NASA Technical Reports Server (NTRS)
Shum, C. K.
1999-01-01
The Earth's modem climate change has been characterized by interlinked changes in temperature, CO2, ice sheets and sea level. Global sea level change is a critical indicator for study of contemporary climate change. Sea level rise appears to have accelerated since the ice sheet retreats have stopped some 5000 years ago and it is estimated that the sea level rise has been approx. 15 cm over the last century. Contemporary radar altimeters represent the only technique capable of monitoring global sea level change with accuracy approaching 1 mm/yr and with a temporal scale of days and a spatial scale of 100 km or longer. This report highlights the major accomplishments of the TOPEX/POSEIDON (T/P) Extended Mission and Jason-1 science investigation. The primary objectives of the investigation include the calibration and improvement of T/P and Jason-1 altimeter data for global sea level change and coastal tide and circulation studies. The scientific objectives of the investigation include: (1) the calibration and improvement of T/P and Jason-1 data as a reference measurement system for the accurate cross-linking with other altimeter systems (Seasat, Geosat, ERS-1, ERS-2, GFO-1, and Envisat), (2) the improved determination and the associated uncertainties of the long-term (15-year) global mean sea level change using multiple altimeters, (3) the characterization of the sea level change by analyses of independent data, including tide gauges, sea surface temperature, and (4) the improvement coastal radar altimetry for studies including coastal ocean tide modeling and coastal circulation. Major accomplishments of the investigation include the development of techniques for low-cost radar altimeter absolute calibration (including the associated GPS-buoy technology), coastal ocean tide modeling, and the linking of multiple altimeter systems and the resulting determination of the 15-year (1985-1999) global mean sea level variations. The current rate of 15-year sea level rise observed by multiple satellite altimetry is +2.3 +/- 1.2 mm/yr, which is in general agreement with the analysis of sparsely distributed tide gauge measurements for the same data span, and represents the first such determination of sea level change in its kind.
Ice2sea - the future glacial contribution to sea-level rise
NASA Astrophysics Data System (ADS)
Vaughan, D. G.; Ice2sea Consortium
2009-04-01
The melting of continental ice (glaciers, ice caps and ice sheets) is a substantial source of current sea-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future sea-level rise is dominated by uncertainty concerning continental ice, and that understanding of the key processes that will lead to loss of continental ice must be improved before reliable projections of sea-level rise can be produced. Such projections are urgently required for effective sea-defence management and coastal adaptation planning. Ice2sea is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to sea-level rise. This includes improving understanding of the processes that control, past, current and future sea-level rise, and generation of improved estimates of the contribution of glacial components to sea-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and ice caps (e.g. Svalbard), and in ice sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and ice-sheet model. Ice2sea will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to sea-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in sea-level projection. Ice2sea will provide exciting opportunities for many early-career glaciologists and ice-modellers in a variety of host institutes.
76 FR 62006 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-06
... Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and... above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to...
NASA Astrophysics Data System (ADS)
Shum, C. K.; Kuo, C. Y.; Guo, J.; Shang, K.; Tseng, K. H.; Wan, J.; Calmant, S.; Ballu, V.; Valty, P.; Kusche, J.; Hossain, F.; Khan, Z. H.; Rietbroek, R.; Uebbing, B.
2014-12-01
The potential for accelerated sea-level rise under anthropogenic warming is a significant societal problem, in particular in world's coastal deltaic regions where about half of the world's population resides. Quantifying geophysical sources of sea-level rise with the goal of improved projection at local scales remains a complex and challenging interdisciplinary research problem. These processes include ice-sheet/glacier ablations, steric sea-level, solid Earth uplift or subsidence due to GIA, tectonics, sediment loading or anthropogenic causes, hydrologic imbalance, and human processes including water retention in reservoirs and aquifer extraction. The 2013 IPCC AR5 concluded that the observed and explained geophysical causes of global geocentric sea-level rise, 1993-2010, is closer towards closure. However, the discrepancy reveals that circa 1.3→37.5% of the observed sea-level rise remains unexplained. This relatively large discrepancy is primarily attributable to the wide range of estimates of respective contributions of Greenland and Antarctic ice-sheets and mountain/peripheral glaciers to sea-level rise. Understanding and quantifying the natural and anthropogenic processes governing solid Earth (land, islands and sea-floor) uplift or subsidence at the regional and local scales remain elusive to enable addressing coastal vulnerability due to relative sea-level rise hazards, such as the Bangladesh Delta. This study focuses on addressing coastal vulnerability of Bangladesh, a Belmont Forum/IGFA project, BanD-AID (http://Belmont-SeaLevel.org). Sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability, affecting 150 million people in one of the world's most densely populated regions. Here we present preliminary results using space geodetic observations, including satellite radar and laser altimetry, GRACE gravity, tide gauge, hydrographic, and GPS/InSAR observed land subsidence, and via fingerprint sea-level adjustment and reconstructed sea-level approaches, for improved quantification of major contributions to, and the projection of relative sea-level rise at the Bangladesh delta, towards addressing its coastal vulnerability and sustainability.
Inception of a global atlas of Holocene sea levels
NASA Astrophysics Data System (ADS)
Khan, Nicole; Rovere, Alessio; Engelhart, Simon; Horton, Benjamin
2017-04-01
Determining the rates, mechanisms and geographic variability of sea-level change is a priority science question for the next decade of ocean research. To address these research priorities, the HOLocene SEA-level variability (HOLSEA) working group is developing the first standardized global synthesis of Holocene relative sea-level data to: (1) estimate the magnitudes and rates of global mean sea-level change during the Holocene; and (2) identify trends in spatial variability and decipher the processes responsible for geographic differences in relative sea-level change. Here we present the preliminary efforts of the working group to compile the database, which includes sea-level index points and limiting data from a range of different indicators across seven continents from the Last Glacial Maximum to present. We follow a standard protocol that incorporates full consideration of vertical and temporal uncertainty for each sea-level index point, including uncertainties associated with the relationship of each indicator to past sea-level and the methods used to date each indicator. We describe the composition of the global database, identify gaps in data availability, and highlight our effort to create an online platform to access the data. These data will be made available in a special issue of Quaternary Science Reviews and archived on NOAA's National Centers for Environmental Information (NCEI) in early 2018. We also invite researchers who collect or model Holocene sea-level data to participate. Long-term, this effort will enhance predictions of 21st century sea-level rise, and provide a vital contribution to the assessment of natural hazards with respect to sea-level rise and coastal response.
Thorne, Karen M.; Dugger, Bruce D.; Buffington, Kevin J.; Freeman, Chase M.; Janousek, Christopher N.; Powelson, Katherine W.; Gutenspergen, Glenn R.; Takekawa, John Y.
2015-11-17
In the Pacific Northwest, coastal wetlands support a wealth of ecosystem services including habitat provision for wildlife and fisheries and flood protection. The tidal marshes, mudflats, and shallow bays of coastal estuaries link marine, freshwater, and terrestrial habitats, and provide economic and recreational benefits to local communities. Climate change effects such as sea-level rise are altering these habitats, but we know little about how these areas will change over the next 50–100 years. Our study examined the effects of sea-level rise on nine tidal marshes in Washington and Oregon between 2012 and 2015, with the goal of providing scientific data to support future coastal planning and conservation. We compiled physical and biological data, including coastal topography, tidal inundation, vegetation structure, as well as recent and historical sediment accretion rates, to assess and model how sea-level rise may alter these ecosystems in the future. Multiple factors, including initial elevation, marsh productivity, sediment availability, and rates of sea-level rise, affected marsh persistence. Under a low sea-level rise scenario, all marshes remained vegetated with little change in the present configuration of communities of marsh plants or gradually increased proportions of middle-, high-, or transition-elevation zones of marsh vegetation. However, at most sites, mid sea-level rise projections led to loss of habitat of middle and high marshes and a gain of low marshes. Under a high sea-level rise scenario, marshes at most sites eventually converted to intertidal mudflats. Two sites (Grays Harbor and Willapa) seemed to have the most resilience to a high rate of rise in sea-level, persisting as low marsh until at least 2110. Our main model finding is that most tidal marsh study sites are resilient to sea-level rise over the next 50–70 years, but that sea-level rise will eventually outpace marsh accretion and drown most habitats of high and middle marshes by 2110.
NASA Astrophysics Data System (ADS)
Quach, N.; Huang, T.; Boening, C.; Gill, K. M.
2016-12-01
Research related to sea level rise crosses multiple disciplines from sea ice to land hydrology. The NASA Sea Level Change Portal (SLCP) is a one-stop source for current sea level change information and data, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. The architecture behind the SLCP makes it possible to integrate web content and data relevant to sea level change that are archived across various data centers as well as new data generated by sea level change principal investigators. The Extensible Data Gateway Environment (EDGE) is incorporated into the SLCP architecture to provide a unified platform for web content and science data discovery. EDGE is a data integration platform designed to facilitate high-performance geospatial data discovery and access with the ability to support multi-metadata standard specifications. EDGE has the capability to retrieve data from one or more sources and package the resulting sets into a single response to the requestor. With this unified endpoint, the Data Analysis Tool that is available on the SLCP can retrieve dataset and granule level metadata as well as perform geospatial search on the data. This talk focuses on the architecture that makes it possible to seamlessly integrate and enable discovery of disparate data relevant to sea level rise.
The land-ice contribution to 21st-century dynamic sea level rise
NASA Astrophysics Data System (ADS)
Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.
2014-06-01
Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.
NASA Astrophysics Data System (ADS)
Hibbert, F. D.; Williams, F. H.; Fallon, S.; Rohling, E. J.
2017-12-01
The last deglacial was an interval of rapid climate and sea-level change, including the collapse of large continental ice sheets. This database collates carefully assessed sea-level data from peer-reviewed sources for the interval 0 to 25 thousand years ago (ka), from the last glacial maximum to the present interglacial conditions. In addition to facilitating site-specific reconstructions of past sea levels, the database provides a suite of data beyond the range of modern/instrumental variability that may help hone future sea-level projections. The database is global in scope, internally consistent, and contains U-series and radiocarbon dated indicators from both biological and geomorpohological archives. We focus on far-field data (i.e., away from the sites of the former continental ice sheets), but some key intermediate (i.e., from the Caribbean) data are also included. All primary fields (i.e., sample location, elevation, age and context) possess quantified uncertainties, which - in conjunction with available metadata - allows the reconstructed sea levels to be interpreted within both their uncertainties and geological context. Consistent treatment of each of the individual records in the database, and incorporation of fully expressed uncertainties, allows datasets to be easily compared. The compilation contains 145 studies from 40 locations (>2,000 data points) and includes all raw information and metadata.
NASA Astrophysics Data System (ADS)
Du, L.; Shi, H.; Zhang, S.
2017-12-01
Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.
Precise mean sea level measurements using the Global Positioning System
NASA Technical Reports Server (NTRS)
Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian
1994-01-01
This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and temporal resolution higher than that available from altimeter data.
The Adriatic Sea: A Long-Standing Laboratory for Sea Level Studies
NASA Astrophysics Data System (ADS)
Vilibić, Ivica; Šepić, Jadranka; Pasarić, Mira; Orlić, Mirko
2017-10-01
The paper provides a comprehensive review of all aspects of Adriatic Sea level research covered by the literature. It discusses changes occurring over millennial timescales and documented by a variety of natural and man-made proxies and post-glacial rebound models; mean sea level changes occurring over centennial to annual timescales and measured by modern instruments; and daily and higher-frequency changes (with periods ranging from minutes to a day) that are contributing to sea level extremes and are relevant for present-day flooding of coastal areas. Special tribute is paid to the historic sea level studies that shaped modern sea level research in the Adriatic, followed by a discussion of existing in situ and remote sensing observing systems operating in the Adriatic area, operational forecasting systems for Adriatic storm surges, as well as warning systems for tsunamis and meteotsunamis. Projections and predictions of sea level and related hazards are also included in the review. Based on this review, open issues and research gaps in the Adriatic Sea level studies are identified, as well as the additional research efforts needed to fill the gaps. The Adriatic Sea, thus, remains a laboratory for coastal sea level studies for semi-enclosed, coastal and marginal seas in the world ocean.
Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2007
Curtin, Stephen E.; Andreasen, David C.; Staley, Andrew W.
2009-01-01
This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2007. The map is based on water-level measurements in 65 wells. The highest measured water level was 111 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale and Arnold. The measured ground-water levels were 87 feet below sea level at Severndale, and 42 feet below sea level at Arnold. There was also a cone of depression covering a large area in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The ground-water levels measured were as low as 219 feet below sea level at Waldorf, 187 feet below sea level at La Plata, 106 feet below sea level at Indian Head, and 89 feet below sea level at the Morgantown power plant.
Influence of ENSO on coastal flood hazard and exposure at the global-scale
NASA Astrophysics Data System (ADS)
Muis, S.; Haigh, I. D.; Guimarães Nobre, G.; Aerts, J.; Ward, P.
2017-12-01
The El Niño-Southern Oscillation (ENSO) is the dominant signal of interannual climate variability. The unusually warm (El Niño) and cold (La Niña) oceanic and atmospheric conditions in the tropical Pacific drives interannual variability in both mean and extreme sea levels, which in turn may influence the probabilities and impacts of coastal flooding. We assess the influence of ENSO on coastal flood hazard and exposure using daily timeseries from the Global Time and Surge Reanalysis (GTSR) dataset (Muis et al., 2016). As the GTSR timeseries do not include steric effects (i.e. density differences), we improve the GTSR timeseries by adding steric sea levels. Evaluation against observed sea levels shows that the including steric sea levels leads to a much better representation of the seasonal and interannual variability. We show that sea level anomalies occur during ENSO years with higher sea levels during La Niña in the South-Atlantic, Indian Ocean and the West Pacific, whereas sea levels are lower in the east Pacific. The pattern is generally inversed for El Niño. We also find an effect of ENSO in the number of people exposed to coastal flooding. Although the effect is minor at the global-scale, it may be important for flood risk management to consider at the national or sub national levels. Previous studies at the global-scale have used tide gauge observation to assess the influence of ENSO on extreme sea levels. The advantage of our approach over observations is that GTSR provides a consistent dataset with a full global coverage for the period 1979-2014. This allows us to assess ENSO's influence on sea level extremes anywhere in the world. Furthermore, it enables us to also calculate the impacts of extreme sea levels in terms of coastal flooding and exposed population. ReferencesMuis et al (2016) A global reanalysis of storm surges and extreme sea levels. Nature Communications.7:11969. doi:10.1038/ncomms11969.
75 FR 31347 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... Datum. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the... in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed... in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed...
76 FR 46705 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the.... Depth in feet above ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be... Datum. + North American Vertical Datum. Depth in feet above ground. [caret] Mean Sea Level, rounded to...
Hibbert, F.D.; Williams, F.H.; Fallon, S.J.; Rohling, E.J.
2018-01-01
The last deglacial was an interval of rapid climate and sea-level change, including the collapse of large continental ice sheets. This database collates carefully assessed sea-level data from peer-reviewed sources for the interval 0 to 25 thousand years ago (ka), from the Last Glacial Maximum to the present interglacial. In addition to facilitating site-specific reconstructions of past sea levels, the database provides a suite of data beyond the range of modern/instrumental variability that may help hone future sea-level projections. The database is global in scope, internally consistent, and contains U-series and radiocarbon dated indicators from both biological and geomorpohological archives. We focus on far-field data (i.e., away from the sites of the former continental ice sheets), but some key intermediate (i.e., from the Caribbean) data are also included. All primary fields (i.e., sample location, elevation, age and context) possess quantified uncertainties, which—in conjunction with available metadata—allows the reconstructed sea levels to be interpreted within both their uncertainties and geological context. PMID:29809175
NASA Astrophysics Data System (ADS)
Andersen, O. B.; Passaro, M.; Benveniste, J.; Piccioni, G.
2016-12-01
A new initiative within the ESA Sea Level Climate Change initiative (SL-cci) framework to improve the Arctic sea level record has been initiated as a combined effort to reprocess and retrack past altimetry to create a 25-year combined sea level record for sea level research studies. One of the objectives is to retracked ERS-2 dataset for the high latitudes based on the ALES retracking algorithm through adapting the ALES retracker for retracking of specular surfaces (leads). Secondly a reprocessing using tailored editing to Arctic Conditions will be carried out also focusing on the merging of the multi-mission data. Finally an effort is to combine physical and empirical retracked sea surface height information to derive an experimental spatio-temporal enhanced sea level product for high latitude. The first results in analysing Arctic Sea level variations on annual inter-annual scales for the 1992-2015 from a preliminar version of this dataset is presented. By including the GRACE water storage estimates and NOAA halo- and thermo-steric sea level variatios since 2002 a preliminary attempt to close the Arctic Sea level budget is presented here. Closing the Arctic sea level budget is by no mean trivial as both steric data and satellite altimetry is both sparse temporally and limited geographically.
Climate And Sea Level: It's In Our Hands Now
NASA Astrophysics Data System (ADS)
Turrin, M.; Bell, R. E.; Ryan, W. B. F.
2014-12-01
Changes in sea level are measurable on both a local and a global scale providing an accessible way to connect climate to education, yet engaging teachers and students with the complex science that is behind the change in sea level can be a challenge. Deciding how much should be included and just how it should be introduced in any single classroom subject area can be an obstacle for a teacher. The Sea Level Rise Polar Explorer App developed through the PoLAR CCEP grant offers a guided tour through the many layers of science that impact sea level rise. This map-based data-rich app is framed around a series of questions that move the user through map layers with just the level of complexity they chose to explore. For a quick look teachers and students can review a 3 or 4 sentence introduction on how the given map links to sea level and then launch straight into the interactive touchable map. For a little more in depth look they can listen to (or read) a one-minute recorded background on the data displayed in the map prior to launching in. For those who want more in depth understanding they can click to a one page background piece on the topic with links to further visualizations, videos and data. Regardless of the level of complexity selected each map is composed of clickable data allowing the user to fully explore the science. The different options for diving in allow teachers to differentiate the learning for either the subject being taught or the user level of the student group. The map layers also include a range of complexities. Basic questions like "What is sea level?" talk about shorelines, past sea levels and elevations beneath the sea. Questions like "Why does sea level change?" includes slightly more complex issues like the role of ocean temperature, and how that differs from ocean heat content. And what is the role of the warming atmosphere in sea level change? Questions about "What about sea level in the past?" can bring challenges for students who have difficulty with time scales, but sections on "Who is Vulnerable?" are very tangible to the students as they look at maps of population density, ocean island populations in danger of submersion, and what regions are most vulnerable to flooding. Teachers and students alike can explore a wealth of authentic science data in an engaging and accessible way.
Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model
NASA Astrophysics Data System (ADS)
Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry
2016-12-01
As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.
Sea Level Changes: Determination and Effects
NASA Astrophysics Data System (ADS)
Woodworth, P. L.; Pugh, D. T.; DeRonde, J. G.; Warrick, R. G.; Hannah, J.
The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for océanographie and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wroblewski and by Pasaric and Orlic, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El- Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.
Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction
Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A.; Leorri, Eduardo
2016-01-01
The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches. PMID:27929122
Separating decadal global water cycle variability from sea level rise.
Hamlington, B D; Reager, J T; Lo, M-H; Karnauskas, K B; Leben, R R
2017-04-20
Under a warming climate, amplification of the water cycle and changes in precipitation patterns over land are expected to occur, subsequently impacting the terrestrial water balance. On global scales, such changes in terrestrial water storage (TWS) will be reflected in the water contained in the ocean and can manifest as global sea level variations. Naturally occurring climate-driven TWS variability can temporarily obscure the long-term trend in sea level rise, in addition to modulating the impacts of sea level rise through natural periodic undulation in regional and global sea level. The internal variability of the global water cycle, therefore, confounds both the detection and attribution of sea level rise. Here, we use a suite of observations to quantify and map the contribution of TWS variability to sea level variability on decadal timescales. In particular, we find that decadal sea level variability centered in the Pacific Ocean is closely tied to low frequency variability of TWS in key areas across the globe. The unambiguous identification and clean separation of this component of variability is the missing step in uncovering the anthropogenic trend in sea level and understanding the potential for low-frequency modulation of future TWS impacts including flooding and drought.
Coastal barrier stratigraphy for Holocene high-resolution sea-level reconstruction.
Costas, Susana; Ferreira, Óscar; Plomaritis, Theocharis A; Leorri, Eduardo
2016-12-08
The uncertainties surrounding present and future sea-level rise have revived the debate around sea-level changes through the deglaciation and mid- to late Holocene, from which arises a need for high-quality reconstructions of regional sea level. Here, we explore the stratigraphy of a sandy barrier to identify the best sea-level indicators and provide a new sea-level reconstruction for the central Portuguese coast over the past 6.5 ka. The selected indicators represent morphological features extracted from coastal barrier stratigraphy, beach berm and dune-beach contact. These features were mapped from high-resolution ground penetrating radar images of the subsurface and transformed into sea-level indicators through comparison with modern analogs and a chronology based on optically stimulated luminescence ages. Our reconstructions document a continuous but slow sea-level rise after 6.5 ka with an accumulated change in elevation of about 2 m. In the context of SW Europe, our results show good agreement with previous studies, including the Tagus isostatic model, with minor discrepancies that demand further improvement of regional models. This work reinforces the potential of barrier indicators to accurately reconstruct high-resolution mid- to late Holocene sea-level changes through simple approaches.
NASA Astrophysics Data System (ADS)
Palanisamy, H.; Cazenave, A. A.
2017-12-01
The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan of the project is to work on an accurate closure of the sea level budget using both the above performed methodologies. We also intend to provide a standardized uncertainty estimation and to correctly identify the causes leading to sea level budget non-closure if that is the case.
An Experimental Real-Time Ocean Nowcast/Forecast System for Intra America Seas
NASA Astrophysics Data System (ADS)
Ko, D. S.; Preller, R. H.; Martin, P. J.
2003-04-01
An experimental real-time Ocean Nowcast/Forecast System has been developed for the Intra America Seas (IASNFS). The area of coverage includes the Caribbean Sea, the Gulf of Mexico and the Straits of Florida. The system produces nowcast and up to 72 hours forecast the sea level variation, 3D ocean current, temperature and salinity fields. IASNFS consists an 1/24 degree (~5 km), 41-level sigma-z data-assimilating ocean model based on NCOM. For daily nowcast/forecast the model is restarted from previous nowcast. Once model is restarted it continuously assimilates the synthetic temperature/salinity profiles generated by a data analysis model called MODAS to produce nowcast. Real-time data come from satellite altimeter (GFO, TOPEX/Poseidon, ERS-2) sea surface height anomaly and AVHRR sea surface temperature. Three hourly surface heat fluxes, including solar radiation, wind stresses and sea level air pressure from NOGAPS/FNMOC are applied for surface forcing. Forecasts are produced with available NOGAPS forecasts. Once the nowcast/forecast are produced they are distributed through the Internet via the updated web pages. The open boundary conditions including sea surface elevation, transport, temperature, salinity and currents are provided by the NRL 1/8 degree Global NCOM which is operated daily. An one way coupling scheme is used to ingest those boundary conditions into the IAS model. There are 41 rivers with monthly discharges included in the IASNFS.
Potentiometric Surface of the Lower Patapsco Aquifer in Southern Maryland, September 2009
Curtin, Stephen E.; Andreasin, David C.; Staley, Andrew W.
2010-01-01
This report presents a map showing the potentiometric surface of the lower Patapsco aquifer in the Patapsco Formation of Early Cretaceous age in Southern Maryland during September 2009. The map is based on water-level measurements in 64 wells. The highest measured water level was 110 feet above sea level near the northwestern boundary and outcrop area of the aquifer in northern Prince George's County. From this area, the potentiometric surface declined towards well fields at Severndale, Broad Creek, and Arnold. The measured groundwater levels were 99 feet below sea level at Severndale, 50 feet below sea level at Broad Creek, and 36 feet below sea level at Arnold. There was also a cone of depression in Charles County that includes Waldorf, La Plata, Indian Head, and the Morgantown power plant. The groundwater levels measured were as low as 215 feet below sea level at Waldorf, 149 feet below sea level at La Plata, 121 feet below sea level at Indian Head, and 96 feet below sea level at the Morgantown power plant. The map also shows well yield in gallons per day for 2008 at wells or well fields.
Committed sea-level rise under the Paris Agreement and the legacy of delayed mitigation action.
Mengel, Matthias; Nauels, Alexander; Rogelj, Joeri; Schleussner, Carl-Friedrich
2018-02-20
Sea-level rise is a major consequence of climate change that will continue long after emissions of greenhouse gases have stopped. The 2015 Paris Agreement aims at reducing climate-related risks by reducing greenhouse gas emissions to net zero and limiting global-mean temperature increase. Here we quantify the effect of these constraints on global sea-level rise until 2300, including Antarctic ice-sheet instabilities. We estimate median sea-level rise between 0.7 and 1.2 m, if net-zero greenhouse gas emissions are sustained until 2300, varying with the pathway of emissions during this century. Temperature stabilization below 2 °C is insufficient to hold median sea-level rise until 2300 below 1.5 m. We find that each 5-year delay in near-term peaking of CO 2 emissions increases median year 2300 sea-level rise estimates by ca. 0.2 m, and extreme sea-level rise estimates at the 95th percentile by up to 1 m. Our results underline the importance of near-term mitigation action for limiting long-term sea-level rise risks.
NASA Astrophysics Data System (ADS)
Quinn, N.; Bates, P. D.; Siddall, M.
2013-12-01
The rate at which sea levels will rise in the coming century is of great interest to decision makers tasked with developing mitigation policies to cope with the risk of coastal inundation. Accurate estimates of future sea levels are vital in the provision of effective policy. Recent reports from UK Climate Impacts Programme (UKCIP) suggest that mean sea levels in the UK may rise by as much as 80 cm by 2100; however, a great deal of uncertainty surrounds model predictions, particularly the contribution from ice sheets responding to climatic warming. For this reason, the application of semi-empirical modelling approaches for sea level rise predictions has increased of late, the results from which suggest that the rate of sea level rise may be greater than previously thought, exceeding 1 m by 2100. Furthermore, studies in the Red Sea indicate that rapid sea level rise beyond 1m per century has occurred in the past. In light of such research, the latest UKCIP assessment has included a H++ scenario for sea level rise in the UK of up to 1.9 m which is defined as improbable but, crucially, physically plausible. The significance of such low-probability sea level rise scenarios upon the estimation of future flood risk is assessed using the Somerset levels (UK) as a case study. A simple asymmetric probability distribution is constructed to include sea level rise scenarios of up to 1.9 m by 2100 which are added to a current 1:200 year event water level to force a two-dimensional hydrodynamic model of coastal inundation. From the resulting ensemble predictions an estimation of risk by 2100 is established. The results indicate that although the likelihood of extreme sea level rise due to rapid ice sheet mass loss is low, the resulting hazard can be large, resulting in a significant (27%) increase to the projected annual risk. Furthermore, current defence construction guidelines for the coming century in the UK are expected to account for 95% of the sea level rise distribution presented in this research, while the larger, low probability scenarios beyond this level are estimated to contribute a residual annual risk of approximately £0.45 million. These findings clearly demonstrate that uncertainty in future sea level rise is a vital component of coastal flood risk, and therefore, needs to be accounted for by decision makers when considering mitigation policies related to coastal flooding.
NASA Astrophysics Data System (ADS)
Horton, B.; Corbett, D. R.; Donnelly, J. P.; Kemp, A.; Lin, N.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.
2013-12-01
Future inundation of the U.S. Atlantic and Gulf coasts will depend upon sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. Through ongoing, collaborative research we are employing new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea level rise along the U.S. Atlantic and Gulf coasts increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic variability. Key uncertainties include the role of continental ice sheets, mountain glaciers, and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. We produced new, high-resolution proxy sea-level reconstructions to provide crucial additional constraints to such semi-empirical models. Our dataset spans the alternation between the 'Medieval Climate Anomaly' and 'Little Ice Age'. Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from four study areas (Connecticut, New Jersey, North Carolina and Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, future storm surges will be superimposed on background sea-level rise. To overcome these problems, we coupled regional sea-level rise projections with hurricane simulations and storm surge models to map coastal inundation for the current climate and the best and worst case climate scenarios of the IPCC AR4. With agency, NGO, and business partners, we have integrated these findings into coastal policy initiatives, including the first ever adoption of sea level Adaptation Action Areas in a Florida city land use plan.
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2015-12-01
In sedimentary deltas and fans, sea-level changes are strongly modulated by the deposition and compaction of marine sediment. The deposition of sediment and incorporation of water into the sedimentary pore space reduces sea level by increasing the elevation of the seafloor, which reduces the thickness of sea-water above the bed. In a similar manner, the compaction of sediment and purging of water out of the sedimentary pore space increases sea level by reducing the elevation of the seafloor, which increases the thickness of sea water above the bed. Here we show how one can incorporate the effects of sediment deposition and compaction into the global, gravitationally self-consistent sea-level model of Dalca et al. (2013). Incorporating sediment compaction requires accounting for only one additional quantity that had not been accounted for in Dalca et al. (2013): the mean porosity in the sediment column. We provide a general analytic framework for global sea-level changes including sediment deposition and compaction, and we demonstrate how sea level responds to deposition and compaction under one simple parameterization for compaction. The compaction of sediment generates changes in sea level only by changing the elevation of the seafloor. That is, sediment compaction does not affect the mass load on the crust, and therefore does not generate perturbations in crustal elevation or the gravity field that would further perturb sea level. These results have implications for understanding sedimentary effects on sea-level changes and thus for disentangling the various drivers of sea-level change. ReferencesDalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
NASA Astrophysics Data System (ADS)
Albrecht, F.; Pizarro, O.; Montecinos, A.
2016-12-01
The subtropical ocean gyre in the South Pacific is a large scale wind-driven ocean circulation, including the Peru-Chile Current, the westward South Equatorial Current, the East Australian Current, and the eastward South Pacific Current. Large scale ocean circulations play an essential role in the climate of the Earth over long and short term time scales.In the recent years a spin-up of this circulation has been recognized analyzing observations of sea level, temperature and salinity profiles, sea surface temperature and wind. Until now it is not clear whether this spin-up is decadal variability or whether it is a long-term trend introduced by anthropogenic forcing. This study aims to analyze whether and how anthropogenic forcing influences the position and the strength of the gyre in the 20th century. To determine that, yearly means of different variables of an ensemble of CMIP5 models are analyzed. The experiments 'historical' and 'historicalNat' are examined. The 'historical' experiment simulates the climate of the 20th century and the 'historicalNat' experiment covers the same time period, but only includes natural forcings. Comparing the outcomes of these two experiments is supposed to give information about the anthropogenic influence on the subtropical gyre of the South Pacific.The main variable we analyze is sea level change. This is directly related to the gyre circulation. The center of the gyre is characterized by a high pressure zone (high sea level) and the temporal and spatial variability of the sea level height field gives information about changes in the gyre circulation. The CMIP5 databank includes steric and dynamic sea level changes. Steric sea level, that is the contribution of temperature and salinity of the water, describes the major contribution to regional sea level change with respect to the global mean. Density changes contract or expand the water, which also changes the sea surface height. This does not only occur at the surface, but at all layers in the ocean. Sea level change thus integrates ocean variability throughout the depth of the ocean. Sea level simulations of the different experiments are compared using long-term trends, multi-year anomalies and EOF-Analysis. Changes in temperature and salinity in the deeper ocean are used to describe the development of the gyre below the surface.
Li, Fengyuan; Li, Shuqiang
2018-05-17
Sea-level change has been viewed as a primary driver in the formation of biodiversity. Early studies confirmed that Plio-Pleistocene sea-level changes led to the isolation and subsequent genetic differentiation of Southeast (SE) Asian organisms over short geological timescales. However, long-time consequences of sea-level fluctuations remain unclear. Herein, we analyze the evolutionary history of Althepus (spiders) whose distribution encompasses Indo-Burma and the Sunda shelf islands to understand how sea-level changes over shallow and deep timescales effected their history. Our integrative analyses, including phylogeny, divergence times, ancestral area reconstruction and diversification dynamics, reveal an intricate pattern of diversification, probably triggered by sea-level fluctuations during the Paleocene-Eocene and Plio-Pleistocene. The timing of one early divergence between the Indo-Burmese and Sundaic species coincides with late Paleocene and early Eocene high global sea levels, which induced the formation of inland seaways in the Thai-Malay Peninsula. Subsequent lowered sea levels could have provided a land bridge for its dispersal colonization across the Isthmus of Kra. Analyses suggest that Plio-Pleistocene sea-level rises contributed to recent divergence of many species. Thus, our findings cannot reject the hypothesis that sea-level changes during the Paleocene-Eocene and Plio-Pleistocene played a major role in generating biodiversity in SE Asia; sea-level changes can act as "species pumps". Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kumar, Vandhna; Meyssignac, Benoit; Melet, Angélique; Ganachaud, Alexandre
2017-04-01
Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years is up to 3 times the global average. In this study, we attempt to reconstruct sea levels at selected sites in the region (Suva, Lautoka, Noumea - Fiji and New Caledonia) as a mutiple-linear regression of atmospheric and oceanic variables. We focus on interannual-to-decadal scale variability, and lower (including the global mean sea level rise) over the 1979-2014 period. Sea levels are taken from tide gauge records and the ORAS4 reanalysis dataset, and are expressed as a sum of steric and mass changes as a preliminary step. The key development in our methodology is using leading wind stress curl as a proxy for the thermosteric component. This is based on the knowledge that wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. The analysis is primarily based on correlation between local sea level and selected predictors, the dominant one being wind stress curl. In the first step, proxy boxes for wind stress curl are determined via regions of highest correlation. The proportion of sea level explained via linear regression is then removed, leaving a residual. This residual is then correlated with other locally acting potential predictors: halosteric sea level, the zonal and meridional wind stress components, and sea surface temperature. The statistically significant predictors are used in a multi-linear regression function to simulate the observed sea level. The method is able to reproduce between 40 to 80% of the variance in observed sea level. Based on the skill of the model, it has high potential in sea level projection and downscaling studies.
Limits on the adaptability of coastal marshes to rising sea level
Kirwan, Matthew L.; Guntenspergen, Glenn R.; D'Alpaos, Andrea; Morris, James T.; Mudd, Simon M.; Temmerman, Stijn
2010-01-01
Assumptions of a static landscape inspire predictions that about half of the world's coastal wetlands will submerge during this century in response to sea-level acceleration. In contrast, we use simulations from five numerical models to quantify the conditions under which ecogeomorphic feedbacks allow coastal wetlands to adapt to projected changes in sea level. In contrast to previous sea-level assessments, we find that non-linear feedbacks among inundation, plant growth, organic matter accretion, and sediment deposition, allow marshes to survive conservative projections of sea-level rise where suspended sediment concentrations are greater than ~20 mg/L. Under scenarios of more rapid sea-level rise (e.g., those that include ice sheet melting), marshes will likely submerge near the end of the 21st century. Our results emphasize that in areas of rapid geomorphic change, predicting the response of ecosystems to climate change requires consideration of the ability of biological processes to modify their physical environment.
NASA Astrophysics Data System (ADS)
Vyverberg, K.; Dechnik, B.; Dutton, A.; Webster, J.; Zwartz, D.; Edwards, R. L.
2016-12-01
Projecting the rate of future sea-level rise remains a primary challenge associated with continued climate change. However, uncertainties remain in our understanding of the rate of polar ice sheet retreat in warmer-than-present climates. To address this issue, we present a new sea level reconstruction from the tectonically stable granitic Seychelles based on Last Interglacial coral ages and elevations within their sedimentary and stratigraphic context, including estimates of paleo-water depth based on newly defined coralgal assemblages. The reef facies analyzed here has a narrow and shallow paleowater depth range (<2 m) providing increased control on the absolute position of sea level during this time period. Corrected for local glacial isostatic adjustment effects including the fingerprint associated with polar ice sheet mass loss, corals found in primary growth position within in situ coralgal reef framework confirm that global mean sea level (GMSL) was nearly 6 m above present early in the interglacial period. Each coral was dated in triplicate and screened for anomalous U-series geochemistry parameters. The combination of age-elevation data with the sedimentary micro and macro facies and stratigraphic analysis reveals a sea-level rise over 5-6 thousand years that is punctuated by repeated episodes of reef disturbance. These episodes are marked stratigraphically by coral rubble layers or extensive lateral encrustations of Millepora sp. that are infested with coral-dwelling barnacles. These disturbance layers may have been generated through internal reef processes and/or external agents, including coral disease, bleaching, predation, hurricanes, or sub-aerial exposure. In total, these new observations provide improved constraints on the timing, magnitude, and rates of sea-level rise during the Last Interglacial.
Mangrove dieback during fluctuating sea levels.
Lovelock, Catherine E; Feller, Ilka C; Reef, Ruth; Hickey, Sharyn; Ball, Marilyn C
2017-05-10
Recent evidence indicates that climate change and intensification of the El Niño Southern Oscillation (ENSO) has increased variation in sea level. Although widespread impacts on intertidal ecosystems are anticipated to arise from the sea level seesaw associated with climate change, none have yet been demonstrated. Intertidal ecosystems, including mangrove forests are among those ecosystems that are highly vulnerable to sea level rise, but they may also be vulnerable to sea level variability and extreme low sea level events. During 16 years of monitoring of a mangrove forest in Mangrove Bay in north Western Australia, we documented two forest dieback events, the most recent one being coincident with the large-scale dieback of mangroves in the Gulf of Carpentaria in northern Australia. Diebacks in Mangrove Bay were coincident with periods of very low sea level, which were associated with increased soil salinization of 20-30% above pre-event levels, leading to canopy loss, reduced Normalized Difference Vegetation Index (NDVI) and reduced recruitment. Our study indicates that an intensification of ENSO will have negative effects on some mangrove forests in parts of the Indo-Pacific that will exacerbate other pressures.
NASA Astrophysics Data System (ADS)
Woodworth, P. L.; Pugh, D. T.; De Ronde, J. G.; Warrick, R. G.; Hannah, J.
The measurement of sea level is of fundamental importance to a wide range of research in climatology, oceanography, geology and geodesy. This volume attempts to cover many aspects of the field. The volume opens with a description by Bolduc and Murty of one of the products stemming from the development of tide gauge networks in the northern and tropical Atlantic. This work is relevant to the growth of the Global Sea Level Observing System (GLOSS), the main goal of which is to provide the world with an efficient, coherent sea level monitoring system for oceanographic and climatological research. The subsequent four papers present results from the analysis of existing tide gauge data, including those datasets available from the Permanent Service for Mean Sea Level and the TOGA Sea Level Center. Two of the four, by Wróblewski and by Pasarić and Orlić, are concerned with European sea level changes, while Yu Jiye et al. discuss inter-annual changes in the Pacific, and Wang Baocan et al. describe variability in the Changjiang estuary in China. The papers by El-Abd and A wad, on Red Sea levels, are the only contributions to the volume from the large research community of geologists concerned with sea level changes.
Predicting the impact of tsunami in California under rising sea level
NASA Astrophysics Data System (ADS)
Dura, T.; Garner, A. J.; Weiss, R.; Kopp, R. E.; Horton, B.
2017-12-01
The flood hazard for the California coast depends not only on the magnitude, location, and rupture length of Alaska-Aleutian subduction zone earthquakes and their resultant tsunamis, but also on rising sea levels, which combine with tsunamis to produce overall flood levels. The magnitude of future sea-level rise remains uncertain even on the decadal scale, with future sea-level projections becoming even more uncertain at timeframes of a century or more. Earthquake statistics indicate that timeframes of ten thousand to one hundred thousand years are needed to capture rare, very large earthquakes. Because of the different timescales between reliable sea-level projections and earthquake distributions, simply combining the different probabilities in the context of a tsunami hazard assessment may be flawed. Here, we considered 15 earthquakes between Mw 8 to Mw 9.4 bound by -171oW and -140oW of the Alaska-Aleutian subduction zone. We employed 24 realizations at each magnitude with random epicenter locations and different fault length-to-width ratios, and simulated the tsunami evolution from these 360 earthquakes at each decade from the years 2000 to 2200. These simulations were then carried out for different sea-level-rise projections to analyze the future flood hazard for California. Looking at the flood levels at tide gauges, we found that the flood level simulated at, for example, the year 2100 (including respective sea-level change) is different from the flood level calculated by adding the flood for the year 2000 to the sea-level change prediction for the year 2100. This is consistent for all sea-level rise scenarios, and this difference in flood levels range between 5% and 12% for the larger half of the given magnitude interval. Focusing on flood levels at the tide gauge in the Port of Los Angeles, the most probable flood level (including all earthquake magnitudes) in the year 2000 was 5 cm. Depending on the sea-level predictions, in the year 2050 the most probable flood levels could rise to 20 to 30 cm, but increase significantly from 2100 to 2200 to between 0.5 m and 2.5 m. Aside from the significant increase in flood level, it should be noted that the range over which potential most probable flood levels can vary is significant and defines a tremendous challenge for long-term planning of hazard mitigating measures.
Arterial blood gas reference values for sea level and an altitude of 1,400 meters.
Crapo, R O; Jensen, R L; Hegewald, M; Tashkin, D P
1999-11-01
Blood gas measurements were collected on healthy lifetime nonsmokers at sea level (n = 96) and at an altitude of 1,400 meters (n = 243) to establish reference equations. At each study site, arterial blood samples were analyzed in duplicate on two separate blood gas analyzers and CO-oximeters. Arterial blood gas variables included Pa(O(2)), Pa(CO(2)), pH, and calculated alveolar-arterial PO(2) difference (AaPO(2)). CO-oximeter variables were Hb, COHb, MetHb, and Sa(O(2)). Subjects were 18 to 81 yr of age with 166 male and 173 female. Outlier data were excluded from multiple regression analysis, and reference equations were fitted to the data in two ways: (1) best fit using linear, squared, and cross-product terms; (2) simple equations, including only the variables that explained at least 3% of the variance. Two sets of equations were created: (1) using only the sea level data and (2) using the combined data with barometric pressure as an independent variable. Comparisons with earlier studies revealed small but significant differences; the decline in Pa(O(2)) with age at each altitude was consistent with most previous studies. At sea level, the equation that included barometric pressure predicted Pa(O(2)) slightly better than the sea level specific equation. The inclusion of barometric pressure in the equations allows better prediction of blood gas reference values at sea level and at altitudes as high as 1,400 meters.
Coastal Storm Hazards from Virginia to Maine
2015-11-01
study, storm surge, tide, waves, wind, atmospheric pressure, and currents were the dominant storm responses computed. The effect of sea level change on...coastal storm hazards and vulnerability nationally (USACE 2015). NACCS goals also included evaluating the effect of future sea level change (SLC) on...the computed high-fidelity responses included storm surge, astronomical tide, waves, wave effects on water levels, storm duration, wind, currents
NASA Astrophysics Data System (ADS)
Sheridan, S. C.; Lee, C. C.; Pirhalla, D.; Ransi, V.
2017-12-01
Sea-level fluctuations over time are a product of short-term weather events, as well as long-term secular trends in sea-level rise. With sea-levl rise, these fluctuations increasingly have substantial impacts upon coastal ecosystems and impact society through coastal flooding events. In this research, we assess the impact of short-term events, combined with sea-level rise, through synoptic climatological analysis, exploring whether circulation pattern identification can be used to enhance probabilistic forecasts of flood likelihood. Self-organizing maps (SOMs) were created for two discrete atmospheric variables: 700-hPa geopotential height (700z) and sea-level pressure (SLP). For each variable, a SOM array of patterns was created based on data spanning 25°-50°N and 60°-90°W for the period 1979-2014. Sea-level values were derived from tidal gauges between Cape May, New Jersey and Charleston, South Carolina, along the mid-Atlantic coast of the US. Both anomalous sea-level values, as well as nuisance flood occurrence (defined using the local gauge threshold), were assessed. Results show the impacts of both the inverted barometer effect as well as surface wind forcing on sea levels. With SLP, higher sea levels are associated with either patterns that were indicative of on-shore flow or cyclones. At 700z, ridges situated along the east coast are associated with higher sea levels. As the SOM matrix arranges atmospheric patterns in a continuum, the nodes of each SOM show a clear spatial pattern in terms of anomalous sea level, including some significant sea-level anomalies associated with relatively ambiguous pressure patterns. Further, multi-day transitions are also analyzed, showing rapidly deepening cyclones, or persistent onshore flow, can be associated with the greatest likelihood of nuisance floods. Results are weaker with 700z than SLP; however, in some cases, it is clear that the mid-tropospheric circulation can modulate the connection between sea-level anomalies and surface circulation.
Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida
Langevin, Christian D.; Zygnerski, Michael
2013-01-01
A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.
A Bayesian network to predict coastal vulnerability to sea level rise
Gutierrez, B.T.; Plant, N.G.; Thieler, E.R.
2011-01-01
Sea level rise during the 21st century will have a wide range of effects on coastal environments, human development, and infrastructure in coastal areas. The broad range of complex factors influencing coastal systems contributes to large uncertainties in predicting long-term sea level rise impacts. Here we explore and demonstrate the capabilities of a Bayesian network (BN) to predict long-term shoreline change associated with sea level rise and make quantitative assessments of prediction uncertainty. A BN is used to define relationships between driving forces, geologic constraints, and coastal response for the U.S. Atlantic coast that include observations of local rates of relative sea level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline change rate. The BN is used to make probabilistic predictions of shoreline retreat in response to different future sea level rise rates. Results demonstrate that the probability of shoreline retreat increases with higher rates of sea level rise. Where more specific information is included, the probability of shoreline change increases in a number of cases, indicating more confident predictions. A hindcast evaluation of the BN indicates that the network correctly predicts 71% of the cases. Evaluation of the results using Brier skill and log likelihood ratio scores indicates that the network provides shoreline change predictions that are better than the prior probability. Shoreline change outcomes indicating stability (-1 1 m/yr) was not well predicted. We find that BNs can assimilate important factors contributing to coastal change in response to sea level rise and can make quantitative, probabilistic predictions that can be applied to coastal management decisions. Copyright ?? 2011 by the American Geophysical Union.
Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise
Enwright, Nicholas M.; Griffith, Kereen T.; Osland, Michael J.
2016-01-01
In the 21st century, accelerated sea-level rise and continued coastal development are expected to greatly alter coastal landscapes across the globe. Historically, many coastal ecosystems have responded to sea-level fluctuations via horizontal and vertical movement on the landscape. However, anthropogenic activities, including urbanization and the construction of flood-prevention infrastructure, can produce barriers that impede ecosystem migration. Here we show where tidal saline wetlands have the potential to migrate landward along the northern Gulf of Mexico coast, one of the most sea-level rise sensitive and wetland-rich regions of the world. Our findings can be used to identify migration corridors and develop sea-level rise adaptation strategies to help ensure the continued availability of wetland-associated ecosystem goods and services.
Sea-level-induced seismicity and submarine landslide occurrence
Brothers, Daniel S.; Luttrell, Karen M.; Chaytor, Jason D.
2013-01-01
The temporal coincidence between rapid late Pleistocene sea-level rise and large-scale slope failures is widely documented. Nevertheless, the physical mechanisms that link these phenomena are poorly understood, particularly along nonglaciated margins. Here we investigate the causal relationships between rapid sea-level rise, flexural stress loading, and increased seismicity rates along passive margins. We find that Coulomb failure stress across fault systems of passive continental margins may have increased more than 1 MPa during rapid late Pleistocene–early Holocene sea-level rise, an amount sufficient to trigger fault reactivation and rupture. These results suggest that sea-level–modulated seismicity may have contributed to a number of poorly understood but widely observed phenomena, including (1) increased frequency of large-scale submarine landslides during rapid, late Pleistocene sea-level rise; (2) emplacement of coarse-grained mass transport deposits on deep-sea fans during the early stages of marine transgression; and (3) the unroofing and release of methane gas sequestered in continental slope sediments.
Sea-level change during the last 2500 years in New Jersey, USA
Kemp, Andrew C.; Horton, Benjamin P.; Vane, Christopher H.; Bernhardt, Christopher E.; Corbett, D. Reide; Engelhart, Simon E.; Anisfeld, Shimon C.; Parnell, Andrew C.; Cahill, Niamh
2013-01-01
Relative sea-level changes during the last ∼2500 years in New Jersey, USA were reconstructed to test if late Holocene sea level was stable or included persistent and distinctive phases of variability. Foraminifera and bulk-sediment δ13C values were combined to reconstruct paleomarsh elevation with decimeter precision from sequences of salt-marsh sediment at two sites using a multi-proxy approach. The additional paleoenvironmental information provided by bulk-sediment δ13C values reduced vertical uncertainty in the sea-level reconstruction by about one third of that estimated from foraminifera alone using a transfer function. The history of sediment deposition was constrained by a composite chronology. An age–depth model developed for each core enabled reconstruction of sea level with multi-decadal resolution. Following correction for land-level change (1.4 mm/yr), four successive and sustained (multi-centennial) sea-level trends were objectively identified and quantified (95% confidence interval) using error-in-variables change point analysis to account for age and sea-level uncertainties. From at least 500 BC to 250 AD, sea-level fell at 0.11 mm/yr. The second period saw sea-level rise at 0.62 mm/yr from 250 AD to 733 AD. Between 733 AD and 1850 AD, sea level fell at 0.12 mm/yr. The reconstructed rate of sea-level rise since ∼1850 AD was 3.1 mm/yr and represents the most rapid period of change for at least 2500 years. This trend began between 1830 AD and 1873 AD. Since this change point, reconstructed sea-level rise is in agreement with regional tide-gauge records and exceeds the global average estimate for the 20th century. These positive and negative departures from background rates demonstrate that the late Holocene sea level was not stable in New Jersey.
NASA Astrophysics Data System (ADS)
Sayol, J. M.; Marcos, M.
2018-02-01
This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.
Probabilistic Estimates of Global Mean Sea Level and its Underlying Processes
NASA Astrophysics Data System (ADS)
Hay, C.; Morrow, E.; Kopp, R. E.; Mitrovica, J. X.
2015-12-01
Local sea level can vary significantly from the global mean value due to a suite of processes that includes ongoing sea-level changes due to the last ice age, land water storage, ocean circulation changes, and non-uniform sea-level changes that arise when modern-day land ice rapidly melts. Understanding these sources of spatial and temporal variability is critical to estimating past and present sea-level change and projecting future sea-level rise. Using two probabilistic techniques, a multi-model Kalman smoother and Gaussian process regression, we have reanalyzed 20th century tide gauge observations to produce a new estimate of global mean sea level (GMSL). Our methods allow us to extract global information from the sparse tide gauge field by taking advantage of the physics-based and model-derived geometry of the contributing processes. Both methods provide constraints on the sea-level contribution of glacial isostatic adjustment (GIA). The Kalman smoother tests multiple discrete models of glacial isostatic adjustment (GIA), probabilistically computing the most likely GIA model given the observations, while the Gaussian process regression characterizes the prior covariance structure of a suite of GIA models and then uses this structure to estimate the posterior distribution of local rates of GIA-induced sea-level change. We present the two methodologies, the model-derived geometries of the underlying processes, and our new probabilistic estimates of GMSL and GIA.
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.; Perron, T.; Milne, G. A.; Wickert, A. D.
2012-12-01
Spatial patterns in static sea level are controlled by the interplay between the history of ice mass variations and the associated deformational, gravitational and rotational perturbations in the Earth's state. Over the last decade, there has been a renewed effort to extend classic treatments of ice-age sea-level change (Farrell and Clark, 1976) to incorporate effects such as shoreline migration due to the local onlap or offlap of seawater and changes in the extent of grounded, marine-based ice, as well as feedbacks between sea level and the orientation of Earth's rotation axis. To date, the impact of sediment transport - whether in the context of glacial processes, or other processes such as fluvial deposition - has not been incorporated into a gravitationally self-consistent sea-level theory. Here we briefly summarize the main elements of a new sea-level theory that includes sediment transport, and we apply this new theory to investigate crustal deformation and sea-level changes driven by sediment deposition on the Mississippi fan in the Gulf of Mexico. The calculations incorporate sediment transport from the start of the last glacial cycle through to the present and are constrained to conserve sediment and ocean mass. We compare relative sea level histories predicted with and without sediment transport at sites in and around the Gulf of Mexico, and we quantify the relative impacts of gravitational and deformational effects of sediment deposition. We also explore the extent to which sea-level changes associated with sediment transport impact the interpretation of paleo-sea-level records. Our new sea-level formulation provides an important component of a comprehensive coupling between sediment transfer and sea level on local, regional and global spatial scales, and on time scales extending from decades to tens of thousands of years. References: Farrell, W.E., and Clark, J.A., 1976. On postglacial sea level: Geophysical Journal of the Royal Astronomical Society, v. 46, p. 647-667.
Lentz, Erika E.; Stippa, Sawyer R.; Thieler, E. Robert; Plant, Nathaniel G.; Gesch, Dean B.; Horton, Radley M.
2014-02-13
The U.S. Geological Survey is examining effects of future sea-level rise on the coastal landscape from Maine to Virginia by producing spatially explicit, probabilistic predictions using sea-level projections, vertical land movement rates (due to isostacy), elevation data, and land-cover data. Sea-level-rise scenarios used as model inputs are generated by using multiple sources of information, including Coupled Model Intercomparison Project Phase 5 models following representative concentration pathways 4.5 and 8.5 in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A Bayesian network is used to develop a predictive coastal response model that integrates the sea-level, elevation, and land-cover data with assigned probabilities that account for interactions with coastal geomorphology as well as the corresponding ecological and societal systems it supports. The effects of sea-level rise are presented as (1) level of landscape submergence and (2) coastal response type characterized as either static (that is, inundation) or dynamic (that is, landform or landscape change). Results are produced at a spatial scale of 30 meters for four decades (the 2020s, 2030s, 2050s, and 2080s). The probabilistic predictions can be applied to landscape management decisions based on sea-level-rise effects as well as on assessments of the prediction uncertainty and need for improved data or fundamental understanding. This report describes the methods used to produce predictions, including information on input datasets; the modeling approach; model outputs; data-quality-control procedures; and information on how to access the data and metadata online.
NASA Technical Reports Server (NTRS)
Lentz, Erika E.; Stippa, Sawyer R.; Thieler, E. Robert; Plant, Nathaniel G.; Gesch, Dean B.; Horton, Radley M.
2015-01-01
The U.S. Geological Survey is examining effects of future sea-level rise on the coastal landscape from Maine to Virginia by producing spatially explicit, probabilistic predictions using sea-level projections, vertical land movement rates (due to isostacy), elevation data, and land-cover data. Sea-level-rise scenarios used as model inputs are generated by using multiple sources of information, including Coupled Model Intercomparison Project Phase 5 models following representative concentration pathways 4.5 and 8.5 in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A Bayesian network is used to develop a predictive coastal response model that integrates the sea-level, elevation, and land-cover data with assigned probabilities that account for interactions with coastal geomorphology as well as the corresponding ecological and societal systems it supports. The effects of sea-level rise are presented as (1) level of landscape submergence and (2) coastal response type characterized as either static (that is, inundation) or dynamic (that is, landform or landscape change). Results are produced at a spatial scale of 30 meters for four decades (the 2020s, 2030s, 2050s, and 2080s). The probabilistic predictions can be applied to landscape management decisions based on sea-level-rise effects as well as on assessments of the prediction uncertainty and need for improved data or fundamental understanding. This report describes the methods used to produce predictions, including information on input datasets; the modeling approach; model outputs; data-quality-control procedures; and information on how to access the data and metadata online.
Climate Adaptation and Sea Level Rise
EPA supports the development and maintenance of water utility infrastructure across the country. Included in this effort is helping the nation’s water utilities anticipate, plan for, and adapt to risks from flooding, sea level rise, and storm surge.
Coastal Impact Underestimated From Rapid Sea Level Rise
NASA Astrophysics Data System (ADS)
Anderson, John; Milliken, Kristy; Wallace, Davin; Rodriguez, Antonio; Simms, Alexander
2010-06-01
A primary effect of global warming is accelerated sea level rise, which will eventually drown low-lying coastal areas, including some of the world's most populated cities. Predictions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) suggest that sea level may rise by as much as 0.6 meter by 2100 [Solomon et al., 2007]. However, uncertainty remains about how projected melting of the Greenland and Antarctic ice sheets will contribute to sea level rise. Further, considerable variability is introduced to these calculations due to coastal subsidence, especially along the northern Gulf of Mexico (see http://tidesandcurrents.noaa.gov/sltrends/sltrends.shtml).
Sea level rise at Honolulu and Hilo, Hawaii: GPS estimates of differential land motion
NASA Astrophysics Data System (ADS)
Caccamise, Dana J.; Merrifield, Mark A.; Bevis, Michael; Foster, James; Firing, Yvonne L.; Schenewerk, Mark S.; Taylor, Frederick W.; Thomas, Donald A.
2005-02-01
Since 1946, sea level at Hilo on the Big Island of Hawaii has risen an average of 1.8 +/- 0.4 mm/yr faster than at Honolulu on the island of Oahu. This difference has been attributed to subsidence of the Big Island. However, GPS measurements indicate that Hilo is sinking relative to Honolulu at a rate of -0.4 +/- 0.5 mm/yr, which is too small to account for the difference in sea level trends. In the past 30 years, there has been a statistically significant reduction in the relative sea level trend. While it is possible that the rates of land motion have changed over this time period, the available hydrographic data suggest that interdecadal variations in upper ocean temperature account for much of the differential sea level signal between the two stations, including the recent trend change. These results highlight the challenges involved in estimating secular sea level trends in the presence of significant low frequency variability.
Global climate change, including sea-level rise (SLR), will have profound effects on estuarine fish, shellfish, and wildlife populations and their habitats. To develop an understanding of these potential impacts, the U.S. EPA at Newport, Oregon is participating in a joint researc...
NASA Astrophysics Data System (ADS)
Le Cozannet, Gonéri; Manceau, Jean-Charles; Rohmer, Jeremy
2017-10-01
Figures 3 and 4 of the article ‘Bounding probabilistic sea-level projections within the framework of the possibility theory’ display a minimum value for sea level rise of 15 cm by 2100 with respect to the 1986-2005 mean for the RCP 8.5. The value of 15 cm is consistent with sea level rise rates dropping back to velocities observed during the 20th century according to recent studies, but not to the current sea level rise velocity of 3.4 mm yr-1, as incorrectly stated in the article. This error has no impact on the rest of the article, including its arguments and conclusions, but it is potentially confusing for scientists willing to reproduce the left side of figures 3 and 4. We apologise for any inconvenience caused.
Phipps, James B.; Hemphill-Haley, Eileen; Atwater, Brian F.
2015-06-18
The puzzles posed by these findings include: (1) How did the marshes manage to endure centuries of relative sea-level rise that likely approached 1 cm/yr on average? (2) Did the marshes also endure subsidence that accompanied great thrust earthquakes on the Cascadia Subduction Zone? (3) Was their eventual drowning triggered by a Cascadia earthquake of unusually large size, or can the drowning be explained by sea-level rise that included a jump from drainage of glacial Lake Agassiz?
Method for Assessing Impacts of Global Sea Level Rise on Navigation Gate Operations
NASA Astrophysics Data System (ADS)
Obrien, P. S.; White, K. D.; Friedman, D.
2015-12-01
Coastal navigation infrastructure may be highly vulnerable to changing climate, including increasing sea levels and altered frequency and intensity of coastal storms. Future gate operations impacted by global sea level rise will pose unique challenges, especially for structures 50 years and older. Our approach is to estimate future changes in gate operational frequency based on a bootstrapping method to forecast future water levels. A case study will be presented to determine future changes in frequency of operations over the next 100 years. A statistical model in the R programming language was developed to apply future sea level rise projections using the three sea level rise scenarios prescribed by USACE Engineer Regulation ER 1100-2-8162. Information derived from the case study will help forecast changes in operational costs caused by increased gate operations and inform timing of decisions on adaptation measures.
NASA Astrophysics Data System (ADS)
Xu, A. A.
2016-12-01
Existing research has shown consistent increase in global sea levels due to warming of the climate; since 1870, average global sea level has risen by about 20 cm. There are processes that scientists and coastal engineers can follow to estimate the erosion and flooding risk impacts for specific locations based on historical data. However, there are no methods available to assess the risk impacts for locations where little research has been conducted. In this study, we introduce a prototype to better predict sea level change and land loss using big data technology. Our approach combines cluster analysis and artificial intelligence to classify and calculate impacts for locations worldwide. Data from 235 locations (89 countries) on sea level change was gathered from NOAA data investigations and other research organizations, including beach profile data, shoreline length data, and GDP data. The rate of sea level rise varies from -18 to 21 mm/yr. We divide the data into 4 groups (Group A: +0 to 9mm, Group B: +10 to +20mm, Group C: -0 to -9mm, and Group D:-10 to -20mm). Our research focuses on types A and B only since both reflect increase on sea level rise. We find the correlation between the sea level rise and factors such as the economic parameter (α), sea level rise height (h), beach breaker wave (Hb), gravitational constant (g), period of wave (T), foreshore slope (i), and sand sizes (D). We conclude the sea level rise impact ($ lost) can be more scientifically and precisely predicted using our model.
GGOS Focus Area 3: Understanding and Forecasting Sea-Level Rise and Variability
NASA Astrophysics Data System (ADS)
Schöne, Tilo; Shum, Ck; Tamisiea, Mark; Woodworth, Philip
2017-04-01
Sea level and its change have been measured for more than a century. Especially for coastal nations, deltaic regions, and coastal-oriented industries, observations of tides, tidal extremes, storm surges, and sea level rise at the interannual or longer scales have substantial impacts on coastal vulnerability towards resilience and sustainability of world's coastal regions. To date, the observed global sea level rise is largely associated with climate related changes. To find the patterns and fingerprints of those changes, and to e.g., separate the land motion from sea level signals, different monitoring techniques have been developed. Some of them are local, e.g., tide gauges, while others are global, e.g., satellite altimetry. It is well known that sea level change and land vertical motion varies regionally, and both signals need to be measured in order to quantify relative sea level at the local scale. The Global Geodetic Observing System (GGOS) and its services contribute in many ways to the monitoring of the sea level. These includes tide gauge observations, estimation of gravity changes, satellite altimetry, InSAR/Lidar, GNSS-control of tide gauges, providing ground truth sites for satellite altimetry, and importantly the maintenance of the International Reference Frame. Focus Area 3 (Understanding and Forecasting Sea-Level Rise and Variability) of GGOS establishes a platform and a forum for researchers and authorities dealing with estimating global and local sea level changes in a 10- to 30-year time span, and its project to the next century or beyond. It presents an excellent opportunity to emphasize the global, through to regional and local, importance of GGOS to a wide range of sea-level related science and practical applications. Focus Area 3 works trough demonstration projects to highlight the value of geodetic techniques to sea level science and applications. Contributions under a call for participation (http://www.ggos.org/Applications/theme3_SL.html) are welcome. The present status of GGOS Focus Area 3 will be highlighted. http://www.ggos-portal.org/lang_en/GGOS-Portal/EN/Themes/SeaLevel/seaLevel.html
NASA Astrophysics Data System (ADS)
Gallien, T.; Barnard, P. L.; Sanders, B. F.
2011-12-01
California coastal sea levels are projected to rise 1-1.4 meters in the next century and evidence suggests mean tidal range, and consequently, mean high water (MHW) is increasing along portions of Southern California Bight. Furthermore, emerging research indicates wind stress patterns associated with the Pacific Decadal Oscillation (PDO) have suppressed sea level rise rates along the West Coast since 1980, and a reversal in this pattern would result in the resumption of regional sea level rise rates equivalent to or exceeding global mean sea level rise rates, thereby enhancing coastal flooding. Newport Beach is a highly developed, densely populated lowland along the Southern California coast currently subject to episodic flooding from coincident high tides and waves, and the frequency and intensity of flooding is expected to increase with projected future sea levels. Adaptation to elevated sea levels will require flood mapping and forecasting tools that are sensitive to the dominant factors affecting flooding including extreme high tides, waves and flood control infrastructure. Considerable effort has been focused on the development of nowcast and forecast systems including Scripps Institute of Oceanography's Coastal Data Information Program (CDIP) and the USGS Multi-hazard model, the Southern California Coastal Storm Modeling System (CoSMoS). However, fine scale local embayment dynamics and overtopping flows are needed to map unsteady flooding effects in coastal lowlands protected by dunes, levees and seawalls. Here, a recently developed two dimensional Godunov non-linear shallow water solver is coupled to water level and wave forecasts from the CoSMoS model to investigate the roles of tides, waves, sea level changes and flood control infrastructure in accurate flood mapping and forecasting. The results of this study highlight the important roles of topographic data, embayment hydrodynamics, water level uncertainties and critical flood processes required for meaningful prediction of sea level rise impacts and coastal flood forecasting.
The Caribbean conundrum of Holocene sea level.
NASA Astrophysics Data System (ADS)
Jackson, Luke; Mound, Jon
2014-05-01
In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (< 1.2 mm yr-1) due the water loading following the deglaciation of the Laurentide ice sheet. We construct two catalogues: one of published Holocene sea-level indicators and the other of published, modern growth rates, abundance and coverage of mangrove and coral species for different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.
NASA Astrophysics Data System (ADS)
Sharman, G.; Covault, J. A.; Stockli, D. F.; Sickmann, Z.; Malkowski, M. A.; Johnstone, S.
2017-12-01
Seacliff erosion poses a major threat to southern California coastal communities, including the propensity for episodic cliff failure and damage to residential and commercial property. Rising sea level is predicted to accelerate seacliff retreat, yet few constraints exist on how rapid sea level rise influenced coastal erosion rates in pre-modern timescales. Here we look to the geologic record in submarine fans to investigate changes in relative sediment supply from rivers and coastal erosion, the latter including seacliff retreat and bluffland erosion. To understand how sea level rise driven by past global warming impacted coastal erosion rates, we sampled modern rivers of the Peninsular Ranges and latest Pleistocene-Holocene submarine canyon-fan systems in southern California for detrital zircon U-Pb geochronology (1369 analyses from 10 samples). Modern river samples show a systematic north-south change in grain age populations broadly distributed across Cretaceous time (ca. 70-135 Ma) to a predominance of middle Cretaceous grain ages (ca. 95-115 Ma), reflecting variations in the geologic age of units within each river catchment. The Carlsbad and La Jolla submarine canyon-fan systems, deposited during sea level lowstand and highstand, respectively, exhibit detrital zircon age distributions consistent with derivation from upstream rivers, with mixing in the littoral zone. However, a sample from the Oceanside fan, deposited during rapid sea level rise at ca. 13 ka, is dominated by detrital ages that lack a local source in the northern Peninsular Ranges, including latest Cretaceous, late Jurassic, and Proterozoic ages. However, such grain ages are widespread in Paleogene sedimentary rocks that comprise the shelf and coastal area, suggesting increased sediment supply from coastal and shelf erosion. Assuming that the Oceanside sample is representative of sediment production during sea level rise, sediment mixing calculations suggest a one to two orders of magnitude increase in sediment from coastal erosion relative to river-supplied sediment. Our results thus suggest a significant increase in coastal erosion rates following the Last Glacial Maximum, highlighting the risk that future sea level rise poses to coastal communities.
Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.
Langevin, Christian D; Zygnerski, Michael
2013-01-01
A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River
NASA Astrophysics Data System (ADS)
Bacopoulos, P.
2015-12-01
There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.
Sea-level responses to sediment transport over the last ice age cycle
NASA Astrophysics Data System (ADS)
Ferrier, K.; Mitrovica, J. X.
2013-12-01
Sea-level changes over the last ice age cycle were instrumental in steering Earth's topographic evolution. These sea-level variations were driven by changes in surface mass loads, including not only ice and ocean mass variations but also the transfer of rock from eroding mountains to sedimentary deposits. Here we use an extended numerical model of ice age sea level (Dalca et al., 2013) to explore how sediment erosion and deposition affected global sea-level variations over the last ice age cycle. The model takes histories of ice and sediment loads as inputs, and it computes gravitationally self-consistent sea level responses by accounting for the deformational, gravitational, and rotational perturbations in the Earth's viscoelastic form. In these model simulations, we use published estimates of erosion rates, sedimentation rates, and ice sheet variations to constrain sediment and ice loading since the Last Interglacial. We explore sea-level responses to several erosional and depositional scenarios, and in each we quantify the relative contributions of crustal deformation and gravitational perturbation to the computed sea-level change. We also present a case study to illustrate the effects that sediment transfer can have on sea level at the regional scale. In particular, we focus on the region surrounding the Indus River, where fluvial sediment fluxes are among the highest on Earth. Preliminary model results suggest that sediment fluxes from Asia to the ocean are large enough to produce a significant response in sea level along the northeastern coast of the Arabian Sea. Moreover, they suggest that modeled sea-level histories are sensitive to the timing and spatial distribution of sediment erosion and deposition. For instance, sediment deposition along the continental shelf - which may have been the primary site of Indus River sediment deposition during the Holocene - produces a different sea-level response than sediment deposition on the deep-sea Indus Fan, where most of the Indus sediment may have been deposited during the glacial period preceding the Holocene. These simulations highlight the role that massive continent-to-ocean sediment fluxes can play in driving sea-level patterns over thousands of years. References: Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III: Incorporating sediment redistribution. Geophys. J. Int., doi: 10.1093/gji/ggt089.
NASA Astrophysics Data System (ADS)
Gerkema, Theo; Duran-Matute, Matias
2017-12-01
The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west-east component of the net wind energy, with some further improvement if one also includes the south-north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west-east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.
Caspian Sea Environmental Security Game: 16-17 November 1998
1999-07-01
17 Robert E. Ebel Caspian Basin Oil and Gas: An Overview . . . . . . . . . . . 21 Brian R . Shaw Environmental Baseline...threat to security of supply. 32 ENVIRONMENTAL BASELINE ANALYSIS OF THE CASPIAN SEA REGION BRIAN R . SHAW TERRY PALUSZKIEWICZ SUSAN A. THOMAS...Caspian Sea level. Sources of water include runoff ( R ), precipitation (P), and groundwater flow (G); sink include evaporation (E), and discharge of water
NASA Sea Level Change Portal - It not just another portal site
NASA Astrophysics Data System (ADS)
Huang, T.; Quach, N.; Abercrombie, S. P.; Boening, C.; Brennan, H. P.; Gill, K. M.; Greguska, F. R., III; Jackson, R.; Larour, E. Y.; Shaftel, H.; Tenenbaum, L. F.; Zlotnicki, V.; Moore, B.; Moore, J.; Boeck, A.
2017-12-01
The NASA Sea Level Change Portal (https://sealevel.nasa.gov) is designed as a "one-stop" source for current sea level change information, including interactive tools for accessing and viewing regional data, a virtual dashboard of sea level indicators, and ongoing updates through a suite of editorial products that include content articles, graphics, videos, and animations. With increasing global temperatures warming the ocean and melting ice sheets and glaciers, there is an immediate need both for accelerating sea level change research and for making this research accessible to scientists in disparate discipline, to the general public, to policy makers and business. The immersive and innovative NASA portal debuted at the 2015 AGU attracts thousands of daily visitors and over 30K followers on Facebook®. Behind its intuitive interface is an extensible architecture that integrates site contents, data for various sources, visualization, horizontal-scale geospatial data analytic technology (called NEXUS), and an interactive 3D simulation platform (called the Virtual Earth System Laboratory). We will present an overview of our NASA portal and some of our architectural decisions along with discussion on our open-source, cloud-based data analytic technology that enables on-the-fly analysis of heterogeneous data.
Nuisance Flooding and Relative Sea-Level Rise: the Importance of Present-Day Land Motion.
Karegar, Makan A; Dixon, Timothy H; Malservisi, Rocco; Kusche, Jürgen; Engelhart, Simon E
2017-09-11
Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth's coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale "nuisance flooding," often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.
Increasing Resilience Through Engagement In Sea Level Rise Community Science Initiatives.
NASA Astrophysics Data System (ADS)
Chilton, L. A.; Rindge, H.
2017-12-01
Science literate and engaged members of the public, including students, are critical to building climate resilient communities. USC Sea Grant facilitates programs that work to build and strengthen these connections. The Urban Tides Community Science Initiative (Urban Tides) and the Youth Exploring Sea Level Rise Science Program (YESS) engage communities across the boundaries of public engagement, K-12 education, and informal education. YESS is an experiential sea level rise education program that combines classroom learning, field investigations and public presentations. Students explore sea level rise using a new curricula, collect their own data on sea level rise, develop communication products, and present their findings to city governments, researchers, and others. Urban Tides engages community members, informal education centers, K-12 students, and local government leaders in a citizen science program photo- documenting extreme high tides, erosion and coastal flooding in Southern California. Images provide critical information to help calibrate scientific models used to identify locations vulnerable to damage from future sea level rise. These tools and information enable community leaders and local governments to set priorities, guidelines, and update policies as they plan strategies that will help the region adapt. The program includes a mobile app for data collection, an open database to view photos, a lesson plan, and community beach walks. Urban Tides has led to an increase in data and data-gathering capacity for regional scientists, an increase in public participation in science, and an increase in ocean and climate literacy among initiative participants. Both of these programs bring informed and diverse voices into the discussion of how to adapt and build climate resilient communities. USC Sea Grant will share impacts and lessons learned from these two unique programs.
NASA Astrophysics Data System (ADS)
John, Cédric M.; Karner, Garry D.; Mutti, Maria
2004-09-01
δ18Obenthic values from Leg 194 Ocean Drilling Program Sites 1192 and 1195 (drilled on the Marion Plateau) were combined with deep-sea values to reconstruct the magnitude range of the late middle Miocene sea-level fall (13.6 11.4 Ma). In parallel, an estimate for the late middle Miocene sea-level fall was calculated from the stratigraphic relationship identified during Leg 194 and the structural relief of carbonate platforms that form the Marion Plateau. Corrections for thermal subsidence induced by Late Cretaceous rifting, flexural sediment loading, and sediment compaction were taken into account. The response of the lithosphere to sediment loading was considered for a range of effective elastic thicknesses (10 < Te < 40 km). By overlapping the sea-level range of both the deep-sea isotopes and the results from the backstripping analysis, we demonstrate that the amplitude of the late middle Miocene sea-level fall was 45 68 m (56.5 ± 11.5 m). Including an estimate for sea-level variation using the δ18Obenthic results from the subtropical Marion Plateau, the range of sea-level fall is tightly constrained between 45 and 55 m (50.0 ± 5.0 m). This result is the first precise quantitative estimate for the amplitude of the late middle Miocene eustatic fall that sidesteps the errors inherent in using benthic foraminifera assemblages to predict paleo water depth. The estimate also includes an error analysis for the flexural response of the lithosphere to both water and sediment loads. Our result implies that the extent of ice buildup in the Miocene was larger than previously estimated, and conversely that the amount of cooling associated with this event was less important.
SeaShark and Starfish opertional data processing schemes for AVHRR and SeaWiFs
NASA Astrophysics Data System (ADS)
Flowerdew, R. J.; Corlyon, Anaa M.; Greer, W. A. D.; Newby, Steve J.; Winder, C. P.
1997-02-01
SeaShark is an operational software package for processing, archiving and cataloguing AVHRR and SeaWiFS data using an operator friendly GUI. Upon receipt of a customer order, it produces standard AVHRR data products, including Sea Surface Temperature (SST) and it has recently been modified to include SeaWiFS level 2 data processing. This uses an atmospheric correction scheme developed by the Plymouth Marine Laboratory, UK (PML) that builds upon the standard Gordon and Wang approach to be applicable over both case 1 and case 2 waters. Higher level products are then generated using PML algorithms, including chlorophyll a, a CZCS-type pigment, Kd, and suspended particulate matter. Outputs are in CEOS-compatible format. The software also produces fast delivery products (FDPs) of chlorophyll a and SST. These FDPs are combined in the StarFish software package to provide maps indicating potential location of phytoplankton and the preferred thermal environment of certain pelagic fish species. Fishing vessels may obtain these maps over Inmarsat, allowing them to achieve a greater efficiency hence lower cost.
Polar ice-sheet contributions to sea level during past warm periods
NASA Astrophysics Data System (ADS)
Dutton, A.
