonding and debonding using surface activated bonding method with Si intermediate layer
NASA Astrophysics Data System (ADS)
Takeuchi, Kai; Fujino, Masahisa; Matsumoto, Yoshiie; Suga, Tadatomo
2018-04-01
Techniques of handling thin and fragile substrates in a high-temperature process are highly required for the fabrication of semiconductor devices including thin film transistors (TFTs). In our previous study, we proposed applying the surface activated bonding (SAB) method using Si intermediate layers to the bonding and debonding of glass substrates. The SAB method has successfully bonded glass substrates at room temperature, and the substrates have been debonded after heating at 450 °C, in which TFTs are fabricated on thin glass substrates for LC display devices. In this study, we conducted the bonding and debonding of Si and glass in order to understand the mechanism in the proposed process. Si substrates are also successfully bonded to glass substrates at room temperature and debonded after heating at 450 °C using the proposed bonding process. By the composition analysis of bonding interfaces, it is clarified that the absorbed water on the glass forms interfacial voids and cause the decrease in bond strength.
Effect of pressure on the strength of olivine at room temperature
NASA Astrophysics Data System (ADS)
Proietti, Arnaud; Bystricky, Misha; Guignard, Jérémy; Béjina, Frédéric; Crichton, Wilson
2016-10-01
A fine grained fully-dense olivine aggregate was deformed in a D-DIA press at room temperature and pressures ranging from 3.5 to 6.8 GPa, at constant strain rates between 6 ×10-6 and 2.2 ×10-5 s-1. A weighted non-linear least square fit of a dataset including our results and data from other high-pressure studies to a low-temperature plasticity flow law yields a Peierls stress σP0 = 7.4 (0.5) GPa and an activation energy E∗ = 232 (60) kJ.mol-1. The dependence of the Peierls stress to pressure, σP = σP0 (1 + 0.09 P) , appears to be larger than the value predicted by the formulation proposed by Frost and Ashby (1982). With such a dependence, the activation volume is very small (V* = 1.6 (1.7) cm3.mol-1). Extrapolation to natural conditions yields a viscosity of 1023 -1024 Pa.s for a cold subducting slab at depths of 50-100 km.
NASA Technical Reports Server (NTRS)
Martino, Anthony J.; Cornwell, Donald M.
1998-01-01
A combination of a single mode AlGaAs laser diode and broadband LED was used in a Michelson interferometer to provide reference signals in a Fourier transform spectrometer, the Composite Infrared Spectrometer, on the Cassini mission to Saturn. The narrowband light from the laser produced continuous fringes throughout the travel of the interferometer, which were used to control the velocity of the scan mechanism and to trigger data sampling. The broadband light from the LED produced a burst of fringes at zero path difference, which was used as a fixed position reference. The system, including the sources, the interferometer, and the detectors, was designed to work both at room temperature and instrument operating temperature of 170 Kelvin. One major challenge that was overcome was preservation, from room temperature to 170 K, of alignment sufficient for high modulation of fringes from the broadband source. Another was the shift of the source spectra about 30 nm toward shorter wavelengths upon cooldown.
Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods
Zaromb, Solomon
2001-01-01
Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.
Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus
Zaromb, Solomon
1994-01-01
Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.
Intrinsic ferromagnetism in hexagonal boron nitride nanosheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng
2014-05-28
Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstratemore » such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.« less
NASA Astrophysics Data System (ADS)
Wegner, M.; Karcher, N.; Krömer, O.; Richter, D.; Ahrens, F.; Sander, O.; Kempf, S.; Weber, M.; Enss, C.
2018-02-01
To our present best knowledge, microwave SQUID multiplexing (μ MUXing) is the most suitable technique for reading out large-scale low-temperature microcalorimeter arrays that consist of hundreds or thousands of individual pixels which require a large readout bandwidth per pixel. For this reason, the present readout strategy for metallic magnetic calorimeter (MMC) arrays combining an intrinsic fast signal rise time, an excellent energy resolution, a large energy dynamic range, a quantum efficiency close to 100% as well as a highly linear detector response is based on μ MUXing. Within this paper, we summarize the state of the art in MMC μ MUXing and discuss the most recent results. This particularly includes the discussion of the performance of a 64-pixel detector array with integrated, on-chip microwave SQUID multiplexer, the progress in flux ramp modulation of MMCs as well as the status of the development of a software-defined radio-based room-temperature electronics which is specifically optimized for MMC readout.
Temperature, hospital admissions and emergency room visits in Lhasa, Tibet: a time-series analysis.
Bai, Li; Cirendunzhu; Woodward, Alistair; Dawa; Zhaxisangmu; Chen, Bin; Liu, Qiyong
2014-08-15
Tibet of China, with an average altitude of over 4000 m, has experienced noticeable changes in its climate over the last 50 years. The association between temperature and morbidity (most commonly represented by hospital admissions) has been documented mainly in developed countries. Little is known about patterns in China; nor have the health effects of temperature variations been closely studied in highland areas, worldwide. We investigated the temperature-morbidity association in Lhasa, the capital city of Tibet, using sex- and age-specific hospitalizations, excluding those due to external causes. A distributed lag non-linear model (DLNM) was applied to assess the nonlinear and delayed effects of temperature on morbidity (including total emergency room visits, total and cause-specific hospital admissions, sex- and age-specific non-external admissions). High temperatures are associated with increases in morbidity, to a greater extent than low temperatures. Lag effects of high and low temperatures were cause-specific. The relative risks (RR) of high temperature for total emergency room visits and non-external hospitalizations were 1.162 (95% CI: 1.002-1.349) and 1.161 (95% CI: 1.007-1.339) respectively, for lag 0-14 days. The strongest cumulative effect of heat for lag 0-27 days was on admissions for infectious diseases (RR: 2.067, 95% CI: 1.026-4.027). Acute heat effects at lag 0 were related with increases of renal (RR: 1.478, 95% CI: 1.005-2.174) and respiratory diseases (RR: 1.119, 95% CI: 1.010-1.240), whereas immediate cold effects increased admission for digestive diseases (RR: 1.132, 95% CI: 1.002-1.282). Those ≥65 years of age and males were more vulnerable to high temperatures. We provide a first look at the temperature-morbidity relationship in Tibet. Exposure to both hot and cold temperatures resulted in increased admissions to hospital, but the immediate causes varied. We suggest that initiatives should be taken to reduce the adverse effects of temperature extremes in Tibet. Copyright © 2014. Published by Elsevier B.V.
Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics Driven by Soft Vibration Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woo, Sung-Jae; Lee, Eui-Sup; Yoon, Mina
2013-01-01
It is widely accepted that room-temperature hydrogen storage on nanostructured or porous materials requires enhanced dihydrogen adsorption. In this work we reveal that room-temperature hydrogen storage is possible not only by the enhanced adsorption, but also by making use of the vibrational free energy from soft vibration modes. These modes exist for example in the case of metallo-porphyrin-incorporated graphenes (M-PIGs) with out-of-plane ( buckled ) metal centers. There, the in-plane potential surfaces are flat because of multiple-orbital-coupling between hydrogen molecules and the buckled-metal centers. This study investigates the finite-temperature adsorption/desorption thermodynamics of hydrogen molecules adsorbed on M-PIGs by employing first-principlesmore » total energy and vibrational spectrum calculations. Our results suggest that the current design strategy for room-temperature hydrogen storage materials should be modified by explicitly taking finite-temperature vibration thermodynamics into account.« less
Chen, Hauh-Jyun Candy; Fan, Chih-Huang; Yang, Ya-Fen
2016-12-19
Dried blood spot (DBS) is an emerging microsampling technique for the bioanalysis of small molecules, including fatty acids, metabolites, drugs, and toxicants. DBS offers many advantages as a sample format including easy sample collection and cheap sample shipment. Hemoglobin adducts have been recognized as a suitable biomarker for monitoring chemical exposure. We previously reported that certain modified peptides in hemoglobin derived from reactive chlorine, nitrogen, and oxygen species are associated with factors including smoking, diabetes mellitus, and aging. However, the stability of these oxidation-induced modifications of hemoglobin remains unknown and whether they can be formed artifactually during storage of DBS. To answer these questions, globin extracted from the DBS cards was analyzed, and the stability of the modifications was evaluated. After storage of the DBS cards at 4 °C or room temperature up to 7 weeks, we isolated globin from a quarter of the spot every week. The extents of 11 sites and types of post-translational modifications (PTMs), including nitration and nitrosylation of tyrosine and oxidation of cysteine and methionine residues, in human hemoglobin were measured in the trypsin digest by nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) using selected reaction monitoring. The extents of all these PTMs are stable within 14 days when stored on DBS at room temperature and at 4 °C, while those from direct extraction of fresh blood are stable for at least 8 weeks when stored as an aqueous solution at -20 °C. Extraction of globin from a DBS card is of particular importance for hemolytic blood samples. To our knowledge, this is the first report on the stability of oxidative modifications of hemoglobin on DBSs, which are stable for 14 days under ambient conditions (room temperature, in air). Therefore, it is feasible and convenient to analyze these hemoglobin modifications from DBSs in studies involving large populations.
ROOM TEMPERATURE BULK AND TEMPLATE-FREE SYNTHESIS OF LEUCOEMARLDINE POLYANILINE NANOFIBERS
Herein, we describe a simple strategy for the bulk and template-free synthesis of reduced leucoemarldine polyaniline nanofibers size ranging from as low as 10 nm to 50 nm without the use of any reducing agents at room temperature.
Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review
NASA Astrophysics Data System (ADS)
Paulechka, Yauheni U.
2010-09-01
Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.
NASA Technical Reports Server (NTRS)
Gentz, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.; Kumosa, M.
2004-01-01
Iosipescu shear tests were performed at room temperature and at 316 C (600 F) o woven composites with either M40J or M60J graphite fibers and PMR-II-50 polyimide resin matrix. The composites were tested as supplied and after thermo-cycling, with the thermo-cycled composites being tested under dry and wet conditions. Acoustic emission (AE) was monitored during the room and high temperature Iosipescu experiments. The shear stresses at the maximum loads and the shear stresses at the significant onset of AE were determined for the composites as function of temperature and conditioning. The combined effects of thermo-cycling and moisture on the strength and stiffness properties of the composites were evaluated. It was determined that the room and high temperature shear stresses at the maximum loads were unaffected by conditioning. However, at room temperature the significant onset of AE was affected by conditioning; the thermal conditioned wet specimens showed the highest shear stress at the onset of AE followed by thermal-conditioned and then as received specimens. Also, at igh temperature the significant onset of AE occurred in some specimens after the maximum load due to the viscoelastoplastic nature of the matrix material.
An 57Fe Mössbauer study of the ordinary chondrite meteorite Lynch 001
NASA Astrophysics Data System (ADS)
Elewa, Nancy N.; Cadogan, J. M.
2017-11-01
The Lynch 001 meteorite was found in the Nullarbor Plain region of Western Australia in 1977. This meteorite is classified as an ordinary chondrite of the petrologic group L5/6 that has undergone `minor to moderate' terrestrial weathering. Here, we characterize the Fe-bearing phases in this chondrite using 57Fe Mössbauer spectroscopy carried out over the temperature range 13 K to room temperature (295 K). The paramagnetic doublets of olivine, pyroxene and a superparamagnetic ferric phase dominate the room temperature Mössbauer spectrum. On the basis of the room temperature quadrupole splitting of the olivine component, we estimate its composition to be Fa 30(5). Besides the paramagnetic ferric component, accounting for ˜15 % of the spectral area at room temperature, magnetically ordered ferric phases were also detected. The total relative proportion of the Fe 3+ components allows us to estimate the terrestrial age of Lynch 001 to be 6,500 ± 1,500 yr, consistent with the value of 6,700 ± 1,300 yr determined by 14C dating.
A Designed Room Temperature Multilayered Magnetic Semiconductor
NASA Astrophysics Data System (ADS)
Bouma, Dinah Simone; Charilaou, Michalis; Bordel, Catherine; Duchin, Ryan; Barriga, Alexander; Farmer, Adam; Hellman, Frances; Materials Science Division, Lawrence Berkeley National Lab Team
2015-03-01
A room temperature magnetic semiconductor has been designed and fabricated by using an epitaxial antiferromagnet (NiO) grown in the (111) orientation, which gives surface uncompensated magnetism for an odd number of planes, layered with the lightly doped semiconductor Al-doped ZnO (AZO). Magnetization and Hall effect measurements of multilayers of NiO and AZO are presented for varying thickness of each. The magnetic properties vary as a function of the number of Ni planes in each NiO layer; an odd number of Ni planes yields on each NiO layer an uncompensated moment which is RKKY-coupled to the moments on adjacent NiO layers via the carriers in the AZO. This RKKY coupling oscillates with the AZO layer thickness, and it disappears entirely in samples where the AZO is replaced with undoped ZnO. The anomalous Hall effect data indicate that the carriers in the AZO are spin-polarized according to the direction of the applied field at both low temperature and room temperature. NiO/AZO multilayers are therefore a promising candidate for spintronic applications demanding a room-temperature semiconductor.
Super-formable pure magnesium at room temperature.
