Sample records for include smart motor

  1. Smart motor technology

    NASA Technical Reports Server (NTRS)

    Packard, D.; Schmitt, D.

    1984-01-01

    Current spacecraft design relies upon microprocessor control; however, motors usually require extensive additional electronic circuitry to interface with these microprocessor controls. An improved control technique that allows a smart brushless motor to connect directly to a microprocessor control system is described. An actuator with smart motors receives a spacecraft command directly and responds in a closed loop control mode. In fact, two or more smart motors can be controlled for synchronous operation.

  2. Impact assessment of the smart roadside initiative (SRI) prototype - final report.

    DOT National Transportation Integrated Search

    2016-12-01

    This report summarizes the independent assessment of the effectiveness and lessons learned from roadside motor carrier compliance systems including assessment of the Smart Roadside Initiative (SRI) Prototype and other SRI-like technologies. The locat...

  3. A smart dust biosensor powered by kinesin motors.

    PubMed

    Fischer, Thorsten; Agarwal, Ashutosh; Hess, Henry

    2009-03-01

    Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.

  4. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Ryan Wartman; David Tarnowski

    2006-03-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the completion of the design refinement phase. This phase resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. This system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota. Since then, the fabrication of the dry application prototype (incorporating an electromagnetic drive mechanism and a new deblinding concept) has been completed and successfully tested at QRDC's lab.« less

  5. Development of a smart type motor operated valve for nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hwoi; Park, Joo-Hyun; Lee, Dong-young; Koo, In-Soo

    2005-12-01

    In this paper, the design concept of the smart type motor operator valve for nuclear power plant was described. The development objective of the smart valve is to achieve superior accuracy, long-term reliability, and ease of use. In this reasons, developed smart valve has fieldbus communication such as deviceNet and Profibus-DP, auto-tuning PID controller, self-diagnostics, and on-line calibration capabilities. And also, to achieve pressure, temperature, and flow control with internal PID controller, the pressure sensor and transmitter were included in this valve. And, temperature and flow signal acquisition port was prepared. The developed smart valve will be performed equipment qualification test such as environment, EMI/EMC, and vibration in Korea Test Lab. And, the valve performance is tested in a test loop which is located in Seoul National University Lab. To apply nuclear power plant, the software is being developed according to software life cycle. The developed software is verified by independent software V and V team. It is expected that the smart valve can be applied to an existing NPPs for replacing or to a new nuclear power plants. The design and fabrication of smart valve is now being processed.

  6. SMART micro-scissors with dual motors and OCT sensors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yeo, Chaebeom; Jang, Seonjin; Park, Hyun-cheol; Gehlbach, Peter L.; Song, Cheol

    2017-02-01

    Various end-effectors of microsurgical instruments have been developed and studied. Also, many approaches to stabilize the tool-tip using robotics have been studied such as the steady hand robot system, Micron, and SMART system. In our previous study, the horizontal SMART micro-scissors with a common path swept source OCT distance and one linear piezoelectric (PZT) motor was demonstrated as a microsurgical system. Because the outer needle is connected with a mechanical handle and moved to engage the tool tip manually, the tool tip position is instantaneously changed during the engaging. The undesirable motion can make unexpected tissue damages and low surgical accuracy. In this study, we suggest a prototype horizontal SMART micro-scissors which has dual OCT sensors and two motors to improve the tremor cancellation. Dual OCT sensors provide two distance information. Front OCT sensor detects a distance from the sample surface to the tool tip. Rear OCT sensors gives current PZT motor movement, acting like a motor encoder. The PZT motor can compensate the hand tremor with a feedback loop control. The manual engaging of tool tip in previous SMART system is replaced by electrical engaging using a squiggle motor. Compared with previous study, this study showed better performance in the hand tremor reduction. From the result, the SMART with automatic engaging may become increasingly valuable in microsurgical instruments.

  7. Commercial motor vehicle parking trends at rest areas and weigh stations.

    DOT National Transportation Integrated Search

    2012-12-01

    The major objectives of this research included: i) to determine trends for truck parking at public rest areas : throughout Florida and ii) to develop a suitable smart parking management system for commercial motor : vehicles and conduct a pilot proje...

  8. Smart Screening System (S3) In Taconite Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daryoush Allaei; Angus Morison; David Tarnowski

    2005-09-01

    The conventional screening machines used in processing plants have had undesirable high noise and vibration levels. They also have had unsatisfactorily low screening efficiency, high energy consumption, high maintenance cost, low productivity, and poor worker safety. These conventional vibrating machines have been used in almost every processing plant. Most of the current material separation technology uses heavy and inefficient electric motors with an unbalanced rotating mass to generate the shaking. In addition to being excessively noisy, inefficient, and high-maintenance, these vibrating machines are often the bottleneck in the entire process. Furthermore, these motors, along with the vibrating machines and supportingmore » structure, shake other machines and structures in the vicinity. The latter increases maintenance costs while reducing worker health and safety. The conventional vibrating fine screens at taconite processing plants have had the same problems as those listed above. This has resulted in lower screening efficiency, higher energy and maintenance cost, and lower productivity and workers safety concerns. The focus of this work is on the design of a high performance screening machine suitable for taconite processing plants. SmartScreens{trademark} technology uses miniaturized motors, based on smart materials, to generate the shaking. The underlying technologies are Energy Flow Control{trademark} and Vibration Control by Confinement{trademark}. These concepts are used to direct energy flow and confine energy efficiently and effectively to the screen function. The SmartScreens{trademark} technology addresses problems related to noise and vibration, screening efficiency, productivity, and maintenance cost and worker safety. Successful development of SmartScreens{trademark} technology will bring drastic changes to the screening and physical separation industry. The final designs for key components of the SmartScreens{trademark} have been developed. The key components include smart motor and associated electronics, resonators, and supporting structural elements. It is shown that the smart motors have an acceptable life and performance. Resonator (or motion amplifier) designs are selected based on the final system requirement and vibration characteristics. All the components for a fully functional prototype are fabricated. The development program is on schedule. The last semi-annual report described the process of FE model validation and correlation with experimental data in terms of dynamic performance and predicted stresses. It also detailed efforts into making the supporting structure less important to system performance. Finally, an introduction into the dry application concept was presented. Since then, the design refinement phase was completed. This has resulted in a Smart Screen design that meets performance targets both in the dry condition and with taconite slurry flow using PZT motors. Furthermore, this system was successfully demonstrated for the DOE and partner companies at the Coleraine Mineral Research Laboratory in Coleraine, Minnesota.« less

  9. Smart Inverter Control and Operation for Distributed Energy Resources

    NASA Astrophysics Data System (ADS)

    Tazay, Ahmad F.

    The motivation of this research is to carry out the control and operation of smart inverters and voltage source converters (VSC) for distributed energy resources (DERs) such as photovoltaic (PV), battery, and plug-in hybrid electric vehicles (PHEV). The main contribution of the research includes solving a couple of issues for smart grids by controlling and implementing multifunctions of VSC and smart inverter as well as improving the operational scheme of the microgrid. The work is mainly focused on controlling and operating of smart inverter since it promises a new technology for the future microgrid. Two major applications of the smart inverter will be investigated in this work based on the connection modes: microgrid at grid-tied mode and autonomous mode. In grid-tied connection, the smart inverter and VSC are used to integrate DER such as Photovoltaic (PV) and battery to provide suitable power to the system by controlling the supplied real and reactive power. The role of a smart inverter at autonomous mode includes supplying a sufficient voltage and frequency, mitigate abnormal condition of the load as well as equally sharing the total load's power. However, the operational control of the microgrid still has a major issue on the operation of the microgrid. The dissertation is divided into two main sections which are: 1. Low-level control of a single smart Inverter. 2. High-level control of the microgrid. The first part investigates a comprehensive research for a smart inverter and VSC technology at the two major connections of the microgrid. This involves controlling and modeling single smart inverter and VSC to solve specific issues of microgrid as well as improve the operation of the system. The research provides developed features for smart inverter comparing with a conventional voltage sourced converter (VSC). The two main connections for a microgrid have been deeply investigated to analyze a better way to develop and improve the operational procedure of the microgrid as well as solve specific issues of connecting the microgrid to the system. A detailed procedure for controlling VSC and designing an optimal operation of the controller is also covered in the first part of the dissertation. This section provides an optimal operation for controlling motor drive and demonstrates issues when motor load exists at an autonomous microgrid. It also provides a solution for specific issues at operating a microgrid at autonomous mode as well as improving the structural design for the grid-tied microgrid. The solution for autonomous microgrid includes changing the operational state of the switching pattern of the smart inverter to solve the issue of a common mode voltage (CMV) that appears across the motor load. It also solves the issue of power supplying to large loads, such as induction motors. The last section of the low-level section involves an improvement of the performance and operation of the PV charging station for a plug-in hybrid electric vehicle (PHEV) at grid-tied mode. This section provides a novel structure and smart controller for PV charging station using three-phase hybrid boost converter topology. It also provides a form of applications of a multifunction smart inverter using PV charging station. The second part of the research is focusing on improving the performance of the microgrid by integrating several smart inverters to form a microgrid. It investigates the issue of connecting DER units with the microgrid at real applications. One of the common issues of the microgrid is the circulating current which is caused by poor reactive power sharing accuracy. When more than two DER units are connected in parallel, a microgrid is forming be generating required power for the load. When the microgrid is operated at autonomous mode, all DER units participate in generating voltage and frequency as well as share the load's power. This section provides a smart and novel controlling technique to solve the issue of unequal power sharing. The feature of the smart inverter is realized by the communication link between smart inverters and the main operator. The analysis and derivation of the problem are presented in this section. The dissertation has led to two accepted conference papers, one accepted transaction IEEE manuscript, and one submitted IET transaction manuscript. The future work aims to improve the current work by investigating the performance of the smart inverter at real applications.

  10. Smart roadside initiative gap analysis : trucking technology literature review.

    DOT National Transportation Integrated Search

    2014-04-01

    The Smart Roadside Initiative (SRI) was designed to breakdown information silos at the roadside in order to improve motor carrier safety and mobility, as well as the operational efficiency of motor carriers and the public-sector agencies that regulat...

  11. 77 FR 29752 - Petition for Exemption From the Federal Motor Vehicle Motor Theft Prevention Standard; Jaguar...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Smart Key has a discharged battery or is damaged, the emergency key blade can be used to unlock the door... cycling, high and low temperature cycling, mechanical shock, random vibration, thermal stress/shock tests... to the disposition of all Part 543 petitions. Advanced listing, including the release of future...

  12. Smart Sensor for Online Detection of Multiple-Combined Faults in VSD-Fed Induction Motors

    PubMed Central

    Garcia-Ramirez, Armando G.; Osornio-Rios, Roque A.; Granados-Lieberman, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2012-01-01

    Induction motors fed through variable speed drives (VSD) are widely used in different industrial processes. Nowadays, the industry demands the integration of smart sensors to improve the fault detection in order to reduce cost, maintenance and power consumption. Induction motors can develop one or more faults at the same time that can be produce severe damages. The combined fault identification in induction motors is a demanding task, but it has been rarely considered in spite of being a common situation, because it is difficult to identify two or more faults simultaneously. This work presents a smart sensor for online detection of simple and multiple-combined faults in induction motors fed through a VSD in a wide frequency range covering low frequencies from 3 Hz and high frequencies up to 60 Hz based on a primary sensor being a commercially available current clamp or a hall-effect sensor. The proposed smart sensor implements a methodology based on the fast Fourier transform (FFT), RMS calculation and artificial neural networks (ANN), which are processed online using digital hardware signal processing based on field programmable gate array (FPGA).

  13. General Motors and the University of Michigan smart materials and structures collaborative research laboratory

    NASA Astrophysics Data System (ADS)

    Brei, Diann; Luntz, Jonathan; Shaw, John; Johnson, Nancy L.; Browne, Alan L.; Alexander, Paul W.; Mankame, Nilesh D.

    2007-04-01

    The field of Smart Materials and Structures is evolving from high-end, one-of-a-kind products for medical, military and aerospace applications to the point of viability for mainstream affordable high volume products for automotive applications. For the automotive industry, there are significant potential benefits to be realized including reduction in vehicle mass, added functionality and design flexibility and decrease in component size and cost. To further accelerate the path from basic research and development to launched competitive products, General Motors (GM) has teamed with the College of Engineering at the University of Michigan (UM) to establish a $2.9 Million Collaborative Research Laboratory (CRL) in Smart Materials and Structures. Researchers at both GM and UM are working closely together to create leap-frog technologies which start at conceptualization and proceed all the way through demonstration and handoff to product teams, thereby bridging the traditional technology gap between industry and academia. In addition to Smart Device Technology Innovation, other thrust areas in the CRL include Smart Material Maturity with a basic research focus on overcoming material issues that form roadblocks to commercialism and Mechamatronic System Design Methodology with an applied focus on development tools (synthesis and analysis) to aid the engineer in application of smart materials to system engineering. This CRL is a global effort with partners across the nation and world from GM's Global Research Network such as HRL Laboratories in California and GM's India Science Lab in Bangalore, India. This paper provides an overview of this new CRL and gives examples of several of the projects underway.

  14. Energy-saving technology of vector controlled induction motor based on the adaptive neuro-controller

    NASA Astrophysics Data System (ADS)

    Engel, E.; Kovalev, I. V.; Karandeev, D.

    2015-10-01

    The ongoing evolution of the power system towards a Smart Grid implies an important role of intelligent technologies, but poses strict requirements on their control schemes to preserve stability and controllability. This paper presents the adaptive neuro-controller for the vector control of induction motor within Smart Gird. The validity and effectiveness of the proposed energy-saving technology of vector controlled induction motor based on adaptive neuro-controller are verified by simulation results at different operating conditions over a wide speed range of induction motor.

  15. Smart Manufacturing Technologies and Data Analytics for Improving Energy Efficiency in Industrial Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Guo, Wei; Wenning, Thomas J.

    Smart manufacturing and advanced data analytics can help the manufacturing sector unlock energy efficiency from the equipment level to the entire manufacturing facility and the whole supply chain. These technologies can make manufacturing industries more competitive, with intelligent communication systems, real-time energy savings, and increased energy productivity. Smart manufacturing can give all employees in an organization the actionable information they need, when they need it, so that each person can contribute to the optimal operation of the corporation through informed, data-driven decision making. This paper examines smart technologies and data analytics approaches for improving energy efficiency and reducing energy costsmore » in process-supporting energy systems. It dives into energy-saving improvement opportunities through smart manufacturing technologies and sophisticated data collection and analysis. The energy systems covered in this paper include those with motors and drives, fans, pumps, air compressors, steam, and process heating.« less

  16. Rodent motor and neuropsychological behaviour measured in home cages using the integrated modular platform SmartCage™

    PubMed Central

    Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin

    2017-01-01

    SUMMARY To facilitate investigation of diverse rodent behaviours in rodents’ home cages, we have developed an integrated modular platform, the SmartCage™ system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner.The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables.The SmartCage™ detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods.In conclusion, the SmartCage™ system provides an automated and accurate tool to quantify various rodent behaviours in a ‘stress-free’ environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. PMID:22540540

  17. With Corporate Help, We're Building the School of the Future Right Now.

    ERIC Educational Resources Information Center

    Herlihy, John J.; Day, C. William

    1989-01-01

    When Toyota Motor Manufacturing moved into a Kentucky community, it provided technological expertise and substantial financial backing to the school system. "Smart classrooms" are being designed with a spectrum of technological tools including computerized science laboratories and electronically linked media centers. (MLF)

  18. Rodent motor and neuropsychological behaviour measured in home cages using the integrated modular platform SmartCage™.

    PubMed

    Khroyan, Taline V; Zhang, Jingxi; Yang, Liya; Zou, Bende; Xie, James; Pascual, Conrado; Malik, Adam; Xie, Julian; Zaveri, Nurulain T; Vazquez, Jacqueline; Polgar, Willma; Toll, Lawrence; Fang, Jidong; Xie, Xinmin

    2012-07-01

    1. To facilitate investigation of diverse rodent behaviours in rodents' home cages, we have developed an integrated modular platform, the SmartCage(™) system (AfaSci, Inc. Burlingame, CA, USA), which enables automated neurobehavioural phenotypic analysis and in vivo drug screening in a relatively higher-throughput and more objective manner. 2, The individual platform consists of an infrared array, a vibration floor sensor and a variety of modular devices. One computer can simultaneously operate up to 16 platforms via USB cables. 3. The SmartCage(™) detects drug-induced increases and decreases in activity levels, as well as changes in movement patterns. Wake and sleep states of mice can be detected using the vibration floor sensor. The arousal state classification achieved up to 98% accuracy compared with results obtained by electroencephalography and electromyography. More complex behaviours, including motor coordination, anxiety-related behaviours and social approach behaviour, can be assessed using appropriate modular devices and the results obtained are comparable with results obtained using conventional methods. 4. In conclusion, the SmartCage(™) system provides an automated and accurate tool to quantify various rodent behaviours in a 'stress-free' environment. This system, combined with the validated testing protocols, offers powerful a tool kit for transgenic phenotyping and in vivo drug screening. © 2012 The Authors. Clinical and Experimental Pharmacology and Physiology © 2012 Blackwell Publishing Asia Pty Ltd.

  19. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.

    PubMed

    Barker, Ruth N; Brauer, Sandra G; Carson, Richard G

    2008-06-01

    Severe upper limb paresis is a major contributor to disability after stroke. This study investigated the efficacy of a new nonrobotic training device, the Sensorimotor Active Rehabilitation Training (SMART) Arm, that was used with or without electromyography-triggered electrical stimulation of triceps brachii to augment elbow extension, permitting stroke survivors with severe paresis to practice a constrained reaching task. A single-blind, randomized clinical trial was conducted with 42 stroke survivors with severe and chronic paresis. Thirty-three participants completed the study, of whom 10 received training using the SMART Arm with electromyography-triggered electrical stimulation, 13 received training using the SMART Arm alone, and 10 received no intervention (control). Training consisted of 12 1-hour sessions over 4 weeks. The primary outcome measure was "upper arm function," item 6 of the Motor Assessment Scale. Secondary outcome measures included impairment measures; triceps muscle strength, reaching force, modified Ashworth scale; and activity measures: reaching distance and Motor Assessment Scale. Assessments were administered before (0 weeks) and after training (4 weeks) and at 2 months follow-up (12 weeks). Both SMART Arm groups demonstrated significant improvements in all impairment and activity measures after training and at follow-up. There was no significant difference between these 2 groups. There was no change in the control group. Our findings indicate that training of reaching using the SMART Arm can reduce impairment and improve activity in stroke survivors with severe and chronic upper limb paresis, highlighting the benefits of intensive task-oriented practice, even in the context of severe paresis.

  20. Smart Park : Truck Parking Field Operation Test Results

    DOT National Transportation Integrated Search

    2011-10-15

    As part of its SmartPark program, the Federal Motor Carrier Safety Administration (FMCSA) conducted a field operations test of two technologies, video imaging and magnetometry, to assess their suitability for determining the occupancy of truck parkin...

  1. Smart roadside initiative gap analysis : state of the practice.

    DOT National Transportation Integrated Search

    2014-03-01

    The Smart Roadside Initiative (SRI) is a United States Department of Transportation (U.S. DOT) initiative that is designed to breakdown information silos between Intelligent Transportation Systems (ITS) at the roadside in order to improve motor carri...

  2. SMART- Small Motor AerRospace Technology

    NASA Astrophysics Data System (ADS)

    Balucani, M.; Crescenzi, R.; Ferrari, A.; Guarrea, G.; Pontetti, G.; Orsini, F.; Quattrino, L.; Viola, F.

    2004-11-01

    This paper presents the "SMART" (Small Motor AerRospace Tecnology) propulsion system, constituted of microthrusters array realised by semiconductor technology on silicon wafers. SMART system is obtained gluing three main modules: combustion chambers, igniters and nozzles. The module was then filled with propellant and closed by gluing a piece of silicon wafer in the back side of the combustion chambers. The complete assembled module composed of 25 micro- thrusters with a 3 x 5 nozzle is presented. The measurement showed a thrust of 129 mN and impulse of 56,8 mNs burning about 70mg of propellant for the micro-thruster with nozzle and a thrust of 21 mN and impulse of 8,4 mNs for the micro-thruster without nozzle.

  3. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism

    NASA Astrophysics Data System (ADS)

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.

    2016-08-01

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.

  4. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism.

    PubMed

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T

    2016-08-24

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children's motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.

  5. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism

    PubMed Central

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.

    2016-01-01

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3–6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay. PMID:27553971

  6. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... collect motor vehicle data at the time of purchase. Where appropriate, State sales and motor fuel taxes...: General Services Administration, ATTN: GSA SmartPay® (QMB), 2200 Crystal Drive, Arlington, VA 22202. (b...

  7. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... collect motor vehicle data at the time of purchase. Where appropriate, State sales and motor fuel taxes...: General Services Administration, ATTN: GSA SmartPay ® (QMB), 2200 Crystal Drive, Arlington, VA 22202. (b...

  8. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... collect motor vehicle data at the time of purchase. Where appropriate, State sales and motor fuel taxes...: General Services Administration, ATTN: GSA SmartPay® (QMB), 2200 Crystal Drive, Arlington, VA 22202. (b...

  9. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collect motor vehicle data at the time of purchase. Where appropriate, State sales and motor fuel taxes...: General Services Administration, ATTN: GSA SmartPay® (QMB), 2200 Crystal Drive, Arlington, VA 22202. (b...

  10. 41 CFR 102-34.320 - What Government-issued charge cards may I use to purchase fuel and motor vehicle related services?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... collect motor vehicle data at the time of purchase. Where appropriate, State sales and motor fuel taxes...: General Services Administration, ATTN: GSA SmartPay ® (QMB), 2200 Crystal Drive, Arlington, VA 22202. (b...

  11. Big Savings from Smart Motors

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Chesebrough-Pond's operates 32 plants across the nation and in those plants are more than 10,000 electric motors. In an effort to cut down on waste of electrical power used by these motors, Chesebrough organized a Corporate Advanced Technology Group to devise ways of improving productivity and cut manufacturing costs. Chesebrough used NASA's Marshall Space Flight Center's Power Factor Controller technology as a departure point for development of their own computerized motor controller that enables motors to operate at maximum efficiency regardless of the motor's applications or operating condition.

  12. Embedded Control System for Smart Walking Assistance Device.

    PubMed

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  13. Design of smart prosthetic knee utilizing magnetorheological damper

    NASA Astrophysics Data System (ADS)

    Gao, F.; Liu, Y. N.; Liao, W. H.

    2017-04-01

    In this study, based on human knee's kinetics, a smart prosthetic knee employing springs, DC motor and magnetorheological (MR) damper is designed. The MR damper is coupled in series with the springs that are mounted in parallel with the DC motor. The working principle of the prosthesis during level-ground walking is presented. During stance phase, the MR damper is powered on. The springs will store and release the negative mechanical energy for restoring the function of human knee joint. In swing phase, the MR damper is powered off for disengaging the springs. In this phase, the work of knee joint is negative. For improving the system energy efficiency, the DC motor will work as a power generator to supply required damping torque and harvest electrical energy. Finally, the design of MR damper is introduced.

  14. Fuzzy – PI controller to control the velocity parameter of Induction Motor

    NASA Astrophysics Data System (ADS)

    Malathy, R.; Balaji, V.

    2018-04-01

    The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.

  15. Smart material-based radiation sources

    NASA Astrophysics Data System (ADS)

    Kovaleski, Scott

    2014-10-01

    From sensors to power harvesters, the unique properties of smart materials have been exploited in numerous ways to enable new applications and reduce the size of many useful devices. Smart materials are defined as materials whose properties can be changed in a controlled and often reversible fashion by use of external stimuli, such as electric and magnetic fields, temperature, or humidity. Smart materials have been used to make acceleration sensors that are ubiquitous in mobile phones, to make highly accurate frequency standards, to make unprecedentedly small actuators and motors, to seal and reduce friction of rotating shafts, and to generate power by conversion of either kinetic or thermal energy to electrical energy. The number of useful devices enabled by smart materials is large and continues to grow. Smart materials can also be used to generate plasmas and accelerate particles at small scales. The materials discussed in this talk are from non-centrosymmetric crystalline classes including piezoelectric, pyroelectric, and ferroelectric materials, which produce large electric fields in response to external stimuli such as applied electric fields or thermal energy. First, the use of ferroelectric, pyroelectric and piezoelectric materials for plasma generation and particle acceleration will be reviewed. The talk will then focus on the use of piezoelectric materials at the University of Missouri to construct plasma sources and electrostatic accelerators for applications including space propulsion, x-ray imaging, and neutron production. The basic concepts of piezoelectric transformers, which are analogous to conventional magnetic transformers, will be discussed, along with results from experiments over the last decade to produce micro-thrusters for space propulsion and particle accelerators for x-ray and neutron production. Support from ONR, AFOSR, and LANL.

  16. Innovative smart micro sensors for Army weaponry applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Brantley, Christina; Edwards, Eugene

    2008-03-01

    Micro sensors offer the potential solution to cost, size, and weight issues associated with smart networked sensor systems designed for environmental/missile health monitoring and rocket out-gassing/fuel leak detection, as well as situational awareness on the battlefield. In collaboration with the University of Arkansas (Fayetteville), University of Alabama (Tuscaloosa and Birmingham), Alabama A&M University (Normal), and Streamline Automation (Huntsville, AL), scientists and engineers at the Army Aviation & Missile Research, Development, and Engineering Center (AMRDEC) are investigating several nano-based technologies to solve the problem of sensing extremely small levels of toxic gases associated with both chemical warfare agents (in air and liquids) and potential rocket motor leaks. Innovative techniques are being devised to adapt voltammetry, which is a well established technique for the detection and quantification of substances dissolved in liquids, to low-cost micro sensors for detecting airborne chemical agents and potential missile propellant leakages. In addition, a surface enhanced Raman scattering (SERS) technique, which enhances Raman scattered light by excitation of surface plasmons on nanoporous metal surfaces (nanospheres), is being investigated to develop novel smart sensors for the detection of chemical agents (including rocket motor out-gassing) and potential detection of home-made explosive devices. In this paper, results are delineated that are associated with experimental studies, which are conducted for the aforementioned cases and for several other nano-based technology approaches. The design challenges of each micro sensor technology approach are discussed. Finally, a comparative analysis of the various innovative micro-sensor techniques is provided.

  17. EDITORIAL: Adaptive and active materials: Selected papers from the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 10) (Philadelphia, PA, USA, 28 September-1 October 2010) Adaptive and active materials: Selected papers from the ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 10) (Philadelphia, PA, USA, 28 September-1 October 2010)

    NASA Astrophysics Data System (ADS)

    Brei, Diann

    2011-09-01

    The third annual meeting of the AMSE/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in the heart of historic Philadelphia's cultural district, and included a pioneer banquet in the National Constitutional Center. The applications emphasis of the 2010 conference was reflected in keynote talks by Dr Alan Taub, vice president of General Motors global research and development, 'Smart materials in the automotive industry'; Dr Charles R Farrar, engineering institute leader at Los Alamos National Laboratory, 'Future directions for structural health monitoring of civil engineering infrastructure'; and Professor Christopher S Lynch of the University of California Los Angeles, 'Ferroelectric materials and their applications'. The SMASIS conference was divided into six technical symposia each of which included basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations. The six symposia were: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; and SYMP 6 Bio-inspired Smart Materials and Structures. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials areas (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this special issue of Smart Materials and Structures. This set of papers demonstrates the exceptional quality and originality of the conference presentations. We are appreciative of their efforts in producing this collection of highly relevant articles on smart materials.

  18. The efficacy of SMART Arm training early after stroke for stroke survivors with severe upper limb disability: a protocol for a randomised controlled trial.

    PubMed

    Brauer, Sandra G; Hayward, Kathryn S; Carson, Richard G; Cresswell, Andrew G; Barker, Ruth N

    2013-07-02

    Recovery of upper limb function after stroke is poor. The acute to subacute phase after stroke is the optimal time window to promote the recovery of upper limb function. The dose and content of training provided conventionally during this phase is however, unlikely to be adequate to drive functional recovery, especially in the presence of severe motor disability. The current study concerns an approach to address this shortcoming, through evaluation of the SMART Arm, a non-robotic device that enables intensive and repetitive practice of reaching by stroke survivors with severe upper limb disability, with the aim of improving upper limb function. The outcomes of SMART Arm training with or without outcome-triggered electrical stimulation (OT-stim) to augment movement and usual therapy will be compared to usual therapy alone. A prospective, assessor-blinded parallel, three-group randomised controlled trial is being conducted. Seventy-five participants with a first-ever unilateral stroke less than 4 months previously, who present with severe arm disability (three or fewer out of a possible six points on the Motor Assessment Scale [MAS] Item 6), will be recruited from inpatient rehabilitation facilities. Participants will be randomly allocated to one of three dose-matched groups: SMART Arm training with OT-stim and usual therapy; SMART Arm training without OT-stim and usual therapy; or usual therapy alone. All participants will receive 20 hours of upper limb training over four weeks. Blinded assessors will conduct four assessments: pre intervention (0-weeks), post intervention (4-weeks), 26 weeks and 52 weeks follow-up. The primary outcome measure is MAS item 6. All analyses will be based on an intention-to-treat principle. By enabling intensive and repetitive practice of a functional upper limb task during inpatient rehabilitation, SMART Arm training with or without OT-stim in combination with usual therapy, has the potential to improve recovery of upper limb function in those with severe motor disability. The immediate and long-term effects of SMART Arm training on upper limb impairment, activity and participation will be explored, in addition to the benefit of training with or without OT-stim to augment movement when compared to usual therapy alone. ACTRN12608000457347.

  19. Development and preliminary evaluation of an ultrasonic motor actuated needle guide for 3T MRI-guided transperineal prostate interventions

    NASA Astrophysics Data System (ADS)

    Song, Sang-Eun; Tokuda, Junichi; Tuncali, Kemal; Tempany, Clare; Hata, Nobuhiko

    2012-02-01

    Image guided prostate interventions have been accelerated by Magnetic Resonance Imaging (MRI) and robotic technologies in the past few years. However, transrectal ultrasound (TRUS) guided procedure still remains as vast majority in clinical practice due to engineering and clinical complexity of the MRI-guided robotic interventions. Subsequently, great advantages and increasing availability of MRI have not been utilized at its maximum capacity in clinic. To benefit patients from the advantages of MRI, we developed an MRI-compatible motorized needle guide device "Smart Template" that resembles a conventional prostate template to perform MRI-guided prostate interventions with minimal changes in the clinical procedure. The requirements and specifications of the Smart Template were identified from our latest MRI-guided intervention system that has been clinically used in manual mode for prostate biopsy. Smart Template consists of vertical and horizontal crossbars that are driven by two ultrasonic motors via timing-belt and mitergear transmissions. Navigation software that controls the crossbar position to provide needle insertion positions was also developed. The software can be operated independently or interactively with an open-source navigation software, 3D Slicer, that has been developed for prostate intervention. As preliminary evaluation, MRI distortion and SNR test were conducted. Significant MRI distortion was found close to the threaded brass alloy components of the template. However, the affected volume was limited outside the clinical region of interest. SNR values over routine MRI scan sequences for prostate biopsy indicated insignificant image degradation during the presence of the robotic system and actuation of the ultrasonic motors.

  20. Motor Control Training for the Shoulder with Smart Garments.

    PubMed

    Wang, Qi; De Baets, Liesbet; Timmermans, Annick; Chen, Wei; Giacolini, Luca; Matheve, Thomas; Markopoulos, Panos

    2017-07-22

    Wearable technologies for posture monitoring and posture correction are emerging as a way to support and enhance physical therapy treatment, e.g., for motor control training in neurological disorders or for treating musculoskeletal disorders, such as shoulder, neck, or lower back pain. Among the various technological options for posture monitoring, wearable systems offer potential advantages regarding mobility, use in different contexts and sustained tracking in daily life. We describe the design of a smart garment named Zishi to monitor compensatory movements and evaluate its applicability for shoulder motor control training in a clinical setting. Five physiotherapists and eight patients with musculoskeletal shoulder pain participated in the study. The attitudes of patients and therapists towards the system were measured using standardized survey instruments. The results indicate that patients and their therapists consider Zishi a credible aid for rehabilitation and patients expect it will help towards their recovery. The system was perceived as highly usable and patients were motivated to train with the system. Future research efforts on the improvement of the customization of feedback location and modality, and on the evaluation of Zishi as support for motor learning in shoulder patients, should be made.

  1. Development of a miniature fan motor

    NASA Astrophysics Data System (ADS)

    Wang, Chien-Chang; Yao, Yeong-Der; Liang, Kun-Yi; Huang, Chung-Chun; Chang, Yu-Choung

    2012-04-01

    A novel compact axial flux fan motor was developed. Such a micromotor could be a potential candidate for using as the cooling solution for the next generation mobile devices, for example, smart phones and pico-projectors. The key parameters of the motor, such as back electromotive force, cogging torque, and axial preload are predicted using finite element method. In addition, new approaches are proposed to measure these items, and the corresponding experimental results are in good agreement with the simulated one. Moreover, the undesired vibration harmonic is successfully suppressed, and the fan motor represents a high static pressure and air flow rate.

  2. Guest editorial: Special issue micro-and nanomachines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  3. Guest editorial: Special issue micro-and nanomachines.

    DOE PAGES

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    2015-04-01

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  4. Smart Hand For Manipulators

    NASA Astrophysics Data System (ADS)

    Fiorini, Paolo

    1987-10-01

    Sensor based, computer controlled end effectors for mechanical arms are receiving more and more attention in the robotics industry, because commonly available grippers are only adequate for simple pick and place tasks. This paper describes the current status of the research at JPL on a smart hand for a Puma 560 robot arm. The hand is a self contained, autonomous system, capable of executing high level commands from a supervisory computer. The mechanism consists of parallel fingers, powered by a DC motor, and controlled by a microprocessor embedded in the hand housing. Special sensors are integrated in the hand for measuring the grasp force of the fingers, and for measuring forces and torques applied between the arm and the surrounding environment. Fingers can be exercised under position, velocity and force control modes. The single-chip microcomputer in the hand executes the tasks of communication, data acquisition and sensor based motor control, with a sample cycle of 2 ms and a transmission rate of 9600 baud. The smart hand described in this paper represents a new development in the area of end effector design because of its multi-functionality and autonomy. It will also be a versatile test bed for experimenting with advanced control schemes for dexterous manipulation.

  5. Using Smart Phone Sensors to Detect Transportation Modes

    PubMed Central

    Xia, Hao; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2014-01-01

    The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary) state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle) and wait (remaining at a location for a short period; e.g., waiting at a red traffic light). These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users. PMID:25375756

  6. Using smart phone sensors to detect transportation modes.

    PubMed

    Xia, Hao; Qiao, Yanyou; Jian, Jun; Chang, Yuanfei

    2014-11-04

    The proliferation of mobile smart devices has led to a rapid increase of location-based services, many of which are amassing large datasets of user trajectory information. Unfortunately, current trajectory information is not yet sufficiently rich to support classification of user transportation modes. In this paper, we propose a method that employs both the Global Positioning System and accelerometer data from smart devices to classify user outdoor transportation modes. The classified modes include walking, bicycling, and motorized transport, in addition to the motionless (stationary) state, for which we provide new depth analysis. In our classification, stationary mode has two sub-modes: stay (remaining in the same place for a prolonged time period; e.g., in a parked vehicle) and wait (remaining at a location for a short period; e.g., waiting at a red traffic light). These two sub-modes present different semantics for data mining applications. We use support vector machines with parameters that are optimized for pattern recognition. In addition, we employ ant colony optimization to reduce the dimension of features and analyze their relative importance. The resulting classification system achieves an accuracy rate of 96.31% when applied to a dataset obtained from 18 mobile users.

  7. Power systems and requirements for the integration of smart structures into aircraft

    NASA Astrophysics Data System (ADS)

    Lockyer, Allen J.; Martin, Christopher A.; Lindner, Douglas K.; Walia, Paramjit S.

    2002-07-01

    Electrical power distribution for recently developed smart actuators becomes an important air-vehicle challenge if projected smart actuation benefits are to be met. Among the items under development are variable shape inlets and control surfaces that utilize shape memory alloys (SMA); full span, chord-wise and span-wise contouring trailing control surfaces that use SMA or piezoelectric materials for actuation; and other strain-based actuators for buffet load alleviation, flutter suppression and flow control. At first glance, such technologies afford overall vehicle performance improvement, however, integration system impacts have yet to be determined or quantified. Power systems to support smart structures initiatives are the focus of the current paper. The paper has been organized into five main topics for further discussion: (1) air-vehicle power system architectures - standard and advanced distribution concepts for actuators, (2) smart wing actuator power requirements and results - highlighting wind tunnel power measurements from shape memory alloy and piezoelectric ultrasonic motor actuated control surfaces and different dynamic pressure and angle of attack; (3) vehicle electromagnetic effects (EME) issues, (4) power supply design considerations for smart actuators - featuring the aircraft power and actuator interface, and (5) summary and conclusions.

  8. Alternative Fuels Data Center

    Science.gov Websites

    Sonoma Clean Power (SCP) customers are eligible to receive a free JuiceNet-enabled EVSE from eMotorWerks eligible to receive a free JuicePlug (smart grid adapter) to convert to a JuiceNet-enabled EVSE. Customers

  9. SmartPark Technology Demonstration Project, Phase II: Final Report : Technology Brief

    DOT National Transportation Integrated Search

    2018-05-01

    In 2000, the National Transportation Safety Board recommended that the Federal Motor Carrier Safety Administration (FMCSA) create a guide to inform truck drivers about locations and availability of parking. In 2002, the Federal Highway Administration...

  10. A portable integrated system to control an active needle

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem

    2017-04-01

    The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.

  11. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  12. Design and Development of a Smart Exercise Bike for Motor Rehabilitation in Individuals with Parkinson’s Disease

    PubMed Central

    Mohammadi-Abdar, Hassan; Ridgel, Angela L.; Discenzo, Fred M.; Loparo, Kenneth A.

    2016-01-01

    Recent studies in rehabilitation of Parkinson’s disease (PD) have shown that cycling on a tandem bike at a high pedaling rate can reduce the symptoms of the disease. In this research, a smart motorized bicycle has been designed and built for assisting Parkinson’s patients with exercise to improve motor function. The exercise bike can accurately control the rider’s experience at an accelerated pedaling rate while capturing real-time test data. Here, the design and development of the electronics and hardware as well as the software and control algorithms are presented. Two control algorithms have been developed for the bike; one that implements an inertia load (static mode) and one that implements a speed reference (dynamic mode). In static mode the bike operates as a regular exercise bike with programmable resistance (load) that captures and records the required signals such as heart rate, cadence and power. In dynamic mode the bike operates at a user-selected speed (cadence) with programmable variability in speed that has been shown to be essential to achieving the desired motor performance benefits for PD patients. In addition, the flexible and extensible design of the bike permits readily changing the control algorithm and incorporating additional I/O as needed to provide a wide range of riding experiences. Furthermore, the network-enabled controller provides remote access to bike data during a riding session. PMID:27298575

  13. 78 FR 4192 - Petition for Exemption From the Vehicle Theft Prevention Standard; Ford Motor Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... Smart Power Distribution Junction Box (SPDJB), the PEPS/RFA module, the power train control module and a... listed in Sec. 543.6(a)(3): promoting activation; attracting attention to the efforts of unauthorized...

  14. An innovative and multi-functional smart vibration platform

    NASA Astrophysics Data System (ADS)

    Olmi, C.; Song, G.; Mo, Y. L.

    2007-08-01

    Recently, there has been increasing efforts to incorporate vibration damping or energy dissipation mechanisms into civil structures, particularly by using smart materials technologies. Although papers about structural vibration control using smart materials have been published for more than two decades, there has been little research in developing teaching equipment to introduce smart materials to students via in-classroom demonstration or hands-on experiments. In this paper, an innovative and multi-functional smart vibration platform (SVP) has been developed by the Smart Materials and Structures Laboratory at the University of Houston to demonstrate vibration control techniques using multiple smart materials for educational and research purposes. The vibration is generated by a motor with a mass imbalance mounted on top of the frame. Shape memory alloys (SMA) and magneto-rheological (MR) fluid are used to increase the stiffness and damping ratio, respectively, while a piezoceramic sensor (lead zirconate titanate, or PZT) is used as a vibration sensing device. An electrical circuit has been designed to control the platform in computer-control or manual mode through the use of knobs. The former mode allows for an automated demonstration, while the latter requires the user to manually adjust the stiffness and damping ratio of the frame. In addition, the system accepts network connections and can be used in a remote experiment via the internet. This platform has great potential to become an effective tool for teaching vibration control and smart materials technologies to students in civil, mechanical and electrical engineering for both education and research purposes.

  15. Smooth adaptive sliding mode vibration control of a flexible parallel manipulator with multiple smart linkages in modal space

    NASA Astrophysics Data System (ADS)

    Zhang, Quan; Li, Chaodong; Zhang, Jiantao; Zhang, Jianhui

    2017-12-01

    This paper addresses the dynamic model and active vibration control of a rigid-flexible parallel manipulator with three smart links actuated by three linear ultrasonic motors. To suppress the vibration of three flexible intermediate links under high speed and acceleration, multiple Lead Zirconium Titanate (PZT) sensors and actuators are collocated mounted on each link, forming a smart structure which can achieve self-sensing and self-actuating. The dynamic characteristics and equations of the flexible link incorporated with the PZT sensors and actuator are analyzed and formulated. The smooth adaptive sliding mode based active vibration control is proposed to suppress the vibration of the smart links, and the first and second modes of the three links are targeted to be suppressed in modal space to avoid the spillover phenomenon. Simulations and experiments are implemented to validate the effectiveness of the smart structures and the proposed control laws. Experimental results show that the vibration of the first mode around 92 Hz and the second mode around 240 Hz of the three smart links are reduced respectively by 64.98%, 59.47%, 62.28%, and 45.80%, 36.79%, 33.33%, which further verify the multi-mode vibration control ability of the smooth adaptive sliding mode control law.

  16. The complementary role of music therapy in the detection of awareness in disorders of consciousness: an audit of concurrent SMART and MATADOC assessments.

    PubMed

    O'Kelly, Julian; Magee, Wendy L

    2013-01-01

    In the behavioural assessment of disorders of consciousness (DOC), best practice is for several different assessment tools to be used to encourage a variety of different responses indicative of awareness. Anecdotal evidence suggests a range of musical stimuli may be particularly effective in eliciting responses to guide the assessment process, although comparative data regarding behavioural domains is lacking. This study examined 42 concurrent records of patients assessed using the Sensory Modality Assessment and Rehabilitation Technique (SMART), and the Music Therapy Assessment Tool for Awareness in Disorders of Consciousness (MATADOC) to explore the relationship between diagnosis and behavioural characteristics of the cohort. Whilst the two tools produced a high level of agreement in diagnostic outcome (Spearman Rho .80), divergent diagnosis and weaker correlations between behavioural response items highlight contrasting sensitivities of the tools. Whilst MATADOC has higher sensitivity within auditory and visual domains relative to SMART, SMART has higher sensitivity in the motor domain. The significant contribution of musical response items in MATADOC, and the tactile response item in SMART, indicates both tools provide unique behavioural data predictive of awareness. Multidisciplinary assessment using SMART and MATADOC provides complementary data contributing to a fuller understanding of a patient's level of awareness.

  17. Smart mobility solution with multiple input Output interface.

    PubMed

    Sethi, Aartika; Deb, Sujay; Ranjan, Prabhat; Sardar, Arghya

    2017-07-01

    Smart wheelchairs are commonly used to provide solution for mobility impairment. However their usage is limited primarily due to high cost owing from sensors required for giving input, lack of adaptability for different categories of input and limited functionality. In this paper we propose a smart mobility solution using smartphone with inbuilt sensors (accelerometer, camera and speaker) as an input interface. An Emotiv EPOC+ is also used for motor imagery based input control synced with facial expressions in cases of extreme disability. Apart from traction, additional functions like home security and automation are provided using Internet of Things (IoT) and web interfaces. Although preliminary, our results suggest that this system can be used as an integrated and efficient solution for people suffering from mobility impairment. The results also indicate a decent accuracy is obtained for the overall system.

  18. Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic "smart" material.

    PubMed

    Srivastava, Vineet Kumar; Tuteja, Renu; Tuteja, Narendra

    2015-06-01

    Forisomes are ATP independent, mechanically active proteins from the Fabaceae family (also called Leguminosae). These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisomes are SEO (sieve element occlusion) gene family proteins that have recently been shown to be involved in wound sealing mechanism. Recent findings suggest that forisomes could act as an ideal model to study self assembly mechanism for the development of nanotechnological devices like microinstruments, the microfluidic system frequently used in space exploration missions. Technology enabling improvement in micro instruments has been identified as a key technology by NASA in future space exploration missions. Forisomes are designated as biomimetic smart materials which are calcium-energized motor proteins. Since forisomes are biomolecules from plant systems it can be doctored through genetic engineering. In contrast, "smart" materials which are not derived from plants are difficult to modify in their properties. Current levels of understanding about forisomes conformational shifts with respect to calcium ions and pH changes requires supplement of future advances with relation to its 3D structure to understand self assembly processes. In plant systems it forms blood clots in the form of occlusions to prevent nutrient fluid leakage and thus proves to be a unique damage control system of phloem tissue.

  19. One-Handed Thumb Use on Smart Phones by Semi-literate and Illiterate Users in India

    NASA Astrophysics Data System (ADS)

    Katre, Dinesh

    There is a tremendous potential for developing mobile-based productivity tools and occupation specific applications for the semi-literate and illiterate users in India. One-handed thumb use on the touchscreen of smart phone or touch phone is considered as an effective alternative than the use of stylus or index finger, to free the other hand for supporting the occupational activity. In this context, usability research and experimental tests are conducted to understand the role of fine motor control, usability of thumb as the interaction apparatus and the ergonomic needs of users. The paper also touches upon cultural, racial and anthropometric aspects, which need due consideration while designing the mobile interface. Design recommendations are evolved to enhance the effectiveness of one-handed thumb use on smart phone, especially for the benefit of semi-literate and illiterate users.

  20. E-health Support in People with Parkinson's Disease with Smart Glasses: A Survey of User Requirements and Expectations in the Netherlands.

    PubMed

    Zhao, Yan; Heida, Tjitske; van Wegen, Erwin E H; Bloem, Bastiaan R; van Wezel, Richard J A

    2015-01-01

    Recent advances in smart glasses, wearable computers in the form of glasses, bring new therapeutic and monitoring possibilities for people with Parkinson's disease (PD). For example, it can provide visual and auditory cues during activities of daily living that have long been used to improve gait disturbances. Furthermore, smart glasses can personalize therapies based on the state of the user and/or the user environment in real-time using object recognition and motion tracking. To provide guidelines for developers in creating new PD applications for smart glasses, a self-reported questionnaire was designed to survey the requirements, constraints, and attitudes of people with PD with respect to this new technology. The survey was advertised online over an 11 month period on the website of the Parkinson Vereninging. The results were derived from 62 participants (54.8% men and 45.2% women, average age of 65.7 ± 9.1), representing a response rate of 79.5% . The participants were overall very enthusiastic about smart glasses as an assistive technology to facilitate daily living activities, especially its potential to self-manage motor problems and provide navigational guidance, thereby restoring their confidence and independence. The reported level of usage of mobile technologies like tablets and smartphones suggests that smart glasses could be adopted relatively easily, especially by younger people with PD. However, the respondents were concerned about the cost, appearance, efficacy, and potential side effects of smart glasses. To accommodate a wide range of symptoms, personal preferences, and comfort level with technology, smart glasses should be designed to allow simple operation and personalization.

  1. Wood as inspiration for new stimuli-responsive structures and materials

    Treesearch

    Joseph E. Jakes; Nayomi Plaza-Rodriguez; Samuel L. Zelinka; Donald S. Stone; Sophie-Charlotte Gleber; Stefan Vogt

    2014-01-01

    Nature has often provided inspiration for new smart structures and materials. Recently, we showed a bundle of a few wood cells are moisture-activated torsional actuators that can reversibly twist multiple revolutions per centimeter of length. The bundles produce specific torque higher than that produced by electric motors and possess shape memory twist capabilities....

  2. Design of intelligent vehicle control system based on single chip microcomputer

    NASA Astrophysics Data System (ADS)

    Zhang, Congwei

    2018-06-01

    The smart car microprocessor uses the KL25ZV128VLK4 in the Freescale series of single-chip microcomputers. The image sampling sensor uses the CMOS digital camera OV7725. The obtained track data is processed by the corresponding algorithm to obtain track sideline information. At the same time, the pulse width modulation control (PWM) is used to control the motor and servo movements, and based on the digital incremental PID algorithm, the motor speed control and servo steering control are realized. In the project design, IAR Embedded Workbench IDE is used as the software development platform to program and debug the micro-control module, camera image processing module, hardware power distribution module, motor drive and servo control module, and then complete the design of the intelligent car control system.

  3. Get smart, go optical: example uses of optical fibre sensing technology for production optimisation and subsea asset monitoring

    NASA Astrophysics Data System (ADS)

    Staveley, Chris

    2014-06-01

    With the growth in deep-water oil and gas production, condition monitoring of high-value subsea assets to give early warning of developing problems is vital. Offshore operators can then transport and deploy spare parts before a failure occurs, so minimizing equipment down-time, and the significant costs associated with unscheduled maintenance. Results are presented from a suite of tests in which multiple elements of a subsea twin-screw pump and associated electric motor were monitored using a fibre optic sensing system based on fibre Bragg gratings (FBG) that simultaneously measured dynamic strain on the main rotor bearings, pressure and temperature of the lubricating oil, distributed temperature through the motor stator windings and vibration of the pump and motor housings.

  4. Maturation of Structural Health Management Systems for Solid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Quing, Xinlin; Beard, Shawn; Zhang, Chang

    2011-01-01

    Concepts of an autonomous and automated space-compliant diagnostic system were developed for conditioned-based maintenance (CBM) of rocket motors for space exploration vehicles. The diagnostic system will provide real-time information on the integrity of critical structures on launch vehicles, improve their performance, and greatly increase crew safety while decreasing inspection costs. Using the SMART Layer technology as a basis, detailed procedures and calibration techniques for implementation of the diagnostic system were developed. The diagnostic system is a distributed system, which consists of a sensor network, local data loggers, and a host central processor. The system detects external impact to the structure. The major functions of the system include an estimate of impact location, estimate of impact force at impacted location, and estimate of the structure damage at impacted location. This system consists of a large-area sensor network, dedicated multiple local data loggers with signal processing and data analysis software to allow for real-time, in situ monitoring, and longterm tracking of structural integrity of solid rocket motors. Specifically, the system could provide easy installation of large sensor networks, onboard operation under harsh environments and loading, inspection of inaccessible areas without disassembly, detection of impact events and impact damage in real-time, and monitoring of a large area with local data processing to reduce wiring.

  5. Finding of No Significant Impact: Construction, Operation, and Maintenance of a Solar Array United States Air Force Academy, Colorado

    DTIC Science & Technology

    2010-04-21

    2006·EX·L, Leather , Nice! 26k mi $17,977 #B21244A 1~-8556 ACCORD EX 11)01· V6, Auto,lthr, Moon Roof. #6302A $6,988 HEUBERGER MOTORS 475-1920...ns’~fl8~\\!Tv DODGE FIT 2009·Sport Pkg, Auto, Loaded #101399A $15,988 HEUIIEIIGER MOTORS 475-1920 Hyundai • Cars SONATALTD2008· Auto, Leather ...37Sol C <:LASS 󈧌-Every Op· bon, NAV, Black/ Tan . $27,999 #G343 WHY PAY R!TAIU SMART CHOICE AUTO 641·37Sol E3502006 $31),995 #U678 Red

  6. Occupancy-driven smart register for building energy saving (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjie; Wang, Ya S.

    2017-04-01

    The new era in energy-efficiency building is to integrate automatic occupancy detection with automated heating, ventilation and cooling (HVAC), the largest source of building energy consumption. By closing off some air vents, during certain hours of the day, up to 7.5% building energy consumption could be saved. In the past, smart vent has received increasing attention and several products have been developed and introduced to the market for building energy saving. For instance, Ecovent Systems Inc. and Keen Home Inc. have both developed smart vent registers capable of turning the vent on and off through smart phone apps. However, their products do not have on-board occupancy sensors and are therefore open-loop. Their vent control was achieved by simply positioning the vent blade through a motor and a controller without involving any smart actuation. This paper presents an innovative approach for automated vent control and automatic occupancy (human subjects) detection. We devise this approach in a smart register that has polydimethylsiloxane (PDMS) frame with embedded Shape memory alloy (SMA) actuators. SMAs belong to a class of shape memory materials (SMMs), which have the ability to `memorise' or retain their previous form when subjected to certain stimulus such as thermomechanical or magnetic variations. And it can work as actuators and be applied to vent control. Specifically, a Ni-Ti SMA strip will be pre-trained to a circular shape, wrapped with a Ni-Cr resistive wire that is coated with thermally conductive and electrically isolating material. Then, the SMA strip along with an antagonistic SMA strip will be bonded with PZT sensor and thermal sensors, to be inserted into a 3D printed mould which will be filled with silicone rubber materials. In the end, a demoulding process yields a fully integrated blade of the smart register. Several blades are installed together to form the smart register. The PZT sensors can feedback the shape of the actuator for precise shape and air flow control. The performance and the specification of the smart registers will be characterized experimentally. Its capacity of regulating airflow, forming air curtain will be demonstrated.