2015-12-01
Recent sea-level rise has been dominated by thermal expansion and glacier loss, but the contribution from mass loss from the Greenland and Antarctic ice sheets is expected to exceed other contributions under future sustained warming. Due to limitations of existing ice sheet models and the lack of relevant analogues in the historical record, projecting the timing and magnitude of polar ice sheet mass loss in the future remains challenging. One approach to improving our understanding of how polar ice-sheet retreat will unfold is to integrate observations and models of sea level, ice sheets, and climate during past intervals of warmth when the polar ice sheets contributed to higher sea levels. A recent review evaluated the evidence of polar ice sheet mass loss during several warm periods, including interglacials during the mid-Pliocene warm period, Marine Isotope Stage (MIS) 11, 5e (Last Interglacial), and 1 (Holocene). Sea-level benchmarks of ice-sheet retreat during the first of these three periods, when global mean climate was ~1 to 3 deg. C warmer than preindustrial, are useful for understanding the long-term potential for future sea-level rise. Despite existing uncertainties in these reconstructions, it is clear that our present climate is warming to a level associated with significant polar ice-sheet loss in the past, resulting in a conservative estimate for a global mean sea-level rise of 6 meters above present (or more). This presentation will focus on identifying the approaches that have yielded significant advances in terms of past sea level and ice sheet reconstruction as well as outstanding challenges. A key element of recent advances in sea-level reconstructions is the ability to recognize and quantify the imprint of geophysical processes, such as glacial isostatic adjustment (GIA) and dynamic topography, that lead to significant spatial variability in sea level reconstructions. Identifying specific ice-sheet sources that contributed to higher sea levels is a challenge that is currently hindered by limited field evidence at high latitudes. Finally, I will explore the concept of how increasing the quantity and quality of paleo sea level and ice sheet reconstructions can lead to improved quantification of contemporary changes in ice sheets and sea level.
Project NOAH: Regulating modern sea-level rise. Phase II: Jerusalem Underground
NASA Astrophysics Data System (ADS)
Newman, Walter S.; Fairbridge, Rhodes W.
This proposal builds a high-speed inter-urban express between Jerusalem and Tel Aviv, generates 1500 megawatts of hydroelectric energy, curtails littoral erosion, builds a port along the Israeli Mediterranean coast and demands peaceful cooperation on both sides of the Jordan River. Phase II represents a pilot project demonstrating the feasibility of continuing to regulate world sea-level by a new series of water regulation schemes. Phase I previously described all those projects already completed or underway which have inadvertently and/or unintentionally served the purpose of sea-level regulation. These forms of Phase I sea-level regulation include large and small reservoirs, irrigation projects, water infiltration schemes, farm ponds, and swimming and reflecting pools. All these water storage projects have already exercised a very appreciable brake on 20th century sea-level rise. Phase II outlines a high-visibility proposal which will serve to illustrate the viability of “Project NOAH”.
Chivas, Allan R.; Garcı́a, Adriana; van der Kaars, Sander; Couapel, Martine; Holt, Sabine; Reeves, Jessica M.; Wheeler, David J.; Switzer, Adam D.; Murray-Wallace, Colin V.; Banerjee, Debabrata; Price, David M.; Wang, Sue X.; Pearson, Grant; Edgar, N. Terry; Beaufort, Luc; de Deckker, Patrick; Lawson, Ewan; Cecil, C. Blaine
2001-01-01
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km×300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Rhode Island Salt Marshes: Elevation Capital and Resilience to Sea Level Rise
Tidal salt marsh is especially sensitive to deterioration due to the effects of accelerated sea level rise when combined with other anthropogenically linked stressors, including crab herbivory, changes in tidal hydrology, nutrient loading, dam construction, changes in temperature...
The future for the Global Sea Level Observing System (GLOSS) Sea Level Data Rescue
NASA Astrophysics Data System (ADS)
Bradshaw, Elizabeth; Matthews, Andrew; Rickards, Lesley; Aarup, Thorkild
2016-04-01
Historical sea level data are rare and unrepeatable measurements with a number of applications in climate studies (sea level rise), oceanography (ocean currents, tides, surges), geodesy (national datum), geophysics and geology (coastal land movements) and other disciplines. However, long-term time series are concentrated in the northern hemisphere and there are no records at the Permanent Service for Mean Sea Level (PSMSL) global data bank longer than 100 years in the Arctic, Africa, South America or Antarctica. Data archaeology activities will help fill in the gaps in the global dataset and improve global sea level reconstruction. The Global Sea Level Observing System (GLOSS) is an international programme conducted under the auspices of the WMO-IOC Joint Technical Commission for Oceanography and Marine Meteorology. It was set up in 1985 to collect long-term tide gauge observations and to develop systems and standards "for ocean monitoring and flood warning purposes". At the GLOSS-GE-XIV Meeting in 2015, GLOSS agreed on a number of action items to be developed in the next two years. These were: 1. To explore mareogram digitisation applications, including NUNIEAU (more information available at: http://www.mediterranee.cerema.fr/logiciel-de-numerisation-des-enregistrements-r57.html) and other recent developments in scanning/digitisation software, such as IEDRO's Weather Wizards program, to see if they could be used via a browser. 2. To publicise sea level data archaeology and rescue by: • maintaining and regularly updating the Sea Level Data Archaeology page on the GLOSS website • strengthening links to the GLOSS data centres and data rescue organisations e.g. linking to IEDRO, ACRE, RDA • restarting the sea level data rescue blog with monthly posts. 3. Investigate sources of funding for data archaeology and rescue projects. 4. Propose "Guidelines" for rescuing sea level data. These action items will aid the discovery, scanning, digitising and quality control of analogue tide gauge charts and sea level ledgers and improve the quality, quantity and availability of long-term sea level data series.
NASA Astrophysics Data System (ADS)
Karabil, Sitar; Zorita, Eduardo; Hünicke, Birgit
2018-01-01
The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993-2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several physical mechanisms which may explain the link between the sea-level variability and the atmospheric pattern described by the BANOS index. These mechanisms include the inverse barometer effect (IBE), freshwater balance, net energy surface flux and wind-induced water transport. We found that the most important mechanism is the IBE in both wintertime and summertime. Assuming a complete equilibration of seasonal sea level to the SLP gradients over this region, the IBE can explain up to 88 % of the sea-level variability attributed to the BANOS index in wintertime and 34 % in summertime. The net energy flux at the surface is found to be an important factor for the variation of sea level, explaining 35 % of sea-level variance in wintertime and a very small amount in summer. The freshwater flux could only explain 27 % of the variability in summertime and a negligible part in winter. In contrast to the NAO, the direct wind forcing associated with the SLP BANOS pattern does not lead to transport of water from the North Sea into the Baltic Sea in wintertime.
NASA Astrophysics Data System (ADS)
Nima, Ciren; Frette, Øyvind; Hamre, Børge; Erga, Svein Rune; Chen, Yi-Chun; Zhao, Lu; Muyimbwa, Dennis; Ssenyonga, Taddeo; Ssebiyonga, Nicolausi; Okullo, Willy; Stamnes, Knut; Stamnes, Jakob J.
2017-02-01
Colored Dissolved Organic Matter (CDOM) is one of the main factors controlling the penetration of solar radiation in Case 2 water and affecting satellite-based estimation of ocean color. We present absorption properties of CDOM sampled in 6 water bodies including three in Norway (Røst coastal water, Samnangerfjord, Lysefjord), two in China (Bohai Sea, Lake Namtso), and one in Africa (Lake Victoria). These locations, which range from near the equator to subarctic regions, include water types from oligotrophic to eutrophic, and altitudes from sea level to 4,700 m above sea level.
Economic vulnerability to sea-level rise along the northern U.S. Gulf Coast
Thatcher, Cindy A.; Brock, John C.; Pendleton, Elizabeth A.
2013-01-01
The northern Gulf of Mexico coast of the United States has been identified as highly vulnerable to sea-level rise, based on a combination of physical and societal factors. Vulnerability of human populations and infrastructure to projected increases in sea level is a critical area of uncertainty for communities in the extremely low-lying and flat northern gulf coastal zone. A rapidly growing population along some parts of the northern Gulf of Mexico coastline is further increasing the potential societal and economic impacts of projected sea-level rise in the region, where observed relative rise rates range from 0.75 to 9.95 mm per year on the Gulf coasts of Texas, Louisiana, Mississippi, Alabama, and Florida. A 1-m elevation threshold was chosen as an inclusive designation of the coastal zone vulnerable to relative sea-level rise, because of uncertainty associated with sea-level rise projections. This study applies a Coastal Economic Vulnerability Index (CEVI) to the northern Gulf of Mexico region, which includes both physical and economic factors that contribute to societal risk of impacts from rising sea level. The economic variables incorporated in the CEVI include human population, urban land cover, economic value of key types of infrastructure, and residential and commercial building values. The variables are standardized and combined to produce a quantitative index value for each 1-km coastal segment, highlighting areas where human populations and the built environment are most at risk. This information can be used by coastal managers as they allocate limited resources for ecosystem restoration, beach nourishment, and coastal-protection infrastructure. The study indicates a large amount of variability in index values along the northern Gulf of Mexico coastline, and highlights areas where long-term planning to enhance resiliency is particularly needed.
Coupling landscapes to solid-Earth deformation over the ice-age
NASA Astrophysics Data System (ADS)
Pico, T.; Mitrovica, J. X.; Ferrier, K.; Braun, J.
2016-12-01
We present initial results of a coupled ice-age sea level - landscape evolution code. Deformation of the solid Earth in response to the growth and ablation of continental ice sheets produces spatially-variable patterns of sea-level change. Recent modeling has considered the impact of sedimentation and erosion on sea level predictions across the last glacial cycle, but these studies have imposed, a-priori, a record of sediment flux and erosion, rather than computing them from a physics-based model of landscape evolution in the presence of sea-level (topography) changes. These topography changes range from 1-10 m/kyr in the near and intermediate field of the Late Pleistocene ice cover, and are thus comparable to (or exceed) tectonic rates in such regions. Our simulations aim to address the following question: how does solid-Earth deformation influence the evolution of landscapes over glacial periods? To address this issue, we couple a highly-efficient landscape evolution code, Fastscape (Braun & Willett, 2013), to a global, gravitationally-self consistent sea-level theory. Fastscape adopts standard geomorphic laws governing incision and marine deposition, and the sea-level model is based on the canonical work of Farrell & Clark (1976), with extensions to include the effects of rotation and time varying shoreline geometries (Kendall et al., 2005), and sediment erosion and deposition (Dalca et al, 2013). We will present global results and focus on a few regional case studies where deposition rates from a dataset of sedimentary cores can be used as a check on the simulations. These predictions quantify the influence of sea-level change (including that associated with sedimentation and erosion) on geomorphic drivers of landscape evolution, and in turn, the solid Earth deformation caused by these surface processes over an ice age.
NASA Astrophysics Data System (ADS)
Bakker, Alexander; Louchard, Domitille; Keller, Klaus
2016-04-01
Sea-level rise threatens many coastal areas around the world. The integrated assessment of potential adaptation and mitigation strategies requires a sound understanding of the upper tails and the major drivers of the uncertainties. Global warming causes sea-level to rise, primarily due to thermal expansion of the oceans and mass loss of the major ice sheets, smaller ice caps and glaciers. These components show distinctly different responses to temperature changes with respect to response time, threshold behavior, and local fingerprints. Projections of these different components are deeply uncertain. Projected uncertainty ranges strongly depend on (necessary) pragmatic choices and assumptions; e.g. on the applied climate scenarios, which processes to include and how to parameterize them, and on error structure of the observations. Competing assumptions are very hard to objectively weigh. Hence, uncertainties of sea-level response are hard to grasp in a single distribution function. The deep uncertainty can be better understood by making clear the key assumptions. Here we demonstrate this approach using a relatively simple model framework. We present a mechanistically motivated, but simple model framework that is intended to efficiently explore the deeply uncertain sea-level response to anthropogenic climate change. The model consists of 'building blocks' that represent the major components of sea-level response and its uncertainties, including threshold behavior. The framework's simplicity enables the simulation of large ensembles allowing for an efficient exploration of parameter uncertainty and for the simulation of multiple combined adaptation and mitigation strategies. The model framework can skilfully reproduce earlier major sea level assessments, but due to the modular setup it can also be easily utilized to explore high-end scenarios and the effect of competing assumptions and parameterizations.
Sea Level Trend and Variability in the Straits of Singapore and Malacca
NASA Astrophysics Data System (ADS)
Luu, Q.; Tkalich, P.
2013-12-01
The Straits of Singapore and Malacca (SSM) connect the Andaman Sea located northeast of the Indian Ocean to the South China Sea, the largest marginal sea situated in the tropical Pacific Ocean. Consequently, sea level in the SSM is assumed to be governed by various regional phenomena associated with the adjacent parts of Indian and Pacific Oceans. At annual scale sea level variability is dominant by the Asian monsoon. Interannual sea level signals are modulated by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). In the long term, regional sea level is driven by the global climate change. However, relative impacts of these multi-scale phenomena on regional sea level in the SSM are yet to be quantified. In present study, publicly available tide gauge records and satellite altimetry data are used to derive long-term sea level trend and variability in SSM. We used the data from research-quality stations, including four located in the Singapore Strait (Tanjong Pagar, Raffles Lighthouse, Sultan Shoal and Sembawang) and seven situated in the Malacca Strait (Kelang, Keling, Kukup, Langkawji, Lumut, Penang and Ko Taphao Noi), each one having 25-39 year data up to the year 2011. Harmonic analysis is performed to filter out astronomic tides from the tide gauge records when necessary; and missing data are reconstructed using identified relationships between sea level and the governing phenomena. The obtained sea level anomalies (SLAs) and reconstructed mean sea level are then validated against satellite altimetry data from AVISO. At multi-decadal scale, annual measured sea level in the SSM is varying with global mean sea level, rising for the period 1984-2009 at the rate 1.8-2.3 mm/year in the Singapore Strait and 1.1-2.8 mm/year in the Malacca Strait. Interannual regional sea level drops are associated with El Niño events, while the rises are correlated with La Niña episodes; both variations are in the range of ×5 cm with correlation coefficient of -0.7 (in correspondence with the Multivariate ENSO Index). The IOD modulates interannual sea level variability only in the Malacca Strait in the range of ×3 cm with a correlation coefficient of -0.6 (with respect to the Dipole Mode Index). At annual scale, SLAs in the SSM are mainly monsoon-driven; of the order of 20 cm. Mean sea level in the Singapore Strait reach the peak during northeast monsoon and trough during southwest monsoon; while these in the Malacca Strait are highest at middle of both monsoons and lowest during their transitional monsoonal seasons. Global and regional signals are quantitatively captured in the SSM. In comparison with the global sea level trends, SSM sea level rise are larger for recent decades 1984-2009. Taking into account the rough estimate of land subsidence rates in Singapore (2006-2011) and Peninsular Malaysia (1994-2004), the trend of absolute sea level rise in SSM follows regional tendency. At interannual scale, ENSO modulates sea level variabilities in the entire SSM region, while IOD affects the Malacca Strait only. At annual scale, sea level responds differently to the Asian monsoon: quasi-periodic cycles are observed twice a year in the Malacca Strait, but once a year in the Singapore Strait. Such behavior implies that the narrow channel constriction between the Singapore and Malacca Straits may be a reason of different variability of sea level in the domains.
NASA Astrophysics Data System (ADS)
Rovere, A.; Raymo, M. E.
2014-12-01
During MIS 5e (between ~128 and 116 kyr BP) greenhouse gas concentrations were comparable to pre-industrial levels, summer insolation was higher by ~10% at high latitudes and polar temperatures in both hemispheres were about 3-5 °C warmer than today. Sea level (SL) at this time has been a subject of numerous studies (and some debate) with ~1000 sites with MIS 5e sea level markers recognized worldwide. Recently, Kopp et al. (Nature, 2009) and Dutton & Lambeck (Science, 2012) analyzed worldwide datasets of sea level markers pertaining to the last interglacial. After accounting for GIA, they reached similar conclusions that eustatic (i.e., globally averaged) sea level (ESL) was between +5 and +9.4 m above modern during MIS 5e. Furthermore, Kopp et al. (Nature, 2009; GJI, 2013) suggest that sea level was not uniform during the LIG, but instead underwent at least two rapid oscillations including a rapid late 5e rise first proposed by Hearty et al. (QSR, 2007) and later by O'Leary et al. (Nat. Geo., 2013). Investigating the temporal and geographic variability of MIS 5e sea level opens new lines of research, in particular the possibility to fingerprint (Hay et al., QSR, 2014) the source of the proposed rapid ice sheet collapse near the end of the Last Interglacial. In this presentation we ask: can we use a database of published sea level estimates for this purpose? To answer this question, we built a relative sea level (RSL) database using RSLcalc 2.0; this is a relational database specifically designed to review relative sea level data points while keeping all the relevant information contained in the original publications. RSlcalc allows to estimate the measurement error (on the actual elevation of the SL feature), the error on the indicative range (the elevation range occupied by a sea level indicator) as well as the reference water level (the relationship between the marker and the former sea level). We show that the majority of published data have an accuracy of few meters at best and, in most cases, are not precise enough for sea level fingerprinting. We conclude that the use of topographic-grade survey techniques is paramount in the study of paleo-sea levels and that revisiting known sites using such techniques is a priority for the understanding of polar ice volume and sea level changes during past interglacials
NASA Astrophysics Data System (ADS)
Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Woodward, J.; Winter, K.; van Ommen, T. D.; Moy, A. D.; Curran, M. A.; Rootes, C.; Rivera, A.; Millman, H.
2015-12-01
During the last deglaciation (21,000 to 7,000years ago) global sea level rise was punctuated by several abrupt meltwater spikes triggered by the retreat of ice sheets and glaciers world-wide. However, the debate regarding the relative timing, geographical source and the physical mechanisms driving these rapid increases in sea level has catalyzed debate critical to predicting future sea level rise and climate. Here we present a unique record of West Antarctic Ice Sheet elevation change derived from the Patriot Hills blue ice area, located close to the modern day grounding line of the Institute Ice Stream in the Weddell Sea Embayment. Combined isotopic signatures and gas volume analysis from the ice allows us to develop a record of local ice sheet palaeo-altitude that is assessed against independent regional high-resolution ice sheet modeling studies, allowing us to demonstrate that past ice sheet elevations across this sector of the WSE were considerably higher than those suggested by current terrestrial reconstructions. We argue that ice in the WSE had a significant influence on both pre and post LGM sea level rise including MWP-1A (~14.6 ka) and during MWP-1B (11.7-11.6 ka), reconciling past sea level rise and demonstrating for the first time that this sector of the WAIS made a significant and direct contribution to post LGM sea level rise.
Fingerprints of Sea Level Rise on Changing Tides in the Chesapeake and Delaware Bays
NASA Astrophysics Data System (ADS)
Ross, Andrew C.; Najjar, Raymond G.; Li, Ming; Lee, Serena Blyth; Zhang, Fan; Liu, Wei
2017-10-01
Secular tidal trends are present in many tide gauge records, but their causes are often unclear. This study examines trends in tides over the last century in the Chesapeake and Delaware Bays. Statistical models show negative M2 amplitude trends at the mouths of both bays, while some upstream locations have insignificant or positive trends. To determine whether sea level rise is responsible for these trends, we include a term for mean sea level in the statistical models and compare the results with predictions from numerical and analytical models. The observed and predicted sensitivities of M2 amplitude and phase to mean sea level are similar, although the numerical model amplitude is less sensitive to sea level. The sensitivity occurs as a result of strengthening and shifting of the amphidromic system in the Chesapeake Bay and decreasing frictional effects and increasing convergence in the Delaware Bay. After accounting for the effect of sea level, significant negative background M2 and S2 amplitude trends are present; these trends may be related to other factors such as dredging, tide gauge errors, or river discharge. Projected changes in tidal amplitudes due to sea level rise over the 21st century are substantial in some areas, but depend significantly on modeling assumptions.
NASA Technical Reports Server (NTRS)
Brozen, Madeline; Batina, Matthew; Parker, Stephen; Brooks, Christopher
2010-01-01
The objective of the first phase of this project was to determine the feasibility of applying satellite altimetry data to monitor sea level rise and inundation within coastal Louisiana. Global sea level is rising, and coastal Louisiana is subsiding. Therefore, there is a need to monitor these trends over time for coastal restoration and hazard mitigation efforts. TOPEX/POSEIDON and Jason-data are used for global sea level estimates and have also been demonstrated successfully in water level studies of lakes, river basins, and floodplains throughout the world. To employ TOPEX/POSEIDON and Jason-1 data in coastal regions, the numerous steps involved in processing the data over non-open ocean areas must be assessed. This project outlined the appropriate methodology for processing non-open ocean data, including retracking and atmospheric corrections. It also inventoried the many factors in coastal land loss including subsidence, sea level rise, coastal geomorphology, and salinity levels, among others, through a review of remote sensing and field methods. In addition, the project analyzed the socioeconomic factors within the Coastal Zone as compared to the rest of Louisiana. While sensor data uncertainty must be addressed, it was determined that it is feasible to apply radar altimetry data from TOPEX/POSEIDON and Jason 1 to see trends in change within Coastal Louisiana since
Preparing Norfolk Area Students for America's Second Highest Sea Level Rise
NASA Astrophysics Data System (ADS)
Dunbar, R. R.
2017-12-01
The nonprofit Elizabeth River Project located in Hampton Roads, Virginia was awarded a 3-year national NOAA Environmental Literacy award 2016-2019 to teach 21,000 K-12 youth how to help restore one of the most polluted rivers on the Chesapeake Bay and to help create a resilient community that is facing impacts from the rising seas and changing climate. Through a community collaboration, partners are also creating perhaps the nation's first Youth Resilience Strategy with a vision, goals, best practices and resources on engaging youth to help create resilient cities facing environmental and economic changes. During Year 1, 7,000 elementary students held field investigations aboard the floating classroom Learning Barge and at Paradise Creek Nature Park and helped restore wetland restoration sites. Students performed inquiry based investigations, learned stewardship actions to help create resilience and showed a 40% increase in knowledge. Year 1 best practices in teaching resilience include youth: getting out of the classroom, discovering how rain water travels, performing bioblitzes and water quality testing, engaging in hands-on GreenSTEM activities, using investigation tools, creating innovative solutions to retain and reuse rain water, creating art and voicing their opinions on creating a resilient community.Lessons learned include developing engaging inquiry questions based on creating a resilient community. These included: "What are the impact of rising tides?", "How can sea level rise affect river animals?", "How can we be safe and prepare for extreme weather and flooding as the sea level rises?", "How has the way people worked with the Elizabeth River changed?", "How could sea level rise affect the Elizabeth River's water quality?", "How hot might the air temperature get by 2050 and what can we do to keep it cooler?", "What does this park show us about sea level rise and other ways our climate is changing?", "How do trees help make our park and community resilient?", "How will the rising sea and climate change impact the water quality and river animals?", and "How will sea level rise affect our wetlands and our communities?"
NASA Astrophysics Data System (ADS)
Li, X.; Zhu, J.; Xie, S. P.
2017-12-01
After the launch of the TOPEX/Poseidon satellite since 1992, a series of regional sea level changes have been observed. The northwestern Pacific is among the most rapid sea-level-rise regions all over the world. The rising peak occurs around 40°N, with the value reaching 15cm in the past two decades. Moreover, when investigating the projection of global sea level changes using CMIP5 rcp simulations, we found that the northwestern Pacific remains one of the most rapid sea-level-rise regions in the 21st century. To investigate the physical dynamics of present and future sea level changes over the Pacific, we performed a series of numerical simulations with a hierarchy of climate models, including earth system model, ocean model, and atmospheric models, with different complexity. Simulation results indicate that this regional sea level change during the past two decades is mainly caused by the shift of the Kuroshio, which is largely driven by the surface wind anomaly associated with an intensified and northward shifted north Pacific sub-tropical high. Further analysis and simulations show that these changes of sub-tropical high can be primarily attributed to the regional SST forcing from the Pacific Decadal Oscillation, and the remote SST forcings from the tropical Atlantic and the Indian Ocean. In the rcp scenario, on the other hand, two processes are crucial. Firstly, the meridional temperature SST gradient drives a northward wind anomaly across the equator, raising the sea level all over the North Pacific. Secondly, the atmospheric circulation changes around the sub-tropical Pacific further increase the sea level of the North Western Pacific. The coastal region around the Northwest Pacific is the most densely populated region around the world, therefore more attention must be paid to the sea level changes over this region, as suggested by our study.
NASA Technical Reports Server (NTRS)
Anderson, John B.
1991-01-01
Some of the questions to be addressed by SeaRISE include: (1) what was the configuration of the West Antarctic ice sheet during the last glacial maximum; (2) What is its configuration during a glacial minimum; and (3) has it, or any marine ice sheet, undergone episodic rapid mass wasting. These questions are addressed in terms of what is known about the history of the marine ice sheet, specifically in Ross Sea, and what further studies are required to resolve these problems. A second question concerns the extent to which disintegration of marine ice sheets may result in rises in sea level that are episodic in nature and extremely rapid, as suggested by several glaciologists. Evidence that rapid, episodic sea level changes have occurred during the Holocene is also reviewed.
1999-07-01
Environmental Security . . . . . . . . . . . . . . . . . . . . 17 Robert E. Ebel Caspian Basin Oil and Gas: An Overview . . . . . . . . . . . 21 Brian R ...choke point near Baku, posing a threat to security of supply. 32 ENVIRONMENTAL BASELINE ANALYSIS OF THE CASPIAN SEA REGION BRIAN R . SHAW TERRY...up to 70% of the seasonal Caspian Sea level. Sources of water include runoff ( R ), precipitation (P), and groundwater flow (G); sink include
North Atlantic sea-level variability during the last millennium
NASA Astrophysics Data System (ADS)
Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip
2014-05-01
Climate modelling studies have demonstrated that spatial and temporal sea-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass exchange, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of sea-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future sea-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale sea-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal sea-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century sea-level rise, but also small-scale (decimetre, multi-decadal) sea-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid sea-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial sea-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental sea-level data and modelling studies we hypothesise that multi-decadal to centennial changes in wind and air pressure are more important than mass flux from land-based ice as drivers of North Atlantic sea-level variability during the last millennium.
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Kominz, M.A.; Browning, J.V.; Miller, K.G.; Sugarman, P.J.; Mizintseva, S.; Scotese, C.R.
2008-01-01
Sea level has been estimated for the last 108 million years through backstripping of corehole data from the New Jersey and Delaware Coastal Plains. Inherent errors due to this method of calculating sea level are discussed, including uncertainties in ages, depth of deposition and the model used for tectonic subsidence. Problems arising from the two-dimensional aspects of subsidence and response to sediment loads are also addressed. The rates and magnitudes of sea-level change are consistent with at least ephemeral ice sheets throughout the studied interval. Million-year sea-level cycles are, for the most part, consistent within the study area suggesting that they may be eustatic in origin. This conclusion is corroborated by correlation between sequence boundaries and unconformities in New Zealand. The resulting long-term curve suggests that sea level ranged from about 75-110 m in the Late Cretaceous, reached a maximum of about 150 m in the Early Eocene and fell to zero in the Miocene. The Late Cretaceous long-term (107 years) magnitude is about 100-150 m less than sea level predicted from ocean volume. This discrepancy can be reconciled by assuming that dynamic topography in New Jersey was driven by North America overriding the subducted Farallon plate. However, geodynamic models of this effect do not resolve the problem in that they require Eocene sea level to be significantly higher in the New Jersey region than the global average. ?? 2008 The Authors. Journal compilation ?? 2008 Blackwell Publishing.
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; ...
2016-10-04
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth’s climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modesmore » and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this article, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.« less
Spatial Patterns of Sea Level Variability Associated with Natural Internal Climate Modes
NASA Astrophysics Data System (ADS)
Han, Weiqing; Meehl, Gerald A.; Stammer, Detlef; Hu, Aixue; Hamlington, Benjamin; Kenigson, Jessica; Palanisamy, Hindumathi; Thompson, Philip
2017-01-01
Sea level rise (SLR) can exert significant stress on highly populated coastal societies and low-lying island countries around the world. Because of this, there is huge societal demand for improved decadal predictions and future projections of SLR, particularly on a local scale along coastlines. Regionally, sea level variations can deviate considerably from the global mean due to various geophysical processes. These include changes of ocean circulations, which partially can be attributed to natural, internal modes of variability in the complex Earth's climate system. Anthropogenic influence may also contribute to regional sea level variations. Separating the effects of natural climate modes and anthropogenic forcing, however, remains a challenge and requires identification of the imprint of specific climate modes in observed sea level change patterns. In this paper, we review our current state of knowledge about spatial patterns of sea level variability associated with natural climate modes on interannual-to-multidecadal timescales, with particular focus on decadal-to-multidecadal variability. Relevant climate modes and our current state of understanding their associated sea level patterns and driving mechanisms are elaborated separately for the Pacific, the Indian, the Atlantic, and the Arctic and Southern Oceans. We also discuss the issues, challenges and future outlooks for understanding the regional sea level patterns associated with climate modes. Effects of these internal modes have to be taken into account in order to achieve more reliable near-term predictions and future projections of regional SLR.
Chen, Hong; Han, Jianbo; Zhang, Can; Cheng, Jiayi; Sun, Ruijun; Wang, Xiaomeng; Han, Gengchen; Yang, Wenchao; He, Xin
2017-12-01
A simultaneous sampling campaign was undertaken to study the pollution by 21 per- and polyfluoroalkyl substances (PFASs) in rivers, drain outlets and their receiving Bohai Sea of China. Chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) are being used as fluorinated alternatives and they were included in this study. In comparison with other regions and countries, high concentrations of ∑ 21 PFASs in seawater samples from the Bohai Sea, ranging from 5.03 to 41 700 ng/L (median: 64.8 ng/L), were observed. The spatial distribution of PFAS levels in this sea area was in the ranking of Laizhou Bay > Liaodong Bay > Bohai Bay > other sea areas. By comparing the levels and composition profiles of PFASs in the seawater and their sources (rivers and drain outlets), it was concluded that rivers and drain outlets are the primary sources of PFAS contamination to the Bohai Sea. These PFAS levels varied seasonally among the rivers and drain outlets, but statistically significant changes were not observed. Levels of 6:2 and 8:2 Cl-PFESAs in rivers, drain outlets and receiving sea were firstly reported in the present study. Relatively high concentrations of 6:2 Cl-PFESA were found in drain outlets, ranging from below method limits of quantification (MLQ) to 7600 ng/L, but 8:2 Cl-PFAES detection was infrequent and all median concentration below MLQ. Mass discharges to the sea of 6:2 Cl-PFESA from rivers and drain outlets to the sea were estimated to be 37 and 17 kg/y, respectively. Copyright © 2017. Published by Elsevier Ltd.
Gravity Field Changes due to Long-Term Sea Level Changes
NASA Astrophysics Data System (ADS)
Makarynskyy, O.; Kuhn, M.; Featherstone, W. E.
2004-12-01
Long-term sea level changes caused by climatic changes (e.g. global warming) will alter the system Earth. This includes the redistribution of ocean water masses due to the migration of cold fresh water from formerly ice-covered regions to the open oceans mainly caused by the deglaciation of polar ice caps. Consequently also a change in global ocean circulation patterns will occur. Over a longer timescale, such mass redistributions will be followed by isostatic rebound/depression due to the changed surface un/loading, resulting in variable sea level change around the world. These, in turn, will affect the gravity field, location of the geocentre, and the Earth's rotation vector. This presentation focuses mainly on gravity field changes induced by long-term (hundredths to many thousand years) sea level changes using an Earth System Climate Model (ESCM) of intermediate complexity. In this study, the coupled University of Victoria (Victoria, Canada) Earth System Climate Model (Uvic ESCM) was used, which embraces the primary thermodynamic and hydrological components of the climate system including sea and land-ice information. The model was implemented to estimate changes in global precipitation, ocean mass redistribution, seawater temperature and salinity on timescales from hundreds to thousands years under different greenhouse warming scenarios. The sea level change output of the model has been converted into real mass changes by removing the steric effect, computed from seawater temperature and salinity information at different layers also provided by Uvic ESCM. Finally the obtained mass changes have been converted into changes of the gravitational potential and subsequently of the geoid height using a spherical harmonic representation of the different data. Preliminary numerical results are provided for sea level change as well as change in geoid height.
Characterization of extreme sea level at the European coast
NASA Astrophysics Data System (ADS)
Elizalde, Alberto; Jorda, Gabriel; Mathis, Moritz; Mikolajewicz, Uwe
2015-04-01
Extreme high sea levels arise as a combination of storm surges and particular high tides events. Future climate simulations not only project changes in the atmospheric circulation, which induces changes in the wind conditions, but also an increase in the global mean sea level by thermal expansion and ice melting. Such changes increase the risk of coastal flooding, which represents a possible hazard for human activities. Therefore, it is important to investigate the pattern of sea level variability and long-term trends at coastal areas. In order to analyze further extreme sea level events at the European coast in the future climate projections, a new setup for the global ocean model MPIOM coupled with the regional atmosphere model REMO is prepared. The MPIOM irregular grid has enhanced resolution in the European region to resolve the North and the Mediterranean Seas (up to 11 x 11 km at the North Sea). The ocean model includes as well the full luni-solar ephemeridic tidal potential for tides simulation. To simulate the air-sea interaction, the regional atmospheric model REMO is interactively coupled to the ocean model over Europe. Such region corresponds to the EuroCORDEX domain with a 50 x 50 km resolution. Besides the standard fluxes of heat, mass (freshwater), momentum and turbulent energy input, the ocean model is also forced with sea level pressure, in order to be able to capture the full variation of sea level. The hydrological budget within the study domain is closed using a hydrological discharge model. With this model, simulations for present climate and future climate scenarios are carried out to study transient changes on the sea level and extreme events. As a first step, two simulations (coupled and uncoupled ocean) driven by reanalysis data (ERA40) have been conducted. They are used as reference runs to evaluate the climate projection simulations. For selected locations at the coast side, time series of sea level are separated on its different components: tides, short time atmospheric process influence (1-30 days), seasonal cycle and interannual variability. Every sea level component is statistically compared with data from local tide gauges.
Vu, D T; Yamada, T; Ishidaira, H
2018-03-01
In the context of climate change, salinity intrusion into rivers has been, and will be, one of the most important issues for coastal water resources management. A combination of changes, including increased temperature, change in regional rainfall, especially sea level rise (SLR) related to climate change, will have significant impacts on this phenomenon. This paper presents the outcomes of a study conducted in the Mekong Delta of Vietnam (MKD) for evaluating the effect of sea water intrusion under a new SLR scenario. Salinity intrusion was simulated by one-dimensional (1D) modeling. The relative sea level projection was constructed corresponding to the RCP 6.0 emission scenario for MKD based on the statistical downscaling method. The sea level in 2050 is projected to increase from 25 cm to 30 cm compared to the baseline period (in 2000). Furthermore, the simulated results suggested that salinity greater than 4 g/l, which affects rice yield, will intrude up to 50-60 km into the river. Approximately 30,000 ha of agricultural area will be affected if the sea level rise is 30 cm.
Modeling Reef Island Morphodynamics in Profile and Plan View
NASA Astrophysics Data System (ADS)
Ashton, A. D.; Ortiz, A. C.; Lorenzo-Trueba, J.
2016-12-01
Reef islands are carbonate detrital landforms perched atop shallow reef flats of atolls and barrier reef systems. Often comprising the only subaerial, inhabitable land of many island chains and island nations, these low-lying, geomorphically active landforms face considerable hazards from climate change. While there hazards include wave overtopping and groundwater salinization, sea-level rise and wave climate change will affect sediment transport and shoreline dynamics, including the possibility for wholesale reorganization of the islands themselves. Here we present a simplified morphodynamic model that can spatially quantify the potential impacts of climate change on reef islands. Using parameterizations of sediment transport pathways and feedbacks from previously presented XBeach modeling results, we investigate how sea-level rise, change in storminess, and different carbonate production rates can affect the profile evolution of reef islands, including feedbacks with the shallow reef flat that bounds the islands offshore (and lagoonward). Model results demonstrate that during rising sea levels, the reef flat can serve as a sediment trap, starving reef islands of detrital sediment that could otherwise fortify the shore against sea-level-rise-driven erosion. On the other hand, if reef flats are currently shallow (likely due to geologic inheritance or biologic cementation processes) such that sea-level rise does not result in sediment accumulation on the flat, reef island shorelines may be more resilient to rising seas. We extend the model in plan view to examine how long-term (decadal) changes in wave approach direction could affect reef island shoreline orientation. We compare model results to historical and geologic change for different case studies on the Marshall Islands. This simplified modeling approach, focusing on boundary dynamics and mass fluxes, provides a quantitative tool to predict the response of reef island environments to climate change.
Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)
A commonly used landscape model to simulate wetland change – the Sea Level Affecting Marshes Model(SLAMM) – has rarely been explicitly assessed for its prediction accuracy. Here, we evaluated this model using recently proposed neutral models – including the random constraint matc...
Sea Level Rise National Coastal Property Model
The impact of sea level rise on coastal properties depends critically on the human response to the threat, which in turn depends on several factors, including the immediacy of the risk, the magnitude of property value at risk, options for adapting to the threat and the cost of th...
NASA Astrophysics Data System (ADS)
Gouriou, Thomas; Wöppelmann, Guy
2010-05-01
A systematic survey of the historical French archives was initiated in 2004 to search for ancient sea level observations. Long term sea-level records are invaluable to study trends in sea level components in the context of climate change due to global warming. A large amount of records have been discovered, notably on the Charente-Maritime French Atlantic coast: fort Enet (1859-1873) and fort Boyard (1873-1909), a few kilometres apart. These two historical data sets include meteorological observations in addition to the sea-level heights: sea-level pressure, air temperature, wind direction and speed, and sometimes daily indications on the local climatic conditions. Sea-level heights were measured with a "Chazallon" type of float tide gauge and whereas the sea-level pressures were measured with a "Fortin" mercury barometer. The historical data sets are now in computer-accessible form. They were manually checked for consistency, and compared to nearby data sets (e.g. Brest, Hadley centre Sea Level Pressure data set HadSLP2). We will present the data sets, the composite time series that were built for the period 1859-1909, and the joint sea level and meteorological data analysis which proved worthwhile. The pressure data were indeed of particular interest (7 observations per day, from 6.00am to 9.00pm between 1859 and 1909). First, examining the inverse barometer (IB) effect was demonstrated to be a good means to check the sea-level data sets (Woodworth 2006). If the data sets were of poor quality, then the sea-level height and air pressure monthly mean time series would show low or no correlation. Conversely, if both data sets were of good quality, there would be a high negative correlation between the local sea-level heights and sea-level pressure changes. Second, a linear regression between the two parameters (sea level and atmospheric pressure) would be giving a regression coefficient of approximately -1 cm/mbar under static assumption. Any departure from this relationship is indicative of wind-driven dynamical processes. As will be shown, the Charente-Maritime French Atlantic coast is a particular environment subject to westward winds with a complex coastline and bathymetry (islands, shallow waters). Last but not least, our data archeology exercise will provide additional evidence to the intriguing relation that was first noted by Miller and Douglas (2007) between sea level on the eastern boundary of the North Atlantic and the strength of the gyre-scale circulation, as represented by air pressure in the centre of the gyre, on multi-decadal and century-timescales.
Building more effective sea level rise models for coastal management
NASA Astrophysics Data System (ADS)
Kidwell, D.; Buckel, C.; Collini, R.; Meckley, T.
2017-12-01
For over a decade, increased attention on coastal resilience and adaptation to sea level rise has resulted in a proliferation of predictive models and tools. This proliferation has enhanced our understanding of our vulnerability to sea level rise, but has also led to stakeholder fatigue in trying to realize the value of each advancement. These models vary in type and complexity ranging from GIS-based bathtub viewers to modeling systems that dynamically couple complex biophysical and geomorphic processes. These approaches and capabilities typically have the common purpose using scenarios of global and regional sea level change to inform adaptation and mitigation. In addition, stakeholders are often presented a plethora of options to address sea level rise issues from a variety of agencies, academics, and consulting firms. All of this can result in confusion, misapplication of a specific model/tool, and stakeholder feedback of "no more new science or tools, just help me understand which one to use". Concerns from stakeholders have led to the question; how do we move forward with sea level rise modeling? This presentation will provide a synthesis of the experiences and feedback derived from NOAA's Ecological Effects of Sea level Rise (EESLR) program to discuss the future of predictive sea level rise impact modeling. EESLR is an applied research program focused on the advancement of dynamic modeling capabilities in collaboration with local and regional stakeholders. Key concerns from stakeholder engagement include questions about model uncertainty, approaches for model validation, and a lack of cross-model comparisons. Effective communication of model/tool products, capabilities, and results is paramount to address these concerns. Looking forward, the most effective predictions of sea level rise impacts on our coast will be attained through a focus on coupled modeling systems, particularly those that connect natural processes and human response.
High-resolution tide projections reveal extinction threshold in response to sea-level rise.
Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S
2017-05-01
Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.
Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana
Glick, Patty; Clough, Jonathan; Polaczyk, Amy; Couvillion, Brady R.; Nunley, Brad
2013-01-01
Coastal Louisiana wetlands contain about 37% of the estuarine herbaceous marshes in the conterminous United States. The long-term stability of coastal wetlands is often a function of a wetland's ability to maintain elevation equilibrium with mean sea level through processes such as primary production and sediment accretion. However, Louisiana has sustained more coastal wetland loss than all other states in the continental United States combined due to a combination of natural and anthropogenic factors, including sea-level rise. This study investigates the potential impact of current and accelerating sea-level rise rates on key coastal wetland habitats in southeastern Louisiana using the Sea Level Affecting Marshes Model (SLAMM). Model calibration was conducted using a 1956–2007 observation period and hindcasting results predicted 35% versus observed 39% total marsh loss. Multiple sea-level-rise scenarios were then simulated for the period of 2007–2100. Results indicate a range of potential wetland losses by 2100, from an additional 2,188.97 km2 (218,897 ha, 9% of the 2007 wetland area) under the lowest sea-level-rise scenario (0.34 m), to a potential loss of 5,875.27 km2 (587,527 ha, 24% of the 2007 wetland area) in the highest sea-level-rise scenario (1.9 m). Model results suggest that one area of particular concern is the potential vulnerability of the region's baldcypress-water tupelo (Taxodium distichum-Nyssa aquatica) swamp habitat, much of which is projected to become permanently flooded (affecting regeneration) under all modeled scenarios for sea-level rise. These findings will aid in the development of ecosystem management plans that support the processes and conditions that result in sustainable coastal ecosystems.
Adapting to Rising Sea Level: A Florida Perspective
NASA Astrophysics Data System (ADS)
Parkinson, Randall W.
2009-07-01
Global climate change and concomitant rising sea level will have a profound impact on Florida's coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the premise that sea-level rise is not significant and the shorelines are static or can be fixed in place by engineering structures. The new reality of sea-level rise and extreme weather due to climate change requires a new style of planning and management to protect resources and reduce risk to humans. Scientists must: (1) assess existing coastal vulnerability to address short term management issues and (2) model future landscape change and develop sustainable plans to address long term planning and management issues. Furthermore, this information must be effectively transferred to planners, managers, and elected officials to ensure their decisions are based upon the best available information. While there is still some uncertainty regarding the details of rising sea level and climate change, development decisions are being made today which commit public and private investment in real estate and associated infrastructure. With a design life of 30 yrs to 75 yrs or more, many of these investments are on a collision course with rising sea level and the resulting impacts will be significant. In the near term, the utilization of engineering structures may be required, but these are not sustainable and must ultimately yield to "managed withdrawal" programs if higher sea-level elevations or rates of rise are forthcoming. As an initial step towards successful adaptation, coastal management and planning documents (i.e., comprehensive plans) must be revised to include reference to climate change and rising sea-level.
Payne, Dorothy F.
2010-01-01
Saltwater intrusion of the Upper Floridan aquifer has been observed in the Hilton Head area, South Carolina since the late 1970s and currently affects freshwater supply. Rising sea level in the Hilton Head Island area may contribute to the occurrence of and affect the rate of saltwater intrusion into the Upper Floridan aquifer by increasing the hydraulic gradient and by inundating an increasing area with saltwater, which may then migrate downward into geologic units that presently contain freshwater. Rising sea level may offset any beneficial results from reductions in groundwater pumpage, and thus needs to be considered in groundwater-management decisions. A variable-density groundwater flow and transport model was modified from a previously existing model to simulate the effects of sea-level rise in the Hilton Head Island area. Specifically, the model was used to (1) simulate trends of saltwater intrusion from predevelopment to the present day (1885-2004) and evaluate the conceptual model, (2) project these trends from the present day into the future based on different potential rates of sea-level change, and (3) evaluate the relative influences of pumpage and sea-level rise on saltwater intrusion. Four scenarios were simulated for 2004-2104: (1) continuation of the estimated sea-level rise rate over the last century, (2) a doubling of the sea-level rise, (3) a cessation of sea-level rise, and (4) continuation of the rate over the last century coupled with an elimination of all pumpage. Results show that, if present-day (year 2004) pumping conditions are maintained, the extent of saltwater in the Upper Floridan aquifer will increase, whether or not sea level continues to rise. Furthermore, if all pumpage is eliminated and sea level continues to rise, the simulated saltwater extent in the Upper Floridan aquifer is reduced. These results indicate that pumpage is a strong driving force for simulated saltwater intrusion, more so than sea-level rise at current rates. However, results must be considered in light of limitations in the model, including, but not limited to uncertainty in field data, the conceptual model, the physical properties and representation of the hydrogeologic framework, and boundary and initial conditions, as well as uncertainty in future conditions, such as the rate of sea-level rise.
Kay, S; Caesar, J; Wolf, J; Bricheno, L; Nicholls, R J; Saiful Islam, A K M; Haque, A; Pardaens, A; Lowe, J A
2015-07-01
Coastal flooding due to storm surge and high tides is a serious risk for inhabitants of the Ganges-Brahmaputra-Meghna (GBM) delta, as much of the land is close to sea level. Climate change could lead to large areas of land being subject to increased flooding, salinization and ultimate abandonment in West Bengal, India, and Bangladesh. IPCC 5th assessment modelling of sea level rise and estimates of subsidence rates from the EU IMPACT2C project suggest that sea level in the GBM delta region may rise by 0.63 to 0.88 m by 2090, with some studies suggesting this could be up to 0.5 m higher if potential substantial melting of the West Antarctic ice sheet is included. These sea level rise scenarios lead to increased frequency of high water coastal events. Any effect of climate change on the frequency and severity of storms can also have an effect on extreme sea levels. A shelf-sea model of the Bay of Bengal has been used to investigate how the combined effect of sea level rise and changes in other environmental conditions under climate change may alter the frequency of extreme sea level events for the period 1971 to 2099. The model was forced using atmospheric and oceanic boundary conditions derived from climate model projections and the future scenario increase in sea level was applied at its ocean boundary. The model results show an increased likelihood of extreme sea level events through the 21st century, with the frequency of events increasing greatly in the second half of the century: water levels that occurred at decadal time intervals under present-day model conditions occurred in most years by the middle of the 21st century and 3-15 times per year by 2100. The heights of the most extreme events tend to increase more in the first half of the century than the second. The modelled scenarios provide a case study of how sea level rise and other effects of climate change may combine to produce a greatly increased threat to life and property in the GBM delta by the end of this century.
A Bayesian network to predict vulnerability to sea-level rise: data report
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Thieler, E. Robert
2011-01-01
During the 21st century, sea-level rise is projected to have a wide range of effects on coastal environments, development, and infrastructure. Consequently, there has been an increased focus on developing modeling or other analytical approaches to evaluate potential impacts to inform coastal management. This report provides the data that were used to develop and evaluate the performance of a Bayesian network designed to predict long-term shoreline change due to sea-level rise. The data include local rates of relative sea-level rise, wave height, tide range, geomorphic classification, coastal slope, and shoreline-change rate compiled as part of the U.S. Geological Survey Coastal Vulnerability Index for the U.S. Atlantic coast. In this project, the Bayesian network is used to define relationships among driving forces, geologic constraints, and coastal responses. Using this information, the Bayesian network is used to make probabilistic predictions of shoreline change in response to different future sea-level-rise scenarios.
Alrashidi, Monif; Shobrak, Mohammed; Al-Eissa, Mohammed S; Székely, Tamás
2012-07-01
One of the expected effects of the global warming is changing coastal habitats by accelerating the rate of sea level rise. Coastal habitats support large number of marine and wetland species including shorebirds (plovers, sandpipers and allies). In this study, we investigate how coastal habitats may be impacted by sea level rise in the Farasan Islands, Kingdom of Saudi Arabia. We use Kentish plover Charadrius alexandrinus - a common coastal breeding shorebird - as an ecological model species to predict the influence of sea level rise. We found that any rise of sea level is likely to inundate 11% of Kentish plover nests. In addition, 5% of the coastal areas of Farasan Islands, which support 26% of Kentish plover nests, will be flooded, if sea level rises by one metre. Our results are constrained by the availability of data on both elevation and bird populations. Therefore, we recommend follow-up studies to model the impacts of sea level rise using different elevation scenarios, and the establishment of a monitoring programme for breeding shorebirds and seabirds in Farasan Islands to assess the impact of climate change on their populations.
Earthquakes and sea level - Space and terrestrial metrology on a changing planet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilham, R.
1991-02-01
A review is presented of the stability and scale of crustal deformation metrology which has particular relevance to monitoring deformation associated with sea level and earthquakes. Developments in space geodesy and crustal deformation metrology in the last two decades have the potential to acquire a homogeneous global data set for monitoring relative horizontal and vertical motions of the earth's surface to within several millimeters. New tools discussed for forecasting sea level rise and damaging earthquakes include: very long baseline interferometry, satellite laser ranging, the principles of GPS geodesy, and new sea level sensors. Space geodesy permits a unified global basismore » for future metrology of the earth, and the continued availability of the GPS is currently fundamental to this unification.« less
Palaeo sea-level and ice-sheet databases: problems, strategies and perspectives
NASA Astrophysics Data System (ADS)
Rovere, Alessio; Düsterhus, André; Carlson, Anders; Barlow, Natasha; Bradwell, Tom; Dutton, Andrea; Gehrels, Roland; Hibbert, Fiona; Hijma, Marc; Horton, Benjamin; Klemann, Volker; Kopp, Robert; Sivan, Dorit; Tarasov, Lev; Törnqvist, Torbjorn
2016-04-01
Databases of palaeoclimate data have driven many major developments in understanding the Earth system. The measurement and interpretation of palaeo sea-level and ice-sheet data that form such databases pose considerable challenges to the scientific communities that use them for further analyses. In this paper, we build on the experience of the PALSEA (PALeo constraints on SEA level rise) community, which is a working group inside the PAGES (Past Global Changes) project, to describe the challenges and best strategies that can be adopted to build a self-consistent and standardised database of geological and geochemical data related to palaeo sea levels and ice sheets. Our aim in this paper is to identify key points that need attention and subsequent funding when undertaking the task of database creation. We conclude that any sea-level or ice-sheet database must be divided into three instances: i) measurement; ii) interpretation; iii) database creation. Measurement should include postion, age, description of geological features, and quantification of uncertainties. All must be described as objectively as possible. Interpretation can be subjective, but it should always include uncertainties and include all the possible interpretations, without unjustified a priori exclusions. We propose that, in the creation of a database, an approach based on Accessibility, Transparency, Trust, Availability, Continued updating, Completeness and Communication of content (ATTAC3) must be adopted. Also, it is essential to consider the community structure that creates and benefits of a database. We conclude that funding sources should consider to address not only the creation of original data in specific research-question oriented projects, but also include the possibility to use part of the funding for IT-related and database creation tasks, which are essential to guarantee accessibility and maintenance of the collected data.
Sea level rise within the west of Arabian Gulf using tide gauge and continuous GPS measurements
NASA Astrophysics Data System (ADS)
Ayhan, M. E.; Alothman, A.
2009-04-01
Arabian Gulf is connected to Indian Ocean and located in the south-west of the Zagros Trust Belt. To investigate sea level variations within the west of Arabian Gulf, monthly means of sea level at 13 tide gauges along the coast of Saudi Arabia and Bahrain, available in the database of the Permanent Service for Mean Sea Level (PSMSL), are studied. We analyzed individually the monthly means at each station, and estimated secular sea level rate by a robust linear trend fitting. We computed the average relative sea level rise rate of 1.96 ± 0.21 mm/yr within the west of Arabian Gulf based on 4 stations spanning longer than 19 years. Vertical land motions are included into the relative sea level measurements at the tide gauges. Therefore sea level rates at the stations are corrected for vertical land motions using the ICE-5G v1.2 VM4 Glacial Isostatic Adjustment (GIA) model then we found the average sea level rise rate of 2.27 mm/yr. Bahrain International GPS Service (IGS) GPS station, which is close to the Mina Sulman tide gauge station in Bahrain, is the only continuous GPS station accessible in the region. The weekly GPS time series of vertical component at Bahrain IGS-GPS station referring to the ITRF97 from 1999.2 to 2008.6 are downloaded from http://www-gps.mit.edu/~tah/. We fitted a linear trend with an annual signal and one break to the GPS vertical time series and found a vertical land motion rate of 0.48 ± 0.11 mm/yr. Assuming the vertical rate at Bahrain IGS-GPS station represents the vertical rate at each of the other tide gauge stations studied here in the region, we computed average sea level rise rate of 2.44 ± 0.21 mm/yr within the west of Arabian Gulf.
Water storage in marine sediment and implications for inferences of past global ice volume
NASA Astrophysics Data System (ADS)
Ferrier, K.; Li, Q.; Pico, T.; Austermann, J.
2017-12-01
Changes in past sea level are of wide interest because they provide information on the sensitivity of ice sheets to climate change, and thus inform predictions of future sea-level change. Sea level changes are influenced by many processes, including the storage of water in sedimentary pore space. Here we use a recent extension of gravitationally self-consistent sea-level models to explore the effects of marine sedimentary water storage on the global seawater balance and inferences of past global ice volume. Our analysis suggests that sedimentary water storage can be a significant component of the global seawater budget over the 105-year timescales associated with glacial-interglacial cycles, and an even larger component over longer timescales. Estimates of global sediment fluxes to the oceans suggest that neglecting marine sedimentary water storage may produce meter-scale errors in estimates of peak global mean sea level equivalent (GMSL) during the Last Interglacial (LIG). These calculations show that marine sedimentary water storage can be a significant contributor to the overall effects of sediment redistribution on sea-level change, and that neglecting sedimentary water storage can lead to substantial errors in inferences of global ice volume at past interglacials. This highlights the importance of accounting for the influences of sediment fluxes and sedimentary water storage on sea-level change over glacial-interglacial timescales.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Ham, Yoo-Geun; Jeong, Jee-Hoon; Kug, Jong-Seong
2012-01-01
The present study investigates how much a realistic Arctic sea ice condition can contribute to improve simulation of the winter climate variation over the Eurasia region. Model experiments are set up using different sea ice boundary conditions over the past 24 years (i.e., 1988-2011). One is an atmospheric model inter-comparison (AMIP) type of run forced with observed sea-surface temperature (SST), sea ice, and greenhouse gases (referred to as Exp RSI), and the other is the same as Exp RSI except for the sea ice forcing, which is a repeating climatological annual cycle (referred to as Exp CSI). Results show that Exp RSI produces the observed dominant pattern of Eurasian winter temperatures and their interannual variation better than Exp CSI (correlation difference up to approx. 0.3). Exp RSI captures the observed strong relationship between the sea ice concentration near the Barents and Kara seas and the temperature anomaly across Eurasia, including northeastern Asia, which is not well captured in Exp CSI. Lagged atmospheric responses to sea ice retreat are examined using observations to understand atmospheric processes for the Eurasian cooling response including the Arctic temperature increase, sea-level pressure increase, upper-level jet weakening and cold air outbreak toward the mid-latitude. The reproducibility of these lagged responses by Exp RSI is also evaluated.
Roshan, Gholamreza; Moghbel, Masumeh; Grab, Stefan
2012-12-12
The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively.
2012-01-01
The rapid rise of Caspian Sea water level (about 2.25 meters since 1978) has caused much concern to all five surrounding countries, primarily because flooding has destroyed or damaged buildings and other engineering structures, roads, beaches and farm lands in the coastal zone. Given that climate, and more specifically climate change, is a primary factor influencing oscillations in Caspian Sea water levels, the effect of different climate change scenarios on future Caspian Sea levels was simulated. Variations in environmental parameters such as temperature, precipitation, evaporation, atmospheric carbon dioxide and water level oscillations of the Caspian sea and surrounding regions, are considered for both past (1951-2006) and future (2025-2100) time frames. The output of the UKHADGEM general circulation model and five alternative scenarios including A1CAI, BIASF, BIMES WRE450 and WRE750 were extracted using the MAGICC SCENGEN Model software (version 5.3). The results suggest that the mean temperature of the Caspian Sea region (Bandar-E-Anzali monitoring site) has increased by ca. 0.17°C per decade under the impacts of atmospheric carbon dioxide changes (r=0.21). The Caspian Sea water level has increased by ca. +36cm per decade (r=0.82) between the years 1951-2006. Mean results from all modeled scenarios indicate that the temperature will increase by ca. 3.64°C and precipitation will decrease by ca. 10% (182 mm) over the Caspian Sea, whilst in the Volga river basin, temperatures are projected to increase by ca. 4.78°C and precipitation increase by ca. 12% (58 mm) by the year 2100. Finally, statistical modeling of the Caspian Sea water levels project future water level increases of between 86 cm and 163 cm by the years 2075 and 2100, respectively. PMID:23369617
NASA Astrophysics Data System (ADS)
Gornitz, V.; Horton, R. M.; Orton, P. M.; Georgas, N.; Blumberg, A. F.; Rosenzweig, C.
2012-12-01
Populations and infrastructure along much of the northeastern coast of the United States will become increasingly vulnerable to the impacts of rising sea level and storm surges over the coming century. This vulnerability is amplified by regional land subsidence and likely also by shifts in ocean circulation. Building upon recent studies for the New York City Panel on Climate Change (NPCC), New York State ClimAid assessment, and the latest U.S. National Climate Assessment, we report new regional sea level rise projections based on the latest CMIP-5 global climate models (GCMs) and RCP emission scenarios, adjusted for revised glacial ice melt contributions, and other factors such as gravitational effects, land water storage, and changes in the Atlantic Meriodional Overturning Circulation (AMOC). Over the coming two years, GCM-derived sea level outputs for future decades will be utilized in risk assessments for coastal flooding in New York City, Boston, and Philadelphia, as part of the Consortium for Climate Risk in the Urban Northeast-RISA project. The Stevens Institute Estuarine and Coastal Ocean Model (sECOM) will be used to produce best estimates (including uncertainty ranges) of sea level rise impacts for a wide range of tropical and extra-tropical cyclones for the 2010s, 2050s, and 2080s. Major improvements over prior studies include (a) the use of a detailed, extensively validated ocean model, and (b) inclusion of rainfall and river flow influences on coastal flooding, which affect flood levels in enclosed tidal waterways (e.g., the Hudson and Delaware Rivers), and which are also likely important in coastal confluence zones of impermeable urbanized watersheds. In addition to the sea level rise results, we present initial model validation results for historical storms.
Last interglacial sea levels and regional tectonics from fossil coral reefs at the Gulf of Aqaba
NASA Astrophysics Data System (ADS)
Bar, N.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.; Stein, M.
2017-12-01
Elevated fossil reef terraces along the northeast coast of the Gulf of Aqaba (GOA) illuminate the history of tectonic uplift and sea-level changes during the last interglacial period. The terraces comprise fringing reefs, some with clear reef structure that includes a reef flat and a shallow back lagoon accurately marking sea-levels. U-Th ages of precipitation of aragonitic corals and recrystallization of aragonite to calcite corals from three terraces are used to constrain the local sea-level pattern. Terrace R3 was probably formed during an earlier stage of MIS5e at 130-132 ka and recrystallized to calcite at 124±8 ka. Terrace R2, comprising a wide and developed reef flat, formed during a stable sea level of MIS5e at 129-121 ka and recrystallized to calcite at 104±6 ka. Terrace R1 formed during a short still-stand at 117 ka. All terraces formed when sea level was a few meters above the modern GOA level. The recrystallization age of Terrace R2 implies that at around 104±6 ka (MIS5c) sea level was close to its MIS5e elevation. The tectonic setting is superimposed by local faulting that caused small vertical displacements within the terraces. The elevation and ages of the reef flats indicate a slow average uplift, 0.12±0.05 m/kyr, similar to rates inferred for other reef terraces along GOA and the Red Sea. This implies an overall long-term slow tectonic uplift of the Arabian lithosphere during the late Quaternary.
NASA Astrophysics Data System (ADS)
Simmons, M.; Davies, A.; Gréselle, B.
2011-12-01
Large-scale changes in stratigraphic architecture and facies that are brought about by changes in relative sea-level have been the focus of much academic and industry study over the last few decades. The authors, plus numerous colleagues, have studied over 11,000 stratigraphic sections worldwide. By applying biostratigraphic and chemostratigraphic calibration in suitable locations from this dataset it is possible to demonstrate over 250 synchronous global sequence stratigraphic events in the Phanerozoic including over 100 in the Mesozoic. This then raises the question - what causes globally synchronous eustatic sea-level change? To answer this question requires an understanding of both the pace and amplitude of the observed eustatic sea-level change. In successions where duration can be deduced from orbital forcing cycles, our observed sea-level changes appear to be relatively rapid - less than 500,000 years, for example, for sea-level rises in the Late Jurassic. The amplitude of such rises is in the order of tens of metres. Such rates and amplitudes as inferred from our global model preclude tectonism as a primary driver and implicate glacio-eustacy as a key driving mechanism, even in supposed "greenhouse times". Given the clear economic importance of understanding the underlying mechanisms driving this eustatic change we have compiled records of key isotopic proxies through the entire Mesozoic in an effort to explore the relationship between global sea-level and palaeoclimate. Our research reveals a clear link between many large-scale maximum flooding events with known episodes of palaeoclimatic warming and between climatic cooling events and lowstand intervals, further implicating glacio-eustacy. In addition to the isotopic proxy evidence we have also compiled direct indicators for the occurrence of cold polar conditions, including the presence of ice sheets, in the Mesozoic (e.g. tillites, glendonites). This has been incorporated into plate tectonic reconstructions in order to explore the relationship with the presence of significant polar land masses. Both isotopic and direct evidence suggest the episodic presence of polar ice sheets for periods previously supposed as ice free and that glacio-eustacy can be suggested as a major driver of Mesozoic eustatic sea-level change.
Relative and Geocentric Sea Level Rise Along the U.S. West Coast
NASA Astrophysics Data System (ADS)
Burgette, R. J.; Watson, C. S.
2015-12-01
The rate of sea level change relative to the land along the West Coast of the U.S. varies over a range of +5 to -2 mm/yr, as observed across the set of long-running tide gauges. We analyze tide gauge data in a network approach that accounts for temporal and spatial correlations in the time series of water levels observed at the stations. This analysis yields a set of rate estimates and realistic uncertainties that are minimally affected by varying durations of observations. The analysis has the greatest impact for tide gauges with short records, as the adjusted rate uncertainties for 2 to 3 decade duration tide gauges approach those estimated from unadjusted century-scale time series. We explore the sources of the wide range of observed relative sea level rates through comparison with: 1) estimated vertical deformation rates derived from repeated leveling and GPS, 2) relative sea level change predicted from models of glacial isostatic adjustment, and 3) geocentric sea level rates estimated from satellite altimetry and century-scale reconstructions. Tectonic deformation is the dominant signal in the relative sea level rates along the Cascadia portion of the coast, and is consistent with along-strike variation in locking behavior on the plate interface. Rates of vertical motion are lower along the transform portion of the plate boundary and include anthropogenic effects, but there are significant tectonic signals, particularly in the western Transverse Ranges of California where the crust is shortening across reverse faults. Preliminary analysis of different strategies of estimating the magnitude of geocentric sea level rise suggest significant discrepancies between approaches. We will examine the implications of these discrepancies for understanding the process of regional geocentric sea level rise in the northeastern Pacific Ocean, and associated projected impacts.
Sea-level variability in the Common Era along the Atlantic coast of North America
NASA Astrophysics Data System (ADS)
Kemp, A.; Kopp, R. E.; Horton, B.; Little, C. M.; Engelhart, S. E.; Mitrovica, J. X.
2017-12-01
Common Era relative sea-level trends on the margins of the North Atlantic Ocean vary through time and across space as a result of simultaneous global (basin-wide)-, regional- (linear and non-linear), and local-scale processes. A growing suite of relative sea-level reconstructions derived from dated salt-marsh (and mangrove) sediment on the Atlantic coast of North America provides an opportunity to quantify the contributions from several physical processes to Common Era sea-level trends. In particular, this coastline is susceptible to relative sea-level changes caused by melting of the Greenland Ice Sheet and redistribution of existing ocean mass on timescales of days to centuries by evolving patterns and strengths of atmospheric and oceanic circulation. Using a case study from Newfoundland, Canada, we demonstrate how high-resolution (decadal- and decimeter-scale) relative sea level reconstructions are produced from sequences of salt-marsh sediment that were deposited under conditions of long-term sea-level rise. We use an expanded database of Common Era relative sea-level reconstructions from the Atlantic coast of North America that spans locations from Newfoundland to the southern Florida to identify spatial and temporal patterns of change. A spatio-temporal statistical model enables us to decompose each reconstruction (with uncertainty) into contributions from global-, regional- (linear and non-linear), and local-scale processes. This analysis shows that spatially-variable glacio-isostatic adjustment was the primary driver of sea-level change. The global signal is dominated by the onset of anthropogenic sea-level rise in the late 19th century, which caused the 20th century to experience a faster rate of rise than any of the preceding 26 centuries. Differentiating between regional non-linear and local-scale processes is a challenging using an inherently sparse network of reconstructions. However, we show that sites south of Cape Hatteras have sea-level histories distinct to those from more northward locations and propose that this spatial pattern is best explained by dynamic processes that could include century-scale NAO-driven circulation changes. Complementary paleoenvironmental reconstructions from diverse proxies support this interpretation.
Future sea-level rise in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Galassi, Gaia; Spada, Giorgio
2014-05-01
Secular sea level variations in the Mediterranean Sea are the result of a number of processes characterized by distinct time scales and spatial patterns. Here we predict the future sea level variations in the Mediterranean Sea to year 2050 combining the contributions from terrestrial ice melt (TIM), glacial isostatic adjustment (GIA), and the ocean response (OR) that includes the thermal expansion and the ocean circulation contributions. The three contributions are characterized by comparable magnitudes but distinctly different sea-level fingerprints across the Mediterranean basin. The TIM component of future sea-level rise is taken from Spada et al. (2013) and it is mainly driven by the melt of small glaciers and ice caps and by the dynamic ice loss from Antarctica. The sea-level fingerprint associated with GIA is studied using two distinct models available from the literature: ICE-5G(VM2) (Peltier, 2004) and the ice model progressively developed at the Research School of Earth Sciences (RSES) of the National Australian University (KL05) (see Fleming and Lambeck, 2004 and references therein). Both the GIA and the TIM sea-level predictions have been obtained with the aid of the SELEN program (Spada and Stocchi, 2007). The spatially-averaged OR component, which includes thermosteric and halosteric sea-level variations, recently obtained using a regional coupled ocean-atmosphere model (Carillo et al., 2012), vary between 2 and 7 cm according to scenarios adopted (EA1B and EA1B2, see Meehl at al., 2007). Since the sea-level variations associated with TIM mainly result from the gravitational interactions between the cryosphere components, the oceans and the solid Earth, and long-wavelength rotational variations, they are characterized by a very smooth global pattern and by a marked zonal symmetry reflecting the dipole geometry of the ice sources. Since the Mediterranean Sea is located in the intermediate far-field of major ice sources, TIM sea-level changes have sub-eustatic values (i.e. they do not exceed the global average) and show little (but still significant) variations across the basin associated with the subsidence driven by the meltwater load. For year 2050, TIM calculations predict a sea-level rise of ~10 and ~30 cm for the mid range and the high end scenarios, respectively. Mainly because of the distinct mantle viscosity profiles adopted in ICE-5G(VM2) and KL05, the GIA patterns differ significantly and, in contrast with the TIM fingerprint, are both characterized by strong variations across the Mediterranean Sea, showing maximum values in the bulk of the basin. For the OR component, a significant geographical variation is observed across the Mediterranean sub-basins, corresponding to different Atlantic boundary conditionsAccording to this study, the total future sea-level rise for year 2050 will reach maximum values for the extreme scenario (hig-hend prediction for TIM, KL05 for GIA and EA1B2 for OR) of ˜ 27 cm in average with peak of ˜ 30 cm in the central sub-basins. Our results show that when these three components of future sea-level rise are simultaneously considered, the spatial variability is enhanced because of the neatly distinct geometry of the three fingerprints. References: Carillo, A., Sannino, G., Artale, V., Ruti, P., Calmanti, S., DellAquila, A., 2012, Clim. Dyn. 39 (9-10), 2167-2184; Fleming, K. and Lambeck, K., 2004, Quat. Sci. Rev. 23 (9-10), 1053-1077; Meehl, G.A., and 11 others, 2007, in Climate Change 2007: The Physical Science Basis, Cambridge University Press; Peltier W.R., 2004, Annu. Rev. Earth Pl. Sc., 32, 111-149; Spada, G. and Stocchi, P., 2007, Comput. and Geosci., 33(4), 538-562; Spada G., Bamber J. L., Hurkmans R. T. W. L., 2013, Geophys. Res. Lett., 1-5, 40.
NASA Astrophysics Data System (ADS)
Lambeck, Kurt; Purcell, Anthony; Flemming, Nicholas. C.; Vita-Finzi, Claudio; Alsharekh, Abdullah M.; Bailey, Geoffrey N.
2011-12-01
The history of sea level within the Red Sea basin impinges on several areas of research. For archaeology and prehistory, past sea levels of the southern sector define possible pathways of human dispersal out of Africa. For tectonics, the interglacial sea levels provide estimates of rates for vertical tectonics. For global sea level studies, the Red Sea sediments contain a significant record of changing water chemistry with implications on the mass exchange between oceans and ice sheets during glacial cycles. And, because of its geometry and location, the Red Sea provides a test laboratory for models of glacio-hydro-isostasy. The Red Sea margins contain incomplete records of sea level for the Late Holocene, for the Last Glacial Maximum, for the Last Interglacial and for earlier interglacials. These are usually interpreted in terms of tectonics and ocean volume changes but it is shown here that the glacio-hydro-isostatic process is an additional important component with characteristic spatial variability. Through an iterative analysis of the Holocene and interglacial evidence a separation of the tectonic, isostatic and eustatic contributions is possible and we present a predictive model for palaeo-shorelines and water depths for a time interval encompassing the period proposed for migrations of modern humans out of Africa. Principal conclusions include the following. (i) Late Holocene sea level signals evolve along the length of the Red Sea, with characteristic mid-Holocene highstands not developing in the central part. (ii) Last Interglacial sea level signals are also location dependent and, in the absence of tectonics, are not predicted to occur more than 1-2 m above present sea level. (iii) For both periods, Red Sea levels at 'expected far-field' elevations are not necessarily indicative of tectonic stability and the evidence points to a long-wavelength tectonic uplift component along both the African and Arabian northern and central sides of the Red Sea. (iv) The observational evidence is consistent with tectonic and isostatic processes both operating over the past 300,000 years without requiring changes in the time averaged (over a few thousand years) tectonic rates. (v) Recent bathymetric data for the Bab al Mandab region have been compiled to confirm the location and depth of the sill controlling flow in and out of the Red Sea. Throughout the last 400,000 years the Red Sea has remained open to the Gulf of Aden with cross sectional areas at times of glacial maxima about 2% of that today. (vi) The minimum channel widths connecting the Red Sea to the Gulf of Aden at times of lowstand occur south of the Hanish Sill. The channels are less than 4 km wide and remain narrow for as long as local sea levels are below -50 m. This occurs for a number of sustained periods during the last two glacial cycles and earlier. (vii) Periods suitable for crossing between Africa and Arabia without requiring seaworthy boats or seafaring skills occurred periodically throughout the Pleistocene, particularly at times of favourable environmental climatic conditions that occurred during times of sea level lowstand.
Coastal Sea Level along the North Eastern Atlantic Shelf from Delay Doppler Altimetry
NASA Astrophysics Data System (ADS)
Fenoglio-Marc, L.; Benveniste, J.; Andersen, O. B.; Gravelle, M.; Dinardo, S.; Uebbing, B.; Scharroo, R.; Kusche, J.; Kern, M.; Buchhaupt, C.
2017-12-01
Satellite altimetry data of the CryoSat-2 and Sentinel-3 missions processed with Delay Doppler methodology (DDA) provide improved coastal sea level measurements up to 2-4 km from coast, thanks to an along-track resolution of about 300m and a higher signal to noise ratio. We investigate the 10 Kilometre stripe along the North-Eastern Atlantic shelf from Lisbon to Bergen to detect the possible impacts in sea level change studies of this enhanced dataset. We consider SAR CryoSat-2 and Sentinel-3 altimetry products from the ESA GPOD processor and in-house reduced SAR altimetry (RDSAR) products. Improved processing includes in RDSAR the application of enhanced retrackers for the RDSAR waveform. Improved processing in SAR includes modification both in the generation of SAR waveforms, (as Hamming weighting window on the burst data prior to the azimuth FFT, zero-padding prior to the range FFT, doubling of the extension for the radar range swath) and in the SAMOSA2 retracker. Data cover the full lifetime of CryoSat-2 (6 years) and Sentinel-3 (1 year). Conventional altimetry are from the sea level CCI database. First we analyse the impact of these SAR altimeter data on the sea level trend and on the estimation of vertical motion from the altimeter minus tide gauge differences. VLM along the North-Eastern Atlantic shelf is generally small compared to the North-Western Atlantic Coast VLM, with a smaller signal to noise ratio. Second we investigate impact on the coastal mean sea level surface and the mean dynamic topography. We evaluate a mean surface from the new altimeter data to be combined to state of the art geoid models to derive the mean dynamic topography. We compare the results to existing oceanographic and geodetic mean dynamic topography solutions, both on grid and pointwise at the tide gauge stations. This study is supported by ESA through the Sea Level CCI and the GOCE++DYCOT projects
Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets
NASA Astrophysics Data System (ADS)
Deconto, R. M.; Pollard, D.
2017-12-01
New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100, implying that physically plausible upper limits on future sea-level rise might need to be reconsidered.
Effects of Climate Change on Exposure to Coastal Flooding in Latin America and the Caribbean
Reguero, Borja G.; Losada, Iñigo J.; Díaz-Simal, Pedro; Méndez, Fernando J.; Beck, Michael W.