Zeng, Zhuoran; Nie, Jian-Feng; Xu, Shi-Wei; H J Davies, Chris; Birbilis, Nick
2017-10-17
Magnesium, the lightest structural metal, is difficult to form at room temperature due to an insufficient number of deformation modes imposed by its hexagonal structure and a strong texture developed during thermomechanical processes. Although appropriate alloying additions can weaken the texture, formability improvement is limited because alloying additions do not fundamentally alter deformation modes. Here we show that magnesium can become super-formable at room temperature without alloying. Despite possessing a strong texture, magnesium can be cold rolled to a strain at least eight times that possible in conventional processing. The resultant cold-rolled sheet can be further formed without cracking due to grain size reduction to the order of one micron and inter-granular mechanisms becoming dominant, rather than the usual slip and twinning. These findings provide a pathway for developing highly formable products from magnesium and other hexagonal metals that are traditionally difficult to form at room temperature.Replacing steel or aluminium vehicle parts with magnesium would result in reduced emissions, but shaping magnesium without cracking remains challenging. Here, the authors successfully extrude and roll textured magnesium into ductile foil at low temperatures by activating intra-granular mechanisms.
Nonmetallic materials handbook. Volume 2: Epoxy and silicone materials
NASA Technical Reports Server (NTRS)
Podlaseck, S. E.
1982-01-01
Chemical and physical property test data obtained during qualification and receiving inspection testing of nonmetallic materials for the Viking Mars Lander program is presented. Thermochemical data showing degradation as a function of temperature from room temperature through 773 K is included. These data include activation energies for thermal degradation, rate constants, and exo- and/or endotherms. Thermal degradations carried out under vacuum include mass spectral data taken simultaneously during the decomposition. Many materials have supporting data such as condensation rates of degassed products and isothermal weight loss. Changes in mechanical, electrical, and thermal properties after exposure to 408 K in nitrogen for times ranging from 380 to 570 hours are included for many materials.
NASA Astrophysics Data System (ADS)
Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.
2017-05-01
Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.
Permenter, Jessalyn; Ishwar, Arjun; Rounsavall, Angie; Smith, Maddie; Faske, Jennifer; Sailey, Charles J; Alfaro, Maria P
2015-12-01
Proper storage of whole blood is crucial for isolating nucleic acids from leukocytes and to ensure adequate performance of downstream assays in the molecular diagnostic laboratory. Short-term and long-term storage recommendations are lacking for successful isolation of genomic DNA (gDNA). Container type (EDTA or heparin), temperature (4 °C and room temperature) and time (1-130 days) were assessed as criterion for sample acceptance policies. The percentage of integrated area (%Ti) between 150 and 10,000 bp from the 2200 TapeStation electropherogram was calculated to measure gDNA degradation. Refrigerated EDTA samples yielded gDNA with low %Ti (high quality). Heparinized samples stored at room temperature yielded gDNA of worst quality. Downstream analysis demonstrated that the quality of the gDNA correlated with the quality of the data; samples with high %Ti generated significantly lower levels of high molecular weight amplicons. Recommendations from these analyses include storing blood samples intended for nucleic acid isolation in EDTA tubes at 4 °C for long term storage (>10 days). gDNA should be extracted within 3 days when blood is stored at room temperature regardless of the container. Finally, refrigerated heparinized samples should not be stored longer than 9 days if expecting high quality gDNA isolates. Laboratories should consider many factors, in addition to the results obtained herein, to update their policies for sample acceptance for gDNA extraction intended for molecular genetic testing. Copyright © 2015 Elsevier Ltd. All rights reserved.
ENZYMATIC POLYMERIZATION OF PHENOLS IN ROOM TEMPERATURE IONIC LIQUIDS
Eker, Bilge; Zagorevski, Dmitri; Zhu, Guangyu; Linhardt, Robert J.; Dordick, Jonathan S.
2009-01-01
Soybean peroxidase (SBP) was used to catalyze the polymerization of phenols in room-temperature ionic liquids (RTILs). Phenolic polymers with number average molecular weights ranging from 1200 to 4100 D were obtained depending on the composition of the reaction medium and the nature of the phenol. Specifically, SBP was highly active in methylimidazolium-containing RTILs, including 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(BF4)), and 1-butyl-3-methylpyridinium tetrafluoroborate (BMPy(BF4)) with the ionic liquid content as high as 90% (v/v); the balance being aqueous buffer. Gel permeation chromatography and MALDI-TOF analysis indicated that higher molecular weight polymers can be synthesized in the presence of higher RTIL concentrations, with selective control over polymer size achieved by varying the RTIL concentration. The resulting polyphenols exhibited high thermostability and possessed thermosetting properties. PMID:20161409
Zinc Oxide Thin-Film Transistors
NASA Astrophysics Data System (ADS)
Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R.
ZnO thin film transistors (ZnO-TFT) have been fabricated by rf magnetron sputtering at room temperature with a bottom-gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 21 V, a field effect mobility of 20 cm2/Vs, a gate voltage swing of 1.24 V/decade and an on/off ratio of 2×105. The ZnO-TFT present an average optical transmission (including the glass substrate) of 80 % in the visible part of the spectrum. The combination of transparency, high channel mobility and room temperature processing makes the ZnO-TFT a very promising low cost optoelectronic device for the next generation of invisible and flexible electronics. Moreover, the processing technology used to fabricate this device is relatively simple and it is compatible with inexpensive plastic/flexible substrate technology.
Non-ionic block copolymers leading to a highly ordered organosilica material
NASA Astrophysics Data System (ADS)
Rebbin, V.; Rothkirch, A.; Vainio, U.; Funari, S. S.
2012-03-01
Phenylene-bridged periodic mesoporous organosilica (PMO) materials with hexaethylene glycol mono hexadecylether (C16(EO)6) as structure directing agent (SDA) in acidic solution were synthesised and the reaction was studied in different conditions, including in situ small angle X-ray scattering at room temperature and at 60 °C. The in situ SAXS investigations at 60 °C show the formation of a 2D hexagonal mesostructure after 3 hours reaction time. In contrast to these results the same reaction performed in the laboratory produced a powder that, after drying at room temperature, shows a large number of diffraction peaks, allowing identifying a lamellar structure, possibly in coexistence of a micellar cubic structure (space group Pm3n). Aposteriori removal of the surfactant from the powder synthesised in the laboratory led to the collapse of the lamellar structure.
Effect of buffer and antioxidant on stability of a mercaptopurine suspension.
Aliabadi, Hamidreza Montazeri; Romanick, Marcel; Desai, Sunil; Lavasanifar, Afsaneh
2008-03-01
The stability of standard and modified mercaptopurine suspensions when stored at room temperature and under refrigerated conditions to test the feasibility of increasing shelf life was studied. A 50-mg/mL mercaptopurine suspension was compounded by adding simple syrup, cherry syrup, and sterile water for irrigation to triturated mercaptopurine tablets for the initial reference formulation. Three additional formulations were prepared by adding an antioxidant (ascorbic acid 10 mg), a buffer (sodium phosphate monobasic monohydrate 500 mg), and a combination of antioxidant and buffer to the reference formulation. Each compounded batch was divided into two parts and stored in amber bottles at room temperature (19-23 degrees C) or under refrigerated conditions (4-8 degrees C). Analysis through high-performance liquid chromatography determined mercaptopurine levels after three and seven days and weekly thereafter for at least two weeks after shelf life was reached under specified storage conditions. Solutions with at least 93% of the original mercaptopurine concentration and with no observable sign of aggregation or cake formation were considered stable. The reference suspension of mercaptopurine showed an acceptable physical and chemical stability of up to 5 weeks when stored at room temperature. The addition of ascorbic acid extended the shelf life of the compounded suspension to 11 weeks. However, the addition of sodium phosphate monobasic did not improve the stability of mercaptopurine in the suspension. The results showed a higher stability for all formulations after storage at room temperature compared with those stored in a refrigerator. A standard oral suspension of mercaptopurine contained an acceptable drug concentration for up to 5 weeks when stored at room temperature. The addition of ascorbic acid at a concentration of 0.1% w/v to the standard formulation increased the suspension's shelf life at room temperature to 11 weeks.
Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens
Lucon, Enrico; McCowan, Chris N.; Santoyo, Ray L.
2015-01-01
The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of −40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at −40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator’s skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at −40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses. PMID:26958453
Certification of NIST Room Temperature Low-Energy and High-Energy Charpy Verification Specimens.
Lucon, Enrico; McCowan, Chris N; Santoyo, Ray L
2015-01-01
The possibility for NIST to certify Charpy reference specimens for testing at room temperature (21 °C ± 1 °C) instead of -40 °C was investigated by performing 130 room-temperature tests from five low-energy and four high-energy lots of steel on the three master Charpy machines located in Boulder, CO. The statistical analyses performed show that in most cases the variability of results (i.e., the experimental scatter) is reduced when testing at room temperature. For eight out of the nine lots considered, the observed variability was lower at 21 °C than at -40 °C. The results of this study will allow NIST to satisfy requests for room-temperature Charpy verification specimens that have been received from customers for several years: testing at 21 °C removes from the verification process the operator's skill in transferring the specimen in a timely fashion from the cooling bath to the impact position, and puts the focus back on the machine performance. For NIST, it also reduces the time and cost for certifying new verification lots. For one of the low-energy lots tested with a C-shaped hammer, we experienced two specimens jamming, which yielded unusually high values of absorbed energy. For both specimens, the signs of jamming were clearly visible. For all the low-energy lots investigated, jamming is slightly more likely to occur at 21 °C than at -40 °C, since at room temperature low-energy samples tend to remain in the test area after impact rather than exiting in the opposite direction of the pendulum swing. In the evaluation of a verification set, any jammed specimen should be removed from the analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumenyuk, Regina; Okhotnikov, Oleg G.; Golant, Konstantin
2011-05-09
The experimental evidence of laser transition type in bismuth-doped silica fibers operating at different spectral bands is presented. Spectrally resolved transient (relaxation) oscillations studied for a Bi-doped fiber laser at room and liquid-nitrogen temperatures allow to identify the three- and four-level energy bands. 1.18 {mu}m short-wavelength band is found to be a three-level system at room temperature with highly populated terminal energy level of laser transition. The depopulation of ground level by cooling the fiber down to liquid-nitrogen temperature changes the transition to four-level type. Four-level energy transition distinguished at 1.32 {mu}m exhibits the net gain at room temperature.
Iron-aluminum alloys having high room-temperature and method for making same
Sikka, Vinod K.; McKamey, Claudette G.
1993-01-01
Iron-aluminum alloys having selectable room-temperature ductilities of greater than 20%, high resistance to oxidation and sulfidation, resistant pitting and corrosion in aqueous solutions, and possessing relatively high yield and ultimate tensile strengths are described. These alloys comprise 8 to 9.5% aluminum, up to 7% chromium, up to 4% molybdenum, up to 0.05% carbon, up to 0.5% of a carbide former such as zirconium, up to 0.1 yttrium, and the balance iron. These alloys in wrought form are annealed at a selected temperature in the range of 700.degree. C. to about 1100.degree. C. for providing the alloys with selected room-temperature ductilities in the range of 20 to about 29%.
Preliminary neutron and X-ray crystallographic studies of equine cyanomethemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalevsky, A.Y.; Fisher, S.Z.; Seaver, S.
2010-08-18
Room-temperature and 100 K X-ray and room-temperature neutron diffraction data have been measured from equine cyanomethemoglobin to 1.7 {angstrom} resolution using a home source, to 1.6 {angstrom} resolution on NE-CAT at the Advanced Photon Source and to 2.0 {angstrom} resolution on the PCS at Los Alamos Neutron Science Center, respectively. The cyanomethemoglobin is in the R state and preliminary room-temperature electron and neutron scattering density maps clearly show the protonation states of potential Bohr groups. Interestingly, a water molecule that is in the vicinity of the heme group and coordinated to the distal histidine appears to be expelled from thismore » site in the low-temperature structure.« less
Simulating the room-temperature dynamic motion of a ferromagnetic vortex in a bistable potential
NASA Astrophysics Data System (ADS)
Haber, E.; Badea, R.; Berezovsky, J.
2018-05-01
The ability to precisely and reliably control the dynamics of ferromagnetic (FM) vortices could lead to novel nonvolatile memory devices and logic gates. Intrinsic and fabricated defects in the FM material can pin vortices and complicate the dynamics. Here, we simulated switching a vortex between bistable pinning sites using magnetic field pulses. The dynamic motion was modeled with the Thiele equation for a massless, rigid vortex subject to room-temperature thermal noise. The dynamics were explored both when the system was at zero temperature and at room-temperature. The probability of switching for different pulses was calculated, and the major features are explained using the basins of attraction map of the two pinning sites.
Low and room temperature magnetic features of the traffic related urban airborne PM
NASA Astrophysics Data System (ADS)
Winkler, A.; Sagnotti, L.
2012-04-01
We used magnetic measurements and analyses - such as hysteresis loops and FORCs both at room temperature and at 10K, isothermal remanent magnetization (IRM) vs temperature curves (from 10K to 293K) and IRM vs time decay curves - to characterize the magnetic properties of the traffic related airborne particulate matter (PM) in Rome. This study was specifically addressed to the identification of the ultrafine superparamagnetic (SP) particles, which are particularly sensitive to thermal relaxation effects, and on the eventual detection of low temperature phase transitions which may affect various magnetic minerals. We compared the magnetic properties at 10K and at room temperature of Quercus ilex leaves, disk brakes, diesel and gasoline exhaust pipes powders collected from vehicles circulating in Rome. The magnetic properties of the investigated powders significantly change upon cooling, and no clear phase transition occurs, suggesting that the thermal dependence is mainly triggered by the widespread presence of ultrafine SP particles. The contribution of the SP fraction to the total remanence of traffic related PM samples was quantified at room temperature measuring the decay of a IRM 100 s after the application of a saturation magnetic field. This same method has been also tested at 10K to investigate the temperature dependence of the observed time decay.
IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS
Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...