  7. A Review of Wearable Sensor Systems for Monitoring Body Movements of Neonates

    PubMed Central

    Chen, Hongyu; Xue, Mengru; Mei, Zhenning; Bambang Oetomo, Sidarto; Chen, Wei

    2016-01-01

    Characteristics of physical movements are indicative of infants’ neuro-motor development and brain dysfunction. For instance, infant seizure, a clinical signal of brain dysfunction, could be identified and predicted by monitoring its physical movements. With the advance of wearable sensor technology, including the miniaturization of sensors, and the increasing broad application of micro- and nanotechnology, and smart fabrics in wearable sensor systems, it is now possible to collect, store, and process multimodal signal data of infant movements in a more efficient, more comfortable, and non-intrusive way. This review aims to depict the state-of-the-art of wearable sensor systems for infant movement monitoring. We also discuss its clinical significance and the aspect of system design. PMID:27983664

  8. Study of Smart Campus Development Using Internet of Things Technology

    NASA Astrophysics Data System (ADS)

    Widya Sari, Marti; Wahyu Ciptadi, Prahenusa; Hafid Hardyanto, R.

    2017-04-01

    This paper describes the development of smart campus using Internet of Things (IoT) technology. Through smart campus, it is possible that a campus is connected via online by the outside entity, so that the teaching approach based on technology can be conducted in real time. This research was conducted in smart education, smart parking and smart room. Observation and literature studies were applied as the research method with the related theme for the sake of system design of smart campus. The result of this research is the design of smart campus system that includes smart education development, smart parking and smart room with the sake of Universitas PGRI Yogyakarta as the case study.

  9. Smart Power: New power integrated circuit technologies and their applications

    NASA Astrophysics Data System (ADS)

    Kuivalainen, Pekka; Pohjonen, Helena; Yli-Pietilae, Timo; Lenkkeri, Jaakko

    1992-05-01

    Power Integrated Circuits (PIC) is one of the most rapidly growing branches of the semiconductor technology. The PIC markets has been forecast to grow from 660 million dollars in 1990 to 1658 million dollars in 1994. It has even been forecast that at the end of the 1990's the PIC markets would correspond to the value of the whole semiconductor production in 1990. Automotive electronics will play the leading role in the development of the standard PIC's. Integrated motor drivers (36 V/4 A), smart integrated switches (60 V/30 A), solenoid drivers, integrated switch-mode power supplies and regulators are the latest standard devices of the PIC manufactures. ASIC (Application Specific Integrated Circuits) PIC solutions are needed for the same reasons as other ASIC devices: there are no proper standard devices, a company has a lot of application knowhow, which should be kept inside the company, the size of the product must be reduced, and assembly costs are wished to be reduced by decreasing the number of discrete devices. During the next few years the most probable ASIC PIC applications in Finland will be integrated solenoid and motor drivers, an integrated electronic lamp ballast circuit and various sensor interface circuits. Application of the PIC technologies to machines and actuators will strongly be increased all over the world. This means that various PIC's, either standard PIC's or full custom ASIC circuits, will appear in many products which compete with the corresponding Finnish products. Therefore the development of the PIC technologies must be followed carefully in order to immediately be able to apply the latest development in the smart power technologies and their design methods.

  10. Live video monitoring robot controlled by web over internet

    NASA Astrophysics Data System (ADS)

    Lokanath, M.; Akhil Sai, Guruju

    2017-11-01

    Future is all about robots, robot can perform tasks where humans cannot, Robots have huge applications in military and industrial area for lifting heavy weights, for accurate placements, for repeating the same task number of times, where human are not efficient. Generally robot is a mix of electronic, electrical and mechanical engineering and can do the tasks automatically on its own or under the supervision of humans. The camera is the eye for robot, call as robovision helps in monitoring security system and also can reach into the places where the human eye cannot reach. This paper presents about developing a live video streaming robot controlled from the website. We designed the web, controlling for the robot to move left, right, front and back while streaming video. As we move to the smart environment or IoT (Internet of Things) by smart devices the system we developed here connects over the internet and can be operated with smart mobile phone using a web browser. The Raspberry Pi model B chip acts as heart for this system robot, the sufficient motors, surveillance camera R pi 2 are connected to Raspberry pi.

  11. Optimal design of a magnetorheological damper used in smart prosthetic knees

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Liu, Yan-Nan; Liao, Wei-Hsin

    2017-03-01

    In this paper, a magnetorheological (MR) damper is optimally designed for use in smart prosthetic knees. The objective of optimization is to minimize the total energy consumption during one gait cycle and weight of the MR damper. Firstly, a smart prosthetic knee employing a DC motor, MR damper and springs is developed based on the kinetics characteristics of human knee during walking. Then the function of the MR damper is analyzed. In the initial stance phase and swing phase, the MR damper is powered off (off-state). While during the late stance phase, the MR damper is powered on to work as a clutch (on-state). Based on the MR damper model as well as the prosthetic knee model, the instantaneous energy consumption of the MR damper is derived in the two working states. Then by integrating in one gait cycle, the total energy consumption is obtained. Particle swarm optimization algorithm is used to optimize the geometric dimensions of MR damper. Finally, a prototype of the optimized MR damper is fabricated and tested with comparison to simulation.

  12. Smart-1 Moon Impact Operations

    NASA Technical Reports Server (NTRS)

    Ayala, Andres; Rigger, Ralf

    2007-01-01

    This paper describes the operations to control the Moon impact of the 3-axis stabilized spacecraft SMART-1 in September 2006. SMART-1 was launched on 27/09/2003. It was the first ESA mission to use an Electric Propulsion (EP) engine as the main motor to spiral out of the Earth gravity field and reach a scientific moon orbit [1]. During September 2005 the last EP maneuvers were performed using the remaining Xenon, in order to compensate for the 3rd body perturbations of the Sun and Earth. These operations extended the mission for an additional year. Afterwards the EP performance became unpredictable and low, so that no meaningful operation for the moon impact could be done. To move the predicted impact point on the 16/8/2006 into visibility from Earth an alternative Delta-V strategy was designed. Due to their alignment, the attitude thrusters could not be used directly to generate the Delta-V, so this strategy was based on controlled angular momentum biasing. Firing along the velocity vector around apolune, the remaining Hydrazine left from the attitude control budget was used, to shift the impact to the required coordinates.

  13. Smart sensorless prediction diagnosis of electric drives

    NASA Astrophysics Data System (ADS)

    Kruglova, TN; Glebov, NA; Shoshiashvili, ME

    2017-10-01

    In this paper, the discuss diagnostic method and prediction of the technical condition of an electrical motor using artificial intelligent method, based on the combination of fuzzy logic and neural networks, are discussed. The fuzzy sub-model determines the degree of development of each fault. The neural network determines the state of the object as a whole and the number of serviceable work periods for motors actuator. The combination of advanced techniques reduces the learning time and increases the forecasting accuracy. The experimental implementation of the method for electric drive diagnosis and associated equipment is carried out at different speeds. As a result, it was found that this method allows troubleshooting the drive at any given speed.

  14. Smart Fan Modules And System

    DOEpatents

    Cipolla, Thomas M.; Kaufman, Richard I.; Mok, Lawrence S.

    2003-07-15

    A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals. A fan module including: two or more individual fans, each fan having an air movement means and a motor engaged with the air movement means for accelerating air entering each of the two or more individual fans; a temperature sensor for sensing a temperature associated with the two or more fans and for outputting a first signal corresponding to the temperature; rotational speed sensor for outputting a second signal corresponding to a rotational speed of each of the two or more fans; and a processor for receiving the first and second signals and controlling the two or more individual fans based on the first and second signals.

  15. Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?

    PubMed

    Dinning, Phil G

    To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.

  16. Turning assistive machines into assistive robots

    NASA Astrophysics Data System (ADS)

    Argall, Brenna D.

    2015-01-01

    For decades, the potential for automation in particular, in the form of smart wheelchairs to aid those with motor, or cognitive, impairments has been recognized. It is a paradox that often the more severe a person's motor impairment, the more challenging it is for them to operate the very assistive machines which might enhance their quality of life. A primary aim of my lab is to address this confound by incorporating robotics autonomy and intelligence into assistive machines turning the machine into a kind of robot, and offloading some of the control burden from the user. Robots already synthetically sense, act in and reason about the world, and these technologies can be leveraged to help bridge the gap left by sensory, motor or cognitive impairments in the users of assistive machines. This paper overviews some of the ongoing projects in my lab, which strives to advance human ability through robotics autonomy.

  17. Clinical and surgical applications of smart glasses.

    PubMed

    Mitrasinovic, Stefan; Camacho, Elvis; Trivedi, Nirali; Logan, Julia; Campbell, Colson; Zilinyi, Robert; Lieber, Bryan; Bruce, Eliza; Taylor, Blake; Martineau, David; Dumont, Emmanuel L P; Appelboom, Geoff; Connolly, E Sander

    2015-01-01

    With the increased efforts to adopt health information technology in the healthcare field, many innovative devices have emerged to improve patient care, increase efficiency, and decrease healthcare costs. A recent addition is smart glasses: web-connected glasses that can present data onto the lenses and record images or videos through a front-facing camera. In this article, we review the most salient uses of smart glasses in healthcare, while also denoting their limitations including practical capabilities and patient confidentiality. Using keywords including, but not limited to, ``smart glasses'', ``healthcare'', ``evaluation'', ``privacy'', and ``development'', we conducted a search on Ovid-MEDLINE, PubMed, and Google Scholar. A total of 71 studies were included in this review. Smart glasses have been adopted into the healthcare setting with several useful applications including, hands-free photo and video documentation, telemedicine, Electronic Health Record retrieval and input, rapid diagnostic test analysis, education, and live broadcasting. In order for the device to gain acceptance by medical professionals, smart glasses will need to be tailored to fit the needs of medical and surgical sub-specialties. Future studies will need to qualitatively assess the benefits of smart glasses as an adjunct to the current health information technology infrastructure.

  18. Photoswitching of DNA Hybridization Using a Molecular Motor.

    PubMed

    Lubbe, Anouk S; Liu, Qing; Smith, Sanne J; de Vries, Jan Willem; Kistemaker, Jos C M; de Vries, Alex H; Faustino, Ignacio; Meng, Zhuojun; Szymanski, Wiktor; Herrmann, Andreas; Feringa, Ben L

    2018-04-18

    Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics, and nucleic acids, has generated exciting results in the past few years. Molecular motors offer the potential for new and more precise methods of photoregulation, due to their multistate switching cycle, unidirectionality of rotation, and helicity inversion during the rotational steps. Aided by computational studies, we designed and synthesized a photoswitchable DNA hairpin, in which a molecular motor serves as the bridgehead unit. After it was determined that motor function was not affected by the rigid arms of the linker, solid-phase synthesis was employed to incorporate the motor into an 8-base-pair self-complementary DNA strand. With the photoswitchable bridgehead in place, hairpin formation was unimpaired, while the motor part of this advanced biohybrid system retains excellent photochemical properties. Rotation of the motor generates large changes in structure, and as a consequence the duplex stability of the oligonucleotide could be regulated by UV light irradiation. Additionally, Molecular Dynamics computations were employed to rationalize the observed behavior of the motor-DNA hybrid. The results presented herein establish molecular motors as powerful multistate switches for application in biological environments.

  19. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture

    PubMed Central

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-01-01

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices. PMID:28926957

  20. Combining a Multi-Agent System and Communication Middleware for Smart Home Control: A Universal Control Platform Architecture.

    PubMed

    Zheng, Song; Zhang, Qi; Zheng, Rong; Huang, Bi-Qin; Song, Yi-Lin; Chen, Xin-Chu

    2017-09-16

    In recent years, the smart home field has gained wide attention for its broad application prospects. However, families using smart home systems must usually adopt various heterogeneous smart devices, including sensors and devices, which makes it more difficult to manage and control their home system. How to design a unified control platform to deal with the collaborative control problem of heterogeneous smart devices is one of the greatest challenges in the current smart home field. The main contribution of this paper is to propose a universal smart home control platform architecture (IAPhome) based on a multi-agent system and communication middleware, which shows significant adaptability and advantages in many aspects, including heterogeneous devices connectivity, collaborative control, human-computer interaction and user self-management. The communication middleware is an important foundation to design and implement this architecture which makes it possible to integrate heterogeneous smart devices in a flexible way. A concrete method of applying the multi-agent software technique to solve the integrated control problem of the smart home system is also presented. The proposed platform architecture has been tested in a real smart home environment, and the results indicate that the effectiveness of our approach for solving the collaborative control problem of different smart devices.

  1. Smart storage technologies applied to fresh foods: A review.

    PubMed

    Wang, Jingyu; Zhang, Min; Gao, Zhongxue; Adhikari, Benu

    2017-06-30

    Fresh foods are perishable, seasonal and regional in nature and their storage, transportation, and preservation of freshness are quite challenging. Smart storage technologies can online detection and monitor the changes of quality parameters and storage environment of fresh foods during storage, so that operators can make timely adjustments to reduce the loss. This article reviews the smart storage technologies from two aspects: online detection technologies and smartly monitoring technologies for fresh foods. Online detection technologies include electronic nose, nuclear magnetic resonance (NMR), near infrared spectroscopy (NIRS), hyperspectral imaging and computer vision. Smartly monitoring technologies mainly include some intelligent indicators for monitoring the change of storage environment. Smart storage technologies applied to fresh foods need to be highly efficient and nondestructive and need to be competitively priced. In this work, we have critically reviewed the principles, applications, and development trends of smart storage technologies.

  2. Smart materials systems through mesoscale patterning

    NASA Astrophysics Data System (ADS)

    Aksay, Ilhan A.; Groves, John T.; Gruner, Sol M.; Lee, P. C. Y.; Prud'homme, Robert K.; Shih, Wei-Heng; Torquato, Salvatore; Whitesides, George M.

    1996-02-01

    We report work on the fabrication of smart materials with two unique strategies: (1) self- assembly and (2) laser stereolithography. Both methods are akin to the processes used by biological systems. The first one is ideal for pattern development and the fabrication of miniaturized units in the submicron range and the second one in the 10 micrometer to 1 mm size range. By using these miniaturized units as building blocks, one can also produce smart material systems that can be used at larger length scales such as smart structural components. We have chosen to focus on two novel piezoceramic systems: (1) high-displacement piezoelectric actuators, and (2) piezoceramic hydrophone composites possessing negative Poisson ratio matrices. High-displacement actuators are essential in such applications as linear motors, pumps, switches, loud speakers, variable-focus mirrors, and laser deflectors. Arrays of such units can potentially be used for active vibration control of helicopter rotors as well as the fabrication of adaptive rotors. In the case of piezoceramic hydrophone composites, we utilize matrices having a negative Poisson's ratio in order to produce highly sensitive, miniaturized sensors. We envision such devices having promising new application areas such as the implantation of hydrophones in small blood vessels to monitor blood pressure. Negative Poisson ratio materials have promise as robust shock absorbers, air filters, and fasteners, and hence, can be used in aircraft and land vehicles.

  3. Smart-device environmental control systems: experiences of people with cervical spinal cord injuries.

    PubMed

    Hooper, Bethany; Verdonck, Michele; Amsters, Delena; Myburg, Michelle; Allan, Emily

    2017-09-06

    Environmental control systems (ECS) are devices that enable people with severe physical limitations to independently control household appliances. Recent advancements in the area of environmental control technology have led to the development of ECS that can be controlled through mainstream smart-devices. There is limited research on ECS within Australia and no known research addressing smart-device ECS. The current study sought to explore users' experiences with smart-device ECS within Australia. The study followed a single embedded case study method. Participants (n = 5) were existing ECS users with a cervical spinal cord injury. Data were collected through semi-structured interviews with participants, reflexive journals and field notes. An inductive approach was used to analyze the data thematically. The experience of using a smart-device ECS presented both opportunities and costs to users. The opportunities included: independent control, choice, peace of mind, connection, effective resource use, and control over smart-phone functions and applications. The associated costs included: financial, time, frustration, and technical limitations. While findings are similar to previous research into traditional ECS this study indicates that smart-device ECS also offered a new opportunity for users to access mainstream smart-device functions and applications. Future research should investigate methods and resources that practitioners could utilize to better support new users of smart-device ECS. Implications for Rehabilitation As with traditional environmental control systems, users of smart environmental control systems report increased independence, choice and control. Smart-device environmental control systems provide users with access to mainstream smart-device functions and applications, which facilitate connection to family and the outside world. The costs to the user of smart-device environmental control systems include monetary and time investment, dealing with technical limitations and resulting frustration. Prescribers and installers must consider ways to mitigate these costs experienced by users.

  4. 75 FR 61470 - Smart One Energy, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-2943-000] Smart One Energy, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket... proceeding of Smart One Energy, LLC's application for market-based rate authority, with an accompanying rate...

  5. 78 FR 7774 - SmartEnergy Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-779-000] SmartEnergy Holdings, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of SmartEnergy...

  6. Smart signal processing for an evolving electric grid

    NASA Astrophysics Data System (ADS)

    Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.

    2015-12-01

    Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.

  7. Long Island Smart Energy Corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mui, Ming

    The Long Island Power Authority (LIPA) has teamed with Stony Brook University (Stony Brook or SBU) and Farmingdale State College (Farmingdale or FSC), two branches of the State University of New York (SUNY), to create a “Smart Energy Corridor.” The project, located along the Route 110 business corridor on Long Island, New York, demonstrated the integration of a suite of Smart Grid technologies from substations to end-use loads. The Smart Energy Corridor Project included the following key features: -TECHNOLOGY: Demonstrated a full range of smart energy technologies, including substations and distribution feeder automation, fiber and radio communications backbone, advanced meteringmore » infrastructure (AM”), meter data management (MDM) system (which LIPA implemented outside of this project), field tools automation, customer-level energy management including automated energy management systems, and integration with distributed generation and plug-in hybrid electric vehicles. -MARKETING: A rigorous market test that identified customer response to an alternative time-of-use pricing plan and varying levels of information and analytical support. -CYBER SECURITY: Tested cyber security vulnerabilities in Smart Grid hardware, network, and application layers. Developed recommendations for policies, procedures, and technical controls to prevent or foil cyber-attacks and to harden the Smart Grid infrastructure. -RELIABILITY: Leveraged new Smart Grid-enabled data to increase system efficiency and reliability. Developed enhanced load forecasting, phase balancing, and voltage control techniques designed to work hand-in-hand with the Smart Grid technologies. -OUTREACH: Implemented public outreach and educational initiatives that were linked directly to the demonstration of Smart Grid technologies, tools, techniques, and system configurations. This included creation of full-scale operating models demonstrating application of Smart Grid technologies in business and residential settings. Farmingdale State College held three international conferences on energy and sustainability and Smart Grid related technologies and policies. These conferences, in addition to public seminars increased understanding and acceptance of Smart Grid transformation by the general public, business, industry, and municipalities in the Long Island and greater New York region. - JOB CREATION: Provided training for the Smart Grid and clean energy jobs of the future at both Farmingdale and Stony Brook. Stony Brook focused its “Cradle to Fortune 500” suite of economic development resources on the opportunities emerging from the project, helping to create new technologies, new businesses, and new jobs. To achieve these features, LIPA and its sub-recipients, FSC and SBU, each have separate but complementary objectives. At LIPA, the Smart Energy Corridor (1) meant validating Smart Grid technologies; (2) quantifying Smart Grid costs and benefits; and (3) providing insights into how Smart Grid applications can be better implemented, readily adapted, and replicated in individual homes and businesses. LIPA installed 2,550 AMI meters (exceeding the 500 AMI meters in the original plan), created three “smart” substations serving the Corridor, and installed additional distribution automation elements including two-way communications and digital controls over various feeders and capacitor banks. It gathered and analyzed customer behavior information on how they responded to a new “smart” TOU rate and to various levels of information and analytical tools.« less

  8. Design and testing of a novel piezoelectric micro-motor actuated by asymmetrical inertial impact driving principle.

    PubMed

    Zeng, Ping; Sun, Shujie; Li, Li'an; Xu, Feng; Cheng, Guangming

    2014-03-01

    In this paper, an asymmetrical inertial impact driving principle is first proposed, and accordingly a novel piezoelectrically actuated linear micro-motor is developed. It is driven by the inertial impact force generated by piezoelectric smart cantilever (PSC) with asymmetrical clamping locations during a driving cycle. When the PSC is excited by typical harmonic voltage signals, different equivalent stiffness will be induced due to its asymmetrical clamping locations when it is vibrating back and forth, leading to a tiny displacement difference on the two opposite directions in a cycle, and then the accumulation of tiny displacement difference will allow directional movements. A prototype of the proposed motor has been developed and investigated by means of experimental tests. The motion and dynamics characteristics of the prototype are well studied. The experimental results demonstrate that the resolution of the micro-motor is 0.02 μm, the maximum velocity is 16.87 mm/s, and the maximum loading capacity can reach up to 1 kg with a voltage of 100 V and 35 Hz.

  9. New Autonomous Motors of Metal-Organic Framework (MOF) Powered by Reorganization of Self-Assembled Peptides at interfaces

    PubMed Central

    Ikezoe, Yasuhiro; Washino, Gosuke; Uemura, Takashi; Kitagawa, Susumu; Matsui, Hiroshi

    2012-01-01

    There have developed a variety of microsystems that harness energy and convert it to mechanical motion. Here we developed new autonomous biochemical motors by integrating metal-organic framework (MOF) and self-assembling peptides. MOF is applied as an energy-storing cell that assembles peptides inside nanoscale pores of the coordination framework. The robust assembling nature of peptides enables reconfiguring their assemblies at the water-MOF interface, which is converted to fuel energy. Re-organization of hydrophobic peptides could create the large surface tension gradient around the MOF and it efficiently powers the translation motion of MOF. As a comparison, the velocity of normalized by volume for the DPA-MOF particle is faster and the kinetic energy per the unit mass of fuel is more than twice as large as the one for previous gel motor systems. This demonstration opens the new application of MOF and reconfigurable molecular self-assembly and it may evolve into the smart autonomous motor that mimic bacteria to swim and harvest target chemicals by integrating recognition units. PMID:23104155

  10. Investigation on Smart Parts with Embedded Piezoelectric Sensors via Additive Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yirong

    The goal of this proposed research is to design, fabricate, and evaluate “smart parts” with embedded sensors for energy systems. The “smart parts” will be fabricated using Electron Beam Melting (EBM) 3D printing technique with built-in piezoceramic sensors. The objectives of the proposed project are: 1) Fabricate energy system related components with embedded sensors, 2) Evaluate the mechanical properties and sensing functionalities of the “smart parts” with embedded piezoceramic sensors, and 3) Assess in-situ sensing capability of energy system parts. The second year’s research of the research is centered on fabrication of the “smart parts” with considerations of overall materialmore » property as well as demonstration of sensing functionalities. The results for the final report are presented here, including all research accomplishment, project management. Details are included such as: how the design and fabrication of sensor packaging could improve the sensor performance, demonstration of “smart parts” sensing capabilities, analysis on the elements that constitute the “smart sensors”, advanced “stop and go” fabrication process, smart injector fabrication using SLM technology, smart injector testing in combustion environments etc. Research results to date have generated several posters and papers.« less

  11. 75 FR 33611 - Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-14

    ... Smart Grid: Data Access, Third Party Use, and Privacy AGENCY: Department of Energy. ACTION: Notice of... information from smart meters, historical consumption data, and pricing and billing information. DOE will hold... electronic form--including real-time information from smart meters, historical consumption data, and pricing...

  12. Information presentation through a head-worn display (“smart glasses”) has a smaller influence on the temporal structure of gait variability during dual-task gait compared to handheld displays (paper-based system and smartphone)

    PubMed Central

    Sedighi, Alireza; Ulman, Sophia M.

    2018-01-01

    The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614

  13. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  14. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free- flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  15. Smart sensors II; Proceedings of the Seminar, San Diego, CA, July 31, August 1, 1980

    NASA Astrophysics Data System (ADS)

    Barbe, D. F.

    1980-01-01

    Topics discussed include technology for smart sensors, smart sensors for tracking and surveillance, and techniques and algorithms for smart sensors. Papers are presented on the application of very large scale integrated circuits to smart sensors, imaging charge-coupled devices for deep-space surveillance, ultra-precise star tracking using charge coupled devices, and automatic target identification of blurred images with super-resolution features. Attention is also given to smart sensors for terminal homing, algorithms for estimating image position, and the computational efficiency of multiple image registration algorithms.

  16. Impact detection and analysis/health monitoring system for composites

    NASA Astrophysics Data System (ADS)

    Child, James E.; Kumar, Amrita; Beard, Shawn; Qing, Peter; Paslay, Don G.

    2006-05-01

    This manuscript includes information from test evaluations and development of a smart event detection system for use in monitoring composite rocket motor cases for damaging impacts. The primary purpose of the system as a sentry for case impact event logging is accomplished through; implementation of a passive network of miniaturized piezoelectric sensors, logger with pre-determined force threshold levels, and analysis software. Empirical approaches to structural characterizations and network calibrations along with implementation techniques were successfully evaluated, testing was performed on both unloaded (less propellants) as well as loaded rocket motors with the cylindrical areas being of primary focus. The logged test impact data with known physical network parameters provided for impact location as well as force determination, typically within 3 inches of actual impact location using a 4 foot network grid and force accuracy within 25%of an actual impact force. The simplistic empirical characterization approach along with the robust / flexible sensor grids and battery operated portable logger show promise of a system that can increase confidence in composite integrity for both new assets progressing through manufacturing processes as well as existing assets that may be in storage or transportation.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Jason; Dobrzynski, Daniel S.

    A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less

  18. DNA nanotechnology based on i-motif structures.

    PubMed

    Dong, Yuanchen; Yang, Zhongqiang; Liu, Dongsheng

    2014-06-17

    CONSPECTUS: Most biological processes happen at the nanometer scale, and understanding the energy transformations and material transportation mechanisms within living organisms has proved challenging. To better understand the secrets of life, researchers have investigated artificial molecular motors and devices over the past decade because such systems can mimic certain biological processes. DNA nanotechnology based on i-motif structures is one system that has played an important role in these investigations. In this Account, we summarize recent advances in functional DNA nanotechnology based on i-motif structures. The i-motif is a DNA quadruplex that occurs as four stretches of cytosine repeat sequences form C·CH(+) base pairs, and their stabilization requires slightly acidic conditions. This unique property has produced the first DNA molecular motor driven by pH changes. The motor is reliable, and studies show that it is capable of millisecond running speeds, comparable to the speed of natural protein motors. With careful design, the output of these types of motors was combined to drive micrometer-sized cantilevers bend. Using established DNA nanostructure assembly and functionalization methods, researchers can easily integrate the motor within other DNA assembled structures and functional units, producing DNA molecular devices with new functions such as suprahydrophobic/suprahydrophilic smart surfaces that switch, intelligent nanopores triggered by pH changes, molecular logic gates, and DNA nanosprings. Recently, researchers have produced motors driven by light and electricity, which have allowed DNA motors to be integrated within silicon-based nanodevices. Moreover, some devices based on i-motif structures have proven useful for investigating processes within living cells. The pH-responsiveness of the i-motif structure also provides a way to control the stepwise assembly of DNA nanostructures. In addition, because of the stability of the i-motif, this structure can serve as the stem of one-dimensional nanowires, and a four-strand stem can provide a new basis for three-dimensional DNA structures such as pillars. By sacrificing some accuracy in assembly, we used these properties to prepare the first fast-responding pure DNA supramolecular hydrogel. This hydrogel does not swell and cannot encapsulate small molecules. These unique properties could lead to new developments in smart materials based on DNA assembly and support important applications in fields such as tissue engineering. We expect that DNA nanotechnology will continue to develop rapidly. At a fundamental level, further studies should lead to greater understanding of the energy transformation and material transportation mechanisms at the nanometer scale. In terms of applications, we expect that many of these elegant molecular devices will soon be used in vivo. These further studies could demonstrate the power of DNA nanotechnology in biology, material science, chemistry, and physics.

  19. All-printed smart structures: a viable option?

    NASA Astrophysics Data System (ADS)

    O'Donnell, John; Ahmadkhanlou, Farzad; Yoon, Hwan-Sik; Washington, Gregory

    2014-03-01

    The last two decades have seen evolution of smart materials and structures technologies from theoretical concepts to physical realization in many engineering fields. These include smart sensors and actuators, active damping and vibration control, biomimetics, and structural health monitoring. Recently, additive manufacturing technologies such as 3D printing and printed electronics have received attention as methods to produce 3D objects or electronic components for prototyping or distributed manufacturing purposes. In this paper, the viability of manufacturing all-printed smart structures, with embedded sensors and actuators, will be investigated. To this end, the current 3D printing and printed electronics technologies will be reviewed first. Then, the plausibility of combining these two different additive manufacturing technologies to create all-printed smart structures will be discussed. Potential applications for this type of all-printed smart structures include most of the traditional smart structures where sensors and actuators are embedded or bonded to the structures to measure structural response and cause desired static and dynamic changes in the structure.

  20. SmartWay Tractor and Trailer Logo Usage Instructions

    EPA Pesticide Factsheets

    View a presentation provides guidelines for SmartWay Partners on tractor and trailer logo usage, including SmartWay designated technical specifications and requirements, importance of logo display, how to obtain the logo, and logo placement.

  1. The SmartHand transradial prosthesis

    PubMed Central

    2011-01-01

    Background Prosthetic components and control interfaces for upper limb amputees have barely changed in the past 40 years. Many transradial prostheses have been developed in the past, nonetheless most of them would be inappropriate if/when a large bandwidth human-machine interface for control and perception would be available, due to either their limited (or inexistent) sensorization or limited dexterity. SmartHand tackles this issue as is meant to be clinically experimented in amputees employing different neuro-interfaces, in order to investigate their effectiveness. This paper presents the design and on bench evaluation of the SmartHand. Methods SmartHand design was bio-inspired in terms of its physical appearance, kinematics, sensorization, and its multilevel control system. Underactuated fingers and differential mechanisms were designed and exploited in order to fit all mechatronic components in the size and weight of a natural human hand. Its sensory system was designed with the aim of delivering significant afferent information to the user through adequate interfaces. Results SmartHand is a five fingered self-contained robotic hand, with 16 degrees of freedom, actuated by 4 motors. It integrates a bio-inspired sensory system composed of 40 proprioceptive and exteroceptive sensors and a customized embedded controller both employed for implementing automatic grasp control and for potentially delivering sensory feedback to the amputee. It is able to perform everyday grasps, count and independently point the index. The weight (530 g) and speed (closing time: 1.5 seconds) are comparable to actual commercial prostheses. It is able to lift a 10 kg suitcase; slippage tests showed that within particular friction and geometric conditions the hand is able to stably grasp up to 3.6 kg cylindrical objects. Conclusions Due to its unique embedded features and human-size, the SmartHand holds the promise to be experimentally fitted on transradial amputees and employed as a bi-directional instrument for investigating -during realistic experiments- different interfaces, control and feedback strategies in neuro-engineering studies. PMID:21600048

  2. A virtual reality system for arm and hand rehabilitation

    NASA Astrophysics Data System (ADS)

    Luo, Zhiqiang; Lim, Chee Kian; Chen, I.-Ming; Yeo, Song Huat

    2011-03-01

    This paper presents a virtual reality (VR) system for upper limb rehabilitation. The system incorporates two motion track components, the Arm Suit and the Smart Glove which are composed of a range of the optical linear encoders (OLE) and the inertial measurement units (IMU), and two interactive practice applications designed for driving users to perform the required functional and non-functional motor recovery tasks. We describe the technique details about the two motion track components and the rational to design two practice applications. The experiment results show that, compared with the marker-based tracking system, the Arm Suit can accurately track the elbow and wrist positions. The repeatability of the Smart Glove on measuring the five fingers' movement can be satisfied. Given the low cost, high accuracy and easy installation, the system thus promises to be a valuable complement to conventional therapeutic programs offered in rehabilitation clinics and at home.

  3. Wheelchair-mounted robotic arm to hold and move a communication device - final design.

    PubMed

    Barrett, Graham; Kurley, Kyle; Brauchie, Casey; Morton, Scott; Barrett, Steven

    2015-01-01

    At the 51st Rocky Mountain Bioengineering Symposium we presented a preliminary design for a robotic arm to assist an individual living within an assistive technology smart home. The individual controls much of their environment with a Dynavox Maestro communication device. However, the device obstructs the individual’s line of site when navigating about the smart home. A robotic arm was developed to move the communication device in and out of the user’s field of view as desired. The robotic arm is controlled by a conveniently mounted jelly switch. The jelly switch sends control signals to a four state (up, off, down, off) single-axis robotic arm interfaced to a DC motor by high power electronic relays. This paper describes the system, control circuitry, and multiple safety features. The arm will be delivered for use later in 2015.

  4. NDE in aerospace-requirements for science, sensors and sense.

    PubMed

    Heyman, J S

    1989-01-01

    The complexity of modern NDE (nondestructive evaluation) arises from four main factors: quantitative measurement, science, physical models for computational analysis, realistic interfacing with engineering decisions, and direct access to management priorities. Recent advances in the four factors of NDE are addressed. Physical models of acoustic propagation are presented that have led to the development of measurement technologies advancing the ability to assure that materials and structures will perform a design. In addition, a brief discussion is given of current research for future mission needs such as smart structures that sense their own health. Such advances permit projects to integrate design for inspection into their plans, bringing NDE into engineering and management priorities. The measurement focus is on ultrasonics with generous case examples. Problem solutions highlighted include critical stress in fasteners, residual stress in steel, NDE laminography, and solid rocket motor NDE.

  5. NDE in aerospace - Requirements for science, sensors and sense

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1989-01-01

    The complexity of modern nondestructive evaluation (NDE) arises from four main factors: quantitative measurement science, physical models for computational analysis, realistic interfacing with engineering decisions, and direct access to management priorities. Recent advances in the four factors of NDE are addressed. Physical models of acoustic propagation are presented that have led to the development of measurement technologies advancing the ability to assure that materials and structures will perform as designed. In addition, a brief discussion is given of current research for future mission needs such as smart structures that sense their own health. Such advances permit projects to integrate design for inspection into their plans, bringing NDE into engineering and management priorities. The measurement focus is on ultrasonics with generous case examples. Problem solutions highlighted include critical stress in fasteners, residual stress in steel, NDE laminography, and solid rocket motor NDE.

  6. Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita

    2005-01-01

    Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.

  7. Quantification of the Upper Extremity Motor Functions of Stroke Patients Using a Smart Nine-Hole Peg Tester

    PubMed Central

    Marik, Anikó Rita; Fazekas, Gábor

    2018-01-01

    This paper introduces a smart nine-hole peg tester (s-9HPT), which comprises a standard nine-hole peg test pegboard, but with light-emitting diodes (LEDs) next to each hole. The s-9HPT still supports the traditional nine-hole peg test operating mode, in which the order of the peg placement and removal can be freely chosen. Considering this, the s-9HPT was used in lab research to analyze the traditional procedure and possible new procedures. As this analysis required subjects with similar levels of dexterity, measurement data from 16 healthy subjects (seven females, nine males, 25–80 years old) were used. We consequently found that illuminating the LEDs in various patterns facilitated guided tests of diverse complexity levels. Next, to demonstrate the clinical application of the s-9HPT, the improvement in the hand dexterity of 12 hospitalized stroke patients (45–80 years old, six females and six males) was monitored during their rehabilitation. Here, we used traditional and guided tests validated by healthy subjects. Consequently, improvements were found to be patient specific. At the beginning of rehabilitation, traditional tests suitably indicate improvements, while guided tests are beneficial following improvements in motor functions. Further, the guided tests motivated certain patients, meaning the rehabilitation was more effective for these individuals. PMID:29850001

  8. Using Smart City Technology to Make Healthcare Smarter.

    PubMed

    Cook, Diane J; Duncan, Glen; Sprint, Gina; Fritz, Roschelle

    2018-04-01

    Smart cities use information and communication technologies (ICT) to scale services include utilities and transportation to a growing population. In this article we discuss how smart city ICT can also improve healthcare effectiveness and lower healthcare cost for smart city residents. We survey current literature and introduce original research to offer an overview of how smart city infrastructure supports strategic healthcare using both mobile and ambient sensors combined with machine learning. Finally, we consider challenges that will be faced as healthcare providers make use of these opportunities.

  9. Gamification in the context of smart cities

    NASA Astrophysics Data System (ADS)

    Zica, M. R.; Ionica, A. C.; Leba, M.

    2018-01-01

    The recent emergence of smart cities is highly supported by the development of IT and IoT technologies. Nevertheless, a smart city needs to be built to meet the needs and requirements of its citizens. In order to build a smart city it is necessary to understand the benefits of such a city. A smart city is, beyond technology, populated by people. A smart city can be raised by its citizens’ contribution, and gamification is the means to motivate them. In this paper we included gamification techniques in the stage of capturing the citizens’ requirements for building a smart city. The system proposed in the paper is to create an application that allows the building of a virtual smart city customized by each user. From this virtual city, the most relevant features are extracted.

  10. Smart roadside initiative : user manual.

    DOT National Transportation Integrated Search

    2015-09-01

    This document provides the user instructions for the Smart Roadside Initiative (SRI) applications including mobile and web-based SRI applications. These applications include smartphone-enabled information exchange and notification, and software compo...

  11. Smart Grid Information Clearinghouse (SGIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy &more » regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.« less

  12. EDITORIAL: Adaptive and active materials: Selected papers from the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 11) (Scottsdale, AZ, USA, 18-21 September 2011) Adaptive and active materials: Selected papers from the ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 11) (Scottsdale, AZ, USA, 18-21 September 2011)

    NASA Astrophysics Data System (ADS)

    Brei, Diann

    2012-09-01

    The fourth annual meeting of the ASME/AIAA Smart Materials, Adaptive Structures and Intelligent Systems Conference (SMASIS) took place in sunny Scottsdale, Arizona. Each year we strive to grow and offer new experiences. This year we held a special Guest Symposium on Sustainability along with two focused topic tracks on energy harvesting and active composites to encourage cross-fertilization between these important fields and our community. This cross-disciplinary emphasis was reflected in keynote talks by Dr Wayne Brown, President and founder of Dynalloy, Inc., 'Cross-Discipline Sharing'; Dr Brad Allenby, Arizona State University, 'You Want the Future? You can't Handle the Future!'; and Professor Aditi Chattopadhyay, Arizona State University, 'A Multidisciplinary Approach to Structural Health Monitoring and Prognosis'. SMASIS continues to grow our community through both social and technical interchange. The conference location, the exotic Firesky Resort and Spa, exemplified the theme of our Guest Symposium on Sustainability, being the only Green Seal certified resort in Arizona, and highlighting four elements thought to represent all that exist: fire, water, earth and air. Several special events were held around this theme including the night at the oasis reception sponsored by General Motors, sustainability bingo, smart trivia and student networking lunches, and an Arizona pow-wow with a spectacular Indian hoop dance. Our student and young professional development continues to grow strong with best paper and hardware competitions, scavenger student outing and games night. We are very proud that our students and young professionals are always seeking out ways to give back to the community, including organizing outreach to local high school talent. We thank all of our sponsors who made these special events possible. We hope that these social events provided participants with the opportunity to expand their own personal community and broaden their horizons. Our ultimate goal was to provide a friendly, casual southwestern forum for the exchange of the 'hottest' ideas and latest results. Our sincere appreciation goes to all the presenters for choosing to share their very best work at this conference. SMASIS is divided into seven symposia which span basic research, applied technological design and development, and industrial and governmental integrated system and application demonstrations: SYMP 1 Multifunctional Materials; SYMP 2 Active Materials, Mechanics and Behavior; SYMP 3 Modeling, Simulation and Control; SYMP 4 Enabling Technologies and Integrated System Design; SYMP 5 Structural Health Monitoring/NDE; SYMP 6 Bio-inspired Smart Materials and Structures; and SYMP 7 Guest Symposium on Sustainability. In addition, the conference introduced a new student and young professional development symposium. Authors of papers in the materials area (symposia 1, 2 and 6) were invited to write a full journal article on their presentation topic for publication in this Special Issue of Smart Materials and Structures. This collection of papers demonstrates the exceptional quality and originality of the conference presentations. We appreciate their efforts in producing this collection of highly relevant articles on smart materials.

  13. Smart Radiation Therapy Biomaterials.

    PubMed

    Ngwa, Wilfred; Boateng, Francis; Kumar, Rajiv; Irvine, Darrell J; Formenti, Silvia; Ngoma, Twalib; Herskind, Carsten; Veldwijk, Marlon R; Hildenbrand, Georg Lars; Hausmann, Michael; Wenz, Frederik; Hesser, Juergen

    2017-03-01

    Radiation therapy (RT) is a crucial component of cancer care, used in the treatment of over 50% of cancer patients. Patients undergoing image guided RT or brachytherapy routinely have inert RT biomaterials implanted into their tumors. The single function of these RT biomaterials is to ensure geometric accuracy during treatment. Recent studies have proposed that the inert biomaterials could be upgraded to "smart" RT biomaterials, designed to do more than 1 function. Such smart biomaterials include next-generation fiducial markers, brachytherapy spacers, and balloon applicators, designed to respond to stimuli and perform additional desirable functions like controlled delivery of therapy-enhancing payloads directly into the tumor subvolume while minimizing normal tissue toxicities. More broadly, smart RT biomaterials may include functionalized nanoparticles that can be activated to boost RT efficacy. This work reviews the rationale for smart RT biomaterials, the state of the art in this emerging cross-disciplinary research area, challenges and opportunities for further research and development, and a purview of potential clinical applications. Applications covered include using smart RT biomaterials for boosting cancer therapy with minimal side effects, combining RT with immunotherapy or chemotherapy, reducing treatment time or health care costs, and other incipient applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. San Diego field operational test of smart call boxes : technical aspects

    DOT National Transportation Integrated Search

    1997-01-01

    Smart call boxes are devices similar to those used as emergency call boxes in California. The basic call box consists of a microprocessor, a cellular transceiver, and a solar power source. The smart call box system also includes data-collection devic...

  15. Hearing results using the SMart piston prosthesis.

    PubMed

    Fayad, Jose N; Semaan, Maroun T; Meier, Josh C; House, John W

    2009-12-01

    SMart, a newly introduced piston prosthesis for stapedotomy, is a nitinol-based, heat-activated, self-crimping prosthesis. We review our hearing results and postoperative complications using this self-crimped piston prosthesis and compare them with those obtained using stainless steel or platinum piston prostheses. Audiometric results using the SMart piston are identical to those obtained using a conventional piston prosthesis. Retrospective chart review. Private neurotologic tertiary referral center. The 416 ears reviewed included 306 with a SMart prosthesis and 110 conventional prostheses. 61% were women. Mean follow-up time was 5.6 (standard deviation [SD], 6.3 mo) and 6.9 months (SD, 7.0 mo) for the 2 groups, respectively. Stapedotomy using the SMart or a conventional (non-SMart) prosthesis. Audiometric hearing results, including pure-tone average (PTA) and air-bone gap (ABG), and prevalence of postoperative complications. Mean postoperative PTA was 32.6 (SD, 16.8) dB for the SMart group and 29.4 (SD, 13.5) dB for the non-SMart group, with ABGs of 7.6 (SD, 8.9) and 6.0 (SD, 5.2) dB, respectively. Mean change (decrease) in ABG was 18.7 (SD, 13.1) dB for the SMart group and 19.9 (SD, 10.3) dB for the non-SMart group. High-frequency bone PTAs showed overclosure of 2.0 (SD, 7.9) dB for the SMart group and 3.6 (SD, 8.6) dB for the non-SMart group. Postoperative vertigo and tinnitus were infrequent. No significant differences in these audiometric outcomes or complication rates were noted between groups. There was no significant difference in rate of gap closure to within 10 dB (78.3 versus 84.2%, SMart and non-SMart, respectively) or 20 dB (94.2 and 98.0%). Compared with conventional stapes prostheses, the nitinol-based SMart is a safe and reliable stapes prosthesis that eliminates manual crimping without significantly altering the audiometric outcome. Complications are rare, but longer follow-up is needed before establishing long-term stability.

  16. tranSMART: An Open Source and Community-Driven Informatics and Data Sharing Platform for Clinical and Translational Research.

    PubMed

    Athey, Brian D; Braxenthaler, Michael; Haas, Magali; Guo, Yike

    2013-01-01

    tranSMART is an emerging global open source public private partnership community developing a comprehensive informatics-based analysis and data-sharing cloud platform for clinical and translational research. The tranSMART consortium includes pharmaceutical and other companies, not-for-profits, academic entities, patient advocacy groups, and government stakeholders. The tranSMART value proposition relies on the concept that the global community of users, developers, and stakeholders are the best source of innovation for applications and for useful data. Continued development and use of the tranSMART platform will create a means to enable "pre-competitive" data sharing broadly, saving money and, potentially accelerating research translation to cures. Significant transformative effects of tranSMART includes 1) allowing for all its user community to benefit from experts globally, 2) capturing the best of innovation in analytic tools, 3) a growing 'big data' resource, 4) convergent standards, and 5) new informatics-enabled translational science in the pharma, academic, and not-for-profit sectors.

  17. Use of SMART Learning Objectives to Introduce Continuing Professional Development Into the Pharmacy Curriculum

    PubMed Central

    Khandoobhai, Anand; Leadon, Kim

    2012-01-01

    Objective. To determine whether a 2-year continuing professional development (CPD) training program improved first-year (P1) and second-year (P2) pharmacy students’ ability to write SMART (specific, measurable, achievable, relevant, and timed) learning objectives. Design. First-year students completed live or online CPD training, including creating portfolios and writing SMART objectives prior to their summer introductory pharmacy practice experience (IPPE). In year 2, P1 and P2 students were included. SMART learning objectives were graded and analyzed. Assessment. On several objectives, the 2011 P1 students (n = 130) scored higher than did the P2 cohort (n = 105). In 2011, P2 students outscored their own performance in 2010. In 2011, P1 students who had been trained in online modules performed the same as did live-session trainees with respect to SMART objectives. Conclusion. With focused online or live training, students are capable of incorporating principles of CPD by writing SMART learning objectives. PMID:22611277

  18. Smart Grid Communications Security Project, U.S. Department of Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, Frank

    There were four groups that worked on this project in different areas related to Smart Girds and Security. They included faculty and students from electric computer and energy engineering, law, business and sociology. The results of the work are summarized in a verity of reports, papers and thesis. A major report to the Governor of Colorado’s energy office with contributions from all the groups working on this project is given bellow. Smart Grid Deployment in Colorado: Challenges and Opportunities, Report to Colorado Governor’s Energy Office and Colorado Smart Grid Task Force(2010) (Kevin Doran, Frank Barnes, and Puneet Pasrich, eds.) Thismore » report includes information on the state of the grid cyber security, privacy, energy storage and grid stability, workforce development, consumer behavior with respect to the smart grid and safety issues.« less

  19. Smart growth community design and physical activity in children.

    PubMed

    Jerrett, Michael; Almanza, Estela; Davies, Molly; Wolch, Jennifer; Dunton, Genevieve; Spruitj-Metz, Donna; Ann Pentz, Mary

    2013-10-01

    Physical inactivity is a leading cause of death and disease globally. Research suggests physical inactivity might be linked to community designs that discourage active living. A "smart growth" community contains features likely to promote active living (walkability, green space, mixed land use), but objective evidence on the potential benefits of smart growth communities is limited. To assess whether living in a smart growth community was associated with increased neighborhood-centered leisure-time physical activity in children aged 8-14 years, compared to residing in a conventional community (i.e., one not designed according to smart growth principles). Participants were recruited from a smart growth community, "The Preserve," located in Chino, California, and eight conventional communities within a 30-minute drive of The Preserve. The analytic sample included 147 children. During 2009-2010, each child carried an accelerometer and a GPS for 7 days to ascertain physical activity and location information. Negative binomial models were used to assess the association between residence in the smart growth community and physical activity. Analyses were conducted in 2012. Smart growth community residence was associated with a 46% increase in the proportion of neighborhood moderate-to-vigorous physical activity (MVPA) as compared to conventional community residence. This analysis included neighborhood activity data collected during the school season and outside of school hours and home. Counterfactual simulations with model parameters suggested that smart growth community residence could add 10 minutes per day of neighborhood MVPA. Living in a smart growth community may increase local physical activity in children as compared to residence in conventionally designed communities. © 2013 American Journal of Preventive Medicine.

  20. Smart-Glasses: Exposing and Elucidating the Ethical Issues.

    PubMed

    Hofmann, Bjørn; Haustein, Dušan; Landeweerd, Laurens

    2017-06-01

    The objective of this study is to provide an overview over the ethical issues relevant to the assessment, implementation, and use of smart-glasses. The purpose of the overview is to facilitate deliberation, decision making, and the formation of knowledge and norms for this emerging technology. An axiological question-based method for human cognitive enhancement including an extensive literature search on smart-glasses is used to identify relevant ethical issues. The search is supplemented with relevant ethical issues identified in the literature on human cognitive enhancement (in general) and in the study of the technical aspects of smart-glasses. Identified papers were subject to traditional content analysis: 739 references were identified of which 247 were regarded as relevant for full text examinations, and 155 were included in the study. A wide variety of ethical issues with smart-glasses have been identified, such as issues related to privacy, safety, justice, change in human agency, accountability, responsibility, social interaction, power and ideology. Smart-glasses are envisioned to change individual human identity and behavior as well as social interaction. Taking these issues into account appears to be relevant when developing, deliberating, deciding on, implementing, and using smart-glasses.

  1. Designing components using smartMOVE electroactive polymer technology

    NASA Astrophysics Data System (ADS)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  2. Smart Grid | Climate Neutral Research Campuses | NREL

    Science.gov Websites

    begun to build smart grids. Most operate electricity grids that include power generation; load control plant managers use these communications for energy management and load shedding, which are among the top familiar with equipment interoperability, central dispatch, and load shedding. These are common in smart

  3. Smart Partnerships to Increase Equity in Education

    ERIC Educational Resources Information Center

    Leahy, Margaret; Davis, Niki; Lewin, Cathy; Charania, Amina; Nordin, Hasniza; Orlic, Davor; Butler, Deirdre; Lopez-Fernadez, Olatz

    2016-01-01

    This exploratory analysis of smart partnerships identifies the risk of increasing the digital divide with the deployment of data analytics. Smart partnerships in education appear to include a process of evolution into a synergy of strategic and holistic approaches that enhance the quality of education with digital technologies, harnessing ICT…

  4. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  5. Smart learning services based on smart cloud computing.

    PubMed

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user's behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)--smart pull, smart prospect, smart content, and smart push--concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users' needs by collecting and analyzing users' behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users' behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users.

  6. Smart Learning Services Based on Smart Cloud Computing

    PubMed Central

    Kim, Svetlana; Song, Su-Mi; Yoon, Yong-Ik

    2011-01-01

    Context-aware technologies can make e-learning services smarter and more efficient since context-aware services are based on the user’s behavior. To add those technologies into existing e-learning services, a service architecture model is needed to transform the existing e-learning environment, which is situation-aware, into the environment that understands context as well. The context-awareness in e-learning may include the awareness of user profile and terminal context. In this paper, we propose a new notion of service that provides context-awareness to smart learning content in a cloud computing environment. We suggest the elastic four smarts (E4S)—smart pull, smart prospect, smart content, and smart push—concept to the cloud services so smart learning services are possible. The E4S focuses on meeting the users’ needs by collecting and analyzing users’ behavior, prospecting future services, building corresponding contents, and delivering the contents through cloud computing environment. Users’ behavior can be collected through mobile devices such as smart phones that have built-in sensors. As results, the proposed smart e-learning model in cloud computing environment provides personalized and customized learning services to its users. PMID:22164048

  7. Smart homes for people with neurological disability: state of the art.

    PubMed

    Gentry, Tony

    2009-01-01

    Smart home technology can include environmental adaptations that allow remote control of home appliances, electronic communication, safety monitoring and automated task cueing, any of which may prove useful for people with neurological disability. This article outlines currently available smart home technologies, examines the burgeoning research in this area, discusses clinical and consumer resources and reviews ethical, funding and professional training considerations for smart home applications. I conclude that more outcomes-based research and collaboration among stakeholders is essential in order to establish guidance for designing, selecting and implementing individualized smart home solutions for those with neurological disability.