2015-01-01
This study considers and compares several of the most important factors contributing to coastal flooding in Latin American and the Caribbean (LAC) while accounting for the variations of these factors with location and time. The study assesses the populations, the land areas and the built capital exposed at present and at the middle and end of the 21st century for a set of scenarios that include both climatic and non-climatic drivers. Climatic drivers include global mean sea level, natural modes of climate variability such as El Niño, natural subsidence, and extreme sea levels resulting from the combination of projected local sea-level rise, storm surges and wave setup. Population is the only human-related driver accounted for in the future. Without adaptation, more than 4 million inhabitants will be exposed to flooding from relative sea-level rise by the end of the century, assuming the 8.5 W m−2 trajectory of the Representative Concentration Pathways (RCPs), or RCP8.5. However, the contributions from El Niño events substantially raise the threat in several Pacific-coast countries of the region and sooner than previously anticipated. At the tropical Pacific coastlines, the exposure by the mid-century for an event similar to El Niño 1998 would be comparable to that of the RCP4.5 relative sea-level rise by the end of the century. Furthermore, more than 7.5 million inhabitants, 42,600 km2 and built capital valued at 334 billion USD are currently situated at elevations below the 100-year extreme sea level. With sea levels rising and the population increasing, it is estimated that more than 9 million inhabitants will be exposed by the end of the century for either of the RCPs considered. The spatial distribution of exposure and the comparison of scenarios and timeframes can serve as a guide in future adaptation and risk reduction policies in the region. PMID:26177285
Dvorak, Ana C; Solo-Gabriele, Helena M; Galletti, Andrea; Benzecry, Bernardo; Malone, Hannah; Boguszewski, Vicki; Bird, Jason
2018-07-01
Sea levels are projected to rise in response to climate change, causing the intrusion of sea water into land. In flat coastal regions, this would generate an increase in shallow water covered areas with limited circulation. This scenario raises a concern about the consequences it could have on human health, specifically the possible impacts on disease transmission. In this review paper we identified three categories of diseases which are associated with water and whose transmission can be affected by sea level rise. These categories include: mosquitoborne diseases, naturalized organisms (Vibrio spp. and toxic algae), and fecal-oral diseases. For each disease category, we propose comprehensive adaptation strategies that would help minimize possible health risks. Finally, the City of Key West, Florida is analyzed as a case study, due to its inherent vulnerability to sea level rise. Current and projected adaptation techniques are discussed as well as the integration of additional recommendations, focused on disease transmission control. Given that sea level rise will likely continue into the future, the promotion and implementation of positive adaptation strategies is necessary to ensure community resilience. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss
Gomez, Natalya; Pollard, David; Holland, David
2015-01-01
The stability of marine sectors of the Antarctic Ice Sheet (AIS) in a warming climate has been identified as the largest source of uncertainty in projections of future sea-level rise. Sea-level fall near the grounding line of a retreating marine ice sheet has a stabilizing influence on the ice sheets, and previous studies have established the importance of this feedback on ice age AIS evolution. Here we use a coupled ice sheet–sea-level model to investigate the impact of the feedback mechanism on future AIS retreat over centennial and millennial timescales for a range of emission scenarios. We show that the combination of bedrock uplift and sea-surface drop associated with ice-sheet retreat significantly reduces AIS mass loss relative to a simulation without these effects included. Sensitivity analyses show that the stabilization tends to be greatest for lower emission scenarios and Earth models characterized by a thin elastic lithosphere and low-viscosity upper mantle, as is the case for West Antarctica. PMID:26554381
Cayan, Daniel R.; Bromirski, Peter; Hayhoe, Katharine; Tyree, Mary; Dettinger, Mike; Flick, Reinhard
2006-01-01
California’s coastal observations and global model projections indicate that California’s open coast and estuaries will experience increasing sea levels over the next century. Sea level rise has affected much of the coast of California, including the Southern California coast, the Central California open coast, and the San Francisco Bay and upper estuary. These trends, quantified from a small set of California tide gages, have ranged from 10–20 centimeters (cm) (3.9–7.9 inches) per century, quite similar to that estimated for global mean sea level. So far, there is little evidence that the rate of rise has accelerated, and the rate of rise at California tide gages has actually flattened since 1980, but projections suggest substantial sea level rise may occur over the next century. Climate change simulations project a substantial rate of global sea level rise over the next century due to thermal expansion as the oceans warm and runoff from melting land-based snow and ice accelerates. Sea level rise projected from the models increases with the amount of warming. Relative to sea levels in 2000, by the 2070–2099 period, sea level rise projections range from 11–54 cm (4.3–21 in) for simulations following the lower (B1) greenhouse gas (GHG) emissions scenario, from 14–61 cm (5.5–24 in) for the middle-upper (A2) emission scenario, and from 17–72 cm (6.7–28 in) for the highest (A1fi) scenario. In addition to relatively steady secular trends, sea levels along the California coast undergo shorter period variability above or below predicted tide levels and changes associated with long-term trends. These variations are caused by weather events and by seasonal to decadal climate fluctuations over the Pacific Ocean that in turn affect the Pacific coast. Highest coastal sea levels have occurred when winter storms and Pacific climate disturbances, such as El Niño, have coincided with high astronomical tides. This study considers a range of projected future global sea level rises in examining possible impacts at California coastal and estuarine stations. Two climate models and three scenarios considered in this scenarios study provide a set of possible future weather and short-period climate fluctuations, and a range of potential long-term sea level rise values. A range of mean sea level rise was considered in combination with weather and El Niño fluctuations extracted from two global climate models and two GHG emissions scenarios. The mean sea level rise values, determined from a survey of several climate models, range from approximately 10–80 cm (3.9–31 in) between 2000 and 2100. The middle to higher end of this range would substantially exceed the historical rate of sea level rise of 15–20 cm (5.9–7.9 in)per century observed at San Francisco and San Diego during the last 100 years. Gradual sea level rise progressively worsens the impacts of high tides and the surge and waves associated with storms. The potential for impacts of future sea level rise was assessed from the occurrence of hourly sea level extremes. The occurrence of extreme events follows a sharply escalating pattern as the magnitude of future sea level rise increases. The confluence of Low barometric pressures from storms and the presence large waves at the same time substantially increases the likelihood of high, damaging sea levels along the California coast. Similarly, astronomical tides and disturbances in sea level that are caused by weather and climate fluctuations are x transmitted into the San Francisco Bay and Delta, and on into the lower reaches of the Sacramento River. In addition to elevating Bay and Delta sea levels directly through inverse barometer and wind effects, storms may generate heavy precipitation and high fresh water runoff and cause floods in the Sacramento/San Joaquin Delta, increasing the potential for inundation of levees and other structures. There may also be increased risk of levee failure due to the hydraulics and geometry of these structures. Rising sea levels from climate change will increase the frequency and duration of extreme high water levels, causing historical coastal and San Francisco Bay/Delta structure design criteria to be exceeded.
Dynamics of sea level rise and coastal flooding on a changing landscape
NASA Astrophysics Data System (ADS)
Bilskie, M. V.; Hagen, S. C.; Medeiros, S. C.; Passeri, D. L.
2014-02-01
Standard approaches to determining the impacts of sea level rise (SLR) on storm surge flooding employ numerical models reflecting present conditions with modified sea states for a given SLR scenario. In this study, we advance this paradigm by adjusting the model framework so that it reflects not only a change in sea state but also variations to the landscape (morphologic changes and urbanization of coastal cities). We utilize a numerical model of the Mississippi and Alabama coast to simulate the response of hurricane storm surge to changes in sea level, land use/land cover, and land surface elevation for past (1960), present (2005), and future (2050) conditions. The results show that the storm surge response to SLR is dynamic and sensitive to changes in the landscape. We introduce a new modeling framework that includes modification of the landscape when producing storm surge models for future conditions.
Sea Level Station Metadata for Tsunami Detection, Warning and Research
NASA Astrophysics Data System (ADS)
Stroker, K. J.; Marra, J.; Kari, U. S.; Weinstein, S. A.; Kong, L.
2007-12-01
The devastating earthquake and tsunami of December 26, 2004 has greatly increased recognition of the need for water level data both from the coasts and the deep-ocean. In 2006, the National Oceanic and Atmospheric Administration (NOAA) completed a Tsunami Data Management Report describing the management of data required to minimize the impact of tsunamis in the United States. One of the major gaps defined in this report is the access to global coastal water level data. NOAA's National Geophysical Data Center (NGDC) and National Climatic Data Center (NCDC) are working cooperatively to bridge this gap. NOAA relies on a network of global data, acquired and processed in real-time to support tsunami detection and warning, as well as high-quality global databases of archived data to support research and advanced scientific modeling. In 2005, parties interested in enhancing the access and use of sea level station data united under the NOAA NCDC's Integrated Data and Environmental Applications (IDEA) Center's Pacific Region Integrated Data Enterprise (PRIDE) program to develop a distributed metadata system describing sea level stations (Kari et. al., 2006; Marra et.al., in press). This effort started with pilot activities in a regional framework and is targeted at tsunami detection and warning systems being developed by various agencies. It includes development of the components of a prototype sea level station metadata web service and accompanying Google Earth-based client application, which use an XML-based schema to expose, at a minimum, information in the NOAA National Weather Service (NWS) Pacific Tsunami Warning Center (PTWC) station database needed to use the PTWC's Tide Tool application. As identified in the Tsunami Data Management Report, the need also exists for long-term retention of the sea level station data. NOAA envisions that the retrospective water level data and metadata will also be available through web services, using an XML-based schema. Five high-priority metadata requirements identified at a water level workshop held at the XXIV IUGG Meeting in Perugia will be addressed: consistent, validated, and well defined numbers (e.g. amplitude); exact location of sea level stations; a complete record of sea level data stored in the archive; identifying high-priority sea level stations; and consistent definitions. NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Solid Earth Geophysics (including tsunamis) would hold the archive of the sea level station data and distribute the standard metadata. Currently, NGDC is also archiving and distributing the DART buoy deep-ocean water level data and metadata in standards based formats. Kari, Uday S., John J. Marra, Stuart A. Weinstein, 2006 A Tsunami Focused Data Sharing Framework For Integration of Databases that Describe Water Level Station Specifications. AGU Fall Meeting, 2006. San Francisco, California. Marra, John, J., Uday S. Kari, and Stuart A. Weinstein (in press). A Tsunami Detection and Warning-focused Sea Level Station Metadata Web Service. IUGG XXIV, July 2-13, 2007. Perugia, Italy.
Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr
NASA Astrophysics Data System (ADS)
Yi, Liang; Chen, Yanping
2013-04-01
Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of marine surface and core samples, and to quantitatively reconstruct sea-level variation since the late Pleistocene in the south Bohai Sea, China. New insights into regional relative sea-level changes since the late Pleistocene are obtained (Yi et al., 2012): (1) The grain size of surface and core samples can be mathematically partitioned using the Weibull distribution into four components. These four components with differing modal sizes and percentages could be interpreted as a long-term suspension component, which only settles under low turbulence conditions, sortable silt and very fine sand components transported by suspension during greater turbulence and bedload transport component, respectively. (2) Through regression and rigorous verification techniques, the reference water level could be reconstructed from sediment grain size. The reconstruction quantitatively extends the regional relative sea-level history to the late Pleistocene, providing a comparatively long dataset to evaluate regional sea-level variability. (3) We find no evidence of a sea-level high stand during MIS3 but rather a substantial regression during 70-30 cal kyr BP and potentially exposed land during 38-20 cal kyr BP. These results for the south Bohai Sea are in good agreement with published global sea-level records for the late Pleistocene, implying similarities between local and global sea-level patterns. Therefore, it is concluded that grain-size based sea-level reconstruction provide results that are comparable to other reconstruction methods and demonstrates great potential application for future works. (The data was shared on http://hurricane.ncdc.noaa.gov/) References Chappell, J., Omura, A., Esat, T., McCulloch, M., Pandolfi, J., Ota, Y., Pillans, B., 1996. Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236. Chappell, J., Shackleton, N.J., 1986. Oxygen isotopes and sea level. Nature 324, 137-140. Charman, D.J., Roe, H.M., Roland Gehrels, W., 2002. Modern distribution of saltmarsh testate amoebae: regional variability of zonation and response to environmental variables. Journal of Quaternary Science 17, 387-409. Horton, B.P., 1997. Quantification of the indicative meaning of a range of Holocene sea-level index points from the western North Sea, Department of Geography. University of Durham, Durham City, UK, p. 509. Horton, B.P., Corbett, R., Culver, S.J., Edwards, R.J., Hillier, C., 2006. Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine, Coastal and Shelf Science 69, 381-394. IOCAS (Institute of Oceanology, Chinese Academy of Sciences), 1985. Bohai Sea Geology. Science Press, Beijing, China. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., 2007. Temporal changes of accretion rates on an estuarine salt marsh during the late Holocene -Reflection of local sea level changes? The Wadden Sea, Denmark. Marine Geology 242, 221-233. Mauz, B., Hassler, U., 2000. Luminescence chronology of Late Pleistocene raised beaches in southern Italy: new data of relative sea-level changes. Marine Geology 170, 187-203. Yi, L., Yu, H.J., Ortiz, J.D., Xu, X.Y., Qiang, X.K., Huang, H.J., Shi, X., Deng, C.L., 2012. A reconstruction of late Pleistocene relative sea level in the south Bohai Sea, China, based on sediment grain-size analysis. Sedimentary Geology 281, 88-100. Zong, Y., Shennan, I., Combellick, R.A., Hamilton, S.L., Rutherford, M.M., 2003. Microfossil evidence for land movements associated with the AD 1964 Alaska earthquake. The Holocene 13, 7-20.
Physiological implications of altitude training for endurance performance at sea level: a review.
Bailey, D M; Davies, B
1997-01-01
Acclimatisation to environmental hypoxia initiates a series of metabolic and musculocardio-respiratory adaptations that influence oxygen transport and utilisation, or better still, being born and raised at altitude, is necessary to achieve optimal physical performance at altitude, scientific evidence to support the potentiating effects after return to sea level is at present equivocal. Despite this, elite athletes continue to spend considerable time and resources training at altitude, misled by subjective coaching opinion and the inconclusive findings of a large number of uncontrolled studies. Scientific investigation has focused on the optimisation of the theoretically beneficial aspects of altitude acclimatisation, which include increases in blood haemoglobin concentration, elevated buffering capacity, and improvements in the structural and biochemical properties of skeletal muscle. However, not all aspects of altitude acclimatisation are beneficial; cardiac output and blood flow to skeletal muscles decrease, and preliminary evidence has shown that hypoxia in itself is responsible for a depression of immune function and increased tissue damage mediated by oxidative stress. Future research needs to focus on these less beneficial aspects of altitude training, the implications of which pose a threat to both the fitness and the health of the elite competitor. Paul Bert was the first investigator to show that acclimatisation to a chronically reduced inspiratory partial pressure of oxygen (P1O2) invoked a series of central and peripheral adaptations that served to maintain adequate tissue oxygenation in healthy skeletal muscle, physiological adaptations that have been subsequently implicated in the improvement in exercise performance during altitude acclimatisation. However, it was not until half a century later that scientists suggested that the additive stimulus of environmental hypoxia could potentially compound the normal physiological adaptations to endurance training and accelerate performance improvements after return to sea level. This has stimulated an exponential increase in scientific research, and, since 1984, 22 major reviews have summarised the physiological implications of altitude training for both aerobic and anaerobic performance at altitude and after return to sea level. Of these reviews, only eight have specifically focused on physical performance changes after return to sea level, the most comprehensive of which was recently written by Wolski et al. Few reviews have considered the potentially less favourable physiological responses to moderate altitude exposure, which include decreases in absolute training intensity, decreased plasma volume, depression of haemopoiesis and increased haemolysis, increases in sympathetically mediated glycogen depletion at altitude, and increased respiratory muscle work after return to sea level. In addition, there is a risk of developing more serious medical complications at altitude, which include acute mountain sickness, pulmonary oedema, cardiac arrhythmias, and cerebral hypoxia. The possible implications of changes in immune function at altitude have also been largely ignored, despite accumulating evidence of hypoxia mediated immunosuppression. In general, altitude training has been shown to improve performance at altitude, whereas no unequivocal evidence exists to support the claim that performance at sea level is improved. Table 1 summarises the theoretical advantages and disadvantages of altitude training for sea level performance. This review summarises the physiological rationale for altitude training as a means of enhancing endurance performance after return to sea level. Factors that have been shown to affect the acclimatisation process and the subsequent implications for exercise performance at sea level will also be discussed. Studies were located using five major database searches, which included Medline, Embase, Science Citation Index, Sports Discus, and Sport, in Images Figure 1 Figure 2 PMID:9298550
Anticipating Future Sea Level Rise and Coastal Storms in New York City (Invited)
NASA Astrophysics Data System (ADS)
Horton, R. M.; Gornitz, V.; Bader, D.; Little, C. M.; Oppenheimer, M.; Patrick, L.; Orton, P. M.; Rosenzweig, C.; Solecki, W.
2013-12-01
Hurricane Sandy caused 43 fatalities in New York City and 19 billion in damages. Mayor Michael Bloomberg responded by convening the second New York City Panel on Climate Change (NPCC2), to provide up-to-date climate information for the City's Special Initiative for Rebuilding and Resiliency (SIRR). The Mayor's proposed 20 billion plan aims to strengthen the City's resilience to coastal inundation. Accordingly, the NPCC2 scientific and technical support team generated a suite of temperature, precipitation, and sea level rise and extreme event projections through the 2050s. The NPCC2 sea level rise projections include contributions from ocean thermal expansion, dynamic changes in sea surface height, mass changes in glaciers, ice caps, and ice sheets, and land water storage. Local sea level changes induced by changes in ice mass include isostatic, gravitational, and rotational effects. Results are derived from CMIP5 model-based outputs, expert judgment, and literature surveys. Sea level at the Battery, lower Manhattan, is projected to rise by 7-31 in (17.8-78.7cm) by the 2050s relative to 2000-2004 (10 to 90 percentile). As a result, flood heights above NAVD88 for the 100-year storm (stillwater plus waves) would rise from 15.0 ft (0.71 m) in the 2000s to 15.6-17.6 ft (4.8-5.4 m) by the 2050s (10-90 percentile). The annual chance of today's 100-year flood would increase from 1 to 1.4-5.0 percent by the 2050s.
Adaptation to Sea Level Rise in Coastal Units of the National Park Service (Invited)
NASA Astrophysics Data System (ADS)
Beavers, R. L.
2010-12-01
83 National Park Service (NPS) units contain nearly 12,000 miles of coastal, estuarine and Great Lakes shoreline and their associated resources. Iconic natural features exist along active shorelines in NPS units, including, e.g., Cape Cod, Padre Island, Hawaii Volcanoes, and the Everglades. Iconic cultural resources managed by NPS include the Cape Hatteras Lighthouse, Fort Sumter, the Golden Gate, and heiaus and fish traps along the coast of Hawaii. Impacts anticipated from sea level rise include inundation and flooding of beaches and low lying marshes, shoreline erosion of coastal areas, and saltwater intrusion into the water table. These impacts and other coastal hazards will threaten park beaches, marshes, and other resources and values; alter the viability of coastal roads; and require the NPS to re-evaluate the financial, safety, and environmental implications of maintaining current projects and implementing future projects in ocean and coastal parks in the context of sea level rise. Coastal erosion will increase as sea levels rise. Barrier islands along the coast of Louisiana and North Carolina may have already passed the threshold for maintaining island integrity in any scenario of sea level rise (U.S. Climate Change Science Program Synthesis and Assessment Program Report 4.1). Consequently, sea level rise is expected to hasten the disappearance of historic coastal villages, coastal wetlands, forests, and beaches, and threaten coastal roads, homes, and businesses. While sea level is rising in most coastal parks, some parks are experiencing lower water levels due to isostatic rebound and lower lake levels. NPS funded a Coastal Vulnerability Project to evaluate the physical and geologic factors affecting 25 coastal parks. The USGS Open File Reports for each park are available at http://woodshole.er.usgs.gov/project-pages/. These reports were designed to inform park planning efforts. NPS conducted a Storm Vulnerability Project to provide ocean and coastal National Park units with Natural, Cultural and Historic Resource-based data products and management documents that will aid the parks in better managing aspects of storm-preparedness and post-storm response and recovery. These results as well as specific efforts to address vulnerability of NPS facilities and natural and cultural resources to sea level rise will be discussed. NPS is also coordinating with NOAA to fill a new position for coastal adaptation and apply the information learned from research, vulnerability studies, and work with partners to develop adaptation strategies for coastal and ocean parks. To adapt to sea level rise, NPS will develop strong policies, guidance, and interpretive materials to help parks take actions that will increase the resilience of ocean and coastal park biological and geologic resources, reduce inappropriate stressors and greenhouse gas emissions in ocean and coastal parks, and educate the public about the need for comprehensive, swift and effective measures that will help the NPS conserve ocean and coastal park resources for future generations.
Thorner, Jaqueline; Kumar, Lalit; Smith, Stephen D A
2014-01-01
Intertidal rocky reefs are complex and rich ecosystems that are vulnerable to even the smallest fluctuations in sea level. We modelled habitat loss associated with sea level rise for intertidal rocky reefs using GIS, high-resolution digital imagery, and LIDAR technology at fine-scale resolution (0.1 m per pixel). We used projected sea levels of +0.3 m, +0.5 m and +1.0 m above current Mean Low Tide Level (0.4 m). Habitat loss and changes were analysed for each scenario for five headlands in the Solitary Islands Marine Park (SIMP), Australia. The results indicate that changes to habitat extent will be variable across different shores and will not necessarily result in net loss of area for some habitats. In addition, habitat modification will not follow a regular pattern over the projected sea levels. Two of the headlands included in the study currently have the maximum level of protection within the SIMP. However, these headlands are likely to lose much of the habitat known to support biodiverse assemblages and may not continue to be suitable sanctuaries into the future. The fine-scale approach taken in this study thus provides a protocol not only for modelling habitat modification but also for future proofing conservation measures under a scenario of changing sea levels.
Asugeni, James; MacLaren, David; Massey, Peter D; Speare, Rick
2015-12-01
There is little published research about mental health and climate change in the Pacific, including Solomon Islands. Solomon Islands has one of the highest rates of sea-level rise globally. The aim of this research was to document mental health issues related to sea-level rise for people in East Malaita, Solomon Islands. A cross-sectional study was carried out in six low-lying villages in East Malaita, Solomon Islands. The researcher travelled to villages by dugout canoe. In addition to quantitative, closed-ended questions, open-ended questions with villagers explored individual and community responses to rising sea level. Of 60 people asked, 57 completed the questionnaire. Of these, 90% reported having seen a change in the weather patterns. Nearly all participants reported that sea-level rise is affecting them and their family and is causing fear and worry on a personal and community level. Four themes emerged from the qualitative analysis: experience of physical impacts of climate change; worry about the future; adaptation to climate change; government response needed. Given predictions of ongoing sea-level rise in the Pacific it is essential that more research is conducted to further understand the human impact of climate change for small island states which will inform local, provincial and national-level mental health responses. © The Royal Australian and New Zealand College of Psychiatrists 2015.
NASA Technical Reports Server (NTRS)
Hackert, Eric C.; Busalacchi, Antonio J.
1997-01-01
The goal of this paper is to compare TOPEX/Posaidon (T/P) sea level with sea level results from linear ocean model experiments forced by several different wind products for the tropical Pacific. During the period of this study (October 1992 - October 1995), available wind products include satellite winds from the ERS-1 scatterometer product of [HALP 97] and the passive microwave analysis of SSMI winds produced using the variational analysis method (VAM) of [ATLA 91]. In addition, atmospheric GCM winds from the NCEP reanalysis [KALN 96], ECMWF analysis [ECMW94], and the Goddard EOS-1 (GEOS-1) reanalysis experiment [SCHU 93] are available for comparison. The observed ship wind analysis of FSU [STRI 92] is also included in this study. The linear model of [CANE 84] is used as a transfer function to test the quality of each of these wind products for the tropical Pacific. The various wind products are judged by comparing the wind-forced model sea level results against the T/P sea level anomalies. Correlation and RMS difference maps show how well each wind product does in reproducing the T/P sea level signal. These results are summarized in a table showing area average correlations and RMS differences. The large-scale low-frequency temporal signal is reproduced by all of the wind products, However, significant differences exist in both amplitude and phase on regional scales. In general, the model results forced by satellite winds do a better job reproducing the T/P signal (i.e. have a higher average correlation and lower RMS difference) than the results forced by atmospheric model winds.
NASA Astrophysics Data System (ADS)
Lebedev, S. A.; Zilberstein, O. I.; Popov, S. K.; Tikhonova, O. V.
2003-04-01
The problem of retrieving of the sea level anomalies in the Barents and White Seas from satellite can be considered as two different problems. The first one is to calculate the anomalies of sea level along the trek taking into account all amendments including tidal heights. The second one is to obtain of fields of the sea level anomalies on the grid over one cycle of the exact repeat altimetry mission. Experience results show that there is preferable to use the regional tidal model for calculating tidal heights. To construct of the anomalies fields of the sea level during the exact repeat mission (cycle 35 days for ERS-1 and ERS-2), when a density of the coverage of the area of water of the Barents and White Seas by satellite measurements achieves maximum. It is necessary to solve the problem of the error minimum. This error is based by the temporal difference of the measurements over one cycle and by the specific of the hydrodynamic regime of the both seas (tidal, storm surge variations, tidal currents). To solve this problem it is assumed to use the results of the hydrodynamic modeling. The error minimum is preformed by the regression of the model results and satellite measurements. As a version it is considered the possibility of the utilizing of the neuronet obtained by the model results to construct maps of the sea level anomalies. The comparison of the model results and the calculation of the satellite altimetry variability of the sea level of Barents and White Seas shows a good coincidence between them. The satellite altimetry data of ERS-1/2 and TOPEX/POSEIDON of Ocean Altimeter Pathfinder Project (NASA/GSFC) has been used in this study. Results of the regional tidal model computations and three dimensional baroclinic model created in the Hydrometeocenter have been used as well. This study also exploited the atmosphere date of the Project REANALYSIS. The research was undertaken with partial support from the Russian Basic Research Foundation (Project No. 01-07-90106).
Processes contributing to resilience of coastal wetlands to sea-level rise
Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.
2016-01-01
The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.
Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise
NASA Astrophysics Data System (ADS)
Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.
2018-03-01
Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.
Sea-Level Allowances along the World Coastlines
NASA Astrophysics Data System (ADS)
Vandewal, R.; Tsitsikas, C.; Reerink, T.; Slangen, A.; de Winter, R.; Muis, S.; Hunter, J. R.
2017-12-01
Sea level changes as a result of climate change. For projections we take ocean mass changes and volume changes into account. Including gravitational and rotational fingerprints this provide regional sea level changes. Hence we can calculate sea-level rise patterns based on CMIP5 projections. In order to take the variability around the mean state, which follows from the climate models, into account we use the concept of allowances. The allowance indicates the height a coastal structure needs to be increased to maintain the likelihood of sea-level extremes. Here we use a global reanalysis of storm surges and extreme sea levels based on a global hydrodynamic model in order to calculate allowances. It is shown that the model compares in most regions favourably with tide gauge records from the GESLA data set. Combining the CMIP5 projections and the global hydrodynamical model we calculate sea-level allowances along the global coastlines and expand the number of points with a factor 50 relative to tide gauge based results. Results show that allowances increase gradually along continental margins with largest values near the equator. In general values are lower at midlatitudes both in Northern and Southern Hemisphere. Increased risk for extremes are typically 103-104 for the majority of the coastline under the RCP8.5 scenario at the end of the century. Finally we will show preliminary results of the effect of changing wave heights based on the coordinated ocean wave project.
Dahl, Kristina A; Fitzpatrick, Melanie F; Spanger-Siegfried, Erika
2017-01-01
Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001-2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years.
Fitzpatrick, Melanie F.; Spanger-Siegfried, Erika
2017-01-01
Tidal flooding is among the most tangible present-day effects of global sea level rise. Here, we utilize a set of NOAA tide gauges along the U.S. East and Gulf Coasts to evaluate the potential impact of future sea level rise on the frequency and severity of tidal flooding. Using the 2001–2015 time period as a baseline, we first determine how often tidal flooding currently occurs. Using localized sea level rise projections based on the Intermediate-Low, Intermediate-High, and Highest projections from the U.S. National Climate Assessment, we then determine the frequency and extent of such flooding at these locations for two near-term time horizons: 2030 and 2045. We show that increases in tidal flooding will be substantial and nearly universal at the 52 locations included in our analysis. Long before areas are permanently inundated, the steady creep of sea level rise will force many communities to grapple with chronic high tide flooding in the next 15 to 30 years. PMID:28158209
NASA Astrophysics Data System (ADS)
Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge
2018-04-01
Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.
Foster, Tammy E.; Stolen, Eric D.; Hall, Carlton R.; Schaub, Ronald; Duncan, Brean W.; Hunt, Danny K.; Drese, John H.
2017-01-01
Society needs information about how vegetation communities in coastal regions will be impacted by hydrologic changes associated with climate change, particularly sea level rise. Due to anthropogenic influences which have significantly decreased natural coastal vegetation communities, it is important for us to understand how remaining natural communities will respond to sea level rise. The Cape Canaveral Barrier Island complex (CCBIC) on the east central coast of Florida is within one of the most biologically diverse estuarine systems in North America and has the largest number of threatened and endangered species on federal property in the contiguous United States. The high level of biodiversity is susceptible to sea level rise. Our objective was to model how vegetation communities along a gradient ranging from hydric to upland xeric on CCBIC will respond to three sea level rise scenarios (0.2 m, 0.4 m, and 1.2 m). We used a probabilistic model of the current relationship between elevation and vegetation community to determine the impact sea level rise would have on these communities. Our model correctly predicted the current proportions of vegetation communities on CCBIC based on elevation. Under all sea level rise scenarios the model predicted decreases in mesic and xeric communities, with the greatest losses occurring in the most xeric communities. Increases in total area of salt marsh were predicted with a 0.2 and 0.4 m rise in sea level. With a 1.2 m rise in sea level approximately half of CCBIC’s land area was predicted to transition to open water. On the remaining land, the proportions of most of the vegetation communities were predicted to remain similar to that of current proportions, but there was a decrease in proportion of the most xeric community (oak scrub) and an increase in the most hydric community (salt marsh). Our approach provides a first approximation of the impacts of sea level rise on terrestrial vegetation communities, including important xeric upland communities, as a foundation for management decisions and future modeling. PMID:28796807
Inventory and protection of salt marshes from risks of sea-level rise at Acadia National Park, Maine
Dudley, Robert W.; Nielsen, Martha G.
2011-01-01
Recent U.S. Geological Survey (USGS) climate studies in the northeastern United States have shown substantial evidence of climate-related changes during the last 100 years, including earlier snowmelt runoff, decreasing occurrence of river ice, and decreasing winter snowpack. These studies related to climate change are being expanded to include investigation of coastal wetlands that might be at risk from sealevel rise. Coastal wetlands, particularly salt marshes, are important ecosystems that provide wildlife nursery and breeding habitat, migratory bird habitat, water quality enhancement, and shoreline erosion control. The USGS is investigating salt marshes in Acadia National Park with the goal of determining which salt marshes may be threatened by sea-level rise and which salt marshes may be able to adapt to sea-level rise by migrating into adjacent low-lying lands.
Bjerklie, David M.; Mullaney, John R.; Stone, Janet R.; Skinner, Brian J.; Ramlow, Matthew A.
2012-01-01
Global sea level rose about 0.56 feet (ft) (170 millimeters (mm)) during the 20th century. Since the 1960s, sea level has risen at Bridgeport, Connecticut, about 0.38 ft (115 mm), at a rate of 0.008 ft (2.56 mm + or - 0.58 mm) per year. With regional subsidence, and with predicted global climate change, sea level is expected to continue to rise along the northeast coast of the United States through the 21st century. Increasing sea levels will cause groundwater levels in coastal areas to rise in order to adjust to the new conditions. Some regional climate models predict wetter climate in the northeastern United States under some scenarios. Scenarios for the resulting higher groundwater levels have the potential to inundate underground infrastructure in lowlying coastal cities. New Haven is a coastal city in Connecticut surrounded and bisected by tidally affected waters. Monitoring of water levels in wells in New Haven from August 2009 to July 2010 indicates the complex effects of urban influence on groundwater levels. The response of groundwater levels to recharge and season varied considerably from well to well. Groundwater temperatures varied seasonally, but were warmer than what was typical for Connecticut, and they seem to reflect the influence of the urban setting, including the effects of conduits for underground utilities. Specific conductance was elevated in many of the wells, indicating the influence of urban activities or seawater in Long Island Sound. A preliminary steady-state model of groundwater flow for part of New Haven was constructed using MODFLOW to simulate current groundwater levels (2009-2010) and future groundwater levels based on scenarios with a rise of 3 ft (0.91 meters (m)) in sea level, which is predicted for the end of the 21st century. An additional simulation was run assuming a 3-ft rise in sea level combined with a 12-percent increase in groundwater recharge. The model was constructed from existing hydrogeologic information for the New Haven area and from new information on groundwater levels collected during October 2009-June 2010. For the scenario with a 3-ft rise in sea level and no increase in recharge, simulated groundwater levels near the coast rose 3 ft; this increased water level tapered off toward a discharge area at the only nontidal stream in the study area. Simulated stream discharge increased at the nontidal stream because of the increased gradient. Although groundwater levels rose, the simulated difference between the groundwater levels in the aquifer and the increased sea level declined, indicating that the depth to the interface between freshwater and saltwater may possibly decline. Simulated water levels were affected by rise in sea level even in areas where the water table was at 17-24 ft (5.2-7.3 m) above current (2011) sea level. For the scenario with increased recharge, simulated groundwater levels were as much as an additional foot higher at some locations in the study area. The results of this preliminary investigation indicate that groundwater levels in coastal areas can be expected to rise and may rise higher if groundwater recharge also increases. This finding has implications for the disposal of stormwater through infiltration, a low-impact development practice designed to improve water quality and reduce overland peak discharge. Other implications include increased risk of basement flooding and increased groundwater seepage into underground sewer pipes and utility corridors in some areas. These implications will present engineering challenges to New Haven and Yale University. The preliminary model developed for this study can be the starting point for further simulation of future alternative scenarios for sea-level rise and recharge. Further simulations could identify those areas of New Haven where infrastructure may be at greatest risk from rising levels of groundwater. The simulations described in this report have limitations due to the preliminary scope of the work. Approaches to improve simulations include but are not limited to incorporating: * The variable density of seawater into the model in order to understand the current and future location of the interface between freshwater and saltwater; * Collection of additional data in order to better resolve temporal and spatial patterns in water levels in the aquifer; * Improved estimates of recharge through direct and indirect measurements of freshwater discharge from the study area; and * Transient simulations for greater understanding of the amount of time required for water levels and the position of the interface between freshwater and saltwater to adjust to changes in sea level and recharge.
NASA Astrophysics Data System (ADS)
Applegate, Patrick J.; Keller, Klaus
2015-08-01
Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫103 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<103 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise.
Late quaternary regional geoarchaeology of Southeast Alaska Karst: A progress report
Dixon, E.J.; Heaton, T.H.; Fifield, T.E.; Hamilton, T.D.; Putnam, D.E.; Grady, F.
1997-01-01
Karst systems, sea caves, and rock shelters within the coastal temperate rain forest of Alaska's Alexander Archipelago preserve important records of regional archaeology, sea level history, glacial and climatic history, and vertebrate paleontology. Two 14C AMS dates on human bone discovered in a remote cave (49-PET-408) on Prince of Wales Island document the oldest reliably dated human in Alaska to ca. 9800 B.P. A series of 14C AMS dates from cave deposits span the past 40,000 years and provide the first evidence of Pleistocene faunas from the northwest coast of North America. Other discoveries include sea caves and marine beach deposits elevated above modern sea level, extensive solution caves, and mammalian remains of species previously undocumented within the region. Records of human activity, including cave art, artifacts, and habitation sites may provide new insights into the early human colonization of the Americas. ??1997 John Wiley & Sons, Inc.
Development of rotorcraft interior noise control concepts. Phase 2: Full scale testing, revision 1
NASA Technical Reports Server (NTRS)
Yoerkie, C. A.; Gintoli, P. J.; Moore, J. A.
1986-01-01
The phase 2 effort consisted of a series of ground and flight test measurements to obtain data for validation of the Statistical Energy Analysis (SEA) model. Included in the gound tests were various transfer function measurements between vibratory and acoustic subsystems, vibration and acoustic decay rate measurements, and coherent source measurements. The bulk of these, the vibration transfer functions, were used for SEA model validation, while the others provided information for characterization of damping and reverberation time of the subsystems. The flight test program included measurements of cabin and cockpit sound pressure level, frame and panel vibration level, and vibration levels at the main transmission attachment locations. Comparisons between measured and predicted subsystem excitation levels from both ground and flight testing were evaluated. The ground test data show good correlation with predictions of vibration levels throughout the cabin overhead for all excitations. The flight test results also indicate excellent correlation of inflight sound pressure measurements to sound pressure levels predicted by the SEA model, where the average aircraft speech interference level is predicted within 0.2 dB.
Schile, Lisa M; Callaway, John C; Morris, James T; Stralberg, Diana; Parker, V Thomas; Kelly, Maggi
2014-01-01
Tidal marshes maintain elevation relative to sea level through accumulation of mineral and organic matter, yet this dynamic accumulation feedback mechanism has not been modeled widely in the context of accelerated sea-level rise. Uncertainties exist about tidal marsh resiliency to accelerated sea-level rise, reduced sediment supply, reduced plant productivity under increased inundation, and limited upland habitat for marsh migration. We examined marsh resiliency under these uncertainties using the Marsh Equilibrium Model, a mechanistic, elevation-based soil cohort model, using a rich data set of plant productivity and physical properties from sites across the estuarine salinity gradient. Four tidal marshes were chosen along this gradient: two islands and two with adjacent uplands. Varying century sea-level rise (52, 100, 165, 180 cm) and suspended sediment concentrations (100%, 50%, and 25% of current concentrations), we simulated marsh accretion across vegetated elevations for 100 years, applying the results to high spatial resolution digital elevation models to quantify potential changes in marsh distributions. At low rates of sea-level rise and mid-high sediment concentrations, all marshes maintained vegetated elevations indicative of mid/high marsh habitat. With century sea-level rise at 100 and 165 cm, marshes shifted to low marsh elevations; mid/high marsh elevations were found only in former uplands. At the highest century sea-level rise and lowest sediment concentrations, the island marshes became dominated by mudflat elevations. Under the same sediment concentrations, low salinity brackish marshes containing highly productive vegetation had slower elevation loss compared to more saline sites with lower productivity. A similar trend was documented when comparing against a marsh accretion model that did not model vegetation feedbacks. Elevation predictions using the Marsh Equilibrium Model highlight the importance of including vegetation responses to sea-level rise. These results also emphasize the importance of adjacent uplands for long-term marsh survival and incorporating such areas in conservation planning efforts.
NASA Astrophysics Data System (ADS)
Poleshchuk, Ksenia; Verkulich, Sergey; Pushina, Zina; Jozhikov, Ilya
2015-04-01
A new curve of relative sea-level change is presented for the Fildes peninsula, King George Island, West Antarctic. This work is based on renewed paleogeography data, including coastal geomorphological evidence, diatom assemblages of lakes bottom sediments and radiocarbon datings of organics. The new data were obtained in several sections of quaternary sediments and groups of terraces, and allows us to expand and improve relevant conception about relative sea level changes in the King George Island region. The new radiocarbon datings of organics (mosses and shells) allows reconstructing Holocene conditions that maintain and cause the sea-level changes. Sea diatom assemblages of Dlinnoye lake bottom sediment core (that complies period about 8000 years B.P.) mark altitude of marine water penetrated into the lake. The altitudes of shell remains, which have certain life habits and expect specific salinity and depth conditions, coupled with their absolute datings, indicate the probable elevation of the past sea level. The Mid-Holocene marine transgression reached its maximum level of 18-20 m by 5760 years B.P. The transgression influenced the deglaciation of the Fildes peninsula and environment conditions integrally. The ratio of glacio-isostatic adjustment velocity and Holocene transgression leaded to the decrease of relative sea level during the Late Holocene excluding the short period of rising between 2000 and 1300 years B.P. Comparing this data with the curve for Bunger oasis, East Antarctica, introduced earlier gives an interesting result. Despite the maximum altitudes of relative sea-level rise in King George region were higher and occurred later than in Bunger oasis region, the short-term period of Late Holocene sea-level rising contemporizes. Besides that, this work allow to realize a correlation between regions of Antarctica and adjacent territory. That, in turn, lets answer the question of tectonic and eustatic factors ratio and their contribution to the Holocene transgression in different regions.
Last interglacial (MIS5e) sea-levels and uplift along the north-east Gulf of Aqaba
NASA Astrophysics Data System (ADS)
BAR (KOHN), N.; Stein, M.; Agnon, A.; Yehudai, M.; Lazar, B.; Shaked, Y.
2014-12-01
An uplifted flight of coral reef terraces, extending along the north-east margin of the Gulf of Aqaba (GOA), provides evidence for uplift rates and sea level high stands. GOA fills a narrow and deep tectonic depression lying along the southern sector of the Dead Sea Transform where it meets the Red Sea. This special configuration of the GOA and its latitude turn it into a dependable paleo-sea level monitor, sensitive only to global eustatic changes and local tectonic movements. A sequence of five uplifted coral reef terraces were mapped and characterized on basis of morphology and reef-facies, and their elevation above the present sea level was determined. The fossil reefs studied comprise fringing reefs, some with clear reef-structure that includes a reef flat and a shallow back lagoon. Most outcrops in the study area represent a transgressive sequence in which, during its highest stand, formed fringing reef terraces. We use U-Th ages of fossil corals samples found in growth position at various terraces. Corals from three uplifted reef terraces, R1, R2, and R3 were dated to the last interglacial period particularly to marine isotope stage (MIS) 5e. These ages were achieved from mainly calcitic corals (recrystallized in a freshwater phreatic environment). A few ages were derived from aragonite corals. The three terraces represent three sub-stages within MIS5e: R3 formed during a short standstill at ~130 ka BP; R2 formed during a long and steady standstill between ~128 to ~121 ka BP; and R1 represents a short standstill at ~117 ka BP. Assuming that terrace reef flats represent past sea level high stands, we calculated the coast average uplift rate and constrained the original terraces elevations. The reconstructed eustatic sea level variation during MIS 5e at GOA resembles observations from reef terraces in other locations. Combined, all indicate a significant sea-level rise from the MIS 6 low stand at ~134-130 ka and followed by a long and stable sea level high stand between ~128 to ~121 ka, representing a major reef building period. The long and stable sea level was followed by additional sea-level rise at ~118-116 ka that transgressed over the "stable reefs".
NASA Astrophysics Data System (ADS)
Millan-Otoya, Juan C.
The present study had two main objectives. The first was to determine the degree of understanding of climate change, sea level and sea level rise among middle school students. Combining open-ended questions with likert-scaled questions, we identified student conceptions on these topics in 86 students from 7th and 8th grades during 2012 and 2013 before and after implementing a Curriculum Unit (CU). Additional information was obtained by adding drawings to the open-ended questions during the second year to gauge how student conceptions varied from a verbal and a visual perspective. Misconceptions were identified both pre- and post-CU among all the topics taught. Students commonly used climate and climate change as synonyms, sea level was often defined as water depth, and several students failed to understand the complexities that determine changes in sea level due to wind, tides, and changes in sea surface temperature. In general, 8th grade students demonstrated a better understanding of these topics, as reflected in fewer apparent misconceptions after the CU. No previous study had reported such improvement. This showed the value of implementing short lessons. Using Piaget's theories on cognitive development, the differences between 7th and 8th grade students reflect a transition to a more mature level which allowed students to comprehend more complex concepts that included multiple variables. The second objective was to determine if the frequency of sea level maxima not associated with tides over the last 100 years increased in two tide gauges located on the two extremes of the Panama canal, i.e. Balboa in the Pacific Ocean and Cristobal in the Caribbean Sea. These records were compared to time series of regional sea surface temperature, wind speed, atmospheric pressure, and El Nino-Southern Oscillation (ENSO), to determine if these played a role as physical drivers of sea level at either location. Neither record showed an increase in the frequency of sea level maxima events. No parameter analyzed explained variability in sea level maxima in Cristobal. There was a significant correlation between the zonal component of the wind and sea level at Balboa for the early record (r=0.153; p-value<0.05), but for the most part the p-values did not support the hypothesis of a correlation. Similarly, sea surface temperature had an effect on sea level at Balboa, but the null hypothesis that there is no correlation could not be rejected (p-value>0.05). There was a clear relationship between sea level maxima and ENSO. 70% of the years with higher counts of higher sea level events corresponded to El Nino years. A randomization test with 1000 iterations, shuffling the El Nino years, showed most of these randomizations grouped between 14-35% of the events occurring during a randomized El Nino year. In no iteration did the percentage of events that occurred during El Nino years rise above 65%. The correlation with zonal wind and the probable correlation with sea surface temperature can be linked via ENSO, since ENSO is associated with changes in the strength of the Trade Winds and positive anomalies in the sea surface temperature of the tropical Pacific Ocean.
Meteorological conditions influencing the formation of level ice within the Baltic Sea
NASA Astrophysics Data System (ADS)
Mazur, A. K.; Krezel, A.
2012-12-01
The Baltic Sea is covered by ice every winter and on average, the ice-covered area is 45% of the total area of the Baltic Sea. The beginning of ice season usually starts in the end of November, ice extent is the largest between mid-February and mid-March and sea ice disappears completely in May. The ice covered areas during a typical winter are the Gulf of Bothnia, the Gulf of Finland and the Gulf of Riga. The studies of sea ice in the Baltic Sea are related to two aspects: climate and marine transport. Depending on the local weather conditions during the winter different types of sea ice can be formed. From the point of winter shipping it is important to locate level and deformed ice areas (rafted ice, ridged ice, and hummocked ice). Because of cloud and daylight independency as well as good spatial resolution, SAR data seems to be the most suitable source of data for sea ice observation in the comparatively small area of the Baltic Sea. We used ASAR Wide Swath Mode data with spatial resolution 150 m. We analyzed data from the three winter seasons which were examples of severe, typical and mild winters. To remove the speckle effect the data were resampled to 250 m pixel size and filtred using Frost filter 5x5. To detect edges we used Sobel filter. The data were also converted into grayscale. Sea ice classification was based on Object-Based Image Analysis (OBIA). Object-based methods are not a common tool in sea ice studies but they seem to accurately separate level ice within the ice pack. The data were segmented and classified using eCognition Developer software. Level ice were classified based on texture features defined by Haralick (Grey Level Co-Occurrence Matrix homogeneity, GLCM contrast, GLCM entropy and GLCM correlation). The long-term changes of the Baltic Sea ice conditions have been already studied. They include date of freezing, date of break-up, sea ice extent and some of work also ice thickness. There is a little knowledge about the relationship of short term changes in sea ice cover and meteorological conditions. In following studies we analyzed the formation of level sea ice depending on some weather conditions (temperature, humidity, pressure at sea level, 10 meter wind). It can be clearly seen that the most important factors influencing formation of level ice are the temperature and wind.
Extreme Sea Level Rise Event Linked to 2009-10 AMOC Downturn
NASA Astrophysics Data System (ADS)
Yin, J.
2016-02-01
The coastal sea levels along the Northeast Coast of North America show significant year-to-year fluctuations in a general upward trend. Our analysis of long-term tide gauge records along the North American east coast identified an extreme sea-level rise (SLR) event during 2009-2010. Within this relatively brief two-year period, coastal sea levels north of New York City jumped by 100 mm. This magnitude of inter-annual SLR is unprecedented in the century-long tide gauge records, with statistical methods suggesting that it was a 1-in-850 year event. We show that this extreme SLR event was a combined effect of two physical factors. First, it was partly due to an observed 30% downturn of the Atlantic meridional overturning circulation (AMOC) during 2009-2010. This AMOC slowdown caused a significant decline of the dynamic sea level gradient across the Gulf Stream and North Atlantic Current, thereby imparting a rise in coastal sea level. The second contributing factor to the extreme SLR event was due to a significant negative North Atlantic Oscillation (NAO) index. The associated easterly or northeasterly wind anomalies acted to push ocean waters towards the Northeast Coast through the Ekman transport, resulting in further rise in coastal sea levels. Sea level pressure anomalies also contributed to the extreme SLR event through the inverse barometer effect. To project future extreme sea levels along the east coast of North America during the 21st century, we make use of a suite of climate/Earth system models developed at GFDL and other modeling centers. These models included typical CMIP5-class models, as well as the newer climate models GFDL CM2.5 and CM2.6 with eddying oceans. In response to the increase in greenhouse-gas concentrations, each of these models show a reduction in the AMOC. Given the observed connection between AMOC reduction and extreme coastal sea levels, the models thus project an increase in extreme SLR frequency on interannual time scales along the Northeast Coast of North America.
Constraining Future Sea Level Rise Estimates from the Amundsen Sea Embayment, West Antarctica
NASA Astrophysics Data System (ADS)
Nias, I.; Cornford, S. L.; Edwards, T.; Gourmelen, N.; Payne, A. J.
2016-12-01
The Amundsen Sea Embayment (ASE) is the primary source of mass loss from the West Antarctic Ice Sheet. The catchment is particularly susceptible to grounding line retreat, because the ice sheet is grounded on bedrock that is below sea level and deepening towards its interior. Mass loss from the ASE ice streams, which include Pine Island, Thwaites and Smith glaciers, is a major uncertainty on future sea level rise, and understanding the dynamics of these ice streams is essential to constraining this uncertainty. The aim of this study is to construct a distribution of future ASE sea level contributions from an ensemble of ice sheet model simulations and observations of surface elevation change. A 284 member ensemble was performed using BISICLES, a vertically-integrated ice flow model with adaptive mesh refinement. Within the ensemble parameters associated with basal traction, ice rheology and sub-shelf melt rate were perturbed, and the effect of bed topography and sliding law were also investigated. Initially each configuration was run to 50 model years. Satellite observations of surface height change were then used within a Bayesian framework to assign likelihoods to each ensemble member. Simulations that better reproduced the current thinning patterns across the catchment were given a higher score. The resulting posterior distribution of sea level contributions is narrower than the prior distribution, although the central estimates of sea level rise are similar between the prior and posterior. The most extreme simulations were eliminated and the remaining ensemble members were extended to 200 years, using a simple melt rate forcing.
NASA Astrophysics Data System (ADS)
Yao, Yantao; Zhan, Wenhuan; Sun, Jie
2017-04-01
Most previous research on sea level indicators (including beachrock, abrasion platforms, notches and coral reefs) from coast of northern South China Sea suggested a higher sea level in the mid-Holocene. Microatolls, considered to be one of the most reliable indicators, led to an estimation of 2 to 3 m or even more higher sea levels in the mid-Holocene at southwest Leizhou Peninsula. Volcanic activities, however, occurred at several stages during the Quaternary at southern Leizhou Peninsula and northern Hainan Island, indicating a tectonically unstable local crust. Comprehensive comparison of microatolls between the volcanic and the non-volcanic coasts implied obvious uplift of the volcanic coast, where elevation of microatolls was higher than those on the non-volcanic coast. In addition, microatolls from the non-volcanic coast universally demonstrated a mid-Holocene higher sea level of less than 1 m. Similar studies to date at some tectonically stable locations, distant from the major glaciation centers (the far-field), provided evidence that the mid-Holocene sea level was not as high as that estimated before. On the longest and also the widest fringing reef of Hainan Island, 10 cores were drilled in a transect approximately perpendicular to coastline. Upper and lower unconformities for the layer of Holocene marine sediments witnessed the Holocene transgression and regression, respectively. U-series and AMS14C ages of in-situ surface corals and deposits from the unconformities, compiled with sedimentary characteristics, announced a highest sea level of 1.18 m in 5.30 cal ka BP. The rapid sea level rise mainly occurred in 6.25 5.75 cal ka BP at a rate up to 11.4 mm/a. From 5.30 cal ka BP to 4.50 cal ka BP, it can be regarded as a relative sea level stand, for most surface fossil microatolls on reef flat lived in this period. Since then there might be a sudden and fast sea level fall in 4.50 4.14 cal ka BP, resulting in fast exposure of the initial reef flat and then fast covering of sand dunes or beachrocks. As a result, fossil microtalls on the initial reef flat were well preserved, which were very important to indicating the mid-Holocene higher sea level. Acknowledgement: This research was supported by the National Program on Key Basic Research Project of China (2013CB956104)、National Natural Science Foundation of China (41376063) and the Chinese-Polish collaborated project ERES.
NASA Astrophysics Data System (ADS)
Anarde, K.; Kameshwar, S.; Irza, N.; Lorenzo-Trueba, J.; Nittrouer, J. A.; Padgett, J.; Bedient, P. B.
2016-12-01
Predicting coastal infrastructure reliability during hurricane events is important for risk-based design and disaster planning, such as delineating viable emergency response routes. Previous research has focused on either infrastructure vulnerability to coastal flooding or the impact of changing sea level and landforms on surge dynamics. Here we investigate the combined impact of sea level, morphology, and coastal flooding on the reliability of highway bridges - the only access points between barrier islands and mainland communities - during future extreme storms. We forward model coastal flooding for static projections of geomorphic change using ADCIRC+SWAN. First-order parameters that are adjusted include sea level and elevation. These are varied for each storm simulation to evaluate relative impact on the reliability of bridges surrounding Freeport, TX. Simulated storms include both synthetic and historical events, which are classified by intensity using the storm's integrated kinetic energy, a metric for surge generation potential. Reliability is estimated through probability of failure - given wave and surge loads - and time inundated. Findings include that: 1) bridge reliability scales inversely with surge height, and 2) sea level rise reduces bridge reliability due to a monotonic increase in surge height. The impact of a shifting landscape on bridge reliability is more complex: barrier island rollback can increase or decrease inundation times for storms of different intensity due to changes in wind-setup and back-barrier bay interactions. Initial storm surge readily inundates the coastal landscape during large intensity storms, however the draining of inland bays following storm passage is significantly impeded by the barrier. From a coastal engineering standpoint, we determine that to protect critical infrastructure, efforts now implemented that nourish low-lying barriers may be enhanced by also armoring back-bay coastlines and elevating bridge approach ramps.
Global mean sea level - Indicator of climate change
NASA Technical Reports Server (NTRS)
Robock, A.; Hansen, J.; Gornitz, V.; Lebedeff, S.; Moore, E.; Etkins, R.; Epstein, E.
1983-01-01
A critical discussion is presented on the use by Etkins and Epstein (1982) of combined surface air temperature and sea level time series to draw conclusions concerning the discharge of the polar ice sheets. It is objected by Robock that they used Northern Hemisphere land surface air temperature records which are unrepresentative of global sea surface temperature, and he suggests that externally imposed volcanic dust and CO2 forcings can adequately account for observed temperature changes over the last century, with global sea level changing in passive response to sea change as a result of thermal expansion. Hansen et al. adduce evidence for global cooling due to ice discharge that has not exceeded a few hundredths of a degree centigrade in the last century, precluding any importance of this phenomenon in the interpretation of global mean temperature trends for this period. Etkins and Epstein reply that since their 1982 report additional evidence has emerged for the hypothesis that the polar ice caps are diminishing. It is reasserted that each of the indices discussed, including global mean sea surface temperature and sea level, polar ice sheet mass balance, water mass characteristics, and the spin rate and axis of rotation displacement of the earth, are physically linked and can be systematically monitored, as is currently being planned under the auspices of the National Climate Program.
NASA Astrophysics Data System (ADS)
Bell, L. J.; Nerem, R. S.; Williams, K.; Meertens, C.; Lestak, L.; Masters, D.
2014-12-01
Sea level is rising in response to climate change. Currently the global mean rate is a little over 3 mm/year, but it is expected to accelerate significantly over this century. This will have a profound impact on coastal populations and infrastructure, including NASA centers and facilities. A detailed study proposed by the University of Colorado's Center for Astrodynamics Research on the impact of sea level rise on several of NASA's most vulnerable facilities was recently funded by NASA. Individual surveys at several high-risk NASA centers were conducted and used as case studies for a broader investigation that needs to be done for coastal infrastructure around the country. The first two years of this study included implementing and conducting a terrestrial laser scanning (TLS) and GPS survey at Kennedy Space Center, Cape Canaveral, Florida, Wallops Flight Facility, Wallops Island, Virginia, Langley Research Center, Hampton, Virginia, and Ames Research Center, Moffett Field, California. We are currently using airborne LiDAR (Light Detection and Ranging) data and TLS (Terrestrial Laser Scanning) data to construct detailed digital elevation models (DEMs) of the facilities that we have assessed. The TLS data acquired at each center provides a very dense point cloud that is being used to improve the detail and accuracy of the digital elevation models currently available. We are also using GPS data we acquired at each center to assess the rate of vertical land movement at the facilities and to tie the DEM to tide gauges and other reference points. With completed, detailed DEMs of the topography and facilities at each center, a series of simple inundation models will then be applied to each area. We will use satellite altimeter data from TOPEX, Jason-1, and Jason-2 to assess the sea level changes observed near these NASA facilities over the last 20 years along with sea level projections from global climate models (GCMs) and semi-empirical projections to make detailed maps of sea level inundation through and up to the years 2050 and 2100 for varying amounts of sea level rise. We will also work with other selected investigators to assess the effects of tidal variations and storm surge when coupled with changes in mean sea level, as storm surge is likely when initial damage due to sea level rise will occur.
Sea Ice Freeboard and Thickness from the 2013 IceBridge ATM and DMS Data in Ross Sea, Antarctica
NASA Astrophysics Data System (ADS)
Xie, H.; Tian, L.; Tang, J.; Ackley, S. F.
2016-12-01
In November (20, 21, 27, and 28) 2013, NASA's IceBridge mission flew over the Ross Sea, Antarctica and collected important sea ice data with the ATM and DMS for the first time. We will present our methods to derive the local sea level and total freeboard for ice thickness retrieval from these two datasets. The methods include (1) leads classification from DMS data using an automated lead detection method, (2) potential leads from the reflectance of less than 0.25 from the ATM laser shots of L1B data, (3) local sea level retrieval based on these qualified ATM laser shots (L1B) within the DMS-derived leads (after outliers removal from the mean ± 2 standard deviation of these ATM elevations), (4) establishment of an empirical equation of local sea level as a function of distance from the starting point of each IceBridge flight, (5) total freeboard retrieval from the ATM L2 elevations by subtracting the local sea level derived from the empirical equation, and (6) ice thickness retrieval. The ice thickness derived from this method will be analyzed and compared with ICESat data (2003-2009) and other available data for the same region at the similar time period. Possible change and potential reasons will be identified and discussed.
Understanding the science of climate change: Talking points - Impacts to the Pacific Islands
Amanda Schramm; Rachel Loehman
2011-01-01
The Pacific islands face a variety of impacts as a result of climate change. Already-observed changes include increased average temperatures, coral bleaching, sea level rise and associated coastal erosion, increased intensity of cyclones, and a trend toward drier conditions. In the next century, sea level rise and associated erosion are expected to shrink shorelines...
The distribution of vesicular-arbuscular mycorrhizal fungi in India.
Rani, R; Mukerji, K G
1990-01-01
Vesicular-arbuscular mycorrhizal fungi are widely distributed throughout the area studied including different altitudes ranging from sea level to 2500 ft above sea level. VAM fungi were recorded from 88% of the sites examined with Glomus fasciculatum and Glomus macrocarpum being the most commonly recorded. Mean species diversity was found to be maximum in the areas thickly vegetated and undisturbed.
Assessing Impacts of Climate Change on Coastal Military Installations: Policy Implications
2013-01-01
the risks of mission impairment during and immediately after tropical and extratropical storms , assuming that sea level rise scenarios intensify these...timescales. .................................... 28 Figure 15: The sedimentary record can be used to obtain long-term storm histories...result in a variety of outcomes across the nation. Key coastal climate stressors include rising sea levels and changes in storm intensity and
Altimetry in Marginal, Semi-Enclosed and Coastal Seas. Part 1; Marginal and Semi-Enclosed Seas
NASA Technical Reports Server (NTRS)
Kantha, Lakshmi H.; Beitzell, Diane M.; Harper, Scott L.; Leben, Robert R.
1994-01-01
The objective of this research is to deduce subtidal sea level anomalies in marginal, semi enclosed and coastal seas around the world from altimetric observations so that this data resource can be used both by itself and in conjunction with numerical circulation models to better understand and predict the circulation in these seas. The regions of interest include bodies of water that form the periphery of the principal ocean basins, both here and abroad as shown in the world bathymetry map.
NASA Astrophysics Data System (ADS)
Kurbatov, G. A.; Padokhin, A. M.
2017-12-01
In the present work we study GNSS - reflectometry methods for estimation of sea level variations using a single GNSS-receiver, which are based on the multipath propagation effects (interference pattern in SNR of GNSS signals at small elevation angles) caused by the reflection of navigational signals from the sea surface. The measurements were carried out in the coastal zone of Black Sea at the Stationary Oceanographic Platform during one-week campaign in the summer 2017. GPS/GLONASS signals at two working frequencies of both systems were used to study sea level variations which almost doubled the amount of observations compared to GPS-only tide gauge. Moreover all the measurements were conducted with 4-antenna GNSS receiver providing the opportunity for different orientations of antennas including zenith and nadir looking ones as well as two horizontally oriented ones at different azimuths. As the reference we used data from co-located wire wave gauge which showed good correspondence of both datasets. Though tidal effects are not so pronounced for the Black Sea, the described experimental setup allowed to study the effects of sea surface roughness, driven by meteorological conditions (e.g. wind waves), as well as antenna directivity pattern effects on the observed interference patterns of GPS/GLONASS L1/L2 signals (relation of the main spectral peak to the noise power) and the quality of sea level estimations.
NASA Astrophysics Data System (ADS)
Ferret, Yann; Voineson, Guillaume; Pouvreau, Nicolas
2014-05-01
Nowadays, the study of the global sea level rise is a strong societal concern. The analysis of historical records of water level proves to be an ideal way to provide relevant arguments regarding the observed trends. In France, many systematic sea level observations have taken place since the mid-1800s. Despite this rich history, long sea level data sets digitally available are still scarce. Currently, only the time series of Brest, Marseille and recently the composite one of the Pertuis d'Antioche span periods longer than a century and are available to be taken into account in studies dealing with long term sea-level evolution. In this context, an important work of "data archaeology" is undertaken to rescue the numerous existing analog historical data that is part of the French scientific and cultural heritage. The present study is focused on the measurements carried out at the sea level observatory of Saint-Nazaire, located on the French Atlantic coast in the Loire estuary mouth area. Measurements were automatically performed with the use of float tide gauges from 1863 to 2007, but include some important gaps between 1920 and 1950. Since 2007, the Saint-Nazaire observatory is part of the French RONIM network operated by SHOM, and the old mechanical tide gauge has been superseded by a radar tide gauge (operated by "Grand Port Maritime" of Nantes-Saint-Nazaire). In total, the covered period is up to 150-year-long, including at least 125 years of continuous sea level measurements. With the reconstruction of this new data set, we aim at improving our knowledge on trends in sea level components on the Atlantic coast on large scale and on the coast vulnerability at more local scale. Moreover, because of the location of the station, it should be possible as well to study the influence of the Loire River on water level since the 19th century. It has been shown that the tidal range was strongly modified during the last century because of the anthropogenic influence along the river (dredging, coastal structures, etc.). This is particularly remarkable in upstream areas such as Nantes, but the impact in downstream locations such as Saint-Nazaire is still not completely quantified. As a first and primordial step, this study implies the inventory and the digitalization of existing ledgers and tidal charts. This time-demanding work induces to check the data quality and to make these data consistent over time in terms of vertical reference and time systems, which both evolved during the studied period. Preliminary analyses assess the high quality of the measurements. Once the final time-serie has been checked and rendered coherent, it will be made available in existing national databanks and websites: REFMAR for high-frequency data (hourly) and SONEL for the corresponding mean sea levels (daily, monthly and yearly).
Interactions of Estuarine Shoreline Infrastructure With Multiscale Sea Level Variability
NASA Astrophysics Data System (ADS)
Wang, Ruo-Qian; Herdman, Liv M.; Erikson, Li; Barnard, Patrick; Hummel, Michelle; Stacey, Mark T.
2017-12-01
Sea level rise increases the risk of storms and other short-term water-rise events, because it sets a higher water level such that coastal surges become more likely to overtop protections and cause floods. To protect coastal communities, it is necessary to understand the interaction among multiday and tidal sea level variabilities, coastal infrastructure, and sea level rise. We performed a series of numerical simulations for San Francisco Bay to examine two shoreline scenarios and a series of short-term and long-term sea level variations. The two shoreline configurations include the existing topography and a coherent full-bay containment that follows the existing land boundary with an impermeable wall. The sea level variability consists of a half-meter perturbation, with duration ranging from 2 days to permanent (i.e., sea level rise). The extent of coastal flooding was found to increase with the duration of the high-water-level event. The nonlinear interaction between these intermediate scale events and astronomical tidal forcing only contributes ˜1% of the tidal heights; at the same time, the tides are found to be a dominant factor in establishing the evolution and diffusion of multiday high water events. Establishing containment at existing shorelines can change the tidal height spectrum up to 5%, and the impact of this shoreline structure appears stronger in the low-frequency range. To interpret the spatial and temporal variability at a wide range of frequencies, Optimal Dynamic Mode Decomposition is introduced to analyze the coastal processes and an inverse method is applied to determine the coefficients of a 1-D diffusion wave model that quantify the impact of bottom roughness, tidal basin geometry, and shoreline configuration on the high water events.
NASA Astrophysics Data System (ADS)
Horton, B. P.; Donnelly, J. P.; Corbett, D. R.; Kemp, A.; Lindeman, K.; Mann, M. E.; Peltier, W. R.; Rahmstorf, S.
2012-12-01
Future inundation of the US Atlantic and Gulf coasts will depend upon both sea-level rise and the intensity and frequency of tropical cyclones, each of which will be affected by climate change. In this proposal, we will employ new interdisciplinary approaches to bring about a step change in the reliability of predictions of such inundation. The rate of sea-level rise along the US Atlantic and Gulf coasts has increased throughout the 20th century. Whilst there is widespread agreement that it continue to accelerate during the 21st century, great uncertainty surrounds its magnitude and geographic distribution. Key uncertainties include the role of continental ice sheets, mountain glaciers and ocean density changes. Insufficient understanding of these complex physical processes precludes accurate prediction of sea-level rise. New approaches using semi-empirical models that relate instrumental records of climate and sea-level rise have projected up to 2 m of sea-level rise by AD 2100. But the time span of instrumental sea-level records is insufficient to adequately constrain the climate:sea-level relationship. Here, we produce new high resolution proxy data of sea-level and temperature to provide crucial additional constraints to such semi-empirical models. Our dataset will span the alternation between the "Medieval Climate Anomaly" and "Little Ice Age". Before the models can provide appropriate data for coastal management and planning, they must be complemented with regional estimates of sea-level rise. Therefore, the proxy sea-level data has been collected from six study areas (Massachusetts, New Jersey, North Carolina, Georgia and Atlantic and Gulf coasts of Florida) to accommodate the required extent of regional variability. In the case of inundation arising from tropical cyclones, the historical and observational records are insufficient for predicting their nature and recurrence, because they are such extreme and rare events. Moreover, in the future, the resultant storm surges will be superimposed on background sea-level rise. To overcome these problems, we couple regional sea-level rise projections with hurricane simulations and storm surge models to map coastal inundation for the current climate and the best and worst case climate scenarios of the IPCC AR4. The products of this proposal will raise the bar for the scientific prediction of region-specific inundation probabilities in terms of coordinated semi-empirical proxy data, hindcast- and forecast-driven sea-level modeling and tropical cyclone forecasting. To optimize transfer of this often complex information for effective adaptive decision-making by managers and planners, we will systematically review >800 adaptation reports and consult early and often with primary endusers to identify their exact needs. We will produce high penetration print and web products for diverse audiences, specific to each region.
NASA Astrophysics Data System (ADS)
Kidwell, David M.; Dietrich, J. Casey; Hagen, Scott C.; Medeiros, Stephen C.
2017-01-01
Rising sea level represents a significant threat to coastal communities and ecosystems, including altered habitats and increased vulnerability to coastal storms and recurrent inundation. This threat is exemplified in the northern Gulf of Mexico, where low topography, marshes, and a prevalence of tropical storms have resulted in extensive coastal impacts. The ability to facilitate adaptation and mitigation measures relies, in part, on the development of robust predictive capabilities that incorporate complex biological processes with physical dynamics. Initiated in 2010, the 6-year Ecological Effects of Sea Level Rise—Northern Gulf of Mexico project applied a transdisciplinary science approach to develop a suite of integrated modeling platforms informed by empirical data that are capable of evaluating a range of climate change scenarios. This special issue highlights resultant integrated models focused on tidal hydrodynamics, shoreline morphology, oyster ecology, coastal wetland vulnerability, and storm surges that demonstrate the need for dynamic models to incorporate feedbacks among physical and biological processes in assessments of sea level rise effects on coastal systems. Effects are projected to be significant, spatially variable and nonlinear relative to sea level rise rates. Scenarios of higher sea level rise rates are projected to exceed thresholds of wetland sustainability, and many regions will experience enhanced storm surges. Influenced by an extensive collaborative stakeholder engagement process, these assessments on the coastal dynamics of sea level rise provide a strong foundation for resilience measures in the northern Gulf of Mexico and a transferable approach for application to other coastal regions throughout the world.
A comparison of two global datasets of extreme sea levels and resulting flood exposure
NASA Astrophysics Data System (ADS)
Muis, Sanne; Verlaan, Martin; Nicholls, Robert J.; Brown, Sally; Hinkel, Jochen; Lincke, Daniel; Vafeidis, Athanasios T.; Scussolini, Paolo; Winsemius, Hessel C.; Ward, Philip J.
2017-04-01
Estimating the current risk of coastal flooding requires adequate information on extreme sea levels. For over a decade, the only global data available was the DINAS-COAST Extreme Sea Levels (DCESL) dataset, which applies a static approximation to estimate extreme sea levels. Recently, a dynamically derived dataset was developed: the Global Tide and Surge Reanalysis (GTSR) dataset. Here, we compare the two datasets. The differences between DCESL and GTSR are generally larger than the confidence intervals of GTSR. Compared to observed extremes, DCESL generally overestimates extremes with a mean bias of 0.6 m. With a mean bias of -0.2 m GTSR generally underestimates extremes, particularly in the tropics. The Dynamic Interactive Vulnerability Assessment model is applied to calculate the present-day flood exposure in terms of the land area and the population below the 1 in 100-year sea levels. Global exposed population is 28% lower when based on GTSR instead of DCESL. Considering the limited data available at the time, DCESL provides a good estimate of the spatial variation in extremes around the world. However, GTSR allows for an improved assessment of the impacts of coastal floods, including confidence bounds. We further improve the assessment of coastal impacts by correcting for the conflicting vertical datum of sea-level extremes and land elevation, which has not been accounted for in previous global assessments. Converting the extreme sea levels to the same vertical reference used for the elevation data is shown to be a critical step resulting in 39-59% higher estimate of population exposure.
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
NASA Astrophysics Data System (ADS)
Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo
2018-03-01
Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the observed orbit-related errors are further investigated. The main contributors on all timescales are uncertainties in Earth's time-variable gravity field models and on annual to interannual timescales discrepancies of the tracking station subnetworks, i.e. satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).
Tracking multidecadal trends in sea level using coral microatolls
NASA Astrophysics Data System (ADS)
Majewski, Jedrzej; Pham, Dat; Meltzner, Aron; Switzer, Adam; Horton, Benjamin; Heng, Shu Yun; Warrick, David
2015-04-01
Tracking multidecadal trends in sea level using coral microatolls Jędrzej M. Majewski 1, Dat T. Pham1, Aron J. Meltzner 1, Adam D. Switzer 1, Benjamin P. Horton2, Shu Yun Heng1, David Warrick3, 1 Earth Observatory of Singapore, Nanyang Technological University, Singapore 2 Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA 3 Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA Coral microatolls can be used to study relative sea-level change at multidecadal timescales associated with vertical land movements, climate induced sea-level rise and other oceanographic phenomena such as the El Niño/Southern Oscillation (ENSO) or Indian Ocean Dipole (IOD) with the assumption that the highest level of survival (HLS) of coral microatolls track sea level over the course of their lifetimes. In this study we compare microatoll records covering from as early as 1883 through 2013, from two sites in Indonesia, with long records (>20 years) from proximal tide gauges, satellite altimetry, and other sea-level reconstructions. We compared the HLS time series derived from open-ocean and moated (or ponded) microatolls on tectonically stable Belitung Island and a potentially tectonically active setting in Mapur Island, with sea-level reconstructions for 1950-2011. The sea-level reconstructions are based on ground and satellite measurements, combining a tide model with the Estimating the Circulation and Climate of the Ocean (ECCO) model. Our results confirm that open-ocean microatolls do track low water levels at multi decadal time scales and can be used as a proxy for relative sea level (RSL) over time. However, microatolls that are even partially moated are unsuitable and do not track RSL; rather, their growth patterns likely reflect changes in the elevation of the sill of the local pond, as reported by earlier authors. Our ongoing efforts will include an attempt to recognize similarities in moated microatolls that may be helpful in identifying fossil microatolls that grew in moated settings. We will also attempt to build guidelines for recognizing and excluding living ponded microatolls in the field.
SeaWiFS calibration and validation plan, volume 3
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Esaias, Wayne E.; Barnes, William; Guenther, Bruce; Endres, Daniel; Mitchell, B. Greg; Barnes, Robert
1992-01-01
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) will be the first ocean-color satellite since the Nimbus-7 Coastal Zone Color Scanner (CZCS), which ceased operation in 1986. Unlike the CZCS, which was designed as a proof-of-concept experiment, SeaWiFS will provide routine global coverage every 2 days and is designed to provide estimates of photosynthetic concentrations of sufficient accuracy for use in quantitative studies of the ocean's primary productivity and biogeochemistry. A review of the CZCS mission is included that describes that data set's limitations and provides justification for a comprehensive SeaWiFS calibration and validation program. To accomplish the SeaWiFS scientific objectives, the sensor's calibration must be constantly monitored, and robust atmospheric corrections and bio-optical algorithms must be developed. The plan incorporates a multi-faceted approach to sensor calibration using a combination of vicarious (based on in situ observations) and onboard calibration techniques. Because of budget constraints and the limited availability of ship resources, the development of the operational algorithms (atmospheric and bio-optical) will rely heavily on collaborations with the Earth Observing System (EOS), the Moderate Resolution Imaging Spectrometer (MODIS) oceans team, and projects sponsored by other agencies, e.g., the U.S. Navy and the National Science Foundation (NSF). Other elements of the plan include the routine quality control of input ancillary data (e.g., surface wind, surface pressure, ozone concentration, etc.) used in the processing and verification of the level-0 (raw) data to level-1 (calibrated radiances), level-2 (derived products), and level-3 (gridded and averaged derived data) products.
XXI century projections of wind-wave conditions and sea-level rise in the Black sea
NASA Astrophysics Data System (ADS)
Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.
2012-04-01
Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which generates the high waves in the S-E Black sea. The climate projections show that the frequency of such atmospheric pattern will not principally increase. The recent probability of the extreme wave height (exceeding 8 to10 m) in the S-W Black sea (~1 occurrence per 10 years) will not be much worse in XXI century. Similar conclusion is true for the storm surges along the Bulgarian coastline. Expected sea level rise in the Black sea basin for XXI century due to regional climate changes is about 2 mm per year (±50%). However, some Black sea subregions (such as Odessa and Varna bay) are characterized by fivefold sea level rise because of the local land subsidence. So, this geomorphologic effect is the most dangerous local consequence for the sustainable development and management of the coastal zone in such subregions. This study was supported by EC project "THESEUS".
NASA Astrophysics Data System (ADS)
Treuer, G.
2017-12-01
Sea level rise threatens coastal communities around the world, including South Florida which may be the most financially vulnerable region in the world. Proactive investments in sea level rise adaptive flood protections could reduce South Florida's financial vulnerability. However, it is unclear if local governments and homeowners will be willing to make those investments before it is too late. Our research explores this issue by reporting the results of a novel online simulation that accelerates 348 South Florida homeowners thirty-five years into the future so that they can `live' the effects of sea level rise. The results contain a mix of optimism and caution for the prospects of future adaptation. On the positive side over 75% of participants indicated a willingness to support bond issues to pay for adaptation, even as the costs of the measures and effects of sea level rise increased over the years. Likewise, we find little evidence that politically conservative residents who normally have more skeptical views about climate change would be any less inclined to support adaptation, or only look to information sources that downplay the threat. On the negative side, homeowner interest in moving out of the region increases steadily over time as the sea level rises. This is driven by an increase in worry associated with viewing more information within the simulation.
NASA Astrophysics Data System (ADS)
Rose, S. A.; Wrathall, D.
2017-12-01
Over the coming centuries and millennia, sea level rise will greatly redistribute global human population through displacement and migration. Sudden, large-scale displacement is extremely disruptive to society both for migrants and host communities, and there is a great scientific and policy need to anticipate where, when and how this could happen around sea level rise. We can meet these needs by examining how long-term coastal inundation of settlements has already occurred. Using two global geospatial data sets, the Global Human Settlement Layer and the Global Surface Water Layer, we examine the global spatial concentration of settlement inundation that occurred between 1990 and 2015. We focus on the eight sea level rise hotspots identified in Clark et al (2016), which include Bangladesh, Mekong Delta, Indonesia, Japan, Nile Delta, Philippines, and the US Mid-Atlantic and Gulf of Mexico, and examine areas of convergence between settlement loss density and negative population change. This analysis reveals specific areas of concern within vulnerable countries, and forms the basis for focused investigations of the long-term impact of coastal inundation on various migration systems. This analysis shows us how long-term sets of satellite derived data on human population can help anticipate how sea level rise will alter future patterns of human settlement and migration into the 21st century and beyond.
