Sample records for include surface skin

  1. Turbine vane with high temperature capable skins

    DOEpatents

    Morrison, Jay A [Oviedo, FL

    2012-07-10

    A turbine vane assembly includes an airfoil extending between an inner shroud and an outer shroud. The airfoil can include a substructure having an outer peripheral surface. At least a portion of the outer peripheral surface is covered by an external skin. The external skin can be made of a high temperature capable material, such as oxide dispersion strengthened alloys, intermetallic alloys, ceramic matrix composites or refractory alloys. The external skin can be formed, and the airfoil can be subsequently bi-cast around or onto the skin. The skin and the substructure can be attached by a plurality of attachment members extending between the skin and the substructure. The skin can be spaced from the outer peripheral surface of the substructure such that a cavity is formed therebetween. Coolant can be supplied to the cavity. Skins can also be applied to the gas path faces of the inner and outer shrouds.

  2. Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction

    NASA Technical Reports Server (NTRS)

    Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.

    1994-01-01

    The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.

  3. Adapter for mounting a microphone flush with the external surface of the skin of a pressurized aircraft

    NASA Technical Reports Server (NTRS)

    Cohn, R. B. (Inventor)

    1983-01-01

    A mounting device for securing a microphone pick up head flush with respect to the external surfaces of the skin of an aircraft for detecting shock waves passing thereover is described. The mount includes a sleeve mounted internally of the aircraft for capturing and supporting an electronics package having the microphone pick up head attached thereto in a manner such that the head is flush with the external surface of the aircraft skin and a pressure seal is established between the internal and external surfaces of the aircraft skin.

  4. Molecular cartography of the human skin surface in 3D.

    PubMed

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W; Meehan, Michael J; Dorrestein, Kathleen; Gallo, Richard L; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C

    2015-04-28

    The human skin is an organ with a surface area of 1.5-2 m(2) that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health.

  5. Molecular cartography of the human skin surface in 3D

    PubMed Central

    Bouslimani, Amina; Porto, Carla; Rath, Christopher M.; Wang, Mingxun; Guo, Yurong; Gonzalez, Antonio; Berg-Lyon, Donna; Ackermann, Gail; Moeller Christensen, Gitte Julie; Nakatsuji, Teruaki; Zhang, Lingjuan; Borkowski, Andrew W.; Meehan, Michael J.; Dorrestein, Kathleen; Gallo, Richard L.; Bandeira, Nuno; Knight, Rob; Alexandrov, Theodore; Dorrestein, Pieter C.

    2015-01-01

    The human skin is an organ with a surface area of 1.5–2 m2 that provides our interface with the environment. The molecular composition of this organ is derived from host cells, microbiota, and external molecules. The chemical makeup of the skin surface is largely undefined. Here we advance the technologies needed to explore the topographical distribution of skin molecules, using 3D mapping of mass spectrometry data and microbial 16S rRNA amplicon sequences. Our 3D maps reveal that the molecular composition of skin has diverse distributions and that the composition is defined not only by skin cells and microbes but also by our daily routines, including the application of hygiene products. The technological development of these maps lays a foundation for studying the spatial relationships of human skin with hygiene, the microbiota, and environment, with potential for developing predictive models of skin phenotypes tailored to individual health. PMID:25825778

  6. Nanotechnology use with cosmeceuticals.

    PubMed

    Golubovic-Liakopoulos, Nevenka; Simon, Sanford R; Shah, Bhavdeep

    2011-09-01

    The skin is a complex organ and its aging is a complex process. Cutaneous aging is influenced by factors such as sun exposure, genetics, stress and the environment. While skin laxity, rhytides, and dyschromia appear on the surface, these processes originate in deeper layers including the dermis and subcutaneous tissues. Until recently, most topical skin treatments were applied to, and consequently only affected the skin surface. Skin care has evolved to be scientifically based, and as knowledge increases about the physiology of the skin, novel methods of maintaining its health and appearance are developed. New generation skin care products are targeting multiple aging mechanisms by utilizing functional active ingredients in combination with innovative delivery systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Warming and Inhibition of Salinization at the Ocean's Surface by Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Wurl, O.; Bird, K.; Cunliffe, M.; Landing, W. M.; Miller, U.; Mustaffa, N. I. H.; Ribas-Ribas, M.; Witte, C.; Zappa, C. J.

    2018-05-01

    This paper describes high-resolution in situ observations of temperature and, for the first time, of salinity in the uppermost skin layer of the ocean, including the influence of large surface blooms of cyanobacteria on those skin properties. In the presence of the blooms, large anomalies of skin temperature and salinity of 0.95°C and -0.49 practical salinity unit were found, but a substantially cooler (-0.22°C) and saltier skin layer (0.19 practical salinity unit) was found in the absence of surface blooms. The results suggest that biologically controlled warming and inhibition of salinization of the ocean's surface occur. Less saline skin layers form during precipitation, but our observations also show that surface blooms of Trichodesmium sp. inhibit evaporation decreasing the salinity at the ocean's surface. This study has important implications in the assessment of precipitation over the ocean using remotely sensed salinity, but also for a better understanding of heat exchange and the hydrologic cycle on a regional scale.

  8. Sponge and skin excision sampling for recovery of Salmonella and Campylobacter from defeathered broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    Introduction: Salmonella and Campylobacter contamination of broiler carcass skin increases during feather removal. There are several methods for sampling carcasses including sponging or swabbing of skin surface and skin excision. It is unclear whether sponge sampling is adequate to remove bacteri...

  9. Sponge and skin excision sampling for recovery of Salmonella and Campylobacter from defeathered broiler carcasses

    USDA-ARS?s Scientific Manuscript database

    Introduction: Salmonella and Campylobacter contamination of broiler carcass skin increases during feather removal. There are several methods for sampling carcasses including sponging or swabbing of skin surface and skin excision. It is unclear whether sponge sampling is adequate to remove bacteria f...

  10. Evaluation of Skin Temperatures Retrieved from GOES-8

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie, J.; Jedlovec, G. J.; Lapenta, W. M.; Haines, S. L.