  8. Graphene-based smart materials

    NASA Astrophysics Data System (ADS)

    Yu, Xiaowen; Cheng, Huhu; Zhang, Miao; Zhao, Yang; Qu, Liangti; Shi, Gaoquan

    2017-09-01

    The high specific surface area and the excellent mechanical, electrical, optical and thermal properties of graphene make it an attractive component for high-performance stimuli-responsive or 'smart' materials. Complementary to these inherent properties, functionalization or hybridization can substantially improve the performance of these materials. Typical graphene-based smart materials include mechanically exfoliated perfect graphene, chemical vapour deposited high-quality graphene, chemically modified graphene (for example, graphene oxide and reduced graphene oxide) and their macroscopic assemblies or composites. These materials are sensitive to a range of stimuli, including gas molecules or biomolecules, pH value, mechanical strain, electrical field, and thermal or optical excitation. In this Review, we outline different graphene-based smart materials and their potential applications in actuators, chemical or strain sensors, self-healing materials, photothermal therapy and controlled drug delivery. We also introduce the working mechanisms of graphene-based smart materials and discuss the challenges facing the realization of their practical applications.

  9. A dynamic vulnerability evaluation model to smart grid for the emergency response

    NASA Astrophysics Data System (ADS)

    Yu, Zhen; Wu, Xiaowei; Fang, Diange

    2018-01-01

    Smart grid shows more significant vulnerability to natural disasters and external destroy. According to the influence characteristics of important facilities suffered from typical kinds of natural disaster and external destroy, this paper built a vulnerability evaluation index system of important facilities in smart grid based on eight typical natural disasters, including three levels of static and dynamic indicators, totally forty indicators. Then a smart grid vulnerability evaluation method was proposed based on the index system, including determining the value range of each index, classifying the evaluation grade standard and giving the evaluation process and integrated index calculation rules. Using the proposed evaluation model, it can identify the most vulnerable parts of smart grid, and then help adopting targeted emergency response measures, developing emergency plans and increasing its capacity of disaster prevention and mitigation, which guarantee its safe and stable operation.

  10. Learn about Smart Sectors

    EPA Pesticide Factsheets

    about the Smart Sectors program including: Meaningful Collaboration with Regulated Sectors; Sensible Policies to Improve Environmental Outcomes; Better EPA Practices and Streamlined Operations; Historical Context

  11. Cognitive Symptom Management and Rehabilitation Therapy (CogSMART) for veterans with traumatic brain injury: pilot randomized controlled trial.

    PubMed

    Twamley, Elizabeth W; Jak, Amy J; Delis, Dean C; Bondi, Mark W; Lohr, James B

    2014-01-01

    Traumatic brain injury (TBI) can result in cognitive impairments and persistent postconcussive symptoms that limit functional recovery, including return to work. We evaluated a 12 wk compensatory cognitive training intervention (Cognitive Symptom Management and Rehabilitation Therapy [CogSMART]) in the context of supported employment for Veterans with mild to moderate TBI. Participants were randomly assigned to receive 12 wk of supported employment plus CogSMART or enhanced supported employment that controlled for therapist attention (control). CogSMART sessions were delivered by the employment specialist and included psychoeducation regarding TBI; strategies to improve sleep, fatigue, headaches, and tension; and compensatory cognitive strategies in the domains of prospective memory, attention, learning and memory, and executive functioning. Compared with controls, those assigned to supported employment plus CogSMART demonstrated significant reductions in postconcussive symptoms (Cohen d = 0.97) and improvements in prospective memory functioning (Cohen d = 0.72). Effect sizes favoring CogSMART for posttraumatic stress disorder symptom severity, depressive symptom severity, and attainment of competitive work within 14 wk were in the small to medium range (Cohen d = 0.35-0.49). Those who received CogSMART rated the intervention highly. Results suggest that adding CogSMART to supported employment may improve postconcussive symptoms and prospective memory. These effects, as well as smaller effects on psychiatric symptoms and ability to return to work, warrant replication in a larger trial.

  12. Design and Analysis of an Enhanced Patient-Server Mutual Authentication Protocol for Telecare Medical Information System.

    PubMed

    Amin, Ruhul; Islam, S K Hafizul; Biswas, G P; Khan, Muhammad Khurram; Obaidat, Mohammad S

    2015-11-01

    In order to access remote medical server, generally the patients utilize smart card to login to the server. It has been observed that most of the user (patient) authentication protocols suffer from smart card stolen attack that means the attacker can mount several common attacks after extracting smart card information. Recently, Lu et al.'s proposes a session key agreement protocol between the patient and remote medical server and claims that the same protocol is secure against relevant security attacks. However, this paper presents several security attacks on Lu et al.'s protocol such as identity trace attack, new smart card issue attack, patient impersonation attack and medical server impersonation attack. In order to fix the mentioned security pitfalls including smart card stolen attack, this paper proposes an efficient remote mutual authentication protocol using smart card. We have then simulated the proposed protocol using widely-accepted AVISPA simulation tool whose results make certain that the same protocol is secure against active and passive attacks including replay and man-in-the-middle attacks. Moreover, the rigorous security analysis proves that the proposed protocol provides strong security protection on the relevant security attacks including smart card stolen attack. We compare the proposed scheme with several related schemes in terms of computation cost and communication cost as well as security functionalities. It has been observed that the proposed scheme is comparatively better than related existing schemes.

  13. Occupant-responsive optimal control of smart facade systems

    NASA Astrophysics Data System (ADS)

    Park, Cheol-Soo

    Windows provide occupants with daylight, direct sunlight, visual contact with the outside and a feeling of openness. Windows enable the use of daylighting and offer occupants a outside view. Glazing may also cause a number of problems: undesired heat gain/loss in winter. An over-lit window can cause glare, which is another major complaint by occupants. Furthermore, cold or hot window surfaces induce asymmetric thermal radiation which can result in thermal discomfort. To reduce the potential problems of window systems, double skin facades and airflow window systems have been introduced in the 1970s. They typically contain interstitial louvers and ventilation openings. The current problem with double skin facades and airflow windows is that their operation requires adequate dynamic control to reach their expected performance. Many studies have recognized that only an optimal control enables these systems to truly act as active energy savers and indoor environment controllers. However, an adequate solution for this dynamic optimization problem has thus far not been developed. The primary objective of this study is to develop occupant responsive optimal control of smart facade systems. The control could be implemented as a smart controller that operates the motorized Venetian blind system and the opening ratio of ventilation openings. The objective of the control is to combine the benefits of large windows with low energy demands for heating and cooling, while keeping visual well-being and thermal comfort at an optimal level. The control uses a simulation model with an embedded optimization routine that allows occupant interaction via the Web. An occupant can access the smart controller from a standard browser and choose a pre-defined mode (energy saving mode, visual comfort mode, thermal comfort mode, default mode, nighttime mode) or set a preferred mode (user-override mode) by moving preference sliders on the screen. The most prominent feature of these systems is the capability of dynamically reacting to the environmental input data through real-time optimization. The proposed occupant responsive optimal control of smart facade systems could provide a breakthrough in this under-developed area and lead to a renewed interest in smart facade systems.

  14. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  15. Health at hand: A systematic review of smart watch uses for health and wellness.

    PubMed

    Reeder, Blaine; David, Alexandria

    2016-10-01

    Smart watches have the potential to support health in everyday living by: enabling self-monitoring of personal activity; obtaining feedback based on activity measures; allowing for in-situ surveys to identify patterns of behavior; and supporting bi-directional communication with health care providers and family members. However, smart watches are an emerging technology and research with these devices is at a nascent stage. We conducted a systematic review of smart watch studies that engaged people in their use by searching PubMed, Embase, IEEE XPlore and ACM Digital libraries. Participant demographics, device features, watch applications and methods, and technical challenges were abstracted from included studies. Seventy-three studies were returned in the search. Seventeen studies published were included. Included studies were published from 2014 to 2016, with the exception of one published in 2011. Most studies employed the use of consumer-grade smart watches (14/17, 82%). Patient-related studies focused on activity monitoring, heart rate monitoring, speech therapy adherence, diabetes self-management, and detection of seizures, tremors, scratching, eating, and medication-taking behaviors. Most patient-related studies enrolled participants with few exclusion criteria to validate smart watch function (10/17, 58%). Only studies that focused on Parkinson's disease, epilepsy, and diabetes management enrolled persons living with targeted conditions. One study focused on nursing work in the ICU and one focused on CPR training for laypeople. Consumer-grade smart watches have penetrated the health research space rapidly since 2014. Smart watch technical function, acceptability, and effectiveness in supporting health must be validated in larger field studies that enroll actual participants living with the conditions these devices target. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Smart Cities and the Idea of Smartness in Urban Development - A Critical Review

    NASA Astrophysics Data System (ADS)

    Husár, Milan; Ondrejička, Vladimír; Ceren Varış, Sıla

    2017-10-01

    The concept of smart cities is becoming another mantra for both developing and developed cities. For instance, Indian government in 2015 announced its objective to build one hundred smart cities all over the country. They clearly stated that they are choosing smart development as the underlying concept for their future growth as a way to foster economic development in smart way to avoid the paths of rapid industrialization and pollution of cities as it took place in Europe and United States. The first of these smart cities, Dholera, is already under construction and it attracts journalists and urban planners from all over the world. The aim of this paper is to critically discuss the theoretical backgrounds and the practices of smart cities and examine the ways the concept is implemented. The paper is based on thorough study of literature and examining the two case studies of Dholera (India) and Songdo (South Korea). Smart city is a contested concept without a unified definition. It stems from the idea of digital and information city promoted using information and communication technologies (ICT) to develop cities. By installation of ICT municipalities obtain large sets of data which are then transformed into effective urban policies. One of the pilot projects of this kind was Rio de Janeiro and building the Center of Operations by IBM Company. City made a great investment into the smart information system before two huge events took place - FIFA World Cup in 2014 and Olympic Games in 2016. The project raised many questions including whether and how it improved the life of its citizens and in what way it made the city smart. The other definition of smart city is the idea of smartness in city development in broader sense. It focuses on smart use of resources, smart and effective management and smart social inclusion. Within this view, the ICTs are one component of the concept, by no means its bread and butter. Technologies can be used in a variety of ways. Problem occurs when smart city is viewed as means to make investments from city budgets by any price, by promoting use of smart technologies as the only way forward, as necessity. Many companies, including technological giants IBM and CISCO already participate on many smart city projects supplying technologies for smart city projects. In this study, we are looking into two case studies, the city of Dholera in India and city of Songdo in South Korea, both pompous large scale projects. Smart City technologies are growing market which is projected to be annually worth 20 billion dollars by 2020 [19], with IBM participating in 2000 projects accounting for 3 billion dollars [19]. There are many concerns about these developments, among them the issue of equity, whose purposes the projects are serving, how these initiatives are developing cities and the general idea of smartness in urban context. The research concludes that the ambiguity of smart city definition allowing multiple interpretations is frequently bent and used to promote the lobbying of strong players in cities and in private sector.

  17. ETHICS OF SMART HOUSE WELFARE TECHNOLOGY FOR OLDER ADULTS: A SYSTEMATIC LITERATURE REVIEW.

    PubMed

    Sánchez, Veralia Gabriela; Taylor, Ingrid; Bing-Jonsson, Pia Cecilie

    2017-01-01

    The University College of Southeast Norway has an on-going project to develop a smart house welfare system to allow older adults and people with disabilities to remain in their homes for as long as they wish in safe, dignified, living conditions. This article reviews reported ethical challenges to implementing smart houses for older adults. A systematic literature review identified twenty-four articles in English, French, Spanish, and Norwegian, which were analyzed and synthesized using Hofmann's question list to investigate the reported ethical challenges. Smart houses offer a promising way to improve access to home care for older adults and people with disabilities. However, important ethical challenges arise when implementing smart houses, including cost-effectiveness, privacy, autonomy, informed consent, dignity, safety, and trust. The identified ethical challenges are important to consider when developing smart house systems. Due to the limitations of smart house technology, designers and users should be mindful that smart houses can achieve a safer and more dignified life-style but cannot solve all the challenges related to ageing, disabilities, and disease. At some point, smart houses can no longer help persons as they develop needs that smart houses cannot meet.

  18. Being "SMART" About Adolescent Conduct Problems Prevention: Executing a SMART Pilot Study in a Juvenile Diversion Agency.

    PubMed

    August, Gerald J; Piehler, Timothy F; Bloomquist, Michael L

    2016-01-01

    The development of adaptive treatment strategies (ATS) represents the next step in innovating conduct problems prevention programs within a juvenile diversion context. Toward this goal, we present the theoretical rationale, associated methods, and anticipated challenges for a feasibility pilot study in preparation for implementing a full-scale SMART (i.e., sequential, multiple assignment, randomized trial) for conduct problems prevention. The role of a SMART design in constructing ATS is presented. The SMART feasibility pilot study includes a sample of 100 youth (13-17 years of age) identified by law enforcement as early stage offenders and referred for precourt juvenile diversion programming. Prior data on the sample population detail a high level of ethnic diversity and approximately equal representations of both genders. Within the SMART, youth and their families are first randomly assigned to one of two different brief-type evidence-based prevention programs, featuring parent-focused behavioral management or youth-focused strengths-building components. Youth who do not respond sufficiently to brief first-stage programming will be randomly assigned a second time to either an extended parent- or youth-focused second-stage programming. Measures of proximal intervention response and measures of potential candidate tailoring variables for developing ATS within this sample are detailed. Results of the described pilot study will include information regarding feasibility and acceptability of the SMART design. This information will be used to refine a subsequent full-scale SMART. The use of a SMART to develop ATS for prevention will increase the efficiency and effectiveness of prevention programing for youth with developing conduct problems.

  19. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Salvador B.

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, andmore » secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.« less

  20. Smart Training: The Manager's Guide to Training for Improved Performance.

    ERIC Educational Resources Information Center

    Carr, Clay

    This book describes and advocates "smart training," an approach to on-the-job training that helps employees gain competence and empowers them to act to satisfy customers. The book is organized in 16 chapters grouped into 4 parts. Part 1 outlines the basics of smart training, including its performance base, the need for initial analysis,…

  1. Design of a 4D Printing System Using Thermal Sensitive Smart Materials and Photoactivated Shape Changing Polymers

    NASA Astrophysics Data System (ADS)

    Leist, Steven Kyle

    4D printing is an emerging additive manufacturing technology that combines 3D printing with smart materials. Current 3D printing technology can print objects with a multitude of materials; however, these objects are usually static, geometrically permanent, and not suitable for multi-functional use. The 4D printed objects can change their shape over time when exposed to different external stimuli such as heat, pressure, magnetic fields, or moisture. In this research, heat and light reactive smart materials are explored as a 4D printing materials. Synthetization of a material that actuates when exposed to stimulus can be a very difficult process, and merging that same material with the ability to be 3D printed can be further difficult. A common 3D printing thermoplastic, poly(lactic) acid (PLA), is used as a shape memory material that is 3D printed using a fused deposition machine (FDM) and combined with nylon fabric for the exploration of smart textiles. The research shows that post printed PLA possesses shape memory properties depending on the thickness of the 3D printed material and the activation temperature. PLA can be thermomechanically trained into temporary shapes and return to its original shape when exposed to high temperatures. PLA can be 3D printed onto nylon fabrics for the creation of the smart textiles. Additionally, a photoisomerable shape changing material is explored because light activation is wireless, controllable, focusable, abundant, causes rapid shape change of the smart material, and induces reversible shape change in the material. This study supports the fundamental research to generate knowledge needed for synthesis of a novel azobenzene shape changing polymer (SCP) and integrating this smart material into objects printed with a 4D printing process using syringe printing. Multiple versions of azobenzene SCP are synthesized that actuate when exposed to 365 nm and 455 nm light. Two SCPs, MeOABHx and DR1Hx, are selected for the 4D printing research because of their ability to photoisomerize at room temperature and 3D printability. The physical properties of these polymers are characterized, photomechanical bending tests are performed, and the photo-generated stress is measured using a dynamic mechanical analyzer (DMA). The SCPs are deposited onto a passive layer to create bilayer films in order to actuate. The photomechanical efficiency of bilayer films is evaluated depending on the thickness of the passive layer film, type of azobenzene SCP, wavelength of the light source, intensity of the light source, and distance between the light and films. 4D printing can be used to streamline the design and manufacturing process of actuating parts. Complex heavy parts can be removed from actuation systems such as onboard power storage, motors, sensors, and processors by embedding these capabilities into the material themselves. This reduces the amount of required parts, the amount of materials, and reduces the cost of producing these parts. 4D printed products possess the properties of programmability, reaction and adaption to their environment, and automation. Therefore, they can find wider applications including foldable unmanned aerial vehicles, artificial muscles, grippers, biomedical drug delivery systems, stents, and minimally invasive surgeries.

  2. Using smart materials to solve new challenges in the automotive industry

    NASA Astrophysics Data System (ADS)

    Gath, Kerrie K.; Maranville, Clay; Tardiff, Janice

    2018-03-01

    Ford has an extensive history of developing and utilizing smart and innovative materials in its vehicles. In this paper, we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart material have had technical challenges that limit their use. We also look at how smart materials such as gecko inspired adhesion is providing opportunities during the vehicle assembly process by improving manufacturing quality, environmental sustainability, and worker safety. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations are migrating toward a seamless and adaptive experience leading to new expectations for an enhanced journey. Another area where smart materials are influencing change is interior and exterior design including smart textiles, photochromatic dyes, and thermochromatic materials. The key to advancing smart materials in automotive industry is to capitalize on the smaller niche applications where there will be an advantage over traditional methods. Ford has an extensive history of developing and utilizing smart and innovative materials. Magnetorheological fluids, thermoelectric materials, piezoelectric actuators, and shape memory alloys are all in production. In this paper we present new challenges the automotive industry is facing and explore how intelligent uses of smart materials can help provide solutions. We explore which vehicle attributes may provide most advantageous for the use smart materials, and discuss how smart materials have had technical challenges that limit their use. An emerging area for deployment of smart materials may involve autonomous vehicles and mobility solutions, where customer expectations may require a seamless and adaptive experience for users having various expectations.

  3. Incorporating a Human-Computer Interaction Course into Software Development Curriculums

    ERIC Educational Resources Information Center

    Janicki, Thomas N.; Cummings, Jeffrey; Healy, R. Joseph

    2015-01-01

    Individuals have increasing options on retrieving information related to hardware and software. Specific hardware devices include desktops, tablets and smart devices. Also, the number of software applications has significantly increased the user's capability to access data. Software applications include the traditional web site, smart device…

  4. Strut your SmartWay Stuff

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Transport Partnership Program, including SW brand market research results, program success, partner participation, logo usage, and available promotional and publicity resources.

  5. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Mathew L.

    1997-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/Air Force Research Laboratory/NASA/Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials.

  6. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine.

    PubMed

    Khan, Zohaib Amjad; Kamal, Nabeel; Hameed, Asad; Mahmood, Amama; Zainab, Rida; Sadia, Bushra; Mansoor, Shamyl Bin; Hasan, Osman

    2017-09-01

    Virtual reality (VR) training simulators have started playing a vital role in enhancing surgical skills, such as hand-eye coordination in laparoscopy, and practicing surgical scenarios that cannot be easily created using physical models. We describe a new VR simulator for basic training in laparoscopy, i.e. SmartSIM, which has been developed using a generic open-source physics engine called the simulation open framework architecture (SOFA). This paper describes the systems perspective of SmartSIM including design details of both hardware and software components, while highlighting the critical design decisions. Some of the distinguishing features of SmartSIM include: (i) an easy-to-fabricate custom-built hardware interface; (ii) use of a generic physics engine to facilitate wider accessibility of our work and flexibility in terms of using various graphical modelling algorithms and their implementations; and (iii) an intelligent and smart evaluation mechanism that facilitates unsupervised and independent learning. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Automated Bone Screw Tightening to Adaptive Levels of Stripping Torque.

    PubMed

    Reynolds, Karen J; Mohtar, Aaron A; Cleek, Tammy M; Ryan, Melissa K; Hearn, Trevor C

    2017-06-01

    To use relationships between tightening parameters, related to bone quality, to develop an automated system that determines and controls the level of screw tightening. An algorithm relating current at head contact (IHC) to current at construct failure (Imax) was developed. The algorithm was used to trigger cessation of screw insertion at a predefined tightening level, in real time, between head contact and maximum current. The ability of the device to stop at the predefined level was assessed. The mean (±SD) current at which screw insertion ceased was calculated to be [51.47 ± 9.75% × (Imax - IHC)] + IHC, with no premature bone failures. A smart screwdriver was developed that uses the current from the motor driving the screw to predict the current at which the screw will strip the bone threads. The device was implemented and was able to achieve motor shut-off and cease tightening at a predefined threshold, with no premature bone failures.

  8. Smart Start and Preschool Child Care Quality in North Carolina: Change Over Time and Relation to Children's Readiness.

    ERIC Educational Resources Information Center

    Bryant, Donna; Maxwell, Kelly; Taylor, Karen; Poe, Michele; Peisner-Feinberg, Ellen; Bernier, Kathleen

    The primary goal of Smart Start is to ensure that all children enter school healthy and prepared to succeed. Smart Start has funded a variety of technical assistance (TA) activities to improve child care, including on-site technical assistance, quality improvement and facility grant, teacher education scholarships, license upgrades, teacher salary…

  9. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  10. Leveraging mobile smart devices to improve interprofessional communications in inpatient practice setting: A literature review.

    PubMed

    Aungst, Timothy Dy; Belliveau, Paul

    2015-01-01

    As mobile smart device use has increased in society, the healthcare community has begun using these devices for communication among professionals in practice settings. The purpose of this review is to describe primary literature which reports on the experiences with interprofessional healthcare communication via mobile smart devices. Based on these findings, this review also addresses how these devices may be utilized to facilitate interprofessional education (IPE) in health professions education programs. The literature search revealed limited assessments of mobile smart device use in clinical practice settings. In available reports, communication with mobile smart devices was perceived as more effective and faster among interdisciplinary members. Notable drawbacks included discrepancies in the urgency labeling of messages, increased interruptions associated with constant accessibility to team members, and professionalism breakdowns. Recently developed interprofessional competencies include an emphasis on ensuring that health profession students can effectively communicate on interprofessional teams. With the increasing reliance on mobile smart devices in the absence of robust benefit and risk assessments on their use in clinical practice settings, use of these devices may be leveraged to facilitate IPE activities in health education professions programs while simultaneously educating students on their proper use in patient care settings.

  11. Machine learning in smart home control systems - Algorithms and new opportunities

    NASA Astrophysics Data System (ADS)

    Berg, Ivan A.; Khorev, Oleg E.; Matvevnina, Arina I.; Prisjazhnyj, Alexey V.

    2017-11-01

    Worldwide, more and more attention is paid to issues related to a smart home. If in 2000 Scopus registered 25 publications with about "smart house", in 2016 their number increased up to 1600. The top three countries with interest in smart home technologies include the United States, China and India. Corporations begin to offer their package solutions for automation of the intellectual home, dozens of start-ups around the creation of technology are established. Where is such interest from? What can offer intelligent home technologies? What can an end user receive?

  12. Smart Grid Development: Multinational Demo Project Analysis

    NASA Astrophysics Data System (ADS)

    Oleinikova, I.; Mutule, A.; Obushevs, A.; Antoskovs, N.

    2016-12-01

    This paper analyses demand side management (DSM) projects and stakeholders' experience with the aim to develop, promote and adapt smart grid tehnologies in Latvia. The research aims at identifying possible system service posibilites, including demand response (DR) and determining the appropriate market design for such type of services to be implemented at the Baltic power system level, with the cooperation of distribution system operator (DSO) and transmission system operator (TSO). This paper is prepared as an extract from the global smart grid best practices, smart solutions and business models.

  13. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE PAGES

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    2017-12-30

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  14. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  15. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, July--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations to develop the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devices become commerciallymore » available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less

  16. Smart materials and structures: what are they?

    NASA Astrophysics Data System (ADS)

    Spillman, W. B., Jr.; Sirkis, J. S.; Gardiner, P. T.

    1996-06-01

    There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and start of the art in other fields. In order to ascertain whether a consensus is emerging on a number of questions, the technical community was surveyed in a variety of ways including via the internet and by direct contact. The purpose of this survey was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed. Finally, a formal definition of the field of smart materials and structures is proposed.

  17. Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example.

    PubMed

    Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton

    2017-04-21

    Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf.

  18. Suitability of Strain Gage Sensors for Integration into Smart Sport Equipment: A Golf Club Example

    PubMed Central

    Umek, Anton; Zhang, Yuan; Tomažič, Sašo; Kos, Anton

    2017-01-01

    Wearable devices and smart sport equipment are being increasingly used in amateur and professional sports. Smart sport equipment employs various sensors for detecting its state and actions. The correct choice of the most appropriate sensor(s) is of paramount importance for efficient and successful operation of sport equipment. When integrated into the sport equipment, ideal sensors are unobstructive, and do not change the functionality of the equipment. The article focuses on experiments for identification and selection of sensors that are suitable for the integration into a golf club with the final goal of their use in real time biofeedback applications. We tested two orthogonally affixed strain gage (SG) sensors, a 3-axis accelerometer, and a 3-axis gyroscope. The strain gage sensors are calibrated and validated in the laboratory environment by a highly accurate Qualisys Track Manager (QTM) optical tracking system. Field test results show that different types of golf swing and improper movement in early phases of golf swing can be detected with strain gage sensors attached to the shaft of the golf club. Thus they are suitable for biofeedback applications to help golfers to learn repetitive golf swings. It is suggested that the use of strain gage sensors can improve the golf swing technical error detection accuracy and that strain gage sensors alone are enough for basic golf swing analysis. Our final goal is to be able to acquire and analyze as many parameters of a smart golf club in real time during the entire duration of the swing. This would give us the ability to design mobile and cloud biofeedback applications with terminal or concurrent feedback that will enable us to speed-up motor skill learning in golf. PMID:28430147

  19. SMART (Sandia's Modular Architecture for Robotics and Teleoperation) Ver. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert

    "SMART Ver. 0.8 Beta" provides a system developer with software tools to create a telerobotic control system, i.e., a system whereby an end-user can interact with mechatronic equipment. It consists of three main components: the SMART Editor (tsmed), the SMART Real-time kernel (rtos), and the SMART Supervisor (gui). The SMART Editor is a graphical icon-based code generation tool for creating end-user systems, given descriptions of SMART modules. The SMART real-time kernel implements behaviors that combine modules representing input devices, sensors, constraints, filters, and robotic devices. Included with this software release is a number of core modules, which can be combinedmore » with additional project and device specific modules to create a telerobotic controller. The SMART Supervisor is a graphical front-end for running a SMART system. It is an optional component of the SMART Environment and utilizes the TeVTk windowing and scripting environment. Although the code contained within this release is complete, and can be utilized for defining, running, and interfacing to a sample end-user SMART system, most systems will include additional project and hardware specific modules developed either by the system developer or obtained independently from a SMART module developer. SMART is a software system designed to integrate the different robots, input devices, sensors and dynamic elements required for advanced modes of telerobotic control. "SMART Ver. 0.8 Beta" defines and implements a telerobotic controller. A telerobotic system consists of combinations of modules that implement behaviors. Each real-time module represents an input device, robot device, sensor, constraint, connection or filter. The underlying theory utilizes non-linear discretized multidimensional network elements to model each individual module, and guarantees that upon a valid connection, the resulting system will perform in a stable fashion. Different combinations of modules implement different behaviors. Each module must have at a minimum an initialization routine, a parameter adjustment routine, and an update routine. The SMART runtime kernel runs continuously within a real-time embedded system. Each module is first set-up by the kernel, initialized, and then updated at a fixed rate whenever it is in context. The kernel responds to operator directed commands by changing the state of the system, changing parameters on individual modules, and switching behavioral modes. The SMART Editor is a tool used to define, verify, configure and generate source code for a SMART control system. It uses icon representations of the modules, code patches from valid configurations of the modules, and configuration files describing how a module can be connected into a system to lead the end-user in through the steps needed to create a final system. The SMART Supervisor serves as an interface to a SMART run-time system. It provides an interface on a host computer that connects to the embedded system via TCPIIP ASCII commands. It utilizes a scripting language (Tel) and a graphics windowing environment (Tk). This system can either be customized to fit an end-user's needs or completely replaced as needed.« less

  20. SmartWay Global Green Freight Action Webinar

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Transport Partnership Program, including SW brand market research results, program success, partner participation, logo usage, and available promotional and publicity resources.

  1. 2016 SmartWay Awardee Best Practices Webinar

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Transport Partnership Program, including SW brand market research results, program success, partner participation, logo usage, and available promotional and publicity resources.

  2. Smart Nacre-inspired Nanocomposites.

    PubMed

    Peng, Jingsong; Cheng, Qunfeng

    2018-03-15

    Nacre-inspired nanocomposites with excellent mechanical properties have achieved remarkable attention in the past decades. The high performance of nacre-inspired nanocomposites is a good basis for the further application of smart devices. Recently, some smart nanocomposites inspired by nacre have demonstrated good mechanical properties as well as effective and stable stimuli-responsive functions. In this Concept, we summarize the recent development of smart nacre-inspired nanocomposites, including 1D fibers, 2D films and 3D bulk nanocomposites, in response to temperature, moisture, light, strain, and so on. We show that diverse smart nanocomposites could be designed by combining various conventional fabrication methods of nacre-inspired nanocomposites with responsive building blocks and interface interactions. The nacre-inspired strategy is versatile for different kinds of smart nanocomposites in extensive applications, such as strain sensors, displays, artificial muscles, robotics, and so on, and may act as an effective roadmap for designing smart nanocomposites in the future. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Field of smart structures as seen by those working in it: survey results

    NASA Astrophysics Data System (ADS)

    Spillman, William B., Jr.; Sirkis, James S.; Gardiner, Peter T.

    1995-04-01

    There has been considerable discussion in the technical community on a number of questions concerned with smart materials and structures, such as what they are, whether smart materials can be considered a subset of smart structures, whether a smart structure and an intelligent structure are the same thing, etc. This discussion is both fueled and confused by the technical community due to the truly multidisciplinary nature of this new field. Smart materials and structures research involves so many technically diverse fields that it is quite common for one field to completely misunderstand the terminology and state-of-the-art in other fields. In order to ascertain whether a consensus is emerging on a number of these questions, the technical community was surveyed in a number of ways including via the Internet and by direct contact. The purpose of this survey in the final analysis was to better define the smart materials and structures field, its current status and its potential benefits. Results of the survey are presented and discussed.

  4. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  5. The New, Improved 2016 SmartWay Truck Carrier Tool

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Transport Partnership Program, including key information about EPA, Partners' roles, benefits, tools, partner recognition, awards, and brand value. Transcript available

  6. Automated assessment of cognitive health using smart home technologies.

    PubMed

    Dawadi, Prafulla N; Cook, Diane J; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2013-01-01

    The goal of this work is to develop intelligent systems to monitor the wellbeing of individuals in their home environments. This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve=0.80, g-mean=0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained.

  7. Automated Assessment of Cognitive Health Using Smart Home Technologies

    PubMed Central

    Dawadi, Prafulla N.; Cook, Diane J.; Schmitter-Edgecombe, Maureen; Parsey, Carolyn

    2014-01-01

    BACKGROUND The goal of this work is to develop intelligent systems to monitor the well being of individuals in their home environments. OBJECTIVE This paper introduces a machine learning-based method to automatically predict activity quality in smart homes and automatically assess cognitive health based on activity quality. METHODS This paper describes an automated framework to extract set of features from smart home sensors data that reflects the activity performance or ability of an individual to complete an activity which can be input to machine learning algorithms. Output from learning algorithms including principal component analysis, support vector machine, and logistic regression algorithms are used to quantify activity quality for a complex set of smart home activities and predict cognitive health of participants. RESULTS Smart home activity data was gathered from volunteer participants (n=263) who performed a complex set of activities in our smart home testbed. We compare our automated activity quality prediction and cognitive health prediction with direct observation scores and health assessment obtained from neuropsychologists. With all samples included, we obtained statistically significant correlation (r=0.54) between direct observation scores and predicted activity quality. Similarly, using a support vector machine classifier, we obtained reasonable classification accuracy (area under the ROC curve = 0.80, g-mean = 0.73) in classifying participants into two different cognitive classes, dementia and cognitive healthy. CONCLUSIONS The results suggest that it is possible to automatically quantify the task quality of smart home activities and perform limited assessment of the cognitive health of individual if smart home activities are properly chosen and learning algorithms are appropriately trained. PMID:23949177

  8. Ethical Considerations Regarding the Use of Smart Home Technologies for Older Adults: An Integrative Review.

    PubMed

    Chung, Jane; Demiris, George; Thompson, Hilaire J

    2016-01-01

    With the wide adoption and use of smart home applications, there is a need for examining ethical issues regarding smart home use at the intersection of aging, technology, and home environment. The purpose of this review is to provide an overview of ethical considerations and the evidence on these ethical issues based on an integrative literature review with regard to the utilization of smart home technologies by older adults and their family members. REVIEW DESIGN AND METHODS: We conducted an integrative literature review of the scientific literature from indexed databases (e. g., MEDLINE, CINAHL, and PsycINFO). The framework guiding this review is derived from previous work on ethical considerations related to telehealth use for older adults and smart homes for palliative care. Key ethical issues of the framework include privacy, informed consent, autonomy, obtrusiveness, equal access, reduction in human touch, and usability. Six hundred and thirty-five candidate articles were identified between the years 1990 and 2014. Sixteen articles were included in the review. Privacy and obtrusiveness issues appear to be the most important factors that can affect smart home technology adoption. In addition, this article recommends that stigmatization and reliability and maintenance of the system are additional factors to consider. When smart home technology is used appropriately, it has the potential to improve quality of life and maintain safety among older adults, ultimately supporting the desire of older adults for aging in place. The ability to respond to potential ethical concerns will be critical to the future development and application of smart home technologies that aim to enhance safety and independence.

  9. Enhancing the radiology learning experience with electronic whiteboard technology.

    PubMed

    Lipton, Michael L; Lipton, Leah G

    2010-06-01

    The purpose of this study is to quantitatively evaluate the use of an interactive whiteboard for use in teaching diagnostic radiology and MRI physics. An interactive whiteboard (SMART Board model 3000i) was used during an MRI physics course and diagnostic radiology teaching conferences. A multiquestion instrument was used to quantify responses. Responses are reported as simple percentages of response number and, for ordinal scale questions, the two-tailed Student's t test was used to assess deviation from the neutral response. All of the subjects attended all sessions and completed the assessment questionnaire; 89% of respondents said that image quality of the SMART Board was superior to that of a projector-screen combination, 11% said that the image quality was similar, and none said that it was inferior. Sixty-seven percent of respondents said that the SMART Board's display of diagrams was superior to that of a conventional whiteboard, 33% said it was similar, and none said it was inferior. Participants thought that the smaller SMART Board display compared with the projector screen was an unimportant limitation (p = 0.03). Room lighting did not degrade image quality (p = 0.007), and a trend toward preference for the lighted room (while using the SMART Board) was detected (p = 0.15) but was not significant. The impact of the SMART Board on the visual material and flow of teaching sessions was favorable (p = 0.005). All of the subjects preferred the SMART Board over a traditional projector and screen combination. Learners endorsed that the SMART Board significantly enhanced learning, universally preferring it to the standard projector and screen approach. Major advantages include enhanced engagement of learners; enhanced integration of images and annotations or diagrams, including display of both images and diagrams simultaneously on a single screen; and the ability to review, revise, save, and distribute diagrams and annotated images. Disadvantages include cost and potentially complicated setup in very large auditoriums.

  10. Summary of Research 1998, Department of Aeronautics and Astronautics

    DTIC Science & Technology

    1999-08-01

    included which consists of conference presentations and publications, books, contributions to books, published journal papers, technical reports, and...Using Smart Materials," Journal of Smart Materials and Structures, Vol. 7, pp. 95-104, 1998. Agrawal, B. and Treanor, K., "Shape Control of a Beam Using...Piezoelectric Actuators," Journal of Smart Materials and Structures, accepted. THESES DIRECTED: Johnson, S. and Vlattas, J., "Active Vibration

  11. Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hardy, Robin C. (Editor); Simpson, Joycelyn O. (Editor)

    1996-01-01

    The objective of the Fourth Annual Conference on Advances in Smart Materials for Aerospace Applications was to provide a forum for technical dialogue on numerous topics in the area of smart materials. The proceedings presented herein represent the technical contributions of the participants of the workshop. Topics addressed include shape memory alloys, ferroelectrics, fiber optics, finite element simulation, and active control.

  12. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design and the performance of future electronic imaging systems in many disciplines, reaching from optical metrology to machine vision on the factory floor and in robotics applications.

  13. A sensor and video based ontology for activity recognition in smart environments.

    PubMed

    Mitchell, D; Morrow, Philip J; Nugent, Chris D

    2014-01-01

    Activity recognition is used in a wide range of applications including healthcare and security. In a smart environment activity recognition can be used to monitor and support the activities of a user. There have been a range of methods used in activity recognition including sensor-based approaches, vision-based approaches and ontological approaches. This paper presents a novel approach to activity recognition in a smart home environment which combines sensor and video data through an ontological framework. The ontology describes the relationships and interactions between activities, the user, objects, sensors and video data.

  14. The tunable wettability in multistimuli-responsive smart graphene surfaces

    NASA Astrophysics Data System (ADS)

    Wan, Shanhong; Pu, Jibin; Zhang, Xiaoqian; Wang, Liping; Xue, Qunji

    2013-01-01

    The tunable wettability of smart graphene films onto stainless steel substrates with a multi-response to different environmental stimuli has been investigated including light irradiation, pH, electric field, and annealing temperature. Conductive graphene film exhibited the controllable transition from water-repellent to water-loving characteristic in response to different environment fields, which primarily resulted from the morpho-chemically synergistic effect as well as the restoration of electronic stucture. Based on the fundamental theories of wettability, mechanisms in switching from hydrophobicity to hydrophilicity for smart graphene surface including thermal chemistry, electrostatic, photo-induced surface chemistry, solvent, and pH methods were presented.

  15. Investigating the Activities of Children toward a Smart Storytelling Toy

    ERIC Educational Resources Information Center

    Kara, Nuri; Aydin, Cansu Cigdem; Cagiltay, Kursat

    2013-01-01

    This paper introduces StoryTech, a smart storytelling toy that features a virtual space, which includes computer-based graphics and characters, and a real space, which includes plush toys, background cards, and a communication interface. When children put real objects on the receiver panel, the computer program shows related backgrounds and…

  16. Assistive Awareness in Smart Grids

    NASA Astrophysics Data System (ADS)

    Bourazeri, Aikaterini; Almajano, Pablo; Rodriguez, Inmaculada; Lopez-Sanchez, Maite

    The following sections are included: * Introduction * Background * The User-Infrastructure Interface * User Engagement through Assistive Awareness * Research Impact * Serious Games for Smart Grids * Serious Game Technology * Game scenario * Game mechanics * Related Work * Summary and Conclusions

  17. Technologies for an aging society: a systematic review of "smart home" applications.

    PubMed

    Demiris, G; Hensel, B K

    2008-01-01

    A "smart home" is a residence wired with technology features that monitor the well-being and activities of their residents to improve overall quality of life, increase independence and prevent emergencies. This type of informatics applications targeting older adults, people with disabilities or the general population is increasingly becoming the focus of research worldwide. The aim of this study was to provide a comprehensive review of health related smart home projects and discuss human factors and other challenges. To cover not only the medical but also the social sciences and electronics literature, we conducted extensive searches across disciplines (e.g., Medline, Embase, CINAHL, PsycINFO, Electronics and Communications Abstracts, Web of Science etc.). In order to be inclusive of all new initiatives and efforts in this area given the innovativeness of the concept, we manually searched for relevant references in the retrieved articles as well as published books on smart homes and gerontechnology. A total of 114 publications (including papers, abstracts and web pages) were identified and reviewed to identify the overarching projects. Twenty one smart home projects were identified (71% of the projects include technologies for functional monitoring, 67% for safety monitoring, 47% for physiological monitoring, 43% for cognitive support or sensory aids, 19% for monitoring security and 19% to increase social interaction). Evidence for their impact on clinical outcomes is lacking. The field of smart homes is a growing informatics domain. Several challenges including not only technical but also ethical ones need to be addressed.

  18. E-SMART system for in-situ detection of environmental contaminants. Quarterly technical progress report, April--June 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-08-01

    General Atomics (GA) leads a team of industrial, academic, and government organizations in the development of the Environmental Systems Management, Analysis and Reporting neTwork (E-SMART) for the Defense Advanced Research Project Agency (DARPA), by way of this Technology Reinvestment Project (TRP). E-SMART defines a standard by which networks of smart sensing, sampling, and control devices can interoperate. E-SMART is intended to be an open standard, available to any equipment manufacturer. The user will be provided a standard platform on which a site-specific monitoring plan can be implemented using sensors and actuators from various manufacturers and upgraded as new monitoring devicesmore » become commercially available. This project will further develop and advance the E-SMART standardized network protocol to include new sensors, sampling systems, and graphical user interfaces.« less

  19. SMART-1, Platform Design and Project Status

    NASA Astrophysics Data System (ADS)

    Sjoberg, F.

    SMART-1 is the first of the Small Missions for Advanced Research and Technology (SMART), an element of ESA's Horizons 2000 plan for scientific projects. These missions aim at testing key technologies for future Cornerstone missions. The mission of SMART-1 is the flight demonstration of Electric Primary Propulsion for a scientifically relevant deep space trajectory. More specifically, SMART-1 will be launched into a geostationary transfer orbit and use a single ion thruster to achieve lunar orbit. include: -A modern avionics architecture with a clean-cut control hierarchy -Extensive Failure Detection, Isolation and Recovery (FDIR) capabilities following the control hierarchy of the -An advanced power control and distribution system -A newly developed gimbal mechanism for the orientation of the electric ion thruster The project is currently in the FM AIT phase scheduled for launch in late 2002. The paper will describe the SMART- 1 spacecraft platform design as well as the current project and spacecraft verification status.

  20. The Smart Health Initiative in China: The Case of Wuhan, Hubei Province.

    PubMed

    Fan, Meiyu; Sun, Jian; Zhou, Bin; Chen, Min

    2016-03-01

    To introduce smart health in Wuhan, and provide some references for other cities. As the largest mega-city in central China, Wuhan is investing large amounts of resources to push forward the development of Smart Wuhan and Health Wuhan, and it has unique features. It is one of the centerpieces of China's New Healthcare Reform, and great hope is put on it to help solve the conflict between limited healthcare resources and the large population of patients. How to plan and design smart health is important. The construction of Wuhan Smart Health includes some aspects as follows, like requirement analysis, the establishment of objectives and blueprint, the architecture design of regional health information platform, evaluation and implementation, problems and solutions, and so on. Wuhan Smart Health has obtained some achievements in health network, information systems, resident's health records, information standard, and the first phase of municipal health information platform. The focus of this article is the whole construction process of smart health in Wuhan. Although there are some difficulties during this period, some smart health services and management have been reflected. Compared with other cities or countries, Wuhan Smart Health has its own advantages and disadvantages. This study aims to provide a reference for other cities. Because smart health of Wuhan is characteristic in construction mode. Though still in the initial stage, it has great potentials in the future.

  1. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, Adam; Aloise-Young, Patricia A.; Suryanarayanan, Siddharth

    2013-11-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and transforming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electric grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  2. Electric Energy Management in the Smart Home: Perspectives on Enabling Technologies and Consumer Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zipperer, A.; Aloise-Young, P. A.; Suryanarayanan, S.

    2013-08-01

    Smart homes hold the potential for increasing energy efficiency, decreasing costs of energy use, decreasing the carbon footprint by including renewable resources, and trans-forming the role of the occupant. At the crux of the smart home is an efficient electric energy management system that is enabled by emerging technologies in the electricity grid and consumer electronics. This article presents a discussion of the state-of-the-art in electricity management in smart homes, the various enabling technologies that will accelerate this concept, and topics around consumer behavior with respect to energy usage.

  3. Smart Cards and remote entrusting

    NASA Astrophysics Data System (ADS)

    Aussel, Jean-Daniel; D'Annoville, Jerome; Castillo, Laurent; Durand, Stephane; Fabre, Thierry; Lu, Karen; Ali, Asad

    Smart cards are widely used to provide security in end-to-end communication involving servers and a variety of terminals, including mobile handsets or payment terminals. Sometime, end-to-end server to smart card security is not applicable, and smart cards must communicate directly with an application executing on a terminal, like a personal computer, without communicating with a server. In this case, the smart card must somehow trust the terminal application before performing some secure operation it was designed for. This paper presents a novel method to remotely trust a terminal application from the smart card. For terminals such as personal computers, this method is based on an advanced secure device connected through the USB and consisting of a smart card bundled with flash memory. This device, or USB dongle, can be used in the context of remote untrusting to secure portable applications conveyed in the dongle flash memory. White-box cryptography is used to set the secure channel and a mechanism based on thumbprint is described to provide external authentication when session keys need to be renewed. Although not as secure as end-to-end server to smart card security, remote entrusting with smart cards is easy to deploy for mass-market applications and can provide a reasonable level of security.

  4. New Technology Sparks Smoother Engines and Cleaner Air

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Automotive Resources, Inc. (ARI) has developed a new device for igniting fuel in engines-the SmartPlug.TM SmartPlug is a self-contained ignition system that may be retrofitted to existing spark-ignition and compression-ignition engines. The SmartPlug needs as little as six watts of power for warm-up, and requires no electricity at all when the engine is running. Unlike traditional spark plugs, once the SmartPlug ignites the engine, and the engine heats up, the power supply for the plug is no longer necessary. In the utility industry, SmartPlugs can be used in tractors, portable generators, compressors, and pumps. In addition to general-purpose applications, such as lawn mowers and chainsaws, SmartPlugs can also be used in the recreational, marine, aviation, and automotive industries. Unlike traditional ignition systems, the SmartPlug system requires no distributor, coil points, or moving parts. SmartPlugs are non-fouling, with a faster and cleaner burn than traditional spark plugs. They prevent detonation and are not sensitive to moisture, allowing them to be used on a variety of engines. Other advantages include no electrical noise, no high voltage, exceptionally high altitude capabilities, and better cold-start statistics than those of standard spark ignition systems. Future applications for the SmartPlug are being evaluated by manufacturers in the snowmobile industry.

  5. Optical smart card using semipassive communication.

    PubMed

    Glaser, I; Green, Shlomo; Dimkov, Ilan

    2006-03-15

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  6. Optical smart card using semipassive communication

    NASA Astrophysics Data System (ADS)

    Glaser, I.; Green, Shlomo; Dimkov, Ilan

    2006-03-01

    An optical secure short-range communication system is presented. The mobile unit (optical smart card) of this system utilizes a retroreflector with an optical modulator, using light from the stationary unit; this mobile unit has very low power consumption and can be as small as a credit card. Such optical smart cards offer better security than RF-based solutions, yet do not require physical contact. Results from a feasibility study model are included.

  7. To Your Credit. FDIC Money Smart Financial Education Curriculum = Su Credito y Usted. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on how one's credit history will affect one's credit future is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to make participants…

  8. Your Own Home. FDIC Money Smart Financial Education Curriculum = Su Casa Propia. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on what homeownership is all about is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to familiarize participants with the process for…

  9. Borrowing Basics. FDIC Money Smart Financial Education Curriculum = Conceptos Basicos sobre Prestamos. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module, an introduction to credit, is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to decide when and how to use…

  10. Money Matters. FDIC Money Smart Financial Education Curriculum = Cuestiones de Dinero. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on how to keep track of one's money is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to prepare a personal…

  11. Loan to Own. FDIC Money Smart Financial Education Curriculum = Prestamos Personales. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on knowing what one is borrowing before buying is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to familiarize participants with the…

  12. Pay Yourself First. FDIC Money Smart Financial Education Curriculum = Paguese Usted Primero. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on why one should save is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to recognize the importance of saving…

  13. Bank On It. FDIC Money Smart Financial Education Curriculum = Curso Bancario Basico. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module, an introduction to bank services, is one of ten in the Money Smart curriculum, and includes an instuctor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to build a relationship with…

  14. Keep It Safe. FDIC Money Smart Financial Education Curriculum = Conozca sus Derechos. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on one's rights as a consumer is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to become familiar with their…

  15. ABC's of Being Smart: I Can "C" Clearly Now

    ERIC Educational Resources Information Center

    Foster, Joanne

    2011-01-01

    In this paper, the author focuses on C of the ABC's of being smart. She continues to categorize the points for readers. These categories include the following: (1) being; (2) doing; and (3) stretching.

  16. Biosmart Materials: Breaking New Ground in Dentistry

    PubMed Central

    Badami, Vijetha; Ahuja, Bharat

    2014-01-01

    By definition and general agreement, smart materials are materials that have properties which may be altered in a controlled fashion by stimuli, such as stress, temperature, moisture, pH, and electric or magnetic fields. There are numerous types of smart materials, some of which are already common. Examples include piezoelectric materials, which produce a voltage when stress is applied or vice versa, shape memory alloys or shape memory polymers which are thermoresponsive, and pH sensitive polymers which swell or shrink as a response to change in pH. Thus, smart materials respond to stimuli by altering one or more of their properties. Smart behaviour occurs when a material can sense some stimulus from its environment and react to it in a useful, reliable, reproducible, and usually reversible manner. These properties have a beneficial application in various fields including dentistry. Shape memory alloys, zirconia, and smartseal are examples of materials exhibiting a smart behavior in dentistry. There is a strong trend in material science to develop and apply these intelligent materials. These materials would potentially allow new and groundbreaking dental therapies with a significantly enhanced clinical outcome of treatments. PMID:24672407

  17. Business Solutions Case Study: Marketing Zero Energy Homes: LifeStyle Homes, Melbourne, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Building America research has shown that high-performance homes can potentially give builders an edge in the marketplace and can boost sales. But it doesn't happen automatically. It requires a tailored, easy to understand marketing campaign and sometimes a little flair. This case study highlights LifeStyle Homes’ successful marketing approach for their SunSmart home package, which has helped to boost sales for the company. SunSmart marketing includes a modified logo, weekly blog, social media, traditional advertising, website, and sales staff training. Marketing focuses on quality, durability, healthy indoor air, and energy efficiency with an emphasis on the surety of third-party verificationmore » and the scientific approach to developing the SunSmart package. With the introduction of SunSmart, LifeStyle began an early recovery, nearly doubling sales in 2010; SunSmart sales now exceed 300 homes, including more than 20 zero energy homes. Completed homes in 2014 far outpaced the national (19%) and southern census region (27%) recovery rates for the same period. As technology improves and evolves, this builder will continue to collaborate with Building America.« less

  18. HyRA: A Hybrid Recommendation Algorithm Focused on Smart POI. Ceutí as a Study Scenario.

    PubMed

    Alvarado-Uribe, Joanna; Gómez-Oliva, Andrea; Barrera-Animas, Ari Yair; Molina, Germán; Gonzalez-Mendoza, Miguel; Parra-Meroño, María Concepción; Jara, Antonio J

    2018-03-17

    Nowadays, Physical Web together with the increase in the use of mobile devices, Global Positioning System (GPS), and Social Networking Sites (SNS) have caused users to share enriched information on the Web such as their tourist experiences. Therefore, an area that has been significantly improved by using the contextual information provided by these technologies is tourism. In this way, the main goals of this work are to propose and develop an algorithm focused on the recommendation of Smart Point of Interaction (Smart POI) for a specific user according to his/her preferences and the Smart POIs' context. Hence, a novel Hybrid Recommendation Algorithm (HyRA) is presented by incorporating an aggregation operator into the user-based Collaborative Filtering (CF) algorithm as well as including the Smart POIs' categories and geographical information. For the experimental phase, two real-world datasets have been collected and preprocessed. In addition, one Smart POIs' categories dataset was built. As a result, a dataset composed of 16 Smart POIs, another constituted by the explicit preferences of 200 respondents, and the last dataset integrated by 13 Smart POIs' categories are provided. The experimental results show that the recommendations suggested by HyRA are promising.