Teschome, Bezu; Facsko, Stefan; Schönherr, Tommy; Kerbusch, Jochen; Keller, Adrian; Erbe, Artur
2016-10-11
DNA origami nanostructures have been used extensively as scaffolds for numerous applications such as for organizing both organic and inorganic nanomaterials, studying single molecule reactions, and fabricating photonic devices. Yet, little has been done toward the integration of DNA origami nanostructures into nanoelectronic devices. Among other challenges, the technical difficulties in producing well-defined electrical contacts between macroscopic electrodes and individual DNA origami-based nanodevices represent a serious bottleneck that hinders the thorough characterization of such devices. Therefore, in this work, we have developed a method to electrically contact individual DNA origami-based metallic nanowires using electron beam lithography. We then characterize the charge transport of such nanowires in the temperature range from room temperature down to 4.2 K. The room temperature charge transport measurements exhibit ohmic behavior, whereas at lower temperatures, multiple charge transport mechanisms such as tunneling and thermally assisted transport start to dominate. Our results confirm that charge transport along metallized DNA origami nanostructures may deviate from pure metallic behavior due to several factors including partial metallization, seed inhomogeneities, impurities, and weak electronic coupling among AuNPs. Besides, this study further elucidates the importance of variable temperature measurements for determining the dominant charge transport mechanisms for conductive nanostructures made by self-assembly approaches.
NASA Astrophysics Data System (ADS)
Ohta, Hiromi; Maruyama, Megumi; Tanabe, Yoko; Hara, Toshiko; Nishino, Yoshihiko; Tsujino, Yoshio; Morita, Eishin; Kobayashi, Shotai; Shido, Osamu
2008-05-01
We investigated the effects of redecoration of a hospital isolation room with natural materials on thermoregulatory, cardiovascular and hormonal parameters of healthy subjects staying in the room. Two isolation rooms with almost bilaterally-symmetrical arrangements were used. One room (RD) was redecorated with wood paneling and Japanese paper, while the other (CN) was unchanged (with concrete walls). Seven healthy male subjects stayed in each room for over 24 h in the cold season. Their rectal temperature (Tre) and heart rate, and the room temperature (Ta) and relative humidity were continuously measured. Arterial blood pressures, arterial vascular compliance, thermal sensation and thermal comfort were measured every 4 h except during sleeping. Blood was sampled after the stay in the rooms. In RD, Ta was significantly higher by about 0.4°C and relative humidity was lower by about 5% than in CN. Diurnal Tre levels of subjects in RD significantly differed from those in CN, i.e., Tres were significantly higher in RD than in CN especially in the evening. In RD, the subjects felt more thermally-comfortable than in CN. Redecoration had minimal effects on cardiovascular parameters. Plasma levels of catecholamines and antidiuretic hormone did not differ, while plasma cortisol level was significantly lower after staying in RD than in CN by nearly 20%. The results indicate that, in the cold season, redecoration with natural materials improves the thermal environment of the room and contributes to maintaining core temperature of denizens at preferable levels. It also seems that redecoration of room could attenuate stress levels of isolated subjects.
The electrical properties of 60 keV zinc ions implanted into semi-insulating gallium arsenide
NASA Technical Reports Server (NTRS)
Littlejohn, M. A.; Anikara, R.
1972-01-01
The electrical behavior of zinc ions implanted into chromium-doped semiinsulating gallium arsenide was investigated by measurements of the sheet resistivity and Hall effect. Room temperature implantations were performed using fluence values from 10 to the 12th to 10 to the 15th power/sq cm at 60 keV. The samples were annealed for 30 minutes in a nitrogen atmosphere up to 800 C in steps of 200 C and the effect of this annealing on the Hall effect and sheet resistivity was studied at room temperature using the Van der Pauw technique. The temperature dependence of sheet resistivity and mobility was measured from liquid nitrogen temperature to room temperature. Finally, a measurement of the implanted profile was obtained using a layer removal technique combined with the Hall effect and sheet resistivity measurements.
Vázquez, Luis; Prados, Isabel M; Reglero, Guillermo; Torres, Carlos F
2017-08-15
The concentration of polyunsaturated fatty acids by formation of urea adducts from three different sources was studied to elucidate the formation of ethyl carbamates in the course of these procedures. Two different methodologies were performed: with ethanol at high temperature and with hexane/ethanol mixtures at room temperature. It was proved that the amount of urethanes generated at high temperature was higher than at room temperature. Besides, subsequent washing steps of the PUFA fraction with water were efficient to remove the urethanes from the final products. The methodology at room temperature with 0.4mL ethanol and 3g urea provided good relationship between concentration and yield of the main bioactive PUFA, with the lowest formation of ethyl carbamates in the process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of 120 MeV Ag9+ ion irradiation of YCOB single crystals
NASA Astrophysics Data System (ADS)
Arun Kumar, R.; Dhanasekaran, R.
2012-09-01
Single crystals of yttrium calcium oxy borate (YCOB) grown from boron-tri-oxide flux were subjected to swift heavy ion irradiation using silver Ag9+ ions from the 15 UD Pelletron facility at Inter University Accelerator Center, New Delhi. The crystals were irradiated at 1 × 1013, 5 × 1013 and 1 × 1014 ions/cm2 fluences at room temperature and with 5 × 1013 ions/cm2 fluence at liquid nitrogen temperature. The pristine and the irradiated samples were characterized by glancing angle X-ray diffraction, UV-Vis-NIR and photoluminescence studies. From the characterization studies performed on the samples, it is inferred that the crystals irradiated at liquid nitrogen temperature had fewer defects compared to the crystals irradiated at room temperature and the defects increased when the ion fluence was increased at room temperature.
Room-Temperature Ionic Liquids for Electrochemical Capacitors
NASA Technical Reports Server (NTRS)
Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.;
2009-01-01
A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.
1.88 Micrometers InGaAsP Pumped, Room Temperature Ho: LuAG Laser
NASA Technical Reports Server (NTRS)
Barnes, Norman P.; Amzajerdian, Farzin; Reichle, Donald J.; Busch, George; Leisher, Paul
2009-01-01
A room temperature, directly diode pumped Ho:LuAG laser oscillated for the first time. Direct pumping of the Ho upper laser manifold maximizes efficiency, minimizes heating, and eliminates Ho:Tm energy sharing. Design and performance are presented.
Room temperature synthesis of biodiesel using sulfonated ...
Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature. Prepared for submission to Royal Society of Chemistry (RSC) journal, Green Chemistry as a communication.
Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.
Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L
2014-10-11
Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.
NASA Astrophysics Data System (ADS)
Dwivedi, Priyanka; Das, Samaresh; Dhanekar, Saakshi
2017-04-01
This paper highlights the surface treatment of porous silicon (PSi) for enhancing the sensitivity of water vapors at room temperature. A simple and low cost technique was used for fabrication and functionalization of PSi. Spin coated polyvinyl alcohol (PVA) was used for functionalizing PSi surface. Morphological and structural studies were conducted to analyze samples using SEM and XRD/Raman spectroscopy respectively. Contact angle measurements were performed for assessing the wettability of the surfaces. PSi and functionalized PSi samples were tested as sensors in presence of different analytes like ethanol, acetone, isopropyl alcohol (IPA) and water vapors in the range of 50-500 ppm. Electrical measurements were taken from parallel aluminium electrodes fabricated on the functionalized surface, using metal mask and thermal evaporation. Functionalized PSi sensors in comparison to non-functionalized sensors depicted selective and enhanced response to water vapor at room temperature. The results portray an efficient and selective water vapor detection at room temperature.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-01-01
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν ~ 1–5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06–4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers. PMID:27009375
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
NASA Astrophysics Data System (ADS)
Zhang, Senfu; Zhang, Junwei; Zhang, Qiang; Barton, Craig; Neu, Volker; Zhao, Yuelei; Hou, Zhipeng; Wen, Yan; Gong, Chen; Kazakova, Olga; Wang, Wenhong; Peng, Yong; Garanin, Dmitry A.; Chudnovsky, Eugene M.; Zhang, Xixiang
2018-03-01
Magnetic skyrmions are topologically protected nanoscale spin textures exhibiting fascinating physical behaviors. Recent observations of room temperature skyrmions in sputtered multilayer films are an important step towards their use in ultra-low power devices. Such practical applications prefer skyrmions to be stable at zero magnetic fields and room temperature. Here, we report the creation of skyrmion lattices in Pt/Co/Ta multilayers by a scanning local field using magnetic force microscopy tips. We also show that those newly created skyrmion lattices are stable at both room temperature and zero fields. Lorentz transmission electron microscopy measurements reveal that the skyrmions in our films are of Néel-type. To gain a deeper understanding of the mechanism behind the creation of a skyrmion lattice by the scanning of local fields, we perform micromagnetic simulations and find the experimental results to be in agreement with our simulation data. This study opens another avenue for the creation of skyrmion lattices in thin films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan
Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less
Room-temperature H2S Gas Sensor Based on Au-doped ZnFe2O4 Yolk-shell Microspheres.
Yan, Yin; Nizamidin, Patima; Turdi, Gulmira; Kari, Nuerguli; Yimit, Abliz
2017-01-01
Room-temperature type H 2 S sensing devices that use Au-doped ZnFe 2 O 4 yolk-shell microspheres as the active material have been fabricated using a solvothermal method as well as subsequent annealing and a chemical etching process. The samples are characterized using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), field-emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the doping of Au does not change the spinel structure of the products, which were yolk-shell microspheres, while the particle size varied with the Au doping concentration. Also, the as-fabricated sensor device exhibited excellent selectivity toward H 2 S gas at the room temperature; the gas-sensing property of 2 wt% Au-doped ZnFe 2 O 4 microspheres was the best. The Au-doped ZnFe 2 O 4 yolk-shell microspheres can be promising as a sensing material for H 2 S gas detecting at room temperature.
Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT
Evans, D.M.; Schilling, A.; Kumar, Ashok; Sanchez, D.; Ortega, N.; Arredondo, M.; Katiyar, R.S.; Gregg, J.M.; Scott, J.F.
2013-01-01
Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10−7 sm−1. PMID:23443562
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Mukadam, M. D.; Meena, S. S.; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Mandal, B. P.; Yusuf, S. M.
2017-03-01
The ferroelectric materials are mainly focused on pure inorganic oxides; however, the organic molecule based materials have recently attracted great attention because of their multifunctional properties. The mixing of oxalate and phenanthroline ligands with metal ions (Fe or Mn) at room temperature followed by hydrothermal treatment results in the formation of one-dimensional single chain molecular magnets which exhibit room temperature dielectric and ferroelectric behavior. The compounds are chiral in nature, and exhibit a ferroelectric behavior, attributed to the polar point group C2, in which they crystallized. The compounds are also associated with a dielectric loss and thus a relaxation process. The observed electric dipole moment, essential for a ferroelectricity, has been understood quantitatively in terms of lattice distortions at two different lattice sites within the crystal structure. The studied single chain molecular magnetic materials with room temperature ferroelectric and dielectric properties could be of great technological importance in non-volatile memory elements, and high-performance insulators.
Lu, Quanyong; Wu, Donghai; Sengupta, Saumya; Slivken, Steven; Razeghi, Manijeh
2016-03-24
A compact, high power, room temperature continuous wave terahertz source emitting in a wide frequency range (ν~1-5 THz) is of great importance to terahertz system development for applications in spectroscopy, communication, sensing, and imaging. Here, we present a strong-coupled strain-balanced quantum cascade laser design for efficient THz generation based on intracavity difference frequency generation. Room temperature continuous wave emission at 3.41 THz with a side-mode suppression ratio of 30 dB and output power up to 14 μW is achieved with a wall-plug efficiency about one order of magnitude higher than previous demonstrations. With this highly efficient design, continuous wave, single mode THz emissions with a wide frequency tuning range of 2.06-4.35 THz and an output power up to 4.2 μW are demonstrated at room temperature from two monolithic three-section sampled grating distributed feedback-distributed Bragg reflector lasers.
Lee, Sang-Yup; Gao, Xueyun; Matsui, Hiroshi
2008-01-01
The room temperature synthesis of β-Ga2O3 nanocrystal was examined by coupling two biomimetic crystallization techniques, the enzymatic peptide nano-assembly templating and the aggregation-driven crystallization. The catalytic template of peptide assembly nucleated and mineralized primary β-Ga2O3 crystals, and then fused them to grow single-crystalline and monodisperse nanoparticles in the cavity of the peptide assembly at room temperature. In this work, the peptide assembly was exploited as a nano-reactor with an enzymatic functionality catalyzing the hydrolysis of gallium precursors. In addition, the characteristic ring-structure of peptide assembly is expected to provide an efficient dehydration pathway and the crystallization control over the surface tension, which are advantageous for the β-Ga2O3 crystal growth. This multifunctional peptide assembly could be applied for syntheses of a variety of nanomaterials that are kinetically difficult to grow at room temperature. PMID:17302413
He, Xiaowei; Hartmann, Nicolai F.; Ma, Xuedan; ...