Uprated OMS Engine Status-Sea Level Testing Results
NASA Technical Reports Server (NTRS)
Bertolino, J. D.; Boyd, W. C.
1990-01-01
The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.
Daytime sea fog retrieval based on GOCI data: a case study over the Yellow Sea.
Yuan, Yibo; Qiu, Zhongfeng; Sun, Deyong; Wang, Shengqiang; Yue, Xiaoyuan
2016-01-25
In this paper, a new daytime sea fog detection algorithm has been developed by using Geostationary Ocean Color Imager (GOCI) data. Based on spectral analysis, differences in spectral characteristics were found over different underlying surfaces, which include land, sea, middle/high level clouds, stratus clouds and sea fog. Statistical analysis showed that the Rrc (412 nm) (Rayleigh Corrected Reflectance) of sea fog pixels is approximately 0.1-0.6. Similarly, various band combinations could be used to separate different surfaces. Therefore, three indices (SLDI, MCDI and BSI) were set to discern land/sea, middle/high level clouds and fog/stratus clouds, respectively, from which it was generally easy to extract fog pixels. The remote sensing algorithm was verified using coastal sounding data, which demonstrated that the algorithm had the ability to detect sea fog. The algorithm was then used to monitor an 8-hour sea fog event and the results were consistent with observational data from buoys data deployed near the Sheyang coast (121°E, 34°N). The goal of this study was to establish a daytime sea fog detection algorithm based on GOCI data, which shows promise for detecting fog separately from stratus.
Surging Seas Risk Finder: A Tool for Local-Scale Flood Risk Assessments in Coastal Cities
NASA Astrophysics Data System (ADS)
Kulp, S. A.; Strauss, B.
2015-12-01
Local decision makers in coastal cities require accurate, accessible, and thorough assessments of flood exposure risk within their individual municipality, in their efforts to mitigate against damage due to future sea level rise. To fill this need, we have developed Climate Central's Surging Seas Risk Finder, an interactive data toolkit which presents our sea level rise and storm surge analysis for every coastal town, city, county, and state within the USA. Using this tool, policy makers can easily zoom in on their local place of interest to receive a detailed flood risk assessment, which synthesizes a wide range of features including total population, socially vulnerable population, housing, property value, road miles, power plants, schools, hospitals, and many other critical facilities. Risk Finder can also be used to identify specific points of interest in danger of exposure at different flood levels. Additionally, this tool provides localized storm surge probabilities and sea level rise projections at tidal gauges along the coast, so that users can quickly understand the risk of flooding in their area over the coming decades.
Looking Back to the Future: Insight on Anthropocene beaches from Holocene and Pleistocene barriers
NASA Astrophysics Data System (ADS)
Dougherty, A. J.; Choi, J. H.; Turney, C. S.; Dosseto, A.
2017-12-01
`Super' storms and accelerated rates of sea-level rise are forecast in the Anthropocene, but how coasts will respond (or even if they have started to be impacted) remain uncertain. The onset of this new anthropogenic age is considered mid-1900s when multiple indices including sea level exceed previous Holocene measurements. Centuries of sea surface elevation data, used to project an increase of up to 2m by 2100, show that the current rise started 200 years ago. Similar records of storms or shoreline evolution over these centennial time-scales do not exist. With empirical studies of coastal morphodynamics concentrated during decades of accelerated sea-level rise, present-day beaches can be considered Anthropocene features. To determine the future of vulnerable sandy shorelines, climate change scenarios of increased sea level and storm intensity have been combined with computer models integrating short-term process data with large-scale coastal evolution. The uncertainty in these models can be reduced with longer sea level and storm records as well as filling the gap between detailed beach profile/wave buoy data and generalized barrier stratigraphy. High-resolution chronostratigraphic models necessary to achieve this can be constructed using Light Detection And Ranging (LiDAR), Ground Penetrating Radar (GPR), and Optically Stimulated Luminescence (OSL). Combined GPR, OSL and LiDAR (GOaL) on prograded barriers enables analysis of shorelines back through time, by comparing behaviour since the onset of anthropogenic global warming to that in the preceding millennia. Extracting a record of coastal evolution prior to and since seas began to rise two centuries ago offers the opportunity to detect any difference indicating if/how shorelines have responded. In double barrier systems with composite Holocene and Pleistocene components GOaL can extend the Anthropocene record back to when seas were known to have been higher than today. To demonstrate the potential of GOaL, data collected over the past twenty years from North America and the South Pacific are presented; including some classic prograded barriers studied initially in the 1960s and extensively the 1980s. The resulting records of sea level, storms and sediment supply provide insight on, and input for modelling of, climate change and coastal evolution.
How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?
NASA Astrophysics Data System (ADS)
Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J. Walter; Bossick, Matthew
2016-01-01
Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between 42 and 57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.
How Much Are Floridians Willing to Pay for Protecting Sea Turtles from Sea Level Rise?
Hamed, Ahmed; Madani, Kaveh; Von Holle, Betsy; Wright, James; Milon, J Walter; Bossick, Matthew
2016-01-01
Sea level rise (SLR) is posing a great inundation risk to coastal areas. Some coastal nesting species, including sea turtle species, have experienced diminished habitat from SLR. Contingent valuation method (CVM) was used in an effort to assess the economic loss impacts of SLR on sea turtle nesting habitats for Florida coasts; and to elicit values of willingness to pay (WTP) of Central Florida residents to implement certain mitigation strategies, which would protect Florida's east coast sea turtle nesting areas. Using the open-ended and dichotomous choice CVM, we sampled residents of two Florida communities: Cocoa Beach and Oviedo. We estimated the WTP of households from these two cities to protect sea turtle habitat to be between $42 and $57 per year for 5 years. Additionally, we attempted to assess the impact of the both the respondents' demographics and their perception toward various situations on their WTP value. Findings include a negative correlation between the age of a respondent and the probability of an individual willing to pay the hypothetical WTP amount. We found that WTP of an individual was not dependent on prior knowledge of the effects of SLR on sea turtle habitat. The greatest indicators of whether or not an individual was willing to pay to protect sea turtle habitat were the respondents' perception regarding the trustworthiness and efficiency of the party which will implement the conservation measures and their confidence in the conservation methods used. Respondents who perceive sea turtles having an effect on their life were also more likely to pay.
Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) PARM tape user's guide
NASA Technical Reports Server (NTRS)
Han, D.; Gloersen, P.; Kim, S. T.; Fu, C. C.; Cebula, R. P.; Macmillan, D.
1992-01-01
The Scanning Multichannel Microwave Radiometer (SMMR) instrument, onboard the Nimbus-7 spacecraft, collected data from Oct. 1978 until Jun. 1986. The data were processed to physical parameter level products. Geophysical parameters retrieved include the following: sea-surface temperatures, sea-surface windspeed, total column water vapor, and sea-ice parameters. These products are stored on PARM-LO, PARM-SS, and PARM-30 tapes. The geophysical parameter retrieval algorithms and the quality of these products are described for the period between Nov. 1978 and Oct 1985. Additionally, data formats and data availability are included.
GIS analysis of effects of future Baltic sea level rise on the island of Gotland, Sweden
NASA Astrophysics Data System (ADS)
Ebert, Karin; Ekstedt, Karin; Jarsjö, Jerker
2016-07-01
Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly the effects of future sea level rise are investigated for relatively vulnerable development countries; however, a whole range of varying regions needs to be considered in order to improve the understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps regarding comparatively well-suited areas in developed countries. We study both the quantity of the loss of features of infrastructure, cultural, and natural value in the case of a 2 m sea level rise of the Baltic Sea and the effects of climate change on seawater intrusion in coastal aquifers, which indirectly cause saltwater intrusion in wells. We conduct a multi-criteria risk analysis by using lidar data on land elevation and GIS-vulnerability mapping, which gives the application of distance and elevation parameters formerly unimaginable precision. We find that in case of a 2 m sea level rise, 3 % of the land area of Gotland, corresponding to 99 km2, will be inundated. The features most strongly affected are items of touristic or nature value, including camping places, shore meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion in wells will increase considerably. Some valuable features will be irreversibly lost due to, for example, inundation of sea stacks and the passing of tipping points for seawater intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. With nature tourism being one of the main income sources of Gotland, monitoring and planning are required to meet the changes. Seeing Gotland in a global perspective, this island shows that holistic multi-feature studies of future consequences of sea level rise are required to identify overall consequences for individual regions.
Global climate change and sea level rise: potential losses of intertidal habitat for shorebirds
H. Galbraith; R. Jones; R. Park; J. Clough; S. Herrod-Julius; B. Harrington; G. Page
2005-01-01
Global warming is expected to result in an acceleration of current rates of sea level rise, inundating many low-lying coastal and intertidal areas. This could have important implications for organisms that depend on these sites, including shorebirds that rely on them for foraging habitat during their migrations and in winter. We modeled the potential changes in the...
Increased Flooding Risk - Accelerating Threat and Stakeholder Response
NASA Astrophysics Data System (ADS)
Atkinson, L. P.; Ezer, T.; De Young, R.; McShane, M. K.; McFarlane, B.
2012-12-01
Coastal cities have been adapting to coastal flooding for centuries. Now, with increased population along the coast combined with increased flooding because of sea level rise (SLR) the vulnerability of coastal cities has increased significantly. In this paper we will discuss the physical threat of accelerating sea level rise and the response of stakeholders. Sallenger et al (2012) stated "... we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modeled fingerprint of dynamic SLR." In the Northeast Hotspot (NEH) dynamic processes such as Gulf Stream transport can cause local sea level differences (Ezer, 2001). Sweet et al (2009) attributed the anomalously high sea level along the mid-Atlantic in 2009 to dynamic SLR. A recent paper (Ezer and Corlett, 2012 submitted), focused on Chesapeake Bay, confirms Sallenger et al. These accelerations suggest that the higher estimates of SLR in IPCC reports may be better estimates. The combination of local sea level rise and acceleration, even with average coastal storm surge, results in increased vulnerability and economic losses. We will use three examples of stakeholder response to this threat: shipbuilding, cities and insurance. Nuclear aircraft carrier drydock in Newport News, VA - The only drydock where nuclear powered aircraft carriers are built flooded during Hurricane Isabel. A study showed that with a 1 meter sea level rise and no change in storm severity they would have 'Major Flooding' every 4 months rather than every 27 years. Cities infrastructure - In a recent report on sea level rise, the Hampton Roads Planning District Commission (representing nearly 2m people) found that "sea level rise will be a major issue", "there is not yet official state or federal guidance for addressing sea level rise", "…the "…U.S. Army Corps of Engineers has developed guidance…" for their projects, and "…subsidence …. is not well-documented". Studies sponsored by the City of Norfolk for example suggest massive tidal barriers. Flood insurance - Flood insurance is available only from the National Flood Insurance Program (NFIP), not from private insurers. NFIP has a current deficit of about 18B, which is estimated to increase by about 2B annually. The rates are subsidized and do not reflect the true risk of coastal flooding and do not incorporate the likelihood of future sea-level rise. In effect, the subsidy promotes increased building on the coast, leading to increased deficits in the tax-payer financed program. Risk-based flood insurance pricing would lead to less coastal development, therefore decreasing the tax base of the community. Stakeholder needs - Planning for increased flooding due to sea level rise extends 50 to 100 years given the lifetime of infrastructure. Planners need guidance and error estimates. To make adequate predictions for users we must understand the various components of sea level rise including subsidence, global sea level rise and regional and local dynamic sea level rise. Predictions of regional sea level rise will be presented in the context of existing infrastructure such as NASA research facilities and the city of Norfolk, Virginia.
NASA Technical Reports Server (NTRS)
Suarez, Max J. (Editor); Chang, Yehui; Schubert, Siegfried D.; Lin, Shian-Jiann; Nebuda, Sharon; Shen, Bo-Wen
2001-01-01
This document describes the climate of version 1 of the NASA-NCAR model developed at the Data Assimilation Office (DAO). The model consists of a new finite-volume dynamical core and an implementation of the NCAR climate community model (CCM-3) physical parameterizations. The version of the model examined here was integrated at a resolution of 2 degrees latitude by 2.5 degrees longitude and 32 levels. The results are based on assimilation that was forced with observed sea surface temperature and sea ice for the period 1979-1995, and are compared with NCEP/NCAR reanalyses and various other observational data sets. The results include an assessment of seasonal means, subseasonal transients including the Madden Julian Oscillation, and interannual variability. The quantities include zonal and meridional winds, temperature, specific humidity, geopotential height, stream function, velocity potential, precipitation, sea level pressure, and cloud radiative forcing.
Decadal-timescale estuarine geomorphic change under future scenarios of climate and sediment supply
Ganju, N.K.; Schoellhamer, D.H.
2010-01-01
Future estuarine geomorphic change, in response to climate change, sea-level rise, and watershed sediment supply, may govern ecological function, navigation, and water quality. We estimated geomorphic changes in Suisun Bay, CA, under four scenarios using a tidal-timescale hydrodynamic/sediment transport model. Computational expense and data needs were reduced using the morphological hydrograph concept and the morphological acceleration factor. The four scenarios included (1) present-day conditions; (2) sea-level rise and freshwater flow changes of 2030; (3) sea-level rise and decreased watershed sediment supply of 2030; and (4) sea-level rise, freshwater flow changes, and decreased watershed sediment supply of 2030. Sea-level rise increased water levels thereby reducing wave-induced bottom shear stress and sediment redistribution during the wind-wave season. Decreased watershed sediment supply reduced net deposition within the estuary, while minor changes in freshwater flow timing and magnitude induced the smallest overall effect. In all future scenarios, net deposition in the entire estuary and in the shallowest areas did not keep pace with sea-level rise, suggesting that intertidal and wetland areas may struggle to maintain elevation. Tidal-timescale simulations using future conditions were also used to infer changes in optical depth: though sea-level rise acts to decrease mean light irradiance, decreased suspended-sediment concentrations increase irradiance, yielding small changes in optical depth. The modeling results also assisted with the development of a dimensionless estuarine geomorphic number representing the ratio of potential sediment import forces to sediment export forces; we found the number to be linearly related to relative geomorphic change in Suisun Bay. The methods implemented here are widely applicable to evaluating future scenarios of estuarine change over decadal timescales. ?? The Author(s) 2009.
NASA Astrophysics Data System (ADS)
Shennan, Ian; Bradley, Sarah L.; Edwards, Robin
2018-05-01
The new sea-level database for Britain and Ireland contains >2100 data points from 86 regions and records relative sea-level (RSL) changes over the last 20 ka and across elevations ranging from ∼+40 to -55 m. It reveals radically different patterns of RSL as we move from regions near the centre of the Celtic ice sheet at the last glacial maximum to regions near and beyond the ice limits. Validated sea-level index points and limiting data show good agreement with the broad patterns of RSL change predicted by current glacial isostatic adjustment (GIA) models. The index points show no consistent pattern of synchronous coastal advance and retreat across different regions, ∼100-500 km scale, indicating that within-estuary processes, rather than decimetre- and centennial-scale oscillations in sea level, produce major controls on the temporal pattern of horizontal shifts in coastal sedimentary environments. Comparisons between the database and GIA model predictions for multiple regions provide potentially powerful constraints on various characteristics of global GIA models, including the magnitude of MWP1A, the final deglaciation of the Laurentide ice sheet and the continued melting of Antarctica after 7 ka BP.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Acker, James G. (Editor); Campbell, Janet W.; Blaisdell, John M.; Darzi, Michael
1995-01-01
The level-3 data products from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are statistical data sets derived from level-2 data. Each data set will be based on a fixed global grid of equal-area bins that are approximately 9 x 9 sq km. Statistics available for each bin include the sum and sum of squares of the natural logarithm of derived level-2 geophysical variables where sums are accumulated over a binning period. Operationally, products with binning periods of 1 day, 8 days, 1 month, and 1 year will be produced and archived. From these accumulated values and for each bin, estimates of the mean, standard deviation, median, and mode may be derived for each geophysical variable. This report contains two major parts: the first (Section 2) is intended as a users' guide for level-3 SeaWiFS data products. It contains an overview of level-0 to level-3 data processing, a discussion of important statistical considerations when using level-3 data, and details of how to use the level-3 data. The second part (Section 3) presents a comparative statistical study of several binning algorithms based on CZCS and moored fluorometer data. The operational binning algorithms were selected based on the results of this study.
NASA Astrophysics Data System (ADS)
Nikitina, Daria; Kemp, Andrew; Horton, Benjamin; Van, Christopher; Potapova, Marina; Culver, Stephen; Repkina, Tatyana; Hill, David
2017-04-01
We investigated the utility of foraminifera, diatoms and bulk-sediment geochemistry (δ13C and parameters measured by RockEval pyrolysis) as sea-level indicators in Eurasian sub-Arctic salt marshes. At three salt marshes in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects sequentially crossing sub-tidal, tidal-flat, salt-marsh and Taiga forest environments. Foraminifera formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Both assemblages existed on all three transects and we conclude that foraminifera are sea-level indicators in Eurasian sub-Arctic salt marshes. Five, high-diversity groups of diatoms were identified and they displayed geographic variability among the study sites (<15 km apart). RockEval pyrolysis and δ13C measurements recognized two groups (clastic-dominated environments below MHHW and organic-rich environments above MHHW). Since one group included sub-tidal elevations and the other supra-tidal elevations, we conclude that the measured geochemical parameters do not meet the criteria for being stand-alone sea-level indicators. Core JT2012 captured a regressive sediment sequence of clastic, tidal-flat sediment overlain by salt-marsh organic silt and freshwater peat. The salt-marsh sediment accumulated at 2804 ± 52 years BP years before present and preserved foraminifera (J. macrescens and B. pseudomacrescens) with a high degree of analogy to modern assemblages indicating that relative sea level was 2.60 ± 0.47 m above present at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limits their utility as sea-level indicators in this setting.
Nelson, Joanna L; Zavaleta, Erika S
2012-01-01
Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH(4)NO(3))-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication.
Nelson, Joanna L.; Zavaleta, Erika S.
2012-01-01
Coastal salt marshes are among Earth's most productive ecosystems and provide a number of ecosystem services, including interception of watershed-derived nitrogen (N) before it reaches nearshore oceans. Nitrogen pollution and climate change are two dominant drivers of global-change impacts on ecosystems, yet their interacting effects at the land-sea interface are poorly understood. We addressed how sea-level rise and anthropogenic N additions affect the salt marsh ecosystem process of nitrogen uptake using a field-based, manipulative experiment. We crossed simulated sea-level change and ammonium-nitrate (NH4NO3)-addition treatments in a fully factorial design to examine their potentially interacting effects on emergent marsh plants in a central California estuary. We measured above- and belowground biomass and tissue nutrient concentrations seasonally and found that N-addition had a significant, positive effect on a) aboveground biomass, b) plant tissue N concentrations, c) N stock sequestered in plants, and d) shoot:root ratios in summer. Relative sea-level rise did not significantly affect biomass, with the exception of the most extreme sea-level-rise simulation, in which all plants died by the summer of the second year. Although there was a strong response to N-addition treatments, salt marsh responses varied by season. Our results suggest that in our site at Coyote Marsh, Elkhorn Slough, coastal salt marsh plants serve as a robust N trap and coastal filter; this function is not saturated by high background annual N inputs from upstream agriculture. However, if the marsh is drowned by rising seas, as in our most extreme sea-level rise treatment, marsh plants will no longer provide the ecosystem service of buffering the coastal ocean from eutrophication. PMID:22879873
NASA Astrophysics Data System (ADS)
Grant, K.; Rohling, E. J.; Amies, J.
2017-12-01
Sea-level (SL) reconstructions over glacial-interglacial timeframes are critical for understanding the equilibrium response of ice sheets to sustained warming. In particular, continuous and high-resolution SL records are essential for accurately quantifying `natural' rates of SL rise. Global SL changes are well-constrained since the last glacial maximum ( 20,000 years ago, ky) by radiometrically-dated corals and paleoshoreline data, and fairly well-constrained over the last glacial cycle ( 150 ky). Prior to that, however, studies of ice-volume:SL relationships tend to rely on benthic δ18O, as geomorphological evidence is far more sparse and less reliably dated. An alternative SL reconstruction method (the `marginal basin' approach) was developed for the Red Sea over 500 ky, and recently attempted for the Mediterranean over 5 My (Rohling et al., 2014, Nature). This method exploits the strong sensitivity of seawater δ18O in these basins to SL changes in the relatively narrow and shallow straits which connect the basins with the open ocean. However, the initial Mediterranean SL method did not resolve sea-level highstands during Northern Hemisphere insolation maxima, when African monsoon run-off - strongly depleted in δ18O - reached the Mediterranean. Here, we present improvements to the `marginal basin' sea-level reconstruction method. These include a new `Med-Red SL stack', which combines new probabilistic Mediterranean and Red Sea sea-level stacks spanning the last 500 ky. We also show how a box model-data comparison of water-column δ18O changes over a monsoon interval allows us to quantify the monsoon versus SL δ18O imprint on Mediterranean foraminiferal carbonate δ18O records. This paves the way for a more accurate and fully continuous SL reconstruction extending back through the Pliocene.
Vulnerability to climate variability and change in East Timor.
Barnett, Jon; Dessai, Suraje; Jones, Roger N
2007-07-01
This paper presents the results of a preliminary study of climate vulnerability in East Timor. It shows the results of projections of climate change in East Timor. The country's climate may become hotter, drier, and increasingly variable. Sea levels are likely to rise. The paper then considers the implications of these changes on three natural resources--water, soils, and the coastal zone--and finds all to be sensitive to changes in climate and sea level. Changes in the abundance and distribution of these resources is likely to cause a reduction in agricultural production and food security, and sea-level rise is likely to damage coastal areas, including Dili, the capital city.
NASA Astrophysics Data System (ADS)
Passeri, D.; Hagen, S. C.; Medeiros, S. C.
2013-12-01
Sea level rise (SLR) threatens coastal environments with loss of land, inundation of coastal wetlands, and increased flooding during extreme storm events. Research has shown that SLR is a major factor in the long-term, gradual retreat of shorelines (Fitzgerald et al., 2008). Along sandy shorelines, retreat has a more dynamic effect than just inundation due to rising water levels, including the physical process of erosion in which sand is removed from the shoreface and deposited offshore. This has the potential to affect ecological habitats as well as coastal communities. Although SLR induces seaward retreat of shorelines, many shorelines especially within the vicinity of inlets may experience accretion due to sediment trapping or beach replenishment (Aubrey and Giese, 1993, Browder and R.G., 1999). This study examines the influence of including projected shoreline changes under future sea states into hydrodynamic modeling within the Northern Gulf of Mexico (NGOM). The NGOM coastline is an economically and ecologically significant area, comprised of various bays, barrier islands and mainland beaches. Projected shorelines and nearshore morphology for the year 2050 are derived from the Coastal Vulnerability Index (CVI) shoreline change rates (Thieler and Hammer-Klose, 1999) and used in conjunction with the 'Bruun Rule effect'(Bruun, 1962). A large scale hydrodynamic model forced by astronomic tides and hurricane winds and pressures is used to simulate present conditions, a high projection of the 2050 sea state (18 in of SLR in accordance with Parris et al. (2012)) and the 2050 high sea state with 2050 shorelines to test the sensitivity of the system to the projected shoreline changes. Results show that shoreline changes coupled with sea level rise increases tidal inundation along shorelines, amplifies overtopping of barrier islands during storm surge events, and heightens inland storm surge inundation. It is critical to include estimates of shoreline and barrier island morphology when considering the hydrodynamics of extreme SLR projections. Aubrey, D. J. and G. S. Giese (1993). "Formation and Evolution of Multiple Tidal Inlets." Coastal Estuarine Stud. 44: 1-61. Browder, A. E. and D. R.G. (1999). "Pensacola Pass, FL Inlet Management Study". Coastal & Oceanographic Engineering Department, University of Florida, Prepared for Florida Department of Environmental Proection Bureau of Beaches and Coastal Systems. Bruun, P. (1962). "Sea-level rise as a cause of shore erosion." Proceedings of the American Society of Civil Engineers, Journal of the Waterways and Harbors Division 88: 117-130. Fitzgerald, D. M., M. S. Fenster, B. A. Argow and I. V. Buynevich (2008). "Coastal Impacts Due to Sea Level Rise." Annual Review Earth Planet Science 36: 601-647. Parris, A., P. Bromirski, V. Burkett, D. Cayan, M. Culver, J. Hall, R. Horton, K. Knuuti, R. Moss, J. Obeysekera, A. Sallenger and J. Weiss (2012). "Global Sea Level Rise Scenarios for the United States National Climate Assessment". NOAA Tech Memo OAR CPO-1: 37. Thieler, E. R. and E. S. Hammer-Klose (1999). "National Assessment of Coastal Vulnerability to Sea Level rise: Preliminary Results for the U.S. Atlantic Coast". Woods Hole, Massachusetts, US Geological Survey.
NASA Astrophysics Data System (ADS)
Torab, Magdy
2016-02-01
Ras El Hekma area is a part of the NW coast of Egypt. It is located on the Egyptian Mediterranean Coast, approximately 220 km West of Alexandria City. It is shaped as a triangle with its headland extending into the Mediterranean sea for about 15 km, and is occupied by sedimentary rocks belonging to the Tertiary and Quaternary Eras. Its western coastline consists of Pleistocene Oolitic limestone ridges with separated steep scarps, while the eastern coastline consists of sandy beaches, coastal spits, coastal bars, tombolos and bays. The objective of this paper is to define some geomorphological and geoarchaelological indicators of The Holocene sea-level changes in the study area, especially the geomorphic landforms such as: marine notches, cliffs, sea caves and benches. This is to add to some archaeological remains that have been discovered by the paper's author under the current sea level. These remains include: submerged ruins of Greek and Roman harbors, wells and fish tanks near the coastline (Leuke Akte, Hermaea, Phoinikous and Zygris), in addition to an ancient Roman harbor used during the World War II in Tell El Zaytun area (Site #6). Evaluations of the discovered archaeological remains help our understanding of the evolution of the sea level during the Holocene. This study is based on observation of the relative sea-level curves drawn of the Holocene, detailed geomorphological and Geoarchaelogical surveying, sampling, dating and mapping as well as satellite image interpretation and GIS techniques.
SeaWiFS technical report series. Volume 9: The simulated SeaWiFS data set, version 1
NASA Technical Reports Server (NTRS)
Gregg, Watson W.; Chen, Frank C.; Mezaache, Ahmed L.; Chen, Judy D.; Whiting, Jeffrey A.; Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Indest, A. W. (Editor)
1993-01-01
Data system development activities for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) must begin well before the scheduled 1994 launch. To assist in these activities, it is essential to develop a simulated SeaWiFS data set as soon as possible. Realism is of paramount importance in this data set, including SeaWiFS spectral bands, orbital and scanning characteristics, and known data structures. Development of the simulated data set can assist in identification of problem areas that can be addressed and solved before the actual data are received. This paper describes the creation of the first version of the simulated SeaWiFS data set. The data set includes the spectral band, orbital, and scanning characteristics of the SeaWiFS sensor and SeaStar spacecraft. The information is output in the data structure as it is stored onboard. Thus, it is a level-0 data set which can be taken from start to finish through a prototype data system. The data set is complete and correct at the time of printing, although the values in the telemetry fields are left blank. The structure of the telemetry fields, however, is incorporated. Also, no account for clouds has been included. However, this version facilitates early prototyping activities by the SeaWiFS data system, providing a realistic data set to assess performance.
Morphology of GALÁPAGOS Platform Seamounts: a History of Emergence and Submergmence
NASA Astrophysics Data System (ADS)
Soule, S. A.; Wanless, V. D.; Fornari, D. J.; Jones, M.; Schwartz, D. M.; Richards, M. A.
2016-12-01
The morphology of submarine volcanoes is generally well-preserved due to the lack of erosion. However, when submarine volcanoes breach the sea surface, significant erosion can occur through wave action. New bathymetric mapping of seamounts around the Galápagos Islands of Santiago, Floreana, and Isabela show evidence of such subaerial erosion despite currently residing at depths >100m. We present results from a Sept. 2015 cruise to the Galapagos platform on the M/V Alucia including ship-based bathymetric mapping, AUV-based bathymetric and sidescan sonar mapping, and observations and samples from human-occupied submersible dives. The bathymetric mapping reveals dozens of previously unknown seamounts on the relatively unexplored shallow Galápagos platform (<1000m). Among these seamounts, many display evidence of having been previously above sea level including erosional benches (insular shelves) or entirely flat tops along, heavily eroded cobbles and beach deposits, and subaerially erupted lavas at depths from 120m to >200m. Seamounts, however, can develop flat tops without having been exposed above sea level. Thus, we combine a variety of data sets to determine whether seamounts were exposed above sea level and how the morphology of those seamounts can be discriminated from seamounts that have never reached the sea surface. Included in these data sets are measurements of cosmogenic Helium that provides an independent means to confirm which seamounts were emergent. The existence of broad areas of originally-subaerial lava flows on the Galápagos platform that are now at water depths >200 m requires that in addition to ice-age-related sea level excursions, there has also been at least 100m (and perhaps more) dynamic subsidence of the platform as it has passed over the active Galapagos plume. As a result, much of the platform may have been exposed subaerially during the past several million years, with significant implications for speciation among the endemic fauna.
Global and Regional Sea Level Rise Scenarios for the United States
NASA Technical Reports Server (NTRS)
Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris
2017-01-01
The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).
Subseasonal to Seasonal Predictions of U.S. West Coast High Water Levels
NASA Astrophysics Data System (ADS)
Khouakhi, A.; Villarini, G.; Zhang, W.; Slater, L. J.
2017-12-01
Extreme sea levels pose a significant threat to coastal communities, ecosystems, and assets, as they are conducive to coastal flooding, coastal erosion and inland salt-water intrusion. As sea levels continue to rise, these sea level extremes - including occasional minor coastal flooding experienced during high tide (nuisance floods) - are of concern. Extreme sea levels are increasing at many locations around the globe and have been attributed largely to rising mean sea levels associated with intra-seasonal to interannual climate processes such as the El Niño-Southern Oscillation (ENSO). Here, intra-seasonal to seasonal probabilistic forecasts of high water levels are computed at the Toke Point tide gage station on the US west coast. We first identify the main climate drivers that are responsible for high water levels and examine their predictability using General Circulation Models (GCMs) from the North American Multi-Model Ensemble (NMME). These drivers are then used to develop a probabilistic framework for the seasonal forecasting of high water levels. We focus on the climate controls on the frequency of high water levels using the number of exceedances above the 99.5th percentile and above the nuisance flood level established by the National Weather Service. Our findings indicate good forecast skill at the shortest lead time, with the skill that decreases as we increase the lead time. In general, these models aptly capture the year-to-year variability in the observational records.
NASA Astrophysics Data System (ADS)
Sampath, D. M. R.; Boski, T.
2016-12-01
In the context of rapid sea-level rise in the 21st century, the reduction of fluvial sediment supply due to the regulation of river discharge represents a major challenge for the management of estuarine ecosystems. Therefore, the present study aims to assess the cumulative impacts of the reduction of river discharge and projected sea-level rise on the morphological evolution of the Guadiana estuary during the 21st century. The assessment was based on a set of analytical solutions to simplified equations of tidal wave propagation in shallow waters and empirical knowledge of the system. As methods applied to estimate environmental flows do not take into consideration the fluvial discharge required to maintain saltmarsh habitats and the impact of sea-level rise, simulations were carried out for ten cases in terms of base river flow and sea-level rise so as to understand their sensitivity on the deepening of saltmarsh platforms. Results suggest saltmarsh habitats may not be affected severely in response to lower limit scenarios of sea-level rise and sedimentation. A similar behaviour can be expected even due to the upper limit scenarios until 2050, but with a significant submergence afterwards. In the case of the upper limit scenarios under scrutiny, there was a net erosion of sediment from the estuary. Multiplications of amplitudes of the base flow function by factors 1.5, 2, and 5 result in reduction of the estimated net eroded sediment volume by 25, 40, and 80%, respectively, with respect to the net eroded volume for observed river discharge. The results also indicate that defining the minimum environmental flow as a percentage of dry season flow (as done presently) should be updated to include the full spectrum of natural flows, incorporating temporal variability to better anticipate scenarios of sea-level rise during this century. As permanent submergence of intertidal habitats can be significant after 2050, due to the projected 79 cm rise of sea-level by the year 2100, a multi-dimensional approach should be adopted to mitigate the consequences of sea-level rise and strong flow regulations on the ecosystem of the Guadiana Estuary.
GPS Imaging of Global Vertical Land Motion for Sea Level Studies
NASA Astrophysics Data System (ADS)
Hammond, W. C.; Blewitt, G.; Hamlington, B. D.
2015-12-01
Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.
NASA Astrophysics Data System (ADS)
Tewari, S.; Palmer, W.; Manning, F.
2017-12-01
Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the general public on issues related to transportation infrastructure in coastal areas while increasing overall public awareness. Also, the outcomes of the project will serve as an educational and research tool to convey to undergraduate and graduate students on how climate changes affect the transportation infrastructure safety/stability in the coastal region of the state.
Quantifying and Projecting Relative Sea-Level Rise in The Deltaic Regions
NASA Astrophysics Data System (ADS)
Shum, C. K.; Chung-Yen, K.; Calmant, S.; Yang, T. Y.; Guo, Q.; Jia, Y.; Ballu, V.; Guo, J.; Karptychev, M.; Krien, Y.; Kusche, J.; Tseng, K. H.; Wan, J.; Uebbing, B.
2017-12-01
Half of the world's population lives within 200 km of coastlines. Accelerated sea-level rise, compounded by effects of population growth, severe land subsidence due to fluvial sediment compaction/load, and anthropogenic oil and natural gas and ground water extraction, tectonic motion, and the increasing threat of more intense and more frequent cyclone-driven storm surges, have exacerbated the vulnerability of many of world's deltaic regions, including the Bangladesh and the Mississippi River Deltas. At present, understanding and quantifying the natural and anthropogenic processes governing these solid Earth vertical motion processes remain elusive to enable addressing coastal vulnerability due to current and future projection of relative sea-level rise for deltaic regions at the regional scales. Bangladesh, a low-lying and one of the most densely populated countries in the world located at the Bay of Bengal, is prone to transboundary monsoonal flooding, and is believed to be aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. The Mississippi River Deltaic region has been severely subsiding due primarily to fluvial sediment compaction and load during the last 10 centuries, oil/gas and groundwater extractions, and commercial developments, making it vulnerable to sea-level rise hazards. Here we present results of global geocentric sea-level rise, 1950-2016, separating vertical land motion at global tide gauge datum, by integrating tide gauge and radar altimeter records in a novel sea-level reconstruction scheme, focusing on the Mississippi River and the Bangladesh Deltas. We then integrate the resulting sea level estimates with historic imageries, GPS and InSAR data, as well as sediment isostatic and load model predicted present-day land subsidence, to constrain the 3D land motion to study the impacts of various scenarios of future relative sea level projections on the Bangladesh Delta to the end of the 21st Century and beyond.
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Saco, P. M.; Sandi, S. G.; Saintilan, N.; Riccardi, G.
2017-12-01
Even though on a large scale the sustainability and resilience of coastal wetlands to sea-level rise depends on the slope of the landscape and a balance between the rates of soil accretion and the sea-level rise, local man-made flow disturbances can have comparable effects. Coastal infrastructure controlling flow in the wetlands can pose an additional constraint on the adaptive capacity of these ecosystems, but can also present opportunities for targeted flow management to increase their resilience. Coastal wetlands in SE Australia are heavily managed and typically present infrastructure including flow control devices. How these flow control structures are operated respond to different ecological conservation objectives (i.e. bird, frog or fish habitat) that can sometimes be mutually exclusive. For example, promoting mangrove establishment to enhance fish habitat results in saltmarsh decline thus affecting bird habitat. Moreover, sea-level rise will change hydraulic conditions in wetlands and may result in some flow control structures and strategies becoming obsolete or even counterproductive. In order to address these problems and in support of future management of flows in coastal wetlands, we have developed a predictive tool for long-term wetland evolution that incorporates the effects of infrastructure and other perturbations to the tidal flow within the wetland (i.e. vegetation resistance) and determines how these flow conditions affect vegetation establishment and survival. We use the model to support management and analyse different scenarios of sea-level rise and flow control measures aimed at preserving bird habitat. Our results show that sea-level rise affects the efficiency of management measures and in some cases may completely override their effect. It also shows the potential of targeted flow management to compensate for the effects of sea-level rise.
NASA Astrophysics Data System (ADS)
Young, C. R.; Martin, J. B.
2016-02-01
Assessments of the potential for salt water intrusion due to sea level rise require consideration of both coastal hydrodynamic and human activity thresholds. In siliciclastic systems, sea level rise may cause salt intrusion to coastal aquifers at annual or decadal scales, whereas in karst systems salt intrudes at the tidal scalse. In both cases, human activity impacts the freshwater portion of the system by altering the water demand on the aquifer. We combine physicochemical and human activity data to evaluate impact of sea level rise on salt intrusion to siliclastic (Indian River Lagoon, Fl, USA) and karst (Puerto Morelos, Yucatan, Mexico) systems under different sea level rise rate scenarios. Two hydrodynamic modeling scenarios are considered; flux controlled and head controlled. Under a flux controlled system hydraulic head gradients remain constant during sea level rise while under a head controlled system hydraulic graidents diminish, allowing saltwater intrusion. Our model contains three key terms; aquifer recharge, groundwater discharge and hydraulic conductivity. Groundwater discharge and hydraulic conductivity were calculated based on high frequency (karst system) and decadal (siliciclastic system) field measurements. Aquifer recharge is defined as precipitation less evapotranspiration and water demand was evaluated based on urban planning data that provided the regional water demand. Water demand includes agricultural area, toursim, traffic patterns, garbage collection and total population. Water demand was initially estimated using a partial leaset squares regression based on these variables. Our model indicates that water demand depends most on agricultural area, which has changed significantly over the last 30 years. In both systems, additional water demand creates a head controlled scenario, thus increaseing the protential fo salt intrusion with projected sea level rise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie
Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less
NASA Astrophysics Data System (ADS)
Tessler, Z. D.; Vorosmarty, C. J.; Overeem, I.; Syvitski, J. P.
2017-12-01
Modern deltas are dependent on human-mediated freshwater and sediment fluxes. Changes to these fluxes impact delta biogeophysical functioning, and affect the long-term sustainability of these landscapes for both human and natural systems. Here we present contemporary estimates of long-term mean sediment balance and relative sea-level rise across 46 global deltas. We model ongoing development and scenarios of future water resource management and hydropower infrastructure in upstream river basins to explore how changing sediment fluxes impact relative sea-level in coastal delta systems. Model results show that contemporary sediment fluxes, anthropogenic drivers of land subsidence, and sea-level rise result in relative sea-level rise rates in deltas that average 6.8 mm/year. Currently planned or under-construction dams can be expected to increase rates of relative sea-level rise on the order of 1 mm/year. Some deltas systems, including the Magdalena, Orinoco, and Indus, are highly sensitive to future impoundment of river basins, with RSLR rates increasing up to 4 mm/year in a high-hydropower-utilization scenario. Sediment fluxes may be reduced by up to 60% in the Danube and 21% in the Ganges-Brahmaputra-Megnha if all currently planned dams are constructed. Reduced sediment retention on deltas due to increased river channelization and local flood controls increases RSLR on average by nearly 2 mm/year. Long-term delta sustainability requires a more complete understanding of how geophysical and anthropogenic change impact delta geomorphology. Strategies for sustainable delta management that focus on local and regional drivers of change, especially groundwater and hydrocarbon extraction and upstream dam construction, can be highly impactful even in the context of global climate-induced sea-level rise.
Sea-level rise in New Jersey over the past 5000 years: Implications to anthropogenic changes
Miller, Kenneth G.; Sugarman, Peter J.; Browning, James V.; Horton, Benjamin P.; Stanley, Alissa; Kahn, Alicia; Uptegrove, Jane; Aucott, Michael
2009-01-01
We present a mid to late Holocene sea-level record derived from drilling the New Jersey coast that shows a relatively constant rise of 1.8??mm/yr from ~ 5000 to 500 calibrated calendar years before present (yrBP). This contrasts with previous New Jersey estimates that showed only 0.5??mm/yr rise since 2000??yrBP. Comparison with other Mid-Atlantic sea-level records (Delaware to southern New England) indicates surprising uniformity considering different proximities to the peripheral bulge of the Laurentide ice sheet, with a relative rise throughout the region of ~ 1.7-1.9??mm/yr since ~ 5000??yrBP. This regional sea-level rise includes both: 1) global sea-level (eustatic) rise; and 2) far-field geoidal subsidence (estimated as ~ 0.8-1.4??mm/yr today) due to removal of the Laurentide ice sheet and water loading. Correcting for geoidal subsidence, the U.S. east coast records suggest a global sea-level (eustatic) rise of ~ 0.4-1.0??mm/yr (with a best estimate of 0.7 ?? 0.3??mm/yr) since 5000??yrBP. Comparison with other records provides a best estimate of pre-anthropogenic global sea-level rise of < 1.0??mm/yr from 5000 until ~ 200??yrBP. Tide gauge data indicate a 20th century rate of eustatic rise of 1.8??mm/yr, whereas both tide gauge and satellite data suggest an increase in the rate of rise to ~ 3.3??mm/yr from 1993-2006 AD. This indicates that the modern rise (~ 3.3??mm/yr) is significantly higher than the pre-anthropogenic rise (0.7 ?? 0.3??mm/yr). ?? 2008 Elsevier B.V. All rights reserved.
Trophic interactions within the Ross Sea continental shelf ecosystem
Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo
2006-01-01
The continental shelf of the Ross Sea is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic interactions, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross Sea than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross Sea habitat on the ecosystem. PMID:17405209
The Army and the Endangered Species Act: Who’s Endangering Whom?
1993-04-01
national parks and wildlife refuges are still in serious danger of extinction from poaching . The hippopotamus, rhino , and elephant, hunted for meat, horns...and sea species were impacted worldwide, although sea species were affected most. Possible causes include radical changes in sea level and salinity...cretaceous mass extinction. They range from terminal constipation,31 to increased volcanic activity, to acid rain, to catastrophic impacts with
NASA Astrophysics Data System (ADS)
Velicogna, I.; Hsu, C. W.; Ciraci, E.; Sutterley, T. C.
2015-12-01
We use observations of time variable gravity from GRACE to estimate mass changes for the Antarctic and Greenland Ice Sheets, the Glaciers and Ice Caps (GIC) and land water storage for the time period 2002-2015 and evaluate their total contribution to sea level. We calculate regional sea level changes from these present day mass fluxes using an improved scaling factor for the GRACE data that accounts for the spatial and temporal variability of the observed signal. We calculate a separate scaling factor for the annual and the long-term components of the GRACE signal. To estimate the contribution of the GIC, we use a least square mascon approach and we re-analyze recent inventories to optimize the distribution of mascons and recover the GRACE signal more accurately. We find that overall, Greenland controls 43% of the global trend in eustatic sea level rise, 16% for Antarctica and 29% for the GIC. The contribution from the GIC is dominated by the mass loss of the Canadian Arctic Archipelago, followed by Alaska, Patagonia and the High Mountains of Asia. We report a marked increase in mass loss for the Canadian Arctic Archipelago. In Greenland, following the 2012 high summer melt, years 2013 and 2014 have slowed down the increase in mass loss, but our results will be updated with summer 2015 observations at the meeting. In Antarctica, the mass loss is still on the rise with increased contributions from the Amundsen Sea sector and surprisingly from the Wilkes Land sector of East Antarctica, including Victoria Land. Conversely, the Queen Maud Land sector experienced a large snowfall in 2009-2013 and has now resumed to a zero mass gain since 2013. We compare sea level changes from these GRACE derived mass fluxes after including the atmospheric and ocean loading signal with sea level change from satellite radar altimetry (AVISO) corrected for steric signal of the ocean using Argo measurements and find an excellent agreement in amplitude, phase and trend in these estimates. This work was conducted at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.
TIDE TOOL: Open-Source Sea-Level Monitoring Software for Tsunami Warning Systems
NASA Astrophysics Data System (ADS)
Weinstein, S. A.; Kong, L. S.; Becker, N. C.; Wang, D.
2012-12-01
A tsunami warning center (TWC) typically decides to issue a tsunami warning bulletin when initial estimates of earthquake source parameters suggest it may be capable of generating a tsunami. A TWC, however, relies on sea-level data to provide prima facie evidence for the existence or non-existence of destructive tsunami waves and to constrain tsunami wave height forecast models. In the aftermath of the 2004 Sumatra disaster, the International Tsunami Information Center asked the Pacific Tsunami Warning Center (PTWC) to develop a platform-independent, easy-to-use software package to give nascent TWCs the ability to process WMO Global Telecommunications System (GTS) sea-level messages and to analyze the resulting sea-level curves (marigrams). In response PTWC developed TIDE TOOL that has since steadily grown in sophistication to become PTWC's operational sea-level processing system. TIDE TOOL has two main parts: a decoder that reads GTS sea-level message logs, and a graphical user interface (GUI) written in the open-source platform-independent graphical toolkit scripting language Tcl/Tk. This GUI consists of dynamic map-based clients that allow the user to select and analyze a single station or groups of stations by displaying their marigams in strip-chart or screen-tiled forms. TIDE TOOL also includes detail maps of each station to show each station's geographical context and reverse tsunami travel time contours to each station. TIDE TOOL can also be coupled to the GEOWARE™ TTT program to plot tsunami travel times and to indicate the expected tsunami arrival time on the marigrams. Because sea-level messages are structured in a rich variety of formats TIDE TOOL includes a metadata file, COMP_META, that contains all of the information needed by TIDE TOOL to decode sea-level data as well as basic information such as the geographical coordinates of each station. TIDE TOOL can therefore continuously decode theses sea-level messages in real-time and display the time-series data in the GUI as well. This GUI also includes mouse-clickable functions such as zooming or expanding the time-series display, measuring tsunami signal characteristics (arrival time, wave period and amplitude, etc.), and removing the tide signal from the time-series data. De-tiding of the time series is necessary to obtain accurate measurements of tsunami wave parameters and to maintain accurate historical tsunami databases. With TIDE TOOL, de-tiding is accomplished with a set of tide harmonic coefficients routinely computed and updated at PTWC for many of the stations in PTWC's inventory (~570). PTWC also uses the decoded time series files (previous 3-5 days' worth) to compute on-the-fly tide coefficients. The latter is useful in cases where the station is new and a long-term stable set of tide coefficients are not available or cannot be easily obtained due to various non-astronomical effects. The international tsunami warning system is coordinated globally by the UNESCO IOC, and a number of countries in the Pacific and Indian Ocean, and Caribbean depend on Tide Tool to monitor tsunamis in real time.
NASA Astrophysics Data System (ADS)
Snoussi, Maria; Ouchani, Tachfine; Khouakhi, Abdou; Niang-Diop, Isabelle
2009-06-01
As part of a broad assessment of climate change impacts in Morocco, an assessment of vulnerability and adaptation of coastal zones to sea-level rise was conducted. Tangier Bay which is the most important socio-economic pole in Northern Morocco represents one of the cases studies. Using a GIS-based inundation analysis and an erosion modelling approach, the potential physical vulnerability to accelerated sea-level rise was investigated, and the most vulnerable socio-economic sectors were assessed. Results indicate that 10% and 24% of the area will be at risk of flooding respectively for minimum (4 m) and maximum (11 m) inundation levels. The most severely impacted sectors are expected to be the coastal defences and the port, the urban area, tourist coastal infrastructures, the railway, and the industrial area. Shoreline erosion would affect nearly 20% and 45% of the total beach areas respectively in 2050 and 2100. Potential response strategies and adaptation options identified include: sand dune fixation, beach nourishment and building of seawalls to protect the urban and industrial areas of high value. It was also recommended that an Integrated Coastal Zone Management Plan for the region, including upgrading awareness, building regulation and urban growth planning should be the most appropriate tool to ensure a long-term sustainable development, while addressing the vulnerability of the coast to future sea-level rise.
NASA Astrophysics Data System (ADS)
Yang, L.; Wang, G.; Liu, H.
2017-12-01
Rising sea level has important direct impacts on coastal and island regions such as the Caribbean where the influence of sea-level rise is becoming more apparent. The Caribbean Sea is a semi-enclosed sea adjacent to the landmasses of South and Central America to the south and west, and the Greater Antilles and the Lesser Antilles separate it from the Atlantic Ocean to the north and east. The work focus on studying the relative and absolute sea-level changes by integrating tide gauge, GPS, and satellite altimetry datasets (1955-2016) within the Caribbean Sea. Further, the two main components of absolute sea-level change, ocean mass and steric sea-level changes, are respectively studied using GRACE, temperature, and salinity datasets (1955-2016). According to the analysis conducted, the sea-level change rates have considerable temporal and spatial variations, and estimates may be subject to the techniques used and observation periods. The average absolute sea-level rise rate is 1.8±0.3 mm/year for the period from 1955 to 2015 according to the integrated tide gauge and GPS observations; the average absolute sea-level rise rate is 3.5±0.6 mm/year for the period from 1993 to 2016 according to the satellite altimetry observations. This study shows that the absolute sea-level change budget in the Caribbean Sea is closed in the periods from 1955 to 2016, in which ocean mass change dominates the absolute sea-level rise. The absolute sea-level change budget is also closed in the periods from 2004 to 2016, in which steric sea-level rise dominates the absolute sea-level rise.
NASA Astrophysics Data System (ADS)
Sorlien, C. C.; Sauli, C.; De Santis, L.; Luyendyk, B. P.; Wardell, N.; Davis, S. M.; Wilson, D. S.; Brazell, S.; Bartek, L., III; Bart, P. J.
2016-12-01
Most of West Antarctica has been interpreted as a high-elevation plateau that has subsided between about 100 Ma and present. Ross Sea was characterized by subaerial ridges and islands up to mid-Cenozoic time. It was in such an environment that Oligocene ice sheets and glaciers advanced and retreated within Ross Embayment. The extent to which Oligocene ice affected the embayment north of the current ice shelf has not been established, with either ice caps on islands, or broad glaciers affecting basins having been proposed. We used all available data from the Seismic Data Library System to interpret stratigraphic horizons through most of Ross Sea. A new 3D velocity model was constructed for the western 2/3 of Ross Sea. Stratigraphic age control was provided by deep scientific coring, including Deep Sea Drilling Program sites, the Cape Roberts Drilling Program, and published correlations to ANDRILL sites. The correlation with recent drill records and much additional seismic reflection data allowed a new interpretation of Ross Sea, which differs from the previous comprehensive seismic stratigraphic interpretation (ANTOSTRAT 1995). Sedimentary rocks of given ages are twice as deep within Terror Rift in westernmost Ross Sea in our interpretation. In contrast, acoustic basement is 1 km shallower in part of Central Trough. The 200 km-wide smooth acoustic basement on Central High eroded sub-aerially until it subsided differentially through sea level toward the centers of Cretaceous and Cenozoic rifts. If the subsiding basins were kept filled with sediment eroded by Oligocene ice sheets, then the age the strata aggrading above the planar rock platform date subsidence through sea level at each location. Using such an assumption, much of central and western Ross Sea was near or above sea level during earliest Oligocene time. These assumptions will be tested by backstripping and thermal subsidence models.
Pathfinder Sea Surface Temperature Climate Data Record
NASA Astrophysics Data System (ADS)
Baker-Yeboah, S.; Saha, K.; Zhang, D.; Casey, K. S.
2016-02-01
Global sea surface temperature (SST) fields are important in understanding ocean and climate variability. The NOAA National Centers for Environmental Information (NCEI) develops and maintains a high resolution, long-term, climate data record (CDR) of global satellite SST. These SST values are generated at approximately 4 km resolution using Advanced Very High Resolution Radiometer (AVHRR) instruments aboard NOAA polar-orbiting satellites going back to 1981. The Pathfinder SST algorithm is based on the Non-Linear SST algorithm using the modernized NASA SeaWiFS Data Analysis System (SeaDAS). Coefficients for this SST product were generated using regression analyses with co-located in situ and satellite measurements. Previous versions of Pathfinder included level 3 collated (L3C) products. Pathfinder Version 5.3 includes level 2 pre-processed (L2P), level 3 Uncollated (L3C), and L3C products. Notably, the data were processed in the cloud using Amazon Web Services and are made available through all of the modern web visualization and subset services provided by the THREDDS Data Server, the Live Access Server, and the OPeNDAP Hyrax Server.In this version of Pathfinder SST, anomalous hot-spots at land-water boundaries are better identified and the dataset includes updated land masks and sea ice data over the Antarctic ice shelves. All quality levels of SST values are generated, giving the user greater flexibility and the option to apply their own cloud-masking procedures. Additional improvements include consistent cloud tree tests for NOAA-07 and NOAA-19 with respect to the other sensors, improved SSTs in sun glint areas, and netCDF file format improvements to ensure consistency with the latest Group for High Resolution SST (GHRSST) requirements. This quality controlled satellite SST field is a reference environmental data record utilized as a primary resource of SST for numerous regional and global marine efforts.
Assessing economic impact of storm surge under projected sea level rise scenarios
NASA Astrophysics Data System (ADS)
Del Angel, D. C.; Yoskowitz, D.
2017-12-01
Global sea level is expected to rise 0.2-2m by the year 2100. Rising sea level is expected to have a number of impacts such as erosion, saltwater intrusion, and decline in coastal wetlands; all which have direct and indirect socio-economic impact to coastal communities. By 2050, 25% of the world's population will reside within flood-prone areas. These statistics raise a concern for the economic cost that sea level and flooding has on the growing coastal communities. Economic cost of storm surge inundation and rising seas may include loss or damage to public facilities and infrastructure that may become temporarily inaccessible, as well as disruptions to business and services. This goal of this project is to assess economic impacts of storms under four SLR scenarios including low, intermediate-low, intermediate-high, and high (0.2m, 0.5m, 1.2m and 2m, respectively) in the Northern Gulf of Mexico region. To assess flooding impact on communities from storm surge, this project utilizes HAZUS-MH software - a Geographic Information System (GIS)-based modeling tool developed by the Federal Emergency Management Agency - to estimate physical, economic, and social impacts of natural disasters such as floods, earthquakes and hurricanes. The HAZUS database comes integrated with aggregate and site specific inventory which includes: demographic data, general building stock, agricultural statistics, vehicle inventory, essential facilities, transportation systems, utility systems (among other sensitive facilities). User-defined inundation scenarios will serve to identify assets at risk and damage estimates will be generated using the Depth Damage Function included in the HAZUS software. Results will focus on 3 communities in the Gulf and highlight changes in storm flood impact. This approach not only provides a method for economic impact assessment but also begins to create a link between ecosystem services and natural and nature-based features such as wetlands, beaches and dunes. Results from this analysis can provide actionable information needed for policy development and planning for coastal communities.
Yatabe, T; Arriagada, G; Hamilton-West, C; Urcelay, S
2011-05-01
Sea lice, Caligus rogercresseyi, are ectoparasitic copepods, which severely affect the salmon farming industry in southern Chile, reducing the health status of fish and producing both direct and indirect economic losses. Local farmers have reported increasing infestation levels since 2004, reaching a peak in 2007. In response to this situation, the Chilean Fisheries Service (Sernapesca) developed a surveillance programme; the first step of which consisted of a general survey of salmon farms. This survey included documenting counts of parasite burdens on fish and measurements of several husbandry and environmental factors providing an evaluation of risk factors for the observed infestation levels. The information collected was analysed using a linear mixed model technique, which takes into account the clustered structure of data, decomposing the unexplained variation and assigning it to different aggregation levels of the productive system. Geographical zones, fish species, treatment against sea lice performed 1 month before sampling, stocking density, fish weight and water salinity were the variables significantly associated with sea lice burdens. In contrast, treatments performed 2-3 months before sampling, use of photoperiod in sea cages and water temperature, were not significant. There was significant unexplained variation at all aggregation levels, i.e. sub-zone, fish farm and cage level, with the fish farm level showing the greatest variation. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; IJpelaar, Thijs
2017-09-01
Models for glacial isostatic adjustment (GIA) routinely include the effects of meltwater redistribution and changes in topography and coastlines. Since the sediment transport related to the dynamics of ice sheets may be comparable to that of sea level rise in terms of surface pressure, the loading effect of sediment deposition could cause measurable ongoing viscous readjustment. Here, we study the loading effect of glacially induced sediment redistribution (GISR) related to the Weichselian ice sheet in Fennoscandia and the Barents Sea. The surface loading effect and its effect on the gravitational potential is modeled by including changes in sediment thickness in the sea level equation following the method of Dalca et al. (2013). Sediment displacement estimates are estimated in two different ways: (i) from a compilation of studies on local features (trough mouth fans, large-scale failures, and basin flux) and (ii) from output of a coupled ice-sediment model. To account for uncertainty in Earth's rheology, three viscosity profiles are used. It is found that sediment transport can lead to changes in relative sea level of up to 2 m in the last 6000 years and larger effects occurring earlier in the deglaciation. This magnitude is below the error level of most of the relative sea level data because those data are sparse and errors increase with length of time before present. The effect on present-day uplift rates reaches a few tenths of millimeters per year in large parts of Norway and Sweden, which is around the measurement error of long-term GNSS (global navigation satellite system) monitoring networks. The maximum effect on present-day gravity rates as measured by the GRACE (Gravity Recovery and Climate Experiment) satellite mission is up to tenths of microgal per year, which is larger than the measurement error but below other error sources. Since GISR causes systematic uplift in most of mainland Scandinavia, including GISR in GIA models would improve the interpretation of GNSS and GRACE observations there.
How Do River Meanders Change with Sea Level Rise and Fall?
NASA Astrophysics Data System (ADS)
Scamardo, J. E.; Kim, W.
2016-12-01
River meander patterns are controlled by numerous factors, including variations in water discharge, sediment input, and base level. However, the effect of sea level rise and fall on meandering rivers has not been thoroughly quantified. This study examines geomorphic changes to meandering rivers as a result of sea level rise and fall. Twenty experimental runs using coarse-grained walnut shell sediment (D50= 500 microns) in a flume tank (2.4m x 0.6m x 0.1m) tested the optimal initial conditions for creating meandering rivers in a laboratory setting as well as variations in base level rise and fall rates. Geomorphic changes were recorded by camera images every 20 seconds for a duration of 4 hours per experiment. Seventeen experiments tested the effects of changes in initial base levels, water discharge between 200 and 400 mL/min, and sediment to water input ratios between 1:1000 and 1:250 while measuring sinuosity, channel geometry, and the timescale of the channel to reach a stable form. Sinuosity and channel activity increased with increasing water discharge, initial base level, and the sediment to water ratio to a point after which the activity decreased with increasing sediment input. Base-level change experiments used initial conditions of 400 mL/min, a 1:750 sediment to water input ratio, and a 6 cm initial base-level to induce river meanders for the initial 2 hours before base-level change occurred. Three separate experiments investigated the effects of increasing rates of sea level change: 0.07 cm/min, 0.1 cm/min, and 0.2 cm/min. Experimental sea level was decreased constantly from a high-stand of 6 cm to a low-stand of 2 cm back to the high-stand base-level in each experiment. The rates of change in the experiments scale roughly from central to glacial cycles. In all three experiments, sea level fall induced meander cut-off while sea level rise prompted greater rates of meander bend erosion and meander growth. Sinuosity increased by 12%, 13.5%, and 24%, respectively in the three experiments, with most sinuosity changes occurring in the downstream reach of the channel. These experiments could provide insight into long term effects of sea level change on modern meandering fluvial systems as well as provide a key to interpreting past fluvial changes in the stratigraphic record.
Tong, Yindong; Wang, Mengzhu; Bu, Xiaoge; Guo, Xin; Lin, Yan; Lin, Huiming; Li, Jing; Zhang, Wei; Wang, Xuejun
2017-12-01
We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288-654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leijala, Ulpu; Björkqvist, Jan-Victor; Johansson, Milla M.; Pellikka, Havu
2017-04-01
Future coastal management continuously strives for more location-exact and precise methods to investigate possible extreme sea level events and to face flooding hazards in the most appropriate way. Evaluating future flooding risks by understanding the behaviour of the joint effect of sea level variations and wind waves is one of the means to make more comprehensive flooding hazard analysis, and may at first seem like a straightforward task to solve. Nevertheless, challenges and limitations such as availability of time series of the sea level and wave height components, the quality of data, significant locational variability of coastal wave height, as well as assumptions to be made depending on the study location, make the task more complicated. In this study, we present a statistical method for combining location-specific probability distributions of water level variations (including local sea level observations and global mean sea level rise) and wave run-up (based on wave buoy measurements). The goal of our method is to obtain a more accurate way to account for the waves when making flooding hazard analysis on the coast compared to the approach of adding a separate fixed wave action height on top of sea level -based flood risk estimates. As a result of our new method, we gain maximum elevation heights with different return periods of the continuous water mass caused by a combination of both phenomena, "the green water". We also introduce a sensitivity analysis to evaluate the properties and functioning of our method. The sensitivity test is based on using theoretical wave distributions representing different alternatives of wave behaviour in relation to sea level variations. As these wave distributions are merged with the sea level distribution, we get information on how the different wave height conditions and shape of the wave height distribution influence the joint results. Our method presented here can be used as an advanced tool to minimize over- and underestimation of the combined effect of sea level variations and wind waves, and to help coastal infrastructure planning and support smooth and safe operation of coastal cities in a changing climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lincoln, J.M.
Past sea levels can be derived from any atoll subsurface sediments deposited at or near sea level by determining the ages of deposition and correcting the present depths to the sediments for subsidence of the underlying edifice since the times of deposition. A sea level curve constructed by this method consists of discontinuous segments, each corresponding to a period of rising relative sea level and deposition of a discrete sedimentary package. Discontinuities in the sea level curve derived by this method correspond to relative sea level falls and stratigraphic hiatuses in the atoll subsurface. During intervals of relative sea levelmore » fall an atoll emerges to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence to become a high limestone island. Sea level may fluctuate several times during a period of atoll emergence without depositing sediments on top of the atoll. Furthermore, subaerial erosion may remove a substantial part of the depositional record of previous sea level fluctuations. For these reasons the authors must look to the adjacent basins to complement the incomplete record of sea level change recorded beneath atolls. During lowstands of sea level, faunas originally deposited near sea level on an atoll may be eroded and redeposited as turbidites in deep adjacent basins. Three such turbidites penetrated during deep-sea drilling at Sites 462 and 315 in the central Pacific correlate well with a late Tertiary sea level curve based on biostratigraphic ages and {sup 87}Sr/{sup 86}Sr chronostratigraphy for core from Enewetak Atoll in the northern Marshall Islands. Further drilling of the archipelagic aprons adjacent to atolls will improve the sea level history that may be inferred from atoll stratigraphy.« less
Microbial ecology of deep-water mid-Atlantic canyons
Kellogg, Christina A.
2011-01-01
The research described in this fact sheet will be conducted from 2012 to 2014 as part of the U.S. Geological Survey's DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) Program. This integrated, multidisciplinary effort will be investigating a variety of topics related to unique and fragile deep-sea ecosystems from the microscopic level to the ecosystem level. One goal is to improve understanding, at the microbiological scale, of the benthic communities (including corals) that reside in and around mid-Atlantic canyon habitats and their associated environments. Specific objectives include identifying and characterizing the microbial associates of deep-sea corals, characterizing the microbial biofilms on hard substrates to better determine their role in engineering the ecosystem, and adding a microbial dimension to benthic community structure and function assessments by characterizing micro-eukaryotes, bacteria, and archaea in deep-sea sediments.
NASA Technical Reports Server (NTRS)
Guest, DeNeice
2007-01-01
The Nation uses water-level data for a variety of practical purposes, including nautical charting, maritime navigation, hydrography, coastal engineering, and tsunami and storm surge warnings. Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years. NOAA s PORTS (Physical Oceanographic Real-Time System) DST (decision support tool), managed by the Center for Operational Oceanographic Products and Services, supports safe and cost-efficient navigation by providing ship masters and pilots with accurate real-time information required to avoid groundings and collisions. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s PORTS. NASA has a long heritage of collecting data for ocean research, including its current Terra and Aqua missions. Numerous other missions provide additional important information for coastal management issues, and data collection will continue in the coming decade with such missions as the OSTM (Ocean Surface Topography Mission). OSTM will provide data on sea-surface heights for determining ocean circulation, climate change, and sea-level rise. We suggest that NASA incorporate OSTM altimeter data (C- and Ku-band) into NOAA s PORTS DST in support of NASA s Coastal Management National Application with secondary support to the Disaster Management and Public Health National Applications.
75 FR 7567 - Marine Mammals; File No. 13545
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... to determine contaminant levels; culture cells; and collect data on abundance, movement and..., stranded cetaceans in U.S. waters and on the high seas. Researchers may conduct: biopsy sampling.... Research may occur in U.S. waters and the high seas of the Pacific and Atlantic Oceans, including the Gulf...
Bioaccumulation of persistent and emerging pollutants in wild sea urchin Paracentrotus lividus.
Rocha, A Cristina; Camacho, Carolina; Eljarrat, Ethel; Peris, Andrea; Aminot, Yann; Readman, James W; Boti, Vasiliki; Nannou, Christina; Marques, António; Nunes, Maria Leonor; Almeida, C Marisa
2018-02-01
Marine pollution has been increasing as a consequence of anthropogenic activities. The preservation of marine ecosystems, as well as the safety of harvested seafood, are nowadays a global concern. Here, we report for the first time the contamination levels of a large set of 99 emerging and persistent organic contaminants (butyltins (BTs), polycyclic aromatic hydrocarbons (PAHs), pesticides including pyrethroids, pharmaceuticals and personal care products (PCPs) and flame retardants) in roe/gonads of sea urchin Paracentrotus lividus. Sea urchins are a highly prized worldwide delicacy, and the harvesting of this seafood has increased over the last decades, particularly in South West Atlantic coast, where this organism is harvested mainly for exportation. Sampling was performed in three harvesting sites of the NW Portuguese coast subjected to distinct anthropogenic pressures: Carreço, Praia Norte and Vila Chã, with sea urchins being collected in the north and south areas of each site. Butyltins and pharmaceuticals were not found at measurable levels. Several PAHs, four pyrethroids insecticides, four PCPs and eleven flame retardants were found in roe/gonads of sea urchins, though in general at low levels. Differences among harvesting sites and between areas within each site were found, the lowest levels of contaminants being registered in Carreço. The accumulation of contaminants in sea urchins' roe/gonads seemed to reflect the low anthropogenic pressure felt in the sampling sites. Nevertheless, taking into account the low accumulated levels of chemicals, results indicate that sea urchins collected in South West Atlantic coast are safe for human consumption. Copyright © 2017 Elsevier Inc. All rights reserved.
Revisiting sea level changes in the North Sea during the Anthropocene
NASA Astrophysics Data System (ADS)
Jensen, Jürgen; Dangendorf, Sönke; Wahl, Thomas; Niehüser, Sebastian
2016-04-01
The North Sea is one of the best instrumented ocean basins in the world. Here we revisit sea level changes in the North Sea region from tide gauges, satellite altimetry, hydrographic profiles and ocean reanalysis data from the beginning of the 19th century to present. This includes an overview of the sea level chapter of the North Sea Climate Change Assessment (NOSCCA) complemented by results from more recent investigations. The estimates of long-term changes from tide gauge records are significantly affected by vertical land motion (VLM), which is related to both the large-scale viscoelastic response of the solid earth to ice melting since the last deglaciation and local effects. Removing VLM (estimated from various data sources such as GPS, tide gauge minus altimetry and GIA) significantly reduces the spatial variability of long-term trends in the basin. VLM corrected tide gauge records suggest a transition from relatively moderate changes in the 19th century towards modern trends of roughly 1.5 mm/yr during the 20th century. Superimposed on the long-term changes there is a considerable inter-annual to multi-decadal variability. On inter-annual timescales this variability mainly reflects the barotropic response of the ocean to atmospheric forcing with the inverted barometer effect dominating along the UK and Norwegian coastlines and wind forcing controlling the southeastern part of the basin. The decadal variability is mostly remotely forced and dynamically linked to the North Atlantic via boundary waves in response to long-shore winds along the continental slope. These findings give valuable information about the required horizontal resolution of ocean models and the necessary boundary conditions and are therefore important for the dynamical downscaling of sea level projections for the North Sea coastlines.
Lopes, Renato P; Dillenburg, Sergio R; Schultz, Cesar L; Ferigolo, Jorge; Ribeiro, Ana Maria; Pereira, Jamil C; Holanda, Elizete C; Pitana, Vanessa G; Kerber, Leonardo
2014-12-01
The coastal plain of the state of Rio Grande do Sul, in southern Brazil, includes four barrier-lagoon depositional systems formed by successive Quaternary sea-level highstands that were correlated to marine isotope stages (MIS) 11, 9, 5 and 1, despite the scarcity of absolute ages. This study describes a sea-level highstand older than MIS 5, based on the stratigraphy, ages and fossils of the shallow marine facies found in coastal barrier (Barrier II). This facies outcrops along the banks of Chuí Creek, it is composed of fine, well-sorted quartz sand and contains ichnofossils Ophiomorpha nodosa and Rosselia sp., and molluscan shells. The sedimentary record indicates coastal aggradation followed by sea-level fall and progradation of the coastline. Thermoluminescence (TL) and electron spin resonance (ESR) ages from sediments and fossil shells point to an age of ∼220 ka for the end of this marine transgression, thus correlating it to MIS 7 (substage 7e). Altimetric data point to a maximum amplitude of about 10 meters above present-day mean sea-level, but tectonic processes may be involved. Paleoceanographic conditions at the time of the highstand and correlations with other deposits in the Brazilian coasts are also discussed.
Lopes, Renato P; Dillenburg, Sergio R; Schultz, Cesar L; Ferigolo, Jorge; Ribeiro, Ana Maria; Pereira, Jamil C; Holanda, Elizete C; Pitana, Vanessa G; Kerber, Leonardo
2014-12-09
The coastal plain of the state of Rio Grande do Sul, in southern Brazil, includes four barrier-lagoon depositional systems formed by successive Quaternary sea-level highstands that were correlated to marine isotope stages (MIS) 11, 9, 5 and 1, despite the scarcity of absolute ages. This study describes a sea-level highstand older than MIS 5, based on the stratigraphy, ages and fossils of the shallow marine facies found in coastal barrier (Barrier II). This facies outcrops along the banks of Chuí Creek, it is composed of fine, well-sorted quartz sand and contains ichnofossils Ophiomorpha nodosa and Rosselia sp., and molluscan shells. The sedimentary record indicates coastal aggradation followed by sea-level fall and progradation of the coastline. Thermoluminescence (TL) and electron spin resonance (ESR) ages from sediments and fossil shells point to an age of ∼220 ka for the end of this marine transgression, thus correlating it to MIS 7 (substage 7e). Altimetric data point to a maximum amplitude of about 10 meters above present-day mean sea-level, but tectonic processes may be involved. Paleoceanographic conditions at the time of the highstand and correlations with other deposits in the Brazilian coasts are also discussed.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
Kirwanm, M.L.; Langley, J.A.; Guntenspergen, Gleen R.; Megonigal, J.P.
2013-01-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.
2013-03-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The impact of sea-level rise on organic matter decay rates in Chesapeake Bay brackish tidal marshes
NASA Astrophysics Data System (ADS)
Kirwan, M. L.; Langley, J. A.; Guntenspergen, G. R.; Megonigal, J. P.
2012-10-01
The balance between organic matter production and decay determines how fast coastal wetlands accumulate soil organic matter. Despite the importance of soil organic matter accumulation rates in influencing marsh elevation and resistance to sea-level rise, relatively little is known about how decomposition rates will respond to sea-level rise. Here, we estimate the sensitivity of decomposition to flooding by measuring rates of decay in 87 bags filled with milled sedge peat, including soil organic matter, roots and rhizomes. Experiments were located in field-based mesocosms along 3 mesohaline tributaries of the Chesapeake Bay. Mesocosm elevations were manipulated to influence the duration of tidal inundation. Although we found no significant influence of inundation on decay rate when bags from all study sites were analyzed together, decay rates at two of the sites increased with greater flooding. These findings suggest that flooding may enhance organic matter decay rates even in water-logged soils, but that the overall influence of flooding is minor. Our experiments suggest that sea-level rise will not accelerate rates of peat accumulation by slowing the rate of soil organic matter decay. Consequently, marshes will require enhanced organic matter productivity or mineral sediment deposition to survive accelerating sea-level rise.
The Potential Effect of Sea Level Rise on Coastal Property Values
NASA Astrophysics Data System (ADS)
O'Donnell, J.
2015-12-01
It is well established that one consequence of increasing global sea level is that the frequency of flooding at low-lying coastal sites will increase. We review recent evidence that the effects coastal geometry will create substantial spatial variations in the changes in flooding frequency with scales of order 100km. Using a simple model of the evolution of coastal property values we demonstrate that a consequence of sea level rise is that the appreciation of coastal properties will peak, and then decline relative to higher properties. The time when the value reach a maximum is shown to depend upon the demand for the coastal property, and the local rate of change of flooding frequency due to sea level rise. The simple model is then extended to include, in an elementary manner, the effects on the value of adjacent but higher properties. We show that the effect of increased flooding frequency of the lower properties leads to an accelerated appreciation of the value of upland properties and an accelerated decline in the value of the coastal properties. We then provide some example calculations for selected sites. We conclude with a discussion of comparisons of the prediction of the analyses to recent data, and then comments on the impact of sea level rise on tax base of coastal communities.
Large-scale variations in observed Antarctic Sea ice extent and associated atmospheric circulation
NASA Technical Reports Server (NTRS)
Cavalieri, D. J.; Parkinson, C. L.
1981-01-01
The 1974 Antarctic large scale sea ice extent is studied from data from Nimbus 2 and 5 and temperature and sea level pressure fields from the Australian Meteorological Data Set. Electrically Scanning Microwave Radiometer data were three-day averaged and compared with 1000 mbar atmospheric pressure and sea level pressure data, also in three-day averages. Each three-day period was subjected to a Fourier analysis and included the mean latitude of the ice extent and the phases and percent variances in terms of the first six Fourier harmonics. Centers of low pressure were found to be generally east of regions which displayed rapid ice growth, and winds acted to extend the ice equatorward. An atmospheric response was also noted as caused by the changing ice cover.
A New Global Vertical Land Movement Data Set from the TIGA Combined Solution
NASA Astrophysics Data System (ADS)
Hunegnaw, Addisu; Teferle, Felix Norman; Ebuy Abraha, Kibrom; Santamaría-Gómez, Alvaro; Gravelle, Médéric; Wöppelman, Guy; Schöne, Tilo; Deng, Zhiguo; Bingley, Richard; Hansen, Dionne Nicole; Sanchez, Laura; Moore, Michael; Jia, Minghai
2017-04-01
Globally averaged sea level has been estimated from the network of tide gauges installed around the world since the 19th century. These mean sea level (MSL) records provide sea level relative to a nearby tide gauge benchmark (TGBM), which allows for the continuation of the instrumental record in time. Any changes in the benchmark levels, induced by vertical land movements (VLM) affect the MSL records and hence sea level estimates. Over the last two decades sea level has also been observed using satellite altimeters. While the satellite observations are globally more homogeneous providing a picture of sea level not confined to coastlines, they require the VLM-corrected MSL records for the bias calibration of instrumental drifts. Without this calibration altimeter instruments from different missions cannot be combined. GPS has made it possible to obtain highly accurate estimates of VLM in a geocentric reference frame for stations at or close to tide gauges. Under the umbrella of the International GNSS Service (IGS), the Tide Gauge Benchmark Monitoring (TIGA) Working Group (WG) has been established to apply the expertise of the GNSS community to solving issues related to the accuracy and reliability of the vertical component to provide estimates of VLM in a well-defined global reference frame. To achieve this objective, five TIGA Analysis Centers (TACs) contributed re-processed global GPS network solutions to TIGA, employing the latest bias models and processing strategies in accordance with the second re-processing campaign (repro2) of the IGS. These solutions include those of the British Isles continuous GNSS Facility - University of Luxembourg consortium (BLT), the German Research Centre for Geosciences (GFZ) Potsdam, the German Geodetic Research Institute (DGF) at the Technical University of Munich, Geoscience Australia (AUT) and the University of La Rochelle (ULR). In this study we present to the sea level community an evaluation of the VLM estimates from the first combined solution from the IGS TIGA WG. The TAC solutions include more than 700 stations and span the common period 1995-2014. The combined solution was computed by the TIGA Combination Centre (TCC) at the University of Luxembourg, which used the Combination and Analysis of Terrestrial Reference Frame (CATREF) software package for this purpose. This first solution forms Release 1.0 and further releases will be made available after further reprocessing campaigns. We evaluate the combined solution internally using the TAC solutions and externally using solutions from the IGS and the ITRF2008. The derived VLM estimates have undergone an initial evaluation and should be considered as the primary TIGA product for the sea level community to correct MSL records for land level changes.