  19. HyRA: A Hybrid Recommendation Algorithm Focused on Smart POI. Ceutí as a Study Scenario

    PubMed Central

    Gómez-Oliva, Andrea; Molina, Germán

    2018-01-01

    Nowadays, Physical Web together with the increase in the use of mobile devices, Global Positioning System (GPS), and Social Networking Sites (SNS) have caused users to share enriched information on the Web such as their tourist experiences. Therefore, an area that has been significantly improved by using the contextual information provided by these technologies is tourism. In this way, the main goals of this work are to propose and develop an algorithm focused on the recommendation of Smart Point of Interaction (Smart POI) for a specific user according to his/her preferences and the Smart POIs’ context. Hence, a novel Hybrid Recommendation Algorithm (HyRA) is presented by incorporating an aggregation operator into the user-based Collaborative Filtering (CF) algorithm as well as including the Smart POIs’ categories and geographical information. For the experimental phase, two real-world datasets have been collected and preprocessed. In addition, one Smart POIs’ categories dataset was built. As a result, a dataset composed of 16 Smart POIs, another constituted by the explicit preferences of 200 respondents, and the last dataset integrated by 13 Smart POIs’ categories are provided. The experimental results show that the recommendations suggested by HyRA are promising. PMID:29562590

  20. Feasibility and acceptability of a computer-based tool to improve contraceptive counseling.

    PubMed

    Wilson, Ellen K; Krieger, Kathleen E; Koo, Helen P; Minnis, Alexandra M; Treiman, Katherine

    2014-07-01

    The objective was to test the feasibility and acceptability of a computerized tool, Smart Choices, designed to enhance the quality of contraceptive counseling in family planning clinics. The tool includes (a) a questionnaire completed by patients and summarized in a printout for providers and (b) a birth control guide patients explore to learn about various contraceptive methods. In 2 family planning clinics, we conducted interviews with 125 women who used the Smart Choices computerized tool and 7 providers. Smart Choices integrated into clinic flow well in one clinic, but less well in the other, which had very short waiting times. Patients were generally enthusiastic about Smart Choices, including its helpfulness in preparing them and their providers for the counseling session and increasing their knowledge of contraceptive methods. Providers varied in how much they used the printout and in their opinions about its usefulness. Some felt its usefulness was limited because it overlapped with the clinic's intake forms or because it did not match with their concept of counseling needs. Others felt it provided valuable information not collected by intake forms and more honest information. Some found Smart Choices to be most helpful with patients who were unsure what method they wanted. Smart Choices is feasible to implement and well received by patients, but modifications are needed to increase provider enthusiasm for this tool. The Smart Choices tool requires refinement before widespread dissemination. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Design of automatic curtain controlled by wireless based on single chip 51 microcomputer

    NASA Astrophysics Data System (ADS)

    Han, Dafeng; Chen, Xiaoning

    2017-08-01

    In order to realize the wireless control of the domestic intelligent curtains, a set of wireless intelligent curtain control system based on 51 single chip microcomputer have been designed in this paper. The intelligent curtain can work in the manual mode, automatic mode and sleep mode and can be carried out by the button and mobile phone APP mode loop switch. Through the photosensitive resistance module and human pyroelectric infrared sensor to collect the indoor light value and the data whether there is the person in the room, and then after single chip processing, the motor drive module is controlled to realize the positive inversion of the asynchronous motor, the intelligent opening and closing of the curtain have been realized. The operation of the motor can be stopped under the action of the switch and the curtain opening and closing and timing switch can be controlled through the keys and mobile phone APP. The optical fiber intensity, working mode, curtain state and system time are displayed by LCD1602. The system has a high reliability and security under practical testing and with the popularity and development of smart home, the design has broad market prospects.

  2. Being “SMART” about Adolescent Conduct Problems Prevention: Executing a SMART Pilot Study in a Juvenile Diversion Agency

    PubMed Central

    August, Gerald J.; Piehler, Timothy F.; Bloomquist, Michael L.

    2014-01-01

    OBJECTIVE The development of adaptive treatment strategies (ATS) represents the next step in innovating conduct problems prevention programs within a juvenile diversion context. Towards this goal, we present the theoretical rationale, associated methods, and anticipated challenges for a feasibility pilot study in preparation for implementing a full-scale SMART (i.e., sequential, multiple assignment, randomized trial) for conduct problems prevention. The role of a SMART design in constructing ATS is presented. METHOD The SMART feasibility pilot study includes a sample of 100 youth (13–17 years of age) identified by law enforcement as early stage offenders and referred for pre-court juvenile diversion programming. Prior data on the sample population detail a high level of ethnic diversity and approximately equal representations of both genders. Within the SMART, youth and their families are first randomly assigned to one of two different brief-type evidence-based prevention programs, featuring parent-focused behavioral management or youth-focused strengths-building components. Youth who do not respond sufficiently to brief first-stage programming will be randomly assigned a second time to either an extended parent- or youth-focused second-stage programming. Measures of proximal intervention response and measures of potential candidate tailoring variables for developing ATS within this sample are detailed. RESULTS Results of the described pilot study will include information regarding feasibility and acceptability of the SMART design. This information will be used to refine a subsequent full-scale SMART. CONCLUSIONS The use of a SMART to develop ATS for prevention will increase the efficiency and effectiveness of prevention programing for youth with developing conduct problems. PMID:25256135

  3. TOPICAL REVIEW: Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    NASA Astrophysics Data System (ADS)

    Song, Gangbing; Gu, Haichang; Mo, Yi-Lung

    2008-06-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.

  4. Implementing a High-Assurance Smart-Card OS

    NASA Astrophysics Data System (ADS)

    Karger, Paul A.; Toll, David C.; Palmer, Elaine R.; McIntosh, Suzanne K.; Weber, Samuel; Edwards, Jonathan W.

    Building a high-assurance, secure operating system for memory constrained systems, such as smart cards, introduces many challenges. The increasing power of smart cards has made their use feasible in applications such as electronic passports, military and public sector identification cards, and cell-phone based financial and entertainment applications. Such applications require a secure environment, which can only be provided with sufficient hardware and a secure operating system. We argue that smart cards pose additional security challenges when compared to traditional computer platforms. We discuss our design for a secure smart card operating system, named Caernarvon, and show that it addresses these challenges, which include secure application download, protection of cryptographic functions from malicious applications, resolution of covert channels, and assurance of both security and data integrity in the face of arbitrary power losses.

  5. Unlocking SmartWay Data for Shippers: Optimize Supply Chain Decision Making and Enhance CSR Reporting

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Transport Partnership Program, including SW brand market research results, program success, partner participation, logo usage, and available promotional and publicity resources.

  6. Top 10 "Smart" Technologies for Schools.

    ERIC Educational Resources Information Center

    Fodeman, Doug; Holzberg, Carol S.; Kennedy, Kristen; McIntire, Todd; McLester, Susan; Ohler, Jason; Parham, Charles; Poftak, Amy; Schrock, Kathy; Warlick, David

    2002-01-01

    Describes 10 smart technologies for education, including voice to text software; mobile computing; hybrid computing; virtual reality; artificial intelligence; telementoring; assessment methods; digital video production; fingerprint recognition; and brain functions. Lists pertinent Web sites for each technology. (LRW)

  7. Aging well with smart technology.

    PubMed

    Cheek, Penny; Nikpour, Linda; Nowlin, Heather D

    2005-01-01

    As baby-boomers age, the need for long-term nursing care services increases. In the future, there will simply not be enough long-term care facilities to accommodate all of these patients. In addition, many people prefer to grow old at home, a concept known as aging-in-place. Smart home technology facilities aging-in-place by assisting patients with emergency assistance, fall prevention/detection, reminder systems, medication administration and assistance for those with hearing, visual or cognitive impairments. Benefits include making aging-in-place a reality, continuous monitoring, and improved psychosocial effects. Concerns of this technology include cost, availability of technology, retrofitting complications, and potential inappropriate use of the technology. Overall, the concept of smart homes is gaining in popularity and will expand the role of the nurse in the future. It is important for all nurses to understand how their practices will be transformed as smart homes become a reality for the aging population.

  8. Vibrations Generated by Several Nickel-titanium Endodontic File Systems during Canal Shaping in an Ex Vivo Model.

    PubMed

    Choi, Dong-Min; Kim, Jin-Woo; Park, Se-Hee; Cho, Kyung-Mo; Kwak, Sang Won; Kim, Hyeon-Cheol

    2017-07-01

    This study aimed to compare the vibration generated by several nickel-titanium (NiTi) file systems and transmitted to teeth under 2 different motions (continuous rotation motion and reciprocating motion). Sixty J-shaped resin blocks (Endo Training Bloc-J; Dentsply Maillefer, Ballaigues, Switzerland) were trimmed to a root-shaped form and divided into 2 groups according to the types of electric motors: WaveOne motor (WOM, Dentsply Maillefer) and X-Smart Plus motor (XSM, Dentsply Maillefer). Each group was further subdivided into 3 subgroups (n = 10 each) according to the designated file systems: ProTaper Next (PTN, Dentsply Maillefer), ProTaper Universal (PTU, Dentsply Maillefer), and WaveOne (WOP, Dentsply Maillefer) systems. Vibration was measured during the pecking motion using an accelerometer attached to a predetermined consistent position. The average vibration values were subjected to 2-way analysis of variance as well as the t test and Duncan test for post hoc comparison at the 95% confidence interval. Both motor types and instrument types produced significantly different ranges of average vibrations. Regardless of the instrument types, the WOM group generated greater vibration than the XSM group (P < .05). Although PTN and PTU did not show significant differences, the WOP group showed significantly greater vibration than the other groups regardless of motor types (P < .05). Under the limitations of this study design, the reciprocating NiTi file system may generate greater vibration than the continuous rotation NiTi file systems. The motor type also has a significant effect to amplify the vibrations. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Design of an Open Smart Energy Gateway for Smart Meter Data Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Page, Janie; McParland, Chuck; Piette, Mary Ann

    With the widespread deployment of electronic interval meters, commonly known as smart meters, came the promise of real-time data on electric energy consumption. Recognizing an opportunity to provide consumers access to their near real-time energy consumption data directly from their installed smart meter, we designed a mechanism for capturing those data for consumer use via an open smart energy gateway (OpenSEG). By design, OpenSEG provides a clearly defined boundary for equipment and data ownership. OpenSEG is an open-source data management platform to enable better data management of smart meter data. Effectively, it is an information architecture designed to work withmore » the ZigBee Smart Energy Profile 1.x (SEP 1.x). It was specifically designed to reduce cyber-security risks and provide secure information directly from smart meters to consumers in near real time, using display devices already owned by the consumers. OpenSEG stores 48 hours of recent consumption data in a circular cache using a format consistent with commonly available archived (not real-time) consumption data such as Green Button, which is based on the Energy Services Provider Interface (ESPI) data standard. It consists of a common XML format for energy usage information and a data exchange protocol to facilitate automated data transfer upon utility customer authorization. Included in the design is an application program interface by which users can acquire data from OpenSEG for further post processing. A sample data display application is included in the initial software product. The data display application demonstrates that OpenSEG can help electricity use data to be retrieved from a smart meter and ported to a wide variety of user-owned devices such as cell phones or a user-selected database. This system can be used for homes, multi-family buildings, or small commercial buildings in California.« less

  10. Human-Computer Interaction in Smart Environments

    PubMed Central

    Paravati, Gianluca; Gatteschi, Valentina

    2015-01-01

    Here, we provide an overview of the content of the Special Issue on “Human-computer interaction in smart environments”. The aim of this Special Issue is to highlight technologies and solutions encompassing the use of mass-market sensors in current and emerging applications for interacting with Smart Environments. Selected papers address this topic by analyzing different interaction modalities, including hand/body gestures, face recognition, gaze/eye tracking, biosignal analysis, speech and activity recognition, and related issues.

  11. Testability Design Rating System: Testability Handbook. Volume 1

    DTIC Science & Technology

    1992-02-01

    4-10 4.7.5 Summary of False BIT Alarms (FBA) ............................. 4-10 4.7.6 Smart BIT Technique...Circuit Board PGA Pin Grid Array PLA Programmable Logic Array PLD Programmable Logic Device PN Pseudo-Random Number PREDICT Probabilistic Estimation of...11 4.7.6 Smart BIT ( reference: RADC-TR-85-198). " Smart " BIT is a term given to BIT circuitry in a system LRU which includes dedicated processor/memory

  12. TECHNICAL NOTE: Characteristic analysis of an ultrasonic micromotor using a 3 mm diameter piezoelectric rod

    NASA Astrophysics Data System (ADS)

    Chu, Xiangcheng; Yan, Li; Li, Longtu

    2004-04-01

    Smart systems and devices generally use certain microstructures, e.g. rod- and strip-shaped structures. In this paper, a miniaturized piezoelectric rod is analysed using the finite element method (FEM) and a laser scanning vibrometer (LSV). The effects of some factors, including the detailed structure, material parameters and input voltage, on the resonant frequencies and vibration behaviors of a piezoelectric rod are studied. On the basis of experimental results, the vibration modes of the piezoelectric rod can be made available for use in fabricating an ultrasonic micromotor or piezoelectric actuators of other types. The prototype motor fabricated here has a maximum output torque of 410 µN m for a stainless steel stator and 360 µN m for a copper stator. This article was originally published in 2003 by the Israel Academy of Sciences and Humanities in the framework of its Albert Einstein Memorial Lectures series. Reprinted by permission of the Israel Academy of Sciences and Humanities.

  13. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing.

    PubMed

    Leonard, Simon; Wu, Kyle L; Kim, Yonjae; Krieger, Axel; Kim, Peter C W

    2014-04-01

    This paper introduces the smart tissue anastomosis robot (STAR). Currently, the STAR is a proof-of-concept for a vision-guided robotic system featuring an actuated laparoscopic suturing tool capable of executing running sutures from image-based commands. The STAR tool is designed around a commercially available laparoscopic suturing tool that is attached to a custom-made motor stage and the STAR supervisory control architecture that enables a surgeon to select and track incisions and the placement of stitches. The STAR supervisory-control interface provides two modes: A manual mode that enables a surgeon to specify the placement of each stitch and an automatic mode that automatically computes equally-spaced stitches based on an incision contour. Our experiments on planar phantoms demonstrate that the STAR in either mode is more accurate, up to four times more consistent and five times faster than surgeons using state-of-the-art robotic surgical system, four times faster than surgeons using manual Endo360(°)®, and nine times faster than surgeons using manual laparoscopic tools.

  14. SMART-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmintier, Bryan: Hodge, Bri-Mathias

    This presentation provides a Smart-DS project overview and status update for the ARPA-e GRID DATA program meeting 2017, including distribution systems, models, and scenarios, as well as opportunities for GRID DATA collaborations.

  15. Efficiency Begins at Home, but What About the Neighbors: Getting to Know Your SmartWay Carriers!

    EPA Pesticide Factsheets

    This EPA presentation provides information on the SmartWay Transport Partnership Program, including SW brand market research results, program success, partner participation, logo usage, and available promotional and publicity resources.

  16. Wide-area situation awareness in electric power grid

    NASA Astrophysics Data System (ADS)

    Greitzer, Frank L.

    2010-04-01

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  17. AVQS: attack route-based vulnerability quantification scheme for smart grid.

    PubMed

    Ko, Jongbin; Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification.

  18. Smart nanoparticles as targeting platforms for HIV infections

    NASA Astrophysics Data System (ADS)

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-04-01

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  19. Smart nanoparticles as targeting platforms for HIV infections.

    PubMed

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-05-07

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, Jeff L.; Glenn, Lee J.

    The Smart Grid opens the door to the development of many companion technologies which will in turn enable the development of a variety of devices for household electricity-consuming appliances that can communicate with it; especially, many major appliance manufacturers (such as Whirlpool and General Electric) have made public commitments to design their appliances to be Smart Grid-compatible over the next several years. Yet during that same time period, customers will purchase many millions of long-lasting appliances which are not compatible with the Smart Grid. This research project's purpose is to bring significant Smart Grid compatibility to previously-installed appliances that weremore » not specifically designed for any Smart Grid communications, in a way that is both economical and attractive for users who want to share in the energy cost savings and reduction of peak power demand opportunities provided by the evolving Smart Grid infrastructure. The focus of this effort is to identify and research smart control solutions which take advantage of the effective strategies of demand-response (DR) communications from utilities [including time-of-day (TOD) and peak-demand pricing options] and function apart from any need for operational changes to be designed into the non-smart appliances. Our Phase I concepts promote technological advancements for enabling devices that shift the available-use time of millions of different appliances which otherwise have no Smart Grid capability. We researched low-cost microcontroller-based ways of creating devices with the ability to: (1) maintain an accurate time and day (with no need for battery backup throughout a power outage); (2) perform two-way wired and wireless communications directly with the utility company's demand management signals, to identify both low-cost time periods as well as critical-reduction periods when the cost of energy use would otherwise be much higher; (3) measure the power usage of the connected non-smart appliance; and (4) remove power for a period of time from the appliance (such as a dehumidifier, portable heater, or pool pump) in response to both time-pricing schedule and critical peak-load information from the utility, or inform the user of a batch-type appliance (such as a clothes dryer or dishwasher) regarding the current cost associated with using the appliance. The new products that could be developed as a result of this research into new consumer-centric features and characteristics includes smart wall outlets, smart outlet power-monitoring adapters, smart load switches and smart remote electric rate indicators associated with the non-smart appliances. Our Phase I goal of determining the feasibility of the above technologies was successful. The objectives were also met of developing concepts for a family of microprocessor-based control/indicator devices that can provide the above capabilities while connected in series between an appliance and its electrical power source and/or while indicating cost-of-use status to the appliance user.« less

  1. Brain implants for substituting lost motor function: state of the art and potential impact on the lives of motor-impaired seniors.

    PubMed

    Ramsey, N F; Aarnoutse, E J; Vansteensel, M J

    2014-01-01

    Recent scientific achievements bring the concept of neural prosthetics for reinstating lost motor function closer to medical application. Current research involves severely paralyzed people under the age of 65, but implications for seniors with stroke or trauma-induced impairments are clearly on the horizon. Demographic changes will lead to a shortage of personnel to care for an increasing population of senior citizens, threatening maintenance of an acceptable level of care and urging ways for people to live longer at their home independent from personal assistance. This is particularly challenging when people suffer from disabilities such as partial paralysis after stroke or trauma, where daily personal assistance is required. For some of these people, neural prosthetics can reinstate some lost motor function and/or lost communication, thereby increasing independence and possibly quality of life. In this viewpoint article, we present the state of the art in decoding brain activity in the service of brain-computer interfacing. Although some noninvasive applications produce good results, we focus on brain implants that benefit from better quality brain signals. Fully implantable neural prostheses for home use are not available yet, but clinical trials are being prepared. More sophisticated systems are expected to follow in the years to come, with capabilities of interest for less severe paralysis. Eventually the combination of smart robotics and brain implants is expected to enable people to interact well enough with their environment to live an independent life in spite of motor disabilities. © 2014 S. Karger AG, Basel.

  2. Equipping an automated wheelchair with an infrared encoder wheel odometer - biomed 2011.

    PubMed

    Schultz, D; Allen, M; Barrett, S F

    2011-01-01

    Assistive technology is a rapidly growing field that provides a degree of freedom and self-sufficiency to people of limited mobility. Smart wheelchairs are a subset of assistive technology, and are designed to be operated by people who are unable to use a traditional control system. Instead, smart wheelchairs are equipped with a combination of automated functionality and steering mechanisms specialized to meet a person’s individual needs. One feature common to the automated capabilities of smart wheelchairs is the tracking system. The wheelchair’s microcontroller needs to know how far the chair has travelled, its speed, and the rotational direction of its wheels in order to successfully navigate through an environment. The purpose of this research was to develop an odometer to track the motion of a motorized wheelchair. Due to federal regulations that prohibit changing the structure or internal mechanics of a medical device, the odometer had to be designed as a separate, removable part. The final design for the odometer consisted of two infrared sensors that measure edge transitions of a segmented black and white encoder wheel. The sensor output was then run through two comparator op amps and a high pass filter to produce a clean, crisp square wave signal output. The signal was then fed to an Atmel ATmega164P microcontroller. The microcontroller was programmed to compare the sensor signal with its internal clock, sense edge transitions, and thereby extrapolate the speed, travelled distance, and rotational direction of the wheelchair.

  3. A Framework for Testing Automated Detection, Diagnosis, and Remediation Systems on the Smart Grid

    NASA Technical Reports Server (NTRS)

    Lau, Shing-hon

    2011-01-01

    America's electrical grid is currently undergoing a multi-billion dollar modernization effort aimed at producing a highly reliable critical national infrastructure for power - a Smart Grid. While the goals for the Smart Grid include upgrades to accommodate large quantities of clean, but transient, renewable energy and upgrades to provide customers with real-time pricing information, perhaps the most important objective is to create an electrical grid with a greatly increased robustness.

  4. Check It Out. FDIC Money Smart Financial Education Curriculum = Conceptos Basicos sobre Cuentas Corientes. FDIC Money Smart Plan de Educacion para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on how to choose and keep a checking account is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to open and keep a…

  5. Charge It Right. FDIC Money Smart Financial Education Curriculum = Uso Correcto de su Tarjeta de Credito. FDIC Money Smart Plan de Education para Capacitacion en Finanzas.

    ERIC Educational Resources Information Center

    Federal Deposit Insurance Corp., Washington, DC.

    This module on managing a credit card is one of ten in the Money Smart curriculum, and includes an instructor guide and a take-home guide. It was developed to help adults outside the financial mainstream enhance their money skills and create positive banking relationships. It is designed to enable participants to describe the costs and benefits of…

  6. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-02-01

    "Smart cards" are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper will review imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper will conclude with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  7. Imaging standards for smart cards

    NASA Astrophysics Data System (ADS)

    Ellson, Richard N.; Ray, Lawrence A.

    1996-01-01

    'Smart cards' are plastic cards the size of credit cards which contain integrated circuits for the storage of digital information. The applications of these cards for image storage has been growing as card data capacities have moved from tens of bytes to thousands of bytes. This has prompted the recommendation of standards by the X3B10 committee of ANSI for inclusion in ISO standards for card image storage of a variety of image data types including digitized signatures and color portrait images. This paper reviews imaging requirements of the smart card industry, challenges of image storage for small memory devices, card image communications, and the present status of standards. The paper concludes with recommendations for the evolution of smart card image standards towards image formats customized to the image content and more optimized for smart card memory constraints.

  8. Research on the full life cycle management system of smart electric energy meter

    NASA Astrophysics Data System (ADS)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Guo, Dingying; Xiong, Dezhi; Xiao, Xiangqi; Liu, Mouhai; Renheng, Xu

    2018-02-01

    At present, China’s smart electric energy meter life management is started from the procurement and acceptance. The related monitoring and management of the manufacturing sector has not yet been carried out. This article applies RFID technology and network cloud platform to full life cycle management system of smart electric energy meters, builds this full life cycle management system including design and manufacturing, process control, measurement and calibration testing, storage management, user acceptance, site operation, maintenance scrap and other aspects. Exploring smart electric energy meters on-line and off-line communication by the application of active RFID communication functions, and the actual functional application such as local data exchange and instrument calibration. This system provides technical supports on power demand side management and the improvement of smart electric energy meter reliability evaluation system.

  9. IEEE Committee on Man and Radiation--COMAR technical information statement radiofrequency safety and utility Smart Meters.

    PubMed

    Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A

    2015-03-01

    This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.

  10. Effects of Offering Look-Alike Products as Smart Snacks in Schools.

    PubMed

    Harris, Jennifer L; Hyary, Maia; Schwartz, Marlene B

    2016-12-01

    In 2014, USDA established nutrition standards for snack foods sold in schools. Many manufacturers reformulated products to meet these Smart Snacks standards, but continue to advertise unhealthy versions of the same brands. Furthermore, Smart Snack packaging often looks similar to less nutritious versions sold outside of schools (look-alike products). This practice may confuse consumers about the nutritional quality of Smart Snacks and raise concerns about schools selling them. An online experiment with 659 students (13-17 years) and 859 parents (children ages 10-13) was performed. Participants randomly viewed information about snacks sold at a hypothetical school, including (1) look-alike Smart Snacks; (2) existing store versions of the same brands; (3) repackaged Smart Snacks (highlighting differences versus unhealthy versions); or (4) consistent brands (i.e., Smart Snack versions also sold in stores). They then rated the individual snacks offered and the school selling them. As hypothesized, students and parents rated look-alike and store versions similarly in taste, healthfulness, and purchase intent, while considering repackaged Smart Snacks as healthier, but less tasty. Most participants also inaccurately believed they had seen look-alike products for sale in stores. Furthermore, they rated schools offering look-alike Smart Snacks and store versions as less concerned about students' health and well-being than schools in the other two conditions. The nutritional quality of snacks sold in schools has improved, but many Smart Snacks are virtually indistinguishable from less nutritious versions widely sold outside of schools. This practice likely benefits the brands, but may not improve children's overall diet and undermines schools' ability to teach good nutrition.

  11. Laser Spiderweb Sensor Used with Portable Handheld Devices

    NASA Technical Reports Server (NTRS)

    Scott, David C. (Inventor); Ksendzov, Alexander (Inventor); George, Warren P. (Inventor); Smith, James A. (Inventor); Steinkraus, Joel M. (Inventor); Hofmann, Douglas C. (Inventor); Aljabri, Abdullah S. (Inventor); Bendig, Rudi M. (Inventor)

    2017-01-01

    A portable spectrometer, including a smart phone case storing a portable spectrometer, wherein the portable spectrometer includes a cavity; a source for emitting electromagnetic radiation that is directed on a sample in the cavity, wherein the electromagnetic radiation is reflected within the cavity to form multiple passes of the electromagnetic radiation through the sample; a detector for detecting the electromagnetic radiation after the electromagnetic radiation has made the multiple passes through the sample in the cavity, the detector outputting a signal in response to the detecting; and a device for communicating the signal to a smart phone, wherein the smart phone executes an application that performs a spectral analysis of the signal.

  12. Urban sprawl and delayed ambulance arrival in the U.S.

    PubMed

    Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E

    2009-11-01

    Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.

  13. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  14. The role of advanced sensing in smart cities.

    PubMed

    Hancke, Gerhard P; Silva, Bruno de Carvalho E; Hancke, Gerhard P

    2012-12-27

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities.

  15. The Role of Advanced Sensing in Smart Cities

    PubMed Central

    Hancke, Gerhard P.; de Carvalho e Silva, Bruno; Hancke, Gerhard P.

    2013-01-01

    In a world where resources are scarce and urban areas consume the vast majority of these resources, it is vital to make cities greener and more sustainable. Advanced systems to improve and automate processes within a city will play a leading role in smart cities. From smart design of buildings, which capture rain water for later use, to intelligent control systems, which can monitor infrastructures autonomously, the possible improvements enabled by sensing technologies are immense. Ubiquitous sensing poses numerous challenges, which are of a technological or social nature. This paper presents an overview of the state of the art with regards to sensing in smart cities. Topics include sensing applications in smart cities, sensing platforms and technical challenges associated with these technologies. In an effort to provide a holistic view of how sensing technologies play a role in smart cities, a range of applications and technical challenges associated with these applications are discussed. As some of these applications and technologies belong to different disciplines, the material presented in this paper attempts to bridge these to provide a broad overview, which can be of help to researchers and developers in understanding how advanced sensing can play a role in smart cities. PMID:23271603

  16. A small scale lunar launcher for early lunar material utilization

    NASA Technical Reports Server (NTRS)

    Snow, W. R.; Kubby, J. A.; Dunbar, R. S.

    1981-01-01

    A system for the launching of lunar derived oxygen or raw materials into low lunar orbit or to L2 for transfer to low earth orbit is presented. The system described is a greatly simplified version of the conventional and sophisticated approach suggested by O'Neill using mass drivers with recirculating buckets. An electromagnetic accelerator is located on the lunar surface which launches 125 kg 'smart' containers of liquid oxygen or raw materials into a transfer orbit. Upon reaching apolune a kick motor is fired to circularize the orbit at 100 km altitude or L2. These containers are collected and their payloads transferred to a tanker OTV. The empty containers then have their kick motors refurbished and then are returned to the launcher site on the lunar surface for reuse. Initial launch capability is designed for about 500T of liquid oxygen delivered to low earth orbit per year with upgrading to higher levels, delivery of lunar soil for shielding, or raw materials for processing given the demand.

  17. Design of Smart Home Systems Prototype Using MyRIO

    NASA Astrophysics Data System (ADS)

    Ratna Wati, Dwi Ann; Abadianto, Dika

    2017-06-01

    This paper presents the design of smart home systems prototype. It applies. MyRIO 1900 embedded device as the main controller of the smart home systems. The systems include wireless monitoring systems and email based notifications as well as data logging. The prototype systems use simulated sensor such as temperature sensor, push button as proximity sensor, and keypad while its simulated actuators are buzzer as alarm system, LED as light and LCD. Based on the test and analysis, the smart home systems prototype as well as the wireless monitoring systems have real time responses when input signals are available. Tbe performance of MyRIO controller is excellent and it results in a stable system.

  18. Use of Dynamic Distortion to Predict and Alleviate Loss of Control

    NASA Technical Reports Server (NTRS)

    Klyde, David; Liang, Chi-Ying; Alvarez, Daniel

    2011-01-01

    This research has developed and evaluated the specific concepts, termed Smart-Cue and Smart-Gain, to alleviate aircraft loss of control that results from unfavorable pilot/vehicle system interactions, including pilot-induced oscillations (PIOs). Unfavorable pilot/ vehicle-system interactions have long been an aviation safety problem. While the effective aircraft dynamic properties involved in these events have been extensively studied and understood, similar scrutiny has not been paid to the many aspects of the primary manual control system that converts the pilot control inputs to motions of the control surfaces. The purpose of the Smart-Cue and Smart-Gain developments is to redress this neglect, and to develop and validate remedial manual control systems.

  19. Reconfiguration of a smart surface using heteroclinic connections

    PubMed Central

    McInnes, Colin R.; Xu, Ming

    2017-01-01

    A reconfigurable smart surface with multiple equilibria is presented, modelled using discrete point masses and linear springs with geometric nonlinearity. An energy-efficient reconfiguration scheme is then investigated to connect equal-energy unstable (but actively controlled) equilibria. In principle, zero net energy input is required to transition the surface between these unstable states, compared to transitions between stable equilibria across a potential barrier. These transitions between equal-energy unstable states, therefore, form heteroclinic connections in the phase space of the problem. Moreover, the smart surface model developed can be considered as a unit module for a range of applications, including modules which can aggregate together to form larger distributed smart surface systems. PMID:28265191

  20. Solid Modeling Aerospace Research Tool (SMART) user's guide, version 2.0

    NASA Technical Reports Server (NTRS)

    Mcmillin, Mark L.; Spangler, Jan L.; Dahmen, Stephen M.; Rehder, John J.

    1993-01-01

    The Solid Modeling Aerospace Research Tool (SMART) software package is used in the conceptual design of aerospace vehicles. It provides a highly interactive and dynamic capability for generating geometries with Bezier cubic patches. Features include automatic generation of commonly used aerospace constructs (e.g., wings and multilobed tanks); cross-section skinning; wireframe and shaded presentation; area, volume, inertia, and center-of-gravity calculations; and interfaces to various aerodynamic and structural analysis programs. A comprehensive description of SMART and how to use it is provided.

  1. System requirements specification for SMART structures mode

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Specified here are the functional and informational requirements for software modules which address the geometric and data modeling needs of the aerospace structural engineer. The modules are to be included as part of the Solid Modeling Aerospace Research Tool (SMART) package developed for the Vehicle Analysis Branch (VAB) at the NASA Langley Research Center (LaRC). The purpose is to precisely state what the SMART Structures modules will do, without consideration of how it will be done. Each requirement is numbered for reference in development and testing.

  2. Justification of the Utility of Introducing Smart Meters in Latvia

    NASA Astrophysics Data System (ADS)

    Kunickis, M.; Dandens, A.; Bariss, U.

    2015-12-01

    Automatic data reading from smart meters is being developed in many parts of the world, including Latvia. The key drivers for that are developments of smart technologies and economic benefits for consumers. Deployment of smart meters could be launched in a massive scale. Several pilot projects were implemented to verify the feasibility of smart meters for individual consumer groups. Preliminary calculations indicate that installation of smart meters for approximately 23 % of electricity consumers would be economically viable. Currently, the data for the last two years is available for an in-depth mathematical analysis. The continuous analysis of consumption data would be established, when more measurements from smart meters are available. The extent of introduction of smart meters should be specified during this process in order to gain the maximum benefit for the whole society (consumers, grid companies, state authorities), because there are still many uncertain and variable factors. For example, it is necessary to consider statistical load variations by hour, dependence of electricity consumption on temperature fluctuations, consumer behaviour and demand response to market signals to reduce electricity consumption in the short and long term, consumer's ambitions and capability to install home automation for regulation of electricity consumption. To develop the demand response, it is necessary to analyse the whole array of additional factors, such as expected cost reduction of smart meters, possible extension of their functionality, further development of information exchange systems, as well as standard requirements and different political and regulatory decisions regarding the reduction of electricity consumption and energy efficiency.

  3. A Smart Sensor Web for Ocean Observation: Integrated Acoustics, Satellite Networking, and Predictive Modeling

    NASA Astrophysics Data System (ADS)

    Arabshahi, P.; Chao, Y.; Chien, S.; Gray, A.; Howe, B. M.; Roy, S.

    2008-12-01

    In many areas of Earth science, including climate change research, there is a need for near real-time integration of data from heterogeneous and spatially distributed sensors, in particular in-situ and space- based sensors. The data integration, as provided by a smart sensor web, enables numerous improvements, namely, 1) adaptive sampling for more efficient use of expensive space-based sensing assets, 2) higher fidelity information gathering from data sources through integration of complementary data sets, and 3) improved sensor calibration. The specific purpose of the smart sensor web development presented here is to provide for adaptive sampling and calibration of space-based data via in-situ data. Our ocean-observing smart sensor web presented herein is composed of both mobile and fixed underwater in-situ ocean sensing assets and Earth Observing System (EOS) satellite sensors providing larger-scale sensing. An acoustic communications network forms a critical link in the web between the in-situ and space-based sensors and facilitates adaptive sampling and calibration. After an overview of primary design challenges, we report on the development of various elements of the smart sensor web. These include (a) a cable-connected mooring system with a profiler under real-time control with inductive battery charging; (b) a glider with integrated acoustic communications and broadband receiving capability; (c) satellite sensor elements; (d) an integrated acoustic navigation and communication network; and (e) a predictive model via the Regional Ocean Modeling System (ROMS). Results from field experiments, including an upcoming one in Monterey Bay (October 2008) using live data from NASA's EO-1 mission in a semi closed-loop system, together with ocean models from ROMS, are described. Plans for future adaptive sampling demonstrations using the smart sensor web are also presented.

  4. A Taxonomy on Accountability and Privacy Issues in Smart Grids

    NASA Astrophysics Data System (ADS)

    Naik, Ameya; Shahnasser, Hamid

    2017-07-01

    Cyber-Physical Systems (CPS) are combinations of computation, networking, and physical processes. Embedded computers and networks monitor control the physical processes, which affect computations and vice versa. Two applications of cyber physical systems include health-care and smart grid. In this paper, we have considered privacy aspects of cyber-physical system applicable to smart grid. Smart grid in collaboration with different stockholders can help in the improvement of power generation, communication, circulation and consumption. The proper management with monitoring feature by customers and utility of energy usage can be done through proper transmission and electricity flow; however cyber vulnerability could be increased due to an increased assimilation and linkage. This paper discusses various frameworks and architectures proposed for achieving accountability in smart grids by addressing privacy issues in Advance Metering Infrastructure (AMI). This paper also highlights additional work needed for accountability in more precise specifications such as uncertainty or ambiguity, indistinct, unmanageability, and undetectably.

  5. Nanofibrous Smart Fabrics from Twisted Yarns of Electrospun Piezopolymer.

    PubMed

    Yang, Enlong; Xu, Zhe; Chur, Lucas K; Behroozfar, Ali; Baniasadi, Mahmoud; Moreno, Salvador; Huang, Jiacheng; Gilligan, Jules; Minary-Jolandan, Majid

    2017-07-19

    Smart textiles are envisioned to make a paradigm shift in wearable technologies to directly impart functionality into the fibers rather than integrating sensors and electronics onto conformal substrates or skin in wearable devices. Among smart materials, piezoelectric fabrics have not been widely reported, yet. Piezoelectric smart fabrics can be used for mechanical energy harvesting, for thermal energy harvesting through the pyroelectric effect, for ferroelectric applications, as pressure and force sensors, for motion detection, and for ultrasonic sensing. We report on mechanical and material properties of the plied nanofibrous piezoelectric yarns as a function of postprocessing conditions including thermal annealing and drawing (stretching). In addition, we used a continuous electrospinning setup to directly produce P(VDF-TrFE) nanofibers and convert them into twisted plied yarns, and demonstrated application of these plied yarns in woven piezoelectric fabrics. The results of this work can be an early step toward realization of piezoelectric smart fabrics.

  6. Adaptive smart wing design for military aircraft: requirements, concepts, and payoffs

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Appa, Kari; Van Way, Craig B.; Lockyer, Allen J.

    1995-05-01

    New developments in smart structures and materials have made it possible to revisit earlier work in adaptive and flexible wing technology, and remove some of the limitations for technology transition to next-generation aircraft. Research performed by Northrop Grumman, under internal funding, has led to a new program sponsored by ARPA to investigate the application of smart structures and materials technologies to twist and adapt and aircraft wing. Conceptual designs are presented based on state-of-the-art materials, including shape memory alloys, piezoelectrics, and fiber optic sensors for incorporation in a proposed smart wing design. Plans are described to demonstrate proof-of-concept on a prototype 1/10 scale -18 model that will be tested in a wind tunnel for final validation. Highlights of the proposed program are summarized with respect to program objectives, requirements, key concept design features, demonstration testing, and smart wing technology payoffs and risks.

  7. Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.

    2016-12-01

    Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.

  8. Adoption of Smart Structures for Prevention of Health Hazards in Buildings

    NASA Astrophysics Data System (ADS)

    Oke, Ayodeji; Aigbavboa, Clinton; Ngema, Wiseman

    2017-11-01

    The importance of building quality to the health and well-being of occupants and surrounding neighbors cannot be overemphasized. Smart structures were construed to proffer solution to various issues of sustainable development including social factors that is concerned with health and safety of people. Based on existing literature materials on building quality, smart structures and general aspect of sustainable developments, this study examined the benefits of smart structures in the prevention of various health issues in infrastructural buildings, which has been a concern for stakeholders in the architecture, engineering and construction industry. The criterion for indoor environmental quality was adopted and various health and bodily issues related to building quality were explained. The adoption of smart structure concept will help to manage physical, chemical, biological and psychological factors of building with a view to enhancing better quality of life of occupants.

  9. Application of smart materials for improved flight performance of military aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudva, J.; Appa, K.; Martin, C.

    1995-12-31

    This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits ofmore » the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melton, Ron

    The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most comprehensive demonstrations of electricity grid modernization ever completed. The project was one of 16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was the only demonstration that included multiple states and cooperation from multiple electric utilities, including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55 unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. Themore » local objectives for these systems included improved reliability, energy conservation, improved efficiency, and demand responsiveness. The demonstration developed and deployed an innovative transactive system, unique in the world, that coordinated many of the project’s distributed energy resources and demand-responsive components. With the transactive system, additional regional objectives were also addressed, including the mitigation of renewable energy intermittency and the flattening of system load. Using the transactive system, the project coordinated a regional response across the 11 utilities. This region-wide connection from the transmission system down to individual premises equipment was one of the major successes of the project. The project showed that this can be done and assets at the end points can respond dynamically on a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities among the many distributed smart grid domain members and their smart devices.« less

  11. Bringing smart transport to Texans : ensuring the benefits of a connected and autonomous transport system in Texas--final report.

    DOT National Transportation Integrated Search

    2016-11-01

    Link to appendices is included. : This project develops and demonstrates a variety of smart-transport technologies, policies, and practices for : highways and freeways using connected autonomous vehicles (CAVs), smartphones, roadside equipment, and r...

  12. SMART Structures User's Guide - Version 3.0

    NASA Technical Reports Server (NTRS)

    Spangler, Jan L.

    1996-01-01

    Version 3.0 of the Solid Modeling Aerospace Research Tool (SMART Structures) is used to generate structural models for conceptual and preliminary-level aerospace designs. Features include the generation of structural elements for wings and fuselages, the integration of wing and fuselage structural assemblies, and the integration of fuselage and tail structural assemblies. The highly interactive nature of this software allows the structural engineer to move quickly from a geometry that defines a vehicle's external shape to one that has both external components and internal components which may include ribs, spars, longerons, variable depth ringframes, a floor, a keel, and fuel tanks. The geometry that is output is consistent with FEA requirements and includes integrated wing and empennage carry-through and frame attachments. This report provides a comprehensive description of SMART Structures and how to use it.

  13. Constitutive modeling and control of 1D smart composite structures

    NASA Astrophysics Data System (ADS)

    Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro

    1998-07-01

    Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.

  14. Using Citygml to Deploy Smart-City Services for Urban Ecosystems

    NASA Astrophysics Data System (ADS)

    Prandi, F.; De Amicis, R.; Piffer, S.; Soave, M.; Cadzow, S.; Gonzalez Boix, E.; D'Hont, E.

    2013-05-01

    The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, becomes a key factor to trigger true user-driven innovation. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The goal of this paper is to introduce the i-SCOPE (interoperable Smart City services through an Open Platform for urban Ecosystems) project methodology and implementations together with key technologies and open standards. Based on interoperable 3D CityGML UIMs, the aim of i-Scope is to deliver an open platform on top of which it possible to develop, within different domains, various "smart city" services. Moreover, in i-SCOPE different issues, transcending the mere technological domain, are being tackled, including aspects dealing with social and environmental issues. Indeed several tasks including citizen awareness, crowd source and voluntary based data collection as well as privacy issue concerning involved people should be considered.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agalgaonkar, Yashodhan P.; Hammerstrom, Donald J.

    The Pacific Northwest Smart Grid Demonstration (PNWSGD) was a smart grid technology performance evaluation project that included multiple U.S. states and cooperation from multiple electric utilities in the northwest region. One of the local objectives for the project was to achieve improved distribution system reliability. Toward this end, some PNWSGD utilities automated their distribution systems, including the application of fault detection, isolation, and restoration and advanced metering infrastructure. In light of this investment, a major challenge was to establish a correlation between implementation of these smart grid technologies and actual improvements of distribution system reliability. This paper proposes using Welch’smore » t-test to objectively determine and quantify whether distribution system reliability is improving over time. The proposed methodology is generic, and it can be implemented by any utility after calculation of the standard reliability indices. The effectiveness of the proposed hypothesis testing approach is demonstrated through comprehensive practical results. It is believed that wider adoption of the proposed approach can help utilities to evaluate a realistic long-term performance of smart grid technologies.« less

  16. Intelligent Sensors for Integrated Systems Health Management (ISHM)

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.

    2008-01-01

    IEEE 1451 Smart Sensors contribute to a number of ISHM goals including cost reduction achieved through: a) Improved configuration management (TEDS); and b) Plug-and-play re-configuration. Intelligent Sensors are adaptation of Smart Sensors to include ISHM algorithms; this offers further benefits: a) Sensor validation. b) Confidence assessment of measurement, and c) Distributed ISHM processing. Space-qualified intelligent sensors are possible a) Size, mass, power constraints. b) Bus structure/protocol.

  17. Miniature vibration isolation system for space applications

    NASA Astrophysics Data System (ADS)

    Quenon, Dan; Boyd, Jim; Buchele, Paul; Self, Rick; Davis, Torey; Hintz, Timothy L.; Jacobs, Jack H.

    2001-06-01

    In recent years, there has been a significant interest in, and move towards using highly sensitive, precision payloads on space vehicles. In order to perform tasks such as communicating at extremely high data rates between satellites using laser cross-links, or searching for new planets in distant solar systems using sparse aperture optical elements, a satellite bus and its payload must remain relatively motionless. The ability to hold a precision payload steady is complicated by disturbances from reaction wheels, control moment gyroscopes, solar array drives, stepper motors, and other devices. Because every satellite is essentially unique in its construction, isolating or damping unwanted vibrations usually requires a robust system over a wide bandwidth. The disadvantage of these systems is that they typically are not retrofittable and not tunable to changes in payload size or inertias. Previous work, funded by AFRL, DARPA, BMDO and others, developed technology building blocks that provide new methods to control vibrations of spacecraft. The technology of smart materials enables an unprecedented level of integration of sensors, actuators, and structures; this integration provides the opportunity for new structural designs that can adaptively influence their surrounding environment. To date, several demonstrations have been conducted to mature these technologies. Making use of recent advances in smart materials, microelectronics, Micro-Electro Mechanical Systems (MEMS) sensors, and Multi-Functional Structures (MFS), the Air Force Research Laboratory along with its partner DARPA, have initiated an aggressive program to develop a Miniature Vibration Isolation System (MVIS) (patent pending) for space applications. The MVIS program is a systems-level demonstration of the application of advanced smart materials and structures technology that will enable programmable and retrofittable vibration control of spacecraft precision payloads. The current effort has been awarded to Honeywell Space Systems Operation. AFRL is providing in-house research and testing in support of the program as well. The MVIS program will culminate in a flight demonstration that shows the benefits of applying smart materials for vibration isolation in space and precision payload control.

  18. Smart governance for smart city

    NASA Astrophysics Data System (ADS)

    Mutiara, Dewi; Yuniarti, Siti; Pratama, Bambang

    2018-03-01

    Some of the local government in Indonesia claimed they already created a smart city. Mostly the claim based of IT utilization for their governance. In general, a smart city definition is to describe a developed urban area that creates sustainable economic development and high quality of life by excelling in multiple key; economy, mobility, environment, people, living, and government. For public services, the law guarantees good governance by setting the standard for e-government implicitly including for local government or a city. Based on the arguments, this research tries to test the condition of e-government of the Indonesian city in 34 provinces. The purpose is to map e-government condition by measuring indicators of smart government, which are: transparent governance and open data for the public. This research is departing from public information disclosure law and to correspond with the existence law. By examining government transparency, the output of the research can be used to measure the effectiveness of public information disclosure law and to determine the condition of e-government in local government in which as part of a smart city.

  19. Capitalized design of smart medicine box for elderly person based on quality function deployment (QFD)

    NASA Astrophysics Data System (ADS)

    Lestari, Brina Cindy; Dewi, Dyah Santhi; Widodo, Rusminto Tjatur

    2017-11-01

    The elderly who has a particular disease need to take some medicines in everyday with correct dosages and appropriate by time schedules. However, the elderly frequently forget to take medicines because of their memory weakened. Consequently, the product innovation of elderly healthcare is required for helping elderly takes some medicine more easily. This research aims to develop a smart medicine box by applying quality function deployment method. The first step is identifying elderly requirements through an ethnographic approach by interviewing thirty-two of elderly people as respondents. Then, the second step is translated elderly requirements to technical parameter for designing a smart medicine box. The smart box design is focused on two main requirements which have highest importance rating including alarm reminder for taking medicine and automatic medicine box. Finally, the prototype design has been created and tested by using usability method. The result shown that 90% from ten respondents have positive respond on the feature of smart medicine box. The voice of alarm reminder smart medicine box is easy to understand by elderly people for taking medicines.

  20. AVQS: Attack Route-Based Vulnerability Quantification Scheme for Smart Grid

    PubMed Central

    Lim, Hyunwoo; Lee, Seokjun; Shon, Taeshik

    2014-01-01

    A smart grid is a large, consolidated electrical grid system that includes heterogeneous networks and systems. Based on the data, a smart grid system has a potential security threat in its network connectivity. To solve this problem, we develop and apply a novel scheme to measure the vulnerability in a smart grid domain. Vulnerability quantification can be the first step in security analysis because it can help prioritize the security problems. However, existing vulnerability quantification schemes are not suitable for smart grid because they do not consider network vulnerabilities. We propose a novel attack route-based vulnerability quantification scheme using a network vulnerability score and an end-to-end security score, depending on the specific smart grid network environment to calculate the vulnerability score for a particular attack route. To evaluate the proposed approach, we derive several attack scenarios from the advanced metering infrastructure domain. The experimental results of the proposed approach and the existing common vulnerability scoring system clearly show that we need to consider network connectivity for more optimized vulnerability quantification. PMID:25152923

  1. Active depth-guiding handheld micro-forceps for membranectomy based on CP-SSOCT

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong Woo; Lee, Phillip; Gonenc, Berk; Gehlbach, Peter L.; Kang, Jin U.

    2016-03-01

    In this study, we demonstrate a handheld motion-compensated micro-forceps system using common-path swept source optical coherence tomography with highly accurate depth-targeting and depth-locking for Epiretinal Membrane Peeling. Two motors and a touch sensor were used to separate the two independent motions: motion compensation and tool-tip manipulation. A smart motion monitoring and guiding algorithm was devised for precise and intuitive freehand control. Ex-vivo bovine eye experiments were performed to evaluate accuracy in a bovine retina retinal membrane peeling model. The evaluation demonstrates system capabilities of 40 um accuracy when peeling the epithelial layer of bovine retina.

  2. Future evolution of distributed systems for smart grid - The challenges and opportunities to using decentralized energy system

    NASA Astrophysics Data System (ADS)

    Konopko, Joanna

    2015-12-01

    A decentralized energy system is a relatively new approach in the power industry. Decentralized energy systems provide promising opportunities for deploying renewable energy sources locally available as well as for expanding access to clean energy services to remote communities. The electricity system of the future must produce and distribute electricity that is reliable and affordable. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. In this paper, the major issues and challenges in distributed systems for smart grid are discussed and future trends are presented. The smart grid technologies and distributed generation systems are explored. A general overview of the comparison of the traditional grid and smart grid is also included.

  3. Decoding of grasping information from neural signals recorded using peripheral intrafascicular interfaces.

    PubMed

    Micera, Silvestro; Rossini, Paolo M; Rigosa, Jacopo; Citi, Luca; Carpaneto, Jacopo; Raspopovic, Stanisa; Tombini, Mario; Cipriani, Christian; Assenza, Giovanni; Carrozza, Maria C; Hoffmann, Klaus-Peter; Yoshida, Ken; Navarro, Xavier; Dario, Paolo

    2011-09-05

    The restoration of complex hand functions by creating a novel bidirectional link between the nervous system and a dexterous hand prosthesis is currently pursued by several research groups. This connection must be fast, intuitive, with a high success rate and quite natural to allow an effective bidirectional flow of information between the user's nervous system and the smart artificial device. This goal can be achieved with several approaches and among them, the use of implantable interfaces connected with the peripheral nervous system, namely intrafascicular electrodes, is considered particularly interesting. Thin-film longitudinal intra-fascicular electrodes were implanted in the median and ulnar nerves of an amputee's stump during a four-week trial. The possibility of decoding motor commands suitable to control a dexterous hand prosthesis was investigated for the first time in this research field by implementing a spike sorting and classification algorithm. The results showed that motor information (e.g., grip types and single finger movements) could be extracted with classification accuracy around 85% (for three classes plus rest) and that the user could improve his ability to govern motor commands over time as shown by the improved discrimination ability of our classification algorithm. These results open up new and promising possibilities for the development of a neuro-controlled hand prosthesis.

  4. Development of a standardized, citywide process for managing smart-pump drug libraries.

    PubMed

    Walroth, Todd A; Smallwood, Shannon; Arthur, Karen; Vance, Betsy; Washington, Alana; Staublin, Therese; Haslar, Tammy; Reddan, Jennifer G; Fuller, James

    2018-06-15

    Development and implementation of an interprofessional consensus-driven process for review and optimization of smart-pump drug libraries and dosing limits are described. The Indianapolis Coalition for Patient Safety (ICPS), which represents 6 Indianapolis-area health systems, identified an opportunity to reduce clinically insignificant alerts that smart infusion pumps present to end users. Through a consensus-driven process, ICPS aimed to identify best practices to implement at individual hospitals in order to establish specific action items for smart-pump drug library optimization. A work group of pharmacists, nurses, and industrial engineers met to evaluate variability within and lack of scrutiny of smart-pump drug libraries. The work group used Lean Six Sigma methodologies to generate a list of key needs and barriers to be addressed in process standardization. The group reviewed targets for smart-pump drug library optimization, including dosing limits, types of alerts reviewed, policies, and safety best practices. The work group also analyzed existing processes at each site to develop a final consensus statement outlining a model process for reviewing alerts and managing smart-pump data. Analysis of the total number of alerts per device across ICPS-affiliated health systems over a 4-year period indicated a 50% decrease (from 7.2 to 3.6 alerts per device per month) after implementation of the model by ICPS member organizations. Through implementation of a standardized, consensus-driven process for smart-pump drug library optimization, ICPS member health systems reduced clinically insignificant smart-pump alerts. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  5. Smart Grid Communications System Blueprint

    NASA Astrophysics Data System (ADS)

    Clark, Adrian; Pavlovski, Chris

    2010-10-01

    Telecommunications operators are well versed in deploying 2G and 3G wireless networks. These networks presently support the mobile business user and/or retail consumer wishing to place conventional voice calls and data connections. The electrical power industry has recently commenced transformation of its distribution networks by deploying smart monitoring and control devices throughout their networks. This evolution of the network into a `smart grid' has also motivated the need to deploy wireless technologies that bridge the communication gap between the smart devices and information technology systems. The requirements of these networks differ from traditional wireless networks that communications operators have deployed, which have thus far forced energy companies to consider deploying their own wireless networks. We present our experience in deploying wireless networks to support the smart grid and highlight the key properties of these networks. These characteristics include application awareness, support for large numbers of simultaneous cell connections, high service coverage and prioritized routing of data. We also outline our target blueprint architecture that may be useful to the industry in building wireless and fixed networks to support the smart grid. By observing our experiences, telecommunications operators and equipment manufacturers will be able to augment their current networks and products in a way that accommodates the needs of the emerging industry of smart grids and intelligent electrical networks.

  6. Design of smart home gateway based on Wi-Fi and ZigBee

    NASA Astrophysics Data System (ADS)

    Li, Yang

    2018-04-01

    With the increasing demand for home lifestyle, the traditional smart home products have been unable to meet the needs of users. Aim at the complex wiring, high cost and difficult operation problems of traditional smart home system, this paper designs a home gateway for smart home system based on Wi-Fi and ZigBee. This paper first gives a smart home system architecture base on cloud server, Wi-Fi and ZigBee. This architecture enables users to access the smart home system remotely from Internet through the cloud server or through Wi-Fi at home. It also offers the flexibility and low cost of ZigBee wireless networking for home equipment. This paper analyzes the functional requirements of the home gateway, and designs a modular hardware architecture based on the RT5350 wireless gateway module and the CC2530 ZigBee coordinator module. Also designs the software of the home gateway, including the gateway master program and the ZigBee coordinator program. Finally, the smart home system and home gateway are tested in two kinds of network environments, internal network and external network. The test results show that the designed home gateway can meet the requirements, support remote and local access, support multi-user, support information security technology, and can timely report equipment status information.