2017-07-31
Generating quantum light emitters that operate at room temperature and at telecom wavelengths remains a significant materials challenge. To achieve this goal requires light sources that emit in the near-infrared wavelength region and that, ideally, are tunable to allow desired output wavelengths to be accessed in a controllable manner. Here, we show that exciton localization at covalently introduced aryl sp 3 defect sites in single-walled carbon nanotubes provides a route to room-temperature single-photon emission with ultrahigh single-photon purity (99%) and enhanced emission stability approaching the shot-noise limit. Moreover, we demonstrate that the inherent optical tunability of single-walled carbon nanotubes, presentmore » in their structural diversity, allows us to generate room-temperature single-photon emission spanning the entire telecom band. Furthermore, single-photon emission deep into the centre of the telecom C band (1.55 um) is achieved at the largest nanotube diameters we explore (0.936 nm).« less
Song, Guang; Zhang, Weiyi
2016-01-01
First-principles calculations have been carried out to study the structural, electric, and magnetic properties of Ni3TeO6-type A2FeMoO6 compounds (A = Sc, Lu). Their electric and magnetic properties behave like room-temperature ferrielectric and ferrimagnetic insulators where polarization comes from the un-cancelled antiparallel dipoles of (A(1), Fe3+) and (A(2), Mo3+) ion groups, and magnetization from un-cancelled antiparallel moments of Fe3+ and Mo3+ ions. The net polarization increases with A’s ionic radius and is 7.1 and 8.7 μCcm−2 for Sc2FeMoO6 and Lu2FeMoO6, respectively. The net magnetic moment is 2 μB per formula unit. The magnetic transition temperature is estimated well above room-temperature due to the strong antiferromagnetic superexchange coupling among Fe3+ and Mo3+ spins. The estimated paraelectric to ferrielectric transition temperature is also well above room-temperature. Moreover, strong magnetoelectric coupling is also anticipated because the magnetic ions are involved both in polarization and magnetization. The fully relaxed Ni3TeO6-type A2FeMoO6 structures are free from soft-phonon modes and correspond to stable structures. As a result, Ni3TeO6-type A2FeMoO6 compounds are possible candidates for room-temperature multiferroics with large magnetization and polarization. PMID:26831406
Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch
NASA Astrophysics Data System (ADS)
Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod
2018-02-01
Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.
Mechanical Properties of the TiAl IRIS Alloy
NASA Astrophysics Data System (ADS)
Voisin, Thomas; Monchoux, Jean-Philippe; Thomas, Marc; Deshayes, Christophe; Couret, Alain
2016-12-01
This paper presents a study of the mechanical properties at room and high temperature of the boron and tungsten containing IRIS alloy (Ti-48Al-2W-0.08B at. pct). This alloy was densified by Spark Plasma Sintering (SPS). The resultant microstructure consists of small lamellar colonies surrounded by γ regions containing B2 precipitates. Tensile tests are performed from room temperature to 1273 K (1000 °C). Creep properties are determined at 973 K (700 °C)/300 MPa, 1023 K (750 °C)/120 MPa, and 1023 K (750 °C)/200 MPa. The tensile strength and the creep resistance at high temperature are found to be very high compared to the data reported in the current literature while a plastic elongation of 1.6 pct is preserved at room temperature. A grain size dependence of both ductility and strength is highlighted at room temperature. The deformation mechanisms are studied by post-mortem analyses on deformed samples and by in situ straining experiments, both performed in a transmission electron microscope. In particular, a low mobility of non-screw segments of dislocations at room temperature and the activation of a mixed-climb mechanism during creep have been identified. The mechanical properties of this IRIS alloy processed by SPS are compared to those of other TiAl alloys developed for high-temperature structural applications as well as to those of similar tungsten containing alloys obtained by more conventional processing techniques. Finally, the relationships between mechanical properties and microstructural features together with the elementary deformation mechanisms are discussed.
Impact of hot temperature on end-face geometry of LC/UPC connectors
NASA Astrophysics Data System (ADS)
Thongdaeng, Rutsuda; Worasucheepb, Duangrudee; Wangsan, Sathit; Chaichok, Wansan
2014-09-01
The fiber withdrawal of Group 4 (mated-thermal cycle) was observed up to 100 nm as in previous work1. We predict that this withdrawal is mainly caused by the impact of hot temperature (at 75ºC) based on GR-3262 thermal cycle test profile repeated 21 cycles over 7 days; and thus, it was studies here for the purpose of reducing test time. All connectors were separated into four groups: 1) unmated-stored at room temperature, 2) mated-stored at room temperature, 3) unmated-stored at hot temperature, and 4) mated-stored at hot temperature. The hot temperature test was performed on Groups 3 and 4 for 1 hour, while Groups 1 and 2 was left at room temperature. The sample size of each group is 28 LC/UPC connectors. Radius of curvature, fiber height and apex offset were measured before and after that 1 hour. The fiber withdrawal up to 100 nm is found in Group 4 (mated-hot temperature), but no changes are observed in Groups 1-3. These results confirm the impact of hot temperature on fiber height, same as the thermal cycle test in previous work1. Afterward, Group 1-4 were unmated at room temperature for 1 day, 1 week, and 1 month. No significant change in fiber height is found. On the contrary, when Group 1-4 were re-tested as being mated at hot temperature for 1 hour, the fiber withdrawal up to 100 nm is now found in Group 1-3. However, the additional withdrawal up to 50 nm is still observed in Group 4.
High rate chemical vapor deposition of carbon films using fluorinated gases
Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.
1993-01-01
A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.
The effect of procedure room temperature and humidity on LASIK outcomes.
Seider, Michael I; McLeod, Stephen D; Porco, Travis C; Schallhorn, Steven C
2013-11-01
To determine whether procedure room temperature or humidity during LASIK affect refractive outcomes in a large patient sample. Retrospective cohort study. A total of 202 394 eyes of 105 712 patients aged 18 to 75 years who underwent LASIK at an Optical Express, Inc., location in their United Kingdom and Ireland centers from January 1, 2008, to June 30, 2011, who met inclusion criteria. Patient age, gender, flap creation technique, pre- and 1-month post-LASIK manifest refraction, and ambient temperature and humidity during LASIK were recorded. Effect size determination and univariate and multivariate analyses were performed to characterize the relationships between LASIK procedure room temperature and humidity and postoperative refractive outcome. One month post-LASIK manifest refraction. No clinically significant effect of procedure room temperature or humidity was found on LASIK refractive outcomes. When considering all eyes in our population, an increase of 1°C during LASIK was associated with a 0.003 diopter (D) more hyperopic refraction 1 month postoperatively, and an increase in 1% humidity was associated with a 0.0004 more myopic refraction. These effect sizes were the same or similar when considering only myopic eyes, only hyperopic eyes, and subgroups of eyes stratified by age and preoperative refractive error. Neither procedure room temperature nor humidity during LASIK were found to have a clinically significant relationship with postoperative manifest refraction in our population. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
The effect of procedure room temperature and humidity on LASIK outcomes
Seider, Michael I.; McLeod, Stephen D.; Porco, Travis C.; Schallhorn, Steven C.
2013-01-01
Objective To determine if procedure room temperature and humidity during LASIK affects refractive outcomes in a very large patient sample. Design Retrospective cohort study. Participants 202,394 eyes of 105,712 patients aged 18 to 75 years old who underwent LASIK at an Optical Express, Inc. location in their United Kingdom and Ireland centers from January 1, 2008 to June 30, 2011 who met inclusion criteria. Methods Patient age, gender, pre- and one month post-LASIK manifest refraction and flap creation technique were recorded as well as the ambient temperature and humidity during LASIK. Effect size determination, in addition to univariate and multivariate analysis was performed to characterize the relationships between LASIK procedure room temperature and humidity and post-operative refractive outcome. Main Outcome Measures One month post-LASIK manifest refraction. Results No clinically significant effect of procedure room temperature or humidity was found on LASIK refractive outcomes. When considering all eyes in our population, an increase of one degree Celsius during LASIK was associated with a 0.003 diopter more hyperopic refraction one month post-operatively and an increase in one percent humidity was associated with a 0.0004 more myopic refraction. These effect sizes were the same or similar when considering only myopic eyes, only hyperopic eyes and subgroups of eyes stratified by age and pre-operative refractive error. Conclusions Procedure room temperature or humidity during LASIK was found to have no clinically significant relationship with post-operative manifest refraction in our population. PMID:23769199
Tritium, deuterium, and helium permeation through EPDM O-rings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swansiger, W.A.
1992-03-01
This paper discusses tritium permeabilities determined at room temperature, 1.0 MPa (150 psia) tritium for three 23.4 cm diameter EPDM (ethylene-propylene-diene monomer) O-rings using a full-scale mock-up of the Al-SX shipping container seal geometry. The AL-SX container is being developed by Sandia National Laboratories for shipping tritium reservoirs. To determine the tritium permeation rate as a function of temperature, a 50.8 mm diameter EPDM O-ring was tested from room temperature to 150{degrees}C at a pressure of 1.0 MPa. Additional permeation measurements were made under the following test conditions: deuterium and helium-4 at room temperature and a pressure of 1.0 MPamore » using the full-scale AL-SX fixture, tritium from 0.1 MPa to 1.0 MPa at 142{degrees}C using the 50.8 mm fixture, and deuterium form room temperature to 150{degrees}C at a pressure of 1.0 MPa using the three full-scale O-rings showed the average room temperature, 1.0 MPa steady state tritium permeation rate to be about 1 {times} 10{sup {minus}2} Pa-liter/sec (7.6 {times} 10{sup {minus}5} torr-liter/sec or 1 {times} 10{sup {minus}4} std cc/sec), well within the allowable limit of 7.1 {times} 10{sup {minus}2} Pa-liter/sec for tritium release form the AL-SX container.« less
Procedures for the synthesis of ethylenediamine bisborane and ammonia borane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramachandran, Padi Veeraraghavan; Gagare, Pravin D.; Mistry, Hitesh
A method for synthesizing ammonia borane includes (a) preparing a reaction mixture in one or more solvents, the reaction mixture containing sodium borohydride, at least one ammonium salt, and ammonia; and (b) incubating the reaction mixture at temperatures between about 0.degree. C. to about room temperature in an ambient air environment under conditions sufficient to form ammonia borane. Methods for synthesizing ethylenediamine bisborane, and methods for dehydrogenation of ethylenediamine bisborane are also described.
7 CFR 58.622 - Hardening and storage rooms.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be constructed... insure adequate storage temperature (−10° or lower). Air shall be circulated to maintain uniform...
7 CFR 58.622 - Hardening and storage rooms.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be constructed... insure adequate storage temperature (−10° or lower). Air shall be circulated to maintain uniform...
7 CFR 58.622 - Hardening and storage rooms.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be constructed... insure adequate storage temperature (−10° or lower). Air shall be circulated to maintain uniform...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Ward; Pearson, Mark A.; Maiti, Amitesh
Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to various compressive strains (15, 30, 45%) and temperatures (room temperature, 35, 50, 70°C) in a nitrogen atmosphere (active purge) for 1 year. Compression set and load retention of the aged specimens were measured periodically during the study. Compression set increased with strain and temperature. After 1 year, specimens aged at room temperature, 35, and 50°C showed ~10% compression set (relative to the applied compressive deflection), while those aged at 70°C showed 20-40%. Due to the increasing compression set,more » load retention decreased with temperature, ranging from ~90% at room temperature to ~60-80% at 70°C. Long-term compression set and load retention at room temperature were predicted by applying time-temperature superposition (TTS). The predictions show compression set relative to the compressive deflection will be ~10-15% with ~70-90% load retention after 50 years at 15-45% strain, suggesting the material will continue to be mechanically functional. Comparison of the results to previously acquired data for cellular (M97*, M9760, M9763) and RTV (S5370) silicone foams suggests that the SE 1700 DIW porous specimens are on par with, or outperform, the legacy foams.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodwin, J. R.; Golovko, V. V.; Iacob, V. E.
2009-10-15
We have measured the half-life of the electron-capture (ec) decay of {sup 97}Ru in a metallic environment, both at low temperature (19 K), and also at room temperature. We find the half-lives at both temperatures to be the same within 0.1%. This demonstrates that a recent claim that the ec decay half-life for {sup 7}Be changes by 0.9%{+-}0.2% under similar circumstances certainly cannot be generalized to other ec decays. Our results for the half-life of {sup 97}Ru, 2.8370(14) d at room temperature and 2.8382(14) d at 19 K, are consistent with, but much more precise than, previous room-temperature measurements. Inmore » addition, we have also measured the half-lives of the {beta}{sup -}-emitters {sup 103}Ru and {sup 105}Rh at both temperatures, and found them also to be unchanged.« less
A modified and cost-effective method for hair cortisol analysis.
Xiang, Lianbin; Sunesara, Imran; Rehm, Kristina E; Marshall, Gailen D
2016-01-01
Hair cortisol may hold potential as a biomarker for assessment of chronic psychological stress. We report a modified and cost-effective method to prepare hair samples for cortisol assay. Hair samples were ground using an inexpensive ball grinder - ULTRA-TURRAX tube drive. Cortisol was extracted from the powder under various defined conditions. The data showed that the optimal conditions for this method include cortisol extraction at room temperature and evaporation using a stream of room air. These findings should allow more widespread research using economical technology to validate the utility of hair cortisol as a biomarker for assessing chronic stress status.
NASA Astrophysics Data System (ADS)
Sakthiraj, K.; Hema, M.; Balachandra Kumar, K.
2018-06-01
In the present study, nanocrystalline tin oxide materials were prepared using sol-gel method with different reaction temperatures (25 °C, 50 °C, 75 °C & 90 °C) and the relation between the room temperature ferromagnetic property of the sample with processing temperature has been analysed. The X-ray diffraction pattern and infrared absorption spectra of the as-prepared samples confirm the purity of the samples. Transmission electron microscopy images visualize the particle size variation with respect to reaction temperature. The photoluminescence spectra of the samples demonstrate that luminescence process in materials is originated due to the electron transition mediated by defect centres. The room temperature ferromagnetic property is observed in all the samples with different amount, which was confirmed using vibrating sample magnetometer measurements. The saturation magnetization value of the as-prepared samples is increased with increasing the reaction temperature. From the photoluminescence & magnetic measurements we accomplished that, more amount of surface defects like oxygen vacancy and tin interstitial are created due to the increase in reaction temperature and it controls the ferromagnetic property of the samples.
Reversible Silylene Insertion Reactions into Si-H and P-H σ-Bonds at Room Temperature.