Snow depth on Arctic sea ice from historical in situ data
NASA Astrophysics Data System (ADS)
Shalina, Elena V.; Sandven, Stein
2018-06-01
The snow data from the Soviet airborne expeditions Sever in the Arctic collected over several decades in March, April and May have been analyzed in this study. The Sever data included more measurements and covered a much wider area, particularly in the Eurasian marginal seas (Kara Sea, Laptev Sea, East Siberian Sea and Chukchi Sea), compared to the Soviet North Pole drifting stations. The latter collected data mainly in the central part of the Arctic Basin. The following snow parameters have been analyzed: average snow depth on the level ice (undisturbed snow) height and area of sastrugi, depth of snow dunes attached to ice ridges and depth of snow on hummocks. In the 1970s-1980s, in the central Arctic, the average depth of undisturbed snow was 21.2 cm, the depth of sastrugi (that occupied about 30 % of the ice surface) was 36.2 cm and the average depth of snow near hummocks and ridges was about 65 cm. For the marginal seas, the average depth of undisturbed snow on the level ice varied from 9.8 cm in the Laptev Sea to 15.3 cm in the East Siberian Sea, which had a larger fraction of multiyear ice. In the marginal seas the spatial variability of snow depth was characterized by standard deviation varying between 66 and 100 %. The average height of sastrugi varied from 23 cm to about 32 cm with standard deviation between 50 and 56 %. The average area covered by sastrugi in the marginal seas was estimated to be 36.5 % of the total ice area where sastrugi were observed. The main result of the study is a new snow depth climatology for the late winter using data from both the Sever expeditions and the North Pole drifting stations. The snow load on the ice observed by Sever expeditions has been described as a combination of the depth of undisturbed snow on the level ice and snow depth of sastrugi weighted in proportion to the sastrugi area. The height of snow accumulated near the ice ridges was not included in the calculations because there are no estimates of the area covered by those features from the Sever expeditions. The effect of not including that data can lead to some underestimation of the average snow depth. The new climatology refines the description of snow depth in the central Arctic compared to the results by Warren et al. (1999) and provides additional detailed data in the marginal seas. The snow depth climatology is based on 94 % Sever data and 6 % North Pole data. The new climatology shows lower snow depth in the central Arctic comparing to Warren climatology and more detailed data in the Eurasian seas.
NASA Astrophysics Data System (ADS)
Long, A. J.; Barlow, N. L. M.; Busschers, F. S.; Cohen, K. M.; Gehrels, W. R.; Wake, L. M.
2015-10-01
Global sea level during the Last Interglacial (LIG, Marine Isotope Sub-stage 5e) peaked between c. 5.5 and 9 m above present, implying significant melt from Greenland and Antarctica. Relative sea level (RSL) observations from several far- and intermediate-field sites suggest abrupt fluctuations or jumps in RSL during the LIG highstand that require one or more episodes of ice-sheet collapse and regrowth. Such events should be manifest as unique sea-level fingerprints, recorded in far-, intermediate- and near-field sites depending on the source(s) of ice-mass change involved. To date, though, no coherent evidence of such fluctuations has been reported from near-field RSL studies in northwest Europe. This is an important problem because RSL fluctuations during the LIG are portrayed as warning signs for how polar ice sheets may behave in a future, warmer than present, world. Here we review the evidence for RSL change during the LIG using stratigraphic data from the best resolved highstand records that exist in the near-field of northwest Europe, from a range of settings that include lagoonal, shallow marine, tidal flat, salt marsh and brackish-water fluviatile environments. Consideration of previously published stratigraphic records from two sites in the Eemian coastal-marine embayment that existed in the central Netherlands, yields no clear indications for abrupt RSL change during the attainment of the near-field highstand. Nor do we find any such indications common to other records from countries bordering the North Sea, the Baltic Sea and the White Sea. Two modelling experiments that explore the global signal of hypothetical sea-level oscillations caused by partial collapse and regrowth of either the Greenland or Antarctic LIG ice-sheet, show that the North Sea region is relatively insensitive to mass changes sourced from Greenland but should clearly register events with an Antarctic origin, especially those that occur late in the LIG. The lack of evidence for abrupt sea-level fluctuations at this time in northwest Europe concurs with a lack of clear near-field evidence for ice sheet collapse.
NASA Astrophysics Data System (ADS)
James, Thomas; Simon, Karen; Forbes, Donald; Dyke, Arthur; Mazzotti, Stephane
2010-05-01
We present projections of relative sea-level rise in the 21st century for communities in the Canadian Arctic. First, for selected communities, we determine the sea-level fingerprinting response from Antarctica, Greenland, and mountain glaciers and ice caps. Then, for various published projections of global sea-level change in the 21st century, we determine the local amount of "absolute" sea-level change. We next determine the vertical land motion arising from glacial isostatic adjustment (GIA) and incorporate this into the estimates of absolute sea-level change to obtain projections of relative sea-level change. The sea-level fingerprinting effect is especially important in the Canadian Arctic owing to proximity to Arctic ice caps and especially to the Greenland ice sheet. Its effect is to reduce the range of projected relative sea-level change compared to the range of global sea-level projections. Vertical crustal motion is assessed through empirically derived regional isobases, the Earth's predicted response to ice-sheet loading and unloading by the ICE-5G ice sheet reconstruction, and Global Positioning System vertical velocities. Owing to the large rates of crustal uplift from glacial isostatic adjustment across a large region of central Arctic Canada, many communities are projected to experience relative sea-level fall despite projections of global sea-level rise. Where uplift rates are smaller, such as eastern Baffin Island and the western Canadian Arctic, sea-level is projected to rise.
Projecting Future Sea Level Rise for Water Resources Planning in California
NASA Astrophysics Data System (ADS)
Anderson, J.; Kao, K.; Chung, F.
2008-12-01
Sea level rise is one of the major concerns for the management of California's water resources. Higher water levels and salinity intrusion into the Sacramento-San Joaquin Delta could affect water supplies, water quality, levee stability, and aquatic and terrestrial flora and fauna species and their habitat. Over the 20th century, sea levels near San Francisco Bay increased by over 0.6ft. Some tidal gauge and satellite data indicate that rates of sea level rise are accelerating. Sea levels are expected to continue to rise due to increasing air temperatures causing thermal expansion of the ocean and melting of land-based ice such as ice on Greenland and in southeastern Alaska. For water planners, two related questions are raised on the uncertainty of future sea levels. First, what is the expected sea level at a specific point in time in the future, e.g., what is the expected sea level in 2050? Second, what is the expected point of time in the future when sea levels will exceed a certain height, e.g., what is the expected range of time when the sea level rises by one foot? To address these two types of questions, two factors are considered: (1) long term sea level rise trend, and (2) local extreme sea level fluctuations. A two-step approach will be used to develop sea level rise projection guidelines for decision making that takes both of these factors into account. The first step is developing global sea level rise probability distributions for the long term trends. The second step will extend the approach to take into account the effects of local astronomical tides, changes in atmospheric pressure, wind stress, floods, and the El Niño/Southern Oscillation. In this paper, the development of the first step approach is presented. To project the long term sea level rise trend, one option is to extend the current rate of sea level rise into the future. However, since recent data indicate rates of sea level rise are accelerating, methods for estimating sea level rise that account for this acceleration are needed. One such method is an empirical relationship between air temperatures and global sea levels. The air temperature-sea level rise relationship was applied to the 12 climate change projections selected by the California Climate Action Team to estimate future sea levels. The 95% confidence level developed from the historical data was extrapolated to estimate the uncertainties in the future projections. To create sea level rise trend probability distributions, a lognormal probability distribution and a generalized extreme value probability distribution are used. Parameter estimations for these distributions are subjective and inevitably involve uncertainties, which will be improved as more research is conducted in this area.
Ng, Connie Ka Yan; Lam, James Chung Wah; Zhang, Xiao Hua; Gu, He Xiang; Li, Tsung Hsien; Ye, Min Bin; Xia, Zhong Rong; Zhang, Fei Yan; Duan, Jin Xia; Wang, Wen Xiong; Lam, Isaac Kam Sum; Balazs, George H; Lam, Paul K S; Murphy, Margaret B
2018-03-01
Sea turtles are globally endangered and face daily anthropogenic threats, including pollution. However, there is a lack of ecotoxicological information on sea turtles, especially in the Asia-Pacific region. This study aims to determine pollutant levels of foraging green turtles (Chelonia mydas) in South China, including Hong Kong, Guangdong and Taiwan, as a basis for their conservation. Scute, liver and muscle tissues of stranded green turtles were analysed for levels of 17 trace elements and methylmercury (MeHg) (n = 86 for scute and n = 14 for liver) and polybrominated diphenyl ethers (PBDEs) (n = 11 for muscle and n = 13 for liver). Ten-fold higher levels of Pb, Ba, V and Tl and 40-fold greater Cd levels were measured in green turtle livers in South China relative to other studies conducted over 10 years ago. Measured PBDE levels were also 27-fold and 50-fold greater than those reported in Australia and Japan. These results warrant further investigation of potential toxicological risks to green turtles in South China and their source rookeries in Malaysia, Micronesia, Indonesia, Marshall Islands, Japan and Taiwan. Research should target monitoring pollutant levels in sea turtles within the West Pacific/Southeast Asia regional management unit spanning East Asia to Southeast Asia to fill in knowledge gaps, in particular in areas such as Thailand, Vietnam, Indonesia, Malaysia and the Philippines where less or no data is available and where foraging grounds of sea turtles have been identified. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global sea-level change during the next 10,000 years: the end of an icehouse?
NASA Astrophysics Data System (ADS)
Van Breedam, Jonas; Huybrechts, Philippe; Goelzer, Heiko; Loutre, Marie-France; Fichefet, Thierry
2015-04-01
Because of the long life-time of atmospheric CO2, any realized future warming is likely to persist for many centuries to millennia. As a consequence, sea-level rise will continue on a multi-millennial timescale, especially from the slower components such as oceanic thermal expansion and above all, from melting of the Greenland and Antarctic ice sheets. The two polar ice sheets have the potential to produce a global eustatic sea-level rise of about 65 m, at least an order of magnitude larger than thermal expansion under extreme forcing scenarios. Other components contributing to sea-level change are the melting of glaciers and ice caps and haline contraction of the ocean from fresh water delivery from land ice, but are less important. We have made projections of future sea-level rise over the next 10,000 years with the Earth System Model of Intermediate Complexity LOVECLIM, which includes high resolution models of the Greenland and Antarctic ice sheets. Four different model parameter sets are considered to explore the model uncertainty. The climate forcing is based on prolonged Radiative Concentration Pathway (RCP) scenarios with an assumed exponential falloff for carbon dioxide concentrations according to global carbon cycle simulations. Six different forcing scenarios are constructed where the highest scenario includes a positive feedback due to the destabilization of methane hydrates and the subsequent emission of methane. By far the largest contribution in the global sea-level projections arises from the polar ice sheets. For the Greenland ice sheet, the ablation is larger than the accumulation for all forcing scenarios shortly after the start of the experiments. The ice sheet continuously melts and nearly disappears in all cases. The Antarctic ice sheet grows during the first decades under low to intermediate forcing scenarios due to increased accumulation. However, the spread between the different scenarios is very large. Under the highest prolonged RCP scenario (and in case methane hydrate starts to destabilize), the model uncertainty does not exclude melting of the entire Antarctic ice sheet after 10,000 years. This would mark the end of the present icehouse, which has existed for about 34 Myr, and would raise global sea-level by up to 70 m from all contributions combined.
The study of the hydrological regime extreme effects of the Caspian Sea during the XX-XXI centuries
NASA Astrophysics Data System (ADS)
Yaitskaya, Natalia
2016-04-01
The Caspian Sea - the unique largest enclosed inland body of water on Earth. Significant periodic sea level fluctuations are a typical feature of the sea. In the XIX-XX centuries a number of comprehensive studies of the Caspian Sea was carried out. The results are published in the papers, monographs and climatic atlases. But a number of fundamental questions about the features of the hydrological regime of the Caspian Sea is still open: 1. How does the water circulation change during the level variations? 2. What is the effect of heterogeneity of evaporation from the water surface on the formation of the flow field in the conditions of long-term level changes? 3. How does the water salinity regime change depending on the sea level position, water circulation, river flow and different climatic influences? 4. What is the effect of extreme events (multi-hazards) (ice, storms, destruction of the coasts) on coastal infrastructure? In 2016, the project aims to study hydrological regime extreme effects of the Caspian Sea was supported by the Russian Foundation for Basic Research. Within this project all of the above problems will be solved. Geographic information system "Caspian Sea" for the storage and data processing, including a database of primary oceanographic information for the period of instrumental observations (1897-2013), cartographic database (1921-2011) and tools for multidimensional analysis of spatio-temporal information is the basis of the study. The scheme of interconnected hydrodynamic models (Caspian Sea MODel - Ocean Model - Wind wave model) was developed. The important factors are taken into account in the structure of the models: long-term and seasonal dynamics of the sea waves parameters, new long-term values of evaporation from the shallow waters areas of the Caspian Sea, water circulation. Schemes of general seasonal circulation of the Caspian Sea and the Northern Caspian at different positions of the sea level in XX-XXI centuries using interconnected models will be reconstructed. Forecast of seasonal water circulation for the most probable climate change scenarios in the future will be done. Conceptual scheme of calculations of the multi-hazards (ice storms, the destruction of the coasts) in the Caspian Sea was developed. The similar method of calculation was successfully applied to the prediction of natural hazards in the Sea of Azov. The reported study was funded by RFBR, according to the research project No.16-35-60046 mol_a_dk.
NASA Astrophysics Data System (ADS)
Cazenave, A. A.
2017-12-01
During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic indicates a dominant mass contribution, especially in the Greenland, Norwegian, and Barents Seas sector.
Storlazzi, Curt D.; Berkowitz, Paul; Reynolds, Michelle H.; Logan, Joshua B.
2013-01-01
Two inundation events in 2011 underscored the potential for elevated water levels to damage infrastructure and affect terrestrial ecosystems on the low-lying Northwestern Hawaiian Islands in the Papahānaumokuākea Marine National Monument. The goal of this study was to compare passive "bathtub" inundation models based on geographic information systems (GIS) to those that include dynamic water levels caused by wave-induced set-up and run-up for two end-member island morphologies: Midway, a classic atoll with islands on the shallow (2-8 m) atoll rim and a deep, central lagoon; and Laysan, which is characterized by a deep (20-30 m) atoll rim and an island at the center of the atoll. Vulnerability to elevated water levels was assessed using hindcast wind and wave data to drive coupled physics-based numerical wave, current, and water-level models for the atolls. The resulting model data were then used to compute run-up elevations using a parametric run-up equation under both present conditions and future sea-level-rise scenarios. In both geomorphologies, wave heights and wavelengths adjacent to the island shorelines increased more than three times and four times, respectively, with increasing values of sea-level rise, as more deep-water wave energy could propagate over the atoll rim and larger wind-driven waves could develop on the atoll. Although these increases in water depth resulted in decreased set-up along the islands’ shorelines, the larger wave heights and longer wavelengths due to sea-level rise increased the resulting wave-induced run-up. Run-up values were spatially heterogeneous and dependent on the direction of incident wave direction, bathymetry, and island configuration. Island inundation was modeled to increase substantially when wave-driven effects were included, suggesting that inundation and impacts to infrastructure and terrestrial habitats will occur at lower values of predicted sea-level rise, and thus sooner in the 21st century, than suggested by passive GIS-based "bathtub" inundation models. Lastly, observations and the modeling results suggest that classic atolls with islands on a shallow atoll rim are more susceptible to the combined effects of sea-level rise and wave-driven inundation than atolls characterized by a deep atoll rim.
Vulnerability of marginal seas to sea level rise
NASA Astrophysics Data System (ADS)
Gomis, Damia; Jordà, Gabriel
2017-04-01
Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities, Mediterranean Sea level would follow global changes with departures lower than + 5 cm. In a second step we use the same methodology to obtain SLR projections at global scale in order to assess the vulnerability of other coastal areas. Namely, we define a vulnerability index based on relating the characteristics of present day variability with SLR projections under different scenarios. Results show that the averaged vulnerability index is 0.5 for scenario RCP8.5 (projected SLR is about a half of the maximum sea level recorded in the last decades). However, in the Mediterranean, the Caribbean and the Sea of Japan the vulnerability index is much higher (2.6, 2.4 and 2.1, respectively). From this point of view, therefore, these regions could be considered the most vulnerable regions in the world.
Probabilistic assessment of sea level during the last interglacial stage.
Kopp, Robert E; Simons, Frederik J; Mitrovica, Jerry X; Maloof, Adam C; Oppenheimer, Michael
2009-12-17
With polar temperatures approximately 3-5 degrees C warmer than today, the last interglacial stage (approximately 125 kyr ago) serves as a partial analogue for 1-2 degrees C global warming scenarios. Geological records from several sites indicate that local sea levels during the last interglacial were higher than today, but because local sea levels differ from global sea level, accurately reconstructing past global sea level requires an integrated analysis of globally distributed data sets. Here we present an extensive compilation of local sea level indicators and a statistical approach for estimating global sea level, local sea levels, ice sheet volumes and their associated uncertainties. We find a 95% probability that global sea level peaked at least 6.6 m higher than today during the last interglacial; it is likely (67% probability) to have exceeded 8.0 m but is unlikely (33% probability) to have exceeded 9.4 m. When global sea level was close to its current level (>or=-10 m), the millennial average rate of global sea level rise is very likely to have exceeded 5.6 m kyr(-1) but is unlikely to have exceeded 9.2 m kyr(-1). Our analysis extends previous last interglacial sea level studies by integrating literature observations within a probabilistic framework that accounts for the physics of sea level change. The results highlight the long-term vulnerability of ice sheets to even relatively low levels of sustained global warming.
NASA Astrophysics Data System (ADS)
Galvin, C.
2008-12-01
"No place on the sandy ocean shores of the world has been shown to be eroding because of sea level rise." This statement appeared nearly 19 years ago in bold print at the top of the page in a brief article published in Shore and Beach (Galvin,1990). The term "sea level rise" was defined in 1990 as follows: "In this statement, "sea level rise" has the meaning that the average person on the street usually attaches to that term. That is, sea level is rising; not, as in some places like the Mississippi River delta, land level is sinking." While still a subject of controversy, it is now (2008) increasingly plausible (Tornqvist et al,2008) that damage from Hurricane Katrina was significantly worse on the Mississippi River delta because floodwaters exploited wetlands and levees whose elevations had been lowered by decades of compaction in the underlying soil. (1) "Sea level" commonly appears in the literature as "relative sea level rise", occurring that way in 711 publications between 1980 and 2009 (GeoRef database on 8 Sep 08). "Relative sea level rise" does not appear in the 2005 AGI Glossary. The nearest Glossary term is "relative change in sea level", but that term occurs in only 12 publications between 1980 and 2009. The Glossary defines this term in a sequence stratigraphy sense, which infers that "relative sea level rise" is the sum of bottom subsidence and eustatic sea level rise. In plain English, "relative sea level rise" means "water depth increase". For present day coastal environments, "relative sea level rise" is commonly used where eustatic sea level rise is less than subsidence, that is, where the magnitude of actual sea level rise is smaller than the magnitude of subsidence. In that situation, "relative sea level rise" misleads both the average person and the scientist who is not a coastal geologist. Thus, the first challenge is to abandon "relative sea level rise" in favor of "water depth increase", in order that the words accurately descibe what happens. It would further clarify popular understanding if the term "actual sea level rise" were used in place of "eustatic sea level rise". (2)Geologists have approximated the the practice of paleontologists and biologists in establishing type examples of important geological features. This is a useful practice. A graduate geologist holds in mind clear conceptions of "beach cusps", "drumlin fields", "birdfoot deltas", and "igneous sills" based on seeing field examples accepted by professional geologists as representative of these features. However, although publications frequently report that sea level rise erodes a particular beach, no one identifies a type beach where that cause has been proven to produce the alleged effect. At the type beach, it is necessary to show that sea level is rising, and that the beach erodes primarily from this sea level rise, rather than from interrupted longshore transport. Thus, the second challenge is to identify a type ocean beach proven to erode because of sea level rise.
A new phase in the production of quality-controlled sea level data
NASA Astrophysics Data System (ADS)
Quartly, Graham D.; Legeais, Jean-François; Ablain, Michaël; Zawadzki, Lionel; Joana Fernandes, M.; Rudenko, Sergei; Carrère, Loren; Nilo García, Pablo; Cipollini, Paolo; Andersen, Ole B.; Poisson, Jean-Christophe; Mbajon Njiche, Sabrina; Cazenave, Anny; Benveniste, Jérôme
2017-08-01
Sea level is an essential climate variable (ECV) that has a direct effect on many people through inundations of coastal areas, and it is also a clear indicator of climate changes due to external forcing factors and internal climate variability. Regional patterns of sea level change inform us on ocean circulation variations in response to natural climate modes such as El Niño and the Pacific Decadal Oscillation, and anthropogenic forcing. Comparing numerical climate models to a consistent set of observations enables us to assess the performance of these models and help us to understand and predict these phenomena, and thereby alleviate some of the environmental conditions associated with them. All such studies rely on the existence of long-term consistent high-accuracy datasets of sea level. The Climate Change Initiative (CCI) of the European Space Agency was established in 2010 to provide improved time series of some ECVs, including sea level, with the purpose of providing such data openly to all to enable the widest possible utilisation of such data. Now in its second phase, the Sea Level CCI project (SL_cci) merges data from nine different altimeter missions in a clear, consistent and well-documented manner, selecting the most appropriate satellite orbits and geophysical corrections in order to further reduce the error budget. This paper summarises the corrections required, the provenance of corrections and the evaluation of options that have been adopted for the recently released v2.0 dataset (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612). This information enables scientists and other users to clearly understand which corrections have been applied and their effects on the sea level dataset. The overall result of these changes is that the rate of rise of global mean sea level (GMSL) still equates to ˜ 3.2 mm yr-1 during 1992-2015, but there is now greater confidence in this result as the errors associated with several of the corrections have been reduced. Compared with v1.1 of the SL_cci dataset, the new rate of change is 0.2 mm yr-1 less during 1993 to 2001 and 0.2 mm yr-1 higher during 2002 to 2014. Application of new correction models brought a reduction of altimeter crossover variances for most corrections.
Tidal marsh susceptibility to sea-level rise: importance of local-scale models
Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.
2015-01-01
Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human levee and infrastructure preventing these types of processes. Other modeling efforts done for this area have projected marsh persistence to 2100, but our modeling effort with site-specific datasets allowed us to model at a finer resolution with much higher local confidence, resulting in different results for management. Our results suggest that projected sea-level rise will have significant impacts on marsh plant communities and obligate wildlife, including those already under federal and state protection. Comprehensive modeling as done here improves the potential to implement adaptive management strategies and prevent marsh habitat and wildlife loss in the future.
NASA Astrophysics Data System (ADS)
Walker, Jennifer; Clear, Jennifer; Garcia-Artola, Ane; Khan, Nicole; Shaw, Timothy; Corbett, Reide; Kemp, Andrew; Kopp, Robert; Horton, Benjamin
2017-04-01
Relative sea-level (RSL) reconstructions extend the 20th century instrumental record (tide gauge and satellite measurements) of spatial and temporal sea-level variability to provide a much longer context for recent trends and projected RSL rise. Common Era (last 2000 years) RSL reconstructions illustrate patterns of natural variability and include natural phases of climate and sea-level which will improve our knowledge basis for sea-level responses to climate changes. The northeast U.S. has exhibited varying rates in relative sea-level rise through the Common Era, primarily due to glacial isostatic adjustment. However, other factors such as ocean/atmosphere dynamics, sediment compaction, and the static equilibrium response to land ice changes, further influence the evolution of relative sea-level. The spatial variability is manifest in the tide gauge records. The tide gauge at the Battery, New York City (1856 to 2015) records a relative sea-level rise of 2.8 mm/yr whereas the tide gauge at Sandy Hook, New Jersey (1932 to 2015), 25 km southeast, records 4.1 mm/yr. Here we present a new reconstruction of RSL in northern New Jersey using geological and tide gauge data. A Common Era sea-level record from northern New Jersey fills in the spatial gap between records completed in southern New Jersey, New York City, and Connecticut. Our field study site is in Cheesequake State Park, where we observed sedimentary sequences dating back 2000 cal. yrs. BP. We use microfossil indicators preserved in salt-marsh sediments as a proxy to reconstruct RSL with decimeter precision. Salt-marsh foraminifera act as reliable RSL indicators because their modern distribution is strongly linked to tidal elevation. The recent application of microfossil-based transfer functions has enabled continuous records of RSL, extending centuries before the modern instrumental period, to be produced with a full consideration of uncertainty. We use a composite chronology of AMS 14C, pollen chrono-horizons, pollution histories, and a 137Cs spike (AD 1963) to achieve multi-decadal temporal precision. The RSL record for northern New Jersey shows a 2.4 m rise during the past 2000 years at a mean rate of 1.2 mm/yr. This compares to rates from a database of Holocene relative sea-level observations for the U.S. Atlantic coast which found a rise of 1.4 mm/yr for New Jersey and 1.3 mm/yr for New York from 4 ka BP to AD 1900 (Engelhart and Horton, 2012).
What Causes the North Sea Level to Rise Faster over the Last Decade ?
NASA Astrophysics Data System (ADS)
Karpytchev, Mikhail; Letetrel, Camille
2013-04-01
We combined tide gauge records (PSMSL) and satellite altimetry data (TOPEX/POSEIDON-JASON 1-2) to reconstruct the mean level of the North Sea and the Norwegian Sea Shelf (NS-NSS) over 1950-2012. The reconstructed NS-NSS mean sea level fluctuations reveal a pronounced interannual variability and a strong sea level acceleration since the mid-1990's. In order to understand the causes of this acceleration, the NS-NSS mean sea level was cross-correlated with the North Atlantic Oscillation and Arctic Oscillation indices. While the interannual variability of the mean sea level correlates well with the NAO/AO indices, the observed acceleration in the NS-NSS mean level is not linked linearly to the NAO/AO fluctuations. On the other hand, the Empirical Orthogonal Functions (EOF) analysis of steric sea level variations in the eastern North Atlantic gives a dominant EOF pattern (55% of variance explained) that varies on a decadal scale very closely to the NS-NSS mean level flcutuations. Also, the amplification in the temporal amplitude of the dominant steric sea level EOF corresponds to the acceleration observed in the NS-NSS mean sea level signal. This suggests that decadal variations in the mean level of the North Sea - the Norwegian Sea Shelf reflect changes in the Subpolar Front currents (Rossby, 1996).
Data requirements in support of the marine weather service program
NASA Technical Reports Server (NTRS)
Travers, J.; Mccaslin, R. W.; Mull, M.
1972-01-01
Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.
Searching for Eustasy in Pliocene Sea-Level Records (Invited)
NASA Astrophysics Data System (ADS)
Raymo, M. E.; Hearty, P. J.; O'Leary, M.; Mitrovica, J.; Deconto, R.; Inglis, J. D.; Robinson, M. M.
2010-12-01
It is widely accepted that greenhouse gas-induced warming over the next few decades to centuries could lead to a rise in sea level due to melting ice caps. Yet despite the enormous social and economic consequences for society, our ability to predict the likelihood and location of future melting is hampered by an insufficient theoretical and historical understanding of ice sheet behavior in the past. Various lines of evidence suggest that CO2 levels in the mid-Pliocene were between 350-450 ppm, similar to today, and it is important that significant effort be made to confirm these estimates, especially in light of policy discussions that seek to determine a “safe” level of atmospheric CO2. Likewise, accurate estimates of mid-Pliocene sea levels are necessary if we are to better constrain Greenland and Antarctic ice sheet stability in a slightly warmer world. Current published estimates of mid-Pliocene sea level (during times of maximum insolation forcing) range from +5m to >+40m (relative to present) reflecting a huge range of uncertainty in the sensitivity of polar ice sheets, including the East Antarctic Ice Sheet, to a modest global warming. Accurate determination of the maximum mid-Pliocene sea level rise is needed if climate and ice sheet modelers are to better assess the robustness of models used to predict the effects of anthropogenic global warming. Pliocene ice volume/highstand estimates fall into two classes, those derived from geologic evidence of past high stands and those derived from geochemical proxies of ice-sensitive changes in ocean chemistry. Both methods have significant errors and uncertainties associated with them. Recent multidisciplinary work along the intra-plate continental margin of Roe Plain (~250 x 30 km) on the southern coastline of Western Australia provides additional constraints on sea level during the mid-Pliocene. Outcroppings of shore-proximal marine deposits are observed at two distinct elevations across the plain, +28 ± 2 m and +18 ± 2 m. Definitive sedimentary intertidal indications (e.g., concentrated concave down bivalves characteristic of a swash zone) and subtidal biofacies including articulated valves are found throughout the deposits and suggest the occurrence two distinct highstand events. Preliminary Sr-isotopes yield a broad range of mid to late Pliocene ages. These data will be discussed in light of possible ice volume, dynamic topography, and isostatic effects. Building on these data we present a strategy for improving the accuracy of mid Pliocene sea level estimates.
NASA Astrophysics Data System (ADS)
Kumar, V.; Melet, A.; Meyssignac, B.; Ganachaud, A.; Kessler, W. S.; Singh, A.; Aucan, J.
2018-02-01
Rising sea levels are a critical concern in small island nations. The problem is especially serious in the western south Pacific, where the total sea level rise over the last 60 years has been up to 3 times the global average. In this study, we aim at reconstructing sea levels at selected sites in the region (Suva, Lautoka—Fiji, and Nouméa—New Caledonia) as a multilinear regression (MLR) of atmospheric and oceanic variables. We focus on sea level variability at interannual-to-interdecadal time scales, and trend over the 1988-2014 period. Local sea levels are first expressed as a sum of steric and mass changes. Then a dynamical approach is used based on wind stress curl as a proxy for the thermosteric component, as wind stress curl anomalies can modulate the thermocline depth and resultant sea levels via Rossby wave propagation. Statistically significant predictors among wind stress curl, halosteric sea level, zonal/meridional wind stress components, and sea surface temperature are used to construct a MLR model simulating local sea levels. Although we are focusing on the local scale, the global mean sea level needs to be adjusted for. Our reconstructions provide insights on key drivers of sea level variability at the selected sites, showing that while local dynamics and the global signal modulate sea level to a given extent, most of the variance is driven by regional factors. On average, the MLR model is able to reproduce 82% of the variance in island sea level, and could be used to derive local sea level projections via downscaling of climate models.
Coastal sea level projections with improved accounting for vertical land motion
Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy
2015-01-01
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions. PMID:26526287
Coastal sea level projections with improved accounting for vertical land motion.
Han, Guoqi; Ma, Zhimin; Chen, Nan; Yang, Jingsong; Chen, Nancy
2015-11-03
Regional and coastal mean sea level projections in the Intergovernmental Panel for Climate Change (IPCC) Fifth Assessment Report (AR5) account only for vertical land motion (VLM) associated with glacial isostatic adjustment (GIA), which may significantly under- or over-estimate sea level rise. Here we adjust AR5-like regional projections with the VLM from Global Positioning Satellite (GPS) measurements and/or from a combination of altimetry and tide-gauge data, which include both GIA and non-GIA VLM. Our results at selected tide-gauge locations on the North American and East Asian coasts show drastically different projections with and without non-GIA VLM being accounted for. The present study points to the importance of correcting IPCC AR5 coastal projections for the non-GIA VLM in making adaptation decisions.
NASA Astrophysics Data System (ADS)
Obeysekera, Jayantha; Barnes, Jenifer; Nungesser, Martha
2015-04-01
It is important to understand the vulnerability of the water management system in south Florida and to determine the resilience and robustness of greater Everglades restoration plans under future climate change. The current climate models, at both global and regional scales, are not ready to deliver specific climatic datasets for water resources investigations involving future plans and therefore a scenario based approach was adopted for this first study in restoration planning. We focused on the general implications of potential changes in future temperature and associated changes in evapotranspiration, precipitation, and sea levels at the regional boundary. From these, we developed a set of six climate and sea level scenarios, used them to simulate the hydrologic response of the greater Everglades region including agricultural, urban, and natural areas, and compared the results to those from a base run of current conditions. The scenarios included a 1.5 °C increase in temperature, ±10 % change in precipitation, and a 0.46 m (1.5 feet) increase in sea level for the 50-year planning horizon. The results suggested that, depending on the rainfall and temperature scenario, there would be significant changes in water budgets, ecosystem performance, and in water supply demands met. The increased sea level scenarios also show that the ground water levels would increase significantly with associated implications for flood protection in the urbanized areas of southeastern Florida.
Acceleration of Sea Level Rise Over Malaysian Seas from Satellite Altimeter
NASA Astrophysics Data System (ADS)
Hamid, A. I. A.; Din, A. H. M.; Khalid, N. F.; Omar, K. M.
2016-09-01
Sea level rise becomes our concern nowadays as a result of variously contribution of climate change that cause by the anthropogenic effects. Global sea levels have been rising through the past century and are projected to rise at an accelerated rate throughout the 21st century. Due to this change, sea level is now constantly rising and eventually will threaten many low-lying and unprotected coastal areas in many ways. This paper is proposing a significant effort to quantify the sea level trend over Malaysian seas based on the combination of multi-mission satellite altimeters over a period of 23 years. Eight altimeter missions are used to derive the absolute sea level from Radar Altimeter Database System (RADS). Data verification is then carried out to verify the satellite derived sea level rise data with tidal data. Eight selected tide gauge stations from Peninsular Malaysia, Sabah and Sarawak are chosen for this data verification. The pattern and correlation of both measurements of sea level anomalies (SLA) are evaluated over the same period in each area in order to produce comparable results. Afterwards, the time series of the sea level trend is quantified using robust fit regression analysis. The findings clearly show that the absolute sea level trend is rising and varying over the Malaysian seas with the rate of sea level varies and gradually increase from east to west of Malaysia. Highly confident and correlation level of the 23 years measurement data with an astonishing root mean square difference permits the absolute sea level trend of the Malaysian seas has raised at the rate 3.14 ± 0.12 mm yr-1 to 4.81 ± 0.15 mm yr-1 for the chosen sub-areas, with an overall mean of 4.09 ± 0.12 mm yr-1. This study hopefully offers a beneficial sea level information to be applied in a wide range of related environmental and climatology issue such as flood and global warming.
Understanding the science of climate change: Talking points - Impacts to the Gulf Coast
Rachel Loehman; Greer Anderson
2010-01-01
Predicted climate changes in the Gulf Coast bioregion include increased air and sea surface temperatures, altered fire regimes and rainfall patterns, increased frequency of extreme weather events, rising sea levels, increased hurricane intensity, and potential destruction of coastal wetlands and the species that reside within them. Prolonged drought conditions, storm...
Southern Pine Beetle Outbreak in Belize
Robert A. Haack; Claus M. Eckelmann; Earl Green
2000-01-01
Belize is a Central American country that borders Mexico, Guatemala, and the Caribbean Sea (see Map). Belize, formerly called British Honduras from 1862 until 1973, is about 23,000 square kilometers in size, which is about the area of Massachusetts. Elevation varies from sea level to 1120 meters. The major vegetation types include mangrove swamp, broadleafjungle,...
Sea Ice Concentration Estimation Using Active and Passive Remote Sensing Data Fusion
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, F.; Zhang, S.; Zhu, T.
2017-12-01
In this abstract, a decision-level fusion method by utilizing SAR and passive microwave remote sensing data for sea ice concentration estimation is investigated. Sea ice concentration product from passive microwave concentration retrieval methods has large uncertainty within thin ice zone. Passive microwave data including SSM/I, AMSR-E, and AMSR-2 provide daily and long time series observations covering whole polar sea ice scene, and SAR images provide rich sea ice details with high spatial resolution including deformation and polarimetric features. In the proposed method, the merits from passive microwave data and SAR data are considered. Sea ice concentration products from ASI and sea ice category label derived from CRF framework in SAR imagery are calibrated under least distance protocol. For SAR imagery, incident angle and azimuth angle were used to correct backscattering values from slant range to ground range in order to improve geocoding accuracy. The posterior probability distribution between category label from SAR imagery and passive microwave sea ice concentration product is modeled and integrated under Bayesian network, where Gaussian statistical distribution from ASI sea ice concentration products serves as the prior term, which represented as an uncertainty of sea ice concentration. Empirical model based likelihood term is constructed under Bernoulli theory, which meets the non-negative and monotonically increasing conditions. In the posterior probability estimation procedure, final sea ice concentration is obtained using MAP criterion, which equals to minimize the cost function and it can be calculated with nonlinear iteration method. The proposed algorithm is tested on multiple satellite SAR data sets including GF-3, Sentinel-1A, RADARSAT-2 and Envisat ASAR. Results show that the proposed algorithm can improve the accuracy of ASI sea ice concentration products and reduce the uncertainty along the ice edge.
A comparison and evaluation between ICESat/GLAS altimetry and mean sea level in Thailand
NASA Astrophysics Data System (ADS)
Naksen, Didsaphan; Yang, Dong Kai
2015-10-01
Surface elevation is one of the importance information for GIS. Usually surface elevation can acquired from many sources such as satellite imageries, aerial photograph, SAR data or LiDAR by photogrammetry, remote sensing methodology. However the most trust information describe the actual surface elevation is Leveling from terrestrial survey. Leveling is giving the highest accuracy but in the other hand is also long period process spending a lot of budget and resources, moreover the LiDAR technology is new era to measure surface elevation. ICESat/GLAS is spaceborne LiDAR platform, a scientific satellite lunched by NASA in 2003. The study area was located at the middle part of Thailand between 12. ° - 14° North and 98° -100° East Latitude and Longitude. The main idea is to compare and evaluate about elevation between ICESat/GLAS Altimetry and mean sea level of Thailand. Data are collected from various sources, including the ICESat/GLAS altimetry data product from NASA, mean sea level from Royal Thai Survey Department (RTSD). For methodology, is to transform ICESat GLA14 from TOPX/Poseidon-Jason ellipsoid to WGS84 ellipsoid. In addition, ICESat/GLAS altimetry that extracted form centroid of laser footprint and mean sea level were compared and evaluated by 1st Layer National Vertical Reference Network. The result is shown that generally the range of elevation between ICESat/GLAS and mean sea level is wildly from 0. 8 to 25 meters in study area.
NASA Astrophysics Data System (ADS)
Cawthra, H. C.; Jacobs, Z.; Compton, J. S.; Fisher, E. C.; Karkanas, P.; Marean, C. W.
2018-02-01
Pleistocene shoreline deposits comprised of calcified shallow marine (palaeobeach) and aeolian (palaeodune) facies found along mid-latitude coastlines can be useful indicators of past sea levels. Here, we describe a succession of such deposits that are presently exposed both above (subaerial) and below (submerged) mean sea level along the southern Cape coast of South Africa, 18 km east of the town of Mossel Bay. The submerged units provide a window on Late Pleistocene coastal processes, as palaeoshoreline deposits in this study extend to water depths of up to 55 m on the mid-shelf. Five sedimentary facies were identified in the strata and were compared to modern depositional environments of the local littoral zone, which include aeolian dune, upper shoreface, foreshore, intertidal swash and back-barrier settings. Twenty-two geological units were observed and mapped. Some of these units were directly dated with optically stimulated luminescence (OSL) dating. OSL ages were obtained for ten samples from the subaerial and twelve samples from the submerged deposits. Those geological units not directly dated were interpreted based on sedimentology and field/stratigraphic relationships to dated units. The stratigraphy and chronology of the succession indicates a record of initial deposition during Termination II (T-II) meltwater events, preceding and leading to marine isotope stage (MIS) 5e. Indicators for multiple sea-level fluctuations between MIS 5d and MIS 4, and sediment deposition at the end of MIS 4 and start of MIS 3 are also found. Both regressive and transgressive depositional cycles are well-preserved in the succession. We propose that palaeodune and palaeobeach deposits along the South Coast of South Africa have no clear preference for deposition during sea-level transgressions or regressions. Sediment deposition more closely mirrors the rate of sea level change, with deposition and preservation either during times of rapid sea-level movement, or oscillation around still-stand events. Periods of relatively slow average rise or fall of sea level are represented by erosional planation surfaces in this record.
NASA Astrophysics Data System (ADS)
McDonald, Robert Christopher
The purpose of this study was to explore the process of developing a learning progression (LP) on constructing explanations about sea level rise. I used a learning progressions theoretical framework informed by the situated cognition learning theory. During this exploration, I explicitly described my decision-making process as I developed and revised a hypothetical learning progression. Correspondingly, my research question was: What is a process by which a hypothetical learning progression on sea level rise is developed into an empirical learning progression using learners' explanations? To answer this question, I used a qualitative descriptive single case study with multiple embedded cases (Yin, 2014) that employed analytic induction (Denzin, 1970) to analyze data collected on middle school learners (grades 6-8). Data sources included written artifacts, classroom observations, and semi-structured interviews. Additionally, I kept a researcher journal to track my thinking about the learning progression throughout the research study. Using analytic induction to analyze collected data, I developed eight analytic concepts: participant explanation structures varied widely, global warming and ice melt cause sea level rise, participants held alternative conceptions about sea level rise, participants learned about thermal expansion as a fundamental aspect of sea level rise, participants learned to incorporate authentic scientific data, participants' mental models of the ocean varied widely, sea ice melt contributes to sea level rise, and participants held vague and alternative conceptions about how pollution impacts the ocean. I started with a hypothetical learning progression, gathered empirical data via various sources (especially semi-structured interviews), revised the hypothetical learning progression in response to those data, and ended with an empirical learning progression comprising six levels of learner thinking. As a result of developing an empirically based LP, I was able to compare two learning progressions on the same topic. By comparing my learning progression with the LP in Breslyn, McGinnis, McDonald, and Hestness (2016), I was able to confirm portions of the two learning progressions and explore different possible pathways for learners to achieve progress towards upper anchors of the LPs through targeted instruction. Implications for future LP research, curriculum, instruction, assessment, and policy related to learning progressions are presented.
Global increasing of mean sea level and erroneous treatment of a role of thermal factors
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.
2009-04-01
Satellite methods of studies of the ocean surface - methods of altimetry - have been obtained intensive development in the last decades (since 1993). However, altimetry studies with the help of special satellites such as TOPEX-Poseidon not only have not cleared up understanding of the phenomenon of increase of sea level (SLR), but have even more confused and without that a complex question on the reasons of increase of sea level. Appeared, that classical determinations of average velocity of increase of sea level on coastal observations (1.4-1.7 mm / yr) approximately for 0.8-1.0 mm / yr it is less, rather than by modern satellite determinations of satellites TOPEX - Poseidon etc. (2.5 - 2.8 mm / yr). On the basis of the data of altimetry observations of TOPEX-Poseidon and Jason for the period 1993-2003 for geocentric velocity of increase of sea level (of global ocean) the value 2.8+/-0.4 mm / yr [1] has been obtained. In the given report the full answer is actually is given to a question put by leading experts on research of the sea level: "The TOPEX/Poseidon and Jason satellite altimeter missions provided a 12 year record of sea level change, which show increase of global mean sea level of 2.8+/-0.4 mm/yr, with considerable geographic variation. An important question for climate studies is to determine the cause of this change - specifically how much of the change is due to steric (heating) versus eustatic (runoff, melting ice, etc.) contribution?" [1]. There is, a big value of average velocity of increase of the sea level on the satellite data, it is possible to explain only by kinematical effect in data of observations. The motion of the satellite "is concerned" to the centre of mass of our planet, and its position is determined by a geocentric radius - vector. Therefore northern drift of the centre of mass in the Earth body [2] as though results in reduction of distances from the satellite up to the sea surface in the southern hemisphere and to their reduction in the northern hemisphere. At averaging of measurements over all ocean surface (mainly located in a southern hemisphere where it occupies about 80 % of the areas) there will be an effect of apparent additional increase of the sea level. Therefore this ("apparent") velocity of increase of the sea level accepts the greater value (about 2.4 mm / year) in comparison with coastal determinations of this velocity that is rather close to the data of satellite observations. The additional effect in increase of the sea level is brought by deformation of the ocean bottom. The both mentioned phenomena: the secular drift of the center of mass of the Earth and the secular expansion of southern hemisphere of the Earth have been predicted by author [2], [3] and have obtained confirmations by space geodesy methods. The offered explanation has the extremely - important value for studying a possible role of thermal and climatic factors which can not apply any more for a big component attributed to it in change of the sea level. The account of fictitious component of this velocity results practically in real value of variation of the average sea level about 1.3-1.6 mm / yr, that completely coordinate positions of researchers of ocean by coastal and altimetry (satellite) methods. Moreover, the given work opens a direct opportunity for an explanation of increase of the sea level as result of deformation of the ocean bottom. This deformation is a major factor of change of the average sea level. Water superseded in a southern hemisphere gives the significant contribution to observably value of velocity of sea level rise up to 0.8-1.2 mm / yr [3, 4]. The work fulfilled at financial support of Russian projects of RFBR: N 07-05-00939 and N 06-02-16665. This abstract (without what or changes) has been accepted to EGU GA 2008 Session IS48 "75th Anniversary of the PSML"(Convener: Woodworth P.) but was not included in its program. References. [1] Nerem R.S., Leuliette E.W., Chambers D.P. (2005) An Integrated Study of Sea Level Change Using Altimetry, Gravity, and In Situ Measurements. Geophys. Res. Abstr., Vol. 7, 09831, Sref-ID: 1607-7962/gra/EGU05-A-09831. [2] Barkin, Yu.V. (1995) About Geocenter Motion Due to Global Changes of Its Dynamical Structure and Tidal Deformations. Vestn. Mosk. Un-ta. Fiz., Astron., Vol. 36, № 5, pp. 99-101 (in Russian). [3] Barkin Yu.V. (2007) Mechanisms of increase of mean sea level and solution of "attribution problem". "Geology of seas and oceans: Materials of XVII International scientific conference (scool) on mariner geology". V. IV. M.: GEOS. 2007. p. 21-23. [4] Barkin Yu.V. (2007) Global increase of mean sea level and erroneous treatment of a role of thermal factors. "Geology of seas and oceans: Materials of XVII International scientific conference (scool) on mariner geology". V. IV. M.: GEOS. 2007. p. 18-20.
A search for scale in sea-level studies
Larsen, C.E.; Clark, I.
2006-01-01
Many researchers assume a proportional relationship among the atmospheric CO2 concentration, temperature, and sea level. Thus, the rate of sea-level rise should increase in concert with the documented exponential increase in CO2. Although sea surface temperature has increased in places over the past century and short-term sea level rose abruptly during the 1990s, it is difficult to demonstrate a proportional relationship using existing geologic or historic records. Tide gauge records in the United States cover too short a time interval to verify acceleration in the rate of sea-level rise, although multicentury tide gauge and staff records from the Netherlands and Sweden suggest a mid-19th-century acceleration in sea-level rise. Reconstructions of sea-level changes for the past 1000 years derived using benthic foraminifer data from salt marshes along the East Coast of the United States suggest an increased rate of relative sea-level rise beginning in the 1600s. Geologic records of relative sea-level rise for the past 6000 years are available for several sites along the US East Coast from 14C-dated basal peat below salt marshes and estuarine sediments. When these three scales of sea-level variation are integrated, adjusted for postglacial isostatic movement, and replotted, the range of variation in sea level suggested by basal peat ages is within ??1 meter of the long-term trend. The reconstruction from Long Island Sound data shows a linear rise in sea level beginning in the mid-1600s at a rate consistent with the historic record of mean high water. Long-term tide gauge records from Europe and North America show similar trends since the mid-19th century. There is no clear proportional exponential increase in the rate of sea-level rise. If proportionality exists among sea level, atmospheric CO2, and temperature, there may be a significant time lag before an anthropogenic increase in the rate of sea-level rise occurs.
NASA Astrophysics Data System (ADS)
Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu
2017-03-01
Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.
Lee II, Henry; Reusser, Deborah A.; Frazier, Melanie R; McCoy, Lee M; Clinton, Patrick J.; Clough, Jonathan S.
2014-01-01
The “Sea‐Level Affecting Marshes Model” (SLAMM) is a moderate resolution model used to predict the effects of sea level rise on marsh habitats (Craft et al. 2009). SLAMM has been used extensively on both the west coast (e.g., Glick et al., 2007) and east coast (e.g., Geselbracht et al., 2011) of the United States to evaluate potential changes in the distribution and extent of tidal marsh habitats. However, a limitation of the current version of SLAMM, (Version 6.2) is that it lacks the ability to model distribution changes in seagrass habitat resulting from sea level rise. Because of the ecological importance of SAV habitats, U.S. EPA, USGS, and USDA partnered with Warren Pinnacle Consulting to enhance the SLAMM modeling software to include new functionality in order to predict changes in Zostera marina distribution within Pacific Northwest estuaries in response to sea level rise. Specifically, the objective was to develop a SAV model that used generally available GIS data and parameters that were predictive and that could be customized for other estuaries that have GIS layers of existing SAV distribution. This report describes the procedure used to develop the SAV model for the Yaquina Bay Estuary, Oregon, appends a statistical script based on the open source R software to generate a similar SAV model for other estuaries that have data layers of existing SAV, and describes how to incorporate the model coefficients from the site‐specific SAV model into SLAMM to predict the effects of sea level rise on Zostera marina distributions. To demonstrate the applicability of the R tools, we utilize them to develop model coefficients for Willapa Bay, Washington using site‐specific SAV data.
75 FR 31342 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... referenced ground [caret] Communities affected elevation Elevation in meters (MSL) Effective Modified... Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and... ground. [caret] Mean Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the...
Gutierrez, Benjamin T.; Plant, Nathaniel G.; Pendleton, Elizabeth A.; Thieler, E. Robert
2014-01-01
Sea-level rise is an ongoing phenomenon that is expected to continue and is projected to have a wide range of effects on coastal environments and infrastructure during the 21st century and beyond. Consequently, there is a need to assemble relevant datasets and to develop modeling or other analytical approaches to evaluate the likelihood of particular sea-level rise impacts, such as coastal erosion, and to inform coastal management decisions with this information. This report builds on previous work that compiled oceanographic and geomorphic data as part of the U.S. Geological Survey’s Coastal Vulnerability Index (CVI) for the U.S. Atlantic coast, and developed a Bayesian Network to predict shoreline-change rates based on sea-level rise plus variables that describe the hydrodynamic and geologic setting. This report extends the previous analysis to include the Gulf and Pacific coasts of the continental United States and Alaska and Hawaii, which required using methods applied to the USGS CVI dataset to extract data for these regions. The Bayesian Network converts inputs that include observations of local rates of relative sea-level change, mean wave height, mean tide range, a geomorphic classification, coastal slope, and observed shoreline-change rates to calculate the probability of the shoreline-erosion rate exceeding a threshold level of 1 meter per year for the coasts of the United States. The calculated probabilities were compared to the historical observations of shoreline change to evaluate the hindcast success rate of the most likely probability of shoreline change. Highest accuracy was determined for the coast of Hawaii (98 percent success rate) and lowest accuracy was determined for the Gulf of Mexico (34 percent success rate). The minimum success rate rose to nearly 80 percent (Atlantic and Gulf coasts) when success included shoreline-change outcomes that were adjacent to the most likely outcome. Additionally, the probabilistic approach determines the confidence in calculated outcomes as the probability of the most likely outcome. The confidence was highest along the Pacific coast and it was lowest along the Alaskan coast.
Space Geodesy: The Cross-Disciplinary Earth science (Vening Meinesz Medal Lecture)
NASA Astrophysics Data System (ADS)
Shum, C. K.
2012-04-01
Geodesy during the onset of the 21st Century is evolving into a transformative cross-disciplinary Earth science field. The pioneers before or after the discipline Geodesy was defined include Galileo, Descartes, Kepler, Newton, Euler, Bernoulli, Kant, Laplace, Airy, Kelvin, Jeffreys, Chandler, Meinesz, Kaula, and others. The complicated dynamic processes of the Earth system manifested by interactions between the solid Earth and its fluid layers, including ocean, atmosphere, cryosphere and hydrosphere, and their feedbacks are linked with scientific problems such as global sea-level rise resulting from natural and anthropogenic climate change. Advances in the precision and stability of geodetic and fundamental instrumentations, including clocks, satellite or quasar tracking sensors, altimetry and lidars, synthetic aperture radar interferometry (InSAR), InSAR altimetry, gravimetry and gradiometry, have enabled accentuate and transformative progress in cross-disciplinary Earth sciences. In particular, advances in the measurement of the gravity with modern free-fall methods have reached accuracies of 10-9 g (~1 μGal or 10 nm/s2) or better, allowing accurate measurements of height changes at ~3 mm relative to the Earth's center of mass, and mass transports within the Earth interior or its geophysical fluids, enabling global quantifications of climate-change signals. These contemporary space geodetic and in situ sensors include, but not limited to, satellite radar and laser altimetry/lidars, GNSS/SLR/VLBI/DORIS, InSAR, spaceborne gravimetry from GRACE (Gravity Recovery And Climate Experiment twin-satellite mission) and gradiometry from GOCE (Global Ocean Circulation Experiment), tide gauges, and hydrographic data (XBT/MBT/Argo). The 2007 Intergovernmental Panel for Climate Change (IPCC) study, the Fourth Assessment Report (AR4), substantially narrowed the discrepancy between observation and the known geophysical causes of sea-level rise, but significant uncertainties remain, notably in the discrepancies of contributions from the ice-reservoirs (ice-sheet and mountain glaciers/ice caps) and our knowledge in the solid Earth glacial isostatic adjustment (GIA), to the present-day and 20th Century global sea-level rise. Here we report our use of contemporary space geodetic observations and novel methodologies to address a few of the open Earth science questions, including the potential quantifications of the major geophysical contributions to or causing present-day global sea-level rise, and the subsequent narrowing of the current sea-level budget discrepancy.
Esslinger, George G.; Esler, Daniel N.; Howlin, S.; Starcevich, L.A.
2015-06-25
After many decades of absence from southeast Alaska, sea otters (Enhydra lutris) are recolonizing parts of their former range, including Glacier Bay, Alaska. Sea otters are well known for structuring nearshore ecosystems and causing community-level changes such as increases in kelp abundance and changes in the size and number of other consumers. Monitoring population status of sea otters in Glacier Bay will help park researchers and managers understand and interpret sea otter-induced ecosystem changes relative to other sources of variation, including potential human-induced impacts such as ocean acidification, vessel disturbance, and oil spills. This report was prepared for the National Park Service (NPS), Southeast Alaska Inventory and Monitoring Network following a request for evaluation of options for monitoring sea otter population status in Glacier Bay National Park and Preserve. To meet this request, we provide a detailed consideration of the primary method of assessment of abundance and distribution, aerial surveys, including analyses of power to detect interannual trends and designs to reduce variation around annual abundance estimates. We also describe two alternate techniques for evaluating sea otter population status—(1) quantifying sea otter diets and energy intake rates, and (2) detecting change in ages at death. In addition, we provide a brief section on directed research to identify studies that would further our understanding of sea otter population dynamics and effects on the Glacier Bay ecosystem, and provide context for interpreting results of monitoring activities.
A Quantitative Proxy for Sea-Ice Based on Diatoms: A Cautionary Tale.
NASA Astrophysics Data System (ADS)
Nesterovich, A.; Caissie, B.
2016-12-01
Sea ice in the Polar Regions supports unique and productive ecosystems, but the current decline in the Arctic sea ice extent prompts questions about previous sea ice declines and the response of ice related ecosystems. Since satellite data only extend back to 1978, the study of sea ice before this time requires a proxy. Being one of the most productive, diatom-dominated regions in the world and having a wide range of sea ice concentrations, the Bering and Chukchi seas are a perfect place to find a relationship between the presence of sea ice and diatom community composition. The aim of this work is to develop a diatom-based proxy for the sea ice extent. A total of 473 species have been identified in 104 sediment samples, most of which were collected on board the US Coast Guard Cutter Healy ice breaker (2006, 2007) and the Norseman II (2008). The study also included some of the archived diatom smear slides made from sediments collected in 1969. The assemblages were compared to satellite-derived sea ice extent data averaged over the 10 years preceding the sampling. Previous studies in the Arctic and Antarctic regions demonstrated that the Generalized Additive Model (GAM) is one of the best choices for proxy construction. It has the advantage of using only several species instead of the whole assemblage, thus including only sea ice-associated species and minimizing the noise created by species responding to other environmental factors. Our GAM on three species (Connia compita, Fragilariopsis reginae-jahniae, and Neodenticula seminae) has low standard deviation, high level of explained variation, and holds under the ten-fold cross-validation; the standard residual analysis is acceptable. However, a spatial residual analysis revealed that the model consistently over predicts in the Chukchi Sea and under predicts in the Bering Sea. Including a spatial model into the GAM didn't improve the situation. This has led us to test other methods, including a non-parametric model Random Forests. All models showed the same consistent pattern in the residuals. We conclude that ecosystems of the Bering and Chukchi seas respond differently to sea ice concentration and an integrated proxy must take it into account.
Understanding Sea Level Changes
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.
2004-01-01
Today more than 100 million people worldwide live on coastlines within one meter of mean sea level; any short-term or long-term sea level change relative to vertical ground motion is of great societal and economic concern. As palm-environment and historical data have clearly indicated the existence and prevalence of such changes in the past, new scientific information regarding to the nature and causes and a prediction capability are of utmost importance for the future. The 10-20 cm global sea-level rise recorded over the last century has been broadly attributed to two effects: (1) the steric effect (thermal expansion and salinity-density compensation of sea water) following global climate; (2) mass-budget changes due to a number of competing geophysical and hydrological processes in the Earth-atmosphere-hydrosphere-cryosphere system, including water exchange from polar ice sheets and mountain glaciers to the ocean, atmospheric water vapor and land hydrological variations, and anthropogenic effects such as water impoundment in artificial reservoirs and extraction of groundwater, all superimposed on the vertical motions of solid Earth due to tectonics, rebound of the mantle from past and present deglaciation, and other local ground motions. As remote-sensing tools, a number of space geodetic measurements of sea surface topography (e.g., TOPEX/Poseidon, Jason), ice mass (e.g., ICESat), time-variable gravity (e.g. GRACE), and ground motions (SLR, VLBI, GPS, InSAR, Laser altimetry, etc.) become directly relevant. Understanding sea level changes "anywhere, anytime" in a well-defined terrestrial reference frame in terms of climate change and interactions among ice masses, oceans, and the solid Earth, and being able to predict them, emerge as one of the scientific challenges in the Solid Earth Science Working Group (SESWG, 2003) conclusions.
Understanding sources of sea lice for salmon farms in Chile.
Kristoffersen, A B; Rees, E E; Stryhn, H; Ibarra, R; Campisto, J-L; Revie, C W; St-Hilaire, S
2013-08-01
The decline of fisheries over recent decades and a growing human population has coincided with an increase in aquaculture production. As farmed fish densities increase, so have their rates of infectious diseases, as predicted by the theory of density-dependent disease transmission. One of the pathogen that has increased with the growth of salmon farming is sea lice. Effective management of this pathogen requires an understanding of the spatial scale of transmission. We used a two-part multi-scale model to account for the zero-inflated data observed in weekly sea lice abundance levels on rainbow trout and Atlantic salmon farms in Chile, and to assess internal (farm) and external (regional) sources of sea lice infection. We observed that the level of juvenile sea lice was higher on farms that were closer to processing plants with fish holding facilities. Further, evidence for sea lice exposure from the surrounding area was supported by a strong positive correlation between the level of juvenile sea lice on a farm and the number of gravid females on neighboring farms within 30 km two weeks prior. The relationship between external sources of sea lice from neighboring farms and juvenile sea lice on a farm was one of the strongest detected in our multivariable model. Our findings suggest that the management of sea lice should be coordinated between farms and should include all farms and processing plants with holding facilities within a relatively large geographic area. Understanding the contribution of pathogens on a farm from different sources is an important step in developing effective control strategies. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; Cosentino, D.; Frijia, G.; Castorina, F.; Dudas, F. O.; Iadanza, A.; Cipollari, P.; Caruso, A.; Bowring, S. A.; Strecker, M. R.
2013-12-01
Sr isotope records from marginal marine basins track the mixing between sea water and local continental runoff. Because changes in sea level determine the amount of mixing between global marine and continental water, and climate affects the amount of continental runoff, both sea-level and climate changes can potentially be recorded in marine fossil Sr isotope composition. Our 128 new 87Sr/86Sr analyses on 73 oyster, foraminifera, and coral samples from eight late Miocene stratigraphic sections in southern Turkey, Crete, and Sicily show that 87Sr/86Sr in Mediterranean marginal basins started to depart from global ocean values several million years before the Messinian Salinity Crisis (MSC), with sub-basin 87Sr/86Sr commonly dropping 0.000100 below contemporaneous global ocean values. The marked departure coincided with tectonic uplift and basin shallowing along the margins of the Mediterranean Basin. In contrast, centrally-located basins within the Mediterranean (e.g., Cyprus, Sicily, Crete) only record departures during the MSC. Besides this general trend, our 57 new 87Sr/86Sr analyses from the astronomically tuned Lower Evaporite unit deposited during the MSC in the central Apennines (Italy) allow us to explore in detail the effect of sea-level and humidity changes on 87Sr/86Sr . Most of the variation in 87Sr/86Sr that we observe can be explained by changes in eustatic sea level, with greatest departures from global ocean values (with differences up to 0.000150) occurring during sea-level lowstands, which were characterized by relatively arid conditions in the Mediterranean. However, in a few cases, the greatest 87Sr/86Sr departures (up to 0.000300) occur during sea-level highstands, which are marked by more humid conditions. Because the correlations between peaks in Sr departures and highstands (humid conditions) occur only after episodes of prolonged aridity, variations of residence time of continental water (particularly groundwater) could have affected its Sr concentration, and hence the degree to which continental water could perturb 87Sr/86Sr in marine sub-basins. Although our results demonstrate that the forcing behind variations in Sr isotope composition in marginal marine basins is more complex than what is typically included in Sr isotope box models, they also imply that high-resolution records, particularly when combined with independent information on sea-level or climate changes, could offer unique insights into local tectonic, climatic, and sea-level variations.
Biomagnification of persistent organic pollutants in a deep-sea, temperate food web.
Romero-Romero, Sonia; Herrero, Laura; Fernández, Mario; Gómara, Belén; Acuña, José Luis
2017-12-15
Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ 15 N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ 15 N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Arctic sea-ice syntheses: Charting across scope, scale, and knowledge systems
NASA Astrophysics Data System (ADS)
Druckenmiller, M. L.; Perovich, D. K.; Francis, J. A.
2017-12-01
Arctic sea ice supports and intersects a multitude of societal benefit areas, including regulating regional and global climates, structuring marine food webs, providing for traditional food provisioning by indigenous peoples, and constraining marine shipping and access. At the same time, sea ice is one of the most rapidly changing elements of the Arctic environment and serves as a source of key physical indicators for monitoring Arctic change. Before the present scientific interest in Arctic sea ice for climate research, it has long been, and remains, a focus of applied research for industry and national security. For generations, the icy coastal seas of the North have also provided a basis for the sharing of local and indigenous knowledge between Arctic residents and researchers, including anthropologists, biologists, and geoscientists. This presentation will summarize an ongoing review of existing synthesis studies of Arctic sea ice. We will chart efforts to achieve system-level understanding across geography, temporal scales, and the ecosystem services that Arctic sea ice supports. In doing so, we aim to illuminate the role of interdisciplinary science, together with local and indigenous experts, in advancing knowledge of the roles of sea ice in the Arctic system and beyond, reveal the historical and scientific evolution of sea-ice research, and assess current gaps in system-scale understanding.
The SeaDAS Processing and Analysis System: SeaWiFS, MODIS, and Beyond
NASA Astrophysics Data System (ADS)
MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.
2005-12-01
The SeaWiFS Data Analysis System (SeaDAS) is a comprehensive software package for the processing, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make SeaDAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and sea surface temperature community. Full processing support for past (CZCS, OCTS, MOS) and present (SeaWiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology Processing Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the processing algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent SeaDAS enhancements include synchronization of MODIS processing with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS processing including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only SeaDAS-Lite, and an extremely active web-based user support forum.
Seasonal changes and driving forces of inflow and outflow through the Bohai Strait
NASA Astrophysics Data System (ADS)
Zhang, Zhixin; Qiao, Fangli; Guo, Jingsong; Guo, Binghuo
2018-02-01
This work focuses on analyzing seasonal variation of inflow and outflow through the Bohai Strait that greatly affect the marine environment in the Bohai Sea, using observational data including sea bed mounted acoustic Doppler current profiler currents, CTD salinity data on deck, sea level anomalies of coastal tide gauge stations, and climatological monthly sea level anomalies from Archiving, Validation and Interpretation of Satellite Oceanographic data. Our results show three patterns of outflow and inflow through the Bohai Strait. The first is such that outflow and inflow occur respectively in the southern and northern parts of the strait, as in the traditional understanding. Our results suggest that this pattern occurs only in autumn and winter. Beginning in late September, Ekman currents driven by the northwesterly monsoon carry Bohai Sea water that piles up in the southern part of that sea and then exits eastward to the Yellow Sea. In this process, the pressure and current fields are continuously adjusted, until a quasi balance state between wind stress, Coriolis force and pressure gradient force is reached in winter. Inflow with a compensating property through the northern channel is close to the outflow through the southern channel in winter. The second pattern is a single inflow in spring, and the current and pressure fields are in adjustment. In early spring, the northwesterly monsoon ceases, Yellow Sea water enters the Bohai Sea under the pressure gradient force. With southeasterly monsoon establishment and strengthening, northern Yellow Sea water continually flows into the Bohai Sea and causes sea level rise northward. In the third pattern, outflow is much greater than inflow in summer. The currents run eastward in the central Bohai Sea and then enter the northern Yellow Sea through the northern channel and upper layer of the southern channel, while a westward current with a compensating property enters via the lower layer of the southern channel. Larger net transport is through the Bohai Strait to the northern Yellow Sea, which is related to strong precipitation and runoff into the Bohai Sea.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils.
LeMonte, Joshua J; Stuckey, Jason W; Sanchez, Joshua Z; Tappero, Ryan; Rinklebe, Jörg; Sparks, Donald L
2017-06-06
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.; ...
2017-05-04
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
Sea Level Rise Induced Arsenic Release from Historically Contaminated Coastal Soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeMonte, Joshua J.; Stuckey, Jason W.; Sanchez, Joshua Z.
Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions.more » We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Here, our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.« less
An Alternative Approach of Coastal Sea-Level Observation from Remote Sensing Imageries
NASA Astrophysics Data System (ADS)
Peng, H. Y.; Tseng, K. H.; Chung-Yen, K.; Lin, T. H.; Liao, W. H.; Chen, C. F.
2017-12-01
Coastal sea level can be observed as waterline changes along a coastal digital elevation model (DEM). However, most global DEMs, such as the Shuttle Radar Topography Mission (SRTM) DEM with 30 m resolution, provide limited coverage over coastal area due to the impermeability of radar signal over water and the lack of low-tide coincidence. Therefore, we aim to extend to coverage of SRTM DEM for the determination of intertidal zone and to monitor sea-level changes along the entire coastline of Taiwan (>1200km). We firstly collect historical cloud-free images since the 1980s, including Landsat series, SPOT series and Sentinel-2, and then calculate the Modified Normalized Difference Water Index (MNDWI) to identify water pixels. After computing water appearance probability of each pixel, it is converted into actual elevation by introducing the DTU10 tide model for high tide and low tide boundaries. A coastal DEM of intertidal zone is reconstructed and the accuracy is at 50 cm level as compared with in situ DEM built by an unmanned aerial vehicle (UAV). Finally, we use this product to define the up-to-date intertidal zone and estimate sea-level changes by using remote sensing snapshots.
Current state and future perspectives on coupled ice-sheet - sea-level modelling
NASA Astrophysics Data System (ADS)
de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.
2017-08-01
The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.
Robustness of observation-based decadal sea level variability in the Indo-Pacific Ocean
NASA Astrophysics Data System (ADS)
Nidheesh, A. G.; Lengaigne, M.; Vialard, J.; Izumo, T.; Unnikrishnan, A. S.; Meyssignac, B.; Hamlington, B.; de Boyer Montegut, C.
2017-07-01
We examine the consistency of Indo-Pacific decadal sea level variability in 10 gridded, observation-based sea level products for the 1960-2010 period. Decadal sea level variations are robust in the Pacific, with more than 50% of variance explained by decadal modulation of two flavors of El Niño-Southern Oscillation (classical ENSO and Modoki). Amplitude of decadal sea level variability is weaker in the Indian Ocean than in the Pacific. All data sets indicate a transmission of decadal sea level signals from the western Pacific to the northwest Australian coast through the Indonesian throughflow. The southern tropical Indian Ocean sea level variability is associated with decadal modulations of ENSO in reconstructions but not in reanalyses or in situ data set. The Pacific-independent Indian Ocean decadal sea level variability is not robust but tends to be maximum in the southwestern tropical Indian Ocean. The inconsistency of Indian Ocean decadal variability across the sea level products calls for caution in making definitive conclusions on decadal sea level variability in this basin.
Vitamin A deficiency and hepatic retinol levels in sea otters, Enhydra lutris.
St Leger, Judy A; Righton, Alison L; Nilson, Erika M; Fascetti, Andrea J; Miller, Melissa A; Tuomi, Pamela A; Goertz, Caroline E C; Puschner, Birgit
2011-03-01
Vitamin A deficiency has rarely been reported in captive or free-ranging wildlife species. Necropsy findings in two captively housed southern sea otters (Enhydra lutris nereis) included irregular thickening of the calvaria characterized by diffuse hyperostoses on the internal surface. One animal also had moderate squamous metaplasia of the seromucinous glands of the nose. There was no measurable retinol in the liver of either sea otter. For comparison, hepatic retinol concentration was determined for 23 deceased free-ranging southern and northern (Enhydra lutris kenyoni) sea otters from California and Alaska. Free-ranging otters were found to have similar hepatic retinol concentrations (316 +/- 245 mg/kg wet weight) regardless of their location and subspecies. All of these values were significantly higher than the levels in the affected animals. Consumption of a diet with very low vitamin A concentrations and noncompliance in daily supplementation are hypothesized as the causes of vitamin A deficiency in these two sea otters.
A framework for sea level rise vulnerability assessment for southwest U.S. military installations
Chadwick, B.; Flick, Reinhard; Helly, J.; Nishikawa, Tracy; Pei, Fang Wang; O'Reilly, W.; Guza, R.; Bromirski, Peter; Young, A.; Crampton, W.; Wild, B.; Canner, I.
2011-01-01
We describe an analysis framework to determine military installation vulnerabilities under increases in local mean sea level as projected over the next century. The effort is in response to an increasing recognition of potential climate change ramifications for national security and recommendations that DoD conduct assessments of the impact on U.S. military installations of climate change. Results of the effort described here focus on development of a conceptual framework for sea level rise vulnerability assessment at coastal military installations in the southwest U.S. We introduce the vulnerability assessment in the context of a risk assessment paradigm that incorporates sources in the form of future sea level conditions, pathways of impact including inundation, flooding, erosion and intrusion, and a range of military installation specific receptors such as critical infrastructure and training areas. A unique aspect of the methodology is the capability to develop wave climate projections from GCM outputs and transform these to future wave conditions at specific coastal sites. Future sea level scenarios are considered in the context of installation sensitivity curves which reveal response thresholds specific to each installation, pathway and receptor. In the end, our goal is to provide a military-relevant framework for assessment of accelerated SLR vulnerability, and develop the best scientifically-based scenarios of waves, tides and storms and their implications for DoD installations in the southwestern U.S.
New evidence for "far-field" Holocene sea level oscillations and links to global climate records
NASA Astrophysics Data System (ADS)
Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.
2018-04-01
Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.
Jin, J W; Kim, Y C; Hong, S; Kim, M S; Jeong, J B; Jeong, H D
2017-04-01
As suggested by the Office International des Epizooties (OIE), fishes belonging to the genus Oplegnathus are more sensitive to megalocytivirus infection than other fish species including red sea bream (Pagrus major). To assess the roles of the innate immune response to these different susceptibilities, we cloned the genes encoding inflammatory factors including IL-8 and COX-2, and the antiviral factor like Mx from red sea bream for the first time and performed phylogenetic and structural analysis. Analysed expression levels of IL-1β, IL-8 and COX-2 and the antiviral factor like Mx genes performed with in vivo challenge experiment showed no difference in inflammatory gene expression or respiratory burst activity between red sea bream and rock bream (Oplegnathus fasciatus). However, the Mx gene expression levels in red sea bream were markedly higher than those in rock bream, suggesting the importance of type I interferon (IFN)-induced proteins, particularly Mx, during megalocytivirus infection, rather than inflammation-related genes. The in vitro challenge experiments using embryonic primary cultures derived from both fish species showed no difference in cytopathic effects (CPE), viral replication profiles, and inflammatory and Mx gene expression pattern between the two fish species. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Rasmussen, P.; Sonnenborg, T. O.; Goncear, G.; Hinsby, K.
2012-07-01
Groundwater abstraction from coastal aquifers is vulnerable to climate change and sea level rise because both may potentially impact saltwater intrusion and hence groundwater quality depending on the hydrogeological setting. In the present study the impacts of sea level rise and changes in groundwater recharge are quantified for an island located in the Western Baltic Sea. Agricultural land dominates the western and central parts of the island, which geologically are developed as push moraine hills and a former lagoon (later wetland area) behind barrier islands to the east. The low-lying central area of the island was extensively drained and reclaimed during the second half of the 19th century. Summer cottages along the beach on the former barrier islands dominate the eastern part of the island. The main water abstraction is for holiday cottages during the summer period (June-August). The water is abstracted from 11 wells drilled to a depth of around 20 m in the upper 5-10 m of a confined chalk aquifer. Increasing chloride concentrations have been observed in several abstraction wells and in some cases the WHO drinking water standard has been exceeded. Using the modeling package MODFLOW/MT3D/SEAWAT the historical, present and future freshwater-sea water distribution is simulated. The model is calibrated against hydraulic head observations and validated against geochemical and geophysical data from new investigation wells, including borehole logs, and from an airborne transient electromagnetic survey. The impact of climate changes on saltwater intrusion is found to be sensitive to the boundary conditions of the investigated system. For the flux-controlled aquifer to the west of the drained area only changes in groundwater recharge impacts the freshwater-sea water interface whereas sea level rise do not result in increasing sea water intrusion. However, on the barrier islands to the east of the reclaimed area below which the sea is hydraulically connected to the drainage canal, and the boundary of the flow system therefore controlled, the projected changes in sea level, groundwater recharge and stage of the drainage canal all have significant impacts on saltwater intrusion and hence the chloride concentrations found in the abstraction wells.
Geodetic infrastructure at the Barcelona harbour for sea level monitoring
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona
2015-04-01
The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and a little far away from the geographic location of the pulse and acustic radar location on the Europa bridge. The measured settlement rate is about 1cm/year that may be could mask the values registered by the tide gauge. An intercomparison of the results of the three different tide gauges is presented and discussed. These activities has been received funding of the Ministerio de Ciencia e Innovacion under Spanish National Project CGL2009-13435/CLI.