  7. Working Smart Workbook. An Interactive Learning Experience.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Adult and Occupational Education.

    This workbook accompanies an interactive videodisc used in the Working Smart workplace literacy project prepared for the hotel and food services industry in the Los Angeles, California area. The first instructional unit addresses preparing the work area, including stocking supplies and cleaning the work area. The second instructional unit covers…

  8. I See Your Smart Phone and Raise You Smart Bacteria

    Science.gov Websites

    understanding how bacteria sense their nearest neighbors (including pathogens), a DTRA CB/JSTO-funded research ;wild type" E. coli was tested via reverse transcription quantitative polymerase chain reactions Director of Research, Dale Ormond, kicks off #MATHCOUNTS #NationalCompetition2018 Countdown Round

  9. SmartWay 2.0 Partner Assessment Tools and Data Management System

    EPA Science Inventory

    A set of calculator tools used by SmartWay partners to assess their envirnomental performance, including calculation of their annual emissions of CO2, NOx, and PM, and a data system to manage the information. Different tools are available for carrier partners in the four main tr...

  10. 75 FR 81605 - Smart Grid Interoperability Standards; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. RM11-2-000] Smart Grid Interoperability Standards; Notice of Technical Conference December 21, 2010. Take notice that the Federal Energy... National Institute of Standards and Technology and included in this proceeding are ready for Commission...

  11. Germ Smart: Children's Activities in Disease Prevention.

    ERIC Educational Resources Information Center

    Scheer, Judith K.

    This booklet is part of the "Children's Activity Series," a set of four supplemental teaching resources that promote awareness about health, family life, and cultural diversity for children in kindergarten through third grade. Nine activities are included in this booklet to help children be "germ smart" help children in kindergarten through third…

  12. Design and Development of a Smart Storytelling Toy

    ERIC Educational Resources Information Center

    Kara, Nuri; Aydin, Cansu Cigdem; Cagiltay, Kursat

    2014-01-01

    Because computers generally make children passive listeners, new technological devices need to support children's storytelling activities. This article introduces the StoryTech, a smart toy that includes a virtual space comprised of computer-based graphics and characters as well as a real space that involves stuffed animals, background cards…

  13. Dynamics, control and sensor issues pertinent to robotic hands for the EVA retriever system

    NASA Technical Reports Server (NTRS)

    Mclauchlan, Robert A.

    1987-01-01

    Basic dynamics, sensor, control, and related artificial intelligence issues pertinent to smart robotic hands for the Extra Vehicular Activity (EVA) Retriever system are summarized and discussed. These smart hands are to be used as end effectors on arms attached to manned maneuvering units (MMU). The Retriever robotic systems comprised of MMU, arm and smart hands, are being developed to aid crewmen in the performance of routine EVA tasks including tool and object retrieval. The ultimate goal is to enhance the effectiveness of EVA crewmen.

  14. Smart Offices and Intelligent Decision Rooms

    NASA Astrophysics Data System (ADS)

    Ramos, Carlos; Marreiros, Goreti; Santos, Ricardo; Freitas, Carlos Filipe

    Nowadays computing technology research is focused on the development of Smart Environments. Following that line of thought several Smart Rooms projects were developed and their appliances are very diversified. The appliances include projects in the context of workplace or everyday living, entertainment, play and education. These appliances envisage to acquire and apply knowledge about the environment state in order to reason about it so as to define a desired state for its inhabitants and perform adaptation adaptation to these desires and therefore improving their involvement and satisfaction with that environment.

  15. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hedges, Edward T.

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  16. Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support

    NASA Astrophysics Data System (ADS)

    Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.

    2017-12-01

    The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.

  17. Infrasound Sensor Calibration and Response

    DTIC Science & Technology

    2012-09-01

    infrasound calibration chamber. Under separate funding a number of upgrades were made to the chamber. These include a Geotech Smart24 digitizer and...of upgrades were made to the chamber. These include a Geotech Smart24 digitizer and workstation, an LVDT sensor for piston phone phase measurement, a...20 samples per second on a GeoTech Instruments DL 24 digitizer. Fifty cycles of data were fit with the Matlab function NLINFIT that gave the peak

  18. SMART Platforms: Building the App Store for Biosurveillance

    PubMed Central

    Mandl, Kenneth D.

    2013-01-01

    Objective To enable public health departments to develop “apps” to run on electronic health records (EHRs) for (1) biosurveillance and case reporting and (2) delivering alerts to the point of care. We describe a novel health information technology platform with substitutable apps constructed around core services enabling EHRs to function as iPhone-like platforms. Introduction Health care information is a fundamental source of data for biosurveillance, yet configuring EHRs to report relevant data to health departments is technically challenging, labor intensive, and often requires custom solutions for each installation. Public health agencies wishing to deliver alerts to clinicians also must engage in an endless array of one-off systems integrations. Despite a $48B investment in HIT, and meaningful use criteria requiring reporting to biosurveillance systems, most vendor electronic health records are architected monolithically, making modification difficult for hospitals and physician practices. An alternative approach is to reimagine EHRs as iPhone-like platforms supporting substitutable apps-based functionality. Substitutability is the capability inherent in a system of replacing one application with another of similar functionality. Methods Substitutability requires that the purchaser of an app can replace one application with another without being technically expert, without requiring re-engineering other applications that they are using, and without having to consult or require assistance of any of the vendors of previously installed or currently installed applications. Apps necessarily compete with each other promoting progress and adaptability. The Substitutable Medical Applications, Reusable Technologies (SMART) Platforms project is funded by a $15M grant from Office of the National Coordinator of Health Information Technology’s Strategic Health IT Advanced Research Projects (SHARP) Program. All SMART standards are open and the core software is open source. The SMART project promotes substitutability through an application programming interface (API) that can be adopted as part of a “container” built around by a wide variety of HIT, providing readonly access to the underlying data model and a software development toolkit to readily create apps. SMART containers are HIT systems, that have implemented the SMART API or a portion of it. Containers marshal data sources and present them consistently across the SMART API. SMART applications consume the API and are substitutable. Results SMART provides a common platform supporting an “app store for biosurveillance” as an approach to enabling one stop shopping for public health departments—to create an app once, and distribute it everywhere. Further, such apps can be readily updated or created—for example, in the case of an emerging infection, an app may be designed to collect additional data at emergency department triage. Or a public health department may widely distribute an app, interoperable with any SMART-enabled EMR, that delivers contextualized alerts when patient electronic records are opened, or through background processes. SMART has sparked an ecosystem of apps developers and attracted existing health information technology platforms to adopt the SMART API—including, traditional, open source, and next generation EHRs, patient-facing platforms and health information exchanges. SMART-enabled platforms to date include the Cerner EMR, the WorldVista EHR, the OpenMRS EHR, the i2b2 analytic platform, and the Indivo X personal health record. The SMART team is working with the Mirth Corporation, to SMART-enable the HealthBridge and Redwood MedNet Health Information Exchanges. We have demonstrated that a single SMART app can run, unmodified, in all of these environments, as long as the underlying platform collects the required data types. Major EHR vendors are currently adapting the SMART API for their products. Conclusions The SMART system enables nimble customization of any electronic health record system to create either a reporting function (outgoing communication) or an alerting function (incoming communication) establishing a technology for a robust linkage between public health and clinical environments.

  19. Smarter Instruments, Smarter Archives: Machine Learning for Tactical Science

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Kiran, R.; Allwood, A.; Altinok, A.; Estlin, T.; Flannery, D.

    2014-12-01

    There has been a growing interest by Earth and Planetary Sciences in machine learning, visualization and cyberinfrastructure to interpret ever-increasing volumes of instrument data. Such tools are commonly used to analyze archival datasets, but they can also play a valuable real-time role during missions. Here we discuss ways that machine learning can benefit tactical science decisions during Earth and Planetary Exploration. Machine learning's potential begins at the instrument itself. Smart instruments endowed with pattern recognition can immediately recognize science features of interest. This allows robotic explorers to optimize their limited communications bandwidth, triaging science products and prioritizing the most relevant data. Smart instruments can also target their data collection on the fly, using principles of experimental design to reduce redundancy and generally improve sampling efficiency for time-limited operations. Moreover, smart instruments can respond immediately to transient or unexpected phenomena. Examples include detections of cometary plumes, terrestrial floods, or volcanism. We show recent examples of smart instruments from 2014 tests including: aircraft and spacecraft remote sensing instruments that recognize cloud contamination, field tests of a "smart camera" for robotic surface geology, and adaptive data collection by X-Ray fluorescence spectrometers. Machine learning can also assist human operators when tactical decision making is required. Terrestrial scenarios include airborne remote sensing, where the decision to re-fly a transect must be made immediately. Planetary scenarios include deep space encounters or planetary surface exploration, where the number of command cycles is limited and operators make rapid daily decisions about where next to collect measurements. Visualization and modeling can reveal trends, clusters, and outliers in new data. This can help operators recognize instrument artifacts or spot anomalies in real time. We show recent examples from science data pipelines deployed onboard aircraft as well as tactical visualizations for non-image instrument data.

  20. SMART on FHIR: a standards-based, interoperable apps platform for electronic health records

    PubMed Central

    Kreda, David A; Mandl, Kenneth D; Kohane, Isaac S; Ramoni, Rachel B

    2016-01-01

    Objective In early 2010, Harvard Medical School and Boston Children’s Hospital began an interoperability project with the distinctive goal of developing a platform to enable medical applications to be written once and run unmodified across different healthcare IT systems. The project was called Substitutable Medical Applications and Reusable Technologies (SMART). Methods We adopted contemporary web standards for application programming interface transport, authorization, and user interface, and standard medical terminologies for coded data. In our initial design, we created our own openly licensed clinical data models to enforce consistency and simplicity. During the second half of 2013, we updated SMART to take advantage of the clinical data models and the application-programming interface described in a new, openly licensed Health Level Seven draft standard called Fast Health Interoperability Resources (FHIR). Signaling our adoption of the emerging FHIR standard, we called the new platform SMART on FHIR. Results We introduced the SMART on FHIR platform with a demonstration that included several commercial healthcare IT vendors and app developers showcasing prototypes at the Health Information Management Systems Society conference in February 2014. This established the feasibility of SMART on FHIR, while highlighting the need for commonly accepted pragmatic constraints on the base FHIR specification. Conclusion In this paper, we describe the creation of SMART on FHIR, relate the experience of the vendors and developers who built SMART on FHIR prototypes, and discuss some challenges in going from early industry prototyping to industry-wide production use. PMID:26911829

  1. Smart Helmet: Wearable Multichannel ECG and EEG

    PubMed Central

    Chanwimalueang, Theerasak; Goverdovsky, Valentin; Looney, David; Sharp, David; Mandic, Danilo P.

    2016-01-01

    Modern wearable technologies have enabled continuous recording of vital signs, however, for activities such as cycling, motor-racing, or military engagement, a helmet with embedded sensors would provide maximum convenience and the opportunity to monitor simultaneously both the vital signs and the electroencephalogram (EEG). To this end, we investigate the feasibility of recording the electrocardiogram (ECG), respiration, and EEG from face-lead locations, by embedding multiple electrodes within a standard helmet. The electrode positions are at the lower jaw, mastoids, and forehead, while for validation purposes a respiration belt around the thorax and a reference ECG from the chest serve as ground truth to assess the performance. The within-helmet EEG is verified by exposing the subjects to periodic visual and auditory stimuli and screening the recordings for the steady-state evoked potentials in response to these stimuli. Cycling and walking are chosen as real-world activities to illustrate how to deal with the so-induced irregular motion artifacts, which contaminate the recordings. We also propose a multivariate R-peak detection algorithm suitable for such noisy environments. Recordings in real-world scenarios support a proof of concept of the feasibility of recording vital signs and EEG from the proposed smart helmet. PMID:27957405

  2. An 8-DOF dual-arm system for advanced teleoperation performance experiments

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Szakaly, Zoltan F.

    1992-01-01

    This paper describes the electro-mechanical and control features of an 8-DOF manipulator manufactured by AAI Corporation and installed at the Jet Propulsion Lab. (JPL) in a dual-arm setting. The 8-DOF arm incorporates a variety of features not found in other lab or industrial manipulators. Some of the unique features are: 8-DOF revolute configuration with no lateral offsets at joint axes; 1 to 5 payload to weight ratio with 20 kg (44 lb) payload at a 1.75 m (68.5 in.) reach; joint position measurement with dual relative encoders and potentiometer; infinite roll of joint 8 with electrical and fiber optic slip rings; internal fiber optic link of 'smart' end effectors; four-axis wrist; graphite epoxy links; high link and joint stiffness; use of an upgraded JPL Universal Motor Controller (UMC) capable of driving up to 16 joints. The 8-DOF arm is equipped with a 'smart' end effector which incorporates a 6-DOF forcemoment sensor at the end effector base and grasp force sensors at the base of the parallel jaws. The 8-DOF arm is interfaced to a 6 DOF force reflecting hand controller. The same system is duplicated for and installed at NASA-Langley.

  3. Types of architectural structures and the use of smart materials

    NASA Astrophysics Data System (ADS)

    Tavşan, Cengiz; Sipahi, Serkan

    2017-07-01

    The developments in technology following the industrial revolution had their share of impact on both construction techniques, and material technologies. The change in the materials used by the construction industry brought along numerous innovations, which, in turn, took on an autonomous trend of development given the rise of nano-tech materials. Today, nano-tech materials are used extensively in numerous construction categories. Nano-tech materials, in general, are characterized by their reactionary nature, with the intent of repeating the reactions again and again under certain conditions. That is why nano-tech materials are often called smart materials. In construction industry, smart materials are categorized under 4 major perspectives: Shape-shifting smart materials, power generating smart materials, self-maintenance smart materials, and smart materials providing a high level of insulation. In architecture, various categories of construction often tend to exhibit their own approaches to design, materials, and construction techniques. This is a direct consequence of the need for different solutions for different functions. In this context, the use of technological materials should lead to the use of a set of smart materials for a given category of structures, while another category utilizes yet another set. In the present study, the smart materials used in specific categories of structures were reviewed with reference to nano-tech practices implemented in Europe, with a view to try and reveal the changes in the use of smart materials with reference to categories of structures. The study entails a discussion to test the hypothesis that nano-tech materials vary with reference to structure categories, on the basis of 18 examples from various structure categories, built by the construction firms with the highest level of potential in terms of doing business in Europe. The study comprises 3 major sections: The first section reiterates what the literature has to say about smart materials; the second discusses the types and characteristics of smart materials over the tables detailing their utilization and functions in the structures included in the set of examples. The final section of the study, on the other hand, elaborates on the findings, discussing them with reference to the types of structures.

  4. Piezoelectric assisted smart satellite structure (PEASSS): an innovative low cost nano-satellite

    NASA Astrophysics Data System (ADS)

    Rockberger, D.; Abramovich, H.

    2014-03-01

    The present manuscript is aimed at describing the PEASSS - PiezoElectric Assisted Smart Satellite Structure project, which was initiated at the beginning of 2013 and financed by the Seventh Framework Program (FP7) of the European Commission. The aims of the project were to develop, manufacture, test and qualify "smart structures" which combine composite panels, piezoelectric materials, and next generation sensors, for autonomously improved pointing accuracy and power generation in space. The smart panels will enable fine angle control, and thermal and vibration compensation, improving all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. This new technology will help keep Europe on the cutting edge of space research, potentially improving the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. The system components include new nano-satellite electronics, a piezo power generation system based on the pyroelectric effect, a piezo actuated smart structure, and a fiber-optic sensor and interrogator system. The present paper will deal only with two of the components, namely the piezo power generation system and the piezo actuated smart structure The designs are going to be prototyped into breadboard models for functional development and testing. Following completion of operational breadboards, components will evolve to flight-test ready hardware and related software, ready to be integrated into a working satellite. Once the nanosattelite is assembled, on ground tests will be performed. Finally, the satellite will be launched and tested in space at the end of 2015.

  5. Systematic review of SMART Recovery: Outcomes, process variables, and implications for research.

    PubMed

    Beck, Alison K; Forbes, Erin; Baker, Amanda L; Kelly, Peter J; Deane, Frank P; Shakeshaft, Anthony; Hunt, David; Kelly, John F

    2017-02-01

    Clinical guidelines recommend Self-Management and Recovery Training (SMART Recovery) and 12-step models of mutual aid as important sources of long-term support for addiction recovery. Methodologically rigorous reviews of the efficacy and potential mechanisms of change are available for the predominant 12-step approach. A similarly rigorous exploration of SMART Recovery has yet to be undertaken. We aim to address this gap by providing a systematic overview of the evidence for SMART Recovery in adults with problematic alcohol, substance, and/or behavioral addiction, including (i) a commentary on outcomes assessed, process variables, feasibility, current understanding of mental health outcomes, and (ii) a critical evaluation of the methodology. We searched six electronic peer-reviewed and four gray literature databases for English-language SMART Recovery literature. Articles were classified, assessed against standardized criteria, and checked by an independent assessor. Twelve studies (including three evaluations of effectiveness) were identified. Alcohol-related outcomes were the primary focus. Standardized assessment of nonalcohol substance use was infrequent. Information about behavioral addiction was restricted to limited prevalence data. Functional outcomes were rarely reported. Feasibility was largely indexed by attendance. Economic analysis has not been undertaken. Little is known about the variables that may influence treatment outcome, but attendance represents a potential candidate. Assessment and reporting of mental health status was poor. Although positive effects were found, the modest sample and diversity of methods prevent us from making conclusive remarks about efficacy. Further research is needed to understand the clinical and public health utility of SMART as a viable recovery support option. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Effects of teaching communication skills using a video clip on a smart phone on communication competence and emotional intelligence in nursing students.

    PubMed

    Choi, Yeonja; Song, Eunju; Oh, Eunjung

    2015-04-01

    This study aims to verify the communication skills training for nursing students by using a video clip on a smart phone. The study settings were the nursing departments of two universities in South Korea. This study was a quasi-experimental one using a nonequivalent control group pre-posttest design. The experimental and control groups consisted of second-year nursing students who had taken a communication course. The experimental group included 45 students, and the control group included 42 students. The experimental group improved more significantly than the control group in communication competence and emotional intelligence. Using a video clip on a smart phone is helpful for communication teaching method. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. An u-Service Model Based on a Smart Phone for Urban Computing Environments

    NASA Astrophysics Data System (ADS)

    Cho, Yongyun; Yoe, Hyun

    In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.

  8. “Smart Forms” in an Electronic Medical Record: Documentation-based Clinical Decision Support to Improve Disease Management

    PubMed Central

    Schnipper, Jeffrey L.; Linder, Jeffrey A.; Palchuk, Matvey B.; Einbinder, Jonathan S.; Li, Qi; Postilnik, Anatoly; Middleton, Blackford

    2008-01-01

    Clinical decision support systems (CDSS) integrated within Electronic Medical Records (EMR) hold the promise of improving healthcare quality. To date the effectiveness of CDSS has been less than expected, especially concerning the ambulatory management of chronic diseases. This is due, in part, to the fact that clinicians do not use CDSS fully. Barriers to clinicians' use of CDSS have included lack of integration into workflow, software usability issues, and relevance of the content to the patient at hand. At Partners HealthCare, we are developing “Smart Forms” to facilitate documentation-based clinical decision support. Rather than being interruptive in nature, the Smart Form enables writing a multi-problem visit note while capturing coded information and providing sophisticated decision support in the form of tailored recommendations for care. The current version of the Smart Form is designed around two chronic diseases: coronary artery disease and diabetes mellitus. The Smart Form has potential to improve the care of patients with both acute and chronic conditions. PMID:18436911

  9. "Smart Forms" in an Electronic Medical Record: documentation-based clinical decision support to improve disease management.

    PubMed

    Schnipper, Jeffrey L; Linder, Jeffrey A; Palchuk, Matvey B; Einbinder, Jonathan S; Li, Qi; Postilnik, Anatoly; Middleton, Blackford

    2008-01-01

    Clinical decision support systems (CDSS) integrated within Electronic Medical Records (EMR) hold the promise of improving healthcare quality. To date the effectiveness of CDSS has been less than expected, especially concerning the ambulatory management of chronic diseases. This is due, in part, to the fact that clinicians do not use CDSS fully. Barriers to clinicians' use of CDSS have included lack of integration into workflow, software usability issues, and relevance of the content to the patient at hand. At Partners HealthCare, we are developing "Smart Forms" to facilitate documentation-based clinical decision support. Rather than being interruptive in nature, the Smart Form enables writing a multi-problem visit note while capturing coded information and providing sophisticated decision support in the form of tailored recommendations for care. The current version of the Smart Form is designed around two chronic diseases: coronary artery disease and diabetes mellitus. The Smart Form has potential to improve the care of patients with both acute and chronic conditions.

  10. Influential Aspects of the Smart City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinovici, Maria C.; Kirkham, Harold; Widergren, Steven E.

    2016-01-05

    Using millions of sensors in everyday objects, smart cities will generate petabytes of data, and it will be delivered to multiple users via networks. Multi-disciplinary inter-operability is essential. We propose system engineering management, with multidisciplinary teams as an effective way to deliver real change. Their goal is to develop intelligent and integrated services through the use of digital technologies and open collaboration. We also caution that the process cannot be entirely planned ahead of time, it must be allowed to evolve. New technology will change the game (where does a 3-D printer fit into a smart city?). Municipal planning meansmore » central planning – not known for its sensitivity to reality. A successful smart city will include lots of feedback mechanisms for the citizenry.« less

  11. Tests for malingering in ophthalmology

    PubMed Central

    Incesu, Ali Ihsan

    2013-01-01

    Simulation can be defined as malingering, or sometimes functional visual loss (FVL). It manifests as either simulating an ophthalmic disease (positive simulation), or denial of ophthalmic disease (negative simulation). Conscious behavior and compensation or indemnity claims are prominent features of simulation. Since some authors suggest that this is a manifestation of underlying psychopathology, even conversion is included in this context. In today's world, every ophthalmologist can face with simulation of ophthalmic disease or disorder. In case of simulation suspect, the physician's responsibility is to prove the simulation considering the disease/disorder first, and simulation as an exclusion. In simulation examinations, the physician should be firm and smart to select appropriate test(s) to convince not only the subject, but also the judge in case of indemnity or compensation trials. Almost all ophthalmic sensory and motor functions including visual acuity, visual field, color vision and night vision can be the subject of simulation. Examiner must be skillful in selecting the most appropriate test. Apart from those in the literature, we included all kinds of simulation in ophthalmology. In addition, simulation examination techniques, such as, use of optical coherence tomography, frequency doubling perimetry (FDP), and modified polarization tests were also included. In this review, we made a thorough literature search, and added our experiences to give the readers up-to-date information on malingering or simulation in ophthalmology. PMID:24195054

  12. Smartness as Cultural Wealth: An AsianCrit Counterstory

    ERIC Educational Resources Information Center

    Kolano, Lan

    2016-01-01

    Historically, Asians have been defined by a range of negative and positive images that include the coolie, the deviant, the yellow peril, and the model minority. However, the negative images have been slowly and robustly replaced with ones that portray Asian Americans as high achievers, smart, and a model--especially when compared to other…

  13. The Interactive Classroom: An Overview of Smart Notebook Software

    ERIC Educational Resources Information Center

    Nichols, Bryan E.

    2015-01-01

    Interactive whiteboards are increasingly used in school classrooms. SMART Boards have been adopted in many schools, including music classes taught by specialists. This article provides specific tips for using the most popular whiteboard application. The main features of the software as well as specific strategies for maximizing their use in the…

  14. Authentication techniques for smart cards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.A.

    1994-02-01

    Smart card systems are most cost efficient when implemented as a distributed system, which is a system without central host interaction or a local database of card numbers for verifying transaction approval. A distributed system, as such, presents special card and user authentication problems. Fortunately, smart cards offer processing capabilities that provide solutions to authentication problems, provided the system is designed with proper data integrity measures. Smart card systems maintain data integrity through a security design that controls data sources and limits data changes. A good security design is usually a result of a system analysis that provides a thoroughmore » understanding of the application needs. Once designers understand the application, they may specify authentication techniques that mitigate the risk of system compromise or failure. Current authentication techniques include cryptography, passwords, challenge/response protocols, and biometrics. The security design includes these techniques to help prevent counterfeit cards, unauthorized use, or information compromise. This paper discusses card authentication and user identity techniques that enhance security for microprocessor card systems. It also describes the analysis process used for determining proper authentication techniques for a system.« less

  15. Park Smart

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Parking Garage Automation System (PGAS) is based on a technology developed by a NASA-sponsored project called Robot sensorSkin(TM). Merritt Systems, Inc., of Orlando, Florida, teamed up with NASA to improve robots working with critical flight hardware at Kennedy Space Center in Florida. The system, containing smart sensor modules and flexible printed circuit board skin, help robots to steer clear of obstacles using a proximity sensing system. Advancements in the sensor designs are being applied to various commercial applications, including the PGAS. The system includes a smartSensor(TM) network installed around and within public parking garages to autonomously guide motorists to open facilities, and once within, to free parking spaces. The sensors use non-invasive reflective-ultrasonic technology for high accuracy, high reliability, and low maintenance. The system is remotely programmable: it can be tuned to site-specific requirements, has variable range capability, and allows remote configuration, monitoring, and diagnostics. The sensors are immune to interference from metallic construction materials, such as rebar and steel beams. Inside the garage, smart routing signs mounted overhead or on poles in front of each row of parking spots guide the motorist precisely to free spaces.

  16. The role of smart systems in rendezvous, close proximity operations and docking maneuvers

    NASA Astrophysics Data System (ADS)

    Szatkowski, Gerard P.

    Various missions scenarios (Space Station logistics, LEO and GEO services, and SEI operation) will involve flexibility in mission management. This means operations will be one or a combination of the following: autonomous, supervised autonomous, and machine aided manual control. Smart Systems will likely play a significant role in making these missions successful from a safety/reliability perspective and less costly from an operations perspective. This does not imply that Smart Systems need to be super sophisticated. On the contrary, Smart Systems have been described as automated intelligence that if a person had done it wrong, it would be considered stupid. The first part of this paper will describe the types of Smart System techniques involved in AR and CC, their specifications, duties, and interactions. Next will be a discussion of the work performed under the auspice of the ALS Program to further Expert Systems applications imbedded in the control process, NASA/JSC CRAD, and other related IRAD projects. This will include issues pertaining to the following: integration, speed, knowledge encapsulation, and cooperative systems. Finally, a brief description will be offered to outline the major obstacles for the acceptance of Smart Systems in critical applications.

  17. System and method for motor parameter estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luhrs, Bin; Yan, Ting

    2014-03-18

    A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less

  18. Pneumonia risk stratification in tropical Australia: does the SMART-COP score apply?

    PubMed

    Davis, Joshua S; Cross, Gail B; Charles, Patrick G P; Currie, Bart J; Anstey, Nicholas M; Cheng, Allen C

    2010-02-01

    To examine the performance in tropical northern Australia of SMART-COP, a simple scoring system developed in temperate Australia to predict the need for intensive respiratory or vasopressor support (IRVS) in pneumonia patients. A prospective observational study of patients admitted to Royal Darwin Hospital in the Northern Territory with sepsis between August 2007 and May 2008. Chest x-rays were reviewed to confirm pneumonia, and each patient's SMART-COP score was assessed against the need for IRVS. Of 206 patients presenting with radiologically confirmed pneumonia, 184 were eligible for inclusion. The mean age of patients was 50.1 years, 65% were Indigenous and 56% were men. Overall, 38 patients (21%) required IRVS, and 18 patients (10%) died by Day 30. A SMART-COP score of >or= 3 had a sensitivity of only 71% for predicting the need for IRVS and 67% for 30-day mortality. As the variables most strongly associated with IRVS were serum albumin level < 35 g/L (odds ratio, 6.8) and Indigenous status (odds ratio, 2.3), we tested a modified scoring system (SMART-COP) that used a higher weighting for albumin and included Indigenous status. A SMART-COP score of >or= 3 had a sensitivity of 97% for IRVS and 100% for 30-day mortality. The SMART-COP score underestimates the severity of pneumonia in tropical northern Australia, but can be improved by using locally relevant additions.

  19. tranSMART-XNAT Connector tranSMART-XNAT connector-image selection based on clinical phenotypes and genetic profiles.

    PubMed

    He, Sijin; Yong, May; Matthews, Paul M; Guo, Yike

    2017-03-01

    TranSMART has a wide range of functionalities for translational research and a large user community, but it does not support imaging data. In this context, imaging data typically includes 2D or 3D sets of magnitude data and metadata information. Imaging data may summarise complex feature descriptions in a less biased fashion than user defined plain texts and numeric numbers. Imaging data also is contextualised by other data sets and may be analysed jointly with other data that can explain features or their variation. Here we describe the tranSMART-XNAT Connector we have developed. This connector consists of components for data capture, organisation and analysis. Data capture is responsible for imaging capture either from PACS system or directly from an MRI scanner, or from raw data files. Data are organised in a similar fashion as tranSMART and are stored in a format that allows direct analysis within tranSMART. The connector enables selection and download of DICOM images and associated resources using subjects' clinical phenotypic and genotypic criteria. tranSMART-XNAT connector is written in Java/Groovy/Grails. It is maintained and available for download at https://github.com/sh107/transmart-xnat-connector.git. sijin@ebi.ac.uk. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  20. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    PubMed

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  1. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    PubMed Central

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  2. Workshop report: US-China workshop on smart structures and smart systems

    NASA Astrophysics Data System (ADS)

    Tomizuka, Masayoshi

    2006-03-01

    A Joint U.S.-China workshop on the topic of Integrated Sensing Systems, Mechatronics and Smart Structures Technologies was held in Jinan, China in October 2005 to evaluate the current status of research and education in the topic areas in the United States and China, to identify critical and strategic research and educational issues of mutual interest, and to identify joint research projects and potential research teams for collaborative research activities. The workshop included a series of presentations by leading researchers and educators from the United States and China and group discussions on the workshop objectives.

  3. Smart Sensor Node Development, Testing and Implementation for Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Mengers, Timothy R.; Shipley, John; Merrill, Richard; Eggett, Leon; Johnson, Mont; Morris, Jonathan; Figueroa, Fernando; Schmalzel, John; Turowski, Mark P.

    2007-01-01

    Successful design and implementation of an Integrated System Health Management (ISHM) approach for rocket propulsion systems requires the capability improve the reliability of complex systems by detecting and diagnosing problems. One of the critical elements in the ISHM is an intelligent sensor node for data acquisition that meets specific requirements for rocket motor testing including accuracy, sample rate and size/weight. Traditional data acquisition systems are calibrated in a controlled environment and guaranteed to perform bounded by their tested conditions. In a real world ISHM system, the data acquisition and signal conditioning needs to function in an uncontrolled environment. Development and testing of this sensor node focuses on a design with the ability to self check in order to extend calibration times, report internal faults and drifts and notify the overall system when the data acquisition is not performing as it should. All of this will be designed within a system that is flexible, requiring little re-design to be deployed on a wide variety of systems. Progress in this design and initial testing of prototype units will be reported.

  4. Recovery Act Final Project Report -- Transportation Electrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gogineni, Kumar

    2013-12-31

    ChargePoint America demonstrated the viability, economic and environmental benefits of an electric vehicle-charging infrastructure. Electric vehicles (EVs) and plug-in electric vehicles (PHEVs) arrived in late 2010, there was a substantial lack of infrastructure to support these vehicles. ChargePoint America deployed charging infrastructure in ten (10) metropolitan regions in coordination with vehicle deliveries targeting those same regions by our OEM partners: General Motors, Nissan, Fisker Automotive, Ford, smart USA, and BMW. The metropolitan regions include Central Texas (Austin/San Antonio), Bellevue/Redmond (WA), Southern Michigan, Los Angeles area (CA), New York Metro (NY), Central Florida (Orlando/Tampa), Sacramento (CA), San Francisco/San Jose (CA), Washingtonmore » DC and Boston (MA). ChargePoint America installed more than 4,600 Level 2 (220v) SAE J1772™ UL listed networked charging ports in home, public and commercial locations to support approximately 2000 program vehicles. ChargePoint collected data to analyze how individuals, businesses and local governments used their vehicles. Understanding driver charging behavior patterns will provide the DoE with critical information as EV adoption increases in the United States.« less

  5. The Diabetes Self-management Assessment Report Tool (D-SMART): process evaluation and patient satisfaction.

    PubMed

    Charron-Prochownik, Denise; Zgibor, Janice C; Peyrot, Mark; Peeples, Malinda; McWilliams, Janis; Koshinsky, Janice; Noullet, William; Siminerio, Linda M

    2007-01-01

    The purpose of this article is to present the results of the process evaluation and patient experience in completing the Diabetes Self-management Assessment Report Tool (D-SMART), an instrument within the AADE Outcome System to assist diabetes educators to assess, facilitate, and track behavior change in the provision of diabetes self-management education (DSME). The D-SMART was integrated into computer and telephonic systems at 5 sites within the Pittsburgh Regional Initiative for Diabetes Education (PRIDE) network. Data were obtained from 290 patients with diabetes using the system at these programs via paper-and-pencil questionnaires following baseline D-SMART assessments and electronic system measurement of system performance. Process evaluation included time of completion, understanding content, usability of technology, and satisfaction with the system. Patients were 58% female and 85% Caucasian and had a mean age of 58 years. Fifty-six percent of patients had no more than a high school education, and 78% had Internet access at home. Most patients reported completing the D-SMART at home (78%), in 1 attempt (86%) via the Internet (55%), and in less than 30 minutes. Seventy-six percent believed the questions were easy to understand, and 80% did not need assistance. Age was negatively associated with ease of use. Moreover, 76% of patients believed the D-SMART helped them think about their diabetes, with 67% indicating that it gave the diabetes educator good information about themselves and their diabetes. Most (94%) were satisfied with the D-SMART. Level of satisfaction was independent of the system being used. The D-SMART was easily completed at home in 1 attempt, content was understandable, and patients were generally satisfied with the wording of questions and selection of answers. The D-SMART is easy to use and enhanced communication between the patient and clinician; however, elderly patients may need more assistance. Computer-based and telephonic D-SMARTs appear to be feasible and useful assessment methods for diabetes educators.

  6. Stress Management and Resiliency Training (SMART) program among Department of Radiology faculty: a pilot randomized clinical trial.

    PubMed

    Sood, Amit; Sharma, Varun; Schroeder, Darrell R; Gorman, Brian

    2014-01-01

    To test the efficacy of a Stress Management and Resiliency Training (SMART) program for decreasing stress and anxiety and improving resilience and quality of life among Department of Radiology physicians. The study was approved by the institutional review board. A total of 26 Department of Radiology physicians were randomized in a single-blind trial to either the SMART program or a wait-list control arm for 12 weeks. The program involved a single 90-min group session in the SMART training with two follow-up phone calls. Primary outcomes measured at baseline and week 12 included the Perceived Stress Scale, Linear Analog Self-Assessment Scale, Mindful Attention Awareness Scale, and Connor-Davidson Resilience Scale. A total of 22 physicians completed the study. A statistically significant improvement in perceived stress, anxiety, quality of life, and mindfulness at 12 weeks was observed in the study arm compared to the wait-list control arm; resilience also improved in the active arm, but the changes were not statistically significant when compared to the control arm. A single session to decrease stress among radiologists using the SMART program is feasible. Furthermore, the intervention afforded statistically significant and clinically meaningful improvement in anxiety, stress, quality of life, and mindful attention. Further studies including larger sample size and longer follow-up are warranted. Copyright © 2014. Published by Elsevier Inc.

  7. Sociospace: A smart social framework based on the IP Multimedia Subsystem

    NASA Astrophysics Data System (ADS)

    Hasswa, Ahmed

    Advances in smart technologies, wireless networking, and increased interest in contextual services have led to the emergence of ubiquitous and pervasive computing as one of the most promising areas of computing in recent years. Smart Spaces, in particular, have gained significant interest within the research community. Currently, most Smart Spaces rely on physical components, such as sensors, to acquire information about the real-world environment. Although current sensor networks can acquire some useful contextual information from the physical environment, their information resources are often limited, and the data acquired is often unreliable. We argue that by introducing social network information into such systems, smarter and more adaptive spaces can be created. Social networks have recently become extremely popular, and are now an integral part of millions of people's daily lives. Through social networks, users create profiles, build relationships, and join groups, forming intermingled sets and communities. Social Networks contain a wealth of information, which, if exploited properly, can lead to a whole new level of smart contextual services. A mechanism is therefore needed to extract data from heterogeneous social networks, to link profiles across different networks, and to aggregate the data obtained. We therefore propose the design and implementation of a Smart Spaces framework that utilizes the social context. In order to manage services and sessions, we integrate our system with the IP Multimedia Subsystem. Our system, which we call SocioSpace, includes full design and implementation of all components, including the central server, the location management system, the social network interfacing system, the service delivery platform, and user agents. We have built a prototype for proof of concept and carried out exhaustive performance analysis; the results show that SocioSpace is scalable, extensible, and fault-tolerant. It is capable of creating Smart Spaces that can truly deliver adaptive services that enhance the users' overall experience, increase their satisfaction, and make the surroundings more beneficial and interesting to them.

  8. Morpho-functional evaluation of small bowel using wireless motility capsule and video capsule endoscopy in patients with known or suspected Crohn's disease: pilot study.

    PubMed

    Yung, Diana; Douglas, Sarah; Hobson, Anthony R; Giannakou, Andry; Plevris, John N; Koulaouzidis, Anastasios

    2016-04-01

    SmartPill(®) (Given Imaging Corp.,Yoqneam,Israel) is an ingestible, non-imaging capsule that records physiological data including contractions and pH throughout the gastrointestinal tract. There are scarce data looking at SmartPill(®) assessment of patients with known/suspected small-bowel Crohn's Disease (CD). This pilot study aims to investigate feasibility and safety of SmartPill(®) to assess gut motility in this group.  Over 1 year, patients with known/suspected CD, referred for small-bowel capsule endoscopy (SBCE), were invited to participate and 12 were recruited (7 female, 5 male, mean age 44.2 ± 16.6 years). They underwent hydrogen breath test to exclude small-bowel bacterial overgrowth, patency capsule (Agile(®)), and provided stool samples for fecal calprotectin (FC). Patients ingested PillCam(®)SB2 and SmartPill(®) 4 hours apart. Using unpublished data, 33 healthy controls also were identified for the study. P < 0.05 was considered statistically significant. Of the 12 patients enrolled, 10 underwent complete Smartpill(®) examination (1 stomach retention, 1 dropout). Pillcam(®) was complete in 10 (1 dropout, 1 stomach retention). Mean fecal calprotectin was 340 ± 307.71 mcg/g. The study group had longer transit times and lower gut motility index than did the controls. The difference in motility appears to be statistically significant (P < 0.05). Longer transit times for SmartPill(®) (not statistically significant) may have been due to different specifications between the capsules. Limitations included transient Smartpill(®) signal loss (5/10 studies). This is the first pilot to attempt combining SBCE and SmartPill(®) to assess small-bowel CD. Data on motility in CD are scarce. Multimodal information can provide a clearer clinical picture. Despite concerns about capsule retention in CD patients, SmartPill(®) seems safe for use if a patency capsule is employed beforehand.

  9. Smart and intelligent sensor payload project

    NASA Image and Video Library

    2009-04-01

    Engineers working on the smart and intelligent sensor payload project include (l to r): Ed Conley (NASA), Mark Mitchell (Jacobs Technology), Luke Richards (NASA), Robert Drackett (Jacobs Technology), Mark Turowski (Jacobs Technology) , Richard Franzl (seated, Jacobs Technology), Greg McVay (Jacobs Technology), Brianne Guillot (Jacobs Technology), Jon Morris (Jacobs Technology), Stephen Rawls (NASA), John Schmalzel (NASA) and Andrew Bracey (NASA).

  10. Learn with the Classics: Using Music To Study Smart at Any Age.

    ERIC Educational Resources Information Center

    Andersen, Ole; Marsh, Marcy; Harvey, Arthur

    This book, accompanied by a musical CD-ROM, provides information on how to enhance learning through music at any age. Sections include: (1) "Let Music Prime Your Brain For Learning," which teaches how important it is to prime the brain for learning through music; (2) "Study Smart," which demonstrates highly effective studying techniques devised by…

  11. The Impact of Information and Communication Technology (ICT) on the Management Practices of Malaysian Smart Schools

    ERIC Educational Resources Information Center

    Zain, Muhammad Z. M.; Atan, Hanafi; Idrus, Rozhan M.

    2004-01-01

    The impact of Information and Communication Technology (ICT) on the management practices in the Malaysian Smart Schools was investigated. The analysis revealed that the impact has resulted in changes that include the enrichment of the ICT culture among students and teachers, more efficient student and teacher administration, better accessibility…

  12. ABCs of Being Smart: T Is for Tips for Working with Teachers

    ERIC Educational Resources Information Center

    Foster, Joanne

    2015-01-01

    As part of her series, "ABCs of Being Smart," Joanne Foster presents time-tested tips for parents of toddlers to teens. Categories include: traits to tap when meeting with teachers to strengthen home and school connections or resolve any issues; strategies for parents to add to their "toolbox"; and tactical measures to consider…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ching-Yen; Chu, Peter; Gadh, Rajit

    Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuitmore » by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system« less

  14. Dubai: A Pioneer Smart City in the Arabian Territory

    NASA Astrophysics Data System (ADS)

    Virtudes, Ana; Abbara, Arwa; Sá, João

    2017-10-01

    Nowadays, one of the main issues that the cities are facing is related with how they are dealing with the challenges toward smartness, including infrastructures, economic, social and environmental aspects. In this sense, some of the current challenges on the global scale, trying to find solutions regarding urban societies, are based on the concept of “smart city”. Therefore, is clear that new ideas regarding the cities improvements, which are on the top of global agenda, could be found at the concept of “smart city”. As the literature reveals, this is a topic reason among the researchers, which is in a continuous development, in particular regarding societies, countries or regions where it is emerging, such as in the Arabian territories. Dubai, a city in the United Arab Emirates, is an example where in a short period of time, after the oil discovery in the decade of 1970, one small and badly known urban settlement became a pioneer reference in terms of smart cities requirements. Thus, this article presents background information about smart cities, their assets and key pillars, their smart infrastructures and features in cultural, social and environmental terms. The main goals are based on a theoretical approach, developed in order to get more details about smart cities, regarding the features of the Arabian territories. It argues around the case of Dubai, as a pioneer smart city in the Arab world. Among of the main conclusions, there is the idea that the urban transformation process in contemporary societies to secure the smartness, should apply to the use of ICT / information and communication technologies. This use will increase the efficiency concerns to the natural resources, and provide a high quality of life for citizens. The example of Dubai has shown that the decision-makers have built each sector and part of the city in a solid performance, in order to achieve the smart sustainability concept. This city is nowadays a reference on this matter, not only in the Middle East but also considering the global scale.

  15. The Salient Map Analysis for Research and Teaching (SMART) method: Powerful potential as a formative assessment in the biomedical sciences

    NASA Astrophysics Data System (ADS)

    Cathcart, Laura Anne

    This dissertation consists of two studies: 1) development and characterization of the Salient Map Analysis for Research and Teaching (SMART) method as a formative assessment tool and 2) a case study exploring how a paramedic instructor's beliefs about learners affect her utilization of the SMART method and vice versa. The first study explored: How can a novel concept map analysis method be designed as an effective formative assessment tool? The SMART method improves upon existing concept map analysis methods because it does not require hierarchically structured concept maps and it preserves the rich content of the maps instead of reducing each map down to a numerical score. The SMART method is performed by comparing a set of students' maps to each other and to an instructor's map. The resulting composite map depicts, in percentages and highlighted colors, the similarities and differences between all of the maps. Some advantages of the SMART method as a formative assessment tool include its ability to highlight changes across time, problematic or alternative conceptions, and patterns of student responses at a glance. Study two explored: How do a paramedic instructor's beliefs about students and learning affect---and become affected by---her use of the SMART method as a formative assessment tool? This case study of Angel, an expert paramedic instructor, begins to address a gap in the emergency medical services (EMS) education literature, which contains almost no research on teachers or pedagogy. Angel and I worked together as participant co-researchers (Heron & Reason, 1997) exploring the affordances of the SMART method. This study, based on those interactions with Angel, involved using open coding to identify themes (Strauss & Corbin, 1998) from Angel's views of students and use of the SMART method. Angel views learning as a sense-making process. She has a multi-faceted view of her students as novices and invests substantial time trying to understand their concept maps. Not only do these beliefs affect her use of the SMART method; in addition, her beliefs are refined through the use of the SMART method.

  16. A Review of Patents for the Smart Packaging of Meat and Muscle-based Food Products.

    PubMed

    Holman, Benjamin; Kerry, Joseph P; Hopkins, David L

    2017-10-31

    Meat packaging once acted primarily as an inert barrier to protect its contents against contamination and this function has shifted. Packaging now includes complementary functions that improve product quality, longevity and customer/retail appeal. The devices and methods applied to achieve these functions may be categorised as smart packaging, which includes intelligent packaging, devised to monitor and communicate packaged content status, and active packaging, to provide passive adjustment of in-pack conditions from its interactions with the packaged meat. Smart packaging examples already available from recent patents include antimicrobial and antioxidant packaging coatings and inserts; sensors or indicators that identify spoilage and freshness; functional engineering customisations; improvements to packaging integrity; leak or tamper detectors; and, environmentally sustainable options. Together, these inventions respond to industry and customer demands for meat packaging and are therefore the focus of this review, in which we discuss their applications and limitations in meat packaging. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Health care transformation through collaboration on open-source informatics projects: integrating a medical applications platform, research data repository, and patient summarization.

    PubMed

    Klann, Jeffrey G; McCoy, Allison B; Wright, Adam; Wattanasin, Nich; Sittig, Dean F; Murphy, Shawn N

    2013-05-30

    The Strategic Health IT Advanced Research Projects (SHARP) program seeks to conquer well-understood challenges in medical informatics through breakthrough research. Two SHARP centers have found alignment in their methodological needs: (1) members of the National Center for Cognitive Informatics and Decision-making (NCCD) have developed knowledge bases to support problem-oriented summarizations of patient data, and (2) Substitutable Medical Apps, Reusable Technologies (SMART), which is a platform for reusable medical apps that can run on participating platforms connected to various electronic health records (EHR). Combining the work of these two centers will ensure wide dissemination of new methods for synthesized views of patient data. Informatics for Integrating Biology and the Bedside (i2b2) is an NIH-funded clinical research data repository platform in use at over 100 sites worldwide. By also working with a co-occurring initiative to SMART-enabling i2b2, we can confidently write one app that can be used extremely broadly. Our goal was to facilitate development of intuitive, problem-oriented views of the patient record using NCCD knowledge bases that would run in any EHR. To do this, we developed a collaboration between the two SHARPs and an NIH center, i2b2. First, we implemented collaborative tools to connect researchers at three institutions. Next, we developed a patient summarization app using the SMART platform and a previously validated NCCD problem-medication linkage knowledge base derived from the National Drug File-Reference Terminology (NDF-RT). Finally, to SMART-enable i2b2, we implemented two new Web service "cells" that expose the SMART application programming interface (API), and we made changes to the Web interface of i2b2 to host a "carousel" of SMART apps. We deployed our SMART-based, NDF-RT-derived patient summarization app in this SMART-i2b2 container. It displays a problem-oriented view of medications and presents a line-graph display of laboratory results. This summarization app can be run in any EHR environment that either supports SMART or runs SMART-enabled i2b2. This i2b2 "clinical bridge" demonstrates a pathway for reusable app development that does not require EHR vendors to immediately adopt the SMART API. Apps can be developed in SMART and run by clinicians in the i2b2 repository, reusing clinical data extracted from EHRs. This may encourage the adoption of SMART by supporting SMART app development until EHRs adopt the platform. It also allows a new variety of clinical SMART apps, fueled by the broad aggregation of data types available in research repositories. The app (including its knowledge base) and SMART-i2b2 are open-source and freely available for download.

  18. New Results and Synthesis from SMART-1

    NASA Astrophysics Data System (ADS)

    Foing, Bernard H.

    2012-07-01

    We present new SMART-1 results recently published and give a synthesis of mission highlights and legacy. SMART-1 demonstrated the use of Solar Electric Propulsion that will be useful for Bepi-Colombo and future deep-space missions, tested new technologies for spacecraft and instruments miniaturisation, and provided an opportunity for science [1-12]. The SMART-1 spacecraft operated on a science orbit for 18 months until impact on 3 September 2006. To date, 72 refereed papers and more than 325 conference or technical papers have been published based on SMART-1 (see ADS on SMART-1 scitech website). The SMART-1 data are accessible on the ESA Planetary Science Archive PSA [13]. Recent SMART-1 published results using these archives include: Multi-angular photometry of Mare and specific regions to diagnose the regolith roughness and to constrain models of light re ection and scattering [14] that can be extended to understand the surface of other moons and asteroids; the SMART-1 impact observed from Earth was modelled using laboratory experiments predicting the size of asymmetric crater and ejecta [15]; the lunar North and South polar illumination was mapped and monitored over the entire year, permitting to identify SMART-1 peaks of quasi-eternal light" and to derive their topography [16, 17]; SMART-1 was also used for radio occultation experiments [18], and the X-Ray Solar Monitor data were used for activity and are studies of the Sun as a star in conjunction with GOES AND RHESSI [19] or to design future coronal X-ray instruments [20]. The SMART-1 archive observations have been used to support Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, and to characterise potential sites relevant for lunar science and future exploration. Credits and links: we acknowledge members of SMART-1 Science and Technology Working Team and collaborators. SMART-1 Scitech or public websites: sci.esa.int/smart-1 or www.esa.int/smart-1 References [1] Foing etal (2001) EMP 85-523; [2] Racca et al (2002) EMP 85-379; [3] Racca et al. (2002) PSS 50-1323; [4] Grande et al. (2003) PSS51-427; [5] Dunkin et al. (2003) PSS 51-435; [6] Huovelin et al. (2002) PSS50-1345; [7] Shkuratov et al (2003) JGRE 108-E4-1; [8] Foing et al (2003) ASR 31-2323; [9] Grande et al (2007) PSS 55-494; [10] Pinet et al (2005) PSS 53-1309; [11] Josset etal (2006) ASR 37-14; [12] Foing et al (2006) ASR 37-6; [13] http://www.rssd.esa.int/psa [14] Muinonen et al (2011) AA 531-150; [15] Burchell et al (2010) Icarus 207-28; 16] Grieger (2010) cosp 38-417; [17] Bussey et al (2011) LPI CO-1621-5; [18] Pluchino et al MSAItS 16-152; [19] Vaananen et al (2009) SolarPhys 260-479; [20] Alha et al (2012)NIMPA 664, 358

  19. SmartR: an open-source platform for interactive visual analytics for translational research data

    PubMed Central

    Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard

    2017-01-01

    Abstract Summary: In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR, a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. Availability and Implementation: The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR. Contact: reinhard.schneider@uni.lu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:28334291

  20. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks.

    PubMed

    de Araújo, Paulo Régis C; Filho, Raimir Holanda; Rodrigues, Joel J P C; Oliveira, João P C M; Braga, Stephanie A

    2018-04-24

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations.

  1. SmartR: an open-source platform for interactive visual analytics for translational research data.

    PubMed

    Herzinger, Sascha; Gu, Wei; Satagopam, Venkata; Eifes, Serge; Rege, Kavita; Barbosa-Silva, Adriano; Schneider, Reinhard

    2017-07-15

    In translational research, efficient knowledge exchange between the different fields of expertise is crucial. An open platform that is capable of storing a multitude of data types such as clinical, pre-clinical or OMICS data combined with strong visual analytical capabilities will significantly accelerate the scientific progress by making data more accessible and hypothesis generation easier. The open data warehouse tranSMART is capable of storing a variety of data types and has a growing user community including both academic institutions and pharmaceutical companies. tranSMART, however, currently lacks interactive and dynamic visual analytics and does not permit any post-processing interaction or exploration. For this reason, we developed SmartR , a plugin for tranSMART, that equips the platform not only with several dynamic visual analytical workflows, but also provides its own framework for the addition of new custom workflows. Modern web technologies such as D3.js or AngularJS were used to build a set of standard visualizations that were heavily improved with dynamic elements. The source code is licensed under the Apache 2.0 License and is freely available on GitHub: https://github.com/transmart/SmartR . reinhard.schneider@uni.lu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  2. Towards Smart Grid Dynamic Ratings

    NASA Astrophysics Data System (ADS)

    Cheema, Jamal; Clark, Adrian; Kilimnik, Justin; Pavlovski, Chris; Redman, David; Vu, Maria

    2011-08-01

    The energy distribution industry is giving greater attention to smart grid solutions as a means for increasing the capabilities, efficiency and reliability of the electrical power network. The smart grid makes use of intelligent monitoring and control devices throughout the distribution network to report on electrical properties such as voltage, current and power, as well as raising network alarms and events. A further aspect of the smart grid embodies the dynamic rating of electrical assets of the network. This fundamentally involves a rating of the load current capacity of electrical assets including feeders, transformers and switches. The mainstream approach to rate assets is to apply the vendor plate rating, which often under utilizes assets, or in some cases over utilizes when environmental conditions reduce the effective rated capacity, potentially reducing lifetime. Using active intelligence we have developed a rating system that rates assets in real time based upon several events. This allows for a far more efficient and reliable electrical grid that is able to extend further the life and reliability of the electrical network. In this paper we describe our architecture, the observations made during development and live deployment of the solution into operation. We also illustrate how this solution blends with the smart grid by proposing a dynamic rating system for the smart grid.