Rodriguez, Ricardo; Contie, Yohan; Nougué, Raphael; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Sotiropoulos, Jean-Marc; Kato, Tsuyoshi
2016-11-07
Phosphine-stabilized silylenes react with silanes and a phosphine by silylene insertion into E-H σ-bonds (E=Si,P) at room temperature to give the corresponding silanes. Of special interest, the process occurs reversibly at room temperature. These results demonstrate that both the oxidative addition (typical reaction for transient silylenes) and the reductive elimination processes can proceed at the silicon center under mild reaction conditions. DFT calculations provide insight into the importance of the coordination of the silicon center to achieve the reductive elimination step. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Soni, V; Senkov, O N; Gwalani, B; Miracle, D B; Banerjee, R
2018-06-11
Typically, refractory high-entropy alloys (RHEAs), comprising a two-phase ordered B2 + BCC microstructure, exhibit extraordinarily high yield strengths, but poor ductility at room temperature, limiting their engineering application. The poor ductility is attributed to the continuous matrix being the ordered B2 phase in these alloys. This paper presents a novel approach to microstructural engineering of RHEAs to form an "inverted" BCC + B2 microstructure with discrete B2 precipitates dispersed within a continuous BCC matrix, resulting in improved room temperature compressive ductility, while maintaining high yield strength at both room and elevated temperature.
Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucivero, Vito Giovanni, E-mail: vito-giovanni.lucivero@icfo.es; Anielski, Pawel; Gawlik, Wojciech
2014-11-15
We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature {sup 85}Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT/√(Hz) at 7.6 μT. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 μT to 75 μT. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.
Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roul, Basanta; Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560013
We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm{sup -1} in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy.
Sun, Greg; Khurgin, Jacob B; Tsai, Din Ping
2013-11-18
We propose and study the feasibility of a THz GaN/AlGaN quantum cascade laser (QCL) consisting of only five periods with confinement provided by a spoof surface plasmon (SSP) waveguide for room temperature operation. The QCL design takes advantages of the large optical phonon energy and the ultrafast phonon scattering in GaN that allow for engineering favorable laser state lifetimes. Our analysis has shown that the waveguide loss is sufficiently low for the QCL to reach its threshold at the injection current density around 6 kA/cm2 at room temperature.
Defect types and room-temperature ferromagnetism in undoped rutile TiO2 single crystals
NASA Astrophysics Data System (ADS)
Li, Dong-Xiang; Qin, Xiu-Bo; Zheng, Li-Rong; Li, Yu-Xiao; Cao, Xing-Zhong; Li, Zhuo-Xin; Yang, Jing; Wang, Bao-Yi
2013-03-01
Room-temperature ferromagnetism has been experimentally observed in annealed rutile TiO2 single crystals when a magnetic field is applied parallel to the sample plane. By combining X-ray absorption near the edge structure spectrum and positron annihilation lifetime spectroscopy, Ti3+—VO defect complexes (or clusters) have been identified in annealed crystals at a high vacuum. We elucidate that the unpaired 3d electrons in Ti3+ ions provide the observed room-temperature ferromagnetism. In addition, excess oxygen ions in the TiO2 lattice could induce a number of Ti vacancies which obviously increase magnetic moments.
NASA Astrophysics Data System (ADS)
Afalla, Jessica; Ohta, Kaoru; Tokonami, Shunrou; Prieto, Elizabeth Ann; Catindig, Gerald Angelo; Cedric Gonzales, Karl; Jaculbia, Rafael; Vasquez, John Daniel; Somintac, Armando; Salvador, Arnel; Estacio, Elmer; Tani, Masahiko; Tominaga, Keisuke
2017-11-01
Two asymmetric double quantum wells of different coupling strengths (barrier widths) were grown via molecular beam epitaxy, both samples allowing tunneling. Photoluminescence was measured at 10 and 300 K to provide evidence of tunneling, barrier dependence, and structural uniformity. Carrier dynamics at room temperature was investigated by optical pump terahertz probe (OPTP) spectroscopy. Carrier population decay rates were obtained and photoconductivity spectra were analyzed using the Drude model. This work demonstrates that carrier, and possibly tunneling dynamics in asymmetric double quantum well structures may be studied at room temperature through OPTP spectroscopy.
Primary and secondary room temperature molten salt electrochemical cells
NASA Astrophysics Data System (ADS)
Reynolds, G. F.; Dymek, C. J., Jr.
1985-07-01
Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.
Ether-based nonflammable electrolyte for room temperature sodium battery
NASA Astrophysics Data System (ADS)
Feng, Jinkui; Zhang, Zhen; Li, Lifei; Yang, Jian; Xiong, Shenglin; Qian, Yitai
2015-06-01
Safety problem is one of the key points that hinder the development of room temperature sodium batteries. In this paper, four well-known nonflammable organic compounds, Trimethyl Phosphate (TMP), Tri(2,2,2-trifluoroethyl) phosphite (TFEP), Dimethyl Methylphosphonate (DMMP), Methyl nonafluorobuyl Ether (MFE), are investigated as nonflammable solvents in sodium batteries for the first time. Among them, MFE is stable towards sodium metal at room temperature. The electrochemical properties and electrode compatibility of MFE based electrolyte are investigated. Both Prussian blue cathode and carbon nanotube anode show good electrochemical performance retention in this electrolyte. The results suggest that MFE is a promising option as nonflammable electrolyte additive for sodium batteries.
Organic Electrochemistry in Aluminum Chloride Melts.
1976-08-15
establishing a new, room temperature molten salt system. The low temperature fused salt was prepared by combining aluminum...narrow (600 mY) potential range. Organic electrosynthesis was conducted in a 50-50 by volume molten salt - benzene solution. This mixed solvent...room temperature molten salt system, namely a 67:33 mole percent aluminum chloride: ethylpyridinium bromide melt and in a 50-50 by volume solution of the
Sun, Xiuyun; Sun, Yonghui; Zhang, Chao; Rao, Yu
2014-02-07
A room-temperature Pd(II)-catalyzed regioselective chlorination reaction has been developed for a facile one-pot synthesis of a broad range of 2-chlorophenols. The reaction demonstrates an excellent regioselectivity and reactivity for C-H chlorination. This reaction represents one of the rare examples of mild C-H functionalization at ambient temperature.
A simple, facile, and chemoselective N-benzyloxycarbonylation of amines using silica-sulfuric acid that proceeds under solvent-free conditions at room temperature has been achieved. These reactions are applicable to a wide variety of primary (aliphatic, cyclic) secondary amines, ...
Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors.
Song, Zhilong; Huang, Zhao; Liu, Jingyao; Hu, Zhixiang; Zhang, Jianbing; Zhang, Guangzu; Yi, Fei; Jiang, Shenglin; Lian, Jiabiao; Yan, Jia; Zang, Jianfeng; Liu, Huan
2018-05-25
Stretchable gas sensors that accommodate the shape and motion characteristics of human body are indispensable to a wearable or attachable smart sensing system. However, these gas sensors usually have poor response and recovery kinetics when operated at room temperature, and especially suffer from humidity interference and mechanical robustness issues. Here, we demonstrate the first fully stretchable gas sensors which are operated at room temperature with enhanced stability against humidity. We created a crumpled quantum dot (QD) sensing layer on elastomeric substrate with flexible graphene as electrodes. Through the control over the prestrain of the flexible substrate, we achieved a 5.8 times improvement in NO 2 response at room temperature with desirable stretchability even under 1000 stretch/relax cycles mechanism deformation. The uniformly wavy structural configuration of the crumpled QD gas-sensing layer enabled an improvement in the antihumidity interference. The sensor response shows a minor vibration of 15.9% at room temperature from relative humidity of 0 to 86.7% compared to that of the flat-film sensors with vibration of 84.2%. The successful assembly of QD solids into a crumpled gas-sensing layer enabled a body-attachable, mechanically robust, and humidity-resistant gas sensor, opening up a new pathway to room-temperature operable gas sensors which may be implemented in future smart sensing systems such as stretchable electronic nose and multipurpose electronic skin.
Andre, Rafaela S; Kwak, Dongwook; Dong, Qiuchen; Zhong, Wei; Correa, Daniel S; Mattoso, Luiz H C; Lei, Yu
2018-04-01
Ammonia (NH₃) gas is a prominent air pollutant that is frequently found in industrial and livestock production environments. Due to the importance in controlling pollution and protecting public health, the development of new platforms for sensing NH₃ at room temperature has attracted great attention. In this study, a sensitive NH₃ gas device with enhanced selectivity is developed based on zinc oxide nanofibers (ZnO NFs) decorated with poly(styrene sulfonate) (PSS) and operated at room temperature. ZnO NFs were prepared by electrospinning followed by calcination at 500 °C for 3 h. The electrospun ZnO NFs are characterized to evaluate the properties of the as-prepared sensing materials. The loading of PSS to prepare ZnO NFs/PSS composite is also optimized based on the best sensing performance. Under the optimal composition, ZnO NFs/PSS displays rapid, reversible, and sensitive response upon NH₃ exposure at room temperature. The device shows a dynamic linear range up to 100 ppm and a limit of detection of 3.22 ppm and enhanced selectivity toward NH₃ in synthetic air, against NO₂ and CO, compared to pure ZnO NFs. Additionally, a sensing mechanism is proposed to illustrate the sensing performance using ZnO NFs/PSS composite. Therefore, this study provides a simple methodology to design a sensitive platform for NH₃ monitoring at room temperature.
Preliminary low temperature electron irradiation of triple junction solar cells
NASA Technical Reports Server (NTRS)
Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.
2005-01-01
JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.
Smith, M. G.
1985-01-01
The growth of coliform organisms on meat tissue from sheep carcasses processed in a commercial abattoir was investigated. The results indicated that for practical purposes the minimum temperature of growth of these organisms on meat may be taken as 8 degrees C. Equations were derived relating the generation time and the lag time of coliform organisms in raw blended mutton to the temperature at which the meat is held. Estimates of growth obtained with these equations were found to agree closely with the experimental results, especially at temperatures above 10 degrees C, and allowed the generation times and the lag times for all temperatures up to 40 degrees C to be calculated. These times were also found to agree closely with the times determined using a strain of Escherichia coli inoculated into blended mutton tissue. A strain of Salmonella typhimurium inoculated in the same way into blended mutton tissue gave longer generation and lag times at temperatures below 15 degrees C. Therefore, it is believed that the calculated tables of lag and generation times included in this paper can be used to determine the length of time raw chilled meat may be held afterwards at temperatures above the minimum temperature of growth without an increase in the number of any salmonella organisms present, and these times include a safety margin at each temperature. The study indicates that the mandatory codes of practice presently applied in commercial abattoirs are too stringent. Maintaining the temperature of boning rooms at 10 degrees C or less does not appear to be necessary providing the meat is processed within the calculated time limits. A relaxation of the restrictions on boning room temperatures would decrease costs, increase worker comfort and safety and would not compromise the bacteriological safety of the meat produced. PMID:3891847
Optimization of MgF2-deposition temperature for far UV Al mirrors.
De Marcos, Luis V Rodríguez; Larruquert, Juan I; Méndez, José A; Gutiérrez-Luna, Nuria; Espinosa-Yáñez, Lucía; Honrado-Benítez, Carlos; Chavero-Royán, José; Perea-Abarca, Belén
2018-04-02
Progress towards far UV (FUV) coatings with enhanced reflectance is invaluable for future space missions, such as LUVOIR. This research starts with the procedure developed to enhance MgF 2 -protected Al reflectance through depositing MgF 2 on a heated aluminized substrate [Quijada et al., Proc. SPIE 8450, 84502H (2012)] and it establishes the optimum deposition temperature of the MgF 2 protective film for Al mirrors with a reflectance as high as ~90% at 121.6 nm. Al films were deposited at room temperature and protected with a MgF 2 film deposited at various temperatures ranging from room temperature to 350°C. It has been found that mirror reflectance in the short FUV range continuously increases with MgF 2 deposition temperature up to 250°C, whereas reflectance decreases at temperatures of 300°C and up. The short-FUV reflectance of mirrors deposited at 250°C only slightly decreased over time by less than 1%, compared to a larger decay for standard coatings prepared at room temperature. Al mirrors protected with MgF 2 deposited at room temperature that were later annealed displayed a similar reflectance enhancement that mirrors protected at high temperatures. MgF 2 and Al roughness as well as MgF 2 density were analyzed by x-ray grazing incidence reflectometry. A noticeable reduction in both Al and MgF 2 roughness, as well as an increase of MgF 2 density, were measured for films deposited at high temperatures. On the other hand, it was found a strong correlation between the protective-layer deposition temperature (or post-deposition annealing temperature) and the pinhole open area in Al films, which could be prevented with a somewhat thicker Al film.
An expeditious room temperature synthesis of pyrazoles and diazepines by condensation of hydrazines/hydrazides and diamines with various 1,3-diketones is described. This greener protocol was catalyzed by polystyrene supported sulfonic acid (PSSA) and proceeded efficiently in wate...
Venkatesan, Shanmuganathan; Kumar, Annamalai Senthil; Lee, Jyh-Fu; Chan, Ting-Shan; Zen, Jyh-Myng
2012-05-14
The aerobic oxidation of primary amines to their respective nitriles has been carried out at room temperature using a highly reusable nanocrystalline ruthenium oxide pyrochlore Nafion composite catalyst (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
In this study, analytical results were compared when using different approaches to bulk food sample comminution, consisting of a vertical chopper (Blixer) at room temperature and at dry ice cryogenic conditions, followed by further subsample processing (20 g) using liquid nitrogen cryogenic conditio...