    2000-01-01

    Skin temperatures derived from geostationary satellites have the potential of providing the temporal and spatial resolution needed for model assimilation. To adequately assess the potential improvements in numerical model forecasts that can be made by assimilating satellite data, an estimate of the accuracy of the skin temperature product is necessary. A particular skin temperature algorithm, the Physical Split Window Technique, that uses the longwave infrared channels of the GOES Imager has shown promise in recent model assimilation studies to provide land surface temperatures with reasonable accuracy. A comparison of retrieved GOES-8 skin temperatures from this algorithm with in situ measurements is presented. Various retrieval algorithm issues are addressed including surface emissivity

  11. Boils

    MedlinePlus

    ... boil is an infection that affects groups of hair follicles and nearby skin tissue. Related conditions include: Carbunculosis ... found on the skin's surface. Damage to the hair follicle allows the infection to grow deeper into the ...

  12. Tactile perception of skin and skin cream by friction induced vibrations.

    PubMed

    Ding, Shuyang; Bhushan, Bharat

    2016-11-01

    Skin cream smooths, softens, and moistens skin by altering surface roughness and tribological properties of skin. Sliding generates vibrations that activate mechanoreceptors located in skin. The brain interprets tactile information to identify skin feel. Understanding the tactile sensing mechanisms of skin with and without cream treatment is important to numerous applications including cosmetics, textiles, and robotics sensors. In this study, frequency spectra of friction force and friction induced vibration signals were carried out to investigate tactile perception by an artificial finger sliding on skin. The influence of normal load, velocity, and cream treatment time were studied. Coherence between friction force and vibration signals were found. The amplitude of vibration decreased after cream treatment, leading to smoother perception. Increasing normal load or velocity between contacting surfaces generated a smoother perception with cream treatment, but rougher perception without treatment. As cream treatment time increases, skin becomes smoother. The related mechanisms are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Monte Carlo investigation of backscatter factors for skin dose determination in interventional neuroradiology procedures

    NASA Astrophysics Data System (ADS)

    Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro

    2014-03-01

    Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.

  14. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1989-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body; a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid; water, with the surface of the body; and the hull of the marine vehicle.

  15. Jet impinging onto a laser drilled tapered hole: Influence of tapper location on heat transfer and skin friction at hole surface

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2013-02-01

    Jet emerging from a conical nozzle and impinging onto a tapered hole in relation to laser drilling is investigated and the influence taper location on the heat transfer and skin friction at the hole wall surface is examined. The study is extended to include four different gases as working fluid. The Reynolds stress model is incorporated to account for the turbulence effect in the flow field. The hole wall surface temperature is kept at 1500 K to resemble the laser drilled hole. It is found that the location of tapering in the hole influences the heat transfer rates and skin friction at the hole wall surface. The maximum skin friction coefficient increases for taper location of 0.25 H, where H is the thickness of the workpiece, while Nusselt number is higher in the hole for taper location of 0.75 H.

  16. Roughness based perceptual analysis towards digital skin imaging system with haptic feedback.

    PubMed

    Kim, K

    2016-08-01

    To examine psoriasis or atopic eczema, analyzing skin roughness by palpation is essential to precisely diagnose skin diseases. However, optical sensor based skin imaging systems do not allow dermatologists to touch skin images. To solve the problem, a new haptic rendering technology that can accurately display skin roughness must be developed. In addition, the rendering algorithm must be able to filter spatial noises created during 2D to 3D image conversion without losing the original roughness on the skin image. In this study, a perceptual way to design a noise filter that will remove spatial noises and in the meantime recover maximized roughness is introduced by understanding human sensitivity on surface roughness. A visuohaptic rendering system that can provide a user with seeing and touching digital skin surface roughness has been developed including a geometric roughness estimation method from a meshed surface. In following, a psychophysical experiment was designed and conducted with 12 human subjects to measure human perception with the developed visual and haptic interfaces to examine surface roughness. From the psychophysical experiment, it was found that touch is more sensitive at lower surface roughness, and vice versa. Human perception with both senses, vision and touch, becomes less sensitive to surface distortions as roughness increases. When interact with both channels, visual and haptic interfaces, the performance to detect abnormalities on roughness is greatly improved by sensory integration with the developed visuohaptic rendering system. The result can be used as a guideline to design a noise filter that can perceptually remove spatial noises while recover maximized roughness values from a digital skin image obtained by optical sensors. In addition, the result also confirms that the developed visuohaptic rendering system can help dermatologists or skin care professionals examine skin conditions by using vision and touch at the same time. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Stratum corneum hydration and skin surface pH in patients with atopic dermatitis.

    PubMed

    Knor, Tanja; Meholjić-Fetahović, Ajša; Mehmedagić, Aida

    2011-01-01

    Atopic dermatitis (AD) is a chronically relapsing skin disease with genetic predisposition, which occurs most frequently in preschool children. It is considered that dryness and pruritus, which are always present in AD, are in correlation with degradation of the skin barrier function. Measurement of hydration and pH value of the stratum corneum is one of the noninvasive methods for evaluation of skin barrier function. The aim of the study was to assess skin barrier function by measuring stratum corneum hydration and skin surface pH of the skin with lesions, perilesional skin and uninvolved skin in AD patients, and skin in a healthy control group. Forty-two patients were included in the study: 21 young and adult AD patients and 21 age-matched healthy controls. Capacitance, which is correlated with hydration of stratum corneum and skin surface pH were measured on the forearm in the above areas by SM810/CM820/pH900 combined units (Courage AND Khazaka, Germany). The mean value of water capacitance measured in AD patients was 44.1 ± 11.6 AU (arbitrary units) on the lesions, 60.2 ± 12.4 AU on perilesional skin and 67.2 ± 8.8 AU on uninvolved skin. In healthy controls, the mean value was 74.1 ± 9.2 AU. The mean pH value measured in AD patients was 6.13 ± 0.52 on the lesions, 5.80 ± 0.41 on perilesional skin, and 5.54 ± 0.49 on uninvolved skin. In control group, the mean pH of the skin surface was 5.24 ± 0.40. The values of both parameters measured on lesional skin were significantly different (capacitance decreased and pH increased) from the values recorded on perilesional skin and uninvolved skin. The same held for the relation between perilesional and uninvolved skin. According to study results, the uninvolved skin of AD patients had significantly worse values of the measured parameters as compared with control group. The results of this study suggested the skin barrier function to be degraded in AD patients, which is specifically expressed in lesional skin.