Atmospheric model development in support of SEASAT. Volume 2: Analysis models
NASA Technical Reports Server (NTRS)
Langland, R. A.
1977-01-01
As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.
2014-03-01
200 words ) The Mississippi River watershed is currently managed as six separate basins including the Missouri, Illinois, Ohio, Arkansas, and...that Congress set in 1896 when they gave the USACE authorization to maintain a 9 foot deep by 250 foot wide channel from Cairo to the mouth of the...Sea-level rise will impact the watershed. As the sea-level rises over time, it puts pressure on the outflow of the watershed at the mouth of the
Satellite image atlas of glaciers of the world
,
1994-01-01
The world's glaciers react to and interact with changes in global and regional climates. Most mountain glaciers worldwide have been retreating since the latter part of the 19th century; global sea level has risen about 10 centimeters during the past century. Glaciers vary in size as a result of several factors, of which climate variation is probably the most important. The reasons we are interested in glacier variation include its connection to climate change and to global sea level.
Foraminifera and the ecology of sea grass communities since the late Cretaceous
NASA Astrophysics Data System (ADS)
Hart, Malcolm; Smart, Christopher; Jagt, John
2016-04-01
Sea grasses are marine angiosperms (plants) that, in the late Cretaceous, migrated from the land into shallow-water marine environments. They represent a distinct, but fragile, marine habitat and sea grass meadows are often regarded as biodiversity hot-spots with a range of species (including fish, sea horses and cuttlefish) using them as nurseries for their young. Foraminifera are often found associated with sea grass meadows, with the associated taxa reflecting both the environment and palaeolatitude. In the tropics and sub-tropics, miliolid foraminifera dominate (e.g., Peneroplis spp.) as do large discoidal taxa such as Marginopora and Calcarina. In temperate to cool latitudes the assemblage changes to one dominated by smaller benthic taxa, including Elphidium spp. One taxon, Elphidium crispum, is geotropic and is often found - in the summer months - to crowd the fronds of the sea grass. In the Gulpen and Maastricht formations of the Maastricht area (The Netherlands and Belgium) sea grass fossils (both fronds and rhizomes) have been recorded in association with assemblages of both larger and smaller benthic foraminifera (Hart et al., 2016). Some of the large discoidal forms (e.g., Omphalocyclus and Orbitoides/Lepidorbitoides) and the distinctive Siderolites are associated with these sea grass fossils and are suggestive of the modern sea grass communities of sub-tropical areas. While earlier records were of relatively isolated sea grasses, in September/October 2015 surfaces with abundant sea grasses were found that are suggestive of complete 'meadows'. Preservation of some silicified rhizomes indicates that silicification must have been very rapid, before any degradation or compaction of the delicate tissues. The presence of sea grass fossils and their associated benthic foraminifera is indicative of a clear, shallow-water seaway, with a maximum depth of 15-20 m. The reported variations in sea level during the latest Cretaceous cannot, therefore, have been very large as such a change in water depth would have been disastrous to such a fragile ecosystem. The fossil record of sea grasses in the Cenozoic is relatively limited, though there are some assemblages of benthic foraminifera that are suggestive of their presence, despite the lack of plant fossils. Hart, M.B., FitzPatrick, M.E.J. & Smart, C.W. 2016. The Cretaceous/Paleogene boundary: Foraminifera, sea grasses, sea level change and sequence stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 420-429.
Integrating Thematic Web Portal Capabilities into the NASA Earthdata Web Infrastructure
NASA Technical Reports Server (NTRS)
Wong, Minnie; Baynes, Kathleen E.; Huang, Thomas; McLaughlin, Brett
2015-01-01
This poster will present the process of integrating thematic web portal capabilities into the NASA Earth data web infrastructure, with examples from the Sea Level Change Portal. The Sea Level Change Portal will be a source of current NASA research, data and information regarding sea level change. The portal will provide sea level change information through articles, graphics, videos and animations, an interactive tool to view and access sea level change data and a dashboard showing sea level change indicators.
Imperial Valley and Salton Sea, California
NASA Technical Reports Server (NTRS)
2002-01-01
Southern California's Salton Sea is a prominent visual for astronauts. This large lake supports the rich agricultural fields of the Imperial, Coachella and Mexicali Valleys in the California and Mexico desert. The Salton Sea formed by accident in 1905 when an irrigation canal ruptured, allowing the Colorado River to flood the Salton Basin. Today the Sea performs an important function as the sink for agricultural runoff; water levels are maintained by the runoff from the surrounding agricultural valleys. The Salton Sea salinity is high-nearly 1/4 saltier than ocean water-but it remains an important stopover point for migratory water birds, including several endangered species. The region also experiences several environmental problems. The recent increased demands for the limited Colorado River water threatens the amount of water allowed to flow into the Salton Sea. Increased salinity and decreased water levels could trigger several regional environmental crises. The agricultural flow into the Sea includes nutrients and agricultural by-products, increasing the productivity and likelihood of algae blooms. This image shows either a bloom, or suspended sediment (usually highly organic) in the water that has been stirred up by winds. Additional information: The Salton Sea A Brief Description of Its Current Conditions, and Potential Remediation Projects and Land Use Across the U.S.-Mexico Border Astronaut photograph STS111-E-5224 was taken by the STS-111 Space Shuttle crew that recently returned from the International Space Station. The image was taken June 12, 2002 using a digital camera. The image was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.
NASA Astrophysics Data System (ADS)
Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans
2018-02-01
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.
Correlation Between Echinoidea Size and Threat Level
NASA Astrophysics Data System (ADS)
Bakshi, S.; Lee, A.; Heim, N.; Payne, J.
2017-12-01
Echinoidea (or sea urchins), are small, spiny, globular, animals that populate the seafloors of nearly the entire planet. Echinoidea have existed on Earth since the Ordovician period, and from their archaic origin there is much to be learned about the relationship between Echinoidea body size and how it affects the survivability of the individual. The goal of this project is to determine how Echinoidea dimensions such as body volume, area, and length compare across extinct and extant species by plotting Echinoidea data in R. We will use stratigraphic data as a source to find which species of sea urchin from our data is extinct. We will then create three sets of three histograms of the size data for each type of measurement. One set will include histograms for sea urchin length, area, and volume. The other set will include histograms for extinct sea urchin length, area, and volume. The last set will include histograms for extant sea urchin length, area, and volume. Our data showed that extant sea urchins had a larger size, and extinct sea urchins were smaller. Our length data showed that the average length of all sea urchins were 54.95791 mm, the average length of extinct sea urchins were 51.0337 mm, and the average length of extant sea urchins were 66.12774 mm. There is a generally increasing trend of size over time, except for a small outlier about 350 million years ago, where echinoderm extinction selected towards larger species and biovolume was abnormally high. Our data also showed that over the past 200 million years, echinoderm extinction selectivity drove slightly smaller sea urchins towards extinction, further supporting the idea that a larger size was and still is advantageous for echinoderms.
The complex reality of sea-level rise in an atoll nation
NASA Astrophysics Data System (ADS)
Donner, S. D.
2012-12-01
Sea-level rise famously poses an existential threat to island nations like Kiribati, Tuvalu and the Maldives. Yet as the global mean sea-level rises, the response of any one location at any given time will depend on the natural variability in regional sea-level and other impact of local human activities on coastal processes. As with climate warming, the state of an individual shoreline or the extent of flooding on a given day is not proof of a sea-level trend, nor is a global sea-level trend a good predictor of individual flooding or erosion events. Failure to consider the effect of natural variability and local human activity on coastal processes often leads to misattribution of flooding events and even some long-term shoreline changes to global sea level rise. Moreover, unverified attribution of individual events or changes to specific islets to sea level rise can inflame or invite scepticism of the strong scientific evidence for an accelerating increase in the global sea level due to the impacts of human activity on the climate system. This is particularly important in developing nations like Kiribati, which are depending on international financial support to adapt to rising sea levels. In this presentation, I use gauge data and examples from seven years of field work in Tarawa Atoll, the densely populated capital of Kiribati, to examine the complexity of local sea level and shoreline change in one of the world's most vulnerable countries. First, I discuss how the combination of El Nino-driven variability in sea-level and the astronomical tidal cycle leads to flooding and erosion events which can be mistaken for evidence of sea-level rise. Second, I show that human modification to shorelines has redirected sediment supply, leading, in some cases, to expansion of islets despite rising sea levels. Taken together, the analysis demonstrates the challenge of attributing particular coastal events to global mean sea-level rise and the impact on decision-making. The presentation concludes with a discussion of the implications for attribution research, discourse about sea-level rise, and adaptation planning.
Beatty, William; Jay, Chadwick V.; Fischbach, Anthony S.; Grebmeier, Jacqueline M.; Taylor, Rebecca L.; Blanchard, Arny L.; Jewett, Stephen C.
2016-01-01
Sea ice dominates marine ecosystems in the Arctic, and recent reductions in sea ice may alter food webs throughout the region. Sea ice loss may also stress Pacific walruses (Odobenus rosmarus divergens), which feed on benthic macroinvertebrates in the Bering and Chukchi seas. However, no studies have examined the effects of sea ice on foraging Pacific walrus space use patterns. We tested a series of hypotheses that examined walrus foraging resource selection as a function of proximity to resting substrates and prey biomass. We quantified walrus prey biomass with 17 benthic invertebrate families, which included bivalves, polychaetes, amphipods, tunicates, and sipunculids. We included covariates for distance to sea ice and distance to land, and systematically developed a series of candidate models to examine interactions among benthic prey biomass and resting substrates. We ranked candidate models with Bayesian Information Criterion and made inferences on walrus resource selection based on the top-ranked model. Based on the top model, biomass of the bivalve family Tellinidae, distance to ice, distance to land, and the interaction of distances to ice and land all positively influenced walrus foraging resource selection. Standardized model coefficients indicated that distance to ice explained the most variation in walrus foraging resource selection followed by Tellinidae biomass. Distance to land and the interaction of distances to ice and land accounted for similar levels of variation. Tellinidae biomass likely represented an index of overall bivalve biomass, indicating walruses focused foraging in areas with elevated levels of bivalve and tellinid biomass. Our results also emphasize the importance of sea ice to walruses. Projected sea ice loss will increase the duration of the open water season in the Chukchi Sea, altering the spatial distribution of resting sites relative to current foraging areas and possibly affecting the spatial structure of benthic communities.
NASA Astrophysics Data System (ADS)
von Hillebrandt-Andrade, C.; Crespo Jones, H.
2012-12-01
Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other requirements and factors have been considered for the sustainability of the stations. The sea level stations have to potentially sustain very aggressive conditions of not only tsunamis, but on a more regular basis, hurricanes. Given the requirement that the data be available in near real time, for tsunami and other coastal hazard application, robust communication systems are also essential. For the local operator, the ability to be able to visualize the data is critical and tools like the IOC Sea level Monitoring Facility and the Tide Tool program are very useful. It has also been emphasized the need for these stations to serve multiple purposes. For climate and other research applications the data need to be archived, QC'd and analyzed. Increasing the user base for the sea level data has also been seen as an important goal to gain the local buy in; local weather and meteorological offices are considered as key stakeholders but for whom applications still need to be developed. The CARIBE EWS continues to look forward to working with other IOC partners including the Global Sea Level Observing System (GLOSS) and Sub-Commission for the Caribbean and Adjacent Regions (IOCARIBE)/GOOS, as well as with local, national and global sea level station operators and agencies for the development of a sustainable sea level network.
The impact of half-a-degree Celsius upon the spatial pattern of future sea-level change.
NASA Astrophysics Data System (ADS)
Jackson, Luke
2017-04-01
It has been shown that the global thermal expansion of sea level and ocean dynamics are linearly related to global temperature change. On this basis one can estimate the difference in local sea-level change between a 1.5°C and 2.0°C world. The mitigation scenario RCP 2.6 shows an end-of-century global temperature range of 0.9 to 2.3°C (median 1.6°C). Additional sea-level components, such as mass changes in ice sheets, glaciers and land-water storage have unique spatial patterns that contribute to sea-level change and will be indirectly affected by global temperature change. We project local sea-level change for RCP 2.6 using sub-sets of models in the CMIP5 archive that follow different global temperature pathways. The method used to calculate local sea-level change is probabilistic and combines the normalised spatial patterns of sea-level components with global average projections of individual sea-level components.
Sea-level rise caused by climate change and its implications for society
MIMURA, Nobuo
2013-01-01
Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society. PMID:23883609
Assessment of the impact of sea-level rise due to climate change on coastal groundwater discharge.
Masciopinto, Costantino; Liso, Isabella Serena
2016-11-01
An assessment of sea intrusion into coastal aquifers as a consequence of local sea-level rise (LSLR) due to climate change was carried out at Murgia and Salento in southern Italy. The interpolation of sea-level measurements at three tide-gauge stations was performed during the period of 2000 to 2014. The best fit of measurements shows an increasing rate of LSLR ranging from 4.4mm/y to 8.8mm/y, which will result in a maximum LSLR of approximately 2m during the 22nd century. The local rate of sea-level rise matches recent 21st and 22nd century projections of mean global sea-level rise determined by other researchers, which include increased melting rates of the Greenland and Antarctic ice sheets, the effect of ocean thermal expansion, the melting of glaciers and ice caps, and changes in the quantity of stored land water. Subsequently, Ghyben-Herzberg's equation for the freshwater/saltwater interface was rewritten in order to determine the decrease in groundwater discharge due to the maximum LSLR. Groundwater flow simulations and ArcGIS elaborations of digital elevation models of the coast provided input data for the Ghyben-Herzberg calculation under the assumption of head-controlled systems. The progression of seawater intrusion due to LSLR suggests an impressive depletion of available groundwater discharge during the 22nd century, perhaps as much as 16.1% of current groundwater pumping for potable water in Salento. Copyright © 2016 Elsevier B.V. All rights reserved.
APL - North Pacific Acoustic Laboratory
2011-09-01
including marine mammals ) measurements in the NE Pacific Ocean. The Laboratory consists of the legacy SOSUS hydrophone receiver network in the...exposure in the marine environment. Philippine Sea- Ambient noise levels measured during the 2010-2011 Philippine Sea experiment on the Scripps...sound speed perturbations and the characteristics of the ambient acoustic noise field. Scattering and diffraction resulting from internal waves and
Reef productivity and preservation during the Late Neogene
NASA Astrophysics Data System (ADS)
Husson, Laurent; Pastier, Anne-Morwenn; Schmitt, Anais; Sarr, Anta-Clarisse; Elliot, Mary; Pedoja, Kevin; Bezos, Antoine
2016-04-01
During the glacial-interglacials cycles that prevailed during Plio-Pleistocence times, the pace of sea level oscillations exerts a major control on coral reef growth and expansion. We designed a numerical model to quantify reef productivity and carbonate preservation that accounts for sea level oscillations, reef growth, erosion and subsequent geomorphological carving. We carried out a parametric study of a variety of processes (reef growth, erosion, local slope, uplift and subsidence, relative sea level, etc) towards a probabilistic analysis of reef productivity and carbonate production. We further test the effect of the frequency and amplitude of sea level oscillations using sea level curves derived from both the 18O isotope record of past sea level change and synthetic sinusoidal sea level curves. Over a typical climate cycle, our model simulations confirm that the rate of sea level change is the primary controlling factor of reef production, as it modifies the productivity by several orders of magnitude. Most importantly, reef productivity increases during periods of sea level rise, and decreases during sea level stands, while conversely, the morphology records the opposite in a misleading fashion: Reef terraces expand during sea level stands due to the joint effects of erosion and patient reef growth at a stationary level until the accommodation space is filled up. On the long-term, over the Plio-Pleistocene period, vertical ground motion also significantly alters the production: moderate uplift or subsidence can boost reef productivity up to tenfold with respect to a stationary coastline. Last, the amplitude and frequency of the sea level oscillations (typically 40 kyrs vs. 100 kyrs periods) moderately impact reef productivity. These results can be ultimately converted into estimates of carbonate production and carbon sequestration during the Late Neogene, provided relative sea level is documented in the tectonically agitated intertropical zone.
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2006-01-01
The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.
Raviv, Osnat; Delbar, Vered; Arad, Jacob; Grinstein-Cohen, Orli
2015-10-01
The emergency department at Yoseftal hospital in Eilat is on the shore of the Red Sea, and it is visited by patients with marine wildlife injuries. The purpose of this study was to examine the effects of supportive nursing care on the pain level of patients with Red Sea marine wildlife injuries. A prospective quantitative study including 102 patients admitted to the emergency department. The study included a study group (N = 50) and a control group (N = 52). Both groups rated their pain level on the VAS before and after receiving treatment. The control group received the usual treatment, and the study group received the usual nursing treatment along with structured patient guidance and support. There was a significant difference in the level of pain after the intervention between the control and the study group. In the study group, the level of pain was significantly reduced compared with the control group (p < 0.001). Nursing training and patient guidance contributed to increasing cooperation with patients and pain reduction. Therefore, training interventions should be structured and assimilated as an integral part of nursing practice. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Seung-Bum; Fukumori, Ichiro
2008-06-01
Sea level of the Japan/East Sea observed by the TOPEX/Poseidon (T/P) satellite altimeter is analyzed using a 1/4°-resolution ocean general circulation model. A significant fraction of the Japan/East Sea sea level variability is found to be spatially uniform with periods ranging from 20 d to a year. The model simulation is consistent with T/P records in terms of the basin-wide sea level fluctuation's spectral energy and coherence. The simulation indicates that the changes are barotropic in nature and controlled, notably at high frequencies, by the net mass transport through the straits of the Japan/East Sea driven by winds in the vicinity of the Korea/Tsushima and Soya Straits. A series of barotropic simulations suggest that the sea level fluctuations are the result of a dynamic balance at the straits among near-strait winds, friction, and geostrophic control. The basin-wide sea level response is a linear superposition of changes due to winds near the individual straits. In particular, a basin-wide sea level response can be established by winds near either one of the straits alone. For the specific geometry and winds, winds near the Soya Strait have a larger impact on the Japan/East Sea mean sea level than those near the Korea/Tsushima Strait.
Brest sea level record: a time series construction back to the early eighteenth century
NASA Astrophysics Data System (ADS)
Wöppelmann, Guy; Pouvreau, Nicolas; Simon, Bernard
2006-12-01
The completeness and the accuracy of the Brest sea level time series dating from 1807 make it suitable for long-term sea level trend studies. New data sets were recently discovered in the form of handwritten tabulations, including several decades of the eighteenth century. Sea level observations have been made in Brest since 1679. This paper presents the historical data sets which have been assembled so far. These data sets span approximately 300 years and together constitute the longest, near-continuous set of sea level information in France. However, an important question arises: Can we relate the past and the present-day records? We partially provide an answer to this question by analysing the documents of several historical libraries with the tidal data using a ‘data archaeology’ approach advocated by Woodworth ( Geophys Res Lett 26:1589 1592, 1999b). A second question arises concerning the accuracy of such records. Careful editing was undertaken by examining the residuals between tidal predictions and observations. It proved useful to remove the worst effects of timing errors, in particular the sundial correction to be applied prior to August 1, 1714. A refined correction based on sundial literature [Savoie, La gnomique, Editions Les Belles Lettres, Paris, 2001] is proposed, which eliminates the systematic offsets seen in the discrepancies in timing of the sea level measurements. The tidal analysis has also shown that shallow-water tidal harmonics at Brest causes a systematic difference of 0.023 m between mean sea level (MSL) and mean tide level (MTL). Thus, MTL should not be mixed with the time series of MSL because of this systematic offset. The study of the trends in MTL and MSL however indicates that MTL can be used as a proxy for MSL. Three linear trend periods are distinguished in the Brest MTL time series over the period 1807 2004. Our results support the recent findings of Holgate and Woodworth ( Geophys Res Lett) of an enhanced coastal sea level rise during the last decade compared to the global estimations of about 1.8 mm/year over longer periods (Douglas, J Geophys Res 96:6981 6992, 1991). The onset of the relatively large global sea level trends observed in the twentieth century is an important question in the science of climate change. Our findings point out to an ‘inflexion point’ at around 1890, which is remarkably close to that in 1880 found in the Liverpool record by Woodworth ( Geophys Res Lett 26:1589 1592, 1999b).
Modeling Sea-Level Change using Errors-in-Variables Integrated Gaussian Processes
NASA Astrophysics Data System (ADS)
Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin
2014-05-01
We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The data that form the input to our model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. To accurately estimate rates of sea-level change and reliably compare tide-gauge compilations with proxy reconstructions it is necessary to account for the uncertainties that characterize each dataset. Many previous studies used simple linear regression models (most commonly polynomial regression) resulting in overly precise rate estimates. The model we propose uses an integrated Gaussian process approach, where a Gaussian process prior is placed on the rate of sea-level change and the data itself is modeled as the integral of this rate process. The non-parametric Gaussian process model is known to be well suited to modeling time series data. The advantage of using an integrated Gaussian process is that it allows for the direct estimation of the derivative of a one dimensional curve. The derivative at a particular time point will be representative of the rate of sea level change at that time point. The tide gauge and proxy data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Most notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. As a result of this, the integrated Gaussian process model is set in an errors-in-variables (EIV) framework so as to take account of this temporal uncertainty. The data must be corrected for land-level change known as glacio-isostatic adjustment (GIA) as it is important to isolate the climate-related sea-level signal. The correction for GIA introduces covariance between individual age and sea level observations into the model. The proposed integrated Gaussian process model allows for the estimation of instantaneous rates of sea-level change and accounts for all available sources of uncertainty in tide-gauge and proxy-reconstruction data. Our response variable is sea level after correction for GIA. By embedding the integrated process in an errors-in-variables (EIV) framework, and removing the estimate of GIA, we can quantify rates with better estimates of uncertainty than previously possible. The model provides a flexible fit and enables us to estimate rates of change at any given time point, thus observing how rates have been evolving from the past to present day.
Impacts of Sea-Level Rise and Human Activity on a Tropical Continental Shelf, RN State, NE Brazil
NASA Astrophysics Data System (ADS)
Vital, H.; Barros Pereira, T. R.; Lira, H. F.; Tabosa, W. F.; Eichler, P.; Stattegger, K.; Sen Gupta, B. K.; Gomes, M. P.; Nogueira, M. L. D. S.; Pierri, G. C. S.
2014-12-01
The northeastern Brazilian, tropical coast-shelf system along the Atlantic Ocean is a sediment-starved zone, because of low relief, small drainage basins, and a semiarid climate. This work presents the major results of a study of environmental changes, particularly those related to Holocene sea-level rise, affecting the coast and shallow waters of Rio Grande do Norte (RN) State, NE Brazil. The methods included bottom-sediment characterization, bioindicator tracking, and integrated shallow-water geophysical investigation. This coastline is marked by active sea cliffs carved into tablelands alternating with reef- or dune-barrier sections, beach rocks and lagoons, whereas the shelf is a narrow, very shallow, and highly energetic system. Overall, the area is under the natural influence of tides (with a semidiurnal mesotidal regime) and the anthropogenic influence of salt exploration, oil industry, shrimp farms, tourism, and wind-farms. Sedimentation during the Holocene has been controlled mainly by sea-level variation, longshore currents, and the advance and westward propagation of active dunes along the coast. As in other areas around the world, growing numbers of permanent and seasonal residents choose to live at or near the ocean. Coastal erosion is a cause for concern along many Brazilian beaches, and several erosion hot spots are already recognized in RN State. Curves of Holocene relative sea-level variation were established for RN State, but the absence of long-term oceanographic observations in the last centuries or that of detailed altimetry maps hinders the evaluation of different risk scenarios at the local level. Nevertheless, impacts of the current sea-level rise and human activity can be observed along the RN coastal-shelf system. Particular aspects of the study, such as oil-spill monitoring, coastal-water sewage contamination, and coastal erosion, will be highlighted.
2014-01-01
Background We sought to determine if adult residents living at high altitude have developed sufficient adaptation to a hypoxic environment to match the functional capacity of a similar population at sea level. To test this hypothesis, we compared the 6-min walk test distance (6MWD) in 334 residents living at sea level vs. at high altitude. Methods We enrolled 168 healthy adults aged ≥35 years residing at sea level in Lima and 166 individuals residing at 3,825 m above sea level in Puno, Peru. Participants completed a 6-min walk test, answered a sociodemographics and clinical questionnaire, underwent spirometry, and a blood test. Results Average age was 54.0 vs. 53.8 years, 48% vs. 43% were male, average height was 155 vs. 158 cm, average blood oxygen saturation was 98% vs. 90%, and average resting heart rate was 67 vs. 72 beats/min in Lima vs. Puno. In multivariable regression, participants in Puno walked 47.6 m less (95% CI -81.7 to -13.6 m; p < 0.01) than those in Lima. Other variables besides age and height that were associated with 6MWD include change in heart rate (4.0 m per beats/min increase above resting heart rate; p < 0.001) and percent body fat (-1.4 m per % increase; p = 0.02). Conclusions The 6-min walk test predicted a lowered functional capacity among Andean high altitude vs. sea level natives at their altitude of residence, which could be explained by an incomplete adaptation or a protective mechanism favoring neuro- and cardioprotection over psychomotor activity. PMID:24484777
NASA Astrophysics Data System (ADS)
Pérez, B.; Brower, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hacket, B.; Verlaan, M.; Alvarez Fanjul, E.
2011-04-01
ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of existing storm surge or circulation models today operational in Europe, as well as near-real time tide gauge data in the region, with the following main goals: - providing an easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool - generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average Technique (BMA) The system was developed and implemented within ECOOP (C.No. 036355) European Project for the NOOS and the IBIROOS regions, based on MATROOS visualization tool developed by Deltares. Both systems are today operational at Deltares and Puertos del Estado respectively. The Bayesian Modelling Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the probability that a model will give the correct forecast PDF and are determined and updated operationally based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. Results of validation of the different models and BMA implementation for the main harbours will be presented for the IBIROOS and Western Mediterranean regions, where this kind of activity is performed for the first time. The work has proved to be useful to detect problems in some of the circulation models not previously well calibrated with sea level data, to identify the differences on baroclinic and barotropic models for sea level applications and to confirm the general improvement of the BMA forecasts.
Vulnerability of the Nile Delta coastal areas to inundation by sea level rise.
Hassaan, M A; Abdrabo, M A
2013-08-01
Sea level changes are typically caused by several natural phenomena, including ocean thermal expansion, glacial melt from Greenland and Antarctica. Global average sea level is expected to rise, through the twenty-first century, according to the IPCC projections by between 0.18 and 0.59 cm. Such a rise in sea level will significantly impact coastal area of the Nile Delta, consisting generally of lowland and is densely populated areas and accommodates significant proportion of Egypt's economic activities and built-up areas. The Nile Delta has been examined in several previous studies, which worked under various hypothetical sea level rise (SLR) scenarios and provided different estimates of areas susceptible to inundation due to SLR. The paper intends, in this respect, to identify areas, as well as land use/land cover, susceptible to inundation by SLR based upon most recent scenarios of SLR, by the year 2100 using GIS. The results indicate that about 22.49, 42.18, and 49.22 % of the total area of coastal governorates of the Nile Delta would be susceptible to inundation under different scenarios of SLR. Also, it was found that 15.56 % of the total areas of the Nile Delta that would be vulnerable to inundation due to land subsidence only, even in the absence of any rise in sea level. Moreover, it was found that a considerable proportion of these areas (ranging between 32.32 and 53.66 %) are currently either wetland or undeveloped areas. Furthermore, natural and/or man-made structures, such as the banks of the International Coastal Highway, were found to provide unintended protection to some of these areas. This suggests that the inundation impact of SLR on the Nile Delta is less than previously reported.
Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy
NASA Technical Reports Server (NTRS)
Zlotnicki, V.
1994-01-01
Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.
Response of salt marsh and mangrove wetlands to changes in atmospheric CO2, climate, and sea-level
Mckee, Karen L.; Rogers, Kerrylee; Saintilan, Neil; Middleton, Beth A.
2012-01-01
Coastal salt marsh and mangrove ecosystems are particularly vulnerable to changes in atmospheric CO2 concentrations and associated climate and climate-induced changes. We provide a review of the literature detailing theoretical predictions and observed responses of coastal wetlands to a range of climate change stressors, including CO2, temperature, rainfall, and sea-level rise. This review incorporates a discussion of key processes controlling responses in different settings and thresholds of resilience derived from experimental and observational studies. We specifically consider the potential and observed effects on salt marsh and mangrove vegetation of changes in (1) elevated [CO2] on physiology, growth, and distribution; (2) temperature on distribution and diversity; (3) rainfall and salinity regimes on growth and competitive interactions; and (4) sea level on geomorphological, hydrological, and biological processes.
Applying downscaled global climate model data to a hydrodynamic surface-water and groundwater model
Swain, Eric; Stefanova, Lydia; Smith, Thomas
2014-01-01
Precipitation data from Global Climate Models have been downscaled to smaller regions. Adapting this downscaled precipitation data to a coupled hydrodynamic surface-water/groundwater model of southern Florida allows an examination of future conditions and their effect on groundwater levels, inundation patterns, surface-water stage and flows, and salinity. The downscaled rainfall data include the 1996-2001 time series from the European Center for Medium-Range Weather Forecasting ERA-40 simulation and both the 1996-1999 and 2038-2057 time series from two global climate models: the Community Climate System Model (CCSM) and the Geophysical Fluid Dynamic Laboratory (GFDL). Synthesized surface-water inflow datasets were developed for the 2038-2057 simulations. The resulting hydrologic simulations, with and without a 30-cm sea-level rise, were compared with each other and field data to analyze a range of projected conditions. Simulations predicted generally higher future stage and groundwater levels and surface-water flows, with sea-level rise inducing higher coastal salinities. A coincident rise in sea level, precipitation and surface-water flows resulted in a narrower inland saline/fresh transition zone. The inland areas were affected more by the rainfall difference than the sea-level rise, and the rainfall differences make little difference in coastal inundation, but a larger difference in coastal salinities.
The flooding of the San Matías Gulf: The Northern Patagonia sea-level curve
NASA Astrophysics Data System (ADS)
Isla, Federico Ignacio
2013-12-01
Northern Patagonia is characterised by tectonic depressions below present sea level. Some of them are today flooded by the sea; others remain emerged although they are at altitudes of - 50 m (Bajo del Gualicho), - 35 m (Salinas Grandes) and - 7 m (Salina La Piedra). San Matías Gulf also was such an emerged depression below contemporary mean sea level during the Late Pleistocene. It flooded between 11,500 and 11,000 years ago, when the sea level surpassed the sill of the gulf (today 50 m below mean sea level) during postglacial sea-level rise. In those days, shrublands extended on the slopes of the tectonic depression. In-situ pieces of woods dredged from the bottom of the gulf at depths of 70 m gave a conventional age of 11,310 ± 150 years BP. We used the wood, together with dated shells from the continental shelf, and shells and organic matter dated from the San Blas, Negro and Chubut coastal plains to construct a sea-level curve. Sea level rise surpassed the present level somewhat before 6000 years BP, reaching a maximum stand of + 6 m. It has since gently diminished towards present sea level.
Implications of sediment redistribution on modeled sea-level changes over millennial timescales
NASA Astrophysics Data System (ADS)
Ferrier, Ken
2016-04-01
Sea level is a critical link in feedbacks among topography, tectonics, and climate. Over millennial timescales, changes in sea level reshape river networks, regulate organic carbon burial, influence sediment deposition, and set moving boundary conditions for landscape evolution. Sea-level changes influence tectonics by regulating rates and patterns of erosion and deposition, which perturb the surface loads that drive geodynamic processes at depth. These interactions are complex because sea-level changes are influenced by the geomorphic processes that they themselves modify, since sediment redistribution deforms the gravitational and crustal elevation fields that define sea level. A recent advance in understanding the coupling between sea level, tectonics, and topography was the incorporation of sediment redistribution into a gravitationally self-consistent sea-level model, which permits the computation of sea-level responses to erosion and deposition (Dalca et al., 2013, Geophysical Journal International). Here I use this model to quantify changes in sea level resulting from the erosion of some of the most rapidly eroding sites on Earth and the deposition of sediment offshore. These model results show that the sea-level fingerprints of sediment redistribution are strongly variable in space, and that they can represent a significant component of the total sea level change since the last interglacial. This work provides a basis for understanding a fundamental driver of landscape evolution at some of Earth's most geomorphically dynamic sites, and thus aids investigation of the couplings among tectonics, climate, and topography. References Dalca A.V., Ferrier K.L., Mitrovica J.X., Perron J.T., Milne G.A., Creveling J.R., 2013. On postglacial sea level - III. Incorporating sediment redistribution. Geophysical Journal International, doi: 10.1093/gji/ggt089.
Compound-Specific Amino Acid Isotopic Analysis of Benthic Food Webs in the Chukchi Sea
NASA Astrophysics Data System (ADS)
Zhang, M.; Cooper, L. W.; Biasatti, D. M.; Grebmeier, J. M.
2014-12-01
The Chukchi Sea is known for locally high standing stocks of benthic macrofauna and strong coupling between pelagic-benthic components of the ecosystem. However, benthic food structure is not fully understood, due to varied sources of particulate organic matter (POM) and the high diversity of benthic invertebrates. We provide the first demonstration of the application of compound-specific amino acid isotope analysis to study the dietary sources and trophic structure for this Arctic marginal sea. About 20 stations in Chukchi Sea were sampled during cruises in August of 2012 and 2013. At each station, phytoplankton, POM and benthic fauna were collected, processed and analyzed using GC-C-IRMS (gas chromatography-combustion-isotope ratio mass spectrometry). Among benthic fauna, dominant species included the following taxonomic groups: Ophiuroidea, Amphipoda, Polychaeta, Gastropoda, Bivalvia, and Cnidaria. The benthic fauna showed similar patterns of individual amino acid δ13C, with glycine the most enriched in 13C and leucine the most depleted in 13C. Specific amino acids including phenylalanine showed spatial variability in δ13C and δ15N values within the sampled area, indicating contributions of different dietary sources including phytoplankton, sea ice algae, benthic algae and terrestrial organic materials. δ15N values of individual amino acids such as the difference between glutamic acid and phenylalanine, i.e. Δ15Nglu-phe (δ15Nglu - δ15Nphe), were also used to identify trophic levels of benthic invertebrates relative to estimates available from bulk δ15N values. These data will ultimately be used to evaluate the spatial variability of organic carbon sources and trophic level interactions of dominant benthic species in the Chukchi Sea.
NASA Astrophysics Data System (ADS)
Xu, Yao; Zhou, Bin; Yu, Zhifeng; Lei, Hui; Sun, Jiamin; Zhu, Xingrui; Liu, Congjin
2017-01-01
The knowledge of sea level changes is critical important for social, economic and scientific development in coastal areas. Satellite altimeter makes it possible to observe long term and large scale dynamic changes in the ocean, contiguous shelf seas and coastal zone. In this paper, 1993-2015 altimeter data of Topex/Poseidon and its follow-on missions is used to get a time serious of continuous and homogeneous sea level anomaly gridding product. The sea level rising rate is 0.39 cm/yr in China Seas and the neighboring oceans, 0.37 cm/yr in the Bo and Yellow Sea, 0.29 cm/yr in the East China Sea and 0.40 cm/yr in the South China Sea. The mean sea level and its rising rate are spatial-temporal non-homogeneous. The mean sea level shows opposite characteristics in coastal seas versus open oceans. The Bo and Yellow Sea has the most significant seasonal variability. The results are consistent with in situ data observation by the Nation Ocean Agency of China. The coefficient of variability model is introduced to describe the spatial-temporal variability. Results show that the variability in coastal seas is stronger than that in open oceans, especially the seas off the entrance area of the river, indicating that the validation of altimeter data is less reasonable in these seas.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Zibordi, Giuseppe; Berthon, Jean-Francois; Bailey, Sean W.; Pietras, Christophe M.; Firestone, Elaine R. (Editor)
2000-01-01
This report documents the scientific activities that took place at the Acqua Alta Oceanographic Tower (AAOT) in the northern Adriatic Sea off the coast of Italy from 2-6 August 1999. The ultimate objective of the field campaign was to evaluate the capabilities of a new instrument called the SeaWiFS Photometer Revision for Incident Surface Measurements (SeaPRISM). SeaPRISM is based on a CE-318 sun photometer made by CIMEL Electronique (Paris, France). The CE-318 is an automated, robotic system which measures the direct sun irradiance plus the sky radiance in the sun plane and in the almucantar plane. The data are transmitted over a satellite link, and this remote operation capability has made the device very useful for atmospheric measurements. The revision to the CE-318 that makes the instrument potentially useful for SeaWiFS calibration and validation activities is to include a capability for measuring the radiance leaving the sea surface in wavelengths suitable for the determination of chlorophyll a concentration. The initial evaluation of this new capability involved above- and in-water measurement protocols. An intercomparison of the water-leaving radiances derived from SeaPRISM and an in-water system showed the overall spectral agreement was approximately 8.6%, but the blue-green channels intercompared at the 5% level. A blue-green band ratio comparison was at the 4% level.
Mechanisms of long-term mean sea level variability in the North Sea
NASA Astrophysics Data System (ADS)
Dangendorf, Sönke; Calafat, Francisco; Øie Nilsen, Jan Even; Richter, Kristin; Jensen, Jürgen
2015-04-01
We examine mean sea level (MSL) variations in the North Sea on timescales ranging from months to decades under the consideration of different forcing factors since the late 19th century. We use multiple linear regression models, which are validated for the second half of the 20th century against the output of a state-of-the-art tide+surge model (HAMSOM), to determine the barotropic response of the ocean to fluctuations in atmospheric forcing. We demonstrate that local atmospheric forcing mainly triggers MSL variability on timescales up to a few years, with the inverted barometric effect dominating the variability along the UK and Norwegian coastlines and wind (piling up the water along the coast) controlling the MSL variability in the south from Belgium up to Denmark. However, in addition to the large inter-annual sea level variability there is also a considerable fraction of decadal scale variability. We show that on decadal timescales MSL variability in the North Sea mainly reflects steric changes, which are mostly remotely forced. A spatial correlation analysis of altimetry observations and baroclinic ocean model outputs suggests evidence for a coherent signal extending from the Norwegian shelf down to the Canary Islands. This supports the theory of longshore wind forcing along the eastern boundary of the North Atlantic causing coastally trapped waves to propagate along the continental slope. With a combination of oceanographic and meteorological measurements we demonstrate that ~80% of the decadal sea level variability in the North Sea can be explained as response of the ocean to longshore wind forcing, including boundary wave propagation in the Northeast Atlantic. These findings have important implications for (i) detecting significant accelerations in North Sea MSL, (ii) the conceptual set up of regional ocean models in terms of resolution and boundary conditions, and (iii) the development of adequate and realistic regional climate change projections.
Understanding extreme sea levels for coastal impact and adaptation analysis
NASA Astrophysics Data System (ADS)
Wahl, T.; Haigh, I. D.; Nicholls, R. J.; Arns, A.; Hinkel, J.; Dangendorf, S.; Slangen, A.
2016-12-01
Coastal impact and adaptation assessments require detailed knowledge on extreme sea levels, because increasing damage due to extreme events, such as storm surges and tropical cyclones, is one of the major consequences of sea level rise and climate change. In fact, the IPCC has highlighted in its AR4 report that "societal impacts of sea level change primarily occur via the extreme levels rather than as a direct consequence of mean sea level changes". Over the last few decades, substantial research efforts have been directed towards improved understanding of past and future mean sea level; different scenarios were developed with process-based or semi-empirical models and used for coastal impact assessments at various spatial scales to guide coastal management and adaptation efforts. The uncertainties in future sea level rise are typically accounted for by analyzing the impacts associated with a range of scenarios leading to a vertical displacement of the distribution of extreme sea-levels. And indeed most regional and global studies find little or no evidence for changes in storminess with climate change, although there is still low confidence in the results. However, and much more importantly, there is still a limited understanding of present-day extreme sea-levels which is largely ignored in most impact and adaptation analyses. The two key uncertainties stem from: (1) numerical models that are used to generate long time series of extreme sea-levels. The bias of these models varies spatially and can reach values much larger than the expected sea level rise; but it can be accounted for in most regions making use of in-situ measurements; (2) Statistical models used for determining present-day extreme sea-level exceedance probabilities. There is no universally accepted approach to obtain such values for flood risk assessments and while substantial research has explored inter-model uncertainties for mean sea level, we explore here, for the first time, inter-model uncertainties for extreme sea-levels at large spatial scales and compare them to the uncertainties in mean sea level projections.
Chang-Diaz's EMU lower torso (legs) suspended against an Earth view during STS-111 UF-2 EVA 2
2002-06-12
STS111-E-5224 (12 June 2002) --- Southern Californias Salton Sea is routinely a prominent visual for astronauts passing overhead on the shuttle or International Space Station (ISS). This large lake, photographed from the station while docked to the Space Shuttle Endeavour by one of the STS-111 crew members, supports the rich agricultural fields of the Imperial, Coachella and Mexicali Valleys in the California and Mexico desert. According to geologists, the Salton Sea formed by accident in 1905 when an irrigation canal ruptured, allowing the Colorado River to flood the Salton Basin. Today the Sea performs an important function as the sink for agricultural runoff. Water levels are maintained by the runoff from the surrounding agricultural valleys. The Salton Sea salinity is high -- nearly 1/4 saltier than ocean water --but it remains an important stopover point for migratory water birds, including several endangered species. Scientists also noted that the region experiences several environmental problems. The recent increased demands for the limited Colorado River water, the scientists point out, threatens the amount of water allowed to flow into the Salton Sea, and increased salinity with decreased water levels could trigger several regional environmental crises. The agricultural flow into the Sea includes nutrients and agricultural by-products, increasing the productivity and likelihood of algae blooms. This image shows either a bloom, or suspended sediment (usually highly organic) in the water that has been stirred up by winds.
A Poor Relationship Between Sea Level and Deep-Water Sand Delivery
NASA Astrophysics Data System (ADS)
Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier
2018-08-01
The most commonly cited control on delivery of sand to deep water is the rate of relative sea-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative sea level position and across a large range of values of rate of relative sea-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative sea-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative sea-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative sea level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic processes such as avulsion and slope failure, and interactions among such processes, may explain the remaining variance. Relative sea level is a better predictor of deep-water sand delivery than rate of relative sea-level change because it is the sea-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between sea level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative sea level and the rate of relative sea-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, sea level itself is unable to account for the interaction of multiple processes that contribute to sand delivery to deep water.
Flooded! An Investigation of Sea-Level Rise in a Changing Climate
ERIC Educational Resources Information Center
Gillette, Brandon; Hamilton, Cheri
2011-01-01
Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…
Bodkin, James L.
2010-01-01
Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.
NASA Technical Reports Server (NTRS)
Hill, Emma M.; Ponte, Rui M.; Davis, James L.
2007-01-01
Comparison of monthly mean tide-gauge time series to corresponding model time series based on a static inverted barometer (IB) for pressure-driven fluctuations and a ocean general circulation model (OM) reveals that the combined model successfully reproduces seasonal and interannual changes in relative sea level at many stations. Removal of the OM and IB from the tide-gauge record produces residual time series with a mean global variance reduction of 53%. The OM is mis-scaled for certain regions, and 68% of the residual time series contain a significant seasonal variability after removal of the OM and IB from the tide-gauge data. Including OM admittance parameters and seasonal coefficients in a regression model for each station, with IB also removed, produces residual time series with mean global variance reduction of 71%. Examination of the regional improvement in variance caused by scaling the OM, including seasonal terms, or both, indicates weakness in the model at predicting sea-level variation for constricted ocean regions. The model is particularly effective at reproducing sea-level variation for stations in North America, Europe, and Japan. The RMS residual for many stations in these areas is 25-35 mm. The production of "cleaner" tide-gauge time series, with oceanographic variability removed, is important for future analysis of nonsecular and regionally differing sea-level variations. Understanding the ocean model's strengths and weaknesses will allow for future improvements of the model.
Climate related sea-level variations over the past two millennia
Kemp, Andrew C.; Horton, Benjamin P.; Donnelly, Jeffrey P.; Mann, Michael E.; Vermeer, Martin; Rahmstorf, Stefan
2011-01-01
We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium. PMID:21690367
Long-term sea level trends: Natural or anthropogenic?
NASA Astrophysics Data System (ADS)
Becker, M.; Karpytchev, M.; Lennartz-Sassinek, S.
2014-08-01
Detection and attribution of human influence on sea level rise are important topics that have not yet been explored in depth. We question whether the sea level changes (SLC) over the past century were natural in origin. SLC exhibit power law long-term correlations. By estimating Hurst exponent through Detrended Fluctuation Analysis and by applying statistics of Lennartz and Bunde, we search the lower bounds of statistically significant external sea level trends in longest tidal records worldwide. We provide statistical evidences that the observed SLC, at global and regional scales, is beyond its natural internal variability. The minimum anthropogenic sea level trend (MASLT) contributes to the observed sea level rise more than 50% in New York, Baltimore, San Diego, Marseille, and Mumbai. A MASLT is about 1 mm/yr in global sea level reconstructions that is more than half of the total observed sea level trend during the XXth century.
Quantitative analysis of Paratethys sea level change during the Messinian Salinity Crisis
NASA Astrophysics Data System (ADS)
de la Vara, Alba; Meijer, Paul; van Baak, Christiaan; Marzocchi, Alice; Grothe, Arjen
2016-04-01
At the time of the Messinian Salinity Crisis in the Mediterranean Sea (i.e., the Pontian stage of the Paratethys), the Paratethys sea level dropped also. Evidence found in the sedimentary record of the Black Sea and the Caspian Sea has been interpreted to indicate that a sea level fall occurred between 5.6 and 5.5 Ma. Estimates for the magnitude of the fall range between tens of meters to more than 1500 m. The purpose of this study is to provide quantitative insight into the sensitivity of the water level of the Black Sea and the Caspian Sea to the hydrologic budget, for the case that the Paratethys is disconnected from the Mediterranean. Using a Late Miocene bathymetry based on a palaeographic map by Popov et al. (2004) we quantify the fall in sea level, the mean salinity, and the time to reach equilibrium for a wide range of negative hydrologic budgets. By combining our results with (i) estimates derived from a recent global Late Miocene climate simulation and (ii) reconstructed basin salinities, we are able to rule out a drop in sea level of the order of 1000 m in the Caspian Sea during this time period. In the Black Sea, however, such a large sea level fall cannot be fully discarded.
Mean sea-level rise impacts on Santos Bay, Southeastern Brazil--physical modelling study.
Alfredini, Paolo; Arasaki, Emilia; do Amaral, Rogério Fernando
2008-09-01
The greenhouse effect and resulting increase in the Earth's temperature may accelerate the mean sea-level rise. The natural response of bays and estuaries to this rise, such as this case study of Santos Bay (Brazil), will include change in shoreline position, land flooding and wetlands impacts. The main impacts of this scenario were studied in a physical model built in the Coastal and Harbour Division of Hydraulic Laboratory, University of São Paulo, and the main conclusions are presented in this paper. The model reproduces near 1,000 km(2) of the study area, including Santos, São Vicente, Praia Grande, Cubatão, Guarujá and Bertioga cities.
Sea level budget in the Arctic during the satellite altimetry era
NASA Astrophysics Data System (ADS)
Carret, Alice; Cazenave, Anny; Meyssignac, Benoît; Prandi, Pierre; Ablain, Michael; Andersen, Ole; Blazquez, Alejandro
2016-04-01
Studying sea level variations in the Arctic region is challenging because of data scarcity. Here we present results of the sea level budget in the Arctic (up to 82°N) during the altimetry era. We first investigate closure of the sea level budget since 2002 using altimetry data from Envisat and Cryosat for estimating sea level, temperature and salinity data from the ORAP5 reanalysis and GRACE space gravimetry to estimate the steric and mass components. Two altimetry sea level data sets are considered (from DTU and CLS), based on Envisat waveforms retracking. Regional sea level trends seen in the altimetric map, in particular over the Beaufort Gyre and along the eastern coast of Greenland are of steric origin. However, in terms of regional average, the steric component contributes very little to the observed sea level trend, suggesting a dominant mass contribution in the Arctic region. This is confirmed by GRACE-based ocean mass time series that agree very well with the altimetry-based sea level time series. Direct estimate of the mass component is not possible prior to GRACE. Thus we estimated the mass contribution over the whole altimetry era from the difference between altimetry-based sea level and the ORAP5 steric component. Finally we compared altimetry-based coastal sea level with tide gauge records available along Norwegian, Greenland and Siberian coastlines and investigated whether the Arctic Oscillation that was the main driver of coastal sea level in the Arctic during the past decades still plays a dominant role or if other factors (e.g., of anthropogenic origin) become detectable.
Generalized Cauchy model of sea level fluctuations with long-range dependence
NASA Astrophysics Data System (ADS)
Li, Ming; Li, Jia-Yue
2017-10-01
This article suggests the contributions with two highlights. One is to propose a novel model of sea level fluctuations (sea level for short), which is called the generalized Cauchy (GC) process. It provides a new outlook for the description of local and global behaviors of sea level from a view of fractal in that the fractal dimension D that measures the local behavior of sea level and the Hurst parameter H which characterizes the global behavior of sea level are independent of each other. The other is to show that sea level appears multi-fractal in both spatial and time. Such a meaning of multi-fractal is new in the sense that a pair of fractal parameters (D, H) of sea level is varying with measurement sites and time. This research exhibits that the ranges of D and H of sea level, in general, are 1 ≤ D < 2 and 0 . 5 < H < 1, respectively but D is independent of H. With respect to the global behavior of sea level, we shall show that H > 0 . 96 for all data records at all measurement sites, implying that strong LRD may be a general phenomenon of sea level. On the other side, regarding with the local behavior, we will reveal that there appears D = 1 or D ≈ 1 for data records at a few stations and at some time, but D > 0 . 96 at most stations and at most time, meaning that sea level may appear highly local irregularity more frequently than weak local one.
Gieder, Katherina D.; Karpanty, Sarah M.; Fraser, James D.; Catlin, Daniel H.; Gutierrez, Benjamin T.; Plant, Nathaniel G.; Turecek, Aaron M.; Thieler, E. Robert
2014-01-01
Sea-level rise and human development pose significant threats to shorebirds, particularly for species that utilize barrier island habitat. The piping plover (Charadrius melodus) is a federally-listed shorebird that nests on barrier islands and rapidly responds to changes in its physical environment, making it an excellent species with which to model how shorebird species may respond to habitat change related to sea-level rise and human development. The uncertainty and complexity in predicting sea-level rise, the responses of barrier island habitats to sea-level rise, and the responses of species to sea-level rise and human development necessitate a modelling approach that can link species to the physical habitat features that will be altered by changes in sea level and human development. We used a Bayesian network framework to develop a model that links piping plover nest presence to the physical features of their nesting habitat on a barrier island that is impacted by sea-level rise and human development, using three years of data (1999, 2002, and 2008) from Assateague Island National Seashore in Maryland. Our model performance results showed that we were able to successfully predict nest presence given a wide range of physical conditions within the model’s dataset. We found that model predictions were more successful when the range of physical conditions included in model development was varied rather than when those physical conditions were narrow. We also found that all model predictions had fewer false negatives (nests predicted to be absent when they were actually present in the dataset) than false positives (nests predicted to be present when they were actually absent in the dataset), indicating that our model correctly predicted nest presence better than nest absence. These results indicated that our approach of using a Bayesian network to link specific physical features to nest presence will be useful for modelling impacts of sea-level rise- or human-related habitat change on barrier islands. We recommend that potential users of this method utilize multiple years of data that represent a wide range of physical conditions in model development, because the model performed less well when constructed using a narrow range of physical conditions. Further, given that there will always be some uncertainty in predictions of future physical habitat conditions related to sea-level rise and/or human development, predictive models will perform best when developed using multiple, varied years of data input.
Sea-level and deep-sea-temperature variability over the past 5.3 million years.
Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F
2014-04-24
Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.
The coastal oasis: ice age springs on emerged continental shelves
NASA Astrophysics Data System (ADS)
Faure, Hugues; Walter, Robert C.; Grant, Douglas R.
2002-06-01
As ice caps expanded during each of the last five glaciations, sea level fell at least 120 m below current levels, exposing continental shelves worldwide to create vast areas of new land. As a result of this exposure, the ecology, climate, pedology, and geology of global shorelines were dramatically transformed, which in turn altered the carbon cycle and biodynamics of this new landmass. In this paper, we focus on a little-known hydrogeological phenomenon that may have had profound influences on biodiversity, human evolution, and carbon storage during periods of severe climatic stress of the Pleistocene Ice Ages. We propose that freshwater springs appeared on emerged continental shelves because falling sea level not only drew down and steepened the coastal water table gradient, thus increasing the hydrostatic head on inland groundwater aquifers, but also removed up to 120 m of hydrostatic pressure on the shelf, further enhancing groundwater flow. We call this phenomenon the "coastal oasis", a model based on three well-established facts. (1) In all coastal areas of the world, continental aquifers discharge a continuous flow of fresh water to the oceans. (2) Many submarine sedimentary and morphological features, as well as seepages and flow of fresh water, are known on and below the shelves from petroleum explorations, deep-sea drilling programs, and mariners' observations. (3) Hydraulic principles (Darcy's law) predict increased groundwater flow at the coast when sea level drops because the piezometric head increases by the equivalent depth of sea-level lowering. Sea level is presently in a relatively high interglacial position. Direct observation and verification of our model is difficult and must rely on explorations of terrain that are now deeply submerged on continental shelves. For this reason, we draw parallels between our predicted model and simple, well-exposed terrestrial hydrological systems, such as present-day springs that appear on the exposed shores of lakes whose free-air water levels fell during periods of aridity. Such modern examples are seen in the Caspian Sea and Dead Sea, the Afar Depression, and the Sahara Desert. These modern analogues demonstrate the likelihood that underground water will be more abundant on emerged shelves during sea-level fall, causing springs, oases, and wetlands to appear. Our model creates an apparent paradox: in tropical and subtropical arid lands, such as most of Africa, sea-level fall during hyperarid glacial phases would produce abundant fresh water flow onto emerged continental shelves as the continental interior desiccated. Thus, emergent shoreline springs provided new habitats for terrestrial vegetation and animals displaced from the interior by increasingly arid conditions, shrinking ecosystems, and dwindling water supplies. Such a scenario would have had a profound influence on the vegetation that spreads naturally to colonize the emerged shelves during glacio-eustatic sea-level lowstands, as well as creating new habitats for terrestrial mammals, including early humans.
NASA Astrophysics Data System (ADS)
Detrick, R. S.; Hafner, K.; Davis, J. P.; Wilson, D.; Woodward, R.
2016-12-01
Ecosystems and human communities of the Mississippi delta developed with predictable basin inputs, stable sea level, and as an open system with a high degree of interaction among drainage basin inputs, deltaic plain, and the coastal sea. Human activity changed altered the coast and lowered predictability. Management has become very energy intensive and dependent on cheap resources with more hard engineering and less ecological engineering. Pervasive alteration of the basin and delta and global change have altered the baseline and change is accelerating. Climate change projections include not only sea-level rise, but also more stronger hurricanes, increased large river floods, and more intense rainfall events and droughts. A sustainable Mississippi is outside of the boundaries of the current CMP.
NASA Astrophysics Data System (ADS)
Day, J.
2017-12-01
Ecosystems and human communities of the Mississippi delta developed with predictable basin inputs, stable sea level, and as an open system with a high degree of interaction among drainage basin inputs, deltaic plain, and the coastal sea. Human activity changed altered the coast and lowered predictability. Management has become very energy intensive and dependent on cheap resources with more hard engineering and less ecological engineering. Pervasive alteration of the basin and delta and global change have altered the baseline and change is accelerating. Climate change projections include not only sea-level rise, but also more stronger hurricanes, increased large river floods, and more intense rainfall events and droughts. A sustainable Mississippi is outside of the boundaries of the current CMP.
Improving sea level simulation in Mediterranean regional climate models
NASA Astrophysics Data System (ADS)
Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge
2017-08-01
For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not affected by the LBCs. Finally, we argue that a correct configuration of LBCs in the Atlantic should be used for future Mediterranean simulations, which cover hindcast period, but also for scenarios.
Sea-level rise caused by climate change and its implications for society.
Mimura, Nobuo
2013-01-01
Sea-level rise is a major effect of climate change. It has drawn international attention, because higher sea levels in the future would cause serious impacts in various parts of the world. There are questions associated with sea-level rise which science needs to answer. To what extent did climate change contribute to sea-level rise in the past? How much will global mean sea level increase in the future? How serious are the impacts of the anticipated sea-level rise likely to be, and can human society respond to them? This paper aims to answer these questions through a comprehensive review of the relevant literature. First, the present status of observed sea-level rise, analyses of its causes, and future projections are summarized. Then the impacts are examined along with other consequences of climate change, from both global and Japanese perspectives. Finally, responses to adverse impacts will be discussed in order to clarify the implications of the sea-level rise issue for human society.(Communicated by Kiyoshi HORIKAWA, M.J.A.).
NASA Astrophysics Data System (ADS)
Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian
2018-05-01
Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).
NASA Astrophysics Data System (ADS)
Kimbrough, A. K.; Gagan, M. K.; Dunbar, G. B.; Krause, C.; Di Nezio, P. N.; Hantoro, W. S.; Cheng, H.; Edwards, R. L.; Shen, C. C.; Sun, H.; Cai, B.; Rifai, H.
2016-12-01
Southwest Sulawesi lies within the Indo-Pacific Warm Pool (IPWP), at the center of atmospheric convection for two of the largest circulation cells on the planet, the meridional Hadley Cell and zonal Indo-Pacific Walker Circulation. Due to the geographic coincidence of these circulation cells, southwest Sulawesi serves as a hotspot for changes in tropical Pacific climate variability and Australian-Indonesian summer monsoon (AISM) strength over glacial-interglacial (G-I) timescales. The work presented here spans 386 - 127 ky BP, including glacial terminations IV ( 340 ky BP) and both phases of TIII (TIII 248 ky BP and TIIIa 217 ky BP). This record, along with previous work from southwest Sulawesi spanning the last 40 kyr, reveals coherent climatic features over three complete G-I cycles. The multi-stalagmite Sulawesi speleothem δ18O record demonstrates that on G-I timescales, the strength of the AISM is most sensitive to changes in sea level and its impact on the regional distribution of land and shallow ocean. Stalagmite δ18O and trace element (Mg/Ca) data indicate a rapid increase in rainfall at glacial terminations and wet interglacials. TIV, TIII, TIIIa, and TI are each characterized by an abrupt 3‰ decrease in δ18O that coincides with sea level rise and flooding of the Sunda and Sahul shelves. Strong evidence for a sea level (flooding/exposure) threshold is found throughout the southwest Sulawesi record. This is most clearly demonstrated over the period 230 - 212 ky BP (MIS 7d-7c), when a sea level fall to only -80 to -60 m for 10 kyr results in a weakened AISM and glacial conditions, followed by a full termination. Taken together, both glaciations and glacial terminations imply a sea level threshold driving the AISM between two primary levels of intensity (`interglacial' & `glacial'). These massive, sea-level driven shifts in AISM strength are superimposed on precession-scale variability associated with boreal fall insolation at the equator, indicating sensitivity to tropical Pacific influence on warm pool convection.
Assessing coastal flood risk and sea level rise impacts at New York City area airports
NASA Astrophysics Data System (ADS)
Ohman, K. A.; Kimball, N.; Osler, M.; Eberbach, S.
2014-12-01
Flood risk and sea level rise impacts were assessed for the Port Authority of New York and New Jersey (PANYNJ) at four airports in the New York City area. These airports included John F. Kennedy International, LaGuardia, Newark International, and Teterboro Airports. Quantifying both present day and future flood risk due to climate change and developing flood mitigation alternatives is crucial for the continued operation of these airports. During Hurricane Sandy in October 2012 all four airports were forced to shut down, in part due to coastal flooding. Future climate change and sea level rise effects may result in more frequent shutdowns and disruptions in travel to and from these busy airports. The study examined the effects of the 1%-annual-chance coastal flooding event for present day existing conditions and six different sea level rise scenarios at each airport. Storm surge model outputs from the Federal Emergency Management Agency (FEMA) provided the present day storm surge conditions. 50th and 90thpercentile sea level rise projections from the New York Panel on Climate Change (NPCC) 2013 report were incorporated into storm surge results using linear superposition methods. These projections were evaluated for future years 2025, 2035, and 2055. In addition to the linear superposition approach for storm surge at airports where waves are a potential hazard, one dimensional wave modeling was performed to get the total water level results. Flood hazard and flood depth maps were created based on these results. In addition to assessing overall flooding at each airport, major at-risk infrastructure critical to the continued operation of the airport was identified and a detailed flood vulnerability assessment was performed. This assessment quantified flood impacts in terms of potential critical infrastructure inundation and developed mitigation alternatives to adapt to coastal flooding and future sea level changes. Results from this project are advancing the PANYNJ's understanding of the effects of sea level rise on coastal flooding at the airports and guiding decision-making in the selection of effective adaptation actions. Given the importance of these airports to transportation, this project is advancing security and continuity of national and international commerce well into the 21st century.
Moore, Laura J.; Patsch, Kiki; List, Jeffrey H.; Williams, S. Jeffress
2014-01-01
As sea level rises and hurricanes become more intense, barrier islands around the world become increasingly vulnerable to conversion from self-sustaining migrating landforms to submerging or subaqueous sand bodies. To explore the mechanism by which such state changes occur and to assess the factors leading to island disintegration, we develop a suite of numerical simulations for the Chandeleur Islands in Louisiana, U.S.A., which appear to be on the verge of this transition. Our results suggest that the Chandeleurs are likely poised to change state, leading to their demise, within decades depending on future storm history. Contributing factors include high rates of relative sea level rise, limited sediment supply, muddy substrate, current island position relative to former Mississippi River distributary channels, and the effects of changes in island morphology on sediment transport pathways. Although deltaic barrier islands are most sensitive to disintegration because of their muddy substrate, the importance of relative sea level rise rate in determining the timing of threshold crossing suggests that the conceptual models for deltaic barrier island formation and disintegration may apply more broadly in the future.
NASA Technical Reports Server (NTRS)
Ray, R. D.; Beckley, B. D.; Lemoine, F. G.
2010-01-01
A somewhat unorthodox method for determining vertical crustal motion at a tide-gauge location is to difference the sea level time series with an equivalent time series determined from satellite altimetry, To the extent that both instruments measure an identical ocean signal, the difference will be dominated by vertical land motion at the gauge. We revisit this technique by analyzing sea level signals at 28 tide gauges that are colocated with DORIS geodetic stations. Comparisons of altimeter-gauge vertical rates with DORIS rates yield a median difference of 1.8 mm/yr and a weighted root-mean-square difference of2.7 mm/yr. The latter suggests that our uncertainty estimates, which are primarily based on an assumed AR(l) noise process in all time series, underestimates the true errors. Several sources of additional error are discussed, including possible scale errors in the terrestrial reference frame to which altimeter-gauge rates are mostly insensitive, One of our stations, Male, Maldives, which has been the subject of some uninformed arguments about sea-level rise, is found to have almost no vertical motion, and thus is vulnerable to rising sea levels. Published by Elsevier Ltd. on behalf of COSPAR.
Glacier calving, dynamics, and sea-level rise. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, M.F.; Pfeffer, W.T.; Amadei, B.
1998-08-01
The present-day calving flux from Greenland and Antarctica is poorly known, and this accounts for a significant portion of the uncertainty in the current mass balance of these ice sheets. Similarly, the lack of knowledge about the role of calving in glacier dynamics constitutes a major uncertainty in predicting the response of glaciers and ice sheets to changes in climate and thus sea level. Another fundamental problem has to do with incomplete knowledge of glacier areas and volumes, needed for analyses of sea-level change due to changing climate. The authors proposed to develop an improved ability to predict the futuremore » contributions of glaciers to sea level by combining work from four research areas: remote sensing observations of calving activity and iceberg flux, numerical modeling of glacier dynamics, theoretical analysis of the calving process, and numerical techniques for modeling flow with large deformations and fracture. These four areas have never been combined into a single research effort on this subject; in particular, calving dynamics have never before been included explicitly in a model of glacier dynamics. A crucial issue that they proposed to address was the general question of how calving dynamics and glacier flow dynamics interact.« less
NASA Astrophysics Data System (ADS)
Webster, J. M.; Yokoyama, Y.; Cotterill, C.; Expedition 325 Scientists
2010-12-01
Integrated Ocean Drilling Program (IODP) Exp. 325 (GBREC: Great Barrier Reef Environmental Change) that investigated fossil reefs on the shelf edge of the Great Barrier Reef (GBR), was the fourth IODP expedition to use a mission-specific platform, and was conducted by the European Consortium for Ocean Research Drilling (ECORD) Science Operator (ESO). The scientific objectives are to establish the course of sea level change, define sea-surface temperature variations, and to analyze the impact of these environmental changes on reef growth and geometry over the period of 20-10 ka. Exp.325 complements and extends the findings of the 2005 Exp. 310 (Tahiti Sea Level) that recovered Postglacial coral reef cores from the flanks of Tahiti from 41.6-117.5 meters below sea level and spanned ~16 to ~8 ka. Preliminary data confirms that Exp. 325 recovered truly unique and valuable fossil coral reef material from key periods in Earth's sea level and climate history from 30 to 9 ka. On Exp. 325 a succession of fossil reef structures preserved on the shelf edge seaward of the modern barrier reef were cored at three geographic locations (Hydrographers Passage, Noggin Pass and Ribbon Reef) from a dynamically positioned vessel in February-April 2010. A total of 34 boreholes were cored from 17 sites in four transects at depths ranging from 42.2 to 167.2 meters below sea level. Borehole logging of four boreholes provided continuous geophysical information about the drilled strata. The cores were split and described during the Onshore Science Party at the IODP Bremen Core Repository (Germany) in July 2010, where minimum and some standard measurements were made. Initial lithologic and biologic observations identified high-quality fossil coralgal frameworks, consistent with shallow, high energy reef settings - crucial for precise reconstructions of sea level and paleoclimate change. Preliminary C14-AMS and U-Th age interpretations from 60 core catcher samples confirmed that the cores span ages from >30 to 9 ka. This chronology, combined with their recovered depths, clearly demonstrates that Exp. 325 recovered coral reef material from key periods of interest for sea level change and environmental reconstruction, including the Last Glacial Maximum, Heinrich Events 1 and 2, 19ka-MWP, Bølling-Allerød, MWP1A, the Younger Dryas and MWPB. The new Exp. 325 cores are especially important because few fossil coral records span these intervals, and even fewer are from stable, passive margin settings far from the confounding influences of ice sheets or tectonic activity. This paper summarizes Exp. 325’s first results and their broader implications for understanding global sea-level and paleoclimate changes, and provides a first interpretation of how these reefs responded to environmental stress.
Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts
Galgani, Luisa; Piontek, Judith; Engel, Anja
2016-01-01
The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531
Garner, Andra J; Mann, Michael E; Emanuel, Kerry A; Kopp, Robert E; Lin, Ning; Alley, Richard B; Horton, Benjamin P; DeConto, Robert M; Donnelly, Jeffrey P; Pollard, David
2017-11-07
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse. Copyright © 2017 the Author(s). Published by PNAS.
Mann, Michael E.; Emanuel, Kerry A.; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-01-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse. PMID:29078274
NASA Technical Reports Server (NTRS)
Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); McClain, Charles R.; Darzi, Michael; Barnes, Robert A.; Eplee, Robert E.; Firestone, James K.; Patt, Frederick S.; Robinson, Wayne D.; Schieber, Brian D.;
1996-01-01
This document provides five brief reports that address several quality control procedures under the auspices of the Calibration and Validation Element (CVE) within the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Project. Chapter 1 describes analyses of the 32 sensor engineering telemetry streams. Anomalies in any of the values may impact sensor performance in direct or indirect ways. The analyses are primarily examinations of parameter time series combined with statistical methods such as auto- and cross-correlation functions. Chapter 2 describes how the various onboard (solar and lunar) and vicarious (in situ) calibration data will be analyzed to quantify sensor degradation, if present. The analyses also include methods for detecting the influence of charged particles on sensor performance such as might be expected in the South Atlantic Anomaly (SAA). Chapter 3 discusses the quality control of the ancillary environmental data that are routinely received from other agencies or projects which are used in the atmospheric correction algorithm (total ozone, surface wind velocity, and surface pressure; surface relative humidity is also obtained, but is not used in the initial operational algorithm). Chapter 4 explains the procedures for screening level-, level-2, and level-3 products. These quality control operations incorporate both automated and interactive procedures which check for file format errors (all levels), navigation offsets (level-1), mask and flag performance (level-2), and product anomalies (all levels). Finally, Chapter 5 discusses the match-up data set development for comparing SeaWiFS level-2 derived products with in situ observations, as well as the subsequent outlier analyses that will be used for evaluating error sources.
NASA Astrophysics Data System (ADS)
Garner, Andra J.; Mann, Michael E.; Emanuel, Kerry A.; Kopp, Robert E.; Lin, Ning; Alley, Richard B.; Horton, Benjamin P.; DeConto, Robert M.; Donnelly, Jeffrey P.; Pollard, David
2017-11-01
The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ˜500 y before 1800 to ˜25 y during 1970–2005 and further decreases to ˜5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica's potential partial collapse.
Palaeo-sea-level and palaeo-ice-sheet databases: problems, strategies, and perspectives
NASA Astrophysics Data System (ADS)
Düsterhus, André; Rovere, Alessio; Carlson, Anders E.; Horton, Benjamin P.; Klemann, Volker; Tarasov, Lev; Barlow, Natasha L. M.; Bradwell, Tom; Clark, Jorie; Dutton, Andrea; Gehrels, W. Roland; Hibbert, Fiona D.; Hijma, Marc P.; Khan, Nicole; Kopp, Robert E.; Sivan, Dorit; Törnqvist, Torbjörn E.
2016-04-01
Sea-level and ice-sheet databases have driven numerous advances in understanding the Earth system. We describe the challenges and offer best strategies that can be adopted to build self-consistent and standardised databases of geological and geochemical information used to archive palaeo-sea-levels and palaeo-ice-sheets. There are three phases in the development of a database: (i) measurement, (ii) interpretation, and (iii) database creation. Measurement should include the objective description of the position and age of a sample, description of associated geological features, and quantification of uncertainties. Interpretation of the sample may have a subjective component, but it should always include uncertainties and alternative or contrasting interpretations, with any exclusion of existing interpretations requiring a full justification. During the creation of a database, an approach based on accessibility, transparency, trust, availability, continuity, completeness, and communication of content (ATTAC3) must be adopted. It is essential to consider the community that creates and benefits from a database. We conclude that funding agencies should not only consider the creation of original data in specific research-question-oriented projects, but also include the possibility of using part of the funding for IT-related and database creation tasks, which are essential to guarantee accessibility and maintenance of the collected data.
Resilience and well-being amongst seafarers: cross-sectional study of crew across 51 ships.
Doyle, Niamh; MacLachlan, Malcolm; Fraser, Alistair; Stilz, Ralf; Lismont, Karlien; Cox, Henriette; McVeigh, Joanne
2016-02-01
Duration at sea was investigated as a potential chronic stressor amongst seafarers in addition to the mediating roles of previous seafaring experience and hardiness between duration and stress. In a cross-sectional design, questionnaires were emailed to 53 tanker vessels in an international shipping company with questions relating to duration at sea, perceived stress, personality hardiness and work characteristics. The sample comprised 387 seafarers (98% male) including ratings, crew, officers, engineers, and catering staff that had been on board their ship between 0 and 24 weeks. Duration at sea was unrelated to self-reported perceived stress, even after controlling for previous seafaring experience and hardiness. Additional regression analyses demonstrated that self-reported higher levels of resilience, longer seafaring experience and greater instrumental work support were significantly associated with lower levels of self-reported stress at sea. These results imply that at least for the first 24 weeks at sea, exposure to the seafaring environment did not act as a chronic stressor. The confined environment of a ship presents particular opportunities to introduce resilience and work support programmes to help seafarers manage and reduce stress, and to enhance their well-being at sea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retief, Francois; Jones, Carys; Jay, Stephen
This paper presents the results of research which evaluated the performance of strategic environmental assessment (SEA) practice in South Africa in order to develop understanding of how SEA functions within a developing country with a voluntary SEA system. The research applied a combination of methods in a mixed research strategy, including a macro level survey of the SEA system together with case study reviews exploring micro level application. Three main 'system features' emerged, namely expansion of voluntary practice, diversity in practice and general ineffectiveness. The results also highlight a number of 'application features' such as a lack of focus duemore » to an inability to deal with the concepts of 'sustainability' and 'significance', as well as poor understanding and integration with decision-making processes. Moreover, it emerged that none of the case studies seem to have conducted an 'assessment' per se, but rather provided a framework for strategic decision-making. The paper puts forward a number of interrelated explanations for these system and application features. In a parallel to the fable of the 'emperor's new clothes', SEA in South Africa appears to be regarded as the answer to all environmental problems, whilst being ineffective in practice.« less
Implementation of CGPS at Estartit, Ibiza and Barcelona harbours for sea level monitoring
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J. J.; Ortiz Castellon, M.; Martinez-Garcia, M.; Perez, B.; Bosch, E.; Termens, A.; Martinez de Oses, X.
2009-12-01
The determination of global and regional mean sea level variations with accura-cies better than 1 mm/yr is a critical problem, the resolution of which is central to the current debate on climate change and its impact on the environment. Highly accurate time series from both satellite altimetry and tide gauges are needed. Measuring the sea surface height with in-situ tide gauges and GPS receivers pro-vides an efficient way to control the long term stability of the radar altimeters and other applications as the vertical land motion and studies of sea level change. L’Estartit tide gauge is a classical floating tide gauge set up in l’Estartit harbour (NE Spain) in 1990. Data are taken in graphics registers from which each two hours the mean value is recorded in an electronic support and delivered to the Permanent Service for Mean Sea level (PSMSL). Periodic surveying campaigns along the year are carried out for monitoring possible vertical movement of the geodetic benchmark adjacent to the tide gauge. Puertos del Estado (Spanish Harbours) installed the tide gauge station at Ibiza har-bour in January 2003 and a near GPS reference station. The station belongs to the REDMAR network, composed at this moment by 21 stations distributed along the whole Spanish waters, including also the Canary islands (http://www.puertos.es). The tide gauge also belongs to the ESEAS (European Sea Level) network. A description of the actual infrastructure at Ibiza, Barcelona and l’Estartit har-bours is presented.The main objective is the implementation of these harbours as a precise geodetic areas for sea level monitoring and altimeter calibration. Actually is a CGPS with a radar tide gauge from Puertos del Estado and a GPS belonging to Puerto de Barcelona. A precise levelling has been made by the Cartographic Insti-tute of Catalonia, ICC. The instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 3000C device and a Thales Navigation Internet-Enabled GPS Continuous Geodetic Ref-erence Station (iCGRS) with a choke ring antenna, located at the EPSEB of the Technical University of Catalonia, UPC. It is intended that the overall system will constitute a CGPS Station of the ESEAS and TIGA networks.
Simulating reef response to sea-level rise at Lizard Island: A geospatial approach
NASA Astrophysics Data System (ADS)
Hamylton, S. M.; Leon, J. X.; Saunders, M. I.; Woodroffe, C. D.
2014-10-01
Sea-level rise will result in changes in water depth over coral reefs, which will influence reef platform growth as a result of carbonate production and accretion. This study simulates the pattern of reef response on the reefs around Lizard Island in the northern Great Barrier Reef. Two sea-level rise scenarios are considered to capture the range of likely projections: 0.5 m and 1.2 m above 1990 levels by 2100. Reef topography has been established through extensive bathymetric profiling, together with available data, including LiDAR, single beam bathymetry, multibeam swath bathymetry, LADS and digitised chart data. The reef benthic cover around Lizard Island has been classified using a high resolution WorldView-2 satellite image, which is calibrated and validated against a ground referencing dataset of 364 underwater video records of the reef benthic character. Accretion rates are parameterised using published hydrochemical measurements taken in-situ and rules are applied using Boolean logic to incorporate geomorphological transitions associated with different depth ranges, such as recolonisation of the reef flat when it becomes inundated as sea level rises. Simulations indicate a variable platform response to the different sea-level rise scenarios. For the 0.5 m rise, the shallower reef flats are gradually colonised by corals, enabling this active geomorphological zone to keep up with the lower rate of rise while the other sand dominated areas get progressively deeper. In the 1.2 m scenario, a similar pattern is evident for the first 30 years of rise, beyond which the whole reef platform begins to slowly drown. To provide insight on reef response to sea-level rise in other areas, simulation results of four different reef settings are discussed and compared at the southeast reef flat (barrier reef), Coconut Beach (fringing reef), Watson's Bay (leeward bay with coral patches) and Mangrove Beach (sheltered lagoonal embayment). The reef sites appear to accrete upwards at a rate commensurate with the rate of rise, thereby maintaining their original profile and position relative to the sea surface and the leeward and lagoonal sites with a low accretion rate maintain a similar profile but slowly gain depth relative to sea-level. The result of this variable response is that elevated features of the reef platform, such as reef patches and crests tend to become more pronounced.