Efficient simple sealed-off CO laser at room temperature
NASA Astrophysics Data System (ADS)
Peters, P. J. M.; Witteman, W. J.; Zuidema, R. J.
1980-07-01
The paper reports a simple sealed-off CW CO laser with gold electrodes. A constant long-life output power of more than 29 W/m and a maximum efficiency of 15% at room temperature are reported. No auxiliary features, such as a palladium hydrogen extraction tube, are necessary.
Ji, Xinfei; Huang, Tao; Wu, Wei; Liang, Fang; Cao, Song
2015-10-16
A practical and convenient approach for the secondary C(sp(3))-H arylation of diarylmethanes with various fluoroarenes is described. The reaction proceeds smoothly in the presence of LDA (lithium diisopropylamide) at room temperature and affords triarylmethanes in moderate to high yields.
Gold catalysed synthesis of 3-alkoxyfurans at room temperature.
Pennell, Matthew N; Foster, Robert W; Turner, Peter G; Hailes, Helen C; Tame, Christopher J; Sheppard, Tom D
2014-02-09
Synthetically important 3-alkoxyfurans can be prepared efficiently via treatment of acetal-containing propargylic alcohols (obtained from the addition of 3,3-diethoxypropyne to aldehydes) with 2 mol% gold catalyst in an alcohol solvent at room temperature. The resulting furans show useful reactivity in a variety of subsequent transformations.
Room-temperature operation of a Co:MgF2 laser
NASA Technical Reports Server (NTRS)
Welford, D.; Moulton, P. F.
1988-01-01
A normal-mode, pulsed Co:MgF2 laser has been operated at room temperature for the first time. Continuous tuning from 1750 to 2500 nm with pulse energies up to 70 mJ and 46-percent slope efficiency was obtained with a 1338-nm Nd:YAG pump laser.
Temperature-dependent excitonic effects in the optical properties of single-layer MoS2
NASA Astrophysics Data System (ADS)
Molina-Sánchez, Alejandro; Palummo, Maurizia; Marini, Andrea; Wirtz, Ludger
2016-04-01
Temperature influences the performance of two-dimensional (2D) materials in optoelectronic devices. Indeed, the optical characterization of these materials is usually realized at room temperature. Nevertheless, most ab initio studies are still performed without including any temperature effect. As a consequence, important features are thus overlooked, such as the relative height of the excitonic peaks and their broadening, directly related to the temperature and to the nonradiative exciton relaxation time. We present ab initio calculations of the optical response of single-layer MoS2, a prototype 2D material, as a function of temperature using density functional theory and many-body perturbation theory. We compute the electron-phonon interaction using the full spinorial wave functions, i.e., fully taking into account the effects of spin-orbit interaction. We find that bound excitons (A and B peaks) and resonant excitons (C peak) exhibit different behavior with temperature, displaying different nonradiative linewidths. We conclude that the inhomogeneous broadening of the absorption spectra is mainly due to electron-phonon scattering mechanisms. Our calculations explain the shortcomings of previous (zero-temperature) theoretical spectra and match well with the experimental spectra acquired at room temperature. Moreover, we disentangle the contributions of acoustic and optical phonon modes to the quasiparticles and exciton linewidths. Our model also allows us to identify which phonon modes couple to each exciton state, which is useful for the interpretation of resonant Raman-scattering experiments.
Study of the thermal-optics parameters of Nd3+-doped phosphate glass as a function of temperature
NASA Astrophysics Data System (ADS)
Filho, J. C.; Pilla, V.; Messias, D. N.; Lourenço, S. A.; Silva, A. C. A.; Dantas, N. O.; Andrade, A. A.
2017-02-01
The spectroscopic properties of rare earth ions in many different hosts have been investigated, including surveys of Nd3+ in silicate, phosphate, fluorophosphates and fluoride glasses. Some of the thermal-optical properties of materials are influenced by temperature change, such as thermal diffusivity, specific heat and luminescence quantum efficiency. In this work the luminescence quantum efficiency of PANK: Nd3+, as a function of temperature (80- 480 K), was investigated using the normalized lifetime thermal lens technique. This system presents high quantum efficiency at low Nd3+ concentration and at ambient temperature, 100%, which decrease as temperature increase. Below room temperature the effects are not in accord with the maximum value of η, which must be unity.
NASA Technical Reports Server (NTRS)
Martinez-Fernandez, J.; Morscher, G. N.
2000-01-01
Single tow Hi-Nicalon(TM), C interphase, CVI SiC matrix minicomposites were tested in tension at room temperature, 700 C, 950 C, and 1200 C in air. Monotonic loading with modal acoustic emission monitoring was performed at room temperature in order to determine the dependence of matrix cracking on applied load. Modal acoustic emission was shown to correlate directly with the number of matrix cracks formed. Elevated temperature constant load stress-rupture and low-cycle fatigue experiments were performed on precracked specimens. The elevated temperature rupture behavior was dependent on the precrack stress, the lower precrack stress resulting in longer rupture life for a given stress. It was found that the rupture lives of C-interphase Hi-Nicalon(TM) minicomposites were superior to C-interphase Ceramic Grade Nicalon(TM) minicomposites and inferior to those of BN-interphase Hi-Nicalon(TM) minicomposites.
Synthesis and characterization of intercalated few-layer graphenes
NASA Astrophysics Data System (ADS)
Sato, Shogo; Ichikawa, Hiroaki; Iwata, Nobuyuki; Yamamoto, Hiroshi
2014-02-01
Toward achieving room-temperature superconductivity, FeCl3-intercalated few-layer graphenes (FeCl3-FLGs) and Ca-intercalated few-layer graphenes (Ca-FLGs) were synthesized. FeCl3-FLGs were synthesized by the two-zone method and Ca-FLGs were synthesized using Ca-Li alloy. The Raman spectra of the FeCl3-FLGs showed a lower-intensity peak at 1607 cm-1 than that of the corresponding bare G. The peak at 1607 cm-1 suggested that the sample was stage 4-5 FeCl3-FLGs. The room-temperature electrical resistivity of FeCl3-FLGs was 2.65 × 10-5 Ω·m, which linearly decreased with decreasing temperature with a marked change occurring at approximately 200 K. From a XRD pattern of Ca-FLGs, we concluded that Ca is intercalated in FLGs. The room-temperature resistivity of Ca-FLGs was 3.45 × 10-5 Ω·m, which increased with decreasing temperature.
Fishman, Randy Scott; Lee, Jun Hee; Bordacs, Sandor; ...
2015-09-14
A microscopic model for the room-temperature multiferroic BiFeO 3 that includes two Dzyaloshinskii-Moriya interactions and single-ion anisotropy along the ferroelectric polarization predicts both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. Due to simultaneously broken time-reversal and spatial-inversion symmetries, the absorption of light changes as the magnetic field or the direction of light propagation is reversed. We discuss three physical mechanisms that may contribute to this absorption asymmetry known as directional dichroism: the spin current, magnetostriction, and single-ion anisotropy. We conclude that the directional dichroism in BiFeO 3 is dominated by the spin-currentmore » polarization and is insensitive to the magnetostriction and easy-axis anisotropy. With three independent spin-current parameters, our model accurately describes the directional dichroism observed for magnetic field along [1, -1, 0]. Since some modes are almost transparent to light traveling in one direction but opaque for light traveling in the opposite direction, BiFeO 3 can be used as a room-temperature optical diode at certain frequencies in the GHz to THz range. This work demonstrates that an analysis of the directional dichroism spectra based on an effective spin model supplemented by first-principles calculations can produce a quantitative microscopic theory of the magnetoelectric couplings in multiferroic materials.« less
Joshi, Nirav; Hayasaka, Takeshi; Liu, Yumeng; Liu, Huiliang; Oliveira, Osvaldo N; Lin, Liwei
2018-03-10
Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures (mainly oxides of Sn, Ni, Zn, W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides, reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT sensing of gases such as NOx, NH 3 , H 2 , SO 2 , CO, and of vapors such as of acetone, formaldehyde or methanol. Attractive features also include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed. Graphical Abstract The review summarizes the most significant progresses related to room temperature gas sensing by using hierarchical oxide nanostructures, graphene and its derivatives and 2D transition metal dichalcogenides, highlighting the peculiar gas sensing behavior with enhanced selectivity, sensitivity and long-term stability.
Towards a new class of heavy ion doped magnetic semiconductors for room temperature applications
Lee, Juwon; Subramaniam, Nagarajan Ganapathi; Agnieszka Kowalik, Iwona; Nisar, Jawad; Lee, Jaechul; Kwon, Younghae; Lee, Jaechoon; Kang, Taewon; Peng, Xiangyang; Arvanitis, Dimitri; Ahuja, Rajeev
2015-01-01
The article presents, using Bi doped ZnO, an example of a heavy ion doped oxide semiconductor, highlighting a novel p-symmetry interaction of the electronic states to stabilize ferromagnetism. The study includes both ab initio theory and experiments, which yield clear evidence for above room temperature ferromagnetism. ZnBixO1−x thin films are grown using the pulsed laser deposition technique. The room temperature ferromagnetism finds its origin in the holes introduced by the Bi doping and the p-p coupling between Bi and the host atoms. A sizeable magnetic moment is measured by means of x-ray magnetic circular dichroism at the O K-edge, probing directly the spin polarization of the O(2p) states. This result is in agreement with the theoretical predictions and inductive magnetometry measurements. Ab initio calculations of the electronic and magnetic structure of ZnBixO1−x at various doping levels allow to trace the origin of the ferromagnetic character of this material. It appears, that the spin-orbit energy of the heavy ion Bi stabilizes the ferromagnetic phase. Thus, ZnBixO1−x doped with a heavy non-ferromagnetic element, such as Bi, is a credible example of a candidate material for a new class of compounds for spintronics applications, based on the spin polarization of the p states. PMID:26592564
Paramagnetic-to-nonmagnetic transition in antiperovskite nitride Cr3GeN studied by 14N-NMR and µSR
NASA Astrophysics Data System (ADS)
Takao, K.; Liu, Z.; Uji, K.; Waki, T.; Tabata, Y.; Watanabe, I.; Nakamura, H.
2017-06-01
The antiperovskite-related nitride Cr3GeN forms a tetragonal structure with the space group P\\bar{4}{2}1m at room temperature. It shows a tetragonal (P\\bar{4}{2}1m) to tetragonal (I4/mcm) structural transition with a large hysteresis at 300-400 K. The magnetic susceptibility of Cr3GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out µSR and 14N-NMR microscopy measurements to reveal the magnetic ground state of Cr3GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr3GeN is magnetically inactive. In the 14N-NMR measurement, a quadrupole-split spectrum was obtained at around 14 K = 0. The temperature dependence of 14(1/T1) satisfies the Korringa relation. These experimental results indicate that the ground state of Cr3GeN is Pauli paramagnetic, without antiferromagnetic long-range order.
Catalysts for the Oxidation of Carbon Monoxide at Low Temperatures.
1979-11-21
Four catalysts ( hopcalite , Whetlerite, a supported palladium, and a supported platinum) were tested for efficiency in promoting the oxidation of...carbon monoxide (CO). At room temperature and 50% RH, hopcalite has no catalytic capability and platinum has practically none. At room temperature and 15...RH, hopcalite is superior to platinum in catalyzing the oxidation of CO. Hopcalite is more efficient than either of the other three catalysts in the
Room temperature acoustic transducers for high-temperature thermometry
NASA Astrophysics Data System (ADS)
Ripple, D. C.; Murdock, W. E.; Strouse, G. F.; Gillis, K. A.; Moldover, M. R.
2013-09-01
We have successfully conducted highly-accurate, primary acoustic thermometry at 600 K using a sound source and a sound detector located outside the thermostat, at room temperature. We describe the source, the detector, and the ducts that connected them to our cavity resonator. This transducer system preserved the purity of the argon gas, generated small, predictable perturbations to the acoustic resonance frequencies, and can be used well above 600 K.
Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; ...
2011-12-05
Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr 0.53Ti 0.47O 3) (1-x)- (PbFe 0.5Ta 0.5O 3) x. Our study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C 2v-C 4v (Pmm2-P4mm) transition. Furthermore, the material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization P r = 25 μC/cm 2, whichmore » actually increases (to 40 μC/cm 2) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO 3. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. Finally, these are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less
Magnetism of Amorphous and Nano-Crystallized Dc-Sputter-Deposited MgO Thin Films
Mahadeva, Sreekanth K.; Fan, Jincheng; Biswas, Anis; Sreelatha, K.S.; Belova, Lyubov; Rao, K.V.