  18. Characterising the biophysical properties of normal and hyperkeratotic foot skin.

    PubMed

    Hashmi, Farina; Nester, Christopher; Wright, Ciaran; Newton, Veronica; Lam, Sharon

    2015-01-01

    Plantar foot skin exhibits unique biophysical properties that are distinct from skin on other areas of the body. This paper characterises, using non-invasive methods, the biophysical properties of foot skin in healthy and pathological states including xerosis, heel fissures, calluses and corns. Ninety three people participated. Skin hydration, elasticity, collagen and elastin fibre organisation and surface texture was measured from plantar calluses, corns, fissured heel skin and xerotic heel skin. Previously published criteria were applied to classify the severity of each skin lesion and differences in the biophysical properties compared between each classification. Calluses, corns, xerotic heel skin and heel fissures had significantly lower levels of hydration; less elasticity and greater surface texture than unaffected skin sites (p < 0.01). Some evidence was found for a positive correlation between hydration and elasticity data (r ≤ 0.65) at hyperkeratotic sites. Significant differences in skin properties (with the exception of texture) were noted between different classifications of skin lesion. This study provides benchmark data for healthy and different severities of pathological foot skin. These data have applications ranging from monitoring the quality of foot skin, to measuring the efficacy of therapeutic interventions.

  19. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin

    NASA Astrophysics Data System (ADS)

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Chad Webb, R.; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A.

    2014-09-01

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or ‘epidermal’, photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  20. Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin.

    PubMed

    Gao, Li; Zhang, Yihui; Malyarchuk, Viktor; Jia, Lin; Jang, Kyung-In; Webb, R Chad; Fu, Haoran; Shi, Yan; Zhou, Guoyan; Shi, Luke; Shah, Deesha; Huang, Xian; Xu, Baoxing; Yu, Cunjiang; Huang, Yonggang; Rogers, John A

    2014-09-19

    Characterization of temperature and thermal transport properties of the skin can yield important information of relevance to both clinical medicine and basic research in skin physiology. Here we introduce an ultrathin, compliant skin-like, or 'epidermal', photonic device that combines colorimetric temperature indicators with wireless stretchable electronics for thermal measurements when softly laminated on the skin surface. The sensors exploit thermochromic liquid crystals patterned into large-scale, pixelated arrays on thin elastomeric substrates; the electronics provide means for controlled, local heating by radio frequency signals. Algorithms for extracting patterns of colour recorded from these devices with a digital camera and computational tools for relating the results to underlying thermal processes near the skin surface lend quantitative value to the resulting data. Application examples include non-invasive spatial mapping of skin temperature with milli-Kelvin precision (±50 mK) and sub-millimetre spatial resolution. Demonstrations in reactive hyperaemia assessments of blood flow and hydration analysis establish relevance to cardiovascular health and skin care, respectively.

  1. Radiation Doses to Skin from Dermal Contamination

    DTIC Science & Technology

    2010-10-01

    included studies of deposition of particles on skin, hair or clothing of human volunteers and on samples of rat skin or other materials (filter paper ...Particle size probably is the most important parameter that affects interception and retention on skin. In a theoretical part of their paper , Asset and...about 20% of the particles of either diameter (standard deviation about 11%) from such surfaces as cotton, paper , wood, or plastic. The efficiency

  2. Polymer/riblet combination for hydrodynamic skin friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor)

    1995-01-01

    A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g. a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.

  3. Polymer/riblet combination for hydrodynamic skin friction reduction

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Inventor); Reed, Jason C. (Inventor)

    1990-01-01

    A process is disclosed for reducing skin friction and inhibiting the effects of liquid turbulence in a system involving the flow of a liquid along the surface of a body, e.g., a marine vehicle. This process includes injecting a drag reducing polymer into the valleys of adjacent, evenly spaced, longitudinal grooves extending along the length of the surface of the body, so that the rate of diffusion of the polymer from individual grooves into the liquid flow is predictably controlled by the groove dimensions. When the polymer has diffused over the tips of the grooves into the near wall region of the boundary layer, the polymer effectively reduces the turbulent skin friction. A substantial drag reducing effect is achieved with less polymer than must be used to lower skin friction when the surface of the body is smooth.

  4. Hydrodynamic skin-friction reduction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C. (Inventor); Bushnell, Dennis M. (Inventor); Weinstein, Leonard M. (Inventor)

    1991-01-01

    A process for reducing skin friction, inhibiting the effects of liquid turbulence, and decreasing heat transfer in a system involving flow of a liquid along a surface of a body includes applying a substantially integral sheet of a gas, e.g., air, immediately adjacent to the surface of the body, e.g., a marine vehicle, which has a longitudinally grooved surface in proximity with the liquid and with a surface material having high contact angle between the liquid and said wall to reduce interaction of the liquid, e.g., water, with the surface of the body, e.g., the hull of the marine vehicle.

  5. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  6. An Ultrasound Surface Wave Technique for Assessing Skin and Lung Diseases.

    PubMed

    Zhang, Xiaoming; Zhou, Boran; Kalra, Sanjay; Bartholmai, Brian; Greenleaf, James; Osborn, Thomas

    2018-02-01

    Systemic sclerosis (SSc) is a multi-organ connective tissue disease characterized by immune dysregulation and organ fibrosis. Severe organ involvement, especially of the skin and lung, is the cause of morbidity and mortality in SSc. Interstitial lung disease (ILD) includes multiple lung disorders in which the lung tissue is fibrotic and stiffened. The purpose of this study was to translate ultrasound surface wave elastography (USWE) for assessing patients with SSc and/or ILD via measuring surface wave speeds of both skin and superficial lung tissue. Forty-one patients with both SSc and ILD and 30 healthy patients were enrolled in this study. An external harmonic vibration was used to generate the wave propagation on the skin or lung. Three excitation frequencies of 100, 150 and 200 Hz were used. An ultrasound probe was used to measure the wave propagation in the tissue non-invasively. Surface wave speeds were measured on the forearm and upper arm of both left and right arm, as well as the upper and lower lungs, through six intercostal spaces of patients and healthy patients. Viscoelasticity of the skin was calculated by the wave speed dispersion with frequency using the Voigt model. The magnitudes of surface wave speed and viscoelasticity of patients' skin were significantly higher than those of healthy patients (p <0.0001) for each location and each frequency. The surface wave speeds of patients' lung were significantly higher than those of healthy patients (p <0.0001) for each location and each frequency. USWE is a non-invasive and non-ionizing technique for measuring both skin and lung surface wave speed and may be useful for quantitative assessment of SSc and/or ILD. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  7. A physiologically based mathematical model of dermal absorption in man.