Earth Observation taken by the Expedition 33 crew
2012-11-03
ISS033-E-018010 (3 Nov. 2012) --- Volcanoes in central Kamchatka are featured in this image photographed by an Expedition 33 crew member on the International Space Station. The snow-covered peaks of several volcanoes of the central Kamchatka Peninsula are visible standing above a fairly uniform cloud deck that obscures the surrounding lowlands. In addition to the rippled cloud patterns caused by interactions of air currents and the volcanoes, a steam and ash plume is visible at center extending north-northeast from the relatively low summit (2,882 meters above sea level) of Bezymianny volcano. Volcanic activity in this part of Russia is relatively frequent, and well monitored by Russia’s Kamchatka Volcanic Eruption Response Team (KVERT). The KVERT website provides updated information about the activity levels on the peninsula, including aviation alerts and webcams. Directly to the north and northeast of Bezymianny, the much larger and taller stratovolcanoes Kamen (4,585 meters above sea level) and Kliuchevskoi (4,835 meters above sea level) are visible. Kliuchevskoi, Kamchatka’s most active volcano, last erupted in 2011 whereas neighboring Kamen has not erupted during the recorded history of the region. An explosive eruption from the summit of the large volcanic massif of Ushkovsky (3,943 meters above sea level; left) northwest of Bezymianny occurred in 1890; this is the most recent activity at this volcano. To the south of Bezymianny, the peaks of Zimina (3,081 meters above sea level) and Udina (2,923 meters above sea level) volcanoes are just visible above the cloud deck; no historical eruptions are known from either volcanic center. While the large Tobalchik volcano to the southwest (bottom center) is largely formed from a basaltic shield volcano, its highest peak (3,682 meters above sea level) is formed from an older stratovolcano. Tobalchik last erupted in 1976. While this image may look like it was taken from the normal altitude of a passenger jet, the space station was located approximately 417 kilometers above the southeastern Sea of Okhotsk; projected downwards to Earth’s surface, the space station was located over 700 kilometers to the southwest of the volcanoes in the image. The combination of low viewing angle from the orbital outpost, shadows, and height and distance from the volcanoes contributes to the appearance of topographic relief visible in the image.
Aptian-Albian sea level history from Guyots in the western Pacific
NASA Astrophysics Data System (ADS)
RöHl, Ursula; Ogg, James G.
1996-10-01
Relative sea level fluctuations are an important control on patterns of sedimentation on continental margins and provide a valuable tool for regional correlations. One of the main objectives of combined Ocean Drilling Program Legs 143 and 144 was drilling the thick carbonate caps of a suite of seamounts, called guyots, scattered over the northwestern Pacific. The array of drowned Cretaceous banks includes four carbonate banks of Aptian-Albian age. These particular carbonate banks display emergent surfaces if regional sea level falls faster than the rate of guyot subsidence, or intervals of condensed parasequences and well-cemented peritidal crypto-algal flats if the rate of sea level fall is slightly less than guyot subsidence. Rapid rises of sea level following these sequence boundaries are recorded as drowning of the emergent horizons or as pronounced deepening of facies. The cored lithologies and downhole geophysical and geochemical logs were used to identify depositional sequences and surfaces of exceptional shallowing or deepening. A combination of biostratigraphic datums, carbon and strontium isotope curves, relative magnitude of surfaces of emergence, relative thicknesses of depositional sequences, sea level events, and counts of upward shallowing cycles or parasequences were used to correlate sequences among the four sites. After compensating for thermal subsidence rates at each guyot, an identical pattern of major Aptian-Albian eustatic sea level events is evident throughout this large portion of the Pacific Ocean. There are approximately 12 Aptian and 12 Albian significant sequence boundaries, of which a third were associated with major episodes of emergence. When these events are compared with Aptian-Albian relative sea level changes observed in European shelf successions, the major sequence boundaries and transgressive surges can be easily correlated, and it appears that both regions also display the same number of minor events. Therefore we can apply the relative timing of these events from the thermal subsidence rates and parasequence counts of the Pacific banks to construct an improved scaling of the associated ammonite zones and biostratigraphic datums in the Aptian-Albian interval. An electronic supplement of this material may be obtained on adiskette or via Anonymous FTP from KOSMOS.AGU.ORG (LOGINto AGU's FTP account using ANONYMOUS as the username andGUEST as the password. Go to the right directory by typing APEND.Diskette may be ordered from American Geophysical Union, 2000Florida Ave., N.W., Washington, D.C. 20009, $15.00. Payment mustaccompany order.
Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP)
NASA Astrophysics Data System (ADS)
Neugebauer, Ina; Brauer, Achim; Schwab, Markus J.; Waldmann, Nicolas D.; Enzel, Yehouda; Kitagawa, Hiroyuki; Torfstein, Adi; Frank, Ute; Dulski, Peter; Agnon, Amotz; Ariztegui, Daniel; Ben-Avraham, Zvi; Goldstein, Steven L.; Stein, Mordechai
2014-10-01
The sedimentary sections that were deposited from the Holocene Dead Sea and its Pleistocene precursors are excellent archives of the climatic, environmental and seismic history of the Levant region. Yet, most of the previous work has been carried out on sequences of lacustrine sediments exposed at the margins of the present-day Dead Sea, which were deposited only when the lake surface level rose above these terraces (e.g. during the Last Glacial period) and typically are discontinuous due to major lake level variations in the past. Continuous sedimentation can only be expected in the deepest part of the basin and, therefore, a deep drilling has been accomplished in the northern basin of the Dead Sea during winter of 2010-2011 within the Dead Sea Deep Drilling Project (DSDDP) in the framework of the ICDP program. Approximately 720 m of sediment cores have been retrieved from two deep and several short boreholes. The longest profile (5017-1), revealed at a water depth of ˜300 m, reaches 455 m below the lake floor (blf, i.e. to ˜1175 m below global mean sea level) and comprises approximately the last 220-240 ka. The record covers the upper part of the Amora (penultimate glacial), the Last Interglacial Samra, the Last Glacial Lisan and the Holocene Ze'elim Formations and, therewith, two entire glacial-interglacial cycles. Thereby, for the first time, consecutive sediments deposited during the MIS 6/5, 5/4 and 2/1 transitions were recovered from the Dead Sea basin, which are not represented in sediments outcropping on the present-day lake shores. In this paper, we present essential lithological data including continuous magnetic susceptibility and geochemical scanning data and the basic stratigraphy including first chronological data of the long profile (5017-1) from the deep basin. The results presented here (a) focus on the correlation of the deep basin deposits with main on-shore stratigraphic units, thus providing a unique comprehensive stratigraphic framework for regional paleoenvironmental reconstruction, and (b) highlight the outstanding potential of the Dead Sea deep sedimentary archive to record hydrological changes during interglacial, glacial and transitional intervals.
SurgeWatch: a user-friendly database of coastal flooding in the United Kingdom from 1915-2014
NASA Astrophysics Data System (ADS)
Wadey, Matthew; Haigh, Ivan; Nicholls, Robert J.; Ozsoy, Ozgun; Gallop, Shari; Brown, Jennifer; Horsburgh, Kevin; Bradshaw, Elizabeth
2016-04-01
Coastal flooding caused by extreme sea levels can be devastating, with long-lasting and diverse consequences. Historically, the UK has suffered major flooding events, and at present 2.5 million properties and £150 billion of assets are potentially exposed to coastal flooding. However, no formal system is in place to catalogue which storms and high sea level events progress to coastal flooding. Furthermore, information on the extent of flooding and associated damages is not systematically documented nationwide. Here we present a database and online tool called 'SurgeWatch', which provides a systematic UK-wide record of high sea level and coastal flood events over the last 100 years (1915-2014). Using records from the National Tide Gauge Network, with a dataset of exceedance probabilities and meteorological fields, SurgeWatch captures information of 96 storms during this period, the highest sea levels they produced, and the occurrence and severity of coastal flooding. The data are presented to be easily assessable and understandable to a range of users including, scientists, coastal engineers, managers and planners and concerned citizens. We also focus on some significant events in the database, such as the North Sea storm surge of 31 January-1 February 1953 (Northwest Europe's most severe coastal floods in living memory) and the 5-6 December 2013 "Xaver" Storm and floods.
Curtin, Stephen E.; Staley, Andrew W.; Andreasen, David C.
2016-01-01
Key Results This report presents potentiometric-surface maps of the Aquia and Magothy aquifers and the Upper Patapsco, Lower Patapsco, and Patuxent aquifer systems using water levels measured during September 2015. Water-level difference maps are also presented for these aquifers. The water-level differences in the Aquia aquifer are shown using groundwater-level data from 1982 and 2015, while the water-level differences are shown for the Magothy aquifer using data from 1975 and 2015. Water-level difference maps for both the Upper Patapsco and Lower Patapsco aquifer systems are shown using data from 1990 and 2015. The water-level differences in the Patuxent aquifer system are shown using groundwater-level data from 2007 and 2015. The potentiometric surface maps show water levels ranging from 53 feet above sea level to 164 feet below sea level in the Aquia aquifer, from 86 feet above sea level to 106 feet below sea level in the Magothy aquifer, from 115 feet above sea level to 115 feet below sea level in the Upper Patapsco aquifer system, from 106 feet above sea level to 194 feet below sea level in the Lower Patapsco aquifer system, and from 165 feet above sea level to 171 feet below sea level in the Patuxent aquifer system. Water levels have declined by as much as 116 feet in the Aquia aquifer since 1982, 99 feet in the Magothy aquifer since 1975, 66 and 83 feet in the Upper Patapsco and Lower Patapsco aquifer systems, respectively, since 1990, and 80 feet in the Patuxent aquifer system since 2007.
NASA Astrophysics Data System (ADS)
Li, Xiaorong; Leonardi, Nicoletta; Brown, Jennifer; Plater, Andy
2017-04-01
The coastline of Eastern England is home to about one quarter of the UK's coastal habitats, including intertidal salt marshes, tidal flats and sand dunes. These geomorphic features are of great importance to the local wildlife, global biodiversity, marine environment and human society and economy. Due to sea-level rise and the occurrence of extreme weather conditions, the coastline of Eastern England is under high risk of erosion and recession, which could lead to tidal inundation of sites such as the RSPB Minsmere Reserve and power generation infrastructure at Sizewell. This research responds to the need for sustainable shoreline management plans of the UK east coast through sensitivity studies at the Dunwich-Sizewell area, Suffolk, UK. Particular interest is on the long-term morphodynamic response of the study area to possible environmental variations associated with global climate change. Key coastal processes, i.e. current, waves and sediment transport, and morphological evolution are studied using a process-based numerical model under the following scenarios: current mean sea level + calm wave conditions, current mean sea level + storms, sea level rise + calm wave conditions, and sea level rise + storms, all with a 'do nothing' management plan which allows the coastal environment to exist and respond dynamically. As a further aspect of this research, rules will be generalized for reduced-complexity, system-based modelling. Alternative management plans, including 'managed realignment' and 'advance the line', are also investigated in this research under the same environmental forcing scenarios, for the purposes of protection of infrastructure of national importance and conservation of wetland habitats. Both 'hard' and 'soft' engineering options, such as groynes and beach nourishment respectively, are considered. A more ecohydrological option which utilizes aquatic plant communities for wave energy dissipation and sediment trapping is also studied. The last option requires the numerical models to be modified based on understandings obtained through analysis of on-site observations and laboratory measurements.
Supercontinent break-up: Causes and consequences
NASA Astrophysics Data System (ADS)
Li, Z. X.
2014-12-01
Supercontinent break-up has most commonly been linked to plume or superplume events, and/or supercontinent thermal insulation, but precise mechanisms are yet to be worked out. Even less know is if and what roles other factors may play. Key factors likely include gravitational force due to the continental superswell driven by both the lower-mantle superplume and continental thermal insulation, mental convention driven by the superplume and individual plumes atop the superplume, assisted by thermal/magmatic weakening of the supercontinent interior (both plume heat and thermal insulation heat). In addition, circum-supercontinent slab downwelling may not only drive the formation of the antipodal superplumes (thus the break-up of the supercontinent), the likely roll-back of the subduction system would also create extension within the supercontinent, facilitating supercontinent break-up. Consequences of supercontinent break-up include long-term sea-level rise, climatic changes due to changes in ocean circulation pattern and carbon cycle, and biodiversification. It has long been demonstrated that the existence of the supercontinent Pangea corresponds to a long-term sea-level drop, whereas the break-up of the supercontinent corresponds to a long-term sea-level rise (170 m higher than it is today). A recent analysis of Neoproterozoic sedimentary facies illustrates that the time of Neoproterozoic supercontinent Rodinia corresponds to a low in the percentage of deep marine facies occurrence, whereas the time of Rodinia break-up corresponds to a significantly higher percentage of deep marine facies occurrence. The long-tern sea-level drop during supercontinent times were likely caused by both plume/superplume dynamic topography and an older mean age of the oceanic crust, whereas long-tern sea-level rise during supercontinent break-up (720-580 Ma for Rodinia and Late Jurassic-Cretaceous for Pangea) likely corresponds to an younger mean age of the oceanic crust, massive plume-induced magmatism in the oceans, and perhaps the effect of continents drifting away from a weakening sub-supercontinent superplume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phylip-Jones, J., E-mail: jonesjp@liverpool.ac.uk; Fischer, T.B., E-mail: fischer@liv.ac.uk
This paper reports on SEA applied in the wind energy sector in the UK and Germany. Based on a review of 18 SEAs, it is found that the quality of SEA documentation is variable, with over a third of them being deemed unsatisfactory. Furthermore, SEA processes are conducted to varying degrees of effectiveness, with scoping a strength but impact prediction and mitigation weaknesses. Generally speaking, the influence of SEA on German wind energy plan making was found to be low and the influence of SEA on UK plans deemed to be moderate. The German plans had a low influence mainlymore » because of a perceived high environmental performance of the underlying plans in the first instance. Substantive outcomes of SEA are not always clear and the influence of SEA on decision making is said to be limited in many cases. Finally, a lack of effective tiering between SEA and project level EIA is also observed. In addition, our findings echo some of the weaknesses of SEA practice found in previous studies of SEA effectiveness, including poor impact prediction and significance sections and a lack of detailed monitoring programmes for post plan implementation.« less
Conference on Continental margin mass wasting and Pleistocene sea-level changes, August 13-15, 1980
Folger, David W.; Hathaway, J.C.
1987-01-01
A conference on Continental Margin Mass Wasting and Pleistocene Sea-Level Changes was held in Woods Hole, Mass., August 13-15, 1980. Forty-seven participants, representing many government, academic, and industrial organizations, discussed the current state of knowledge of the features of marine mass wasting and of the interrelations of factors influencing them. These factors include sediment source, composition, textures, sedimentation rates, climatic and sea-level changes, gas and gas hydrate (clathrate) contents of sediments, geotechnical characteristics, oceanographic and morphological factors, ground-water processes, and seismic events. The part played by these factors in the processes and features of mass movement and the engineering considerations imposed by the emplacement of manmade structures on the sea floor were considered vital to the evaluation of hazards involved in offshore exploration and development. The conference concluded with a call for bold programs to establish the probability of occurrence and the quantitative importance of these factors and to devise more reliable means of measurement, particularly in place, of the characteristics of the sediment and features involved.
Corals record long-term Leeuwin current variability including Ningaloo Niño/Niña since 1795
Zinke, J.; Rountrey, A.; Feng, M.; Xie, S.-P.; Dissard, D.; Rankenburg, K.; Lough, J.M.; McCulloch, M.T.
2014-01-01
Variability of the Leeuwin current (LC) off Western Australia is a footprint of interannual and decadal climate variations in the tropical Indo-Pacific. La Niña events often result in a strengthened LC, high coastal sea levels and unusually warm sea surface temperatures (SSTs), termed Ningaloo Niño. The rarity of such extreme events and the response of the southeastern Indian Ocean to regional and remote climate forcing are poorly understood owing to the lack of long-term records. Here we use well-replicated coral SST records from within the path of the LC, together with a reconstruction of the El Niño-Southern Oscillation to hindcast historical SST and LC strength from 1795 to 2010. We show that interannual and decadal variations in SST and LC strength characterized the past 215 years and that the most extreme sea level and SST anomalies occurred post 1980. These recent events were unprecedented in severity and are likely aided by accelerated global ocean warming and sea-level rise. PMID:24686736
SeaWiFS Science Algorithm Flow Chart
NASA Technical Reports Server (NTRS)
Darzi, Michael
1998-01-01
This flow chart describes the baseline science algorithms for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data Processing System (SDPS). As such, it includes only processing steps used in the generation of the operational products that are archived by NASA's Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC). It is meant to provide the reader with a basic understanding of the scientific algorithm steps applied to SeaWiFS data. It does not include non-science steps, such as format conversions, and places the greatest emphasis on the geophysical calculations of the level-2 processing. Finally, the flow chart reflects the logic sequences and the conditional tests of the software so that it may be used to evaluate the fidelity of the implementation of the scientific algorithm. In many cases however, the chart may deviate from the details of the software implementation so as to simplify the presentation.
NASA Astrophysics Data System (ADS)
Katzoff, Judith A.
About 20% of the United States, including the regions of the Great Lakes and the Great Salt Lake, has entered a fourth year of record and near-record streamflow and lake levels, according to the U.S. Geological Survey (USGS). From June 3 until June 8, 1986, the Great Salt Lake stood at 1283.77 m above sea level, 0.076 m above the previous record, which was set in 1873. (Records have been kept for the lake since 1847.) On June 8, a dike south of the lake gave way during a windstorm, causing flooding of evaporation ponds used for mineral recovery.As a result of the breach, the lake's level dropped to 1283.65 m above sea level by June 10 but rose to 1283.68 m by June 20. The latest official reading, made on June 30, showed that the lake's level had dropped to 1283.63 m above sea level. According to Tom Ross, chief of the Current Water Conditions Group at the USGS National Center in Reston, Va., this drop represents “a normal seasonal decline brought on by evaporation.”
Sea-Level Projections from the SeaRISE Initiative
NASA Technical Reports Server (NTRS)
Nowicki, Sophie; Bindschadler, Robert
2011-01-01
SeaRISE (Sea-level Response to Ice Sheet Evolution) is a community organized modeling effort, whose goal is to inform the fifth IPCC of the potential sea-level contribution from the Greenland and Antarctic ice sheets in the 21st and 22nd century. SeaRISE seeks to determine the most likely ice sheet response to imposed climatic forcing by initializing an ensemble of models with common datasets and applying the same forcing to each model. Sensitivity experiments were designed to quantify the sea-level rise associated with a change in: 1) surface mass balance, 2) basal lubrication, and 3) ocean induced basal melt. The range of responses, resulting from the multi-model approach, is interpreted as a proxy of uncertainty in our sea-level projections. http://websrv.cs .umt.edu/isis/index.php/SeaRISE_Assessment.
Steric and mass-induced Mediterranean sea level trends from 14 years of altimetry data
NASA Astrophysics Data System (ADS)
Criado-Aldeanueva, Francisco; Del Río Vera, Jorge; García-Lafuente, Jesús
2008-02-01
Long-term series of almost 14 years of altimetry data (1992-2005) have been analysed along with Sea Surface Temperature (SST) and temperature and salinity profiles to investigate sea level trends over the Mediterranean Sea. Although sea level variations are mainly driven by the steric contribution, the mass-induced component plays some role in modulating its oscillation. A spatially averaged positive trend of 2.1 ± 0.6 mm/year has been observed, but a change in sign in 2001 seems to appear. Steric effects (mainly on thermal origin) account for ˜ 55% of sea level trend. Although Mediterranean Sea is a semi-enclosed basin, this value is comparable to that reported for the global ocean. Sea level rise is particularly important in the Levantine basin south of Crete with values up to 10 ± 1 mm/year. Other areas of sea level rise are localised throughout the Levantine basin and in the Adriatic and Alboran Seas, with more moderate values. Sea level drop areas are localised in the Algerian basin, between the Balearic Islands and the African coasts and, particularly, in the Ionian basin. In this area, negative trends as high as - 10 ± 0.8 mm/year are detected mainly due to the mass-induced contribution, which suggests decadal changes of surface circulation. The inferred sea level trends have been correlated with North Atlantic Oscillation (NAO) indices and a low but significant correlation has been detected between sea level in the Levantine and Balearic basins and NAO index.
Dall'Osso, F.; Dominey-Howes, D.; Moore, C.; Summerhayes, S.; Withycombe, G.
2014-01-01
Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney. PMID:25492514
Dall'Osso, F; Dominey-Howes, D; Moore, C; Summerhayes, S; Withycombe, G
2014-12-10
Approximately 85% of Australia's population live along the coastal fringe, an area with high exposure to extreme inundations such as tsunamis. However, to date, no Probabilistic Tsunami Hazard Assessments (PTHA) that include inundation have been published for Australia. This limits the development of appropriate risk reduction measures by decision and policy makers. We describe our PTHA undertaken for the Sydney metropolitan area. Using the NOAA NCTR model MOST (Method for Splitting Tsunamis), we simulate 36 earthquake-generated tsunamis with annual probabilities of 1:100, 1:1,000 and 1:10,000, occurring under present and future predicted sea level conditions. For each tsunami scenario we generate a high-resolution inundation map of the maximum water level and flow velocity, and we calculate the exposure of buildings and critical infrastructure. Results indicate that exposure to earthquake-generated tsunamis is relatively low for present events, but increases significantly with higher sea level conditions. The probabilistic approach allowed us to undertake a comparison with an existing storm surge hazard assessment. Interestingly, the exposure to all the simulated tsunamis is significantly lower than that for the 1:100 storm surge scenarios, under the same initial sea level conditions. The results have significant implications for multi-risk and emergency management in Sydney.
The sea-level fingerprints of ice-sheet collapse during interglacial periods
NASA Astrophysics Data System (ADS)
Hay, Carling; Mitrovica, Jerry X.; Gomez, Natalya; Creveling, Jessica R.; Austermann, Jacqueline; E. Kopp, Robert
2014-03-01
Studies of sea level during previous interglacials provide insight into the stability of polar ice sheets in the face of global climate change. Commonly, these studies correct ancient sea-level highstands for the contaminating effect of isostatic adjustment associated with past ice age cycles, and interpret the residuals as being equivalent to the peak eustatic sea level associated with excess melting, relative to present day, of ancient polar ice sheets. However, the collapse of polar ice sheets produces a distinct geometry, or fingerprint, of sea-level change, which must be accounted for to accurately infer peak eustatic sea level from site-specific residual highstands. To explore this issue, we compute fingerprints associated with the collapse of the Greenland Ice Sheet, West Antarctic Ice Sheet, and marine sectors of the East Antarctic Ice Sheet in order to isolate regions that would have been subject to greater-than-eustatic sea-level change for all three cases. These fingerprints are more robust than those associated with modern melting events, when applied to infer eustatic sea level, because: (1) a significant collapse of polar ice sheets reduces the sensitivity of the computed fingerprints to uncertainties in the geometry of the melt regions; and (2) the sea-level signal associated with the collapse will dominate the signal from steric effects. We evaluate these fingerprints at a suite of sites where sea-level records from interglacial marine isotopes stages (MIS) 5e and 11 have been obtained. Using these results, we demonstrate that previously discrepant estimates of peak eustatic sea level during MIS5e based on sea-level markers in Australia and the Seychelles are brought into closer accord.
A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise
Webb, Edward L.; Friess, Daniel A.; Krauss, Ken W.; Cahoon, Donald R.; Guntenspergen, Glenn R.; Phelps, Jacob
2013-01-01
Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.
NASA Technical Reports Server (NTRS)
Segawa, J.; Ganeko, Y.; Sasaki, M.; Mori, T.; Ooe, M.; Nakagawa, I.; Ishii, H.; Hagiwara, Y.
1991-01-01
Our program includes five research items: (1) determination of a precision geoid and gravity anomaly field; (2) precise leveling and detection of tidal changes of the sea surface and study of the role of the tide in the global energy exchange; (3) oceanic effect on the Earth's rotation and polar motion; (4) geological and geophysical interpretation of the altimetry gravity field; and (5) evaluation of the effectiveness of local tracking of TOPEX/POSEIDON by use of a laser tracker.
Ghafouri, Nazdar; Ghafouri, Bijar; Fowler, Christopher J; Larsson, Britt; Turkina, Maria V; Karlsson, Linn; Gerdle, Björn
2014-08-01
Chronic neck/shoulder pain (CNSP) is one of the most common pain conditions. The understanding of mechanisms, including the peripheral balance between nociceptive and antinociceptive processes, is incomplete. N-acylethanolamines (NAEs) are a class of endogenous compounds that regulate inflammation and pain. The aim of this study was to investigate the levels of two NAEs: the peroxisome proliferator-activated receptor type-α ligand palmitoylethanolamide (PEA) and stearoylethanolamide (SEA) in the muscle interstitium of the trapezius muscle in women with CNSP randomized to two different neck specific training programs and in a healthy pain-free control group (CON). Fifty-seven women with CNSP were randomized to strength + stretch or stretch alone exercise programs. Twenty-nine subjects underwent microdialysis procedure before and after 4-6 months of exercise. Twenty-four CON subjects underwent microdialysis procedure before and after 4-6 months without any intervention in between. Microdialysate samples were collected from the trapezius muscle and analyzed by mass spectrometry for PEA and SEA levels. PEA and SEA levels were significantly higher in CNSP patients compared with CON. PEA was significantly higher in CNSP than in CON after both training programs. SEA was significantly higher in CNSP than in CON after stretch alone but not after strength + stretch training. A significant positive correlation was found between changes in pain intensity and in SEA levels in the strength + stretch group, but not in the stretch alone group. Our results indicate that exercise interventions differentially affect the levels of the bioactive lipids PEA and SEA in the interstitium of the trapezius muscle in women with CNSP. Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckel, P.H.
1992-01-01
Only glacial-eustatic sea-level fluctuations can account for all the characteristics of Upper Pennsylvanian marine cyclothems in the Midcontinent. Because this control is global, it must have affected deposition during this time everywhere. In the Appalachian basin widespread well developed paleosols represent long-term sea-level lowstand. During Conemaugh marine incursions, rising sea level ponded fresh-water influx to form peat swamps that migrated landward ahead of transgression and produced early transgressive coals. Marine highstand deposits commonly are conodont-rich limestones, typically skeletal packstone with glaucony and phosphorite. Regression resulted in progradation of detrital shorelines with local delta cycles, followed eventually by more paleosol formationmore » and local erosional incision that removed older sediments including the marine units in places. Fluvial sands filled many of these channels. During Monongahela deposition when marine incursions no longer entered the Appalachian basin, the climatic fluctuations recognized by Cecil can reasonably be related to sea-level fluctuations nearby, but with shifts in climatic significance of gross lithotopes. Coal swamps would more likely have formed at maximum marine highstand when the nearby sea would have provided both high base level and an abundant source of rainfall. Nonmarine limestones would more likely have formed at maximum lowstand when the sea was most distant and the climate driest. The intervening detrital deposits between the coals and limestones formed under intermediate seasonal rainfall regimes during both marine transgression and regression farther west in the Midcontinent. Conemaugh and Allegheny coals without overlying marine units probably also represent mainly marine highstand elsewhere, and nonmarine limestones of these ages typically are associated with lowstand paleosols.« less
Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements
NASA Astrophysics Data System (ADS)
Chen, J. L.; Wilson, C. R.; Tapley, B. D.; Save, H.; Cretaux, Jean-Francois
2017-03-01
We examine recent Caspian Sea level change by using both satellite radar altimetry and satellite gravity data. The altimetry record for 2002-2015 shows a declining level at a rate that is approximately 20 times greater than the rate of global sea level rise. Seasonal fluctuations are also much larger than in the world oceans. With a clearly defined geographic region and dominant signal magnitude, variations in the sea level and associated mass changes provide an excellent way to compare various approaches for processing satellite gravity data. An altimeter time series derived from several successive satellite missions is compared with mass measurements inferred from Gravity Recovery and Climate Experiment (GRACE) data in the form of both spherical harmonic (SH) and mass concentration (mascon) solutions. After correcting for spatial leakage in GRACE SH estimates by constrained forward modeling and accounting for steric and terrestrial water processes, GRACE and altimeter observations are in complete agreement at seasonal and longer time scales, including linear trends. This demonstrates that removal of spatial leakage error in GRACE SH estimates is both possible and critical to improving their accuracy and spatial resolution. Excellent agreement between GRACE and altimeter estimates also provides confirmation of steric Caspian Sea level change estimates. GRACE mascon estimates (both the Jet Propulsion Laboratory (JPL) coastline resolution improvement version 2 solution and the Center for Space Research (CSR) regularized) are also affected by leakage error. After leakage corrections, both JPL and CSR mascon solutions also agree well with altimeter observations. However, accurate quantification of leakage bias in GRACE mascon solutions is a more challenging problem.
An Ongoing Shift in Pacific Ocean Sea Level
NASA Astrophysics Data System (ADS)
Cheon, S. H.; Hamlington, B.; Thompson, P. R.; Merrifield, M. A.; Nerem, R. S.; Leben, R. R.; Kim, K. Y.
2016-12-01
According to the satellite altimeter data, local sea level trends have shown considerable diversity spatially as well as temporally. In particular, dramatic changes in sea level in the Pacific have been observed throughout the altimeter record, with high trends in the western tropical Pacific (WTP) and comparatively lower trends in the eastern Pacific. In recent years, however, a shift appears to be occurring, with falling trends in the (WTP) and rising trends in the eastern tropical and northeastern Pacific (ETP and NEP). From a planning perspective, it is important to figure out whether these sharp changes are part of a short-term shift or the beginning of a longer-term change in sea level. In this study, we distinguish the origins of the recent shift in Pacific Ocean sea level. Cyclostationary empirical orthogonal function (CSEOF) analysis is applied to separate the properties of the recent sea level change in the Pacific Ocean. From the CSEOF analysis results, we point out two dominant modes of sea level shift in the Pacific Ocean. The first mode is related to the biennial oscillation associated with El Nino-Southern Oscillation (ENSO) and the other is related to lower-frequency variability with a strong signal in the northern Pacific. Considering a relatively high correlation between recent sea level change and the low-frequency mode, we suggest that the low-frequency mode has played a dominant role in the sea level shift in the Pacific Ocean. Using a reconstructed sea level dataset, we examine the variability of this low-frequency mode in the past, and find similar periods of dramatic sea level change in the Pacific. Based on the sea level record of the last five years and according to the analysis, we conclude that in the coming decades, higher sea level trends off the U.S. West Coast should be expected, while reduced trends in the WTP will likely be observed.
High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography
NASA Astrophysics Data System (ADS)
Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.
2012-12-01
Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.
A fractal analysis of quaternary, Cenozoic-Mesozoic, and Late Pennsylvanian sea level changes
NASA Technical Reports Server (NTRS)
Hsui, Albert T.; Rust, Kelly A.; Klein, George D.
1993-01-01
Sea level changes are related to both climatic variations and tectonic movements. The fractal dimensions of several sea level curves were compared to a modern climatic fractal dimension of 1.26 established for annual precipitation records. A similar fractal dimension (1.22) based on delta(O-18/O-16) in deep-sea sediments has been suggested to characterize climatic change during the past 2 m.y. Our analysis indicates that sea level changes over the past 150,000 to 250,000 years also exhibit comparable fractal dimensions. Sea level changes for periods longer than about 30 m.y. are found to produce fractal dimensions closer to unity and Missourian (Late Pennsylvanian) sea level changes yield a fractal dimension of 1.41. The fact that these sea level curves all possess fractal dimensions less than 1.5 indicates that sea level changes exhibit nonperiodic, long-run persistence. The different fractal dimensions calculated for the various time periods could be the result of a characteristic overprinting of the sediment recored by prevailing processes during deposition. For example, during the Quaternary, glacio-eustatic sea level changes correlate well with the present climatic signature. During the Missourian, however, mechanisms such as plate reorganization may have dominated, resulting in a significantly different fractal dimension.
Consequences of sea level variability and sea level rise for Cuban territory
NASA Astrophysics Data System (ADS)
Hernández, M.; Martínez, C. A.; Marzo, O.
2015-03-01
The objective of the present paper was to determine a first approximation of coastal zone flooding by 2100, taking into account the more persistent processes of sea level variability and non-accelerated linear sea level rise estimation to assess the main impacts. The annual linear rate of mean sea level rise in the Cuban archipelago, obtained from the longest tide gauge records, has fluctuated between 0.005 cm/year at Casilda and 0.214 cm/year at Siboney. The main sea level rise effects for the Cuban coastal zone due to climate change and global warming are shown. Monthly and annual mean sea level anomalies, some of which are similar to or higher than the mean sea level rise estimated for halfway through the present century, reinforce the inland seawater penetration due to the semi-daily high tide. The combination of these different events will result in the loss of goods and services, and require expensive investments for adaption.
Indo-Pacific sea level variability during recent decades
NASA Astrophysics Data System (ADS)
Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.
2016-12-01
Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.
2016-04-01
SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...WORLDWIDE APRIL 2016 REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT: COVER PHOTOS, FROM LEFT TO RIGHT: - Overwash of the island of Roi-Namur on...J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, and J. Marburger. 2016. Regional Sea Level Scenarios for Coastal Risk Management: Managing the
NASA Astrophysics Data System (ADS)
Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.
2012-01-01
This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave climate. Recommendations are given for research to increase understanding of the response of these factors to climate change. Implications of the results for adaptation research are also discussed.
Eustatic control of turbidites and winnowed turbidites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, G.; Moiola, R.J.
1982-05-01
Global changes in sea level, primarily the results of tectonism and glaciation, control deep-sea sedimentation. During periods of low sea level the frequency of turbidity currents is greatly increased. Episodes of low sea level also cause vigorous contour currents, which winnow away the fines of turbidites. In the rock record, the occurrence of most turbidites and winnowed turbidities closely corresponds to global lowstands of paleo-sea level. This observation may be useful in predicting the occurrence of deep-sea reservoir facies in the geologic record.
Salinity of the Delaware Estuary
Cohen, Bernard; McCarthy, Leo T.
1962-01-01
The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.
Observed mean sea level changes around the North Sea coastline from 1800 to present
NASA Astrophysics Data System (ADS)
Wahl, T.; Haigh, I. D.; Woodworth, P. L.; Albrecht, F.; Dillingh, D.; Jensen, J.; Nicholls, R. J.; Weisse, R.; Wöppelmann, G.
2013-09-01
This paper assesses historic changes in mean sea level around the coastline of the North Sea, one of the most densely populated coasts in the world. Typically, such analyses have been conducted at a national level, and detailed geographically wider analyses have not been undertaken for about 20 years. We analyse long records (up to 200 years) from 30 tide gauge sites, which are reasonably uniformly distributed along the coastline, and: (1) calculate relative sea level trends; (2) examine the inter-annual and decadal variations; (3) estimate regional geocentric (sometimes also referred to as 'absolute') sea level rise throughout the 20th century; and (4) assess the evidence for regional acceleration of sea-level rise. Relative sea level changes are broadly consistent with known vertical land movement patterns. The inter-annual and decadal variability is partly coherent across the region, but with some differences between the Inner North Sea and the English Channel. Data sets from various sources are used to provide estimates of the geocentric sea level changes. The long-term geocentric mean sea level trend for the 1900 to 2011 period is estimated to be 1.5 ± 0.1 mm/yr for the entire North Sea region. The trend is slightly higher for the Inner North Sea (i.e. 1.6 ± 0.1 mm/yr), and smaller but not significantly different on the 95% confidence level for the English Channel (i.e. 1.2 ± 0.1 mm/yr). The uncertainties in the estimates of vertical land movement rates are still large, and the results from a broad range of approaches for determining these rates are not consistent. Periods of sea level rise acceleration are detected at different times throughout the last 200 years and are to some extent related to air pressure variations. The recent rates of sea level rise (i.e. over the last two to three decades) are high compared to the long-term average, but are comparable to those which have been observed at other times in the late 19th and 20th century.
Seasonal Sea-Level Variations in San Francisco Bay in Response to Atmospheric Forcing, 1980
Wang, Jingyuan; Cheng, R.T.; Smith, P.C.
1997-01-01
The seasonal response of sea level in San Francisco Bay (SFB) to atmospheric forcing during 1980 is investigated. The relations between sea-level data from the Northern Reach, Central Bay and South Bay, and forcing by local wind stresses, sea level pressure (SLP), runoff and the large scale sea level pressure field are examined in detail. The analyses show that the sea-level elevations and slopes respond to the along-shore wind stress T(V) at most times of the year, and to the cross-shore wind stress T(N) during two transition periods in spring and autumn. River runoff raises the sea-level elevation during winter. It is shown that winter precipitation in the SFB area is mainly attributed to the atmospheric circulation associated with the Alcutian Low, which transports the warm, moist air into the Bay area. A multiple linear regression model is employed to estimate the independent contributions of barometric pressure and wind stress to adjusted sea level. These calculations have a simple dynamical interpretation which confirms the importance of along-shore wind to both sea level and north-south slope within the Bay.
An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative
NASA Astrophysics Data System (ADS)
Legeais, Jean-François; Ablain, Michaël; Zawadzki, Lionel; Zuo, Hao; Johannessen, Johnny A.; Scharffenberg, Martin G.; Fenoglio-Marc, Luciana; Joana Fernandes, M.; Baltazar Andersen, Ole; Rudenko, Sergei; Cipollini, Paolo; Quartly, Graham D.; Passaro, Marcello; Cazenave, Anny; Benveniste, Jérôme
2018-02-01
Sea level is a very sensitive index of climate change since it integrates the impacts of ocean warming and ice mass loss from glaciers and the ice sheets. Sea level has been listed as an essential climate variable (ECV) by the Global Climate Observing System (GCOS). During the past 25 years, the sea level ECV has been measured from space by different altimetry missions that have provided global and regional observations of sea level variations. As part of the Climate Change Initiative (CCI) program of the European Space Agency (ESA) (established in 2010), the Sea Level project (SL_cci) aimed to provide an accurate and homogeneous long-term satellite-based sea level record. At the end of the first phase of the project (2010-2013), an initial version (v1.1) of the sea level ECV was made available to users (Ablain et al., 2015). During the second phase of the project (2014-2017), improved altimeter standards were selected to produce new sea level products (called SL_cci v2.0) based on nine altimeter missions for the period 1993-2015 (https://doi.org/10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612; Legeais and the ESA SL_cci team, 2016c). Corresponding orbit solutions, geophysical corrections and altimeter standards used in this v2.0 dataset are described in detail in Quartly et al. (2017). The present paper focuses on the description of the SL_cci v2.0 ECV and associated uncertainty and discusses how it has been validated. Various approaches have been used for the quality assessment such as internal validation, comparisons with sea level records from other groups and with in situ measurements, sea level budget closure analyses and comparisons with model outputs. Compared with the previous version of the sea level ECV, we show that use of improved geophysical corrections, careful bias reduction between missions and inclusion of new altimeter missions lead to improved sea level products with reduced uncertainties on different spatial and temporal scales. However, there is still room for improvement since the uncertainties remain larger than the GCOS requirements (GCOS, 2011). Perspectives on subsequent evolution are also discussed.
Extreme sea levels on the rise along Europe's coasts
NASA Astrophysics Data System (ADS)
Vousdoukas, Michalis I.; Mentaschi, Lorenzo; Voukouvalas, Evangelos; Verlaan, Martin; Feyen, Luc
2017-03-01
Future extreme sea levels (ESLs) and flood risk along European coasts will be strongly impacted by global warming. Yet, comprehensive projections of ESL that include mean sea level (MSL), tides, waves, and storm surges do not exist. Here, we show changes in all components of ESLs until 2100 in view of climate change. We find that by the end of this century, the 100-year ESL along Europe's coastlines is on average projected to increase by 57 cm for Representative Concentration Pathways (RCP)4.5 and 81 cm for RCP8.5. The North Sea region is projected to face the highest increase in ESLs, amounting to nearly 1 m under RCP8.5 by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Relative sea level rise (RSLR) is shown to be the main driver of the projected rise in ESL, with increasing dominance toward the end of the century and for the high-concentration pathway. Changes in storm surges and waves enhance the effects of RSLR along the majority of northern European coasts, locally with contributions up to 40%. In southern Europe, episodic extreme events tend to stay stable, except along the Portuguese coast and the Gulf of Cadiz where reductions in surge and wave extremes offset RSLR by 20-30%. By the end of this century, 5 million Europeans currently under threat of a 100-year ESL could be annually at risk from coastal flooding under high-end warming. The presented dataset is available through this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.
Effects of wave-induced forcing on a circulation model of the North Sea
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
Effects of wave-induced forcing on a circulation model of the North Sea
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
Synoptic patterns leading to hailstorm in Chaharmahal and Bakhtiari province, Iran
NASA Astrophysics Data System (ADS)
Salahi, Bromand; Nohegar, Ahmad; Behrouzi, Mahmoud; Aalijahan, Mehdi
2018-03-01
The purpose of this study was to extract the synoptic patterns of 500 mb geopotential height and the sea level pressure leading to form hail in Chaharmahal and Bakhtiari province, Iran. To this end, at first, we explored hail occurrence in different areas of the province under investigation. Then, using sea level pressure and 500 mb geopotential height data, the patterns of hail occurrence were investigated through hierarchical clustering and Ward's method. The level of 500 mb patterns resulting in hail formation in the area include: (1) settlement of a cut-off low pressure blocking in Turkey and Iran's position in downstream of trough and injection of humidity coming from the Red Sea; (2) settlement of low ridge in northern Europe and Iran lying in downstream of the trough and injection of humidity of the Mediterranean Sea; (3) settlement of a cut-off low pressure in east of Europe and Iran lying in downstream of the trough; and (4) settlement of a deep trough in the Mediterranean Sea, formation of an omega-shaped blocking in Northern Europe and Iran lying in downstream of the trough. At sea level, the following patterns have caused hail formation in Chaharmahal and Bakhtiari province: (1) settlement of low pressure in Iran and Russia accompanying high pressure in Taklimakan Desert and east of Europe; (2) settlement of low pressure in Iran and high pressure in Egypt, northern Europe, and Taklimakan Desert; and (3) settlement of low pressure in Iran, Saudi Arabia and south of Italy and high pressure in Egypt and Siberia.
Ryan, H.F.; Noble, M.
2002-01-01
Long-term monthly sea level and sea surface temperature (SST) anomalies from central California show that during winter months, positive anomalies are associated with El Nin??o events and the negative ones with La Nin??a events. There is no significant impact on monthly mean anomalies associated with Pacific decadal oscillations, although there is a tendency for more extreme events and greater variance during positive decadal oscillations. The very strong 1997-1998 El Nin??o was analyzed with respect to the long-term historic record to assess the forcing mechanisms for sea level and SST. Beginning in the spring of 1997, we observed several long-period (> 30days) fluctuations in daily sea level with amplitudes of over 10 cm at San Francisco, California. Fluctuations of poleward long-period alongshore wind stress anomalies (AWSA) are coherent with the sea level anomalies. However, the wind stress cannot entirely account for the observed sea level signals. The sea level fluctuations are also correlated with sea level fluctuations observed further south at Los Angeles and Tumaco, Columbia, which showed a poleward phase propagation of the sea level signal. We suggest that the sea level fluctuations were, to a greater degree, forced by the passage of remotely generated and coastally trapped waves that were generated along the equator and propagated to the north along the west coast of North America. However, both local and remote AWSA can significantly modulate the sea level signals. The arrival of coastally trapped waves began in the spring of 1997, which is earlier than previous strong El Nin??o events such as the 1982-1983 event. Published by Elsevier Science Ltd.
Characterizing uncertain sea-level rise projections to support investment decisions.
Sriver, Ryan L; Lempert, Robert J; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions.
Characterizing uncertain sea-level rise projections to support investment decisions
Lempert, Robert J.; Wikman-Svahn, Per; Keller, Klaus
2018-01-01
Many institutions worldwide are considering how to include uncertainty about future changes in sea-levels and storm surges into their investment decisions regarding large capital infrastructures. Here we examine how to characterize deeply uncertain climate change projections to support such decisions using Robust Decision Making analysis. We address questions regarding how to confront the potential for future changes in low probability but large impact flooding events due to changes in sea-levels and storm surges. Such extreme events can affect investments in infrastructure but have proved difficult to consider in such decisions because of the deep uncertainty surrounding them. This study utilizes Robust Decision Making methods to address two questions applied to investment decisions at the Port of Los Angeles: (1) Under what future conditions would a Port of Los Angeles decision to harden its facilities against extreme flood scenarios at the next upgrade pass a cost-benefit test, and (2) Do sea-level rise projections and other information suggest such conditions are sufficiently likely to justify such an investment? We also compare and contrast the Robust Decision Making methods with a full probabilistic analysis. These two analysis frameworks result in similar investment recommendations for different idealized future sea-level projections, but provide different information to decision makers and envision different types of engagement with stakeholders. In particular, the full probabilistic analysis begins by aggregating the best scientific information into a single set of joint probability distributions, while the Robust Decision Making analysis identifies scenarios where a decision to invest in near-term response to extreme sea-level rise passes a cost-benefit test, and then assembles scientific information of differing levels of confidence to help decision makers judge whether or not these scenarios are sufficiently likely to justify making such investments. Results highlight the highly-localized and context dependent nature of applying Robust Decision Making methods to inform investment decisions. PMID:29414978
Importance of coastal change variables in determining vulnerability to sea- and lake-level change
Pendleton, E.A.; Thieler, E.R.; Williams, S.J.
2010-01-01
In 2001, the U.S. Geological Survey began conducting scientific assessments of coastal vulnerability to potential future sea- and lake-level changes in 22 National Park Service sea- and lakeshore units. Coastal park units chosen for the assessment included a variety of geological and physical settings along the U.S. Atlantic, Pacific, Gulf of Mexico, Gulf of Alaska, Caribbean, and Great Lakes shorelines. This research is motivated by the need to understand and anticipate coastal changes caused by accelerating sea-level rise, as well as lake-level changes caused by climate change, over the next century. The goal of these assessments is to provide information that can be used to make long-term (decade to century) management decisions. Here we analyze the results of coastal vulnerability assessments for several coastal national park units. Index-based assessments quantify the likelihood that physical changes may occur based on analysis of the following variables: tidal range, ice cover, wave height, coastal slope, historical shoreline change rate, geomorphology, and historical rate of relative sea- or lake-level change. This approach seeks to combine a coastal system's susceptibility to change with its natural ability to adapt to changing environmental conditions, and it provides a measure of the system's potential vulnerability to the effects of sea- or lake-level change. Assessments for 22 park units are combined to evaluate relationships among the variables used to derive the index. Results indicate that Atlantic and Gulf of Mexico parks have the highest vulnerability rankings relative to other park regions. A principal component analysis reveals that 99% of the index variability can be explained by four variables: geomorphology, regional coastal slope, water-level change rate, and mean significant wave height. Tidal range, ice cover, and historical shoreline change are not as important when the index is evaluated at large spatial scales (thousands of kilometers). ?? 2010 Coastal Education and Research Foundation.
Coastal marsh response to historical and future sea-level acceleration
Kirwan, M.; Temmerman, S.
2009-01-01
We consider the response of marshland to accelerations in the rate of sea-level rise by utilizing two previously described numerical models of marsh elevation. In a model designed for the Scheldt Estuary (Belgium-SW Netherlands), a feedback between inundation depth and suspended sediment concentrations allows marshes to quickly adjust their elevation to a change in sea-level rise rate. In a model designed for the North Inlet Estuary (South Carolina), a feedback between inundation and vegetation growth allows similar adjustment. Although the models differ in their approach, we find that they predict surprisingly similar responses to sea-level change. Marsh elevations adjust to a step change in the rate of sea-level rise in about 100 years. In the case of a continuous acceleration in the rate of sea-level rise, modeled accretion rates lag behind sea-level rise rates by about 20 years, and never obtain equilibrium. Regardless of the style of acceleration, the models predict approximately 6-14 cm of marsh submergence in response to historical sea-level acceleration, and 3-4 cm of marsh submergence in response to a projected scenario of sea-level rise over the next century. While marshes already low in the tidal frame would be susceptible to these depth changes, our modeling results suggest that factors other than historical sea-level acceleration are more important for observations of degradation in most marshes today.
Estimating costs of sea lice control strategy in Norway.
Liu, Yajie; Bjelland, Hans Vanhauwaer
2014-12-01
This paper explores the costs of sea lice control strategies associated with salmon aquaculture at a farm level in Norway. Diseases can cause reduction in growth, low feed efficiency and market prices, increasing mortality rates, and expenditures on prevention and treatment measures. Aquaculture farms suffer the most direct and immediate economic losses from diseases. The goal of a control strategy is to minimize the total disease costs, including biological losses, and treatment costs while to maximize overall profit. Prevention and control strategies are required to eliminate or minimize the disease, while cost-effective disease control strategies at the fish farm level are designed to reduce the losses, and to enhance productivity and profitability. Thus, the goal can be achieved by integrating models of fish growth, sea lice dynamics and economic factors. A production function is first constructed to incorporate the effects of sea lice on production at a farm level, followed by a detailed cost analysis of several prevention and treatment strategies associated with sea lice in Norway. The results reveal that treatments are costly and treatment costs are very sensitive to treatment types used and timing of the treatment conducted. Applying treatment at an early growth stage is more economical than at a later stage. Copyright © 2014 Elsevier B.V. All rights reserved.
Statistical modelling of sea lice count data from salmon farms in the Faroe Islands.
Gislason, H
2018-06-01
Fiskaaling regularly counts the number of sea lice in the attached development stages (chalimus, mobiles and adult) for the salmon farms in the Faroe Islands. A statistical model of the data is developed. In the model, the sea-lice infection is represented by the chalimus (or mobile) lice developing into adult lice and is used to simulate past and current levels of adult lice-including treatments-as well as to predict the adult sea lice level 1-2 months into the future. Time series of the chalimus and adult lice show cross-correlations that shift in time and grow in size with temperature. This implies in situ the temperature-dependent development times of about 56 down to 42 days and the inverted development times (growth rates) of 0.018 up to 0.024 lice/day at 8-10°C. The temperature dependence DT=α1T+α2α3=17,840T+7.439-2.128is approximated byD1T=105.2-6.578T≈49 days at the mean temperature 8.5°C-similar to DchaT=100.6-6.507T≈45 days from EWOS data. The observed development times at four sites for a year (2010-11) were 49, 50, 51 and 52 days, respectively. Finally, we estimate the sea lice production from fish farms to discuss approaches to control the sea lice epidemics-preferably by natural means. This study is useful for understanding sea lice levels and treatments, and for in situ analysis of the sea-lice development times and growth rates. © 2017 John Wiley & Sons Ltd.
Isolating the atmospheric circulation response to Arctic sea-ice loss in the coupled climate system
NASA Astrophysics Data System (ADS)
Kushner, P. J.; Blackport, R.
2016-12-01
In the coupled climate system, projected global warming drives extensive sea-ice loss, but sea-ice loss drives warming that amplifies and can be confounded with the global warming process. This makes it challenging to cleanly attribute the atmospheric circulation response to sea-ice loss within coupled earth-system model (ESM) simulations of greenhouse warming. In this study, many centuries of output from coupled ocean/atmosphere/land/sea-ice ESM simulations driven separately by sea-ice albedo reduction and by projected greenhouse-dominated radiative forcing are combined to cleanly isolate the hemispheric scale response of the circulation to sea-ice loss. To isolate the sea-ice loss signal, a pattern scaling approach is proposed in which the local multidecadal mean atmospheric response is assumed to be separately proportional to the total sea-ice loss and to the total low latitude ocean surface warming. The proposed approach estimates the response to Arctic sea-ice loss with low latitude ocean temperatures fixed and vice versa. The sea-ice response includes a high northern latitude easterly zonal wind response, an equatorward shift of the eddy driven jet, a weakening of the stratospheric polar vortex, an anticyclonic sea level pressure anomaly over coastal Eurasia, a cyclonic sea level pressure anomaly over the North Pacific, and increased wintertime precipitation over the west coast of North America. Many of these responses are opposed by the response to low-latitude surface warming with sea ice fixed. However, both sea-ice loss and low latitude surface warming act in concert to reduce storm track strength throughout the mid and high latitudes. The responses are similar in two related versions of the National Center for Atmospheric Research earth system models, apart from the stratospheric polar vortex response. Evidence is presented that internal variability can easily contaminate the estimates if not enough independent climate states are used to construct them.
Coastal Vulnerability to Sea Level Rise and Erosion in Northwest Alaska (Invited)
NASA Astrophysics Data System (ADS)
Gorokhovich, Y.; Leiserowitz, A.
2009-12-01
Northwest Alaska is experiencing significant climate change and human impacts. The study area includes the coastal zone of Kotzebue Sound and the Chukchi Sea and provides the local population (predominantly Inupiaq Eskimo) with critical subsistence resources of meat, fish, berries, herbs, and wood. The geomorphology of the coast includes barrier islands, inlets, estuaries, deltas, cliffs, bluffs, and beaches that host modern settlements and infrastructure. Coastal dynamics and sea-level rise are contributing to erosion, intermittent erosion/accretion patterns, landslides, slumps and coastal retreat. These factors are causing the sedimentation of deltas and lagoons, and changing local bathymetry, morphological parameters of beaches and underwater slopes, rates of coastal dynamics, and turbidity and nutrient cycling in coastal waters. This study is constructing vulnerability maps to help local people and federal officials understand the potential consequences of sea-level rise and coastal erosion on local infrastructure, subsistence resources, and culturally important sites. A lack of complete and uniform data (in terms of methods of collection, geographic scale and spatial resolution) creates an additional level of uncertainty that complicates geographic analysis. These difficulties were overcome by spatial modeling with selected spatial resolution using extrapolation methods. Data include subsistence resource maps obtained using Participatory GIS with local hunters and elders, geological and geographic data on coastal dynamics from satellite imagery, aerial photos, bathymetry and topographic maps, and digital elevation models. These data were classified and ranked according to the level of coastal vulnerability (Figure 1). The resulting qualitative multicriteria model helps to identify the coastal areas with the greatest vulnerability to coastal erosion and of the potential loss of subsistence resources. Acknowldgements: Dr. Ron Abileah (private consultant, jOmegak) helped in preliminary analysis of Landsat imagery, Mr. Alex Whiting provided valuable information on subsistence resources in Kotzebue region, hunters and elders of villages in Kivalina, Kotzebue, Selawik and Deering provided input in GIS database on subsistence resources.
Timescales for detecting a significant acceleration in sea level rise
Haigh, Ivan D.; Wahl, Thomas; Rohling, Eelco J.; Price, René M.; Pattiaratchi, Charitha B.; Calafat, Francisco M.; Dangendorf, Sönke
2014-01-01
There is observational evidence that global sea level is rising and there is concern that the rate of rise will increase, significantly threatening coastal communities. However, considerable debate remains as to whether the rate of sea level rise is currently increasing and, if so, by how much. Here we provide new insights into sea level accelerations by applying the main methods that have been used previously to search for accelerations in historical data, to identify the timings (with uncertainties) at which accelerations might first be recognized in a statistically significant manner (if not apparent already) in sea level records that we have artificially extended to 2100. We find that the most important approach to earliest possible detection of a significant sea level acceleration lies in improved understanding (and subsequent removal) of interannual to multidecadal variability in sea level records. PMID:24728012
Stratigraphic response of salt marshes to slow rates of sea-level change
NASA Astrophysics Data System (ADS)
Daly, J.; Bell, T.
2006-12-01
Conventional models of salt-marsh development show an idealized spatial relationship between salt-marsh floral and foraminiferal zones, where the landward margin of the marsh gradually migrates inland in response to sea-level rise. This model predicts that transgression will result in persistent and possibly expanded salt marshes at the surface, depending on a variety of factors including sediment supply, hydrologic conditions, tidal range, and rate of sea-level rise. However, in areas with abundant sediment supply and slow rates of sea- level rise, the extent of back-barrier salt marshes may decline over time as the barrier-spits mature. Sea level around the northeast coast of Newfoundland is rising at a very slow rate during the late Holocene (<0.5 mm/yr). Sandy barrier-spits and tombolos are common coastal features, but salt marshes are rare. The generalized stratigraphy of dutch cores collected in back-barrier settings in this region is a surface layer of sphagnum peat with abundant woody roots, underlain by sedge-dominated peat that transitions gradually to a thin layer of Juncus sp. peat with agglutinated foraminifera, dominantly Jadammina macrescens and Balticammina pseudomacrescens. These basal peats are interpreted as salt-marsh peats, characterized by the presence of foraminifera that are absent in overlying peat units. This sequence indicates that salt marshes developed in back-barrier environments during the initial stages of barrier progradation, then gradually transitioned to environments increasingly dominated by freshwater flora. These transitions are interpreted to reflect the progradation of the spit, decreased tidal exchange in the back-barrier, and increased influence of freshwater streams discharging into the back-barrier setting. Decreased marine influence on the back-barrier environment leads to a floral and faunal shift associated with a regressive stratigraphy in an area experiencing sea-level rise. For studies of Holocene sea-level change requiring salt-marsh stratigraphic records, it is necessary to account for changing micro-environments to locate sites appropriate for study; salt marshes may play an important role in defining the record, but may not exist at the surface to guide investigation.
NASA Astrophysics Data System (ADS)
Sugai, T.; Sato, T.
2015-12-01
This paper compared grain size, thickness, and lithological character of ten fluvial gravel layers formed during the glacial sea-level lowstands intervening inner bay mud layers deposited during the interglacial marine transgressional periods since the last 900 ka by integrated analyses of sediment cores including 600 m deep onein the Nobi plain, central Japan. Linkages between river long profile changes and sea-level and climate changes will be discussed. The Nobi basin is one of the representative delta type alluvial lowlands in Japan dominated by longitudinal drainage system named Kiso river system flowing southward from central Japan Alps with abundant water and sediment discharges. The basin bounded by the Yoro fault on the west has been tilted westward by the repetitive faulting activity. The basin stratigraphy and its stacking patterns suggest uniform and rapid subsidence and tilting rates of the basin with the maximum value of 1 mm yr-1 and 10-4 kyr-1 respectively produced by the Yoro fault activity under the W-E compressional regional stress field during the middle and late Quaternary periods. Tephrochronological, paleomagnetic, geochemical, and diatom analyses enabled to identify ten times repeated marine transgression-regression sequences correlated with full glacial-interglacial sea-level changes during the last 900 ka. All of the ten sequence boundaries were characterized by fluvial gravel layers were formed by the Kiso river system. The mean maximum gravel size is proportional to the magnitude of sea level lowering inferred from MIS curve, i.e. gravels deposited in MIS 12 and 16 are the largest, and those in MIS 14 and 8 are the smallest since MIS 16. This suggests that the longitudinal profile of the Kiso river system has been adjusting to the sea level changes and that the steeper longitudinal profile formed in the lower sea level periods can transport larger gravels to the drilling sites. In fact the present river bed gravel size is in proportion with the tractive force and mainly controlled by slope of the rive long-profile.
NASA Astrophysics Data System (ADS)
Chappell, John; Omura, Akio; Esat, Tezer; McCulloch, Malcolm; Pandolfi, John; Ota, Yoko; Pillans, Brad
1996-06-01
A major discrepancy between the Late Quaternary sea level changes derived from raised coral reef terraces at the Huon Peninsula in Papua New Guinea and from oxygen isotopes in deep sea cores is resolved. The two methods agree closely from 120 ka to 80 ka and from 20 ka to 0 ka (ka = 1000 yr before present), but between 70 and 30 ka the isotopic sea levels are 20-40 m lower than the Huon Peninsula sea levels derived in earlier studies. New, high precision U-series age measurements and revised stratigraphic data for Huon Peninsula terraces aged between 30 and 70 ka now give similar sea levels to those based on deep sea oxygen isotope data planktonic and benthic δ 18O data. Using the sea level and deep sea isotopic data, oxygen isotope ratios are calculated for the northern continental ice sheets through the last glacial cycle and are consistent with results from Greenland ice cores. The record of ice volume changes through the last glacial cycle now appears to be reasonably complete.
The Last Interglacial in the Levant: Perspective from the ICDP Dead Sea Deep Drill Core
NASA Astrophysics Data System (ADS)
Goldstein, S. L.; Torfstein, A.; Stein, M.; Kushnir, Y.; Enzel, Y.; Haug, G. H.
2014-12-01
Sediments recovered by the ICDP Dead Sea Deep Drilling Project provide a new perspective on the climate history of the Levant during the last interglacial period MIS5. They record the extreme impacts of an intense interglacial characterized by stronger insolation, warmer mean global temperatures, and higher sea-levels than the Holocene. Results show both extreme hyper-aridity during MIS5e, including an unprecedented drawdown of Dead Sea water levels, and the impacts of a strong precession-driven African monsoon responsible for a major sapropel event (S5) in the eastern Mediterranean. Hyper-arid conditions at the beginning of MIS5e prior to S5 (~132-128 ka) are evidenced by halite deposition, indicating declining Dead Sea lake levels. Surprisingly, the hyper-arid phase is interrupted during the MIS5e peak (~128-120 ka), coinciding with the S5 sapropel, which is characterized by a thick (23 m) section of silty detritus (without any halite) whose provenance indicates southern-sourced wetness in the watershed. Upon weakening of the S5 monsoon (~120-115 ka), the return of extreme aridity resulted in an unprecedented lake level drawdown, reflected by massive salt deposition, and followed by a sediment hiatus (~115-100 ka) indicating prolonged low lake level. The resumption of section follows classic Levant patterns with more wetness during cooler MIS5b and hyper-aridity during warmer MIS5a. The ICDP core provides the first evidence for a direct linkage between an intense precession-driven African monsoon and wetness at the high subtropical latitude (~30N) of the Dead Sea watershed. Combined with coeval deposition of Negev speleothems and travertines, and calcitification of Red Sea corals, the evidence indicates a wet climatic corridor that could facilitate homo sapiens migration out of Africa during the MIS5e peak. In addition, the MIS 5e hyper-arid intervals may provide an important cautionary analogue for the impact of future warming on regional water resources.
Fiore, Alex R.; Voronin, Lois M.; Wieben, Christine M.
2018-03-19
The Edwin B. Forsythe National Wildlife Refuge encompasses more than 47,000 acres of New Jersey coastal habitats, including salt marshes, freshwater wetlands, tidal wetlands, barrier beaches, woodlands, and swamps. The refuge is along the Atlantic Flyway and provides breeding habitat for fish, migratory birds, and other wildlife species. The refuge area may be threatened by global climate change, including sea-level rise (SLR).The Kirkwood-Cohansey aquifer system underlies the Edwin B. Forsythe National Wildlife Refuge. Groundwater is an important source of freshwater flow into the refuge, but information about the interaction of surface water and groundwater in the refuge area and the potential effects of SLR on the underlying aquifer system is limited. The U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service (USFWS), conducted a hydrologic assessment of the refuge in New Jersey and developed a groundwater flow model to improve understanding of the geohydrology of the refuge area and to serve as a tool to evaluate changes in groundwater-level altitudes that may result from a rise in sea level.Groundwater flow simulations completed for this study include a calibrated baseline simulation that represents 2005–15 hydraulic conditions and three SLR scenarios―20, 40, and 60 centimeters (cm) (0.656, 1.312, and 1.968 feet, respectively). Results of the three SLR simulations indicate that the water table in the unconfined Kirkwood-Cohansey aquifer system in the refuge area will rise, resulting in increased discharge of fresh groundwater to freshwater wetlands and streams. As sea level rises, simulated groundwater discharge to the salt marsh, bay, and ocean is projected to decrease. Flow from the salt marsh, bay, and ocean to the overlying surface water is projected to increase as sea level rises.The simulated movement of the freshwater-seawater interface as sea level rises depends on the hydraulic-head gradient. In the center of the Forsythe model area, topographic relief is 23 feet (ft) and the hydraulic-head gradient is 0.0033. In the center of the Forsythe model area, the simulated interface moved inland about 600 ft and downward about 15 ft from the baseline simulation to scenario 3 as a result of a SLR of 60 cm. In the southern part of the Forsythe model area, the topography is flatter (relief of 8 ft) and the hydraulic-head gradient is smaller (0.001). In the southern part of the Forsythe model study area, the simulated interface in this area is projected to move inland about 200 ft from the baseline simulation to scenario 3 and does not move downward.
NASA Technical Reports Server (NTRS)
2002-01-01
This true-color image shows bright, turquoise-colored swirls across the surface of the Black Sea, signifying the presence of a large phytoplankton bloom. Scientists have observed similar blooms recurring annually, roughly this same time of year. The Sea of Azov, which is the smaller body of water located just north of the Black Sea in this image, also shows a high level of biological activity currently ongoing. The brownish pixels in the Azov are probably sediments carried in from high waters upstream. This scene was acquired by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on May 4, 2002. According to the Black Sea Environment Programme's Marine Hydrophysical Institute, the Black Sea is 'one of the marine areas of the world most damaged by human activities.' The coastal zone around these Eastern European inland water bodies is densely populated-supporting a permanent population of roughly 16 million people and another 4 million tourists each year. Six countries border with the Black Sea, including Ukraine to the north, Russia and Georgia to the east, Turkey to the south, and Bulgaria and Romania to the west. Because it is isolated from the world's oceans, and because there is an extensive drainage network of rivers that empty into it, the Black Sea has a unique and delicate water balance which is very important for supporting its marine ecosystem. Of particular concern to scientists is the salinity, water level, and nutrient levels of the Black Sea's waters, all of which are, unfortunately, being impacted by human activities. Within the last three decades the combination of increased nutrient loads from human sources together with pollution and over-harvesting of fisheries has resulted in a sharp decline in water quality. Scientists from each of the Black Sea's bordering nations are currently working together to study the issues and formulate a joint, international strategy for saving this unique marine ecosystem. Working with a spirit of placing more emphasis on joint ownership of the Black Sea's resources, and less emphasis on blame, it is hoped that the cooperating countries can strike an effective balance between both enjoying and preserving the Black Sea. Image courtesy the SeaWiFS Project, NASA GSFC, and ORBIMAGE
NASA Astrophysics Data System (ADS)
Martinez-Benjamin, J.; Schutz, B.; Urban, T.; Ortiz Castellon, M.; Martinez-Garcia, M.; Ruiz, A.; Perez, B.; Rodriguez-Velasco, G.
2008-12-01
In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge and with a continuous GPS station nearby. The radar tide gauge is a Datamar 3000C device and a Thales Navigation Internet-Enabled GPS Continuous Geodetic Reference Station (iCGRS) with a choke ring antenna. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. Puertos del Estado (Spanish Harbours) installed the tide gauge station at Ibiza harbour in January 2003. The station belongs to the REDMAR network, composed at this moment by 21 stations distributed along the whole Spanish waters, including also the Canary islands. The tide gauge also belongs to the ESEAS (European Sea Level) network. At the Barcelona harbour they have installed a radar tide gauge near a GPS station belonging to Puerto de Barcelona. L'Estartit floating tide gauge was set up in 1990. Data are taken in graphics registers from each two hours the mean value is recorded in an electronic support. L'Estartit tide gauge series provides good quality information about the changes in the sea heights at centimeter level, that is the magnitude of the common tides in the Mediterranean. Two airborne calibration campaigns carrying an Optech Lidar ALTM-3025 (ICC) were made on June 16, 2007 with a Partenavia P-68 and October 12, 2007, with a Cessna Caravan 208B flying along two ICESat target tracks including crossover near l'Estartit. The validation of this new technology LIDAR may be useful to fill coastal areas where satellite radar altimeters are not measuring due to the large footprint and the resulting gaps of about 15-30 km within the coastline. Measurements with a GPS Buoy at l'Estartit harbour were made during the June experience and a GPS reference station was installed in Aiguablava. On October 12, 2007, another LIDAR campaign was made at night at the same time of the ICESat overflying. A description of the actual geodetic CGPS infrastructures at Ibiza, l'Estartit and Barcelona is presented as their applications to sea level monitoring and altimeter calibration.
Decadal sea level variability in the East China Sea linked to the North Pacific Gyre Oscillation
NASA Astrophysics Data System (ADS)
Moon, Jae-Hong; Song, Y. Tony
2017-07-01
In view of coastal community's need for adapting to sea level rise (SLR), understanding and predicting regional variability on decadal to longer time scales still remain a challenging issue in SLR research. Here, we have examined the low-frequency sea level signals in the East China Sea (ECS) from the 50-year hindcast of a non-Boussinesq ocean model in comparison with data sets from altimeters, tide-gauges, and steric sea level produced by in-situ profiles. It is shown that the mean sea levels in the ECS represent significant decadal fluctuations over the past 50 years, with a multi-decadal trend shift since the mid-1980s compared to the preceding 30 years. The decadal fluctuations in sea level are more closely linked to the North Pacific Gyre Oscillation (NPGO) rather than the Pacific Decadal Oscillation, which reflects the multi-decadal trend shift. A composite analysis indicates that wind patterns associated with the NPGO is shown to control the decadal variability of the western subtropical North Pacific. A positive NPGO corresponds to cyclonic wind stress curl anomaly in the western subtropical regions that results in a higher sea level in the ECS, particularly along the continental shelf, and lower sea levels off the ECS. The reverse occurs in years of negative NPGO.
NASA Astrophysics Data System (ADS)
Reyes, S. R. C.; Blanco, A. C.
2012-07-01
A number of studies assessing the vulnerability of Southeast Asia to climate change have classified the Philippines as one of the vulnerable countries in the region. Bolinao, Pangasinan is a municipality located in northwestern Luzon, situated in the western part of the Lingayen Gulf and is bounded on the north and west by the South China Sea (West Philippine Sea). Recent studies have verified the varying trends in sea level across the South China Sea, which is considered as one of the largest, semi-enclosed marginal seas in the northwest Pacific Ocean. Three barangays (villages) were included in the study: (1) Luciente 1.0, (2) Concordia and (3) Germinal. The Socioeconomic Vulnerability Index (SVI) was computed based on population, age, gender, employment, source of income and household size, which were gathered through a qualitative survey in the selected barangays. The Coastal Vulnerability Index (CVI) described the physical vulnerability of these coastal communities based on recorded sea level anomalies and significant wave heights of multiple satellite altimetry missions, coastal topography derived from the 25-m SRTM digital elevation model (DEM), bathymetry from WorldView-2 and additional elevation data from terrestrial laser scanning surveys. The research utilized merged satellite altimetry data downloaded from the Radar Altimetry Database System (RADS), which covered the period from 1991-2010. The SVI and CVI were calculated and evaluated in ArcGIS. The SVI and CVI were integrated to determine the Total Vulnerability Index (TVI), which characterized the vulnerability of the three barangays in five classes, from very low to very high vulnerability.
Health implications associated with exposure to farmed and wild sea turtles.
Warwick, Clifford; Arena, Phillip C; Steedman, Catrina
2013-01-01
Exposure to sea turtles may be increasing with expanding tourism, although reports of problems arising from interaction with free-living animals appear of negligible human health and safety concern. Exposure both to wild-caught and captive-housed sea turtles, including consumption of turtle products, raises several health concerns for the public, including: microbiological (bacteria, viruses, parasites and fungi), macrobiological (macroparasites), and organic and inorganic toxic contaminants (biotoxins, organochlorines and heavy metals). We conducted a review of sea turtle associated human disease and its causative agents as well as a case study of the commercial sea turtle facility known as the Cayman Turtle Farm (which receives approximately 240,000 visitors annually) including the use of water sampling and laboratory microbial analysis which identified Pseudomonas aeruginosa, Aeromonas spp., Vibrio spp. and Salmonella spp. Our assessment is that pathogens and toxic contaminants may be loosely categorized to represent the following levels of potential risk: viruses and fungi = very low; protozoan parasites = very low to low; metazoan parasites, bacteria and environmental toxic contaminants = low or moderate to high; and biotoxin contaminant = moderate to very high. Farmed turtles and their consumable products may constitute a significant reservoir of potential human pathogen and toxin contamination. Greater awareness among health-care professionals regarding both potential pathogens and toxic contaminants from sea turtles, as well as key signs and symptoms of sea turtle-related human disease, is important for the prevention and control of salient disease.
Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model
NASA Astrophysics Data System (ADS)
Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.
2015-12-01
We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.
NASA Technical Reports Server (NTRS)
2002-01-01
This true-color image shows bright, turquoise-colored swirls across the surface of the Black Sea, signifying the presence of a large phytoplankton bloom. Scientists have observed similar blooms recurring annually, roughly this same time of year. The Sea of Azov, which is the smaller body of water located just north of the Black Sea in this image, also shows a high level of color variance. The brownish pixels in the Azov are probably due to sediments carried in from high waters and snowmelt from upstream. This scene was acquired by the Moderate Resolution Imaging Spectroradiometer, flying aboard NASA's Terra satellite, on May 14, 2002. According to the Black Sea Environment Programme's Marine Hydrophysical Institute, the Black Sea is ?one of the marine areas of the world most damaged by human activities.? The coastal zone around these Eastern European inland water bodies is densely populated'supporting a permanent population of roughly 16 million people and another 4 million tourists each year. Six countries border with the Black Sea, including Ukraine to the north, Russia and Georgia to the east, Turkey to the south, and Bulgaria and Romania to the west. Because it is isolated from the world's oceans, and because there is an extensive drainage network of rivers that empty into it, the Black Sea has a unique and delicate water balance which is very important for supporting its marine ecosystem. Of particular concern to scientists is the salinity, water level, and nutrient levels of the Black Sea's waters, all of which are, unfortunately, being impacted by human activities. Within the last three decades the combination of increased nutrient loads from human sources together with pollution and over-harvesting of fisheries has resulted in a sharp decline in water quality. Scientists from each of the Black Sea's bordering nations are currently working together to study the issues and formulate a joint, international strategy for saving this unique marine ecosystem. Working with a spirit of placing more emphasis on joint ownership of the Black Sea's resources, and less emphasis on blame, it is hoped that the cooperating countries can strike an effective balance between both enjoying and preserving the Black Sea.
Salton Sea ecosystem monitoring and assessment plan
Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.
2013-01-01
The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The goal of the MAP is to provide a guide for data collection, analysis, management, and reporting to inform management actions for the Salton Sea ecosystem. Monitoring activities are directed at species and habitats that could be affected by or drive future restoration activities. The MAP is not intended to be a prescriptive document. Rather, it is envisioned to be a flexible, program-level guide that articulates high-level goals and objectives, and establishes broad sideboards within which future project-level investigations and studies will be evaluated and authorized. As such, the MAP, by design, does not, for example, include detailed protocols describing how investigations will be implemented. It is anticipated that detailed study proposals will be prepared as part of an implementation plan that will include such things as specific sampling objectives, sampling schemes, and statistical and spatial limits.
A meeting of the waters: interdisciplinary challenges and opportunities in tidal rivers
Ensign, Scott H.; Noe, Gregory B.; Hupp, Cliff R.; Fagherazzi, Sergio
2012-01-01
At the interface of estuarine tides and freshwater rivers lie wetland and aquatic ecosystems, which experience dramatic effects of sea level rise. There, nontidal channels and riparian floodplains are transforming into tidal ecosystems, and tidal freshwater ecosystems are receiving increasing salinity. These river-floodplain systems have both fluvial characteristics, including meandering channels and expansive floodplain forests, and estuarine characteristics, including tides and intertidal wetlands [see Barendregt et al., 2009; Conner et al., 2007, and references therein]. Because tidal rivers lie at the disciplinary divide between fluvial and estuarine science, a knowledge gap has developed in scientists' understanding of the geomorphic and biogeochemical response of these environments to sea level rise, climate change, and anthropogenically driven variations in watershed exports.