2013-01-01
We report a systematic study of room-temperature ferromagnetism (RTFM) in pristine MgO thin films in their amorphous and nano-crystalline states. The as deposited dc-sputtered films of pristine MgO on Si substrates using a metallic Mg target in an O2 containing working gas atmosphere of (N2 + O2) are found to be X-ray amorphous. All these films obtained with oxygen partial pressure (PO2) ~10% to 80% while maintaining the same total pressure of the working gas are found to be ferromagnetic at room temperature. The room temperature saturation magnetization (MS) value of 2.68 emu/cm3 obtained for the MgO film deposited in PO2 of 10% increases to 9.62 emu/cm3 for film deposited at PO2 of 40%. However, the MS values decrease steadily for further increase of oxygen partial pressure during deposition. On thermal annealing at temperatures in the range 600 to 800 °C, the films become nanocrystalline and as the crystallite size grows with longer annealing times and higher temperature, MS decreases. Our study clearly points out that it is possible to tailor the magnetic properties of thin films of MgO. The room temperature ferromagnetism in MgO films is attributed to the presence of Mg cation vacancies. PMID:28348346
The Effect of Curing Temperature on the Properties of Cement Pastes Modified with TiO2 Nanoparticles
Pimenta Teixeira, Karine; Perdigão Rocha, Isadora; De Sá Carneiro, Leticia; Flores, Jessica; Dauer, Edward A.; Ghahremaninezhad, Ali
2016-01-01
This paper investigates the effect of curing temperature on the hydration, microstructure, compressive strength, and transport of cement pastes modified with TiO2 nanoparticles. These characteristics of cement pastes were studied using non-evaporable water content measurement, X-ray diffraction (XRD), compressive strength test, electrical resistivity and porosity measurements, and scanning electron microscopy (SEM). It was shown that temperature enhanced the early hydration. The cement pastes cured at elevated temperatures generally showed an increase in compressive strength at an early age compared to the cement paste cured at room temperature, but the strength gain decreased at later ages. The electrical resistivity of the cement pastes cured at elevated temperatures was found to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at elevated temperatures. It was observed that high temperature curing decreased the compressive strength and electrical resistivity of the cement pastes at late ages in a more pronounced manner when higher levels of TiO2 nanoparticles were added. PMID:28774073
Large magnetoelectric coupling in magnetically short-range ordered Bi₅Ti₃FeO₁₅ film.
Zhao, Hongyang; Kimura, Hideo; Cheng, Zhenxiang; Osada, Minoru; Wang, Jianli; Wang, Xiaolin; Dou, Shixue; Liu, Yan; Yu, Jianding; Matsumoto, Takao; Tohei, Tetsuya; Shibata, Naoya; Ikuhara, Yuichi
2014-06-11
Multiferroic materials, which offer the possibility of manipulating the magnetic state by an electric field or vice versa, are of great current interest. However, single-phase materials with such cross-coupling properties at room temperature exist rarely in nature; new design of nano-engineered thin films with a strong magneto-electric coupling is a fundamental challenge. Here we demonstrate a robust room-temperature magneto-electric coupling in a bismuth-layer-structured ferroelectric Bi₅Ti₃FeO₁₅ with high ferroelectric Curie temperature of ~1000 K. Bi₅Ti₃FeO₁₅ thin films grown by pulsed laser deposition are single-phase layered perovskit with nearly (00l)-orientation. Room-temperature multiferroic behavior is demonstrated by a large modulation in magneto-polarization and magneto-dielectric responses. Local structural characterizations by transmission electron microscopy and Mössbauer spectroscopy reveal the existence of Fe-rich nanodomains, which cause a short-range magnetic ordering at ~620 K. In Bi₅Ti₃FeO₁₅ with a stable ferroelectric order, the spin canting of magnetic-ion-based nanodomains via the Dzyaloshinskii-Moriya interaction might yield a robust magneto-electric coupling of ~400 mV/Oe·cm even at room temperature.
Young, Justin W; Booth, Ryan S; Vogelhuber, Kristen M; Stearns, Jaime A; Annesley, Christopher J
2018-06-28
Photoexcitation of water by Lyman-α (121.6 nm) induces a dissociation reaction that produces OH(A 2 Σ + ) + H. Despite this reaction being part of numerous studies, a combined understanding of the product and fluorescence yields is still lacking. Here, the rotational and vibrational distributions of OH(A) are determined from dispersed fluorescence following photoexcitation of both room-temperature and jet-cooled water vapor, for the first time in the same experiment. This work compares new data of state-resolved fluorescence with literature molecular branching ratios and brings previous studies into agreement through careful consideration of OH(A) fluorescent and predissociation lifetimes and confirms a fluorescent quantum yield of 8%. Comparison of the room-temperature and jet-cooled OH(A) populations indicate the temperature of H 2 O prior to excitation has subtle effects on the OH(A) population distribution, such as altering the rotational distribution in the ν' = 0 population and affecting the population in the ν' = 1 state. These results indicate jet-cooled water vapor may have a 1% higher fluorescence quantum yield compared to room-temperature water vapor.
NASA Astrophysics Data System (ADS)
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; Pitike, Krishna C.; Sohn, Changhee; Nakhmanson, Serge M.; Takoudis, Christos G.; Lee, Ho Nyung; Tonelli, Rachel; Gardner, Jonathan; Scott, James F.; Katiyar, Ram S.; Hong, Seungbum
2018-02-01
Tin titanate (SnTi O3 ) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the S n2 + to S n4 + . In the present paper, we show two things: first, perovskite phase SnTi O3 can be prepared by atomic-layer deposition directly onto p -type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p -type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTi O3 . Our films showed well-saturated, square, and repeatable hysteresis loops of around 3 μ C /c m2 remnant polarization at room temperature, as detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt /SnTi O3/Si /SnTi O3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. This is a lead-free room-temperature ferroelectric oxide of potential device application.
NASA Astrophysics Data System (ADS)
Peng, Feng; Sun, Ying; Pickard, Chris J.; Needs, Richard J.; Wu, Qiang; Ma, Yanming
2017-09-01
Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H24 , H29 , and H32 , in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H32 clathrate structure of stoichiometry YH10 is predicted to be a potential room-temperature superconductor with an estimated Tc of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; ...
2018-02-20
Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang
Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less
Peng, Feng; Sun, Ying; Pickard, Chris J; Needs, Richard J; Wu, Qiang; Ma, Yanming
2017-09-08
Room-temperature superconductivity has been a long-held dream and an area of intensive research. Recent experimental findings of superconductivity at 200 K in highly compressed hydrogen (H) sulfides have demonstrated the potential for achieving room-temperature superconductivity in compressed H-rich materials. We report first-principles structure searches for stable H-rich clathrate structures in rare earth hydrides at high pressures. The peculiarity of these structures lies in the emergence of unusual H cages with stoichiometries H_{24}, H_{29}, and H_{32}, in which H atoms are weakly covalently bonded to one another, with rare earth atoms occupying the centers of the cages. We have found that high-temperature superconductivity is closely associated with H clathrate structures, with large H-derived electronic densities of states at the Fermi level and strong electron-phonon coupling related to the stretching and rocking motions of H atoms within the cages. Strikingly, a yttrium (Y) H_{32} clathrate structure of stoichiometry YH_{10} is predicted to be a potential room-temperature superconductor with an estimated T_{c} of up to 303 K at 400 GPa, as derived by direct solution of the Eliashberg equation.
Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.
Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul
2017-08-31
In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.
Heat treatment versus properties studies associated with the Inconel 718 PBF acoustic filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smolik, G.R.; Reuter, W.G.
PBF acoustic filter Unit No. 1 cracked when heat treatment was attempted. The effects of prior thermal cycling, solution anneal temperature, and cooling rate from solution anneals were investigated. The investigations concerned influences of the above variables upon both 1400$sup 0$F stress rupture solution- annealed properties and room temperature age-hardened properties. 1400$sup 0$F stress rupture properties were of interest to assist the prevention of cracking during heat treatments. Room temperature age-hardened properties were needed to ensure that design requirement would be provided. Prior thermal cycling was investigated to determine if extra thermal cycles would be detrimental to the repaired filter.more » Slow furnace cools were considered as a means of reducing thermal stresses. Effects of solution annealing at 2000 and 1900$sup 0$F were also determined. Test results showed that slow cooling rates would not only reduce thermal stresses but also improve 1400$sup 0$F ductility. A modified aging treatment was established which provided the required 145 ksi room temperature yield strength for the slowly cooled material. Prior cooling did not degrade final age-hardened room temperature tensile or impact properties. (auth)« less
NASA Astrophysics Data System (ADS)
Fikáček, Jan; Heczko, Oleg; Kopecký, Vít; Kaštil, Jiří; Honolka, Jan
2018-04-01
We carried out magneto-optical Kerr effect (MOKE) and magnetization measurements on a single crystal of Ni2.00Mn1.16Ga0.84, which is a magnetic shape memory material with application potential for actuator devices or for energy recuperation. Up to the time of our study, there had been reports of MOKE measurements in polar geometry. Against earlier predictions, we show that surface magnetic states of the martensite and the austenite can be also probed efficiently via longitudinal MOKE. A single-variant magnetic state prepared at room temperature is characterized by square-shaped ferromagnetic hysteresis loops yielding coercive fields, which are key material properties for future applications. Temperature dependencies of Kerr rotation were found to be linearly proportional to magnetization for martensitic phases. After passing through an inter-martensitic structural transition below room temperature in zero magnetic field, the coercive fields are more than doubled in comparison with the room temperature values. Above room temperature where an austenite structure is formed, MOKE signals are dominated by quadratic contributions and the magnitude of Kerr rotation drops due to changes in the electronic and magnetic domains structure.
Preliminary Appraisal of Ferrocene as an Igniting Agent for JP-4 Fuel and Fuming Nitric Acid
NASA Technical Reports Server (NTRS)
Miller, RIley O.
1953-01-01
A preliminary experimental study was made of the properties of ferrocene as a solute and as a suspension in JP-4 fuel, and of the ignition delays of ferrocene - JP-4 mixture with A.F. specification 14104 white fuming nitric acid (WFNA). The investigation covered concentrations of 4 to 10 percent by weight ferrocene, and a temperature range of -40 to 80 F. The solubility of ferrocene in JP-4 is about 5 percent at room temperature and about 1 percent (extrapolated) at -80 F. The solubility is increased somewhat by increased aromatics content. Undissolved ferrocene particles of 100 mesh and smaller settle rapidly in JP-4. Clear solutions of 4 and 5 percent ferrocene in JP-4 fuels containing 10 and 25 percent by volume aromatics, respectively, do not ignite with WFNA at room temperature. Mixtures containing 10 percent ferrocene (100- mesh and smaller undissolved particles in suspension) ignited with vigorous persistent flames at room temperature, but did not ignite at -38 F. The ignition delays at room temperature, however, were widely varied; the range from 85 milliseconds to over 1 second perhaps reflected differences in degree of sedimentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab
2014-09-15
Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less
Determination of the Darcy permeability of porous media including sintered metal plugs
NASA Technical Reports Server (NTRS)
Frederking, T. H. K.; Hepler, W. A.; Yuan, S. W. K.; Feng, W. F.
1986-01-01
Sintered-metal porous plugs with a normal size of the order of 1-10 microns are used to evaluate the Darcy permeability of laminar flow at very small velocities in laminar fluids. Porous media experiment results and data adduced from the literature are noted to support the Darcy law analog for normal fluid convection in the laminar regime. Low temperature results suggest the importance of collecting room temperature data prior to runs at liquid He(4) temperatures. The characteristic length diagram gives a useful picture of the tolerance range encountered with a particular class of porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Haowei; Gray, A. X.; Granitzka, P.
Vanadium dioxide is of broad interest as a spin-1/2 electron system that realizes a metal-insulator transition near room temperature, due to a combination of strongly correlated and itinerant electron physics. Here, resonant inelastic x-ray scattering is used to measure the excitation spectrum of charge and spin degrees of freedom at the vanadium L edge under different polarization and temperature conditions, revealing excitations that differ greatly from those seen in optical measurements. Furthermore, these spectra encode the evolution of short-range energetics across the metal-insulator transition, including the low-temperature appearance of a strong candidate for the singlet-triplet excitation of a vanadium dimer.
Room-temperature quantum noise limited spectrometry and methods of the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Charles G.; Tringe, Joseph W.; Cunningham, Christopher T.
According to one embodiment, a heterodyne detection system for detecting light, includes: a first input aperture configured to receive first light from a scene input; a second input aperture configured to receive second light from a local oscillator input; a broadband local oscillator configured to provide the second light to the second input aperture; a dispersive element configured to disperse the first light and the second light; and a final condensing lens coupled to a detector. The final condensing lens is configured to concentrate incident light from a primary condensing lens onto the detector. The detector is configured to sensemore » a frequency difference between the first light and the second light; and the final condensing lens comprises a plasmonic condensing lens. Methods for forming a plasmonic condensing lens to enable room temperature quantum noise limited spectrometry are also disclosed.« less
Graphene field-effect transistors as room-temperature terahertz detectors.
Vicarelli, L; Vitiello, M S; Coquillat, D; Lombardo, A; Ferrari, A C; Knap, W; Polini, M; Pellegrini, V; Tredicucci, A
2012-10-01
The unique optoelectronic properties of graphene make it an ideal platform for a variety of photonic applications, including fast photodetectors, transparent electrodes in displays and photovoltaic modules, optical modulators, plasmonic devices, microcavities, and ultra-fast lasers. Owing to its high carrier mobility, gapless spectrum and frequency-independent absorption, graphene is a very promising material for the development of detectors and modulators operating in the terahertz region of the electromagnetic spectrum (wavelengths in the hundreds of micrometres), still severely lacking in terms of solid-state devices. Here we demonstrate terahertz detectors based on antenna-coupled graphene field-effect transistors. These exploit the nonlinear response to the oscillating radiation field at the gate electrode, with contributions of thermoelectric and photoconductive origin. We demonstrate room temperature operation at 0.3 THz, showing that our devices can already be used in realistic settings, enabling large-area, fast imaging of macroscopic samples.
Baixench, M T; Al-Sheikh, M; Paugam, A
2005-01-01
The study included 37 urine samples which have been artificially infected with low levels (10(3) CFU/mL) of various fungi strains. We compared the effects of sample storage, up to 48 hours, at room temperature, in a urine evacuated tube containing specific additives with storage at + 4 degrees C, for the same length of time, in a urine evacuated tube without any additives. There have been no differences of results (speed of growth and colony size) between the 2 modes of storage. However, the experience has shown that samples needed a careful mixing before seeding to avoid underdetection of the strains. Based on the study results, the BD Vacutainer C&S tubes are suitable for delayed testing for the diagnosis of urine fungal infection.