    PubMed

    Auton, T R; Westhead, D R; Woollen, B H; Scott, R C; Wilks, M F

    1994-01-01

    A sound understanding of the mechanisms determining percutaneous absorption is necessary for toxicological risk assessment of chemicals contacting the skin. As part of a programme investigating these mechanisms we have developed a physiologically based mathematical model. The structure of the model parallels the multi-layer structure of the skin, with separate surface, stratum corneum and viable tissue layers. It simulates the effects of partitioning and diffusive transport between the sub-layers, and metabolism in the viable epidermis. In addition the model describes removal processes on the surface of the skin, including the effects of washing and desquamation, and rubbing off onto clothing. This model is applied to data on the penetration of the herbicide fluazifop-butyl through human skin in vivo and in vitro. Part of this dataset is used to estimate unknown model parameter values and the remainder is used to provide a partial validation of the model. Only a small fraction of the applied dose was absorbed through the skin; most of it was removed by washing or onto clothing. The model provides a quantitative description of these loss processes on the skin surface.

  8. The effect of skin surface topography and skin colouration cues on perception of male facial age, health and attractiveness.

    PubMed

    Fink, B; Matts, P J; Brauckmann, C; Gundlach, S

    2018-04-01

    Previous studies investigating the effects of skin surface topography and colouration cues on the perception of female faces reported a differential weighting for the perception of skin topography and colour evenness, where topography was a stronger visual cue for the perception of age, whereas skin colour evenness was a stronger visual cue for the perception of health. We extend these findings in a study of the effect of skin surface topography and colour evenness cues on the perceptions of facial age, health and attractiveness in males. Facial images of six men (aged 40 to 70 years), selected for co-expression of lines/wrinkles and discolouration, were manipulated digitally to create eight stimuli, namely, separate removal of these two features (a) on the forehead, (b) in the periorbital area, (c) on the cheeks and (d) across the entire face. Omnibus (within-face) pairwise combinations, including the original (unmodified) face, were presented to a total of 240 male and female judges, who selected the face they considered younger, healthier and more attractive. Significant effects were detected for facial image choice, in response to skin feature manipulation. The combined removal of skin surface topography resulted in younger age perception compared with that seen with the removal of skin colouration cues, whereas the opposite pattern was found for health preference. No difference was detected for the perception of attractiveness. These perceptual effects were seen particularly on the forehead and cheeks. Removing skin topography cues (but not discolouration) in the periorbital area resulted in higher preferences for all three attributes. Skin surface topography and colouration cues affect the perception of age, health and attractiveness in men's faces. The combined removal of these features on the forehead, cheeks and in the periorbital area results in the most positive assessments. © 2018 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Concepts of skin protection: considerations for the evaluation and terminology of the performance of skin protective equipment.

    PubMed

    Brouwer, Derk H; Aitken, Robert J; Oppl, Reinhard; Cherrie, John W

    2005-09-01

    This article proposes a common language for better understanding processes involved in dermal exposure and skin protection. A conceptual model has been developed that systematically describes the transport of agent mass from sources, eventually resulting in "loading" of the skin surface or the skin contaminant layer. In view of a harmonized glossary of exposure terminology this is considered the exposure surface. Loading is defined as agent mass present in this layer divided by the exposure surface area. Skin protective equipment (SPE) is meant to reduce uptake, that is, an agent crosses the absorption barrier of the skin, by intervening in the processes of loading the exposure surface; however, the design of the equipment may fail to cover skin surface entirely. In addition, part of the mass intercepted by the SPE may reach the skin surface either by permeation, penetration, or by transfer when touching the contaminated exterior of the SPE. Evaluation of SPE performance has earlier focused on chemical resistance performance testing for permeation, penetration, or degradation of SPE-materials. In use-scenario practice, however, all processes will occur concurrently. Thus, SPE field performance evaluation including user-SPE interaction complementary to material testing is warranted. Results of laboratory testing for SPE-materials are reported as substance-specific breakthrough times and permeation rates. SPE field performance should be evaluated for reduction of either uptake or parameters that reflect the outcome of dermal exposure. Ideally, this should be based on the results of intervention-type workplace studies, for (e.g., assessment of exposure loading). The level of reduction can be expressed as a protection factor (ratio without/with SPE) for different parameters of dermal exposure or uptake. It is concluded that for evaluation of SPE-type performance, generic protection factors can be derived for substance-independent processes (e.g., reduction of exposure loading) but not for substance-specific reduction of uptake.

  10. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    PubMed Central

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-01-01

    ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. PMID:26941105

  11. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.

    PubMed

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-04-15

    Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.

  12. Functional analyses of the skin surface of the areola mammae: comparison between healthy adult male and female subjects and between healthy individuals and patients with atopic dermatitis.

    PubMed

    Kikuchi, K; Tagami, H; Akaraphanth, R; Aiba, S

    2011-01-01

    Although the nipple and areola of the breast constitute a unique and prominent area on the chest, so far no study has been done on the functional properties of their skin surfaces. To study the stratum corneum (SC) covering the areola using noninvasive methods. Eighteen adult healthy subjects comprising nine men and nine women and 18 age- and sex-matched patients with atopic dermatitis (AD), none of whom had visible skin lesions, participated in the study. Transepidermal water loss (TEWL), skin surface hydration and skin surface lipid levels were measured on the areola and adjacent breast skin. The size of the skin surface corneocytes of these skin regions was assessed. All the healthy subjects showed significantly higher TEWL accompanied by smaller sized corneocytes on the areola than on the adjacent breast skin. Only female subjects revealed a significantly higher skin surface hydration state together with significantly increased skin surface lipid levels on the areola than on the adjacent breast skin. These sex differences were observed even in patients with AD. Comparison between healthy individuals and the patients with AD demonstrated higher TEWL, decreased skin surface hydration state and lower skin surface lipid levels associated with smaller sized corneocytes in the areola in the patients with AD, especially in male patients. In adults, the SC barrier function and SC water-binding capacity of the areola were functionally poorer than in the adjacent skin, being covered by smaller sized corneocytes and lower amounts of skin surface lipids, especially in men and in patients with AD. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.