Assessing and Mitigating Hurricane Storm Surge Risk in a Changing Environment
NASA Astrophysics Data System (ADS)
Lin, N.; Shullman, E.; Xian, S.; Feng, K.
2017-12-01
Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).
Impact of Atmospheric Aerosols on Solar Photovoltaic Electricity Generation in China
NASA Astrophysics Data System (ADS)
Li, X.; Mauzerall, D. L.; Wagner, F.; Peng, W.; Yang, J.
2016-12-01
Hurricanes have induced devastating storm surge flooding worldwide. The impacts of these storms may worsen in the coming decades because of rapid coastal development coupled with sea-level rise and possibly increasing storm activity due to climate change. Major advances in coastal flood risk management are urgently needed. We present an integrated dynamic risk analysis for flooding task (iDraft) framework to assess and manage coastal flood risk at the city or regional scale, considering integrated dynamic effects of storm climatology change, sea-level rise, and coastal development. We apply the framework to New York City. First, we combine climate-model projected storm surge climatology and sea-level rise with engineering- and social/economic-model projected coastal exposure and vulnerability to estimate the flood damage risk for the city over the 21st century. We derive temporally-varying risk measures such as the annual expected damage as well as temporally-integrated measures such as the present value of future losses. We also examine the individual and joint contributions to the changing risk of the three dynamic factors (i.e., sea-level rise, storm change, and coastal development). Then, we perform probabilistic cost-benefit analysis for various coastal flood risk mitigation strategies for the city. Specifically, we evaluate previously proposed mitigation measures, including elevating houses on the floodplain and constructing flood barriers at the coast, by comparing their estimated cost and probability distribution of the benefit (i.e., present value of avoided future losses). We also propose new design strategies, including optimal design (e.g., optimal house elevation) and adaptive design (e.g., flood protection levels that are designed to be modified over time in a dynamic and uncertain environment).
A 6,700 years sea-level record based on French Polynesian coral reefs
NASA Astrophysics Data System (ADS)
Hallmann, Nadine; Camoin, Gilbert; Eisenhauer, Anton; Vella, Claude; Samankassou, Elias; Botella, Albéric; Milne, Glenn; Fietzke, Jan; Dussouillez, Philippe
2015-04-01
Sea-level change during the Mid- to Late Holocene has a similar amplitude to the sea-level rise that is likely to occur before the end of the 21st century providing a unique opportunity to study the coastal response to sea-level change and to reveal an important baseline of natural climate variability prior to the industrial revolution. Mid- to Late Holocene relative sea-level change in French Polynesia was reconstructed using coral reef records from ten islands, which represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. Absolute U/Th dating of in situ coral colonies and their accurate positioning via GPS RTK (Real Time Kinematic) measurements is crucial for an accurate reconstruction of sea-level change. We focus mainly on the analysis of coral microatolls, which are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level. Growth pattern analysis allows the reconstruction of low-amplitude, high-frequency sea-level changes on centennial to sub-decadal time scales. A sea-level rise of less than 1 m is recorded between 6 and 3-3.5 ka, and is followed by a gradual fall in sea level that started around 2.5 ka and persisted until the past few centuries. The reconstructed sea-level curve therefore extends the Tahiti sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].
Sea level and turbidity controls on mangrove soil surface elevation change
Lovelock, Catherine E.; Fernanda Adame, Maria; Bennion, Vicki; Hayes, Matthew; Reef, Ruth; Santini, Nadia; Cahoon, Donald R.
2015-01-01
Increases in sea level are a threat to seaward fringing mangrove forests if levels of inundation exceed the physiological tolerance of the trees; however, tidal wetlands can keep pace with sea level rise if soil surface elevations can increase at the same pace as sea level rise. Sediment accretion on the soil surface and belowground production of roots are proposed to increase with increasing sea level, enabling intertidal habitats to maintain their position relative to mean sea level, but there are few tests of these predictions in mangrove forests. Here we used variation in sea level and the availability of sediments caused by seasonal and inter-annual variation in the intensity of La Nina-El Nino to assess the effects of increasing sea level on surface elevation gains and contributing processes (accretion on the surface, subsidence and root growth) in mangrove forests. We found that soil surface elevation increased with mean sea level (which varied over 250 mm during the study) and with turbidity at sites where fine sediment in the water column is abundant. In contrast, where sediments were sandy, rates of surface elevation gain were high, but not significantly related to variation in turbidity, and were likely to be influenced by other factors that deliver sand to the mangrove forest. Root growth was not linked to soil surface elevation gains, although it was associated with reduced shallow subsidence, and therefore may contribute to the capacity of mangroves to keep pace with sea level rise. Our results indicate both surface (sedimentation) and subsurface (root growth) processes can influence mangrove capacity to keep pace with sea level rise within the same geographic location, and that current models of tidal marsh responses to sea level rise capture the major feature of the response of mangroves where fine, but not coarse, sediments are abundant.
Sea level history in Beringia during the past 250,000 years
Hopkins, D.M.
1973-01-01
This paper attempts to relate current knowledge of sea-level history in Beringia to the Broecker-van Donk "Termination" concept of climatic and sea-level history. The Einahnuhtan transgression is thought to represent Termination III, which according to Broecker and van Donk, took place about 225,000 y.a. The Kotzebuan transgression is thought to represent a positive fluctuation that modulated the generally falling sea level during the ensuing 100,000 yr. Sea level probably fell to about -135 m in the Bering Sea area during the maximum phase of the penultimate glaciation. The two Pelukian shorelines probably represent Termination II (about 125,000 yr BP in the Broecker-van Donk chronology) and one of the two positive fluctuations that modulated the generally falling sea level of early Wisconsinan time, about 105,000 and 80,000 y.a. according to Broecker and van Donk. Another positive modulation brought sea level to at least -20 m, about 30,000 y.a. Sea level evidently fell to between -90 and -100 m during the late Wisconsinan regression, but a substantial part of the outer Bering shelf remained submerged. Submerged shoreline features at -38m, -30 m, -24 to -20 m, and -12 to -10 m represent stillstands or slight regressions that modulated Termination I, the late Wisconsinan, and early Holocene recovery of sea level. ?? 1973.
Evidence for the timing of sea-level events during MIS 3
NASA Astrophysics Data System (ADS)
Siddall, M.
2005-12-01
Four large sea-level peaks of millennial-scale duration occur during MIS 3. In addition smaller peaks may exist close to the sensitivity of existing methods to derive sea level during these periods. Millennial-scale changes in temperature during MIS 3 are well documented across much of the planet and are linked in some unknown, yet fundamental way to changes in ice volume / sea level. It is therefore highly likely that the timing of the sea level events during MIS 3 will prove to be a `Rosetta Stone' for understanding millennial scale climate variability. I will review observational and mechanistic arguments for the variation of sea level on Antarctic, Greenland and absolute time scales.
Anthropogenic sea level rise and adaptation in the Yangtze estuary
NASA Astrophysics Data System (ADS)
Cheng, H.; Chen, J.; Chen, Z.; Ruan, R.; Xu, G.; Zeng, G.; Zhu, J.; Dai, Z.; Gu, S.; Zhang, X.; Wang, H.
2016-02-01
Sea level rise is a major projected threat of climate change. There are regional variations in sea level changes, depending on both naturally the tectonic subsidence, geomorphology, naturally changing river inputs and anthropogenic driven forces as artificial reservoir water impoundment within the watershed and urban land subsidence driven by ground water depletion in the river delta. Little is known on regional sea level fall in response to the channel erosion due to the sediment discharge decline by reservoir interception in the upstream watershed, and water level rise driven by anthropogenic measures as the land reclamation, deep waterway regulation and fresh water reservoir construction to the sea level change in estuaries. Changing coastal cities are situated in the delta regions expected to be threatened in various degrees. Shanghai belongs to those cities. Here we show that the anthropogenic driven sea level rise in the Yangtze estuary from the point of view of the continuous hydrodynamic system consisted of river catchment, estuary and coastal sea. Land subsidence is cited as 4 mm/a (2011-2030). Scour depth of the estuarine channel by upstream engineering as Three Gauge Dam is estimated at 2-10 cm (2011-2030). The rise of water level by deep waterway and land reclamation is estimated at 8-10 cm (2011-2030). The relative sea level rise will be speculated about 10 -16 cm (2011-2030), which these anthropogenic sea level changes will be imposed into the absolute sea level rise 2 mm/a and tectonic subsidence 1 mm/a measured in 1990s. The action guideline to the sea level rise strategy in the Shanghai city have been proposed to the Shanghai government as (1) recent actions (2012-2015) to upgrade the city water supply and drainage engineering and protective engineering; (2) interim actions (2016-2020) to improve sea level monitoring and early warning system, and then the special, city, regional planning considering sea level rise; (3) long term actions (2021-2030) to implement both the safety and the transformation and development of the city.
Reconstructing Mid- to Late Holocene sea-level change from coral microatolls, French Polynesia
NASA Astrophysics Data System (ADS)
Hallmann, Nadine; Camoin, Gilbert; Eisenhauer, Anton; Botella, Alberic; Milne, Glenn; Vella, Claude; Samankassou, Elias; Pothin, Virginie; Dussouillez, Philippe; Fleury, Jules; Fietzke, Jan
2017-04-01
Coral microatolls are sensitive low-tide recorders, as their vertical accretion is limited by the mean low water springs level, and can be considered therefore as high-precision recorders of sea-level change. They are of pivotal importance to resolving the rates and amplitudes of millennial-to-century scale changes during periods of relative climate stability such as the Mid- to Late Holocene, which serves as an important baseline of natural variability prior to the industrial revolution. It provides therefore a unique opportunity to study coastal response to sea-level rise, even if the rates of sea-level rise during the Mid- to Late Holocene were lower than the current rates and those expected in the near future. Mid- to Late Holocene relative sea-level change in French Polynesia was reconstructed based on the coupling between absolute U/Th dating of in situ coral microatolls and their precise positioning via GPS RTK (Real Time Kinematic) measurements. The twelve studied islands represent ideal settings for accurate sea-level studies because: 1) they can be regarded as tectonically stable during the relevant period (slow subsidence), 2) they are located far from former ice sheets (far-field), 3) they are characterized by a low tidal amplitude, and 4) they cover a wide range of latitudes which produces significantly improved constraints on GIA (Glacial Isostatic Adjustment) model parameters. A step-like sea-level rise is evidenced between 6 and 3.9 ka leading to a short sea-level highstand of about a meter in amplitude between 3.9 and 3.6 ka. A sea-level fall, at an average rate of 0.3 mm.yr-1, is recorded between 3.6 and 1.2 ka when sea level approached its present position. In addition, growth pattern analysis of coral microatolls allows the reconstruction of low-amplitude, high-frequency sea-level change on centennial to sub-decadal time scales. The reconstructed sea-level curve extends the Tahiti last deglacial sea-level curve [Deschamps et al., 2012, Nature, 483, 559-564], and is in good agreement with a geophysical model tuned to fit far-field deglacial records [Bassett et al., 2005, Science, 309, 925-928].
NASA Astrophysics Data System (ADS)
Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert
2016-05-01
A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.
Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing.
Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G
2018-03-08
In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale sea-level oscillations remain a mystery, challenging current models of sea-level change. To address this mystery, we develop a sedimentary noise model for sea-level changes that simultaneously estimates geologic time and sea level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global sea-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass exchange between land and ocean reservoirs is a missing link for reconciling geological records and models for sea-level change during non-glacial periods.
A New CCI ECV Release (v2.0) to Accurately Measure the Sea Level Change from space (1993-2015)
NASA Astrophysics Data System (ADS)
Legeais, Jean-Francois; Benveniste, Jérôme
2017-04-01
Accurate monitoring of the sea level is required to better understand its variability and changes. Sea level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing a long-term homogeneous and accurate sea level record. The needs and feedback of the climate research community have been collected so that the development of the products is adapted to the users. A first version of the sea level ECV product has been generated during phase I of the project (2011-2013). Within phase II (2014-2016), the 15 partner consortium has prepared the production of a new reprocessed homogeneous and accurate altimeter sea level record which is now available (see http://www.esa-sealevel-cci.org/products ). New level 2 altimeter standards developed and tested within the project as well as external contributions have been identified, processed and evaluated by comparison with a reference for different altimeter missions (TOPEX/Poseidon, Jason-1 & 2, ERS-1 & 2, Envisat, GFO, SARAL/AltiKa and CryoSat-2). The main evolutions are associated with the wet troposphere correction (based on the GPD+ algorithm including inter calibration with respect to external sensors) but also to the orbit solutions (POE-E and GFZ15), the ERA-Interim based atmospheric corrections and the FES2014 ocean tide model. A new pole tide solution is used and anomalies are referenced to the MSS DTU15. The presentation will focus on the main achievements of the ESA CCI Sea Level project and on the description of the new SL_cci ECV release covering 1993-2015. The major steps required to produce the reprocessed 23 year climate time series will be described. The impacts of the selected level 2 altimeter standards on the SL_cci ECV have been assessed on different spatial scales (global, regional, mesoscale) and temporal scales (long-term, inter-annual, periodic signals). A significant improvement is observed compared to the current v1.1, with the main impacts observed on the long-term evolution on decadal time scale, on global and regional scales, and for mesoscale signals. The results from product validation, carried out by several groups of the ocean and climate modeling community will be also presented.
A New CCI ECV Release (v2.0) to Accurately Measure the Sea Level Change (1993-2015)
NASA Astrophysics Data System (ADS)
Legeais, J.; Cazenave, A. A.; Ablain, M.; Gilles, G.; Johannessen, J. A.; Scharffenberg, M. G.; Timms, G.; Andersen, O. B.; Cipollini, P.; Roca, M.; Rudenko, S.; Fernandes, J.; Balmaseda, M.; Quartly, G.; Fenoglio Marc, L.; Meyssignac, B.; Benveniste, J.; Ambrozio, A.; Restano, M.
2016-12-01
Accurate monitoring of the sea level is required to better understand its variability and changes. Sea level is one of the Essential Climate Variables (ECV) selected in the frame of the ESA Climate Change Initiative (CCI) program. It aims at providing a long-term homogeneous and accurate sea level record. The needs and feedback of the climate research community have been collected and a first version of the sea level ECV product has been generated with the best algorithms and altimeter standards. This record (1993-2014) has been validated by the climate research community. Within phase II (2014-2016), the 15 partner consortium has prepared the production of a new reprocessed homogeneous and accurate altimeter sea level record which will be distributed in Autumn 2016. New level 2 altimeter standards developed and tested within the project as well as external contributions have been identified, processed and evaluated by comparison with a reference for different altimeter missions (TOPEX/Poseidon, Jason-1 & 2, ERS-1 & 2, Envisat and GFO). The main evolutions are associated with the wet troposphere correction (based on the GPD+ algorithm including inter calibration with respect to external sensors) but also to the orbit solutions (POE-E and GFZ15), the ERA-Interim based atmospheric corrections and the FES2014 ocean tide model. A new pole tide solution is used and anomalies are referenced to the MSS DTU15. The presentation will focus on the main achievements of the ESA CCI Sea Level project and on the description of the new SL_cci ECV release covering 1993-2015. The major steps required to produce the reprocessed 23 year climate time series will be described. The impacts of the selected level 2 altimeter standards on the SL_cci ECV have been assessed on different spatial scales (global, regional, mesoscale) and temporal scales (long-term, inter-annual, periodic). A significant improvement is expected compared to the current v1.1, with the main impacts observed on the long-term evolution on decadal time scale, on global and regional scales, and for mesoscale signals. The results from product validation, carried out by several groups of the ocean and climate modeling community will be also presented.
On the relationship between sea level and Spartina alterniflora production
Kirwan, Matthew L.; Christian, Robert R.; Blum, Linda K.; Brinson, Mark M.
2012-01-01
A positive relationship between interannual sea level and plant growth is thought to stabilize many coastal landforms responding to accelerating rates of sea level rise. Numerical models of delta growth, tidal channel network evolution, and ecosystem resilience incorporate a hump-shaped relationship between inundation and plant primary production, where vegetation growth increases with sea level up to an optimum water depth or inundation frequency. In contrast, we use decade-long measurements of Spartina alterniflora biomass in seven coastal Virginia (USA) marshes to demonstrate that interannual sea level is rarely a primary determinant of vegetation growth. Although we find tepid support for a hump-shaped relationship between aboveground production and inundation when marshes of different elevation are considered, our results suggest that marshes high in the intertidal zone and low in relief are unresponsive to sea level fluctuations. We suggest existing models are unable to capture the behavior of wetlands in these portions of the landscape, and may underestimate their vulnerability to sea level rise because sea level rise will not be accompanied by enhanced plant growth and resultant sediment accumulation.
Future sea level rise constrained by observations and long-term commitment.
Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda
2016-03-08
Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28-56 cm, 37-77 cm, and 57-131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The "constrained extrapolation" approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections.
Sea-level Variation Along the Suez Canal
NASA Astrophysics Data System (ADS)
Eid, F. M.; Sharaf El-Din, S. H.; Alam El-Din, K. A.
1997-05-01
The variation of sea level at 11 stations distributed along the Suez Canal was studied during the period from 1980 to 1986. The ranges of variation in daily mean sea level at Port Said and Port Tawfik are about 60 and 120 cm, respectively. The minimum range of daily variation is at Kantara (47 cm). The fluctuations of the monthly mean sea level between the two ends of the Suez Canal vary from one season to another. From July to December, the sea level at Port Said is higher than that at Port Tawfik, with the maximum difference (10·5 cm) in September. During the rest of the year, the mean sea level at Port Tawfik is higher than that at Port Said, with the maximum difference (31·5 cm) in March. The long-term variations of the annual mean sea level at both Port Said and Port Tawfik for the period from 1923 to 1986 showed a positive trend. The sea level at Port Said increased by about 27·8 cm century -1while it increased by only 9·1 cm century -1at Port Tawfik. This indicates that the difference between sea level at Port Said and Port Tawfik has decreased with time.
Future sea level rise constrained by observations and long-term commitment
Mengel, Matthias; Levermann, Anders; Frieler, Katja; Robinson, Alexander; Marzeion, Ben; Winkelmann, Ricarda
2016-01-01
Sea level has been steadily rising over the past century, predominantly due to anthropogenic climate change. The rate of sea level rise will keep increasing with continued global warming, and, even if temperatures are stabilized through the phasing out of greenhouse gas emissions, sea level is still expected to rise for centuries. This will affect coastal areas worldwide, and robust projections are needed to assess mitigation options and guide adaptation measures. Here we combine the equilibrium response of the main sea level rise contributions with their last century's observed contribution to constrain projections of future sea level rise. Our model is calibrated to a set of observations for each contribution, and the observational and climate uncertainties are combined to produce uncertainty ranges for 21st century sea level rise. We project anthropogenic sea level rise of 28–56 cm, 37–77 cm, and 57–131 cm in 2100 for the greenhouse gas concentration scenarios RCP26, RCP45, and RCP85, respectively. Our uncertainty ranges for total sea level rise overlap with the process-based estimates of the Intergovernmental Panel on Climate Change. The “constrained extrapolation” approach generalizes earlier global semiempirical models and may therefore lead to a better understanding of the discrepancies with process-based projections. PMID:26903648
Sea level oscillations over minute timescales: a global perspective
NASA Astrophysics Data System (ADS)
Vilibic, Ivica; Sepic, Jadranka
2016-04-01
Sea level oscillations occurring over minutes to a few hours are an important contributor to sea level extremes, and a knowledge on their behaviour is essential for proper quantification of coastal marine hazards. Tsunamis, meteotsunamis, infra-gravity waves and harbour oscillations may even dominate sea level extremes in certain areas and thus pose a great danger for humans and coastal infrastructure. Aside for tsunamis, which are, due to their enormous impact to the coastlines, a well-researched phenomena, the importance of other high-frequency oscillations to the sea level extremes is still underrated, as no systematic long-term measurements have been carried out at a minute timescales. Recently, Intergovernmental Oceanographic Commission (IOC) established Sea Level Monitoring Facility portal (http://www.ioc-sealevelmonitoring.org), making 1-min sea level data publicly available for several hundred tide gauge sites in the World Ocean. Thereafter, a global assessment of oscillations over tsunami timescales become possible; however, the portal contains raw sea level data only, being unchecked for spikes, shifts, drifts and other malfunctions of instruments. We present a quality assessment of these data, estimates of sea level variances and contributions of high-frequency processes to the extremes throughout the World Ocean. This is accompanied with assessment of atmospheric conditions and processes which generate intense high-frequency oscillations.
Analysis of Sea Level Rise in Singapore Strait
NASA Astrophysics Data System (ADS)
Tkalich, Pavel; Luu, Quang-Hung
2013-04-01
Sea level in Singapore Strait is governed by various scale phenomena, from global to local. Global signals are dominated by the climate change and multi-decadal variability and associated sea level rise; at regional scale seasonal sea level variability is caused by ENSO-modulated monsoons; locally, astronomic tides are the strongest force. Tide gauge records in Singapore Strait are analyzed to derive local sea level trend, and attempts are made to attribute observed sea level variability to phenomena at various scales, from global to local. It is found that at annual scale, sea level anomalies in Singapore Strait are quasi-periodic, of the order of ±15 cm, the highest during northeast monsoon and the lowest during southwest monsoon. Interannual regional sea level falls are associated with El Niño events, while the rises are related to La Niña episodes; both variations are in the range of ±9 cm. At multi-decadal scale, sea level in Singapore Strait has been rising at the rate 1.2-1.9 mm/year for the period 1975-2009, 2.0±0.3 mm/year for 1984-2009, and 1.3-4.7 mm/year for 1993-2009. When compared with the respective global trends of 2.0±0.3, 2.4, and 2.8±0.8 mm/year, Singapore Strait sea level rise trend was weaker at the earlier period and stronger at the recent decade.
Keep up or drown: adjustment of western Pacific coral reefs to sea-level rise in the 21st century
van Woesik, R.; Golbuu, Y.; Roff, G.
2015-01-01
Since the Mid-Holocene, some 5000 years ago, coral reefs in the Pacific Ocean have been vertically constrained by sea level. Contemporary sea-level rise is releasing these constraints, providing accommodation space for vertical reef expansion. Here, we show that Porites microatolls, from reef-flat environments in Palau (western Pacific Ocean), are ‘keeping up’ with contemporary sea-level rise. Measurements of 570 reef-flat Porites microatolls at 10 locations around Palau revealed recent vertical skeletal extension (78±13 mm) over the last 6–8 years, which is consistent with the timing of the recent increase in sea level. We modelled whether microatoll growth rates will potentially ‘keep up’ with predicted sea-level rise in the near future, based upon average growth, and assuming a decline in growth for every 1°C increase in temperature. We then compared these estimated extension rates with rates of sea-level rise under four Representative Concentration Pathways (RCPs). Our model suggests that under low–mid RCP scenarios, reef-coral growth will keep up with sea-level rise, but if greenhouse gas concentrations exceed 670 ppm atmospheric CO2 levels and with +2.2°C sea-surface temperature by 2100 (RCP 6.0 W m−2), our predictions indicate that Porites microatolls will be unable to keep up with projected rates of sea-level rise in the twenty-first century. PMID:26587277
NASA Astrophysics Data System (ADS)
Iz, H. Bâki
2018-05-01
This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.
The social values at risk from sea-level rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Sonia, E-mail: sonia.graham@unimelb.edu.au; Barnett, Jon, E-mail: jbarn@unimelb.edu.au; Fincher, Ruth, E-mail: r.fincher@unimelb.edu.au
Analysis of the risks of sea-level rise favours conventionally measured metrics such as the area of land that may be subsumed, the numbers of properties at risk, and the capital values of assets at risk. Despite this, it is clear that there exist many less material but no less important values at risk from sea-level rise. This paper re-theorises these multifarious social values at risk from sea-level rise, by explaining their diverse nature, and grounding them in the everyday practices of people living in coastal places. It is informed by a review and analysis of research on social values frommore » within the fields of social impact assessment, human geography, psychology, decision analysis, and climate change adaptation. From this we propose that it is the ‘lived values’ of coastal places that are most at risk from sea-level rise. We then offer a framework that groups these lived values into five types: those that are physiological in nature, and those that relate to issues of security, belonging, esteem, and self-actualisation. This framework of lived values at risk from sea-level rise can guide empirical research investigating the social impacts of sea-level rise, as well as the impacts of actions to adapt to sea-level rise. It also offers a basis for identifying the distribution of related social outcomes across populations exposed to sea-level rise or sea-level rise policies.« less
NASA Astrophysics Data System (ADS)
Craymer, M.; Forbes, D.; Henton, J.; Lapelle, E.; Piraszewski, M.; Solomon, S.
2005-12-01
With observed climate warming in the western Canadian Arctic and potential increases in regional sea level, we anticipate expansion of the coastal region subject to rising relative sea level and increased flooding risk. This is a concern for coastal communities such as Tuktoyaktuk and Sachs Harbour and for the design and safety of hydrocarbon production facilities on the Mackenzie Delta. To provide a framework in which to monitor these changes, a consistent velocity field has been determined from GPS observations throughout North America, including the Canadian Arctic Archipelago and the Mackenzie Delta region. An expanded network of continuous GPS sites and multi-epoch (episodic) sites has enabled an increased density that enhances the application to geophysical studies including the discrimination of crustal motion, other components of coastal subsidence, and sea-level rise. To obtain a dense velocity field consistent at all scales, we have combined weekly solutions of continuous GPS sites from different agencies in Canada and the USA, together with the global reference frame under the North American Reference Frame initiative. Although there is already a high density of continuous GPS sites in the conterminous United States, there are many fewer such sites in Canada. To make up for this lack of density, we have incorporated high-accuracy episodic GPS observations on stable monuments distributed throughout Canada. By combining up to ten years of repeated, episodic GPS observations at such sites, together with weekly solutions from the continuous sites, we have obtained a highly consistent velocity field with a significantly increased spatial sampling of crustal deformation throughout Canada. This exhibits a spatially coherent pattern of uplift and subsidence in Canada that is consistent with the expected rates of glacial isostatic adjustment. To determine the contribution of vertical motion to sea-level rise under climate warming in the Canadian Arctic, we have established co-located tide gauges and continuous GPS at a number of sites across the Canadian Arctic, including Tuktoyaktuk on the eastern side of the Mackenzie Delta. We are also investigating additional sources of subsidence in the delta, including sediment loading, compaction of unfrozen and discontinuously ice-bonded sediments, and anticipated subsidence resulting from future natural gas production. Further densification of the velocity field, including the addition of new sites in the delta, and regular reoccupation of episodic sites will assist in determining local rates of motion. Strategies for discriminating the various components of subsidence in this large delta include episodic GPS on monuments and borehole casing penetrating to various depths and supporting InSAR analysis and geological data. Coastal flooding hazards will be evaluated using digital elevation models derived from real-time kinematic GPS, airborne LiDAR surveys, and synthetic aperture radar flood mapping.
NASA Astrophysics Data System (ADS)
Mortlock, Richard A.; Abdul, Nicole A.; Wright, James D.; Fairbanks, Richard G.
2016-12-01
Abdul et al. (2016) presented a detailed record of sea level at Barbados (13.9-9 kyr B.P.) tightly constraining the timing and amplitude during the Younger Dryas and Meltwater Pulse 1B (MWP-1B) based on U-Th dated reef crest coral species Acropora palmata. The Younger Dryas slow stand and the large (14 m) rapid sea level jump are not resolved in the Tahiti record. Tahiti sea level estimates are remarkably close to the Barbados sea level curve between 13.9 and 11.6 kyr but fall below the Barbados sea level curve for a few thousand years following MWP-1B. By 9 kyr the Tahiti sea level estimates again converge with the Barbados sea level curve. Abdul et al. (2016) concluded that Tahiti reefs at the core sites did not keep up with intervals of rapidly rising sea level during MWP-1B. We counter Bard et al. (2016) by showing (1) that there is no evidence for a hypothetical fault in Oistins Bay affecting one of the Barbados coring locations, (2) that the authors confuse the rare occurrences of A. palmata at depths >5 m with the "thickets" of A. palmata fronds representing the reef-crest facies, and (3) that uncertainties in depth habitat proxies largely account for differences in Barbados and Tahiti sea level differences curves with A. palmata providing the most faithful proxy. Given the range in Tahiti paleodepth uncertainties at the cored sites, the most parsimonious explanation remains that Tahiti coralgal ridges did not keep up with the sea level rise of MWP-1B.
NASA Astrophysics Data System (ADS)
Leijala, U.; Bjorkqvist, J. V.; Pellikka, H.; Johansson, M. M.; Kahma, K. K.
2017-12-01
Predicting the behaviour of the joint effect of sea level and wind waves is of great significance due to the major impact of flooding events in densely populated coastal regions. As mean sea level rises, the effect of sea level variations accompanied by the waves will be even more harmful in the future. The main challenge when evaluating the effect of waves and sea level variations is that long time series of both variables rarely exist. Wave statistics are also highly location-dependent, thus requiring wave buoy measurements and/or high-resolution wave modelling. As an initial approximation of the joint effect, the variables may be treated as independent random variables, to achieve the probability distribution of their sum. We present results of a case study based on three probability distributions: 1) wave run-up constructed from individual wave buoy measurements, 2) short-term sea level variability based on tide gauge data, and 3) mean sea level projections based on up-to-date regional scenarios. The wave measurements were conducted during 2012-2014 on the coast of city of Helsinki located in the Gulf of Finland in the Baltic Sea. The short-term sea level distribution contains the last 30 years (1986-2015) of hourly data from Helsinki tide gauge, and the mean sea level projections are scenarios adjusted for the Gulf of Finland. Additionally, we present a sensitivity test based on six different theoretical wave height distributions representing different wave behaviour in relation to sea level variations. As these wave distributions are merged with one common sea level distribution, we can study how the different shapes of the wave height distribution affect the distribution of the sum, and which one of the components is dominating under different wave conditions. As an outcome of the method, we obtain a probability distribution of the maximum elevation of the continuous water mass, which enables a flexible tool for evaluating different risk levels in the current and future climate.
Research on vulnerability assessments of the Huanghe (Yellow River) delta
NASA Astrophysics Data System (ADS)
qiao, shuqing; shi, xuefa
2014-05-01
Coastal zone located at the juncture of the sea, river and land, and under the influence of both land and ocean (including atmosphere), especially the sea-level rise and human activities, are vulnerable to environment and ecology. At highest risk are coastal zone of South, Southeast and East Asia with dense populations, low elevations and inadequate adaptive capacity. In China, more than 40% of the population live on the 15% of the land in coastal area and more than 70% cities located around the coastal area. The Chinese coastal region, especially river delta area has been experienced erosion, seawater intrusion and decrease in biodiversity under the combined influence of sea-level rise, tectonic subsidence and flooding. Furthermore, some kinds of human activity, such as land use, building, dam construction, reclamation from the sea and waste dumping strengthen the vulnerability of environment and ecosystem in coastal region. The coastal hazards (e.g. coastal erosion, seawater intrusion, land subsidence) and vulnerability of the Huanghe (Yelllow River) delta area are studied during the past several years. A systematic coastal assessment index is built and an evaluation model is developed using the development platform of Visual studio.Net 2005. The assessment index system includes two parts, inherent (sea level rise rate, elevation, morphology, water and sediment discharge, mean tidal range, mean wave height etc) and specific vulnerability index (population density, GDP, land utilization, protection structures etc). The assessment index are determined the weight using Analytic hierarchy process (AHP) method. Based on the research results, we better understand the current status and future change of coastal vulnerability and hazards, discuss the impact of the natural possess and human activities. Furthermore, we provide defending strategies for coastal zone vulnerability and typical coastal hazards.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation
NASA Technical Reports Server (NTRS)
Kwok, R.; Comiso, J. C.
2001-01-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-year of data set from 1982 through 1998. We correlate the polar climate anomalies with the Southern Oscillation index (SOI) and examine the composites of these anomalies under the positive (SOI > 0), neutral (0 > SOI > -1), and negative (SOI < -1) phases of SOL The climate data set consists of sea-level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice data set describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables and the SOL The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen and Ross sea sectors. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillating climate anomalies that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea-level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are clearly evident. Recent anomalies in the sea ice cover that are apparently associated with the SOI include: the record decrease in the sea ice extent in the Bellingshausen Sea from mid- 1988 through early 199 1; the relationship between Ross Sea SST and ENSO signal, and reduced sea ice concentration in the Ross Sea; and, the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea, and the lengthening of the ice season in the western Ross Sea, Bellingshausen Sea and central Weddell Sea gyre over the period 1988-1994. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (-0.5). In each of these episodes, significant retreats in the Bellingshausen/Amundsen Sea were observed providing direct confirmation of the impact of SO on the Antarctic sea ice cover.
Prime, Thomas; Brown, Jennifer M.; Plater, Andrew J.
2015-01-01
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to “surge alone” event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as “brick course” maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community. PMID:25710497
Prime, Thomas; Brown, Jennifer M; Plater, Andrew J
2015-01-01
Conventionally flood mapping typically includes only a static water level (e.g. peak of a storm tide) in coastal flood inundation events. Additional factors become increasingly important when increased water-level thresholds are met during the combination of a storm tide and increased mean sea level. This research incorporates factors such as wave overtopping and river flow in a range of flood inundation scenarios of future sea-level projections for a UK case study of Fleetwood, northwest England. With increasing mean sea level it is shown that wave overtopping and river forcing have an important bearing on the cost of coastal flood events. The method presented converts inundation maps into monetary cost. This research demonstrates that under scenarios of joint extreme surge-wave-river events the cost of flooding can be increased by up to a factor of 8 compared with an increase in extent of up to a factor of 3 relative to "surge alone" event. This is due to different areas being exposed to different flood hazards and areas with common hazard where flood waters combine non-linearly. This shows that relying simply on flood extent and volume can under-predict the actual economic impact felt by a coastal community. Additionally, the scenario inundation depths have been presented as "brick course" maps, which represent a new way of interpreting flood maps. This is primarily aimed at stakeholders to increase levels of engagement within the coastal community.
75 FR 31361 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-03
... source(s) elevation ground [caret] Elevation Communities affected in meters (MSL) Effective Modified... meter. ** BFEs to be changed include the listed downstream and upstream BFEs, and include BFEs located... Sea Level, rounded to the nearest 0.1 meter. ** BFEs to be changed include the listed downstream and...
Sea level rise and variability around Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei
2014-05-01
Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single annual cycle is noted in the remaining region, mostly due to East Asian - Western Pacific Monsoon. These results imply that a narrow topographic constriction off Singapore may separate different modes of annual and interannual sea level variability along coastline of Peninsular Malaysia.
Uncertainty in Twenty-First-Century CMIP5 Sea Level Projections
NASA Technical Reports Server (NTRS)
Little, Christopher M.; Horton, Radley M.; Kopp, Robert E.; Oppenheimer, Michael; Yip, Stan
2015-01-01
The representative concentration pathway (RCP) simulations included in phase 5 of the Coupled Model Intercomparison Project (CMIP5) quantify the response of the climate system to different natural and anthropogenic forcing scenarios. These simulations differ because of 1) forcing, 2) the representation of the climate system in atmosphere-ocean general circulation models (AOGCMs), and 3) the presence of unforced (internal) variability. Global and local sea level rise projections derived from these simulations, and the emergence of distinct responses to the four RCPs depend on the relative magnitude of these sources of uncertainty at different lead times. Here, the uncertainty in CMIP5 projections of sea level is partitioned at global and local scales, using a 164-member ensemble of twenty-first-century simulations. Local projections at New York City (NYSL) are highlighted. The partition between model uncertainty, scenario uncertainty, and internal variability in global mean sea level (GMSL) is qualitatively consistent with that of surface air temperature, with model uncertainty dominant for most of the twenty-first century. Locally, model uncertainty is dominant through 2100, with maxima in the North Atlantic and the Arctic Ocean. The model spread is driven largely by 4 of the 16 AOGCMs in the ensemble; these models exhibit outlying behavior in all RCPs and in both GMSL and NYSL. The magnitude of internal variability varies widely by location and across models, leading to differences of several decades in the local emergence of RCPs. The AOGCM spread, and its sensitivity to model exclusion and/or weighting, has important implications for sea level assessments, especially if a local risk management approach is utilized.
NASA Astrophysics Data System (ADS)
Hughes, J. D.; Sifuentes, D. F.; White, J.
2015-12-01
Sea-level increases are expected to have an effect on the position of the freshwater-saltwater interface in the Biscayne aquifer in south Florida as a result of the low topographic relief of the area and high rates of groundwater withdrawal from the aquifer. To study the effects that future sea-level increases will have on saltwater intrusion in the Biscayne aquifer in Broward County, Florida, a three-dimensional, variable-density, groundwater-flow and transport model was developed. The model was calibrated to observed groundwater heads and chloride concentrations for a 62-year period that includes historic increases in sea level, development of a surface-water management system to control flooding, and increases in groundwater withdrawals as the area transitioned from agricultural to urban land uses. Sensitivity analyses indicate that downward leakage of saltwater from coastal canals and creeks was the primary source of saltwater to the Biscayne aquifer during the last 62-years in areas where the surface-water system is not actively managed and is tidally influenced. In areas removed from the coastal canals and creeks or under active surface-water management, historic groundwater withdrawals were the primary cause of saltwater intrusion into the aquifer. Simulation of future conditions suggests that possible increases in sea level will result in additional saltwater intrusion. Model scenarios suggest that additional saltwater intrusion will be greatest in areas where coastal canals and creeks were historically the primary source of seawater. Future saltwater intrusion in those areas, however, may be reduced by relocation of salinity-control structures.
NASA Technical Reports Server (NTRS)
Collins, Jacob; Hurlbert, Eric; Romig, Kris; Melcher, John; Hobson, Aaron; Eaton, Phil
2009-01-01
A 1,500 lbf thrust-class liquid oxygen (LO2)/Liquid Methane (LCH4) rocket engine was developed and tested at both sea-level and simulated altitude conditions. The engine was fabricated by Armadillo Aerospace (AA) in collaboration with NASA Johnson Space Center. Sea level testing was conducted at Armadillo Aerospace facilities at Caddo Mills, TX. Sea-level tests were conducted using both a static horizontal test bed and a vertical take-off and landing (VTOL) test bed capable of lift-off and hover-flight in low atmosphere conditions. The vertical test bed configuration is capable of throttling the engine valves to enable liftoff and hover-flight. Simulated altitude vacuum testing was conducted at NASA Johnson Space Center White Sands Test Facility (WSTF), which is capable of providing altitude simulation greater than 120,000 ft equivalent. The engine tests demonstrated ignition using two different methods, a gas-torch and a pyrotechnic igniter. Both gas torch and pyrotechnic ignition were demonstrated at both sea-level and vacuum conditions. The rocket engine was designed to be configured with three different nozzle configurations, including a dual-bell nozzle geometry. Dual-bell nozzle tests were conducted at WSTF and engine performance data was achieved at both ambient pressure and simulated altitude conditions. Dual-bell nozzle performance data was achieved over a range of altitude conditions from 90,000 ft to 50,000 ft altitude. Thrust and propellant mass flow rates were measured in the tests for specific impulse (Isp) and C* calculations.
Global climate change will change environmental conditions including temperature, precipitation, surface radiation, humidity, soil moisture, and sea level, and impact significantly the regional-scale hydrologic processes such as evapotranspiration (ET), runoff, groundwater levels...
Climate-mediated changes in zooplankton community structure for the eastern Bering Sea
NASA Astrophysics Data System (ADS)
Eisner, Lisa B.; Napp, Jeffrey M.; Mier, Kathryn L.; Pinchuk, Alexei I.; Andrews, Alexander G.
2014-11-01
Zooplankton are critical to energy transfer between higher and lower trophic levels in the eastern Bering Sea ecosystem. Previous studies from the southeastern Bering Sea shelf documented substantial differences in zooplankton taxa in the Middle and Inner Shelf Domains between warm and cold years. Our investigation expands this analysis into the northern Bering Sea and the south Outer Domain, looking at zooplankton community structure during a period of climate-mediated, large-scale change. Elevated air temperatures in the early 2000s resulted in regional warming and low sea-ice extent in the southern shelf whereas the late 2000s were characterized by cold winters, extensive spring sea ice, and a well-developed pool of cold water over the entire Middle Domain. The abundance of large zooplankton taxa such as Calanus spp. (C. marshallae and C. glacialis), and Parasagitta elegans, increased from warm to cold periods, while the abundance of gelatinous zooplankton (Cnidaria) and small taxa decreased. Biomass followed the same trends as abundance, except that the biomass of small taxa in the southeastern Bering Sea remained constant due to changes in abundance of small copepod taxa (increases in Acartia spp. and Pseudocalanus spp. and decreases in Oithona spp.). Statistically significant changes in zooplankton community structure and individual species were greatest in the Middle Domain, but were evident in all shelf domains, and in both the northern and southern portions of the eastern shelf. Changes in community structure did not occur abruptly during the transition from warm to cold, but seemed to begin gradually and build as the influence of the sea ice and cold water temperatures persisted. The change occurred one year earlier in the northern than the southern Middle Shelf. These and previous observations demonstrate that lower trophic levels within the eastern Bering Sea respond to climate-mediated changes on a variety of time scales, including those shorter than the commonly accepted quasi-decadal time periods. This lack of resilience or inertia at the lowest trophic levels affects production at higher trophic levels and must be considered in management strategy evaluations of living marine resources.
A policy hackathon for analysing impacts and solutions up to 20 metres sea-level rise
NASA Astrophysics Data System (ADS)
Haasnoot, Marjolijn; Bouwer, Laurens; Kwadijk, Jaap
2017-04-01
We organised a policy hackathon in order to quantify the impacts accelerated and high-end sea-level rise up to 20 metres on the coast of the Netherlands, and develop possible solutions. This was done during one day, with 20 experts that had a wide variety of disciplines, including hydrology, geology, coastal engineering, economics, and public policy. During the process the problem was divided up into several sub-sets of issues that were analysed and solved within small teams of between 4 to 8 people. Both a top-down impact analysis and bottom-up vulnerability analysis was done by answering the questions: What is the impact of sea level rise of x meter?; and How much sea level rise can be accommodated with before transformative actions are needed? Next, adaptation tipping points were identified that describe conditions under which the coastal system starts to perform unacceptably. Reasons for an adaptation tipping point can be technical (technically not possible), economic (cost-benefits are negative), or resources (available space, sand, energy production, financial). The results are presented in a summary document, and through an infographic displaying different adaptation tipping points and milestones that occur when the sea level rises up to 20 m. No technical limitations were found for adaptation, but many important decisions need to be taken. Although accelerated sea level rise seems far away it can have important consequences for short-term decisions that are required for transformative actions. Such extensive actions require more time for implementation. Also, other action may become ineffective before their design life. This hackathon exercise shows that it is possible to map within a short time frame the issues at hand, as well as potentially effective solutions. This can be replicated for other problems, and can be useful for several decision-makers that require quick but in-depth analysis of their long-term planning problems.
A Revised Estimate of 20th Century Global Mean Sea Level
NASA Astrophysics Data System (ADS)
Hay, C.; Morrow, E.; Kopp, R. E., III; Mitrovica, J. X.
2014-12-01
One of the primary goals of paleo-sea level research is to assess the stability of ice sheets and glaciers in warming climates. In this context, the 20th century may be thought of as the most recent, recorded, and studied of all past episodes of warming. Over the past decade, a consensus has emerged in the literature that 20th century global mean sea level (GMSL), inferred from tide gauge records, rose at a mean rate of 1.6-1.9 mm/yr. This sea-level rise can be attributed to multiple sources, including thermal expansion of the oceans, ice sheet and glacier mass flux, and anthropogenic changes in land water storage. The Fifth Assessment Report of the IPCC summarized the estimated contributions of these sources over 1901-1990 and computed a total rate, using a bottom-up approach, of ~1.0 mm/yr, which falls significantly short of the rate inferred from tide gauge records. Using two independent probabilistic approaches that utilize models of glacial isostatic adjustment, ocean dynamics, and the sea-level fingerprints of rapid land-ice melt to analyze tide gauge records (Kalman smoothing and Gaussian process regression), we are able to close the 20th century sea-level budget and resolve the above enigma. Our revised estimate for the rate of GMSL rise during 1901-1990 is 1.1-1.3 mm/yr (90% credible interval). This value, which is ~20-30% less than previous estimates, suggests that the change in the GMSL rate from the 20th century to the last two decades (2.7 ± 0.4 mm/yr, consistent with past estimates) was greater than previous estimates. Moreover, since some forward projections of GMSL change into the next century are based in part on past estimates of GMSL change, our revised rate may impact projections of GMSL rise for the 21st century and beyond.
The changing seascape of Galway Bay, Western Ireland
NASA Astrophysics Data System (ADS)
Mc Cullagh, D.; Benetti, S.; Plets, R. M. K.; Edwards, R.
2016-12-01
During the late Quaternary significant environmental and relative sea-level variations have contributed to shaping present day coastlines. This is particularly evident along formerly glaciated continental margins. Strong evidence of these changes are recorded in Galway Bay, Western Ireland. This research uses a multidisciplinary approach. Seismic and multibeam data, sedimentological, micropaleontological, geochemical analysis and 15 radiocarbon dates of sediment cores from the bay provide post last glacial maximum (LGM) sea level and environmental reconstructions for the region. The acoustic stratigraphy of the bay includes 3 seismic units: the deepest unit represents the acoustic basement, composed of limestone and granite bedrock; the middle unit is composed of the oldest preserved sediments, deposited during and after the LGM, and interpreted to be glacial till. The uppermost unit represents deposition and reworking after glacial retreat. The erosive action of the ice sheet that extended off the Irish coast is thought to be responsible for the removal and reworking of all sediments older that the LGM. In the sediment cores, three main lithofacies were identified: 1) a sandy silt and clay facies, 2) a distinct shell hash interlayer and, 3) a fine silty sand facies. These 3 facies are found within the uppermost seismic unit, and initial radiocarbon dating of shells in 4 cores, constrain these sediments and the uppermost seismic unit to the Holocene. Preliminary qualitative analysis on foraminifera from several cores shows a general trend of progression from estuarine to open marine conditions, inferred from indicator species. This trend is supported by X-ray fluorescence (XRF) analysis which shows increased ratios of Cl/Fe in younger deposits. Constraining dates on sea level variations in the region will be added to the sea level database for Ireland and possibly used to adjust the existing relative sea level models. These are important for understating past sea level variations and modelling future trends.
Evidence from the Seychelles of Last Interglacial Sea Level Oscillations
NASA Astrophysics Data System (ADS)
Vyverberg, K.; Dutton, A.; Dechnik, B.; Webster, J.; Zwartz, D.
2014-12-01
Several studies indicate that sea level oscillated during Marine Isotope Stage (MIS) 5e, but the details of these scenarios, including the number of sea level oscillations, are still debated. We lack a detailed understanding of the sensitivity of the large polar ice sheets to changes in temperature that could result in eustatic sea level oscillations. Because the Seychelles are located far from the margins of the Last Glacial Maximum northern hemisphere ice sheets, they have not been subjected to glacial isostatic adjustment, and have been tectonically stable since the Last Interglacial period; therefore, they provide a robust record of eustatic sea level during MIS 5e. All of the outcrops we examined contain unconformities and/or sharp transitions between facies, though the nature of these boundaries varies between sites. In some outcrops we observed a hardground comprising fine-grained, mollusc-rich sediment layer between distinct generations of in situ coralgal framework. In one outcrop, this succession was observed twice, where two generations of reef growth were each capped by a strongly indurated fine-grained, mollusc-rich sediment layer. At the site with the greatest vertical extent of outcrop, there is a marked difference in the taxonomic composition of the coral community above and below an unconformable surface, but the indurated fine-grained, sediment layer observed elsewhere was absent. Most of the other outcrops we studied contained a common succession of facies from in situ reef units overlain by cemented coral rubble. In two dated outcrops, the age of corals above and below the rubble layer are the same age. The hardgrounds and rubble layers may represent ephemeral exposure of the reef units during two drops in sea level. The inference of multiple meter-scale oscillations during the MIS 5e highstand indicates a more dynamic cryosphere than the present interglacial, although the climatic threshold for more volatile polar ice sheets is not yet clear.
Analysis of Sea Level Rise in Action
NASA Astrophysics Data System (ADS)
Gill, K. M.; Huang, T.; Quach, N. T.; Boening, C.
2016-12-01
NASA's Sea Level Change Portal provides scientists and the general public with "one-stop" source for current sea level change information and data. Sea Level Rise research is a multidisciplinary research and in order to understand its causes, scientists must be able to access different measurements and to be able to compare them. The portal includes an interactive tool, called the Data Analysis Tool (DAT), for accessing, visualizing, and analyzing observations and models relevant to the study of Sea Level Rise. Using NEXUS, an open source, big data analytic technology developed at the Jet Propulsion Laboratory, the DAT is able provide user on-the-fly data analysis on all relevant parameters. DAT is composed of three major components: A dedicated instance of OnEarth (a WMTS service), NEXUS deep data analytic platform, and the JPL Common Mapping Client (CMC) for web browser based user interface (UI). Utilizing the global imagery, a user is capable of browsing the data in a visual manner and isolate areas of interest for further study. The interfaces "Analysis" tool provides tools for area or point selection, single and/or comparative dataset selection, and a range of options, algorithms, and plotting. This analysis component utilizes the Nexus cloud computing platform to provide on-demand processing of the data within the user-selected parameters and immediate display of the results. A RESTful web API is exposed for users comfortable with other interfaces and who may want to take advantage of the cloud computing capabilities. This talk discuss how DAT enables on-the-fly sea level research. The talk will introduce the DAT with an end-to-end tour of the tool with exploration and animating of available imagery, a demonstration of comparative analysis and plotting, and how to share and export data along with images for use in publications/presentations. The session will cover what kind of data is available, what kind of analysis is possible, and what are the outputs.
Recent and late quaternary changes in water level
NASA Technical Reports Server (NTRS)
Walcott, R. I.
1975-01-01
Water level changes of both the Great Lakes and the sea are described along with methods of analyzing water level data. The influence of elastic deformation of the earth and viscosity is discussed. Causes of water level changes reviewed include: earth movements, geoid changes, storm surges or meteorological phenomena, and melting ice in Antarctica, Greenland, and the mountain glaciers.
Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Gornitz, Vivien; Miller, James R.
1999-01-01
Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
Cyanobacteria toxins in the Salton Sea.
Carmichael, Wayne W; Li, RenHui
2006-04-19
The Salton Sea (SS) is the largest inland body of water in California: surface area 980 km2, volume 7.3 million acre-feet, 58 km long, 14-22 km wide, maximum depth 15 m. Located in the southeastern Sonoran desert of California, it is 85 m below sea level at its lowest point. It was formed between 1905 and 1907 from heavy river flows of the Colorado River. Since its formation, it has attracted both people and wildlife, including flocks of migratory birds that have made the Salton Sea a critical stopover on the Pacific flyway. Over the past 15 years wintering populations of eared grebe (Podiceps nigricollis) at the Salton Sea, have experienced over 200,000 mortalities. The cause of these large die-offs remains unknown. The unique environmental conditions of the Salton Sea, including salinities from brackish freshwater at river inlets to hypersaline conditions, extreme daily summer temperatures (>38 degrees C), and high nutrient loading from rivers and agricultural drainage favor eutrophic conditions that encourage algal blooms throughout the year. A significant component of these algal blooms are the prokaryotic group - the Cyanophyta or blue-green algae (also called Cyanobacteria). Since many Cyanobacteria produce toxins (the cyanotoxins) it became important to evaluate their presence and to determine if they are a contributing factor in eared-grebe mortalities at the Salton Sea. From November 1999 to April 2001, 247 water and sediment samples were received for phytoplankton identification and cyanotoxin analyses. Immunoassay (ELISA) screening of these samples found that eighty five percent of all water samples contained low but detectable levels of the potent cyclic peptide liver toxin called microcystins. Isolation and identification of cyanobacteria isolates showed that the picoplanktonic Synechococcus and the benthic filamentous Oscillatoria were dominant. Both organisms were found to produce microcystins dominated by microcystin-LR and YR. A laboratory strain of Synechococcus was identified by PCR as being closest to known marine forms of this genus. Analyses of affected grebe livers found microcystins at levels that may account for some of the acute mortalities. The production of microcystins by a marine Synechococcus indicates that microcystins may be a more common occurrence in marine environments - a finding not recognized before this work. Further research should be done to define the distribution of microcystin producing marine cyanobacteria and to determine exposure/response effects of microcystins and possibly other cyanotoxins in the Salton Sea. Future efforts to reduce avian mortalities and remediate the Salton Sea should evaluate vectors by which microcystins enter avian species and ways to control and mitigate toxic cyanobacteria waterblooms at the Salton Sea.
Climate Action Benefits: Methods of Analysis
This page provides detailed information on the methods used in the CIRA analyses, including the overall framework, temperature projections, precipitation projections, sea level rise projections, uncertainty, and limitations.
Eustatic sea level fluctuations induced by polar wander
NASA Technical Reports Server (NTRS)
Sabadini, Roberto; Doglioni, Carlo; Yuen, David A.
1990-01-01
It is shown here that polar wander of a viscoelastic, stratified earth can induce global sea level fluctuations comparable to the short-term component in eustatic sea-level curves. The sign of these fluctuations, which are very sensitive to the rheological stratification, depends on the geographical location of the observation point; rises and falls in sea level can thus be coeval in different parts of the world. This finding is a distinct contrast to the main assumption underlying the reconstruction of eustatic curves, namely that global sea-level events produce the same depositional sequence everywhere. It is proposed that polar wander should be added to the list of geophysical mechanisms that can control the third-order cycles in sea level.
Infectious diseases of fishes in the Salish Sea
Hershberger, Paul; Rhodes, Linda; Kurath, Gael; Winton, James
2013-01-01
As in marine regions throughout other areas of the world, fishes in the Salish Sea serve as hosts for many pathogens, including nematodes, trematodes, protozoans, protists, bacteria, viruses, and crustaceans. Here, we review some of the better-documented infectious diseases that likely contribute to significant losses among free-ranging fishes in the Salish Sea and discuss the environmental and ecological factors that may affect the population-level impacts of disease. Demonstration of these diseases and their impacts to critical and endangered resources provides justification to expand pathogen surveillance efforts and to incorporate disease forecasting and mitigation tools into ecosystem restoration efforts.
Southern Ocean Climate and Sea Ice Anomalies Associated with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Kwok, R.; Comiso, J. C.
2002-03-01
The anomalies in the climate and sea ice cover of the Southern Ocean and their relationships with the Southern Oscillation (SO) are investigated using a 17-yr dataset from 1982 to 1998. The polar climate anomalies are correlated with the Southern Oscillation index (SOI) and the composites of these anomalies are examined under the positive (SOI > 0), neutral (0 > SOI > 1), and negative (SOI < 1) phases of SOI. The climate dataset consists of sea level pressure, wind, surface air temperature, and sea surface temperature fields, while the sea ice dataset describes its extent, concentration, motion, and surface temperature. The analysis depicts, for the first time, the spatial variability in the relationship of the above variables with the SOI. The strongest correlation between the SOI and the polar climate anomalies are found in the Bellingshausen, Amundsen, and Ross Seas. The composite fields reveal anomalies that are organized in distinct large-scale spatial patterns with opposing polarities at the two extremes of SOI, and suggest oscillations that are closely linked to the SO. Within these sectors, positive (negative) phases of the SOI are generally associated with lower (higher) sea level pressure, cooler (warmer) surface air temperature, and cooler (warmer) sea surface temperature in these sectors. Associations between these climate anomalies and the behavior of the Antarctic sea ice cover are evident. Recent anomalies in the sea ice cover that are clearly associated with the SOI include the following: the record decrease in the sea ice extent in the Bellingshausen Sea from mid-1988 to early 1991; the relationship between Ross Sea SST and the ENSO signal, and reduced sea ice concentration in the Ross Sea; and the shortening of the ice season in the eastern Ross Sea, Amundsen Sea, far western Weddell Sea and lengthening of the ice season in the western Ross Sea, Bellinghausen Sea, and central Weddell Sea gyre during the period 1988-94. Four ENSO episodes over the last 17 years contributed to a negative mean in the SOI (0.5). In each of these episodes, significant retreats in ice cover of the Bellingshausen and Amundsen Seas were observed showing a unique association of this region of the Antarctic with the Southern Oscillation.
NASA Astrophysics Data System (ADS)
Liu, J.; Milliman, J. D.
2002-12-01
Both post-glacial sea-level and climatic changes are preserved in the the shallow, low gradient, sediment-dominated Yellow Sea. As a result of rapid flooding during melt-water pulse (MWP) 1A, 14.3-14.1 ka BP, sea level reached the southern edge of the North Yellow Sea (NYS), and after MWP-1B (11.6-11.4 ka BP) sea level entered the Bohai Sea. The first major Yellow River-derived deltaic deposit formed in the NYS during decelerated transgression following MWP-1B and increased river discharge in response to re-intensification of the summer monsoon about 11 ka cal BP. A second subaqueous delta formed in the South Yellow Sea about 9-7 ka BP during decelerated transgression after MWP-1C flooding and in response to the southern shift of the Yellow River mouth. The modern subaqueous and subaerial deltas in the west Bahai Gulf and (to a lesser extent) along the Jiangus coast have formed during the modern sea-level highstand. These changing Holocene patterns are most clearly illustrated by a short film clip.
Hydrological and oceanic excitations to polar motion andlength-of-day variation
NASA Astrophysics Data System (ADS)
Chen, J. L.; Wilson, C. R.; Chao, B. F.; Shum, C. K.; Tapley, B. D.
2000-04-01
Water mass redistributions in the global hydrosphere, including continental water storage change and non-steric sea level change, introduce variations in the hydrological angular momentum (HAM) and the oceanic angular momentum (OAM). Under the conservation of angular momentum, HAM and OAM variations are significant excitation sources of the Earth rotational variations at a wide range of timescales. In this paper, we estimate HAM and OAM variations and their excitations to polar motion and length-of-day variation using soil moisture and snow estimates andnon-steric sea level change determined by TOPEX/Poseidon satellite radar altimeter observations and a simplified steric sea level change model. The results are compared with the variations of polar motion and LOD that are not accounted for by the atmosphere. This study indicates that seasonal continental water storage change provides significant contributions to both polar motion and LOD variation, especially to polar motion X, and the non-steric sea level change is responsible for a major part of the remaining excitations at both seasonal scale and high frequencies, particularly in polar motion Y and LOD. The good correlation between OAM contributions and the remaining excitations shows that large-scale non-tidal mass variation exists in the oceans and can be detected by TOPEX/Poseidon altimeter observations.
Olson, Storrs L.; Hearty, Paul J.
2003-01-01
Albatrosses (Diomedeidae) do not occur in the North Atlantic Ocean today except as vagrants, although five species were present in the early Pliocene. No fossil breeding sites of albatrosses were known previously. The timing of extinction of albatrosses in the North Atlantic was likewise unknown. Deposits that formed near present-day sea level along the southeastern shore of Bermuda contain remains of a former breeding colony and include intact eggshells and bones of embryos, juveniles, and adults of Short-tailed Albatross (Phoebastria albatrus), a critically endangered species now confined to a few islets in the northwestern Pacific Ocean. These deposits are correlated with the middle Pleistocene Lower Town Hill Formation, which at other sites have a radiometric age of ≈405,000 years ago. This equates with the marine isotope stage 11 interglacial, which culminated in a rise in sea-level to >+20 m. Bones of a juvenile Short-tailed Albatross were also found in beach deposits at +21.3 m from this same interglacial. We interpret the extirpation of albatrosses on Bermuda as probably resulting from lack of nesting sites protected from storm surges over the little emergent land that remained at the height of the marine isotope stage 11 sea level rise. PMID:14566060
Olson, Storrs L; Hearty, Paul J
2003-10-28
Albatrosses (Diomedeidae) do not occur in the North Atlantic Ocean today except as vagrants, although five species were present in the early Pliocene. No fossil breeding sites of albatrosses were known previously. The timing of extinction of albatrosses in the North Atlantic was likewise unknown. Deposits that formed near present-day sea level along the southeastern shore of Bermuda contain remains of a former breeding colony and include intact eggshells and bones of embryos, juveniles, and adults of Short-tailed Albatross (Phoebastria albatrus), a critically endangered species now confined to a few islets in the northwestern Pacific Ocean. These deposits are correlated with the middle Pleistocene Lower Town Hill Formation, which at other sites have a radiometric age of 405,000 years ago. This equates with the marine isotope stage 11 interglacial, which culminated in a rise in sea-level to >+20 m. Bones of a juvenile Short-tailed Albatross were also found in beach deposits at +21.3 m from this same interglacial. We interpret the extirpation of albatrosses on Bermuda as probably resulting from lack of nesting sites protected from storm surges over the little emergent land that remained at the height of the marine isotope stage 11 sea level rise.
Carbon choices determine US cities committed to futures below sea level
Strauss, Benjamin H.; Kulp, Scott; Levermann, Anders
2015-01-01
Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3–9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185–1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon. PMID:26460051
Carbon choices determine US cities committed to futures below sea level.
Strauss, Benjamin H; Kulp, Scott; Levermann, Anders
2015-11-03
Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon.
Tidal dynamics in a changing lagoon: Flooding or not flooding the marginal regions
NASA Astrophysics Data System (ADS)
Lopes, Carina L.; Dias, João M.
2015-12-01
Coastal lagoons are low-lying systems under permanent changes motivated by natural and anthropogenic factors. Ria de Aveiro is such an example with its margins currently threatened by the advance of the lagoonal waters recorded during the last decades. This work aims to study the tidal modifications found between 1987 and 2012 in this lagoon, motivated by the main channels deepening which induce higher inland tidal levels. Additionally it aims to study the impact that protective walls designed to protect the margins against flooding may have in those modifications under sea level rise predictions. The hydrodynamic model ELCIRC previously calibrated for Ria de Aveiro was used and tidal asymmetry, tidal ellipses and residual currents were analyzed for different scenarios, considering the mean sea level rise predicted for 2100 and the implementation of probable flood protection walls. Results evidenced that lagoon dominance remained unchanged between 1987 and 2012, but distortion decreased/increased in the deeper/shallower channels. The same trend was found under mean sea level rise conditions. Tidal currents increased over this period inducing an amplification of the water properties exchange within the lagoon, which will be stronger under mean sea level rise conditions. The deviations between scenarios with or without flood protection walls can achieve 60% for the tidal distortion and residual currents and 20% for the tidal currents, highlighting that tidal properties are extremely sensitive to the lagoon geometry. In summary, the development of numerical modelling applications dedicated to study the influence of mean sea level rise on coastal low-lying systems subjected to human influence should include structural measures designed for flood defence in order to accurately predict changes in the local tidal properties.
Is benthic food web structure related to diversity of marine macrobenthic communities?
NASA Astrophysics Data System (ADS)
Sokołowski, A.; Wołowicz, M.; Asmus, H.; Asmus, R.; Carlier, A.; Gasiunaité, Z.; Grémare, A.; Hummel, H.; Lesutiené, J.; Razinkovas, A.; Renaud, P. E.; Richard, P.; Kędra, M.
2012-08-01
Numerical structure and the organisation of food webs within macrozoobenthic communities has been assessed in the European waters (Svalbard, Barents Sea, Baltic Sea, North Sea, Atlantic Ocean and the Mediterranean Sea) to address the interactions between biodiversity and ecosystem functioning. Abundance and classical species diversity indices (S, H', J) of macrofaunal communities were related to principal attributes of food webs (relative trophic level and food chain length, FCL) that were determined from carbon and nitrogen stable isotope values. Structure of marine macrobenthos varies substantially at a geographical scale; total abundance ranges from 63 ind. m-2 to 34,517 ind. m-2, species richness varies from 3 to 166 and the Shannon-Weaver diversity index from 0.26 to 3.26 while Pielou's evenness index is below 0.73. The major source of energy for macrobenthic communities is suspended particulate organic matter, consisting of phytoplankton and detrital particles, sediment particulate organic matter, and microphytobenthos in varying proportions. These food sources support the presence of suspension- and deposit-feeding communities, which dominate numerically on the sea floor. Benthic food webs include usually four to five trophic levels (FCL varies from 3.08 to 4.86). Most species are assigned to the second trophic level (primary consumers), fewer species are grouped in the third trophic level (secondary consumers), and benthic top predators are the least numerous. Most species cluster primarily at the lowest trophic level that is consistent with the typical organization of pyramidal food webs. Food chain length increases with biodiversity, highlighting a positive effect of more complex community structure on food web organisation. In more diverse benthic communities, energy is transferred through more trophic levels while species-poor communities sustain a shorter food chain.
(Pre-) calibration of a Reduced Complexity Model of the Antarctic Contribution to Sea-level Changes
NASA Astrophysics Data System (ADS)
Ruckert, K. L.; Guan, Y.; Shaffer, G.; Forest, C. E.; Keller, K.
2015-12-01
(Pre-) calibration of a Reduced Complexity Model of the Antarctic Contribution to Sea-level ChangesKelsey L. Ruckert1*, Yawen Guan2, Chris E. Forest1,3,7, Gary Shaffer 4,5,6, and Klaus Keller1,7,81 Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USA 2 Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA 3 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA 4 GAIA_Antarctica, University of Magallanes, Punta Arenas, Chile 5 Center for Advanced Studies in Arid Zones, La Serena, Chile 6 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 7 Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania, USA 8 Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA * Corresponding author. E-mail klr324@psu.eduUnderstanding and projecting future sea-level changes poses nontrivial challenges. Sea-level changes are driven primarily by changes in the density of seawater as well as changes in the size of glaciers and ice sheets. Previous studies have demonstrated that a key source of uncertainties surrounding sea-level projections is the response of the Antarctic ice sheet to warming temperatures. Here we calibrate a previously published and relatively simple model of the Antarctic ice sheet over a hindcast period from the last interglacial period to the present. We apply and compare a range of (pre-) calibration methods, including a Bayesian approach that accounts for heteroskedasticity. We compare the model hindcasts and projections for different levels of model complexity and calibration methods. We compare the projections with the upper bounds from previous studies and find our projections have a narrower range in 2100. Furthermore we discuss the implications for the design of climate risk management strategies.
Assessing Sea Level Rise Impacts on the Surficial Aquifer in the Kennedy Space Center Region
NASA Astrophysics Data System (ADS)
Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Warnock, A. M.; Hall, C. R.
2014-12-01
Global sea level rise in the past century due to climate change has been seen at an average rate of approximately 1.7-2.2 mm per year, with an increasing rate over the next century. The increasing SLR rate poses a severe threat to the low-lying land surface and the shallow groundwater system in the Kennedy Space Center in Florida, resulting in saltwater intrusion and groundwater induced flooding. A three-dimensional groundwater flow and salinity transport model is implemented to investigate and evaluate the extent of floods due to rising water table as well as saltwater intrusion. The SEAWAT model is chosen to solve the variable-density groundwater flow and salinity transport governing equations and simulate the regional-scale spatial and temporal evolution of groundwater level and chloride concentration. The horizontal resolution of the model is 50 m, and the vertical domain includes both the Surficial Aquifer and the Floridan Aquifer. The numerical model is calibrated based on the observed hydraulic head and chloride concentration. The potential impacts of sea level rise on saltwater intrusion and groundwater induced flooding are assessed under various sea level rise scenarios. Based on the simulation results, the potential landward movement of saltwater and freshwater fringe is projected. The existing water supply wells are examined overlaid with the projected salinity distribution map. The projected Surficial Aquifer water tables are overlaid with data of high resolution land surface elevation, land use and land cover, and infrastructure to assess the potential impacts of sea level rise. This study provides useful tools for decision making on ecosystem management, water supply planning, and facility management.
Climate change -- Its impacts on Bangladesh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobhan, M.A.
1994-12-31
Predictions regarding the possible effects of global warming on Bangladesh`s climate are uncertain. However, the predictions for 2030 made by four General Circulation Models all suggest that there might be increased precipitation, with estimates ranging between 5 and 100% increases in rainfall. Increases of these magnitudes, if they were to occur, would have significant implications for agriculture, flooding, river sediment loads, and flood protection works. Increased flooding of the coastal areas of countries like Bangladesh is a possibility, and enormous health and economic distress and human suffering may follow. With the change in temperature, there may be unpredictable change inmore » bacterial and viral morphology with health hazards of unpredictable limits. It has been estimated that a 100 cm rise in sea level in the Bay of Bengal would result in 12--18% of land areas of Bangladesh being lost to the sea, including most of the Sundarbans. Although it is difficult to predict the timing and magnitude of all the global changes including sea-level rise, climate change, etc., it is anticipated that one of the most serious consequence for Bangladesh would be the reduction of already minimal land: person ratio and consequently exacerbating pressure on the remaining natural resources. Bangladesh is in favor of an international agreement for assistance to vulnerable countries like Bangladesh to take necessary preparations and adopt measures to survive a sea-level rise, climate change, increased flooding, and more frequent storm surges.« less
Linzalone, Nunzia; Assennato, Giorgio; Ballarini, Adele; Cadum, Ennio; Cirillo, Mario; Cori, Liliana; De Maio, Francesca; Musmeci, Loredana; Natali, Marinella; Rieti, Sabrina; Soggiu, Maria Eleonora; Bianchi, Fabrizio
2014-12-01
Avoiding or minimizing potential environmental impact is the driving idea behind protecting a population's health via Environmental Impact Assessments (EIAs) and Strategic Environmental Assessments (SEAs). However, both are often carried out without any systematic approach. This paper describes the findings of a review of HIA, EIA andSEA experiences carried out by the authors, who act as institutional competent subjects at the national and regional levels in Italy. The analysis of how health is tackled in EIA and SEA procedures could support the definition of a protocol for the integration of HIA with EIA and SEA. Although EIA and SEA approaches include the aim of protecting health,significant technical and methodological gaps are present when assessing health systematically, and their basic principles regarding assessment are unsatisfactory for promoting and addressing healthcare concepts stated by the WHO. HIA is still poorly integrated into the decision-making process, screening and monitoring phases are only occasionally implemented, and operational details are not well-defined. The collaborative approach of institutions involved in environment and health is a core element in a systematic advancement toward supporting effective decisions and effective protection ofthe environment and health. At the Italian national level, the definition of guidelines and tools for HIA, also in relation with EIA and SEA, is of great interest.
Amri, Sandra; Samar, Mohamed-Faouzi; Sellem, Fériel; Ouali, Kheireddine
2017-09-15
In this study, sea urchin Paracentrotus lividus were sampled seasonally at three stations during 2012 in the coastal areas of the Gulf of Annaba (southeast Mediterranean). For all sea urchins, the gonad index was calculated to determine sea urchin reproductive status. Moreover, a set of biochemical parameters, including biomarkers and oxidative stress parameters, was measured in gonads. The pesticides and physiochemical parameters were measured and dosed in sea water. The results obtained highlighted that the levels of pesticide were generally low and below those commonly applied by environmental quality standards (EQS), indicating that no alarm state is currently present in the Gulf of Annaba. In addition to pollution, seasonal change is an important factor influencing biomarker activity, and the significant increases in biomarker levels in spring are a major observed trend. This activity may also be related to reproductive status. Seasonal variability was confirmed by the significant results of the Kruskal-Wallis test and by the high degree of divergence between seasons in PCA, with a total of 83.83% of variance explained. These results indicate that environmental factors that vary seasonally may affect the antioxidant status of the sea urchin Paracentrotus lividus. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sea level hazards: Altimetric monitoring of tsunamis and sea level rise
NASA Astrophysics Data System (ADS)
Hamlington, Benjamin Dillon
Whether on the short timescale of an impending tsunami or the much longer timescale of climate change-driven sea level rise, the threat stemming from rising and inundating ocean waters is a great concern to coastal populations. Timely and accurate observations of potentially dangerous changes in sea level are vital in determining the precautionary steps that need to be taken in order to protect coastal communities. While instruments from the past have provided in situ measurements of sea level at specific locations across the globe, satellites can be used to provide improved spatial and temporal sampling of the ocean in addition to producing more accurate measurements. Since 1993, satellite altimetry has provided accurate measurements of sea surface height (SSH) with near-global coverage. Not only have these measurements led to the first definitive estimates of global mean sea level rise, satellite altimetry observations have also been used to detect tsunami waves in the open ocean where wave amplitudes are relatively small, a vital step in providing early warning to those potentially affected by the impending tsunami. The use of satellite altimetry to monitor two specific sea level hazards is examined in this thesis. The first section will focus on the detection of tsunamis in the open ocean for the purpose of providing early warning to coastal inhabitants. The second section will focus on estimating secular trends using satellite altimetry data with the hope of improving our understanding of future sea level change. Results presented here will show the utility of satellite altimetry for sea level monitoring and will lay the foundation for further advancement in the detection of the two sea level hazards considered.
MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium
NASA Astrophysics Data System (ADS)
Stocchi, Paolo; Vacchi, Matteo; Lorscheid, Thomas; de Boer, Bas; Simms, Alexander R.; van de Wal, Roderik S. W.; Vermeersen, Bert L. A.; Pappalardo, Marta; Rovere, Alessio
2018-04-01
Sea-level indicators dated to the Last Interglacial, or Marine Isotope Stage (MIS) 5e, have a twofold value. First, they can be used to constrain the melting of Greenland and Antarctic Ice Sheets in response to global warming scenarios. Second, they can be used to calculate the vertical crustal rates at active margins. For both applications, the contribution of glacio- and hydro-isostatic adjustment (GIA) to vertical displacement of sea-level indicators must be calculated. In this paper, we re-assess MIS 5e sea-level indicators at 11 Mediterranean sites that have been generally considered tectonically stable or affected by mild tectonics. These are found within a range of elevations of 2-10 m above modern mean sea level. Four sites are characterized by two separate sea-level stands, which suggest a two-step sea-level highstand during MIS 5e. Comparing field data with numerical modeling we show that (i) GIA is an important contributor to the spatial and temporal variability of the sea-level highstand during MIS 5e, (ii) the isostatic imbalance from the melting of the MIS 6 ice sheet can produce a >2.0 m sea-level highstand, and (iii) a two-step melting phase for the Greenland and Antarctic Ice Sheets reduces the differences between observations and predictions. Our results show that assumptions of tectonic stability on the basis of the MIS 5e records carry intrinsically large uncertainties, stemming either from uncertainties in field data and GIA models. The latter are propagated to either Holocene or Pleistocene sea-level reconstructions if tectonic rates are considered linear through time.
New developments in satellite oceanography and current measurements
NASA Technical Reports Server (NTRS)
Huang, N. E.
1979-01-01
Principal satellite remote sensing techniques and instruments are described and attention is given to the application of such techniques to ocean current measurement. The use of radiometers, satellite tracking drifters, and altimeters for current measurement is examined. Consideration is also given to other applications of satellite remote sensing in physical oceanography, including measurements of surface wind stress, sea state, tides, ice, sea surface temperature, salinity, ocean color, and oceanic leveling.
Deglacial climate modulated by the storage and release of Arctic sea ice
NASA Astrophysics Data System (ADS)
Condron, A.; Coletti, A. J.; Bradley, R. S.
2017-12-01
Periods of abrupt climate cooling during the last deglaciation (20 - 8 kyr ago) are often attributed to glacial outburst floods slowing the Atlantic meridional overturning circulation (AMOC). Here, we present results from a series of climate model simulations showing that the episodic break-up and mobilization of thick, perennial, Arctic sea ice during this time would have released considerable volumes of freshwater directly to the Nordic Seas, where processes regulating large-scale climate occur. Massive sea ice export events to the North Atlantic are generated whenever the transport of sea ice is enhanced, either by changes in atmospheric circulation, rising sea level submerging the Bering land bridge, or glacial outburst floods draining into the Arctic Ocean from the Mackenzie River. We find that the volumes of freshwater released to the Nordic Seas are similar to, or larger than, those estimated to have come from terrestrial outburst floods, including the discharge at the onset of the Younger Dryas. Our results provide the first evidence that the storage and release of Arctic sea ice helped drive deglacial climate change by modulating the strength of the AMOC.
Improved simulation of Antarctic sea ice due to the radiative effects of falling snow
NASA Astrophysics Data System (ADS)
Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui
2017-08-01
Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.