  3. Infrastructure for Integration of Legacy Electrical Equipment into a Smart-Grid Using Wireless Sensor Networks

    PubMed Central

    de Araújo, Paulo Régis C.; Filho, Raimir Holanda; Oliveira, João P. C. M.; Braga, Stephanie A.

    2018-01-01

    At present, the standardisation of electrical equipment communications is on the rise. In particular, manufacturers are releasing equipment for the smart grid endowed with communication protocols such as DNP3, IEC 61850, and MODBUS. However, there are legacy equipment operating in the electricity distribution network that cannot communicate using any of these protocols. Thus, we propose an infrastructure to allow the integration of legacy electrical equipment to smart grids by using wireless sensor networks (WSNs). In this infrastructure, each legacy electrical device is connected to a sensor node, and the sink node runs a middleware that enables the integration of this device into a smart grid based on suitable communication protocols. This middleware performs tasks such as the translation of messages between the power substation control centre (PSCC) and electrical equipment in the smart grid. Moreover, the infrastructure satisfies certain requirements for communication between the electrical equipment and the PSCC, such as enhanced security, short response time, and automatic configuration. The paper’s contributions include a solution that enables electrical companies to integrate their legacy equipment into smart-grid networks relying on any of the above mentioned communication protocols. This integration will reduce the costs related to the modernisation of power substations. PMID:29695099

  4. Next generation shape memory prosthesis (NiTiBOND) for stapedotomy: Short-term results.

    PubMed

    Green, J Douglas; McElveen, John T

    2017-04-01

    To review hearing results and complications for the NiTiBOND next generation shape memory prosthesis and compare them with results for the current shape memory prosthesis (SMart). Retrospective, multicenter chart review. Primary laser stapedotomy was performed using either a NiTiBOND or a SMart prosthesis. Ninety-two ears in 79 patients were included in the study (67.4% female), 52 with the NiTiBOND prosthesis and 40 with the SMart prosthesis. Data collected included demographic variables, pre- and postoperative pure-tone air and bone conduction thresholds, speech discrimination scores, complications, and the need for revision surgery. Pure-tone average (PTA) and PTA air-bone gap (ABG) pre- and postoperative were computed. Success was defined as a postoperative ABG of ≤10 dB. There were no significant differences between groups in hearing results, including improvement in ABG, change in speech discrimination, change in air or bone PTA, or change in high-frequency bone PTA. Short-term (mean = 4.4 and 4.9 weeks, respectively) success rates for the NiTiBOND and SMart prostheses were 84.6% and 70.0%, respectively, with this difference closing at the most recent test (83.7% and 80.0%, respectively). No revision surgery took place in either group, and there were no differences in complications such as dizziness, tinnitus, or taste disturbance, though the NiTiBOND group tended to have a lower rate of transient or permanent vertigo. Compared with the SMart prosthesis, the NiTiBOND prosthesis is a safe prosthesis that achieves at least comparable hearing results and may offer some surgical advantages. 4 Laryngoscope, 127:915-920, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Practical and Secure Recovery of Disk Encryption Key Using Smart Cards

    NASA Astrophysics Data System (ADS)

    Omote, Kazumasa; Kato, Kazuhiko

    In key-recovery methods using smart cards, a user can recover the disk encryption key in cooperation with the system administrator, even if the user has lost the smart card including the disk encryption key. However, the disk encryption key is known to the system administrator in advance in most key-recovery methods. Hence user's disk data may be read by the system administrator. Furthermore, if the disk encryption key is not known to the system administrator in advance, it is difficult to achieve a key authentication. In this paper, we propose a scheme which enables to recover the disk encryption key when the user's smart card is lost. In our scheme, the disk encryption key is not preserved anywhere and then the system administrator cannot know the key before key-recovery phase. Only someone who has a user's smart card and knows the user's password can decrypt that user's disk data. Furthermore, we measured the processing time required for user authentication in an experimental environment using a virtual machine monitor. As a result, we found that this processing time is short enough to be practical.

  6. A scoping review on smart mobile devices and physical strain.

    PubMed

    Tegtmeier, Patricia

    2018-01-01

    Smart mobile devices gain increasing importance at work. Integrating these smart mobile devices into the workplace creates new opportunities and challenges for occupational health and safety. Therefore the aim of the following scoping review was to identify ergonomic challenges with the use of smart mobile devices at work with respect to physical problems. A review of 36 papers based on literature including January 2016 was conducted. Biomechanical measures in the reviewed studies demonstrated i.e., head flexion angles exceeding 20° in 20 out of 26 different conditions described. Furthermore, laterally deviated wrists were frequently noted and thumb and finger flexor muscle activities generally greater than 5% MVC were reported. The reviewed literature indicated an elevated biomechanical risk, especially for the neck, the wrists and thumb. This was due to poor posture, ongoing and intermitted muscle tension, and/or repetitive movements. Papers addressing specific risks for smartphone and tablet use in different work environments are scarce. As the technology, as well as the use of smart mobile devices is rapidly changing, further research, especially for prolonged periods in the workplace is needed.

  7. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    NASA Technical Reports Server (NTRS)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  8. Comparison of individual pitch and smart rotor control strategies for load reduction

    NASA Astrophysics Data System (ADS)

    Plumley, C.; Leithead, W.; Jamieson, P.; Bossanyi, E.; Graham, M.

    2014-06-01

    Load reduction is increasingly seen as an essential part of controller and wind turbine design. On large multi-MW wind turbines that experience high levels of wind shear and turbulence across the rotor, individual pitch control and smart rotor control are being considered. While individual pitch control involves adjusting the pitch of each blade individually to reduce the cyclic loadings on the rotor, smart rotor control involves activating control devices distributed along the blades to alter the local aerodynamics of the blades. Here we investigate the effectiveness of using a DQ-axis control and a distributed (independent) control for both individual pitch and trailing edge flap smart rotor control. While load reductions are similar amongst the four strategies across a wide range of variables, including blade root bending moments, yaw bearing and shaft, the pitch actuator requirements vary. The smart rotor pitch actuator has reduced travel, rates, accelerations and power requirements than that of the individual pitch controlled wind turbines. This benefit alone however would be hard to justify the added design complexities of using a smart rotor, which can be seen as an alternative to upgrading the pitch actuator and bearing. In addition, it is found that the independent control strategy is apt at roles that the collective pitch usually targets, such as tower motion and speed control, and it is perhaps here, in supplementing other systems, that the future of the smart rotor lies.

  9. Sensor technology for smart homes.

    PubMed

    Ding, Dan; Cooper, Rory A; Pasquina, Paul F; Fici-Pasquina, Lavinia

    2011-06-01

    A smart home is a residence equipped with technology that observes the residents and provides proactive services. Most recently, it has been introduced as a potential solution to support independent living of people with disabilities and older adults, as well as to relieve the workload from family caregivers and health providers. One of the key supporting features of a smart home is its ability to monitor the activities of daily living and safety of residents, and in detecting changes in their daily routines. With the availability of inexpensive low-power sensors, radios, and embedded processors, current smart homes are typically equipped with a large amount of networked sensors which collaboratively process and make deductions from the acquired data on the state of the home as well as the activities and behaviors of its residents. This article reviews sensor technology used in smart homes with a focus on direct environment sensing and infrastructure mediated sensing. The article also points out the strengths and limitations of different sensor technologies, as well as discusses challenges and opportunities from clinical, technical, and ethical perspectives. It is recommended that sensor technologies for smart homes address actual needs of all stake holders including end users, their family members and caregivers, and their doctors and therapists. More evidence on the appropriateness, usefulness, and cost benefits analysis of sensor technologies for smart homes is necessary before these sensors should be widely deployed into real-world residential settings and successfully integrated into everyday life and health care services. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. HDOMO: Smart Sensor Integration for an Active and Independent Longevity of the Elderly.

    PubMed

    Frontoni, Emanuele; Pollini, Rama; Russo, Paola; Zingaretti, Primo; Cerri, Graziano

    2017-11-13

    The aim of this paper is to present the main results of HDOMO, an Ambient Assisted Living (AAL) project that involved 16 Small and Medium Enterprises (SMEs) and 2 research institutes. The objective of the project was to create an autonomous and automated domestic environment, primarily for elderly people and people with physical and motor disabilities. A known and familiar environment should help users in their daily activities and it should act as a virtual caregiver by calling, if necessary, relief efforts. Substantially, the aim of the project is to simplify the life of people in need of support, while keeping them autonomous in their private environment. From a technical point of view, the project provides the use of different Smart Objects (SOs), able to communicate among each other, in a cloud base infrastructure, and with the assisted users and their caregivers, in a perspective of interoperability and standardization of devices, usability and effectiveness of alarm systems. In the state of the art there are projects that achieve only a few of the elements listed. The HDOMO project aims to achieve all of them in one single project effectively. The experimental trials performed in a real scenario demonstrated the accuracy and efficiency of the system in extracting and processing data in real time to promptly acting, and in providing timely response to the needs of the user by integrating and confirming main alarms with different interoperable smart sensors. The article proposes a new technique to improve the accuracy of the system in detecting alarms using a multi-SO approach with information fusion between different devices, proving that this architecture can provide robust and reliable results on real environments.

  11. HDOMO: Smart Sensor Integration for an Active and Independent Longevity of the Elderly

    PubMed Central

    2017-01-01

    The aim of this paper is to present the main results of HDOMO, an Ambient Assisted Living (AAL) project that involved 16 Small and Medium Enterprises (SMEs) and 2 research institutes. The objective of the project was to create an autonomous and automated domestic environment, primarily for elderly people and people with physical and motor disabilities. A known and familiar environment should help users in their daily activities and it should act as a virtual caregiver by calling, if necessary, relief efforts. Substantially, the aim of the project is to simplify the life of people in need of support, while keeping them autonomous in their private environment. From a technical point of view, the project provides the use of different Smart Objects (SOs), able to communicate among each other, in a cloud base infrastructure, and with the assisted users and their caregivers, in a perspective of interoperability and standardization of devices, usability and effectiveness of alarm systems. In the state of the art there are projects that achieve only a few of the elements listed. The HDOMO project aims to achieve all of them in one single project effectively. The experimental trials performed in a real scenario demonstrated the accuracy and efficiency of the system in extracting and processing data in real time to promptly acting, and in providing timely response to the needs of the user by integrating and confirming main alarms with different interoperable smart sensors. The article proposes a new technique to improve the accuracy of the system in detecting alarms using a multi-SO approach with information fusion between different devices, proving that this architecture can provide robust and reliable results on real environments. PMID:29137174

  12. Scattering Control Using Nonlinear Smart Metasurface with Internal Feedback

    NASA Astrophysics Data System (ADS)

    Semenikhina, D. V.; Semenikhin, A. I.

    2017-05-01

    The ideology of creation of a nonlinear smart metasurface with internal feedback for the adaptive control by spectral composition of scattered field is offered. The metasurface contains a lattice of strip elements with nonlinear loads-sensors. They are included in a circuit of internal feedback for the adaptive control of scattered field. Numerically it is shown that maximal levels of the second harmonic in the spectrum of scattered far field correspond to maximum of voltage rectified on metasurface. Experimentally the prototype of the plane smart covering on the basis of the metasurface in the form of strip lattice with controlled nonlinear loads-sensors is investigated for an idea confirmation.

  13. A web based tool for storing and visualising data generated within a smart home.

    PubMed

    McDonald, H A; Nugent, C D; Moore, G; Finlay, D D; Hallberg, J

    2011-01-01

    There is a growing need to re-assess the current approaches available to researchers for storing and managing heterogeneous data generated within a smart home environment. In our current work we have developed the homeML Application; a web based tool to support researchers engaged in the area of smart home research as they perform experiments. Within this paper the homeML Application is presented which includes the fundamental components of the homeML Repository and the homeML Toolkit. Results from a usability study conducted by 10 computer science researchers are presented; the initial results of which have been positive.

  14. Economic evaluation of distribution system smart grid investments

    DOE PAGES

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; ...

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore » investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less

  15. Health innovation for patient safety improvement.

    PubMed

    Sellappans, Renukha; Chua, Siew Siang; Tajuddin, Nur Amani Ahmad; Mei Lai, Pauline Siew

    2013-01-01

    Medication error has been identified as a major factor affecting patient safety. Many innovative efforts such as Computerised Physician Order Entry (CPOE), a Pharmacy Information System, automated dispensing machines and Point of Administration Systems have been carried out with the aim of improving medication safety. However, areas remain that require urgent attention. One main area will be the lack of continuity of care due to the breakdown of communication between multiple healthcare providers. Solutions may include consideration of "health smart cards" that carry vital patient medical information in the form of a "credit card" or use of the Malaysian identification card. However, costs and technical aspects associated with the implementation of this health smart card will be a significant barrier. Security and confidentiality, on the other hand, are expected to be of primary concern to patients. Challenges associated with the implementation of a health smart card might include physician buy-in for use in his or her everyday practice. Training and technical support should also be available to ensure the smooth implementation of this system. Despite these challenges, implementation of a health smart card moves us closer to seamless care in our country, thereby increasing the productivity and quality of healthcare.

  16. Boeing Smart Rotor Full-scale Wind Tunnel Test Data Report

    NASA Technical Reports Server (NTRS)

    Kottapalli, Sesi; Hagerty, Brandon; Salazar, Denise

    2016-01-01

    A full-scale helicopter smart material actuated rotor technology (SMART) rotor test was conducted in the USAF National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames. The SMART rotor system is a five-bladed MD 902 bearingless rotor with active trailing-edge flaps. The flaps are actuated using piezoelectric actuators. Rotor performance, structural loads, and acoustic data were obtained over a wide range of rotor shaft angles of attack, thrust, and airspeeds. The primary test objective was to acquire unique validation data for the high-performance computing analyses developed under the Defense Advanced Research Project Agency (DARPA) Helicopter Quieting Program (HQP). Other research objectives included quantifying the ability of the on-blade flaps to achieve vibration reduction, rotor smoothing, and performance improvements. This data set of rotor performance and structural loads can be used for analytical and experimental comparison studies with other full-scale rotor systems and for analytical validation of computer simulation models. The purpose of this final data report is to document a comprehensive, highquality data set that includes only data points where the flap was actively controlled and each of the five flaps behaved in a similar manner.

  17. Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Russell

    This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first sectionmore » of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.« less

  18. Experiences with a Barista Robot, FusionBot

    NASA Astrophysics Data System (ADS)

    Limbu, Dilip Kumar; Tan, Yeow Kee; Wong, Chern Yuen; Jiang, Ridong; Wu, Hengxin; Li, Liyuan; Kah, Eng Hoe; Yu, Xinguo; Li, Dong; Li, Haizhou

    In this paper, we describe the implemented service robot, called FusionBot. The goal of this research is to explore and demonstrate the utility of an interactive service robot in a smart home environment, thereby improving the quality of human life. The robot has four main features: 1) speech recognition, 2) object recognition, 3) object grabbing and fetching and 4) communication with a smart coffee machine. Its software architecture employs a multimodal dialogue system that integrates different components, including spoken dialog system, vision understanding, navigation and smart device gateway. In the experiments conducted during the TechFest 2008 event, the FusionBot successfully demonstrated that it could autonomously serve coffee to visitors on their request. Preliminary survey results indicate that the robot has potential to not only aid in the general robotics but also contribute towards the long term goal of intelligent service robotics in smart home environment.

  19. First Steps in the Smart Grid Framework: An Optimal and Feasible Pathway Toward Power System Reform in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bracho, Riccardo; Linvill, Carl; Sedano, Richard

    With the vision to transform the power sector, Mexico included in the new laws and regulations deployment of smart grid technologies and provided various attributes to the Ministry of Energy and the Energy Regulatory Commission to enact public policies and regulation. The use of smart grid technologies can have a significant impact on the integration of variable renewable energy resources while maintaining reliability and stability of the system, significantly reducing technical and non-technical electricity losses in the grid, improving cyber security, and allowing consumers to make distributed generation and demand response decisions. This report describes for Mexico's Ministry of Energymore » (SENER) an overall approach (Optimal Feasible Pathway) for moving forward with smart grid policy development in Mexico to enable increasing electric generation from renewable energy in a way that optimizes system stability and reliability in an efficient and cost-effective manner.« less

  20. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    PubMed

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  1. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  2. Biorefineries - New Green Strategy For Development Of Smart And Innovative Industry

    NASA Astrophysics Data System (ADS)

    Płaza, Grażyna A.; Wandzich, Dorota

    2016-09-01

    Ecological engineering or ecotechnology is defined as the design of sustainable production that integrate human society with the natural environment for the benefit of both. In order to reach the goal of sustainability therefore important that bioproduct production systems are converted from to natural cycle oriented. In natural cycles there are not waste, but products are generated at different stages of the cycle. The ecotechnology creates a sustainable bioeconomy using biomass in a smart and efficient way. The biorefining sector, which uses smart, innovative and efficient technologies to convert biomass feedstocks into a range of bio-based products including fuels, chemicals, power, food, and renewable oils, currently presents the innovative and efficient bio-based production can revitalize existing industries. The paper presents the concept of biorefinery as the ecotechnological approach for creating a sustainable bioeconomy using biomass in a smart and efficient way.

  3. Smart Infrared Inspection System Field Operational Test Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siekmann, Adam; Capps, Gary J; Franzese, Oscar

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to themore » enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.« less

  4. Multi-functional dielectric elastomer artificial muscles for soft and smart machines

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.

    2012-08-01

    Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.

  5. 75 FR 28656 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation, and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, and Toyota Engineering and Manufacturing... joint venture of General Motors Corporation and Toyota Motor Corporation, including on-site leased...

  6. 75 FR 47632 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... of General Motors Corporation and Toyota Motor Corporation, including on-site leased workers from...

  7. Organizational and technological correlates of nurses’ trust in a smart IV pump

    PubMed Central

    Montague, Enid; Asan, Onur; Chiou, Erin

    2013-01-01

    The aim of this study was to understand technology and system characteristics that contribute to nurses’ ratings of trust in a smart IV pump. Nurse’s trust in new technologies can influence how technologies are used. Trust in technology is defined as a person’s belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, over trust, distrust, and mistrust. Trust in technology is also related to several use specific outcomes, including appropriate use and inappropriate use such as over reliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart IV pump. The survey assessed trust in the IV pump and other elements of the sociotechnical system, individual characteristics, technology characteristics and organizational characteristics. Results show perceptions of usefulness, safety, ease of use and usability are related to ratings of trust in smart IV pumps. Other work system factors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses’ trust in smart IV pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart IV pumps and health systems. Recommendations for appropriately trustworthy smart IV pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems. PMID:23321482

  8. Cyber security challenges in Smart Cities: Safety, security and privacy.

    PubMed

    Elmaghraby, Adel S; Losavio, Michael M

    2014-07-01

    The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the "Internet of Things." Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect.

  9. Organizational and technological correlates of nurses' trust in a smart intravenous pump.

    PubMed

    Montague, Enid; Asan, Onur; Chiou, Erin

    2013-03-01

    The aim of this study was to understand technology and system characteristics that contribute to nurses' ratings of trust in a smart intravenous pump. Nurses' trust in new technologies can influence how technologies are used. Trust in technology is defined as a person's belief that a technology will not fail them. Potential outcomes of trust in technology are appropriate trust, overtrust, distrust, and mistrust. Trust in technology is also related to several use-specific outcomes, including appropriate use and inappropriate use such as overreliance, disuse or rejection, or misuse. Understanding trust in relation to outcomes can contribute to designs that facilitate appropriate trust in new technologies. A survey was completed by 391 nurses a year after the implementation of a new smart intravenous pump. The survey assessed trust in the intravenous pump and other elements of the sociotechnical system, individual characteristics, technology characteristics, and organizational characteristics. Results show that perceptions of usefulness, safety, ease of use, and usability are related to ratings of trust in smart intravenous pumps. Other work systemfactors such as perception of work environment, age, experience, quality of work, and perception of work performance are also related to ratings of trust. Nurses' trust in smart intravenous pumps is influenced by both characteristics of the technology and the sociotechnical system. Findings from this research have implications for the design of future smart intravenous pumps and health systems. Recommendations for appropriately trustworthy smart intravenous pumps are discussed. Findings also have implications for how trust in health technologies can be measured and conceptualized in complex sociotechnical systems.

  10. Overview of the DARPA/AFRL/NASA Smart Wing Phase II program

    NASA Astrophysics Data System (ADS)

    Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim

    2001-06-01

    The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.

  11. Using smart card technology to monitor the eating habits of children in a school cafeteria: 1. Developing and validating the methodology.

    PubMed

    Lambert, N; Plumb, J; Looise, B; Johnson, I T; Harvey, I; Wheeler, C; Robinson, M; Rolfe, P

    2005-08-01

    The aim of the study was to test the feasibility of using smart card technology to track the eating behaviours of nearly a thousand children in a school cafeteria. Within a large boys' school a smart card based system was developed that was capable of providing a full electronic audit of all the individual transactions that occurred within the cafeteria. This dataset was interfaced to an electronic version of the McCance and Widdowson composition of foods dataset. The accuracy of the smart card generated data and the influence of portion size and wastage were determined empirically during two 5-day trials. The smart card system created succeeded in generating precise data on the food choices made by hundreds of children over an indefinite time period. The data was expanded to include a full nutrient analysis of all the foods chosen. The accuracy of this information was only constrained by the limitations facing all food composition research, e.g. variations in recipes, portion sizes, cooking practices, etc. Although technically possible to introduce wastage correction factors into the software, thereby providing information upon foods consumed, this was not seen as universally practical. The study demonstrated the power of smart card technology for monitoring food/nutrient choice over limitless time in environments such as school cafeterias. The strengths, limitations and applications of such technology are discussed.

  12. Group cohesion and between session homework activities predict self-reported cognitive-behavioral skill use amongst participants of SMART Recovery groups.

    PubMed

    Kelly, Peter J; Deane, Frank P; Baker, Amanda L

    2015-04-01

    SMART Recovery groups are cognitive-behaviorally oriented mutual support groups for individuals with addictions. The aim of the study was to assess the extent to which the quality of group facilitation, group cohesion and the use of between session homework activities contribute to self-rated use of cognitive-behavioral skills amongst group participants. Participants attending SMART Recovery groups in Australia completed a cross sectional survey (N=124). The survey included measures of cognitive and behavioral skill utilization, group cohesion, quality of group facilitation and a rating of how frequently participants leave group meetings with an achievable between session homework plan. On average, participants had been attending SMART Recovery meetings for 9 months. Participants were most likely to attend SMART Recovery for problematic alcohol use. Regression analyses indicated that group cohesion significantly predicted use of cognitive restructuring, but that only provision of homework at the end of each group session predicted self-reported behavioral activation. Both group cohesion and leaving a group with an achievable homework plan predicted participant use of cognitive behavioral skills. The concrete actions associated with homework activities may facilitate behavioral activation. There is a need for longitudinal research to examine the relationship between the utilization of cognitive and behavioral skills and participant outcomes (e.g. substance use, mental health) for people attending SMART Recovery groups. Copyright © 2015. Published by Elsevier Inc.

  13. Analysis of cancer-related fatigue based on smart bracelet devices.

    PubMed

    Shen, Hong; Hou, Honglun; Tian, Wei; Wu, MingHui; Chen, Tianzhou; Zhong, Xian

    2016-01-01

    Fatigue is the most common symptom associated with cancer and its treatment, and profoundly affects all aspects of quality of life for cancer patients. It is very important to measure and manage cancer-related fatigue. Usually, the cancer-related fatigue scores, which estimate the degree of fatigue, are self-reported by cancer patients using standardized assessment tools. But most of the classical methods used for measurement of fatigue are subjective and inconvenient. In this study, we try to establish a new method to assess cancer-related fatigue objectively and accurately by using smart bracelet. All patients with metastatic pancreatic cancer wore smart bracelet for recording the physical activity including step count and sleep time before and after chemotherapy. Meantime, their psychological state was assessed by completing questionnaire tables as cancer-related fatigue scores. Step count record by smart bracelet reflecting the physical performance dramatically decreased in the initial days of chemotherapy and recovered in the next few days. Statistical analysis showed a strong and significant correlation between self-reported cancer-related fatigue and physical performance (P= 0.000, r=-0.929). Sleep time was also significantly correlated with fatigue (P= 0.000, r= 0.723). Multiple regression analysis showed that physical performance and sleep time are significant predictors of fatigue. Measuring activity using smart bracelets may be an appropriate method for quantitative and objective measurement of cancer-related fatigue by using smart bracelet devices.

  14. Renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Chan; Mun, Seongcheol; Ko, Hyun-U.; Zhai, Lindong; Kafy, Abdullahil; Kim, Jaehwan

    2016-07-01

    The use of renewable materials is essential in future technologies to harmonize with our living environment. Renewable materials can maintain our resources from the environment so as to overcome degradation of natural environmental services and diminished productivity. This paper reviews recent advancement of renewable materials for smart material applications, including wood, cellulose, chitin, lignin, and their sensors, actuators and energy storage applications. To further improve functionality of renewable materials, hybrid composites of inorganic functional materials are introduced by incorporating carbon nanotubes, titanium dioxide and tin oxide conducting polymers and ionic liquids. Since renewable materials have many advantages of biocompatible, sustainable, biodegradable, high mechanical strength and versatile modification behaviors, more research efforts need to be focused on the development of renewable smart materials.

  15. SmartEye and Polhemus data for vestibulo-ocular reflex and optokinetic reflex model.

    PubMed

    Le, Anh Son; Aoki, Hirofumi

    2018-06-01

    In this data article, this dataset included raw data of head and eye movement that collected by Polhemus (Polhemus Inc) and SmartEye (Smart Eye AB) equipment. Subjects who have driver license participated in this experiment. The experiment was conducted with a driving simulator that was controlled by CarSim (Mechanical simulation Co., Anna Arbor, MI) with the vehicle motion. This data set not only contained the eye and head movement but also had eye gaze, pupil diameter, saccades, and so on. It can be used for the parameter identification of the vestibulor-ocular reflex (VOR) model, simulation eye movement, as well as running other analysis related to eye movement.

  16. Cellulose-Based Smart Fluids under Applied Electric Fields

    PubMed Central

    Choi, Kisuk; Gao, Chun Yan; Nam, Jae Do

    2017-01-01

    Cellulose particles, their derivatives and composites have special environmentally benign features and are abundant in nature with their various applications. This review paper introduces the essential properties of several types of cellulose and their derivatives obtained from various source materials, and their use in electro-responsive electrorheological (ER) suspensions, which are smart fluid systems that are actively responsive under applied electric fields, while, at zero electric field, ER fluids retain a liquid-like state. Given the actively controllable characteristics of cellulose-based smart ER fluids under an applied electric field regarding their rheological and dielectric properties, they can potentially be applied for various industrial devices including dampers and haptic devices. PMID:28891966

  17. Making a Smart Campus in Saudi Arabia

    ERIC Educational Resources Information Center

    Abuelyaman, Eltayab Salih

    2008-01-01

    Prince Sultan University (PSU) in Riyadh, Saudi Arabia, has conceptualized what it means to be a smart campus after surveying similar notions worldwide. A "smart" campus requires smart teachers, smart technology, and smart pedagogical centers. It deploys smart teachers and gives them smart tools and ongoing support to do their jobs…

  18. Smart flight control

    NASA Astrophysics Data System (ADS)

    Larson, Brett; Bartlett, James P.; O'Hearn, Steve; Adams, Clinton

    2001-04-01

    Shape Memory Alloy (SMA) wire technology was used as primary flight control actuators on a 99-inch wingspan remote controlled aircraft. Modifications were made to a Dynaflite Butterfly and its Futaba remote control system. Comparisons were recorded between the original Futaba electric motor servo system and the SMA actuator system in terms of input power requirement, response time, actuation geometry, output power, and proportional control characteristics. The advantages and limitations of this application of SMA technology were exposed. This project shed light on further possibilities for use of SMA technology that could eliminate much of the weight, complexity, and cost associated with current use of remote actuation and linkage systems. It is the author's hope that the information presented herein will help facilitate further development of SMA in highly critical miniature applications.

  19. NASA SMART Probe: Breast Cancer Application

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Norvig, Peter (Technical Monitor)

    2000-01-01

    There is evidence in breast cancer and other malignancies that the physiologic environment within a tumor correlates with clinical outcome. We are developing a unique percutaneous Smart Probe to be used at the time of needle biopsy of the breast. The Smart Probe will simultaneously measure multiple physiologic parameters within a breast tumor. Direct and indirect measurements of tissue oxygen levels, blood flow, pH, and tissue fluid pressure will be analyzed in real-time. These parameters will be interpreted individually and collectively by innovative neural network techniques using advanced intelligent software. The goals are 1) develop a pecutaneous Smart Probe with multiple sensor modalities and applying advanced Information Technologies to provide real time diagnostic information of the tissue at tip of the probe, 2) test the percutaneous Smart Probe in women with benign and malignant breast masses who will be undergoing surgical biopsy, 3) correlate probe sensor data with benign and malignant status of breast masses, 4) determine whether the probe can detect physiologic differences within a breast tumor, and its margins, and in adjacent normal breast tissue, 5) correlate probe sensor data with known prognostic factors for breast caner, including tumor size, tumor grade, axillary lymph node metastases, estrogen receptor and progesterone receptor status.

  20. Social media messaging in pregnancy: comparing content of Text4baby to content of free smart phone applications of pregnancy.

    PubMed

    Lewkowitz, Adam K; O'Donnell, Betsy E; Nakagawa, Sanae; Vargas, Juan E; Zlatnik, Marya G

    2016-03-01

    Text4baby is the only free text-message program for pregnancy available. Our objective was to determine whether content differed between Text4baby and popular pregnancy smart phone applications (apps). Researchers enrolled in Text4baby in 2012 and downloaded the four most-popular free pregnancy smart phone apps in July 2013; content was re-extracted in February 2014. Messages were assigned thematic codes. Two researchers coded messages independently before reviewing all the codes jointly to ensure consistency. Logistic regression modeling determined statistical differences between Text4baby and smart phone apps. About 1399 messages were delivered. Of these, 333 messages had content related to more than one theme and were coded as such, resulting in 1820 codes analyzed. Compared to smart phone apps, Text4baby was significantly more likely to have content regarding Postpartum Planning, Seeking Care, Recruitment and Prevention and significantly less likely to mention Normal Pregnancy Symptoms. No messaging program included content regarding postpartum contraception. To improve content without increasing text message number, Text4baby could replace messages on recruitment with messages regarding normal pregnancy symptoms, fetal development and postpartum contraception.

  1. Motor/generator

    DOEpatents

    Hickam, Christopher Dale [Glasford, IL

    2008-05-13

    A motor/generator is provided for connecting between a transmission input shaft and an output shaft of a prime mover. The motor/generator may include a motor/generator housing, a stator mounted to the motor/generator housing, a rotor mounted at least partially within the motor/generator housing and rotatable about a rotor rotation axis, and a transmission-shaft coupler drivingly coupled to the rotor. The transmission-shaft coupler may include a clamp, which may include a base attached to the rotor and a plurality of adjustable jaws.

  2. Future's Learning Environments in Health Education: The Effects of Smart Classrooms on the Academic Achievements of the Students at Health College

    ERIC Educational Resources Information Center

    Sevindik, Tuncay

    2010-01-01

    The aim of this study is to determine the effectiveness of smart classrooms on the academic achievement of the nursing students. The sample of the research included 66 Health College students in Elazig. The sampling group was randomly chosen from second year students of Nursing and Midwife Education. The research was carried out with experimental…

  3. Science-Economy-Technology Concordance Matrix for Development and Implementation of Regional Smart Specializations in the Silesian Voivodeship, Poland

    PubMed Central

    Smoliński, Adam; Bondaruk, Jan; Pichlak, Magdalena; Trząski, Leszek; Uszok, Elżbieta

    2015-01-01

    The regional smart specializations include the innovative activities within a common science-economy-technology sector, which open the opportunities to gain a competitive advantage. The original procedure of science-economy-technology concordance matrix development on an example of smart specializations of the Silesian Voivodeship was presented in the paper. The procedure developed includes recognition of the research and economic components of the regional smart specialization and the connection between the economic components of the regional specialization and the technological innovation through the international patent classification. It also comprises recognition of key enabling technologies (KETs) and high technologies (of high R&D intensity) other than KET in the economic and technological dimensions of innovation as well as the high R&D intensity services in the economic dimension of innovation. The in-depth expert analyses with the application of the Delphi method were also taken into account. The methodological approach developed and the visualization method applied are both of cognitive and practical importance since they contribute significantly to the creation of efficient development policies, to the enhancement and facilitation of cross-sectoral cooperation, and to the focusing on the fields of key importance in terms of the competitive advantage of a region. PMID:26697528

  4. Science-Economy-Technology Concordance Matrix for Development and Implementation of Regional Smart Specializations in the Silesian Voivodeship, Poland.

    PubMed

    Smoliński, Adam; Bondaruk, Jan; Pichlak, Magdalena; Trząski, Leszek; Uszok, Elżbieta

    2015-01-01

    The regional smart specializations include the innovative activities within a common science-economy-technology sector, which open the opportunities to gain a competitive advantage. The original procedure of science-economy-technology concordance matrix development on an example of smart specializations of the Silesian Voivodeship was presented in the paper. The procedure developed includes recognition of the research and economic components of the regional smart specialization and the connection between the economic components of the regional specialization and the technological innovation through the international patent classification. It also comprises recognition of key enabling technologies (KETs) and high technologies (of high R&D intensity) other than KET in the economic and technological dimensions of innovation as well as the high R&D intensity services in the economic dimension of innovation. The in-depth expert analyses with the application of the Delphi method were also taken into account. The methodological approach developed and the visualization method applied are both of cognitive and practical importance since they contribute significantly to the creation of efficient development policies, to the enhancement and facilitation of cross-sectoral cooperation, and to the focusing on the fields of key importance in terms of the competitive advantage of a region.

  5. Validation of the portable Air-Smart Spirometer

    PubMed Central

    Núñez Fernández, Marta; Pallares Sanmartín, Abel; Mouronte Roibas, Cecilia; Cerdeira Domínguez, Luz; Botana Rial, Maria Isabel; Blanco Cid, Nagore; Fernández Villar, Alberto

    2018-01-01

    Background The Air-Smart Spirometer is the first portable device accepted by the European Community (EC) that performs spirometric measurements by a turbine mechanism and displays the results on a smartphone or a tablet. Methods In this multicenter, descriptive and cross-sectional prospective study carried out in 2 hospital centers, we compare FEV1, FVC, FEV1/FVC ratio measured with the Air Smart-Spirometer device and a conventional spirometer, and analyze the ability of this new portable device to detect obstructions. Patients were included for 2 consecutive months. We calculate sensitivity, specificity, positive and negative predictive value (PPV and NPV) and likelihood ratio (LR +, LR-) as well as the Kappa Index to evaluate the concordance between the two devices for the detection of obstruction. The agreement and relation between the values of FEV1 and FVC in absolute value and the FEV1/FVC ratio measured by both devices were analyzed by calculating the intraclass correlation coefficient (ICC) and the Pearson correlation coefficient (r) respectively. Results 200 patients (100 from each center) were included with a mean age of 57 (± 14) years, 110 were men (55%). Obstruction was detected by conventional spirometry in 73 patients (40.1%). Using a FEV1/FVC ratio smaller than 0.7 to detect obstruction with the Air Smart-Spirometer, the kappa index was 0.88, sensitivity (90.4%), specificity (97.2%), PPV (95.7%), NPV (93.7%), positive likelihood ratio (32.29), and negative likelihood ratio (0.10). The ICC and r between FEV1, FVC, and FEV1 / FVC ratio measured by the Air Smart Spirometer and the conventional spirometer were all higher than 0.94. Conclusion The Air-Smart Spirometer is a simple and very precise instrument for detecting obstructive airway diseases. It is easy to use, which could make it especially useful non-specialized care and in other areas. PMID:29474502

  6. Surface-Satellite Measurements for Atmospheric Radiative Transfer (SMART)and Chemical, Optical and Microphysical Measurements of In-Situ Troposphere (COMMIT) Research Activities

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    The GSFC SMART consists of a suite of remote sensing instruments, including many commercially available radiometers, spectrometer, interferometer, and three in-house developed inskuments: micro-pulse lidar (MPL), scanning microwave radiometer (SMiR), and sun-sky-surface photometer (S(sup 3)). SMART cover the spectral range from UV to microwave, and passive to active remote sensing. This is to enrich the EOS-like research activities (i.e., EOS validation, innovative investigations, and long-term local environmental observations). During past years, SMART has been deployed in many NASA supported field campaigns to collocate with satellite nadir overpass for intercomparisons, and for initializing model simulations. Built on the successful experience of SMART, we are currently developing a new ground-based in-situ sampling package, COMMIT, including measurements of trace gases (CO, SO2, NOx, and O3,) concentrations, fine/coarse particle sizers and chemical composition, single- and three-wavelength nephelometers, and surface meteorological probes. COMMIT is built for seeking a relationship between surface in-situ measurements and boundary layer characteristics. This is to enrich EOS-like research on removing boundary layer signal from the entire column from space observation - to deduce the stable (less variability) free-troposphere observations. The COMMIT will try its best to link the chemical, microphysical, and optical properties of the boundary layer with radiation. The next major activities for SMART-COMMIT are scheduled for 2004-2006 in BASE-ASIA and EAST-AIRE. The expected close collaboration of BASE-ASIA with various research projects in Asia (i.e., ABC in South Asia, led by Ramanathan et al.; EAST-AIRE in East Asia, led by Li et al.; and APEX in Northeast Asia, led by Nakajima et al.) will definitely provide a better understanding of the impact of the biomass burning and air pollutants on regional-to-global climate, hydrological and carbon cycles, and tropospheric chemistry in Asia.

  7. 77 FR 6587 - General Motors Vehicle Manufacturing, Formerly Known as General Motors Corporation, Shreveport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-08

    ... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... Vehicle Manufacturing, formerly known as General Motors Corporation, Shreveport Assembly Plant, including..., formerly known as General Motors Corporation, Shreveport Assembly Plant. The Department has determined that...

  8. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  9. Environmental cognitive remediation in schizophrenia: ethical implications of "smart home" technology.

    PubMed

    Stip, Emmanuel; Rialle, Vincent

    2005-04-01

    In light of the advent of new technologies, we proposed to reexamine certain challenges posed by cognitive remediation and social reintegration (that is, deinstitutionalization) of patients with severe and persistent mental disorders. We reviewed literature on cognition, remediation, smart homes, as well as on objects and utilities, using medical and computer science electronic library and Internet searches. These technologies provide solutions for disabled persons with respect to care delivery, workload reduction, and socialization. Examples include home support, video conferencing, remote monitoring of medical parameters through sensors, teledetection of critical situations (for example, a fall or malaise), measures of daily living activities, and help with tasks of daily living. One of the key concepts unifying all these technologies is the health-smart home. We present the notion of the health-smart home in general and then examine it more specifically in relation to schizophrenia. Management of people with schizophrenia with cognitive deficits who are being rehabilitated in the community can be improved with the use of technology; however, such technology has ethical ramifications.

  10. Sustainable and Smart City Planning Using Spatial Data in Wallonia

    NASA Astrophysics Data System (ADS)

    Stephenne, N.; Beaumont, B.; Hallot, E.; Wolff, E.; Poelmans, L.; Baltus, C.

    2016-09-01

    Simulating population distribution and land use changes in space and time offer opportunities for smart city planning. It provides a holistic and dynamic vision of fast changing urban environment to policy makers. Impacts, such as environmental and health risks or mobility issues, of policies can be assessed and adapted consequently. In this paper, we suppose that "Smart" city developments should be sustainable, dynamic and participative. This paper addresses these three smart objectives in the context of urban risk assessment in Wallonia, Belgium. The sustainable, dynamic and participative solution includes (i) land cover and land use mapping using remote sensing and GIS, (ii) population density mapping using dasymetric mapping, (iii) predictive modelling of land use changes and population dynamics and (iv) risk assessment. The comprehensive and long-term vision of the territory should help to draw sustainable spatial planning policies, to adapt remote sensing acquisition, to update GIS data and to refine risk assessment from regional to city scale.

  11. A novel kit for rapid detection of Vibrio cholerae O1.

    PubMed

    Hasan, J A; Huq, A; Tamplin, M L; Siebeling, R J; Colwell, R R

    1994-01-01

    We report on the development and testing of a novel, rapid, colorimetric immunodiagnostic kit, Cholera SMART, for direct detection of the presence of Vibrio cholerae O1 in clinical specimens. Unlike conventional culture methods requiring several days to complete, the Cholera SMART kit can be used directly in the field by untrained or minimally skilled personnel to detect V. cholerae O1 in less than 15 min, without cumbersome laboratory equipment. A total of 120 clinical and environmental bacterial strains, including both O1 and non-O1 serotypes of V. cholerae isolated from samples collected from a variety of geographical regions, were tested, and positive reactions were observed only with V. cholerae O1. Also, results of a field trial in Bangladesh, employing Cholera SMART, showed 100% specificity and 96% sensitivity compared with conventional culture methods. Another field trial, in Mexico, showed that Cholera SMART was 100% in agreement with a recently described coagglutination test when 108 stool specimens were tested.

  12. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.

    PubMed

    Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.

  13. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.

  14. Towards Knowledge Management for Smart Manufacturing.

    PubMed

    Feng, Shaw C; Bernstein, William Z; Hedberg, Thomas; Feeney, Allison Barnard

    2017-09-01

    The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle-impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing. Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of smart manufacturing. The case study in this paper provides some example knowledge objects to enable smart manufacturing.

  15. Smart Technology in Lung Disease Clinical Trials.

    PubMed

    Geller, Nancy L; Kim, Dong-Yun; Tian, Xin

    2016-01-01

    This article describes the use of smart technology by investigators and patients to facilitate lung disease clinical trials and make them less costly and more efficient. By "smart technology" we include various electronic media, such as computer databases, the Internet, and mobile devices. We first describe the use of electronic health records for identifying potential subjects and then discuss electronic informed consent. We give several examples of using the Internet and mobile technology in clinical trials. Interventions have been delivered via the World Wide Web or via mobile devices, and both have been used to collect outcome data. We discuss examples of new electronic devices that recently have been introduced to collect health data. While use of smart technology in clinical trials is an exciting development, comparison with similar interventions applied in a conventional manner is still in its infancy. We discuss advantages and disadvantages of using this omnipresent, powerful tool in clinical trials, as well as directions for future research. Published by Elsevier Inc.

  16. Smart choices for healthy families: a pilot study for the treatment of childhood obesity in low-income families.

    PubMed

    Pinard, Courtney A; Hart, Michael H; Hodgkins, Yvonne; Serrano, Elena L; McFerren, Mary M; Estabrooks, Paul A

    2012-08-01

    This pre-post study used a mixed-methods approach to examine the impact of a family-based weight management program among a low-income population. Smart Choices for Healthy Families was developed through an integrated research-practice partnership and piloted with 26 children and parents (50% boys; mean age = 10.5 years; 54% Black) who were referred by their pediatrician. Smart Choices included six biweekly group sessions and six automated telephone-counseling calls over 3 months. Children displayed reduced body mass index z-scores (p < .05), increased lean muscle mass (p < .001), and increased quality of life (p < .0001). Follow-up interviews indicated that physicians valued the lay leaders' ability to provide lifestyle education, whereas lay leaders extended their reach to more community members. Parents wanted to become positive role models and found that the calls maintained focus on goals. Smart Choices shows promise to initiate weight management for children in low-income families.

  17. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments

    PubMed Central

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691

  18. Internet messenger based smart virtual class learning using ubiquitous computing

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-06-01

    Internet messenger (IM) has become an important educational technology component in college education, IM makes it possible for students to engage in learning and collaborating at smart virtual class learning (SVCL) using ubiquitous computing. However, the model of IM-based smart virtual class learning using ubiquitous computing and empirical evidence that would favor a broad application to improve engagement and behavior are still limited. In addition, the expectation that IM based SVCL using ubiquitous computing could improve engagement and behavior on smart class cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present the model of IM-based SVCL using ubiquitous computing and showing learners’ experiences in improved engagement and behavior for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous computing and realize the impressions of learners and lecturers about engagement and behavior aspect and its contribution to learning

  19. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  20. An Approach for Smart Antenna Testbed

    NASA Astrophysics Data System (ADS)

    Kawitkar, R. S.; Wakde, D. G.

    2003-07-01

    The use of wireless, mobile, personal communications services are expanding rapidly. Adaptive or "Smart" antenna arrays can increase channel capacity through spatial division. Adaptive antennas can also track mobile users, improving both signal range and quality. For these reasons, smart antenna systems have attracted widespread interest in the telecommunications industry for applications to third generation wireless systems.This paper aims to design and develop an advanced antennas testbed to serve as a common reference for testing adaptive antenna arrays and signal combining algorithms, as well as complete systems. A flexible suite of off line processing software should be written using matlab to perform system calibration, test bed initialization, data acquisition control, data storage/transfer, off line signal processing and analysis and graph plotting. The goal of this paper is to develop low complexity smart antenna structures for 3G systems. The emphasis will be laid on ease of implementation in a multichannel / multi-user environment. A smart antenna test bed will be developed, and various state-of-the-art DSP structures and algorithms will be investigated.Facing the soaring demand for mobile communications, the use of smart antenna arrays in mobile communications systems to exploit spatial diversity to further improve spectral efficiency has recently received considerable attention. Basically, a smart antenna array comprises a number of antenna elements combined via a beamforming network (amplitude and phase control network). Some of the benefits that can be achieved by using SAS (Smart Antenna System) include lower mobile terminal power consumption, range extension, ISI reduction, higher data rate support, and ease of integration into the existing base station system. In terms of economic benefits, adaptive antenna systems employed at base station, though increases the per base station cost, can increase coverage area of each cell site, thereby reducing the total system cost dramatically - often by more than 50% without compromising the system performance. The testbed can be employed to illustrate enhancement of system capacity and service quality in wireless communications.

  1. Smart Grid Adoption Likeliness Framework: Comparing Idaho and National Residential Consumers' Perceptions

    NASA Astrophysics Data System (ADS)

    Baiya, Evanson G.

    New energy technologies that provide real-time visibility of the electricity grid's performance, along with the ability to address unusual events in the grid and allow consumers to manage their energy use, are being developed in the United States. Primary drivers for the new technologies include the growing energy demand, tightening environmental regulations, aging electricity infrastructure, and rising consumer demand to become more involved in managing individual energy usage. In the literature and in practice, it is unclear if, and to what extent, residential consumers will adopt smart grid technologies. The purpose of this quantitative study was to examine the relationships between demographic characteristics, perceptions, and the likelihood of adopting smart grid technologies among residential energy consumers. The results of a 31-item survey were analyzed for differences within the Idaho consumers and compared against national consumers. Analysis of variance was used to examine possible differences between the dependent variable of likeliness to adopt smart grid technologies and the independent variables of age, gender, residential ownership, and residential location. No differences were found among Idaho consumers in their likeliness to adopt smart grid technologies. An independent sample t-test was used to examine possible differences between the two groups of Idaho consumers and national consumers in their level of interest in receiving detailed feedback information on energy usage, the added convenience of the smart grid, renewable energy, the willingness to pay for infrastructure costs, and the likeliness to adopt smart grid technologies. The level of interest in receiving detailed feedback information on energy usage was significantly different between the two groups (t = 3.11, p = .0023), while the other variables were similar. The study contributes to technology adoption research regarding specific consumer perceptions and provides a framework that estimates the likeliness of adopting smart grid technologies by residential consumers. The study findings could assist public utility managers and technology adoption researchers as they develop strategies to enable wide-scale adoption of smart grid technologies as a solution to the energy problem. Future research should be conducted among commercial and industrial energy consumers to further validate the findings and conclusions of this research.

  2. Optimized linear motor and digital PID controller setup used in Mössbauer spectrometer

    NASA Astrophysics Data System (ADS)

    Kohout, Pavel; Kouřil, Lukáš; Navařík, Jakub; Novák, Petr; Pechoušek, Jiří

    2014-10-01

    Optimization of a linear motor and digital PID controller setup used in a Mössbauer spectrometer is presented. Velocity driving system with a digital PID feedback subsystem was developed in the LabVIEW graphical environment and deployed on the sbRIO real-time hardware device (National Instruments). The most important data acquisition processes are performed as real-time deterministic tasks on an FPGA chip. Velocity transducer of a double loudspeaker type with a power amplifier circuit is driven by the system. Series of calibration measurements were proceeded to find the optimal setup of the P, I, D parameters together with velocity error signal analysis. The shape and given signal characteristics of the velocity error signal are analyzed in details. Remote applications for controlling and monitoring the PID system from computer or smart phone, respectively, were also developed. The best setup and P, I, D parameters were set and calibration spectrum of α-Fe sample with an average nonlinearity of the velocity scale below 0.08% was collected. Furthermore, the width of the spectral line below 0.30 mm/s was observed. Powerful and complex velocity driving system was designed.

  3. Cyber security challenges in Smart Cities: Safety, security and privacy

    PubMed Central

    Elmaghraby, Adel S.; Losavio, Michael M.

    2014-01-01

    The world is experiencing an evolution of Smart Cities. These emerge from innovations in information technology that, while they create new economic and social opportunities, pose challenges to our security and expectations of privacy. Humans are already interconnected via smart phones and gadgets. Smart energy meters, security devices and smart appliances are being used in many cities. Homes, cars, public venues and other social systems are now on their path to the full connectivity known as the “Internet of Things.” Standards are evolving for all of these potentially connected systems. They will lead to unprecedented improvements in the quality of life. To benefit from them, city infrastructures and services are changing with new interconnected systems for monitoring, control and automation. Intelligent transportation, public and private, will access a web of interconnected data from GPS location to weather and traffic updates. Integrated systems will aid public safety, emergency responders and in disaster recovery. We examine two important and entangled challenges: security and privacy. Security includes illegal access to information and attacks causing physical disruptions in service availability. As digital citizens are more and more instrumented with data available about their location and activities, privacy seems to disappear. Privacy protecting systems that gather data and trigger emergency response when needed are technological challenges that go hand-in-hand with the continuous security challenges. Their implementation is essential for a Smart City in which we would wish to live. We also present a model representing the interactions between person, servers and things. Those are the major element in the Smart City and their interactions are what we need to protect. PMID:25685517

  4. First time description of early lead failure of the Linox Smart lead compared to other contemporary high-voltage leads.

    PubMed

    Weberndörfer, Vanessa; Nyffenegger, Tobias; Russi, Ian; Brinkert, Miriam; Berte, Benjamin; Toggweiler, Stefan; Kobza, Richard

    2018-05-01

    Early lead failure has recently been reported in ICD patients with Linox SD leads. We aimed to compare the long-term performance of the following lead model Linox Smart SD with other contemporary high-voltage leads. All patients receiving high-voltage leads at our center between November 2009 and May 2017 were retrospectively analyzed. Lead failure was defined as the occurrence of one or more of the following: non-physiological high-rate episodes, low- or high-voltage impedance anomalies, undersensing, or non-capture. In total, 220 patients were included (Linox Smart SD, n = 113; contemporary lead, n = 107). During a median follow-up of 3.8 years (IQR 1.6-5.9 years), a total of 16 (14 in Linox Smart SD and 2 in contemporary group) lead failures occurred, mostly due to non-physiological high-rate sensing or impedance abnormalities. Lead failure incidence rates per 100 person-years were 2.9 (95% CI 1.7-4.9) and 0.6 (95% CI 0.1-2.3) for Linox Smart SD compared to contemporary leads respectively. Kaplan Meier estimates of 5-year lead failure rates were 14.0% (95% CI 8.1-23.6%) and 1.3% (95% CI 0.2-8.9%), respectively (log-rank p = 0.028). Implantation of a Linox Smart SD lead increased the risk of lead failure with a hazard ratio (HR) of 4.53 (95% CI 1.03-19.95, p = 0.046) and 4.44 (95% CI 1.00-19.77, p = 0.05) in uni- and multivariable Cox models. The new Linox Smart SD lead model was associated with high failure rates and should be monitored closely to detect early signs of lead failure.