  13. The Characteristics of Fatigue Damage in the Fuselage Riveted Lap Splice Joint

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1997-01-01

    An extensive data base has been developed to form the physical basis for new analytical methodology to predict the onset of widespread fatigue damage in the fuselage lap splice joint. The results of detailed destructive examinations have been cataloged to describe the physical nature of MSD in the lap splice joint. ne catalog includes a detailed description, e.g., crack initiation, growth rates, size, location, and fracture morphology, of fatigue damage in the fuselage lap splice joint structure. Detailed examinations were conducted on a lap splice joint panel removed from a full scale fuselage test article after completing a 60,000 cycle pressure test. The panel contained a four bay region that exhibited visible outer skin cracks and regions of crack link-up along the upper rivet row. Destructive examinations revealed undetected fatigue damage in the outer skin, inner skin, and tear strap regions. Outer skin fatigue cracks were found to initiate by fretting damage along the faying surface. The cracks grew along the faying surface to a length equivalent to two to three skin thicknesses before penetrating the outboard surface of the outer skin. Analysis of fracture surface marker bands produced during full scale testing revealed that all upper rivet row fatigue cracks contained in a dim bay region grow at similar rates; this important result suggests that fracture mechanics based methods can be used to predict the growth of outer skin fatigue cracks in lap splice structure. Results are presented showing the affects of MSD and out-of-plane pressure loads on outer skin crack link-up.

  14. Cyanoacrylate Skin Surface Stripping and the 3S-Biokit Advent in Tropical Dermatology: A Look from Liège

    PubMed Central

    Piérard, Gérald E.; Piérard-Franchimont, Claudine; Paquet, Philippe; Hermanns-Lê, Trinh; Delvenne, Philippe

    2014-01-01

    In the dermatopathology field, some simple available laboratory tests require minimum equipment for establishing a diagnosis. Among them, the cyanoacrylate skin surface stripping (CSSS), formerly named skin surface biopsy or follicular biopsy, represents a convenient low cost procedure. It is a minimally invasive method collecting a continuous sheet of stratum corneum and horny follicular casts. In the vast majority of cases, it is painless and is unassociated with adverse events. CSSS can be performed in subjects of any age. The method has a number of applications in diagnostic dermatopathology and cosmetology, as well as in experimental dermatology settings. A series of derived analytic procedures include xerosis grading, comedometry, corneofungimetry, corneodynamics of stratum corneum renewal, corneomelametry, corneosurfametry, and corneoxenometry. PMID:25177726

  15. A new oil/membrane approach for integrated sweat sampling and sensing: sample volumes reduced from μL's to nL's and reduction of analyte contamination from skin.

    PubMed

    Peng, R; Sonner, Z; Hauke, A; Wilder, E; Kasting, J; Gaillard, T; Swaille, D; Sherman, F; Mao, X; Hagen, J; Murdock, R; Heikenfeld, J

    2016-11-01

    Wearable sweat biosensensing technology has dominantly relied on techniques which place planar-sensors or fluid-capture materials directly onto the skin surface. This 'on-skin' approach can result in sample volumes in the μL regime, due to the roughness of skin and/or due to the presence of hair. Not only does this increase the required sampling time to 10's of minutes or more, but it also increases the time that sweat spends on skin and therefore increases the amount of analyte contamination coming from the skin surface. Reported here is a first demonstration of a new paradigm in sweat sampling and sensing, where sample volumes are reduced from the μL's to nL's regime, and where analyte contamination from skin is reduced or even eliminated. A micro-porous membrane is constructed such that it is porous to sweat only. To complete a working device, first placed onto skin is a cosmetic-grade oil, secondly this membrane, and thirdly the sensors. As a result, spreading of sweat is isolated to only regions above the sweat glands before it reaches the sensors. Best case sampling intervals are on the order of several minutes, and the majority of hydrophilic (low oil solubility) contaminants from the skin surface are blocked. In vitro validation of this new approach is performed with an improved artificial skin including human hair. In vivo tests show strikingly consistent results, and reveal that the oil/membrane is robust enough to even allow horizontal sliding of a sensor.

  16. Preparation of Artificial Skin that Mimics Human Skin Surface and Mechanical Properties.

    PubMed

    Shimizu, Rana; Nonomura, Yoshimune

    2018-01-01

    We have developed an artificial skin that mimics the morphological and mechanical properties of human skin. The artificial skin comprises a polyurethane block possessing a microscopically rough surface. We evaluated the tactile sensations when skin-care cream was applied to the artificial skin. Many subjects perceived smooth, moist, and soft feels during the application process. Cluster analysis showed that these characteristic tactile feels are similar to those when skin-care cream is applied to real human skin. Contact angle analysis showed that an oil droplet spread smoothly on the artificial skin surface, which occurred because there were many grooves several hundred micrometers in width on the skin surface. In addition, when the skin-care cream was applied, the change in frictional force during the dynamic friction process increased. These wetting and frictional properties are important factors controlling the similarity of artificial skin to real human skin.

  17. Human skin surface evaluation by image processing

    NASA Astrophysics Data System (ADS)

    Zhu, Liangen; Zhan, Xuemin; Xie, Fengying

    2003-12-01

    Human skin gradually lose its tension and becomes very dry as time flies by. Use of cosmetics is effective to prevent skin aging. Recently, there are many choices of products of cosmetics. To show their effects, It is desirable to develop a way to evaluate quantificationally skin surface condition. In this paper, An automatic skin evaluating method is proposed. The skin surface has the pattern called grid-texture. This pattern is composed of the valleys that spread vertically, horizontally, and obliquely and the hills separated by them. Changes of the grid are closely linked to the skin surface condition. They can serve as a good indicator for the skin condition. By measuring the skin grid using digital image processing technologies, we can evaluate skin surface about its aging, health, and alimentary status. In this method, the skin grid is first detected to form a closed net. Then, some skin parameters such as Roughness, tension, scale and gloss can be calculated from the statistical measurements of the net. Through analyzing these parameters, the condition of the skin can be monitored.