Thermoelectricity in atom-sized junctions at room temperatures
Tsutsui, Makusu; Morikawa, Takanori; Arima, Akihide; Taniguchi, Masateru
2013-01-01
Atomic and molecular junctions are an emerging class of thermoelectric materials that exploit quantum confinement effects to obtain an enhanced figure of merit. An important feature in such nanoscale systems is that the electron and heat transport become highly sensitive to the atomic configurations. Here we report the characterization of geometry-sensitive thermoelectricity in atom-sized junctions at room temperatures. We measured the electrical conductance and thermoelectric power of gold nanocontacts simultaneously down to the single atom size. We found junction conductance dependent thermoelectric voltage oscillations with period 2e2/h. We also observed quantum suppression of thermovoltage fluctuations in fully-transparent contacts. These quantum confinement effects appeared only statistically due to the geometry-sensitive nature of thermoelectricity in the atom-sized junctions. The present method can be applied to various nanomaterials including single-molecules or nanoparticles and thus may be used as a useful platform for developing low-dimensional thermoelectric building blocks. PMID:24270238
NASA Astrophysics Data System (ADS)
Collombet, Annabelle; Guyot, Yannick; Joubert, Marie-France; Margerie, Jean; Moncorgé, Richard; Tkachuk, Alexandra
2004-11-01
Experimental spectroscopic results related to Nd3+-doped BaY2F8, are presented that include vacuum-ultraviolet ground-state absorption and excitation spectra as well as polarized emission and excited-state absorption spectra recorded in the near-ultraviolet spectral range at room and low temperatures. Calculations were performed to determine the positions of the 4f25d sublevels and the intensities and polarizations of the 4f3<-->4f25d optical transitions of the Nd3+ ions in the C2 symmetry sites of the biaxial host crystal. The simulated spectra agree well with the experimental spectra; in particular, the model that was used successfully reproduced the differences between the polarized spectra on one hand and between the spectra recorded at low and room temperatures on the other hand.
Broadband multiresonator quantum memory-interface.
Moiseev, S A; Gerasimov, K I; Latypov, R R; Perminov, N S; Petrovnin, K V; Sherstyukov, O N
2018-03-05
In this paper we experimentally demonstrated a broadband scheme of the multiresonator quantum memory-interface. The microwave photonic scheme consists of the system of mini-resonators strongly interacting with a common broadband resonator coupled with the external waveguide. We have implemented the impedance matched quantum storage in this scheme via controllable tuning of the mini-resonator frequencies and coupling of the common resonator with the external waveguide. Proof-of-principal experiment has been demonstrated for broadband microwave pulses when the quantum efficiency of 16.3% was achieved at room temperature. By using the obtained experimental spectroscopic data, the dynamics of the signal retrieval has been simulated and promising results were found for high-Q mini-resonators in microwave and optical frequency ranges. The results pave the way for the experimental implementation of broadband quantum memory-interface with quite high efficiency η > 0.99 on the basis of modern technologies, including optical quantum memory at room temperature.
NASA Astrophysics Data System (ADS)
Weymouth, Alfred J.; Riegel, Elisabeth; Matencio, Sonia; Giessibl, Franz J.
2018-04-01
One of the challenges of AFM, in contrast to STM, is that the measured signal includes both long-range and short-range components. The most accurate method for removing long-range components is to measure both on and off an adsorbate and to subtract the difference. This on-off method is challenging at room temperature due to thermal drift. By moving to a non-contact scheme in which the lateral component of the force interaction is probed, the measurement is dominated by short-range interactions. We use frequency-modulation lateral force microscopy to measure individual PTCDA molecules adsorbed on Ag/Si(111)-( √{3 }×√{3 } ). By fitting the data to a model potential, we can extract the depth and width of the potential. When the tip is closer to the sample, a repulsive feature can be observed in the data.
Ursuegui, S; Yougnia, R; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Laurent, A; Fabis, F
2015-03-28
Isatoic anhydride derivatives, including a biotin and a disulfide linker were specifically designed for nucleic acid separation. 2'-OH selective RNA acylation, capture of biotinylated RNA adducts by streptavidin-coated magnetic beads and disulfide chemical cleavage led to isolation of highly enriched RNA samples from an initial 9/1 DNA-RNA mixture. Starting from the parent compound N-methylisatoic anhydride A which was used at 65 °C, we improved the extraction process by designing a new generation of isatoic anhydrides that are able to react under smoother conditions. Among them, a pyridine-based isatoic anhydride derivative 15f was found to be reactive at room temperature, leading to enhance the efficiency and selectivity of the extraction process by significantly reducing DNA side extraction. The extracted and purified RNAs can then be detected by RT-PCR.
NASA Astrophysics Data System (ADS)
Suzuki, T.; Minoda, H.; Tanishiro, Y.; Yagi, K.
A TED study of Si(113) surfaces was carried out. Reflections from the 3 × 2 reconstruction were seen at room temperature, while half-order reflections were very faint. The surface showed the phase transition between the 3 × 1 and the disordered (rough) structures at about 930°C. The (113) surface structure at room temperature was analyzed using TED intensity. Four kinds of structure models proposed previously, including both the 3 × 1 and the 3 × 2 reconstructed structures, were examined. The R-factors calculated using the energy-optimized atomic coordinates are not sufficiently small. After minimization of the R-factors, Dabrowski's 3 × 2 structure model is most agreeable, while Ranke's 3 × 1 and 3 × 2 structure models are not to be excluded. STM observation showed that the surface is composed of small domains of the 3 × 2 structure.
Stabilization of superionic α-Agl at room temperature in a glass matrix
NASA Astrophysics Data System (ADS)
Tatsumisago, Masahiro; Shinkuma, Yoshikane; Minami, Tsutomu
1991-11-01
SINCE the discovery1 that the high-temperature phase of silver iodide (α-AgI) has an ionic conductivity comparable to that of the best liquid electrolytes, solid electrolytes have attracted wide interest. Possible applications of these materials range from solid-state batteries to electrochromic displays and sensors2. Although α-AgI displays conductivities of more than 10 S cm-1 (ref. 3), owing to the almost liquid-like mobility of Ag+ ions, the crystal transforms below 147 °C to the β-phase with a conductivity of only ~10-5 S cm-1 at room temperature. Efforts to achieve good conductivities at lower temperatures have focused on the addition of a second component to AgI to form solid solutions or new compounds such as RbAg4I5 and Ag2HgI4 (refs 4-7). Here we report our success in depressing the α-->β transformation temperature so as to stabilize α-AgI itself at room temperature. We use a melt-quenching technique to prepare crystallites of α-AgI frozen into a silver borate glass matrix. The quenched material showed diffraction peaks characteristic of α-AgI and displayed ionic conductivities of about 10-1 S cm-1. Further development of these glass/crystal composites may make the high ionic conductivity of α-AgI available for room-temperature solid-state applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardi, Naor; Sharoni, Amos, E-mail: amos.sharoni@biu.ac.il
2015-11-15
Thermal imaging based on room temperature bolometer sensors is a growing market, constantly searching for improved sensitivity. One important factor is the temperature coefficient of resistance (TCR), i.e., the sensitivity of the active material. Herein, the authors report the improved TCR properties attainable by the “ion beam assisted deposition” method for room temperature deposition. V{sub y}M{sub 1−y}O{sub x} (M = Nb, Hf) thin-film alloys were fabricated on 1 μm thermal SiO{sub 2} atop Si (100) substrates by reactive magnetron cosputtering at room temperature using a low energy ion source, aimed at the film, to insert dissociated oxygen species and increase film density. Themore » authors studied the influence of deposition parameters such as oxygen partial pressure, V to M ratio, and power of the plasma source, on resistance and TCR. The authors show high TCR (up to −3.7% K{sup −1}) at 300 K, and excellent uniformity, but also an increase in resistance. The authors emphasize that samples were prepared at room temperature with no heat treatment, much simpler than common processes that require annealing at high temperatures. So, this is a promising fabrication route for uncooled microbolometers.« less
Jin, Y.; Waybright, J.; Kharel, P.; ...
2017-01-11
The structural, magnetic and electron-transport properties of Co 2Ti 1-xFe xSi (x = 0, 0.25, 0.5) ribbons prepared by arc-melting and melt-spinning were investigated. The rapidly quenched Co 2Ti 0.5Fe 0.5Si crystallized in the cubic L2 1 structure whereas Co 2Ti 0.75Fe 0.25Si and Co 2TiFe 0Si showed various degrees of B2-type disorder. At room temperature, all the samples are ferromagnetic, and the Curie temperature increased from 360 K for Co 2TiSi to about 800 K for Co 2Ti 0.5Fe 0.5Si. The measured magnetization also increased due to partial substitution of Fe for Ti atoms. The ribbons are moderately conductingmore » and show positive temperature coefficient of resistivity with the room temperature resistivity being between 360 μΩcm and 440 μΩcm. The experimentally observed structural and magnetic properties are consistent with the results of first-principle calculations. Our calculations also indicate that the Co 2Ti 1-xFe xSi compound remains nearly half-metallic for x ≤ 0.5. In conclusion, the predicted large band gaps and high Curie temperatures much above room temperature make these materials promising for room temperature spintronic and magnetic applications.« less
Survival of Salmonella and Staphylococcus aureus in mexican red salsa in a food service setting.
Franco, Wendy; Hsu, Wei-Yea; Simonne, Amarat H
2010-06-01
Mexican red salsa is one of the most common side dishes in Mexican cuisine. According to data on foodborne illnesses collected by the Centers for Disease Control and Prevention, salsa was associated with 70 foodborne illness outbreaks between 1990 and 2006. Salsa ingredients such as tomatoes, cilantro, and onions often have been implicated in foodborne illness outbreaks. Mexican-style restaurants commonly prepare a large batch of red salsa, store it at refrigeration temperatures, and then serve it at room temperature. Salmonella is one of the top etiologies in foodborne illness outbreaks associated with salsa, and our preliminary studies revealed the consistent presence of Staphylococcus aureus in restaurant salsa. In the present study, we evaluated the survival of Salmonella Enteritidis and S. aureus inoculated into restaurant-made salsa samples stored at ambient (20 degrees C) and refrigeration (4 degrees C) temperatures. These test temperature conditions represent best-case and worst-case scenarios in restaurant operations. Salmonella survived in all samples stored at room temperature, but S. aureus populations significantly decreased after 24 h of storage at room temperature. No enterotoxin was detected in samples inoculated with S. aureus at 6.0 log CFU/g. Both microorganisms survived longer in refrigerated samples than in samples stored at room temperature. Overall, both Salmonella and S. aureus survived a sufficient length of time in salsa to pose a food safety risk.
Bezuidenhout, Karla; Rensburg, Megan A; Hudson, Careen L; Essack, Younus; Davids, M Razeen
2016-07-01
Many clinical laboratories require that specimens for serum and urine osmolality determination be processed within 3 h of sampling or need to arrive at the laboratory on ice. This protocol is based on the World Health Organization report on sample storage and stability, but the recommendation lacks good supporting data. We studied the effect of storage temperature and time on osmolality measurements. Blood and urine samples were obtained from 16 patients and 25 healthy volunteers. Baseline serum, plasma and urine osmolality measurements were performed within 30 min. Measurements were then made at 3, 6, 12, 24 and 36 h on samples stored at 4-8℃ and room temperature. We compared baseline values with subsequent measurements and used difference plots to illustrate changes in osmolality. At 4-8℃, serum and plasma osmolality were stable for up to 36 h. At room temperature, serum and plasma osmolality were very stable for up to 12 h. At 24 and 36 h, changes from baseline osmolality were statistically significant and exceeded the total allowable error of 1.5% but not the reference change value of 4.1%. Urine osmolality was extremely stable at room temperature with a mean change of less than 1 mosmol/kg at 36 h. Serum and plasma samples can be stored at room temperature for up to 36 h before measuring osmolality. Cooling samples to 4-8℃ may be useful when delays in measurement beyond 12 h are anticipated. Urine osmolality is extremely stable for up to 36 h at room temperature. © The Author(s) 2015.
Zhang, Yanhua; Regmi, Rajesh; Liu, Yi; Lawes, Gavin; Brock, Stephanie L
2014-07-22
Small changes in the synthesis of MnAs nanoparticles lead to materials with distinct behavior. Samples prepared by slow heating to 523 K (type-A) exhibit the characteristic magnetostructural transition from the ferromagnetic hexagonal (α) to the paramagnetic orthorhombic (β) phase of bulk MnAs at Tp = 312 K, whereas those prepared by rapid nucleation at 603 K (type-B) adopt the β structure at room temperature and exhibit anomalous magnetic properties. The behavior of type-B nanoparticles is due to P-incorporation (up to 3%), attributed to reaction of the solvent (trioctylphosphine oxide). P-incorporation results in a decrease in the unit cell volume (∼1%) and shifts Tp below room temperature. Temperature-dependent X-ray diffraction reveals a large region of phase-coexistence, up to 90 K, which may reflect small differences in Tp from particle-to-particle within the nearly monodisperse sample. The large coexistence range coupled to the thermal hysteresis results in process-dependent phase mixtures. As-prepared type-B samples exhibiting the β structure at room temperature convert to a mixture of α and β after the sample has been cooled to 77 K and rewarmed to room temperature. This change is reflected in the magnetic response, which shows an increased moment and a shift in the temperature hysteresis loop after cooling. The proportion of α present at room temperature can also be augmented by application of an external magnetic field. Both doped (type-B) and undoped (type-A) MnAs nanoparticles show significant thermal hysteresis narrowing relative to their bulk phases, suggesting that formation of nanoparticles may be an effective method to reduce thermal losses in magnetic refrigeration applications.