  5. Health smart cards: differing perceptions of emergency department patients and staff.

    PubMed

    Mohd Rosli, Reizal; Taylor, David McD; Knott, Jonathan C; Das, Atandrila; Dent, Andrew W

    2009-02-01

    An analytical, cross-sectional survey of 270 emergency department patients and 92 staff undertaken in three tertiary referral hospital emergency departments was completed to compare the perceptions of patients and staff regarding the use of health smart cards containing patient medical records. The study recorded data on a range of health smart card issues including awareness, privacy, confidentiality, security, advantages and disadvantages, and willingness to use. A significantly higher proportion of staff had heard of the card. The perceived disadvantages reported by patients and staff were, overall, significantly different, with the staff reporting more disadvantages. A significantly higher proportion of patients believed that they should choose what information is on the card and who should have access to the information. Patients were more conservative regarding what information should be included, but staff were more conservative regarding who should have access to the information. Significantly fewer staff believed that patients could reliably handle the cards. Overall, however, the cards were considered acceptable and useful, and their introduction would be supported.

  6. ``Smart'' Surfaces of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Meng, Dong

    2009-03-01

    ``Smart'' surfaces, also known as stimuli-responsive surfaces, can change their properties (e.g., wettability, adhesion, friction, elasticity, and biocompatibility) in response to external stimuli (e.g., temperature, pressure, light, solvent selectivity, ionic strength, type of salt, pH, applied electric field, etc.). In this work, we use numerical self-consistent field calculations to study in detail the structure and stimuli- responses of various polymer brushes, including (1) the thermo- response of PNIPAM brushes in water, (2) solvent-response of uncharged diblock copolymer brushes, and (3) the stimuli- response of charged two-component polymer brushes (including both the binary A/B brushes and diblock copolymer A-B brushes) to ionic strength, pH, and applied electric field. Among the many design parameters (e.g., chain lengths, grafting densities, A-B incompatibility, degree of ionization of charged polymers, etc.) we identify those that strongly affect the surface switchability. Such knowledge is useful to the experimental design of these smart polymer brushes for their applications.

  7. PhoneSat: Ground Testing of a Phone-Based Prototype Bus

    NASA Technical Reports Server (NTRS)

    Felix, Carmen; Howard, Benjamin; Reyes, Matthew; Snarskiy, Fedor; Hickman, Ryan; Boshuizen, Christopher; Marshall, William

    2010-01-01

    Most of the key capabilities that are requisite of a satellite bus are housed in today's smart phones. PhoneSat refers to an initiative to build a ground-based prototype vehicle that could all the basic functionality of a satellite, including attitude control, using a smart Phone as its central hardware. All components used were also low cost Commercial off the Shelf (COTS). In summer 2009, an initial prototype was created using the LEGO Mindstorm toolkit demonstrating simple attitude control. Here we report on a follow up initiative to design, build and test a vehicle based on the Google s smart phone Nexus One. The report includes results from initial thermal-vacuum chamber tests and low altitude sub-orbital rocket flights which show that, at least for short durations, the Nexus One phone is able to withstand key aspects of the space environment without failure. We compare the sensor data from the Phone's accelerometers and magnetometers with that of an external microelectronic inertial measurement unit.

  8. A mechanical energy harvested magnetorheological damper with linear-rotary motion converter

    NASA Astrophysics Data System (ADS)

    Chu, Ki Sum; Zou, Li; Liao, Wei-Hsin

    2016-04-01

    Magnetorheological (MR) dampers are promising to substitute traditional oil dampers because of adaptive properties of MR fluids. During vibration, significant energy is wasted due to the energy dissipation in the damper. Meanwhile, for conventional MR damping systems, extra power supply is needed. In this paper, a new energy harvester is designed in an MR damper that integrates controllable damping and energy harvesting functions into one device. The energy harvesting part of this MR damper has a unique mechanism converting linear motion to rotary motion that would be more stable and cost effective when compared to other mechanical transmissions. A Maxon motor is used as a power generator to convert the mechanical energy into electrical energy to supply power for the MR damping system. Compared to conventional approaches, there are several advantages in such an integrated device, including weight reduction, ease in installation with less maintenance. A mechanical energy harvested MR damper with linear-rotary motion converter and motion rectifier is designed, fabricated, and tested. Experimental studies on controllable damping force and harvested energy are performed with different transmissions. This energy harvesting MR damper would be suitable to vehicle suspensions, civil structures, and smart prostheses.

  9. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyasato, Matt; Kosowski, Mark

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests weremore » run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.« less

  10. A generic sun-tracking algorithm for on-axis solar collector in mobile platforms

    NASA Astrophysics Data System (ADS)

    Lai, An-Chow; Chong, Kok-Keong; Lim, Boon-Han; Ho, Ming-Cheng; Yap, See-Hao; Heng, Chun-Kit; Lee, Jer-Vui; King, Yeong-Jin

    2015-04-01

    This paper proposes a novel dynamic sun-tracking algorithm which allows accurate tracking of the sun for both non-concentrated and concentrated photovoltaic systems located on mobile platforms to maximize solar energy extraction. The proposed algorithm takes not only the date, time, and geographical information, but also the dynamic changes of coordinates of the mobile platforms into account to calculate the sun position angle relative to ideal azimuth-elevation axes in real time using general sun-tracking formulas derived by Chong and Wong. The algorithm acquires data from open-loop sensors, i.e. global position system (GPS) and digital compass, which are readily available in many off-the-shelf portable gadgets, such as smart phone, to instantly capture the dynamic changes of coordinates of mobile platforms. Our experiments found that a highly accurate GPS is not necessary as the coordinate changes of practical mobile platforms are not fast enough to produce significant differences in the calculation of the incident angle. On the contrary, it is critical to accurately identify the quadrant and angle where the mobile platforms are moving toward in real time, which can be resolved by using digital compass. In our implementation, a noise filtering mechanism is found necessary to remove unexpected spikes in the readings of the digital compass to ensure stability in motor actuations and effectiveness in continuous tracking. Filtering mechanisms being studied include simple moving average and linear regression; the results showed that a compound function of simple moving average and linear regression produces a better outcome. Meanwhile, we found that a sampling interval is useful to avoid excessive motor actuations and power consumption while not sacrificing the accuracy of sun-tracking.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Ching-Yen; Youn, Edward; Chynoweth, Joshua

    As Electric Vehicles (EVs) increase, charging infrastructure becomes more important. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control and safety systems to prevent electric shock. The safety design is implemented in different levels that include both the servermore » and the smart charging stations. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV charging management system.« less

  12. Learning Setting-Generalized Activity Models for Smart Spaces

    PubMed Central

    Cook, Diane J.

    2011-01-01

    The data mining and pervasive computing technologies found in smart homes offer unprecedented opportunities for providing context-aware services, including health monitoring and assistance to individuals experiencing difficulties living independently at home. In order to provide these services, smart environment algorithms need to recognize and track activities that people normally perform as part of their daily routines. However, activity recognition has typically involved gathering and labeling large amounts of data in each setting to learn a model for activities in that setting. We hypothesize that generalized models can be learned for common activities that span multiple environment settings and resident types. We describe our approach to learning these models and demonstrate the approach using eleven CASAS datasets collected in seven environments. PMID:21461133

  13. Energy monitoring and managing for electromobility purposes

    NASA Astrophysics Data System (ADS)

    Slanina, Zdenek; Docekal, Tomas

    2016-09-01

    This paper describes smart energy meter design and implementation focused on using in charging stations (stands) for electric vehicle (follows as EV) charging support and possible embedding into current smart building technology. In this article there are included results of research of commercial devices available in Czech republic for energy measuring for buildings as well as analysis of energy meter for given purposes. For example in described module there was required measurement of voltage, electric current and frequency of power network. Finally there was designed a communication module with common interface to energy meter for standard communication support between charging station and electric car. After integration into smart buildings (home automation, parking houses) there are pros and cons of such solution mentioned1,2.

  14. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brion

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormalmore » conditions testing, and charging of a plug-in vehicle.« less

  15. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Brion

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormalmore » conditions testing, and charging of a plug-in vehicle.« less

  16. Engineering the smart factory

    NASA Astrophysics Data System (ADS)

    Harrison, Robert; Vera, Daniel; Ahmad, Bilal

    2016-10-01

    The fourth industrial revolution promises to create what has been called the smart factory. The vision is that within such modular structured smart factories, cyber-physical systems monitor physical processes, create a virtual copy of the physical world and make decentralised decisions. This paper provides a view of this initiative from an automation systems perspective. In this context it considers how future automation systems might be effectively configured and supported through their lifecycles and how integration, application modelling, visualisation and reuse of such systems might be best achieved. The paper briefly describes limitations in current engineering methods, and new emerging approaches including the cyber physical systems (CPS) engineering tools being developed by the automation systems group (ASG) at Warwick Manufacturing Group, University of Warwick, UK.

  17. Stereovision Imaging in Smart Mobile Phone Using Add on Prisms

    NASA Astrophysics Data System (ADS)

    Bar-Magen Numhauser, Jonathan; Zalevsky, Zeev

    2014-03-01

    In this work we present the use of a prism-based add on component installed on top of a smart phone to achieve stereovision capabilities using iPhone mobile operating system. Through these components and the combination of the appropriate application programming interface and mathematical algorithms the obtained results will permit the analysis of possible enhancements for new uses to such system, in a variety of areas including medicine and communications.

  18. Smart Grid Maturity Model: Model Definition. A Framework for Smart Grid Transformation

    DTIC Science & Technology

    2010-09-01

    adoption of more efficient and reliable generation sources and would allow consumer-generated electricity (e.g., solar power and wind) to be connected to...program that pays customers (or credits their accounts) for customer-provided electricity such as from solar panels to the grid or electric vehicles...deployed. CUST-5.3 Plug-and-play customer-based generation (e.g., wind and solar ) is supported. This includes the necessary infrastructure, such

  19. Information and Communication Technology and Electric Vehicles — Paving the Way towards a Smart Community

    NASA Astrophysics Data System (ADS)

    Mase, Kenichi

    A smart community can be considered an essential component to realize a sustainable, low-carbon, and disaster-tolerant society, thereby providing a base for community inhabitants to lead a simple, healthy, and energy-saving way of life as well as ensuring safety, security, and a high quality-of-life in the community. In particular, a smart community can be essential for senior citizens in an aging society. Smart community enablers such as information and communication technology (ICT) and electric vehicles (EVs) can perform essential roles to realize a smart community. With regard to ICT, the necessity of a dedicated wireless sensor backbone has been identified. With regard to EV, a small-sized EV with one or two seats (Mini-EV) has been identified as an emerging player to support personal daily mobility in an aged society. The Mini-EV may be powered by a solar battery, thereby mitigating vehicular maintenance burden for the elderly. It is essential to realize a dependable ICT network and communication service for a smart community. In the study, we present the concept of trans-locatable design to achieve this goal. The two possible roles of EVs in contributing to a dependable ICT network are highlighted; these include EV charging of the batteries of the base stations in the network, and the creation of a Mini-EV based ad-hoc network that can enable applications such as safe driving assistance and secure neighborhoods.

  20. Opening the Duke electronic health record to apps: Implementing SMART on FHIR.

    PubMed

    Bloomfield, Richard A; Polo-Wood, Felipe; Mandel, Joshua C; Mandl, Kenneth D

    2017-03-01

    Recognizing a need for our EHR to be highly interoperable, our team at Duke Health enabled our Epic-based electronic health record to be compatible with the Boston Children's project called Substitutable Medical Apps and Reusable Technologies (SMART), which employed Health Level Seven International's (HL7) Fast Healthcare Interoperability Resources (FHIR), commonly known as SMART on FHIR. We created a custom SMART on FHIR-compatible server infrastructure written in Node.js that served two primary functions. First, it handled API management activities such rate-limiting, authorization, auditing, logging, and analytics. Second, it retrieved the EHR data and made it available in a FHIR-compatible format. Finally, we made required changes to the EHR user interface to allow us to integrate several compatible apps into the provider- and patient-facing EHR workflows. After integrating SMART on FHIR into our Epic-based EHR, we demonstrated several types of apps running on the infrastructure. This included both provider- and patient-facing apps as well as apps that are closed source, open source and internally-developed. We integrated the apps into the testing environment of our desktop EHR as well as our patient portal. We also demonstrated the integration of a native iOS app. In this paper, we demonstrate the successful implementation of the SMART and FHIR technologies on our Epic-based EHR and subsequent integration of several compatible provider- and patient-facing apps. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. 75 FR 39045 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Corporation and Toyota Motor Corporation, including on-site leased workers from Corestaff, ABM Janitorial, and...

  2. Magnification of starting torques of dc motors by maximum power point trackers in photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Appelbaum, Joseph; Singer, S.

    1989-01-01

    Direct current (dc) motors are used in terrestrial photovoltaic (PV) systems such as in water-pumping systems for irrigation and water supply. Direct current motors may also be used for space applications. Simple and low weight systems including dc motors may be of special interest in space where the motors are directly coupled to the solar cell array (with no storage). The system will operate only during times when sufficient insolation is available. An important performance characteristic of electric motors is the starting to rated torque ratio. Different types of dc motors have different starting torque ratios. These ratios are dictated by the size of solar cell array, and the developed motor torque may not be sufficient to overcome the load starting torque. By including a maximum power point tracker (MPPT) in the PV system, the starting to rated torque ratio will increase, the amount of which depends on the motor type. The starting torque ratio is calculated for the permanent magnet, series and shunt excited dc motors when powered by solar cell arrays for two cases: with and without MPPT's. Defining a motor torque magnification by the ratio of the motor torque with an MPPT to the motor torque without an MPPT, a magnification of 3 was obtained for the permanent magnet motor and a magnification of 7 for both the series and shunt motors. The effect of the variation of solar insolation on the motor starting torque was covered. All motor types are less sensitive to insolation variation in systems including MPPT's as compared to systems with MPPT's. The analysis of this paper will assist the PV system designed to determine whether or not to include an MPPT in the system for a specific motor type.

  3. Simple, heart-smart substitutions

    MedlinePlus

    Coronary artery disease - heart smart substitutions; Atherosclerosis - heart smart substitutions; Cholesterol - heart smart substitutions; Coronary heart disease - heart smart substitutions; Healthy diet - heart ...

  4. Analysing Smart Metering Systems from a Consumer Perspective

    NASA Astrophysics Data System (ADS)

    Yesudas, Rani

    Many countries are deploying smart meters and Advanced Metering Infrastructure systems as part of demand management and grid modernisation efforts. Several of these projects are facing consumer resistance. The advertised benefits to the consumer appear mainly monetary but detailed analysis shows that financial benefits are hard to realise since the fixed services charges are high. Additionally, the data collected from smart meters have security and privacy implications for the consumer. These projects failed to consider end-users as an important stakeholder group during planning stages resulting in the design and roll-out of expensive systems, which do not demonstrate clear consumer benefits. The overall goal of the research reported in this thesis was to improve the smart metering system to deliver consumer benefits that increase confidence and acceptance of these projects. The smart metering system was examined from an end-user perspective for realistic insights into consumer concerns. Processes from Design Science Research methodology were utilised to conduct this research due to the utilitarian nature of the objective. Consumer segmentation was central to the proposed measures. Initially, a consumer-friendly risk analysis framework was devised, and appropriate requirement elicitation techniques were identified. Control options for smart meter data transfer and storage were explored. Various scenarios were analysed to determine consumer-friendly features in the smart metering system, including control options for smart meter data transfer and storage. Proposed functionalities (billing choices, feedback information and specific configurations to match the needs of different user segments) were studied using the Australian smart metering system. Smart meters vary in capabilities depending on the manufacturer, mode and place of deployment. The research showed that features proposed in this thesis are implementable in smart meters, by examining their applicability to those used in Victoria (Australia). This study demonstrated that intelligent systems for demand and distribution-side management can be built without the use of detailed consumption data from the consumer. Many issues related to smart meter data could be avoided by distributing intelligent metering devices across the network. A check-list was generated to guide project proponents to achieve a consumer-friendly outcome. This research establishes that by applying well-established theories during the planning process, in particular, requirement elicitation and risk analysis, consumer support can be gained leading to the deployment of user-friendly and sustainable systems. The check-list generated will help the industry to appropriately plan and develop systems that can avoid opposition and even stimulate adoption. Options proposed provide choices for different consumer segments without affecting major operations such as billing. On evaluation, it has been identified that the proposed measures do not affect the quality attributes of the system. Since the proposals presented in this thesis were based on smart meters used in Victoria (Australia), smart meters used in other areas may require upgrades or revisions to support these functions. The scope of this research is limited to identifying improvements in the system that will benefit the residential consumer and does not extend to the analysis of the effects of these improvements on the profitability of the investors.

  5. A Personalized Self-Management Rehabilitation System for Stroke Survivors: A Quantitative Gait Analysis Using a Smart Insole

    PubMed Central

    Parker, Jack; McCullagh, Paul; Zheng, Huiru; Nugent, Chris; Black, Norman David; Mawson, Susan

    2016-01-01

    Background In the United Kingdom, stroke is the single largest cause of adult disability and results in a cost to the economy of £8.9 billion per annum. Service needs are currently not being met; therefore, initiatives that focus on patient-centered care that promote long-term self-management for chronic conditions should be at the forefront of service redesign. The use of innovative technologies and the ability to apply these effectively to promote behavior change are paramount in meeting the current challenges. Objective Our objective was to gain a deeper insight into the impact of innovative technologies in support of home-based, self-managed rehabilitation for stroke survivors. An intervention of daily walks can assist with improving lower limb motor function, and this can be measured by using technology. This paper focuses on assessing the usage of self-management technologies on poststroke survivors while undergoing rehabilitation at home. Methods A realist evaluation of a personalized self-management rehabilitation system was undertaken in the homes of stroke survivors (N=5) over a period of approximately two months. Context, mechanisms, and outcomes were developed and explored using theories relating to motor recovery. Participants were encouraged to self-manage their daily walking activity; this was achieved through goal setting and motivational feedback. Gait data were collected and analyzed to produce metrics such as speed, heel strikes, and symmetry. This was achieved using a “smart insole” to facilitate measurement of walking activities in a free-living, nonrestrictive environment. Results Initial findings indicated that 4 out of 5 participants performed better during the second half of the evaluation. Performance increase was evident through improved heel strikes on participants’ affected limb. Additionally, increase in performance in relation to speed was also evident for all 5 participants. A common strategy emerged across all but one participant as symmetry performance was sacrificed in favor of improved heel strikes. This paper evaluates compliance and intensity of use. Conclusion Our findings suggested that 4 out of the 5 participants improved their ability to heel strike on their affected limb. All participants showed improvements in their speed of gait measured in steps per minute with an average increase of 9.8% during the rehabilitation program. Performance in relation to symmetry showed an 8.5% average decline across participants, although 1 participant improved by 4%. Context, mechanism, and outcomes indicated that dual motor learning and compensatory strategies were deployed by the participants. PMID:28582260

  6. Impact landing ends SMART-1 mission to the Moon

    NASA Astrophysics Data System (ADS)

    2006-09-01

    SMART-1 scientists, engineers and space operations experts witnessed the final moments of the spacecraft’s life in the night between Saturday 2 and Sunday 3 September at ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany. The confirmation of the impact reached ESOC at 07:42:22 CEST (05:42:22 UT) when ESA’s New Norcia ground station in Australia suddenly lost radio contact with the spacecraft. SMART-1 ended its journey in the Lake of Excellence, in the point situated at 34.4º South latitude and 46.2º West longitude. The SMART-1 impact took place on the near side of the Moon, in a dark area just near the terminator (the line separating the day side from the night side), at a “grazing” angle of about one degree and a speed of about 2 kilometres per second. The impact time and location was planned to favour observations of the impact event from telescopes on Earth, and was achieved by a series of orbit manoeuvres and corrections performed during the course of summer 2006, the last of which was on 1 September. Professional and amateur ground observers all around the world - from South Africa to the Canary Islands, South America, the continental United States, Hawaii, and many other locations - were watching before and during the small SMART-1 impact, hoping to spot the faint impact flash and to obtain information about the impact dynamics and about the lunar surface excavated by the spacecraft. The quality of the data and images gathered from the ground observatories - a tribute to the end of the SMART-1 mission and a possible additional contribution to lunar science - will be assessed in the days to come. For the last 16 months and until its final orbits, SMART-1 has been studying the Moon, gathering data about the morphology and mineralogical composition of the surface in visible, infrared and X-ray light. “The legacy left by the huge wealth of SMART-1 data, to be analysed in the months and years to come, is a precious contribution to lunar science at a time when the exploration of the Moon is once again getting the world’s interest” said Bernard Foing, ESA SMART-1 Project Scientist. “The measurements by SMART-1 call into question the theories concerning the Moon’s violent origin and evolution,” he added. The Moon may have formed from the impact of a Mars-size asteroid with the Earth 4500 million years ago. “SMART-1 has mapped large and small impact craters, studied the volcanic and tectonic processes that shaped the Moon, unveiled the mysterious poles, and investigated sites for future exploration,” Foing concluded. “ESA’s decision to extend the SMART-1 scientific mission by a further year ( it was initially planned to last only six months around the Moon) allowed the instrument scientists to extensively use a number of innovative observing modes at the Moon,” added Gerhard Schwehm, ESA’s SMART-1 Mission Manager. In addition to plain nadir observations (looking down on the ‘vertical’ line for lunar surveys), they included targeted observations, moon-spot pointing and ‘push-broom’ observations (a technique SMART-1 used to obtain colour images). “This was tough work for the mission planners, but the lunar data archive we are now building is truly impressive.” “SMART-1 has been an enormous success also from a technological point of view,” said Giuseppe Racca, ESA SMART-1 Project Manager. The major goal of the mission was to test an ion engine (solar electric propulsion) in space for the first time for interplanetary travel, and capture a spacecraft into orbit around another celestial body, in combination with gravity assist manoeuvres. SMART-1 also tested future deep-space communication techniques for spacecraft, techniques to achieve autonomous spacecraft navigation, and miniaturised scientific instruments, used for the first time around the Moon. “It is a great satisfaction to see how well the mission achieved its technological objectives, and did great lunar science at the same time,” Racca concluded. “Operating SMART-1 has been an extremely complex but rewarding task,” said Octavio Camino-Ramos, ESA SMART-1 Spacecraft Operations Manager. “The long spiralling trajectory around Earth to test solar electric propulsion (a low-thrust approach), the long exposure to radiation, the strong perturbations of the gravity fields of the Earth-Moon system and then the reaching of a lunar orbit optimised for the scientific investigations, have allowed us to gain valuable expertise in navigation techniques for low-thrust propulsion and innovative operations concepts: telemetry distribution and alerting through the internet, and a high degree of ground operations automation - a remarkable benchmark for the future,” he explained. “For ESA’s Science Programme, SMART-1 represents a great success and a very good return on investment, both from the technological and the scientific point of view,” said Professor Southwood, ESA’s Director of Science. “It seems that right now everyone in the world is planning on going to the Moon. Future scientific missions will greatly benefit from the technological and operational experience gained thanks to this small spacecraft, while the set of scientific data gathered by SMART-1 is already helping to update our current picture of the Moon.” Note to editors More images and further updates on the SMART-1 mission end can be found at:www.esa.int/smart-1 SMART-1, (Small Mission for Advanced Research and Technology) is the first European mission to the Moon. It was launched on 27 September 2003 on board an Ariane 5 rocket, from the CSG, Europe’s Spaceport in Kourou, French Guiana and reached its destination in November 2004 after following a long spiralling trajectory around Earth. In this phase, the spacecraft successfully tested for the first time in space the series of advanced technologies it carried on board. The technology demonstration part of the mission was declared successfully concluded when SMART-1 reached the Moon and was captured by the lunar gravity field in mid-November 2004. SMART-1 started its scientific observations of the Moon in March 2005, running on an elliptical polar orbit that ranged from about 500 to 3000 kilometres over the lunar surface. The instruments on board included a miniaturised imaging camera (AMIE), an X-ray telescope (D-CIXS) to identify the key chemical elements in the lunar surface, an infrared spectrometer (SIR) to chart the Moon’s minerals and an X-ray solar monitor (XSM) to complement the D-CIXS measurements and study the solar variability. SMART-1 was a small unmanned satellite weighing 366 kilograms and roughly fitting into a cube just 1 metre across, excluding its 14-metre solar panels. It was manufactured by the Swedish Space Corporation, Solna, leading a consortium of more than 20 European industrial teams.

  7. NASA Smart Surgical Probe Project

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Andrews, Russell J.; Jeffrey, Stefanie S.; Guerrero, Michael; Papasin, Richard; Koga, Dennis (Technical Monitor)

    2002-01-01

    Information Technologies being developed by NASA to assist astronaut-physician in responding to medical emergencies during long space flights are being employed for the improvement of women's health in the form of "smart surgical probe". This technology, initially developed for neurosurgery applications, not only has enormous potential for the diagnosis and treatment of breast cancer, but broad applicability to a wide range of medical challenges. For the breast cancer application, the smart surgical probe is being designed to "see" a suspicious lump, determine by its features if it is cancerous, and ultimately predict how the disease may progress. A revolutionary early breast cancer detection tool based on this technology has been developed by a commercial company and is being tested in human clinical trials at the University of California at Davis, School of Medicine. The smart surgical probe technology makes use of adaptive intelligent software (hybrid neural networks/fuzzy logic algorithms) with the most advanced physiologic sensors to provide real-time in vivo tissue characterization for the detection, diagnosis and treatment of tumors, including determination of tumor microenvironment and evaluation of tumor margins. The software solutions and tools from these medical applications will lead to the development of better real-time minimally-invasive smart surgical probes for emergency medical care and treatment of astronauts on long space flights.

  8. Novel versatile smart phone based Microplate readers for on-site diagnoses.

    PubMed

    Fu, Qiangqiang; Wu, Ze; Li, Xiuqing; Yao, Cuize; Yu, Shiting; Xiao, Wei; Tang, Yong

    2016-07-15

    Microplate readers are important diagnostic instruments, used intensively for various readout test kits (biochemical analysis kits and ELISA kits). However, due to their expensive and non-portability, commercial microplate readers are unavailable for home testing, community and rural hospitals, especially in developing countries. In this study, to provide a field-portable, cost-effective and versatile diagnostic tool, we reported a novel smart phone based microplate reader. The basic principle of this devise relies on a smart phone's optical sensor that measures transmitted light intensities of liquid samples. To prove the validity of these devises, developed smart phone based microplate readers were applied to readout results of various analytical targets. These targets included analanine aminotransferase (ALT; limit of detection (LOD) was 17.54 U/L), alkaline phosphatase (AKP; LOD was 15.56 U/L), creatinine (LOD was 1.35μM), bovine serum albumin (BSA; LOD was 0.0041mg/mL), prostate specific antigen (PSA; LOD was 0.76pg/mL), and ractopamine (Rac; LOD was 0.31ng/mL). The developed smart phone based microplate readers are versatile, portable, and inexpensive; they are unique because of their ability to perform under circumstances where resources and expertize are limited. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)

    USGS Publications Warehouse

    Basilevsky, A.T.; Keller, H.U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.

    2004-01-01

    The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future. ?? 2004 Elsevier Ltd. All rights reserved.

  10. Internal and External Triggering Mechanism of "Smart" Nanoparticle-Based DDSs in Targeted Tumor Therapy.

    PubMed

    Qiana, Xian-Ling; Li, Jun; Wei, Ran; Lin, Hui; Xiong, Li-Xia

    2018-05-09

    Anticancer chemotherapeutics have a lot of problems via conventional drug delivery systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: "passive", "active", and "smart" targeting. To summarize the mechanisms of various internal and external "smart" stimulating factors on the basis of findings from in vivo and in vitro studies. A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), "smart" DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. In this review article, we summarize and classify the internal and external triggering mechanism of "smart" nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment.

    PubMed

    Riboni, Daniele; Bettini, Claudio; Civitarese, Gabriele; Janjua, Zaffar Haider; Helaoui, Rim

    2016-02-01

    In an ageing world population more citizens are at risk of cognitive impairment, with negative consequences on their ability of independent living, quality of life and sustainability of healthcare systems. Cognitive neuroscience researchers have identified behavioral anomalies that are significant indicators of cognitive decline. A general goal is the design of innovative methods and tools for continuously monitoring the functional abilities of the seniors at risk and reporting the behavioral anomalies to the clinicians. SmartFABER is a pervasive system targeting this objective. A non-intrusive sensor network continuously acquires data about the interaction of the senior with the home environment during daily activities. A novel hybrid statistical and knowledge-based technique is used to analyses this data and detect the behavioral anomalies, whose history is presented through a dashboard to the clinicians. Differently from related works, SmartFABER can detect abnormal behaviors at a fine-grained level. We have fully implemented the system and evaluated it using real datasets, partly generated by performing activities in a smart home laboratory, and partly acquired during several months of monitoring of the instrumented home of a senior diagnosed with MCI. Experimental results, including comparisons with other activity recognition techniques, show the effectiveness of SmartFABER in terms of recognition rates. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    NASA Technical Reports Server (NTRS)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  13. Quantification of Hydrodynamic Forcing on Smart Munitions on the Beach Face - Designof Smart Munitions

    NASA Astrophysics Data System (ADS)

    Cristaudo, D.; Bruder, B. L.; Puleo, J. A.

    2016-12-01

    Millions of unexploded ordnance (munitions) are located in the waters off of US coasts. They canmigrate to the beach and become a peril to local beach users. The research objective is to quantifythe small scale processes on the beach face responsible for munition mobility. Several experimentsat different sites with different wave and bathymetry conditions will be conducted. Realisticsurrogate munitions were constructed to facilitate the future experiments. Six different munitiontypes were replicated, selecting a range of calibers covering a variety of dimensions from 20 mmto 155 mm. The surrogates are made "smart" by designing them to house several internal sensors(the quantity depends on the available space inside the surrogate itself) that will aid in estimatingthe characteristics of their mobility. Each smart surrogate replicates the mass, center of gravity,and moment of inertia of the actual munition as close as possible. The sensors used inside the smartsurrogate munitions include: inertial motion units (IMU) to derive the surrogate position; Ubisenseultra-wideband tags for positioning in dry conditions; a Slamstick shock sensor to quantify thewave impact force on the surrogate; photocells to detect rolling and burial; and a pressure sensorto measure the water depth. The procedure of designing the smart surrogate munitions and sensorcapabilities will be presented.

  14. Irvine Smart Grid Demonstration, a Regional Smart Grid Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yinger, Robert; Irwin, Mark

    ISGD was a comprehensive demonstration that spanned the electricity delivery system and extended into customer homes. The project used phasor measurement technology to enable substation-level situational awareness, and demonstrated SCE’s next-generation substation automation system. It extended beyond the substation to evaluate the latest generation of distribution automation technologies, including looped 12-kV distribution circuit topology using URCIs. The project team used DVVC capabilities to demonstrate CVR. In customer homes, the project evaluated HAN devices such as smart appliances, programmable communicating thermostats, and home energy management components. The homes were also equipped with energy storage, solar PV systems, and a number ofmore » energy efficiency measures (EEMs). The team used one block of homes to evaluate strategies and technologies for achieving ZNE. A home achieves ZNE when it produces at least as much renewable energy as the amount of energy it consumes annually. The project also assessed the impact of device-specific demand response (DR), as well as load management capabilities involving energy storage devices and plug-in electric vehicle charging equipment. In addition, the ISGD project sought to better understand the impact of ZNE homes on the electric grid. ISGD’s SENet enabled end-to-end interoperability between multiple vendors’ systems and devices, while also providing a level of cybersecurity that is essential to smart grid development and adoption across the nation. The ISGD project includes a series of sub-projects grouped into four logical technology domains: Smart Energy Customer Solutions, Next-Generation Distribution System, Interoperability and Cybersecurity, and Workforce of the Future. Section 2.3 provides a more detailed overview of these domains.« less

  15. Feasibility and accessibility of electronic patient-reported outcome measures using a smartphone during routine chemotherapy: a pilot study.

    PubMed

    Bae, Woo Kyun; Kwon, Jihyun; Lee, Hyun Woo; Lee, Sang-Cheol; Song, Eun-Kee; Shim, Hyeok; Ryu, Keun Ho; Song, Jemin; Seo, Sungbo; Yang, Yaewon; Park, Jong-Hyock; Lee, Ki Hyeong; Han, Hye Sook

    2018-05-07

    There is growing interest in integrating electronic patient-reported outcome (PRO) measures into routine oncology practice for symptom monitoring. Here, we evaluated the feasibility and accessibility of electronic PRO measures using a smartphone (PRO-SMART) for cancer patients receiving routine chemotherapy. The proposed PRO-SMART application obtains daily personal health record (PHR) data from cancer patients via a smartphone. An analysis report of cumulative PHR data is provided to the clinician in a format suitable for upload to electronic medical records (EMRs). Cancer outpatients who had received at least two cycles of chemotherapy and who were scheduled for two more cycles were enrolled. Between February 2015 and December 2016, 111 patients were screened and 101 of these were included. One-hundred patients used PRO-SMART at least once and were included in the final analysis (90.1% overall accessibility among all screened patients). The number of symptomatic adverse events (AEs) related to chemotherapy recorded in EMRs (mean ± standard deviation [SD]) increased from 0.92 ± 0.80 to 2.26 ± 1.80 (P < 0.001), and grading of AEs increased from 0.81 ± 0.69 to 1.00 ± 0.62 (P = 0.029). After using PRO-SMART, the numeric rating scale for pain (mean ± SD) increased from 0.20 ± 0.72 to 0.99 ± 1.55 (P < 0.001). A patient-reported questionnaire revealed that 64.2% of patients found it useful and 83% found it easy to use. This study suggests that the proposed PRO-SMART is feasible and accessible for assessment of symptomatic AEs in cancer patients receiving chemotherapy for a prospective randomized trial.

  16. Transcranial direct current stimulation combined with upper limb functional training in children with spastic, hemiparetic cerebral palsy: study protocol for a randomized controlled trial.

    PubMed

    Moura, Renata Calhes Franco; Santos, Cibele Almeida; Grecco, Luanda André Collange; Lazzari, Roberta Delasta; Dumont, Arislander Jonathan Lopes; Duarte, Natalia Carvalho de Almeida; Braun, Luiz Alfredo; Lopes, Jamile Benite Palma; Santos, Ligia Abram Dos; Rodrigues, Eliane Lopes Souza; Albertini, Giorgio; Cimolin, Veronica; Galli, Manuela; Oliveira, Claudia Santos

    2016-08-17

    The aim of the proposed study is to perform a comparative analysis of functional training effects for the paretic upper limb with and without transcranial direct current stimulation over the primary motor cortex in children with spastic hemiparetic cerebral palsy. The sample will comprise 34 individuals with spastic hemiparetic cerebral palsy, 6 to 16 years old, classified at level I, II, or III of the Manual Ability Classification System. Participants will be randomly allocated to two groups: (1) functional training of the paretic upper limb combined with anodic transcranial stimulation; (2) functional training of the paretic upper limb combined with sham transcranial stimulation. Evaluation will involve three-dimensional movement analysis and electromyography using the SMART-D 140® system (BTS Engineering) and the FREEEMG® system (BTS Engineering), the Quality of Upper Extremity Skills Test, to assess functional mobility, the Portable Device and Ashworth Scale, to measure movement resistance and spasticity, and the Pediatric Evaluation of Disability Inventory, to evaluate performance. Functional reach training of the paretic upper limb will include a range of manual activities using educational toys associated with an induced constraint of the non-paretic limb during the training. Training will be performed in five weekly 20-minute sessions for two weeks. Transcranial stimulation over the primary motor cortex will be performed during the training sessions at an intensity of 1 mA. Findings will be analyzed statistically considering a 5 % significance level (P ≤ 0.05). This paper presents a detailed description of a prospective, randomized, controlled, double-blind, clinical trial designed to demonstrate the effects of combining transcranial direct current stimulation over the primary motor cortex and functional training of the paretic limb in children with cerebral palsy classified at level I, II, or III of the Manual Ability Classification System. The results will be published and evidence found may contribute to the use of transcranial stimulation for this population. ReBEC RBR-6V4Y3K . Registered on 11 February 2015.

  17. Smart Location Database - Service

    EPA Pesticide Factsheets

    The Smart Location Database (SLD) summarizes over 80 demographic, built environment, transit service, and destination accessibility attributes for every census block group in the United States. Future updates to the SLD will include additional attributes which summarize the relative location efficiency of a block group when compared to other block groups within the same metropolitan region. EPA also plans to periodically update attributes and add new attributes to reflect latest available data. A log of SLD updates is included in the SLD User Guide. See the user guide for a full description of data sources, data currency, and known limitations: https://edg.epa.gov/data/Public/OP/SLD/SLD_userguide.pdf

  18. Smart Location Database - Download

    EPA Pesticide Factsheets

    The Smart Location Database (SLD) summarizes over 80 demographic, built environment, transit service, and destination accessibility attributes for every census block group in the United States. Future updates to the SLD will include additional attributes which summarize the relative location efficiency of a block group when compared to other block groups within the same metropolitan region. EPA also plans to periodically update attributes and add new attributes to reflect latest available data. A log of SLD updates is included in the SLD User Guide. See the user guide for a full description of data sources, data currency, and known limitations: https://edg.epa.gov/data/Public/OP/SLD/SLD_userguide.pdf

  19. Smart Rehabilitation Devices: Part I – Force Tracking Control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This article presents prototypes of smart variable resistance exercise devices using magneto-rheological fluid dampers. An intelligent supervisory control for regulating the resistive force or torque of the device is developed, and is validated both numerically and experimentally. The device provides both isometric and isokinetic strength training for the human joints including knee, elbow, hip, and ankle. PMID:18504509

  20. Thermoplastic welding apparatus and method

    DOEpatents

    Matsen, Marc R.; Negley, Mark A.; Geren, William Preston; Miller, Robert James

    2017-03-07

    A thermoplastic welding apparatus includes a thermoplastic welding tool, at least one tooling surface in the thermoplastic welding tool, a magnetic induction coil in the thermoplastic welding tool and generally encircling the at least one tooling surface and at least one smart susceptor in the thermoplastic welding tool at the at least one tooling surface. The magnetic induction coil is adapted to generate a magnetic flux field oriented generally parallel to a plane of the at least one smart susceptor.

  1. Smart materials and structures

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Heyman, Joseph S.

    1993-01-01

    Embedded optical fibers allow not only the cure-monitoring and in-service lifetime measurements of composite materials, but the NDE of material damage and degradation with aging. The capabilities of such damage-detection systems have been extended to allow the quantitative determination of 2D strain in materials by several different methods, including the interferometric and the numerical. It remains to be seen, what effect the embedded fibers have on the strength of the 'smart' materials created through their incorporation.

  2. A semiconductor bridge ignited hot gas piston ejector

    NASA Technical Reports Server (NTRS)

    Grubelich, M. C.; Bickes, Robert W., Jr.

    1993-01-01

    The topics are presented in viewgraph form and include the following: semiconductor bridge technology (SCB); SCB philosophy; technology transfer; simplified sketch of SCB; SCB processing; SCB design; SCB test assembly; 5 mJ SCB burst based on a polaroid photograph; micro-convective heat transfer hypothesis; SCB fire set; comparison of SCB and hot-wire actuators; satellite firing sets; logic fire set; SCB smart component; SCB smart firing set; semiconductor design considerations; and the adjustable actuator system.

  3. A context management system for a cost-efficient smart home platform

    NASA Astrophysics Data System (ADS)

    Schneider, J.; Klein, A.; Mannweiler, C.; Schotten, H. D.

    2012-09-01

    This paper presents an overview of state-of-the-art architectures for integrating wireless sensor and actuators networks into the Future Internet. Furthermore, we will address advantages and disadvantages of the different architectures. With respect to these criteria, we develop a new architecture overcoming these weaknesses. Our system, called Smart Home Context Management System, will be used for intelligent home utilities, appliances, and electronics and includes physical, logical as well as network context sources within one concept. It considers important aspects and requirements of modern context management systems for smart X applications: plug and play as well as plug and trust capabilities, scalability, extensibility, security, and adaptability. As such, it is able to control roller blinds, heating systems as well as learn, for example, the user's taste w.r.t. to home entertainment (music, videos, etc.). Moreover, Smart Grid applications and Ambient Assisted Living (AAL) functions are applicable. With respect to AAL, we included an Emergency Handling function. It assures that emergency calls (police, ambulance or fire department) are processed appropriately. Our concept is based on a centralized Context Broker architecture, enhanced by a distributed Context Broker system. The goal of this concept is to develop a simple, low-priced, multi-functional, and save architecture affordable for everybody. Individual components of the architecture are well tested. Implementation and testing of the architecture as a whole is in progress.

  4. What is the future of diabetic wound care?

    PubMed

    Sweitzer, Sarah M; Fann, Stephen A; Borg, Thomas K; Baynes, John W; Yost, Michael J

    2006-01-01

    With diabetes affecting 5% to 10% of the US population, development of a more effective treatment for chronic diabetic wounds is imperative. Clinically, the current treatment in topical wound management includes debridement, topical antibiotics, and a state-of-the-art topical dressing. State-of-the-art dressings are a multi-layer system that can include a collagen cellulose substrate, neonatal foreskin fibroblasts, growth factor containing cream, and a silicone sheet covering for moisture control. Wound healing time can be up to 20 weeks. The future of diabetic wound healing lies in the development of more effective artificial "smart" matrix skin substitutes. This review article will highlight the need for novel smart matrix therapies. These smart matrices will release a multitude of growth factors, cytokines, and bioactive peptide fragments in a temporally and spatially specific, event-driven manner. This timed and focal release of cytokines, enzymes, and pharmacological agents should promote optimal tissue regeneration and repair of full-thickness wounds. Development of these kinds of therapies will require multidisciplinary translational research teams. This review article outlines how current advances in proteomics and genomics can be incorporated into a multidisciplinary translational research approach for developing novel smart matrix dressings for ulcer treatment. With the recognition that the research approach will require both time and money, the best treatment approach is the prevention of diabetic ulcers through better foot care, education, and glycemic control.

  5. Active coatings technologies for tailorable military coating systems

    NASA Astrophysics Data System (ADS)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  6. Intarsia-sensorized band and textrodes for real-time myoelectric pattern recognition.

    PubMed

    Brown, Shannon; Ortiz-Catalan, Max; Petersson, Joel; Rodby, Kristian; Seoane, Fernando

    2016-08-01

    Surface Electromyography (sEMG) has applications in prosthetics, diagnostics and neuromuscular rehabilitation. Self-adhesive Ag/AgCl are the electrodes preferentially used to capture sEMG in short-term studies, however their long-term application is limited. In this study we designed and evaluated a fully integrated smart textile band with electrical connecting tracks knitted with intarsia techniques and knitted textile electrodes. Real-time myoelectric pattern recognition for motor volition and signal-to-noise ratio (SNR) were used to compare its sensing performance versus the conventional Ag-AgCl electrodes. After a comprehending measurement and performance comparison of the sEMG recordings, no significant differences were found between the textile and the Ag-AgCl electrodes in SNR and prediction accuracy obtained from pattern recognition classifiers.

  7. Prototype of smart office system using based security system

    NASA Astrophysics Data System (ADS)

    Prasetyo, T. F.; Zaliluddin, D.; Iqbal, M.

    2018-05-01

    Creating a new technology in the modern era gives a positive impact on business and industry. Internet of Things (IoT) as a new communication technology is very useful in realizing smart systems such as: smart home, smart office, smart parking and smart city. This study presents a prototype of the smart office system which was designed as a security system based on IoT. Smart office system development method used waterfall model. IoT-based smart office system used platform (project builder) cayenne so that. The data can be accessed and controlled through internet network from long distance. Smart office system used arduino mega 2560 microcontroller as a controller component. In this study, Smart office system is able to detect threats of dangerous objects made from metals, earthquakes, fires, intruders or theft and perform security monitoring outside the building by using raspberry pi cameras on autonomous robots in real time to the security guard.

  8. Characterization of a small Terfenol-D transducer in mechanically blocked configuration

    NASA Astrophysics Data System (ADS)

    Faidley, LeAnn E.; Dapino, Marcelo J.; Flatau, Alison B.

    2001-08-01

    In numerous applications, smart material transducers are employed to actuate upon virtually immovable structures, that is, structures whose stiffness approaches infinity in comparison with that of the transducer itself. Such mechanically blocked transducer configurations can be found in applications ranging from seismic testing and isolation of civil structures, to clamping mechanisms in linear or rotational inchworm motors. In addition to providing high blocking forces, smart materials for this type of applications must often be small in size and lightweight in order for design constraints to be met. This paper provides a characterization of the force produced by a 0.9 cm (0.35 in) diameter, 2.0 cm (0.79i in) long Terfenol-D operated under mechanically blocked conditions. Experimental results are shown for several mechanical preloads as well as various magnetic field intensities, waveforms, and frequencies. Optimal levels are deduced and discussed and the results are compared to published data for a PZT transducer of similar size operated in mechanically blocked configuration. The comparison reveals that the Terfenol-D rod provides higher blocking forces than its PZT counterpart. It is thus feasible to employ small magnetostrictive drivers in applications involving zero or near-zero displacement, particularly those based on hybrid magnetostrictive/piezoelectric designs in which high efficiencies are achieved by driving the two electrically complementary transducer materials at electrical resonance.

  9. Announcement: Get Smart About Antibiotics Week - November 14-20, 2016.

    PubMed

    2016-11-11

    Get Smart About Antibiotics Week is November 14-20, 2016. This annual observance is intended to engage health care providers, professional societies, advocacy groups, for-profit companies, state and local health departments, the general public, the media, and others in an effort to improve antibiotic stewardship in outpatient, inpatient, nursing home, and animal health settings. During this week, participants will raise awareness of the threat of antibiotic resistance and emphasize the importance of appropriate antibiotic use across all health care settings. Get Smart About Antibiotics Week coincides with the World Health Organization's World Antibiotic Awareness Week and European Antibiotic Awareness Day (November 18). In addition to the United States and European Union, other participating countries and international organizations include Australia, Canada, and the Pan American Health Organization.

  10. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Richard Barney; Scoffield, Don; Bennett, Brion

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionalitymore » testing, abnormal conditions testing, and charging of a plug-in vehicle.« less

  11. Combining Sense and Intelligence for Smart Structures

    NASA Technical Reports Server (NTRS)

    2002-01-01

    IFOS developed the I*Sense technology with assistance from a NASA Langley Research Center SBIR contract. NASA and IFOS collaborated to create sensing network designs that have high sensitivity, low power consumption, and significant potential for mass production. The joint- research effort led to the development of a module that is rugged, compact and light-weight, and immune to electromagnetic interference. These features make the I*Sense multisensor arrays favorable for smart structure applications, including smart buildings, bridges, highways, dams, power plants, ships, and oil tankers, as well as space vehicles, space stations, and other space structures. For instance, the system can be used as an early warning and detection device, with alarms being set to monitor the maximum allowable strain and stress values at various points of a given structure.

  12. 'Smart' polymers in biotechnology and medicine

    NASA Astrophysics Data System (ADS)

    Galaev, Igor Yu

    1995-05-01

    'Smart' water-soluble polymers and hydrogels are capable of responding reversibly to slight changes in the properties of the medium (pH, temperature, ionic strength, the presence of certain substances, illumination, electric field), the response of the system being readily seen with the naked eye (the formation of a new phase in a hitherto homogeneous solution, sudden swelling or contraction of the hydrogel). The properties of such polymers and hydrogels are examined. The use of 'smart' polymers and hydrogels for the concentration of protein solutions and the dehydration of suspensions, for the creation of membranes with a controllable permeability, for the isolation and purification of biomolecules, for the immobilisation of biocatalysts, and for the creation of sensor systems and systems for the controlled release of medicinal drugs is discussed. The bibliography includes 261 references.

  13. Introduction to IEEE 841-1994, IEEE standard for petroleum and chemical industry: Severe duty totally enclosed fan-cooled (TEFC) squirrel cage induction motors -- up to and including 500 hp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, R.L.

    1995-12-31

    IEEE 841, Recommended Practice for Chemical Industry Severe Duty Squirrel-Cage Induction Motors--600 V and Below, first issued in 1986, has been significantly revised and reissued as a Standard. The scope has been increased to include severe duty TEFC squirrel-cage induction motors with antifriction bearings in sizes up to and including 500 horsepower. Motor rated voltages of 2,300 V and 4,000 V have been added. Changes to the standard are reviewed in detail. Requirements are identified that improve motor reliability and increase motor life.

  14. Automatic inoculating apparatus. [includes movable carraige, drive motor, and swabbing motor

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1974-01-01

    An automatic inoculating apparatus for agar trays is described and using a simple inoculating element, such as a cotton swab or inoculating loop. The apparatus includes a movable carriage for supporting the tray to be inoculated, a drive motor for moving the tray along a trackway, and a swabbing motor for automatically swabbing the tray during the movement. An actuator motor controls lowering of the inoculating element onto the tray and lifting of the inoculating element. An electrical control system, including limit microswitches, enables automatic control of the actuator motor and return of the carriage to the initial position after inoculating is completed.

  15. Motor Complications of Dopaminergic Medications in Parkinson’s Disease

    PubMed Central

    Freitas, Maria Eliza; Hess, Christopher W.; Fox, Susan H.

    2018-01-01

    Motor complications are a consequence of chronic treatment of Parkinson’s disease (PD) and include motor fluctuations (wearing-off phenomenon) and levodopa-induced dyskinesia. Both can have a significant impact on functionality and quality of life and thus proper recognition and management is essential. The phenomenology and temporal relationship of motor complications to the schedule of levodopa dosing can be helpful in characterizing them. There are several therapeutic approaches to motor complications, including pharmacological and surgical options. The current review summarizes the different types of motor complications according to phenomenology and the currently available medical treatments, including ongoing trials for management of this condition. PMID:28511255

  16. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  17. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  18. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  19. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  20. 49 CFR 382.501 - Removal from safety-sensitive function.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., no driver shall perform safety-sensitive functions, including driving a commercial motor vehicle, if... functions; including driving a commercial motor vehicle, if the employer has determined that the driver has violated this section. (c) For purposes of this subpart, commercial motor vehicle means a commercial motor...

  1. Quality-improvement analytics for intravenous infusion pumps.

    PubMed

    Skledar, Susan J; Niccolai, Cynthia S; Schilling, Dennis; Costello, Susan; Mininni, Nicolette; Ervin, Kelly; Urban, Alana

    2013-04-15

    The implementation of a smart-pump continuous quality-improvement (CQI) program across a large health system is described, with an emphasis on key metrics for outcomes analyses and program refinement. Three years ago, the University of Pittsburgh Medical Center health system launched a CQI initiative to help ensure the safe use of 6000 smart pumps in its 14 inpatient facilities. A centralized team led by pharmacists is responsible for the retrieval and interpretation of smart-pump data, which is continuously transmitted to a main server. CQI findings are regularly posted on the health system's interdisciplinary intranet. Monitored metrics include rates of compliance with preprogrammed infusion limits, the top 20 drugs involved in alerts, drugs associated with alert-override rates of ≥90%, numbers of alerts by infusion type, nurse responses to alerts, and alert rate per drug library update. Based on the collected CQI data and site-specific requests, four systemwide updates of the smart-pump drug library were performed during the first 18 months of the program, reducing "nuisance alerts" by about 10% per update cycle and enabling targeted interventions to reduce rapid-infusion errors, other adverse drug events (ADEs), and pump-programming workarounds. Over one 12-month period, bedside alerts prompted nurses to reprogram or cancel continuous infusions an average of 400 times per month, potentially averting i.v. medication ADEs. A smart-pump CQI program is an effective tool for enhancing the safety of i.v. medication administration. The ongoing refinement of the drug library through the development and implementation of key interventions promotes the growth and sustainability of the smart-pump initiative systemwide.

  2. Development, in vitro and in vivo evaluation of novel injectable smart gels of azithromycin for chronic periodontitis.

    PubMed

    Venkatesh, M P; Kumar, T M Pramod; Avinash, B S; Kumar, G Sheela

    2013-04-01

    Periodontitis is an inflammatory condition affecting teeth resulting in progressive destruction of periodontal ligaments, resorption of alveolar bone and loss of teeth. Treatment of periodontitis includes surgical and non surgical management. Systemic antibiotics are also used for the treatment of periodontitis. The aim of this research was to formulate smart gel system of azithromycin (AZT) and to evaluate in vitro and in vivo for non-surgical treatment of chronic periodontitis. Azithromycin dihydrate, used systemically in the treatment of periodontitis, was formulated into smart gels using biodegradable, thermosensitive polymer Pluronic® F-127 (PF-127) and Hydroxy Ethyl Cellulose (HEC) as copolymer. The prepared smart gels were evaluated for sterility, content uniformity, gelation temperature and time, syringeability, rheological behavior, in vitro diffusion and in vivo efficacy in human patients. The prepared smart gels were clear and transparent, sterile, thermoresponsive and injectable. Viscosity of gels increased with increase in concentration of polymer/co-polymer and also with temperature. They gelled in short response time below the body temperature. In vitro release studies showed controlled drug release which was influenced significantly by the properties and concentration of PF-127 and HEC. In vivo efficacy studies showed a significant improvement (p <0.001) in clinical parameters such as gingival index, probing pocket depth, clinical attachment level, bleeding index and plaque index. The developed azithromycin smart gel system is a novel approach for the treatment of chronic periodontitis since it reduces the dose and side effects, bypasses the usual surgical procedures and improves patient compliance.