  18. Soft, skin-mounted microfluidic systems for measuring secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands.

    PubMed

    Choi, Jungil; Xue, Yeguang; Xia, Wei; Ray, Tyler R; Reeder, Jonathan T; Bandodkar, Amay J; Kang, Daeshik; Xu, Shuai; Huang, Yonggang; Rogers, John A

    2017-07-25

    During periods of activity, sweat glands produce pressures associated with osmotic effects to drive liquid to the surface of the skin. The magnitudes of these pressures may provide insights into physiological health, the intensity of physical exertion, psychological stress factors and/other information of interest, yet they are currently unknown due to absence of means for non-invasive measurement. This paper introduces a thin, soft wearable microfluidic system that mounts onto the surface of the skin to enable precise and routine measurements of secretory fluidic pressures generated at the surface of the skin by eccrine sweat glands (surface SPSG, or s-SPSG) at nearly any location on the body. These platforms incorporate an arrayed collection of unit cells each of which includes an opening to the skin, an inlet through which sweat can flow, a capillary bursting valve (CBV) with a unique bursting pressure (BP), a corresponding microreservoir to receive sweat and an outlet to the surrounding ambient to allow release of backpressure. The BPs systematically span the physiologically relevant range, to enable a measurement precision approximately defined by the ratio of the range to the number of unit cells. Human studies demonstrate measurements of s-SPSG under different conditions, from various regions of the body. Average values in healthy young adults lie between 2.4 and 2.9 kPa. Sweat associated with vigorous exercise have s-SPSGs that are somewhat higher than those associated with sedentary activity. For all conditions, the forearm and lower back tend to yield the highest and lowest s-SPSGs, respectively.

  19. Skin microrelief as a diagnostic tool (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tchvialeva, Lioudmila; Phillips, Jamie; Zeng, Haishan; McLean, David; Lui, Harvey; Lee, Tim K.

    2017-02-01

    Skin surface roughness is an important property for differentiating skin diseases. Recently, roughness has also been identified as a potential diagnostic indicator in the early detection of skin cancer. Objective quantification is usually carried out by creating silicone replicas of the skin and then measuring the replicas. We have developed an alternative in-vivo technique to measure skin roughness based on laser speckle. Laser speckle is the interference pattern produced when coherent light is used to illuminate a rough surface and the backscattered light is imaged. Acquiring speckle contrast measurements from skin phantoms with controllable roughness, we created a calibration curve by linearly interpolating between measured points. This calibration curve accounts for internal scattering and is designed to evaluate skin microrelief whose root-mean-square roughness is in the range of 10-60 micrometers. To validate the effectiveness of our technique, we conducted a study to measure 243 skin lesions including actinic keratosis (8), basal cell carcinoma (24), malignant melanoma (31), nevus (73), squamous cell carcinoma (19), and seborrheic keratosis (79). The average roughness values ranged from 26 to 57 micrometers. Malignant melanoma was ranked as the smoothest and squamous cell carcinoma as the roughest lesion. An ANOVA test confirmed that malignant melanoma has significantly smaller roughness than other lesion types. Our results suggest that skin microrelief can be used to detect malignant melanoma from other skin conditions.

  20. Resurfacing glabrous skin defects in the hand: the thenar base donor site.

    PubMed

    Milner, Chris S; Thirkannad, Sunil M

    2014-06-01

    Defects of the glabrous skin surfaces of the palm and fingers result from numerous causes including larger fingertip injuries, unhealed burns, and after surgery for diverse pathologies. The qualities of glabrous skin are specifically tailored to the functional requirements of high-shear strength and robustness. Despite these unique properties, graft reconstruction of defects in the glabrous regions of the hand is frequently achieved with skin from nonglabrous donor sites such as the medial forearm. Nonglabrous skin has a poor color and texture match for such applications and is frequently associated with tender and unsightly donor scars. We describe our experiences of harvesting full-thickness grafts from the glabrous skin centered over the proximal flexion crease at the level of the metacarpophalangeal joint of the thumb. We have utilized this site to harvest skin grafts of up to 2 cm in width for the resurfacing of small-sized to medium-sized defects on the palmar surfaces of the hands and fingers in 28 patients under both traumatic and elective circumstances. The skin has an excellent type-match to the defect and is quick and easy to harvest due to its adjacent location to the defect. The donor scar matures quickly, and as it lies along the thumb base crease, it runs along one of the least used contact surfaces, thereby limiting the potential discomfort associated with FTSG harvest sites from other areas. Patient satisfaction with the procedure has been high, and it represents a useful alternative to traditional nonglabrous skin graft donor sites for small-sized to medium-sized defects.

  1. Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.

  2. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1982-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows.

  3. Self-cleaning skin-like prosthetic polymer surfaces

    DOEpatents

    Simpson, John T [Clinton, TN; Ivanov, Ilia N [Knoxville, TN; Shibata, Jason [Manhattan Beach, CA

    2012-03-27

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the inner surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.

  4. Method of making self-cleaning skin-like prosthetic polymer surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, John T.; Ivanov, Ilia N.; Shibata, Jason

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the innermore » surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.« less

  5. Core body temperature, skin temperature, and interface pressure. Relationship to skin integrity in nursing home residents.

    PubMed

    Knox, D M

    1999-06-01

    To ascertain the effects of 1-, 1 1/2-, and 2-hour turning intervals on nursing home residents' skin over the sacrum and trochanters. (1) the higher the core body temperature, the higher the skin surface temperature; (2) the 2-hour turning interval would have significantly higher skin surface temperature; (3) there would be no relationship between skin surface temperature and interface pressure; and (4) the sacrum would have the lowest skin surface temperature. Modified Latin-square. For-profit nursing home. Convenience sample of 26 residents who scored < 3 on the Short Portable Mini-Mental Status Questionnaire and did not have (1) open wounds; (2) albumin levels < 3.3 mg/dL; (3) severe arthritis; (4) cortisone, anticoagulation, insulin therapy or 3 medications for hypertension; and/or (5) were totally bedridden. First Temp measured core temperature; a disposable thermistor temperature probe, skin temperature; and a digital interface pressure evaluator, the interface pressure. Negative correlation (r = -.33, P = .003) occurred between core body temperature and skin surface temperature. Skin surface temperature rose at the end of the 2-hour turning interval but was not significant (F = (2.68) = .73, P = .49). Weak negative relationship (r = -12, P = .29) occurred between skin surface temperature and interface pressure, and sacral skin surface temperature was significantly lower for the left trochanter only (F = (8.68) = 7.05, P = .002). Although hypotheses were not supported, more research is needed to understand how time in position and multiple chronic illnesses interact to affect skin pressure tolerance.

  6. Effect of surface topographic features on the optical properties of skin: a phantom study

    NASA Astrophysics Data System (ADS)

    Liu, Guangli; Chen, Jianfeng; Zhao, Zuhua; Zhao, Gang; Dong, Erbao; Chu, Jiaru; Xu, Ronald X.

    2016-10-01

    Tissue-simulating phantoms are used to validate and calibrate optical imaging systems and to understand light transport in biological tissue. Light propagation in a strongly turbid medium such as skin tissue experiences multiple scattering and diffuse reflection from the surface. Surface roughness introduces phase shifts and optical path length differences for light which is scattered within the skin tissue and reflected from the surface. In this paper, we study the effect of mismatched surface roughness on optical measurement and subsequent determination of optical properties of skin tissue. A series of phantoms with controlled surface features and optical properties corresponding to normal human skin are fabricated. The fabrication of polydimethylsiloxane (PDMS) phantoms with known surface roughness follows a standard soft lithography process. Surface roughness of skin-simulating phantoms are measured with Bruker stylus profiler. The diffuse reflectance of the phantom is validated by a UV/VIS spectrophotometer. The results show that surface texture and roughness have considerable influence on the optical characteristics of skin. This study suggests that surface roughness should be considered as an important contributing factor for the determination of tissue optical properties.

  7. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1995-01-01

    A smeared stiffener theory for stiffened panels is presented that includes skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener combination is developed analytically using the minimum potential energy principle and statics conditions. The skin-stiffener interaction is accounted for by computing the stiffness due to the stiffener and the skin in the skin-stiffener region about the neutral axis at the stiffener. Buckling load results for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using the smeared stiffness combined with a Rayleigh-Ritz method and are compared with results from detailed finite element analyses.

  8. Full skin quantitative optical coherence elastography achieved by combining vibration and surface acoustic wave methods

    NASA Astrophysics Data System (ADS)

    Li, Chunhui; Guan, Guangying; Huang, Zhihong; Wang, Ruikang K.; Nabi, Ghulam

    2015-03-01

    By combining with the phase sensitive optical coherence tomography (PhS-OCT), vibration and surface acoustic wave (SAW) methods have been reported to provide elastography of skin tissue respectively. However, neither of these two methods can provide the elastography in full skin depth in current systems. This paper presents a feasibility study on an optical coherence elastography method which combines both vibration and SAW in order to give the quantitative mechanical properties of skin tissue with full depth range, including epidermis, dermis and subcutaneous fat. Experiments are carried out on layered tissue mimicking phantoms and in vivo human forearm and palm skin. A ring actuator generates vibration while a line actuator were used to excited SAWs. A PhS-OCT system is employed to provide the ultrahigh sensitive measurement of the generated waves. The experimental results demonstrate that by the combination of vibration and SAW method the full skin bulk mechanical properties can be quantitatively measured and further the elastography can be obtained with a sensing depth from ~0mm to ~4mm. This method is promising to apply in clinics where the quantitative elasticity of localized skin diseases is needed to aid the diagnosis and treatment.

  9. Bacteria and fungi on the surface and within noninflamed hair follicles of skin biopsy specimens from horses with healthy skin or inflammatory dermatoses.

    PubMed

    Cook, Christopher P; Scott, Danny W; Erb, Hollis N; Miller, William H

    2005-02-01

    A retrospective study using light microscopy was performed to assess the prevalence of surface and follicular bacteria and fungi in skin biopsy specimens from 247 horses with inflammatory dermatoses and from 27 horses with healthy skin. Cocci were found on the surface of specimens from 23% (95% confidence interval 18%, 29%) and 7% (95% confidence interval, 0%, 19%), respectively, of horses with skin disease and horses with healthy skin. Of the nine dermatoses with at least 10 cases in our series of horses, bacterial folliculitis had a higher prevalence of surface bacteria (57%; 95% confidence interval 34%, 81%) than the other eight (which all had a prevalence < 30%). There was a significant association between the prevalence of surface cocci and the extent of epidermal hyperkeratosis. Cocci were found in the keratin of noninflamed hair follicles in only 2% of the horses with skin disease, and in none of the horses with healthy skin. Fungal poroconidia were found on the surface of 4% of the horses with skin disease, and on none of the horses with healthy skin. Yeasts were not found.

  10. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of the human body is colonized by large numbers of diverse bacteria. This observation has led researchers to examine the roles these bacteria play in healthy and diseased skin. In a variety of genetic and chronic inflammatory skin diseases, including in patients with AD or with cancer who receive epidermal growth factor receptor (EGFR) inhibitors, Staphylococcus aureus and Corynebacterium species are the predominant bacteria isolated from the skin. However, the cause-and-effect relationship between this microbial imbalance and skin inflammation has not been determined.

  11. Diversity of dermal denticle structure in sharks: Skin surface roughness and three-dimensional morphology.

    PubMed

    Ankhelyi, Madeleine V; Wainwright, Dylan K; Lauder, George V

    2018-05-29

    Shark skin is covered with numerous placoid scales or dermal denticles. While previous research has used scanning electron microscopy and histology to demonstrate that denticles vary both around the body of a shark and among species, no previous study has quantified three-dimensional (3D) denticle structure and surface roughness to provide a quantitative analysis of skin surface texture. We quantified differences in denticle shape and size on the skin of three individual smooth dogfish sharks (Mustelus canis) using micro-CT scanning, gel-based surface profilometry, and histology. On each smooth dogfish, we imaged between 8 and 20 distinct areas on the body and fins, and obtained further comparative skin surface data from leopard, Atlantic sharpnose, shortfin mako, spiny dogfish, gulper, angel, and white sharks. We generated 3D images of individual denticles and measured denticle volume, surface area, and crown angle from the micro-CT scans. Surface profilometry was used to quantify metrology variables such as roughness, skew, kurtosis, and the height and spacing of surface features. These measurements confirmed that denticles on different body areas of smooth dogfish varied widely in size, shape, and spacing. Denticles near the snout are smooth, paver-like, and large relative to denticles on the body. Body denticles on smooth dogfish generally have between one and three distinct ridges, a diamond-like surface shape, and a dorsoventral gradient in spacing and roughness. Ridges were spaced on average 56 µm apart, and had a mean height of 6.5 µm, comparable to denticles from shortfin mako sharks, and with narrower spacing and lower heights than other species measured. We observed considerable variation in denticle structure among regions on the pectoral, dorsal, and caudal fins, including a leading-to-trailing edge gradient in roughness for each region. Surface roughness in smooth dogfish varied around the body from 3 to 42 microns. © 2018 Wiley Periodicals, Inc.