  3. Integration of Smart Boards in EFL Classrooms

    ERIC Educational Resources Information Center

    Jelyani, Saghar Javidi; Janfaza, Abusaied; Soori, Afshin

    2014-01-01

    The current study described the uses of smart boards in English as foreign language (EFL) classrooms. This study also investigated the role of smart boards in promoting student engagement, the benefits of smart boards for teachers, using smart boards for improving motivation, and smart boards in the service of linguistic and cultural elements. The…

  4. With Geospatial in Path of Smart City

    NASA Astrophysics Data System (ADS)

    Homainejad, A. S.

    2015-04-01

    With growth of urbanisation, there is a requirement for using the leverage of smart city in city management. The core of smart city is Information and Communication Technologies (ICT), and one of its elements is smart transport which includes sustainable transport and Intelligent Transport Systems (ITS). Cities and especially megacities are facing urgent transport challenge in traffic management. Geospatial can provide reliable tools for monitoring and coordinating traffic. In this paper a method for monitoring and managing the ongoing traffic in roads using aerial images and CCTV will be addressed. In this method, the road network was initially extracted and geo-referenced and captured in a 3D model. The aim is to detect and geo-referenced any vehicles on the road from images in order to assess the density and the volume of vehicles on the roads. If a traffic jam was recognised from the images, an alternative route would be suggested for easing the traffic jam. In a separate test, a road network was replicated in the computer and a simulated traffic was implemented in order to assess the traffic management during a pick time using this method.

  5. Ubiquitous wireless ECG recording: a powerful tool physicians should embrace.

    PubMed

    Saxon, Leslie A

    2013-04-01

    The use of smart phones has increased dramatically and there are nearly a billion users on 3G and 4G networks worldwide. Nearly 60% of the U.S. population uses smart phones to access the internet, and smart phone sales now surpass those of desktop and laptop computers. The speed of wireless communication technology on 3G and 4G networks and the widespread adoption and use of iOS equipped smart phones (Apple Inc., Cupertino, CA, USA) provide infrastructure for the transmission of wireless biomedical data, including ECG data. These technologies provide an unprecedented opportunity for physicians to continually access data that can be used to detect issues before symptoms occur or to have definitive data when symptoms are present. The technology also greatly empowers and enables the possibility for unprecedented patient participation in their own medical education and health status as well as that of their social network. As patient advocates, physicians and particularly cardiac electrophysiologists should embrace the future and promise of wireless ECG recording, a technology solution that can truly scale across the global population. © 2013 Wiley Periodicals, Inc.

  6. Perceived importance of five different health issues for gay and bisexual men: implications for new directions in health education and prevention.

    PubMed

    Grov, Christian; Ventuneac, Ana; Rendina, H Jonathon; Jimenez, Ruben H; Parsons, Jeffrey T

    2013-07-01

    This study assessed the perceived importance of five health issues for gay and bisexual men (N = 660) using time-space sampling in gay bars/clubs and bathhouses in New York City: "HIV & STDs," "Drugs & Alcohol," "Body Image," "Mental Health," and "Smoking." This study compared ratings based on demographic differences, recent substance use, recent sexual risk behavior, and whether or not participants owned a smart device (e.g., "smart" phone, iPad, iPod touch). Contrary to research indicating that gay and bisexual men may be experiencing HIV prevention fatigue, this study identified that HIV and STIs were perceived as most important. Drugs and alcohol and mental health were also rated high, suggesting that providers may be well served to include mental health and drugs and alcohol as part of their comprehensive approach to HIV prevention. A majority of participants (72%) owned a smart device. Smart device owners rated health issues similarly to those who did not, suggesting that such devices may be a useful platform to reach gay and bisexual men for health education and prevention.

  7. Opportunistic Mobility Support for Resource Constrained Sensor Devices in Smart Cities

    PubMed Central

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-01-01

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment. PMID:25738767

  8. Research on water management system based on Android

    NASA Astrophysics Data System (ADS)

    Li, Dongjiang; Hu, Songlin

    2018-04-01

    With the rapid development of Smart city, Smart water is an important part of Smart city, which is paid more and more attention. It obtains and deals with urban water information through information technology. It can effectively manage urban water supply, The sale of water and other processes. At the same time, due to the popularity of Smartphones, Smartphone applications have covered every aspect of life and become an indispensable part of people's daily life. Through the Smartphone applications, the user can achieve online mobile water purchase, query the water situation, water quality and other basic situation, greatly facilitate the use of the user, for wisdom water construction is of great significance. In this paper, the water management system based on Android is designed and implemented according to the user's needs. It includes intelligent water meter terminal, monitoring center server, Smartphone application and wireless communication network. The user can use the Smartphone at any time and at any place to view the user's water information in real time providing great convenience for users. So its application prospect is very broad as an important part of smart city.

  9. Applicability of the SMART Model of Transition Readiness for Sickle-Cell Disease

    PubMed Central

    Valenzuela, Jessica M.; Crosby, Lori E.; Diaz Pow Sang, Claudia

    2016-01-01

    Objectives This study aimed to examine the applicability of the Social-ecological Model of Adolescent and Young Adult Readiness to Transition (SMART) model for adolescents and young adults (AYA) with sickle-cell disease (SCD). Methods 14 AYA with SCD (14–24 years old) and 10 clinical experts (6–20 years of experience) completed semi-structured interviews. AYA completed brief questionnaires. Interviews were coded for themes, which were reviewed to determine their fit within the SMART model. Results Overall, most themes were consistent with the model (e.g., sociodemographics/culture, neurocognition/IQ, etc.). Factors related to race/culture, pain management, health-care navigation skills, societal stigma, and lack of awareness about SCD were salient for AYA with SCD. Conclusions Findings suggest the SMART model may be appropriate in SCD with the consideration of disease-related stigma. This study is a step toward developing a disease-specific model of transition readiness for SCD. Future directions include the development of a measure of transition readiness for this population. PMID:26717957

  10. Smart wing wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; Appa, Kari; Kudva, Jayanth N.; West, Mark N.

    1997-05-01

    The use of smart materials technologies can provide unique capabilities in improving aircraft aerodynamic performance. Northrop Grumman built and tested a 16% scale semi-span wind tunnel model of the F/A-18 E/F for the on-going DARPA/WL Smart Materials and Structures-Smart Wing Program. Aerodynamic performance gains to be validated included increase in the lift to drag ratio, increased pitching moment (Cm), increased rolling moment (Cl) and improved pressure distribution. These performance gains were obtained using hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist via a SMA torque tube and are compared to a conventional wind tunnel model with hinged control surfaces. This paper presents an overview of the results from the first wind tunnel test performed at the NASA Langley's 16 ft Transonic Dynamic Tunnel. Among the benefits demonstrated are 8 - 12% increase in rolling moment due to wing twist, a 10 - 15% increase in rolling moment due to contoured aileron, and approximately 8% increase in lift due to contoured flap, and improved pressure distribution due to trailing edge control surface contouring.

  11. DARPA/ARFL/NASA Smart Wing second wind tunnel test results

    NASA Astrophysics Data System (ADS)

    Scherer, Lewis B.; Martin, Christopher A.; West, Mark N.; Florance, Jennifer P.; Wieseman, Carol D.; Burner, Alpheus W.; Fleming, Gary A.

    1999-07-01

    To quantify the benefits of smart materials and structures adaptive wing technology. Northrop Grumman Corp. built and tested two 16 percent scale wind tunnel models of a fighter/attach aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment, increased rolling moment and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy wires and spanwise wing twist effected by SMA torque tube mechanism, compared to convention hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center's 16 ft Transonic Dynamic Tunnel in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12 percent increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10 percent increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  12. Ubiquitous learning model using interactive internet messenger group (IIMG) to improve engagement and behavior for smart campus

    NASA Astrophysics Data System (ADS)

    Umam, K.; Mardi, S. N. S.; Hariadi, M.

    2017-01-01

    The recent popularity of internet messenger based smartphone technologies has motivated some university lecturers to use them for educational activities. These technologies have enormous potential to enhance the teaching and ubiquitous learning experience for smart campus development. However, the design ubiquitous learning model using interactive internet messenger group (IIMG) and empirical evidence that would favor a broad application of mobile and ubiquitous learning in smart campus settings to improve engagement and behavior is still limited. In addition, the expectation that mobile learning could improve engagement and behavior on smart campus cannot be confirmed because the majority of the reviewed studies followed instructions paradigms. This article aims to present ubiquitous learning model design and showing learners’ experiences in improved engagement and behavior using IIMG for learner-learner and learner-lecturer interactions. The method applied in this paper includes design process and quantitative analysis techniques, with the purpose of identifying scenarios of ubiquitous learning and realize the impressions of learners and lecturers about engagement and behavior aspect, and its contribution to learning.

  13. Opportunistic mobility support for resource constrained sensor devices in smart cities.

    PubMed

    Granlund, Daniel; Holmlund, Patrik; Åhlund, Christer

    2015-03-02

    A multitude of wireless sensor devices and technologies are being developed and deployed in cities all over the world. Sensor applications in city environments may include highly mobile installations that span large areas which necessitates sensor mobility support. This paper presents and validates two mechanisms for supporting sensor mobility between different administrative domains. Firstly, EAP-Swift, an Extensible Authentication Protocol (EAP)-based sensor authentication protocol is proposed that enables light-weight sensor authentication and key generation. Secondly, a mechanism for handoffs between wireless sensor gateways is proposed. We validate both mechanisms in a real-life study that was conducted in a smart city environment with several fixed sensors and moving gateways. We conduct similar experiments in an industry-based anechoic Long Term Evolution (LTE) chamber with an ideal radio environment. Further, we validate our results collected from the smart city environment against the results produced under ideal conditions to establish best and real-life case scenarios. Our results clearly validate that our proposed mechanisms can facilitate efficient sensor authentication and handoffs while sensors are roaming in a smart city environment.

  14. System and method for motor speed estimation of an electric motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Yan, Ting [Brookfield, WI; Luebke, Charles John [Sussex, WI; Sharma, Santosh Kumar [Viman Nagar, IN

    2012-06-19

    A system and method for a motor management system includes a computer readable storage medium and a processing unit. The processing unit configured to determine a voltage value of a voltage input to an alternating current (AC) motor, determine a frequency value of at least one of a voltage input and a current input to the AC motor, determine a load value from the AC motor, and access a set of motor nameplate data, where the set of motor nameplate data includes a rated power, a rated speed, a rated frequency, and a rated voltage of the AC motor. The processing unit is also configured to estimate a motor speed based on the voltage value, the frequency value, the load value, and the set of nameplate data and also store the motor speed on the computer readable storage medium.

  15. 76 FR 21035 - General Motors Vehicle Manufacturing, Formerly Known as General Motors Corporation, Shreveport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Manufacturing, Formerly Known as General Motors Corporation, Shreveport Assembly Plant, Including On-Site Leased... General Motors Corporation, Shreveport Assembly Plant, including on-site leased workers from Aerotek and..., Shreveport Assembly Plant. The Department has determined that these workers were sufficiently under the...

  16. Home exercise programmes supported by video and automated reminders compared with standard paper-based home exercise programmes in patients with stroke: a randomized controlled trial.

    PubMed

    Emmerson, Kellie B; Harding, Katherine E; Taylor, Nicholas F

    2017-08-01

    To determine whether patients with stroke receiving rehabilitation for upper limb deficits using smart technology (video and reminder functions) demonstrate greater adherence to prescribed home exercise programmes and better functional outcomes when compared with traditional paper-based exercise prescription. Randomized controlled trial comparing upper limb home exercise programmes supported by video and automated reminders on smart technology, with standard paper-based home exercise programmes. A community rehabilitation programme within a large metropolitan health service. Patients with stroke with upper limb deficits, referred for outpatient rehabilitation. Participants were randomly assigned to the control (paper-based home exercise programme) or intervention group (home exercise programme filmed on an electronic tablet, with an automated reminder). Both groups completed their prescribed home exercise programme for four weeks. The primary outcome was adherence using a self-reported log book. Secondary outcomes were change in upper limb function and patient satisfaction. A total of 62 participants were allocated to the intervention ( n = 30) and control groups ( n = 32). There were no differences between the groups for measures of adherence (mean difference 2%, 95% CI -12 to 17) or change in the Wolf Motor Function Test log transformed time (mean difference 0.02 seconds, 95% CI -0.1 to 0.1). There were no between-group differences in how participants found instructions ( p = 0.452), whether they remembered to do their exercises ( p = 0.485), or whether they enjoyed doing their exercises ( p = 0.864). The use of smart technology was not superior to standard paper-based home exercise programmes for patients recovering from stroke. This trial design was registered prospectively with the Australian and New Zealand Clinical Trials Register, ID: ACTRN 12613000786796. http://www.anzctr.org.au/trialSearch.aspx.

  17. Novel Wiring Technologies for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  18. [A Smart Low-Power-Consumption ECG Monitor Based on MSP430F5529 and CC2540].

    PubMed

    Gong, Yuan; Cao, Jin; Luo, Zehui; Zhou, Guohui

    2015-07-01

    A design of ECG monitor was presented in this paper. It is based on the latest MCU and BLE4.0 technologies and can interact with multi-platform smart devices with extra low power consumption. Besides, a clinical expansion part can realize functions including displaying the real-time ECG and heart rate curve, reading abnormal ECG signals stored in the monitor, and setting alarm threshold. These functions are suitable for follow-up use.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake; Chakraborty, Sudipta; Lauss, Georg

    This paper presents a concise description of state-of-the-art real-time simulation-based testing methods and demonstrates how they can be used independently and/or in combination as an integrated development and validation approach for smart grid DERs and systems. A three-part case study demonstrating the application of this integrated approach at the different stages of development and validation of a system-integrated smart photovoltaic (PV) inverter is also presented. Laboratory testing results and perspectives from two international research laboratories are included in the case study.

  20. 29 CFR 4.123 - Administrative limitations, variances, tolerances, and exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... servicing of cards (including credit cards, debit cards, purchase cards, smart cards, and similar card... military personnel in buying and selling homes (which shall not include actual moving or storage of...

  1. Telematics and smart cards in integrated health information system.

    PubMed

    Sicurello, F; Nicolosi, A

    1997-01-01

    Telematics and information technology are the base on which it will be possible to build an integrated health information system to support population and improve their quality of life. This system should be based on record linkage of all data based on the interactions of the patients with the health structures, such as general practitioners, specialists, health institutes and hospitals, pharmacies, etc. The record linkage can provide the connection and integration of various records, thanks to the use of telematic technology (either urban or geographical local networks, such as the Internet) and electronic data cards. Particular emphasis should be placed on the introduction of smart cards, such as portable health cards, which will contain a standardized data set and will be sufficient to access different databases found in various health services. The inter-operability of the social-health records (including multimedia types) and the smart cards (which are one of the most important prerequisites for the homogenization and wide diffusion of these cards at an European level) should be strongly taken into consideration. In this framework a project is going to be developed aiming towards the integration of various data bases distributed territorially, from the reading of the software and the updating of the smart cards to the complete management of the patients' evaluation records, to the quality of the services offered and to the health planning. The applications developed will support epidemiological investigation software and data analysis. The inter-connection of all the databases of the various structures involved will take place through a coordination center, the most important system of which we will call "record linkage" or "integrated database". Smart cards will be distributed to a sample group of possible users and the necessary smart card management tools will be installed in all the structures involved. All the final users (the patients) in the whole network of services involved will be monitored for the duration of the project. The system users will also include general practitioners, social workers, physicians, health operators, pharmacists, laboratory workers and administrative personnel of the municipality and of the health structures concerned.

  2. Smartloss: A Personalized Mobile Health Intervention for Weight Management and Health Promotion

    PubMed Central

    Gilmore, L. Anne; Apolzan, John W; Myers, Candice A; Thomas, Diana M

    2016-01-01

    Background Synonymous with increased use of mobile phones has been the development of mobile health (mHealth) technology for improving health, including weight management. Behavior change theory (eg, the theory of planned behavior) can be effectively encapsulated into mobile phone-based health improvement programs, which is fostered by the ability of mobile phones and related devices to collect and transmit objective data in near real time and for health care or research professionals and clients to communicate easily. Objective To describe SmartLoss, a semiautomated mHealth platform for weight loss. Methods We developed and validated a dynamic energy balance model that determines the amount of weight an individual will lose over time if they are adherent to an energy intake prescription. This model was incorporated into computer code that enables adherence to a prescribed caloric prescription determined from the change in body weight of the individual. Data from the individual are then used to guide personalized recommendations regarding weight loss and behavior change via a semiautomated mHealth platform called SmartLoss, which consists of 2 elements: (1) a clinician dashboard and (2) a mobile phone app. SmartLoss includes and interfaces with a network-connected bathroom scale and a Bluetooth-connected accelerometer, which enables automated collection of client information (eg, body weight change and physical activity patterns), as well as the systematic delivery of preplanned health materials and automated feedback that is based on client data and is designed to foster prolonged adherence with body weight, diet, and exercise goals. The clinician dashboard allows for efficient remote monitoring of all clients simultaneously, which may further increase adherence, personalization of treatment, treatment fidelity, and efficacy. Results Evidence of the efficacy of the SmartLoss approach has been reported previously. The present report provides a thorough description of the SmartLoss Virtual Weight Management Suite, a professionally programmed platform that facilitates treatment fidelity and the ability to customize interventions and disseminate them widely. Conclusions SmartLoss functions as a virtual weight management clinic that relies upon empirical weight loss research and behavioral theory to promote behavior change and weight loss. PMID:26983937

  3. Feasibility, Process, and Outcomes of Cardiovascular Clinical Trial Data Sharing: A Reproduction Analysis of the SMART-AF Trial.

    PubMed

    Gay, Hawkins C; Baldridge, Abigail S; Huffman, Mark D

    2017-12-01

    Data sharing is as an expanding initiative for enhancing trust in the clinical research enterprise. To evaluate the feasibility, process, and outcomes of a reproduction analysis of the THERMOCOOL SMARTTOUCH Catheter for the Treatment of Symptomatic Paroxysmal Atrial Fibrillation (SMART-AF) trial using shared clinical trial data. A reproduction analysis of the SMART-AF trial was performed using the data sets, data dictionary, case report file, and statistical analysis plan from the original trial accessed through the Yale Open Data Access Project using the SAS Clinical Trials Data Transparency platform. SMART-AF was a multicenter, single-arm trial evaluating the effectiveness and safety of an irrigated, contact force-sensing catheter for ablation of drug refractory, symptomatic paroxysmal atrial fibrillation in 172 participants recruited from 21 sites between June 2011 and December 2011. Analysis of the data was conducted between December 2016 and April 2017. Effectiveness outcomes included freedom from atrial arrhythmias after ablation and proportion of participants without any arrhythmia recurrence over the 12 months of follow-up after a 3-month blanking period. Safety outcomes included major adverse device- or procedure-related events. The SMART AF trial participants' mean age was 58.7 (10.8) years, and 72% were men. The time from initial proposal submission to final analysis was 11 months. Freedom from atrial arrhythmias at 12 months postprocedure was similar compared with the primary study report (74.0%; 95% CI, 66.0-82.0 vs 76.4%; 95% CI, 68.7-84.1). The reproduction analysis success rate was higher than the primary study report (65.8%; 95% CI 56.5-74.2 vs 75.6%; 95% CI, 67.2-82.5). Adverse events were minimal and similar between the 2 analyses, but contact force range or regression models could not be reproduced. The feasibility of a reproduction analysis of the SMART-AF trial was demonstrated through an academic data-sharing platform. Data sharing can be facilitated through incentivizing collaboration, sharing statistical code, and creating more decentralized data sharing platforms with fewer restrictions to data access.

  4. Protocol for a systematic review of evaluation research for adults who have participated in the 'SMART recovery' mutual support programme.

    PubMed

    Beck, Alison K; Baker, Amanda; Kelly, Peter J; Deane, Frank P; Shakeshaft, Anthony; Hunt, David; Forbes, Erin; Kelly, John F

    2016-05-23

    Self-Management and Recovery Training (SMART Recovery) offers an alternative to predominant 12-step approaches to mutual aid (eg, alcoholics anonymous). Although the principles (eg, self-efficacy) and therapeutic approaches (eg, motivational interviewing and cognitive behavioural therapy) of SMART Recovery are evidence based, further clarity regarding the direct evidence of its effectiveness as a mutual aid package is needed. Relative to methodologically rigorous reviews supporting the efficacy of 12-step approaches, to date, reviews of SMART Recovery have been descriptive. We aim to address this gap by providing a comprehensive overview of the evidence for SMART Recovery in adults with problematic alcohol, substance and/or behavioural addiction, including a commentary on outcomes assessed, potential mediators, feasibility (including economic outcomes) and a critical evaluation of the methods used. Methods are informed by the Cochrane Guidelines for Systematic Reviews and the Preferred Reporting Items for Systematic Reviews and Meta-Analysis statement. 6 electronic peer-reviewed and 4 grey literature databases have been identified. Preliminary searches have been conducted for SMART Recovery literature (liberal inclusion criteria, not restricted to randomised controlled trials (RCTs), qualitative-only designs excluded). Eligible 'evaluation' articles will be assessed against standardised criteria and checked by an independent assessor. The searches will be re-run just before final analyses and further studies retrieved for inclusion. A narrative synthesis of the findings will be reported, structured around intervention type and content, population characteristics, and outcomes. Where possible, 'summary of findings' tables will be generated for each comparison. When data are available, we will calculate a risk ratio and its 95% CI (dichotomous outcomes) and/or effect size according to Cohen's formula (continuous outcomes) for the primary outcome of each trial. No ethical issues are foreseen. Findings will be disseminated widely to clinicians and researchers via journal publication and conference presentation(s). CRD42015025574. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Smartloss: A Personalized Mobile Health Intervention for Weight Management and Health Promotion.

    PubMed

    Martin, Corby K; Gilmore, L Anne; Apolzan, John W; Myers, Candice A; Thomas, Diana M; Redman, Leanne M

    2016-03-16

    Synonymous with increased use of mobile phones has been the development of mobile health (mHealth) technology for improving health, including weight management. Behavior change theory (eg, the theory of planned behavior) can be effectively encapsulated into mobile phone-based health improvement programs, which is fostered by the ability of mobile phones and related devices to collect and transmit objective data in near real time and for health care or research professionals and clients to communicate easily. To describe SmartLoss, a semiautomated mHealth platform for weight loss. We developed and validated a dynamic energy balance model that determines the amount of weight an individual will lose over time if they are adherent to an energy intake prescription. This model was incorporated into computer code that enables adherence to a prescribed caloric prescription determined from the change in body weight of the individual. Data from the individual are then used to guide personalized recommendations regarding weight loss and behavior change via a semiautomated mHealth platform called SmartLoss, which consists of 2 elements: (1) a clinician dashboard and (2) a mobile phone app. SmartLoss includes and interfaces with a network-connected bathroom scale and a Bluetooth-connected accelerometer, which enables automated collection of client information (eg, body weight change and physical activity patterns), as well as the systematic delivery of preplanned health materials and automated feedback that is based on client data and is designed to foster prolonged adherence with body weight, diet, and exercise goals. The clinician dashboard allows for efficient remote monitoring of all clients simultaneously, which may further increase adherence, personalization of treatment, treatment fidelity, and efficacy. Evidence of the efficacy of the SmartLoss approach has been reported previously. The present report provides a thorough description of the SmartLoss Virtual Weight Management Suite, a professionally programmed platform that facilitates treatment fidelity and the ability to customize interventions and disseminate them widely. SmartLoss functions as a virtual weight management clinic that relies upon empirical weight loss research and behavioral theory to promote behavior change and weight loss.

  6. Overview of demonstrator program of Japanese Smart Materials and Structure System project

    NASA Astrophysics Data System (ADS)

    Tajima, Naoyuki; Sakurai, Tateo; Sasajima, Mikio; Takeda, Nobuo; Kishi, Teruo

    2003-08-01

    The Japanese Smart Material and Structure System Project started in 1998 as five years' program that funded by METI (Ministry of Economy, Trade and Industry) and supported by NEDO (New Energy and Industrial Technology Development Organization). Total budget of five years was finally about 3.8 billion Japanese yen. This project has been conducted as the Academic Institutions Centered Program, namely, one of collaborated research and development among seven universities (include one foreign university), seventeen Industries (include two foreign companies), and three national laboratories. At first, this project consisted of four research groups that were structural health monitoring, smart manufacturing, active/adaptive structures, and actuator material/devices. Two years later, we decided that two demonstrator programs should be added in order to integrate the developed sensor and actuator element into the smart structure system and verify the research and development results of above four research groups. The application target of these demonstrators was focused to the airplane, and two demonstrators that these shapes simulate to the fuselage of small commercial airplane (for example, Boeing B737) had been established. Both demonstrators are cylindrical structures with 1.5 m in diameter and 3 m in length that the first demonstrator has CFRP skin-stringer and the second one has CFRP skin. The first demonstrator integrates the following six innovative techniques: (1) impact monitoring using embedded small diameter optical fiber sensors newly developed in this program, (2) impact monitoring using the integrated acoustic emission (AE) systems, (3) whole-field strain mapping using the BOTDR/FBG integrated system, (4) damage suppression using embedded shape memory alloy (SMA) films, (5) maximum and cyclic strain sensing using smart composite patches, and (6) smart manufacturing using the integrated sensing system. The second one is for demonstrating the suppression of vibration and acoustic noise generated in the composite cylindrical structure. In this program, High-performance PZT actuators/sensors developed in this program are also installed. The whole tests and evaluations have now been finished. This paper presents the outline of demonstrator programs, followed by six presentations that show the detail verification results of industrial demonstration themes.

  7. SmartWay Mark Signature Page: Tractors & Trailers

    EPA Pesticide Factsheets

    This SmartWay agreement is for companies and organizations who wish to comply with the SmartWay Graphic Standards and Usage Guide guidelines and requirements for using the SmartWay logos on SmartWay designated Tractors and Trailers.

  8. Soft Mobility as a Smart Condition in a Mountain City

    NASA Astrophysics Data System (ADS)

    Virtudes, Ana; Azevedo, Henrique; Abbara, Arwa; Sá, João

    2017-10-01

    Nowadays soft mobility is a crucial issue towards a most sustainable urban environment. Not only because it promotes a less polluted atmosphere among the always dense and busy urban fabric, but also because it avoids several traffic problems. The use of bicycles, or mechanic mechanisms to support the pedestrian mobility is an emerging requirement of cities’ quality. In this sense, this article aims to discuss the soft mobility as a requirement of smart cities having as a case study one mountain urban area. It refers to the urban area of Covilhã on the highest mountain of Portugal with nearly two thousand meters high. During the last decades, this city’s transformation process has driven to an urban sprawl to the suburbs, increasing the efforts in terms of transportation required by the commuters. In fact, the number of inhabitants living in the city centre is decreasing in favour of the peripheral neighbourhoods. At the same time a set of several mechanic mechanisms such as public lifts, has been built in order to promote a soft pedestrian mobility. However, in many cases, because of the lack of connection and continuity of pedestrian paths in between these mechanisms, they are not allowing a pedestrian mobility network at the city scale. Thus, this paper aims to present a set of good practices in terms of pedestrian mobility network at the city scale, in order to promote a smarter urban environment. The principal results are that soft mobility is a key issue in order to turn cities smarter, among several other factors such as smart economy, smart people, smart governance or smart living. The major conclusions show that the concerns with mobility are key tools to achieve the smart city sustainability, providing and efficient and flexible traveling across the urban fabric, boosting the use of non-polluting ways of mobility. At the same time, there is the conclusion that the underlying areas of development for a smart city, despite its cultural or territorial environments, include several aspects such as reducing the transportation problems as congestion, traffic jams or painful accidents.

  9. SMART-1 Technology and Science Experiments in Preparation of Future Missions and ESA Cornerstones

    NASA Astrophysics Data System (ADS)

    Marini, A. E.; Racca, G. D.; Foing, B. H.; SMART-1 Project

    1999-12-01

    SMART-1 is the first ESA Small Mission for Advanced Research in Technology, aimed at the demonstration of enabling technologies for future scientific missions. SMART-1's prime technology objective is the demonstration of the solar primary electric propulsion, a key for future interplanetary missions. SMART-1 will use a Stationary Plasma Thruster engine, cruising 15 months to capture a Moon polar orbit. A gallery of images of the spacecraft is available at the web site: http://www.estec.esa.nl/spdwww/smart1/html/11742.html SMART-1 payload aims at monitoring the electric propulsion and its spacecraft environment and to test novel instrument technologies. The Diagnostic Instruments include SPEDE, a spacecraft potential plasma and charged particles detector, to characterise both spacecraft and planetary environment, together with EPDP, a suite of sensors monitoring secondary thrust-ions, charging and deposition effects. Innovative spacecraft technologies will be tested on SMART-1 : Lithium batteries and KATE, an experimental X/Ka-band deep-space transponder, to support radio-science, to monitor the accelerations of the electric propulsion and to test turbo-code technique, enhancing the return of scientific data. The scientific instruments for imaging and spectrometry are: \\begin{itemize} D-CIXS, a compact X-ray spectrometer based on novel SCD detectors and micro-structure optics, to observe X-ray celectial objects and to perform lunar chemistry measurements. SIR, a miniaturised quasi-monolithic point-spectrometer, operating in the Near-IR (0.9 ÷ 2.4 micron), to survey the lunar crust in previously uncovered optical regions. AMIE, a miniature camera based on 3-D integrated electronics, imaging the Moon, and other bodies and supporting LASER-LINK and RSIS. RSIS and LASER-LINK are investigations performed with the SMART-1 Payload: \\begin{itemize} RSIS: A radio-science Experiment to validate in-orbit determination of the libration of the celestial target, based on high-accuracy tracking in Ka-band and imaging of a surface landmark LASER-LINK: a demonstration of acquisition of a deep-space laser-link from the ESA Optical Ground Station at Tenerife, validating also the novel sub-apertured telescope designed for the mitigation of atmospheric scintillation disturbances.

  10. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data

    PubMed Central

    Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs

    2012-01-01

    Smart homes for the aging population have recently started attracting the attention of the research community. The “health state” of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario. PMID:26007727

  11. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data.

    PubMed

    Nef, Tobias; Urwyler, Prabitha; Büchler, Marcel; Tarnanas, Ioannis; Stucki, Reto; Cazzoli, Dario; Müri, René; Mosimann, Urs

    2015-05-21

    Smart homes for the aging population have recently started attracting the attention of the research community. The "health state" of smart homes is comprised of many different levels; starting with the physical health of citizens, it also includes longer-term health norms and outcomes, as well as the arena of positive behavior changes. One of the problems of interest is to monitor the activities of daily living (ADL) of the elderly, aiming at their protection and well-being. For this purpose, we installed passive infrared (PIR) sensors to detect motion in a specific area inside a smart apartment and used them to collect a set of ADL. In a novel approach, we describe a technology that allows the ground truth collected in one smart home to train activity recognition systems for other smart homes. We asked the users to label all instances of all ADL only once and subsequently applied data mining techniques to cluster in-home sensor firings. Each cluster would therefore represent the instances of the same activity. Once the clusters were associated to their corresponding activities, our system was able to recognize future activities. To improve the activity recognition accuracy, our system preprocessed raw sensor data by identifying overlapping activities. To evaluate the recognition performance from a 200-day dataset, we implemented three different active learning classification algorithms and compared their performance: naive Bayesian (NB), support vector machine (SVM) and random forest (RF). Based on our results, the RF classifier recognized activities with an average specificity of 96.53%, a sensitivity of 68.49%, a precision of 74.41% and an F-measure of 71.33%, outperforming both the NB and SVM classifiers. Further clustering markedly improved the results of the RF classifier. An activity recognition system based on PIR sensors in conjunction with a clustering classification approach was able to detect ADL from datasets collected from different homes. Thus, our PIR-based smart home technology could improve care and provide valuable information to better understand the functioning of our societies, as well as to inform both individual and collective action in a smart city scenario.

  12. Smart home technologies for health and social care support.

    PubMed

    Martin, Suzanne; Kelly, Greg; Kernohan, W George; McCreight, Bernadette; Nugent, Christopher

    2008-10-08

    The integration of smart home technology to support health and social care is acquiring an increasing global significance. Provision is framed within the context of a rapidly changing population profile, which is impacting on the number of people requiring health and social care, workforce availability and the funding of healthcare systems. To explore the effectiveness of smart home technologies as an intervention for people with physical disability, cognitive impairment or learning disability, who are living at home, and to consider the impact on the individual's health status and on the financial resources of health care. We searched the following databases for primary studies: (a) the Cochrane Effective Practice and Organisation of Care (EPOC) Group Register, (b) the Cochrane Central Register of Controlled Trials (CENTRAL), (The Cochrane Library, issue 1, 2007), and (c) bibliographic databases, including MEDLINE (1966 to March 2007), EMBASE (1980 to March 2007) and CINAHL (1982 to March 2007). We also searched the Database of Abstracts of Reviews of Effectiveness (DARE). We searched the electronic databases using a strategy developed by the EPOC Trials Search Co-ordinator. We included randomised controlled trials (RCTs), quasi-experimental studies, controlled before and after studies (CBAs) and interrupted time series analyses (ITS). Participants included adults over the age of 18, living in their home in a community setting. Participants with a physical disability, dementia or a learning disability were included. The included interventions were social alarms, electronic assistive devices, telecare social alert platforms, environmental control systems, automated home environments and 'ubiquitous homes'. Outcome measures included any objective measure that records an impact on a participant's quality of life, healthcare professional workload, economic outcomes, costs to healthcare provider or costs to participant. We included measures of service satisfaction, device satisfaction and healthcare professional attitudes or satisfaction. One review author completed the search strategy with the support of a life and health sciences librarian. Two review authors independently screened titles and abstracts of results. No studies were identified which met the inclusion criteria. This review highlights the current lack of empirical evidence to support or refute the use of smart home technologies within health and social care, which is significant for practitioners and healthcare consumers.

  13. Analytical and experimental study of high phase order induction motors

    NASA Technical Reports Server (NTRS)

    Klingshirn, Eugene A.

    1989-01-01

    Induction motors having more than three phases were investigated to determine their suitability for electric vehicle applications. The objective was to have a motor with a current rating lower than that of a three-phase motor. The name chosen for these is high phase order (HPO) motors. Motors having six phases and nine phases were given the most attention. It was found that HPO motors are quite suitable for electric vehicles, and for many other applications as well. They have characteristics which are as good as or better than three-phase motors for practically all applications where polyphase induction motors are appropriate. Some of the analysis methods are presented, and several of the equivalent circuits which facilitate the determination of harmonic currents and losses, or currents with unbalanced sources, are included. The sometimes large stator currents due to harmonics in the source voltages are pointed out. Filters which can limit these currents were developed. An analysis and description of these filters is included. Experimental results which confirm and illustrate much of the theory are also included. These include locked rotor test results and full-load performance with an open phase. Also shown are oscillograms which display the reduction in harmonic currents when a filter is used with the experimental motor supplied by a non-sinusoidal source.

  14. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Jason C.; Parker, Graham B.

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation.more » In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.« less

  15. Complete modeling of rotary ultrasonic motors actuated by traveling flexural waves

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph

    2000-06-01

    Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors are being adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and analytical tools for the design of efficient motors are being developed. A hybrid analytical model was developed to address a complete ultrasonic motor as a system. Included in this model is the influence of the rotor dynamics, which was determined experimentally to be important to the motor performance. The analysis employs a 3D finite element model to express the dynamic characteristics of the stator with piezoelectric elements and the rotor. The details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. are included to support practical USM designs. A brush model is used for the interface layer and Coulomb's law for the friction between the stator and the rotor. The theoretical predictions were corroborated experimentally for the motor. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

  16. 75 FR 67770 - General Motors Company, Formerly Known as General Motors Corporation, Orion Assembly Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ..., Formerly Known as General Motors Corporation, Orion Assembly Plant, Including On-Site Leased Workers From... of General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant, Lake... General Motors Company, formerly known as General Motors Corporation, Orion Assembly Plant. The Department...

  17. 76 FR 10396 - New United Motor Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Manufacturing, Inc., Formerly a Joint Venture of General Motors Corporation and Toyota Motor Corporation, Including On- Site Leased Workers From Corestaff, ABM Janitorial, Toyota Engineering and Manufacturing North... Motor Manufacturing, Inc., formerly a joint venture of General Motors Corporation and Toyota Motor...

  18. 76 FR 179 - General Motors Company, Formerly Known as General Motors Corporation, Willow Run Transmission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ..., Formerly Known as General Motors Corporation, Willow Run Transmission Plant, Including On-Site Leased... to workers of General Motors Company, formerly known as General Motors Corporation, Willow Run... location of General Motors Company, formerly known as General Motors Corporation, Willow Run Transmission...

  19. A Smart Home Test Bed for Undergraduate Education to Bridge the Curriculum Gap from Traditional Power Systems to Modernized Smart Grids

    ERIC Educational Resources Information Center

    Hu, Qinran; Li, Fangxing; Chen, Chien-fei

    2015-01-01

    There is a worldwide trend to modernize old power grid infrastructures to form future smart grids, which will achieve efficient, flexible energy consumption by using the latest technologies in communication, computing, and control. Smart grid initiatives are moving power systems curricula toward smart grids. Although the components of smart grids…

  20. Hand rim wheelchair propulsion training using biomechanical real-time visual feedback based on motor learning theory principles.

    PubMed

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatiotemporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory-based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on.

  1. Hand Rim Wheelchair Propulsion Training Using Biomechanical Real-Time Visual Feedback Based on Motor Learning Theory Principles

    PubMed Central

    Rice, Ian; Gagnon, Dany; Gallagher, Jere; Boninger, Michael

    2010-01-01

    Background/Objective: As considerable progress has been made in laboratory-based assessment of manual wheelchair propulsion biomechanics, the necessity to translate this knowledge into new clinical tools and treatment programs becomes imperative. The objective of this study was to describe the development of a manual wheelchair propulsion training program aimed to promote the development of an efficient propulsion technique among long-term manual wheelchair users. Methods: Motor learning theory principles were applied to the design of biomechanical feedback-based learning software, which allows for random discontinuous real-time visual presentation of key spatio-temporal and kinetic parameters. This software was used to train a long-term wheelchair user on a dynamometer during 3 low-intensity wheelchair propulsion training sessions over a 3-week period. Biomechanical measures were recorded with a SmartWheel during over ground propulsion on a 50-m level tile surface at baseline and 3 months after baseline. Results: Training software was refined and administered to a participant who was able to improve his propulsion technique by increasing contact angle while simultaneously reducing stroke cadence, mean resultant force, peak and mean moment out of plane, and peak rate of rise of force applied to the pushrim after training. Conclusions: The proposed propulsion training protocol may lead to favorable changes in manual wheelchair propulsion technique. These changes could limit or prevent upper limb injuries among manual wheelchair users. In addition, many of the motor learning theory–based techniques examined in this study could be applied to training individuals in various stages of rehabilitation to optimize propulsion early on. PMID:20397442

  2. Adoption of smart cards in the medical sector: the Canadian experience.

    PubMed

    Auber, B A; Hamel, G

    2001-10-01

    This research evaluates the factors influencing the adoption of smart cards in the medical sector (a smart card has a micro-processor containing information about the patient: identification, emergency data (allergies, blood type, etc.), vaccination, drugs used, and the general medical record). This research was conducted after a pilot study designed to evaluate the use of such smart cards. Two hundred and ninety-nine professionals, along with 7248 clients, used the smart card for a year. The targeted population included mostly elderly people, infants, and pregnant women (the most intensive users of health care services). Following this pilot study, two surveys were conducted, together with numerous interviews, to assess the factors influencing adoption of the technology. A general picture emerged. indicating that although the new card is well-perceived by individuals, tangible benefits must be available to motivate professionals and clients to adopt the technology. Results show that the fundamental dimension that needs to be assessed before massive diffusion is the relative advantage to the professional. The system must provide a direct benefit to its user. The relative advantage of the system for the professional is directly linked to the obligation for the client to use the card. The system is beneficial for the professional only if the information on the card is complete. Technical adequacy is a necessary but not sufficient condition for adoption.

  3. Google Home: smart speaker as environmental control unit.

    PubMed

    Noda, Kenichiro

    2017-08-23

    Environmental Control Units (ECU) are devices or a system that allows a person to control appliances in their home or work environment. Such system can be utilized by clients with physical and/or functional disability to enhance their ability to control their environment, to promote independence and improve their quality of life. Over the last several years, there have been an emergence of several inexpensive, commercially-available, voice activated smart speakers into the market such as Google Home and Amazon Echo. These smart speakers are equipped with far field microphone that supports voice recognition, and allows for complete hand-free operation for various purposes, including for playing music, for information retrieval, and most importantly, for environmental control. Clients with disability could utilize these features to turn the unit into a simple ECU that is completely voice activated and wirelessly connected to appliances. Smart speakers, with their ease of setup, low cost and versatility, may be a more affordable and accessible alternative to the traditional ECU. Implications for Rehabilitation Environmental Control Units (ECU) enable independence for physically and functionally disabled clients, and reduce burden and frequency of demands on carers. Traditional ECU can be costly and may require clients to learn specialized skills to use. Smart speakers have the potential to be used as a new-age ECU by overcoming these barriers, and can be used by a wider range of clients.

  4. A Smart Power Electronic Multiconverter for the Residential Sector.

    PubMed

    Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva

    2017-05-26

    The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it.

  5. Design of external sensors board based on Bluetooth interface of smart phones for structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Yu, Yan; Zhou, Yaping; Zhao, Xuefeng; Li, Dongsheng; Ou, Jinping

    2016-04-01

    As an important part of new information technology, the Internet of Things(IoT) is based on intelligent perception, recognition technology, ubiquitous computing, ubiquitous network integration, and it is known as the third wave of the development of information industry in the world after the computer and the Internet. And Smart Phones are the general term for a class of mobile phones with a separate operating system and operational memory, in which the third-party service programs including software, games, navigation, et.al, can be installed. Smart Phones, with not only sensors but also actuators, are widely used in the IoT world. As the current hot issues in the engineering area, Structural health monitoring (SHM) is also facing new problems about design ideas in the IoT environment. The development of IoT, wireless sensor network and mobile communication technology, provides a good technical platform for SHM. Based on these facts, this paper introduces a kind of new idea for Structural Health Monitoring using Smart Phones Technique. The system is described in detail, and the external sensor board based on Bluetooth interface is designed, the test based on Smart Phones is finished to validate the implementation and feasibility. The research is preliminary and more tests need to be carried out before it can be of practical use.

  6. A Smart Power Electronic Multiconverter for the Residential Sector

    PubMed Central

    Guerrero-Martinez, Miguel Angel; Milanes-Montero, Maria Isabel; Barrero-Gonzalez, Fermin; Miñambres-Marcos, Victor Manuel; Romero-Cadaval, Enrique; Gonzalez-Romera, Eva

    2017-01-01

    The future of the grid includes distributed generation and smart grid technologies. Demand Side Management (DSM) systems will also be essential to achieve a high level of reliability and robustness in power systems. To do that, expanding the Advanced Metering Infrastructure (AMI) and Energy Management Systems (EMS) are necessary. The trend direction is towards the creation of energy resource hubs, such as the smart community concept. This paper presents a smart multiconverter system for residential/housing sector with a Hybrid Energy Storage System (HESS) consisting of supercapacitor and battery, and with local photovoltaic (PV) energy source integration. The device works as a distributed energy unit located in each house of the community, receiving active power set-points provided by a smart community EMS. This central EMS is responsible for managing the active energy flows between the electricity grid, renewable energy sources, storage equipment and loads existing in the community. The proposed multiconverter is responsible for complying with the reference active power set-points with proper power quality; guaranteeing that the local PV modules operate with a Maximum Power Point Tracking (MPPT) algorithm; and extending the lifetime of the battery thanks to a cooperative operation of the HESS. A simulation model has been developed in order to show the detailed operation of the system. Finally, a prototype of the multiconverter platform has been implemented and some experimental tests have been carried out to validate it. PMID:28587131

  7. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.

    PubMed

    Lynggaard, Per; Skouby, Knud Erik

    2016-11-02

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.

  8. An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy.

    PubMed

    Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Castedo, Luis

    2017-03-21

    The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system's ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year.

  9. An Electricity Price-Aware Open-Source Smart Socket for the Internet of Energy

    PubMed Central

    Blanco-Novoa, Óscar; Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Castedo, Luis

    2017-01-01

    The Internet of Energy (IoE) represents a novel paradigm where electrical power systems work cooperatively with smart devices to increase the visibility of energy consumption and create safer, cleaner and sustainable energy systems. The implementation of IoE services involves the use of multiple components, like embedded systems, power electronics or sensors, which are an essential part of the infrastructure dedicated to the generation and distribution energy and the one required by the final consumer. This article focuses on the latter and presents a smart socket system that collects the information about energy price and makes use of sensors and actuators to optimize home energy consumption according to the user preferences. Specifically, this article provides three main novel contributions. First, what to our knowledge is the first hardware prototype that manages in a practical real-world scenario the price values obtained from a public electricity operator is presented. The second contribution is related to the definition of a novel wireless sensor network communications protocol based on Wi-Fi that allows for creating an easy-to-deploy smart plug system that self-organizes and auto-configures to collect the sensed data, minimizing user intervention. Third, it is provided a thorough description of the design of one of the few open-source smart plug systems, including its communications architecture, the protocols implemented, the main sensing and actuation components and the most relevant pieces of the software. Moreover, with the aim of illustrating the capabilities of the smart plug system, the results of different experiments performed are shown. Such experiments evaluate in real-world scenarios the system’s ease of use, its communications range and its performance when using HTTPS. Finally, the economic savings are estimated for different appliances, concluding that, in the practical situation proposed, the smart plug system allows certain energy-demanding appliances to save almost €70 per year. PMID:28335568

  10. Performance of Integrated Fiber Optic, Piezoelectric, and Shape Memory Alloy Actuators/Sensors in Thermoset Composites

    NASA Technical Reports Server (NTRS)

    Trottier, C. Michael

    1996-01-01

    Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).

  11. Bioresponsive materials

    NASA Astrophysics Data System (ADS)

    Lu, Yue; Aimetti, Alex A.; Langer, Robert; Gu, Zhen

    2017-01-01

    'Smart' bioresponsive materials that are sensitive to biological signals or to pathological abnormalities, and interact with or are actuated by them, are appealing therapeutic platforms for the development of next-generation precision medications. Armed with a better understanding of various biologically responsive mechanisms, researchers have made innovations in the areas of materials chemistry, biomolecular engineering, pharmaceutical science, and micro- and nanofabrication to develop bioresponsive materials for a range of applications, including controlled drug delivery, diagnostics, tissue engineering and biomedical devices. This Review highlights recent advances in the design of smart materials capable of responding to the physiological environment, to biomarkers and to biological particulates. Key design principles, challenges and future directions, including clinical translation, of bioresponsive materials are also discussed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babun, Leonardo; Aksu, Hidayet; Uluagac, A. Selcuk

    The core vision of the smart grid concept is the realization of reliable two-­way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address thesemore » concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-­grid GOOSE messages with IEC-­61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.« less

  13. Financial analysis of cardiovascular wellness program provided to self-insured company from pharmaceutical care provider's perspective.

    PubMed

    Wilson, Justin B; Osterhaus, Matt C; Farris, Karen B; Doucette, William R; Currie, Jay D; Bullock, Tammy; Kumbera, Patty

    2005-01-01

    To perform a retrospective financial analysis on the implementation of a self-insured company's wellness program from the pharmaceutical care provider's perspective and conduct sensitivity analyses to estimate costs versus revenues for pharmacies without resident pharmacists, program implementation for a second employer, the second year of the program, and a range of pharmacist wages. Cost-benefit and sensitivity analyses. Self-insured employer with headquarters in Canton, N.C. 36 employees at facility in Clinton, Iowa. Pharmacist-provided cardiovascular wellness program. Costs and revenues collected from pharmacy records, including pharmacy purchasing records, billing records, and pharmacists' time estimates. All costs and revenues were calculated for the development and first year of the intervention program. Costs included initial and follow-up screening supplies, office supplies, screening/group presentation time, service provision time, documentation/preparation time, travel expenses, claims submission time, and administrative fees. Revenues included initial screening revenues, follow-up screening revenues, group session revenues, and Heart Smart program revenues. For the development and first year of Heart Smart, net benefit to the pharmacy (revenues minus costs) amounted to dollars 2,413. All sensitivity analyses showed a net benefit. For pharmacies without a resident pharmacist, the net benefit was dollars 106; for Heart Smart in a second employer, the net benefit was dollars 6,024; for the second year, the projected net benefit was dollars 6,844; factoring in a lower pharmacist salary, the net benefit was dollars 2,905; and for a higher pharmacist salary, the net benefit was dollars 1,265. For the development and first year of Heart Smart, the revenues of the wellness program in a self-insured company outweighed the costs.

  14. Dynamic Metasurface Aperture as Smart Around-the-Corner Motion Detector.

    PubMed

    Del Hougne, Philipp; F Imani, Mohammadreza; Sleasman, Timothy; Gollub, Jonah N; Fink, Mathias; Lerosey, Geoffroy; Smith, David R

    2018-04-25

    Detecting and analysing motion is a key feature of Smart Homes and the connected sensor vision they embrace. At present, most motion sensors operate in line-of-sight Doppler shift schemes. Here, we propose an alternative approach suitable for indoor environments, which effectively constitute disordered cavities for radio frequency (RF) waves; we exploit the fundamental sensitivity of modes of such cavities to perturbations, caused here by moving objects. We establish experimentally three key features of our proposed system: (i) ability to capture the temporal variations of motion and discern information such as periodicity ("smart"), (ii) non line-of-sight motion detection, and (iii) single-frequency operation. Moreover, we explain theoretically and demonstrate experimentally that the use of dynamic metasurface apertures can substantially enhance the performance of RF motion detection. Potential applications include accurately detecting human presence and monitoring inhabitants' vital signs.

  15. Smart polymers as surface modifiers for bioanalytical devices and biomaterials: theory and practice

    NASA Astrophysics Data System (ADS)

    Ivanov, A. E.; Zubov, V. P.

    2016-06-01

    Smart, or responsive polymers can reversibly change their state of aggregation, thus switching from water-soluble to insoluble state, in response to minor changes in temperature, pH or solvent composition. Grafting of these polymers to solid surfaces imparts the surfaces with controllable wettability and adsorption behaviour. The review summarizes the theoretical models and the results of physical measurements of the conformational transitions in grafted polymer chains and polymer brushes. Primary attention is paid to the grafting density and the length and spatial arrangement of grafted chains, the role of polystyrene, organosilane or alkanethiol sublayers and their effects on adsorption of proteins and adhesion of cells. The key applications of grafted smart polymers such as cell culture and tissue engineering, cell and protein separation, biosensing and targeted drug delivery are surveyed. The bibliography includes 174 references.

  16. Design of Smart Multi-Functional Integrated Aviation Photoelectric Payload

    NASA Astrophysics Data System (ADS)

    Zhang, X.

    2018-04-01

    To coordinate with the small UAV at reconnaissance mission, we've developed a smart multi-functional integrated aviation photoelectric payload. The payload weighs only 1kg, and has a two-axis stabilized platform with visible task payload, infrared task payload, laser pointers and video tracker. The photoelectric payload could complete the reconnaissance tasks above the target area (including visible and infrared). Because of its light weight, small size, full-featured, high integrated, the constraints of the UAV platform carrying the payload will be reduced a lot, which helps the payload suit for more extensive using occasions. So all users of this type of smart multi-functional integrated aviation photoelectric payload will do better works on completion of the ground to better pinpoint targets, artillery calibration, assessment of observe strike damage, customs officials and other tasks.

  17. SMARTE: IMPROVING REVITALIZATION DECISIONS (BERLIN, GERMANY)

    EPA Science Inventory

    The U.S.-German Bilateral Working Group is developing Site-specific Management Approaches and Redevelopment Tools (SMART). In the U.S., the SMART compilation is housed in a web-based, decision support tool called SMARTe. All tools within SMARTe that are developed specifically for...

  18. Study on smart city construction of Jiujiang based on IOT technology

    NASA Astrophysics Data System (ADS)

    Liu, Zeliang; Wang, Ying; Xu, Qin; Yan, Tao

    2017-06-01

    At present, with the technology of the Internet of things (IOT), building smart city is forming a powerful wave of city, which promotes economic and social development of city. This paper expounds the connotation of smart city, explores the social and economic significance of the construction of smart city, analyzes the present situation of smart city construction in Jiujiang, studies the basic principles development altar get and key construction projects, and puts forward relevant of Jiujiang smart city construction, and puts forward relevant proposals about smart construction in Jiujiang, Jiangxi.

  19. Development of a Portable Motor Learning Laboratory (PoMLab)

    PubMed Central

    Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place. PMID:27348223

  20. Development of a Portable Motor Learning Laboratory (PoMLab).

    PubMed

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves obtained in the follow-up experiments. Further, we investigated the influence of vibration function, weight, and screen size on learning curves. Finally, we compared the learning curves obtained in the PoMLab experiments to those obtained in the conventional reaching experiments. The results of the in-class experiments show that PoMLab can be used to conduct motor learning experiments at any time and place.

Top