  12. The effect of surface treatment on the microstructure of the skin of concrete

    NASA Astrophysics Data System (ADS)

    Sadowski, Łukasz; Stefaniuk, Damian

    2018-01-01

    The aim of this study is to better understand the heterogeneity and microstructural properties of the skin of concrete. The microstructural evaluation of the skin of concrete was performed using X-ray micro computed tomography (micro-CT). The concrete surface was treated using four methods, due to which different surfaces were obtained, i.e. a raw surface, a surface formed after contact with formwork, a grinded surface and also a shotblasted surface. The results of the pore structure obtained from the micro-CT images were used to assess the influence of selected surface treatment method on the nature of the skin of concrete. It was shown that the thickness and unique nature of the skin of concrete differ for various surface treatment methods.

  13. Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation

    NASA Astrophysics Data System (ADS)

    Hu, X.; Maiti, R.; Liu, X.; Gerhardt, L. C.; Lee, Z. S.; Byers, R.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J.

    2016-03-01

    Bio-mechanical properties of the human skin deformed by external forces at difference skin/material interfaces attract much attention in medical research. For instance, such properties are important design factors when one designs a healthcare device, i.e., the device might be applied directly at skin/device interfaces. In this paper, we investigated the bio-mechanical properties, i.e., surface strain, morphological changes of the skin layers, etc., of the human finger-pad and forearm skin as a function of applied pressure by utilizing two non-invasive techniques, i.e., optical coherence tomography (OCT) and digital image correlation (DIC). Skin deformation results of the human finger-pad and forearm skin were obtained while pressed against a transparent optical glass plate under the action of 0.5-24 N force and stretching naturally from 90° flexion to 180° full extension respectively. The obtained OCT images showed the deformation results beneath the skin surface, however, DIC images gave overall information of strain at the surface.

  14. Efficacy and safety of a new coverlet device on skin microclimate management: a pilot study in critical care patients.

    PubMed

    Forriez, O; Masseline, J; Coadic, D; David, V; Trouiller, P; Sztrymf, B

    2017-02-02

    To test the effect of a new coverlet device, allowing air circulation at the body/underlying surface interface, on skin microclimate management. This prospective observational pilot study took place in a 15-bed university-affiliated intensive care unit. Overall, 34 mechanically ventilated patients were included. Skin humidity and temperature were monitored before and after the implementation of the tested device at the occiput, scapulas, buttocks and sacrum. Humidity and temperature were evaluated through surface skin impedance and an infra-red thermometer, respectively. Health professionals were asked to evaluate the device. After implementation of the coverlet device, there was a rapid, sustained and significant decrease in skin humidity at all sites ranging from 6 % to 15 %, excluding the occiput. Skin temperature also significantly decreased from 1 % at both scapulas, but not at the other studied body sites. No side effects were observed. Health professionals reported that the device was easy and quick to install. Although they did not report a subjective improvement in skin moisture or temperature, they considered the device to be efficient. Although limited by its design, this pilot study suggests a good efficacy of the studied device on skin microclimate management. Further data are warranted to test the clinical implications of our findings.

  15. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera

    NASA Astrophysics Data System (ADS)

    Dickensheets, David L.; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  16. Dermoscopy-guided reflectance confocal microscopy of skin using high-NA objective lens with integrated wide-field color camera.

    PubMed

    Dickensheets, David L; Kreitinger, Seth; Peterson, Gary; Heger, Michael; Rajadhyaksha, Milind

    2016-02-01

    Reflectance Confocal Microscopy, or RCM, is being increasingly used to guide diagnosis of skin lesions. The combination of widefield dermoscopy (WFD) with RCM is highly sensitive (~90%) and specific (~ 90%) for noninvasively detecting melanocytic and non-melanocytic skin lesions. The combined WFD and RCM approach is being implemented on patients to triage lesions into benign (with no biopsy) versus suspicious (followed by biopsy and pathology). Currently, however, WFD and RCM imaging are performed with separate instruments, while using an adhesive ring attached to the skin to sequentially image the same region and co-register the images. The latest small handheld RCM instruments offer no provision yet for a co-registered wide-field image. This paper describes an innovative solution that integrates an ultra-miniature dermoscopy camera into the RCM objective lens, providing simultaneous wide-field color images of the skin surface and RCM images of the subsurface cellular structure. The objective lens (0.9 NA) includes a hyperhemisphere lens and an ultra-miniature CMOS color camera, commanding a 4 mm wide dermoscopy view of the skin surface. The camera obscures the central portion of the aperture of the objective lens, but the resulting annular aperture provides excellent RCM optical sectioning and resolution. Preliminary testing on healthy volunteers showed the feasibility of combined WFD and RCM imaging to concurrently show the skin surface in wide-field and the underlying microscopic cellular-level detail. The paper describes this unique integrated dermoscopic WFD/RCM lens, and shows representative images. The potential for dermoscopy-guided RCM for skin cancer diagnosis is discussed.

  17. Thrombophlebitis

    MedlinePlus

    ... the surface of your skin (superficial thrombophlebitis) or deep within a muscle (deep vein thrombosis, or DVT). Causes include trauma, surgery ... pain in the affected area Redness and swelling Deep vein thrombosis signs and symptoms include: Pain Swelling ...

  18. Surface applicator calibration and commissioning of an electronic brachytherapy system for nonmelanoma skin cancer treatment.

    PubMed

    Rong, Yi; Welsh, James S

    2010-10-01

    The Xoft Axxent x-ray source has been used for treating nonmelanoma skin cancer since the surface applicators became clinically available in 2009. The authors report comprehensive calibration procedures for the electronic brachytherapy (eBx) system with the surface applicators. The Xoft miniature tube (model S700) generates 50 kVp low-energy x rays. The new surface applicators are available in four sizes of 10, 20, 35, and 50 mm in diameter. The authors' tests include measurements of dose rate, air-gap factor, output stability, depth dose verification, beam flatness and symmetry, and treatment planning with patient specific cutout factors. The TG-61 in-air method was used as a guideline for acquiring nominal dose-rate output at the skin surface. A soft x-ray parallel-plate chamber (PTW T34013) and electrometer was used for the output commissioning. GafChromic EBT films were used for testing the properties of the treatment fields with the skin applicators. Solid water slabs were used to verify the depth dose and cutout factors. Patients with basal cell or squamous cell carcinoma were treated with eBx using a calibrated Xoft system with the low-energy x-ray source and the skin applicators. The average nominal dose-rate output at the skin surface for the 35 mm applicator is 1.35 Gy/min with +/- 5% variation for 16 sources. The dose-rate output and stability (within +/- 5% variation) were also measured for the remaining three applicators. For the same source, the output variation is within 2%. The effective source-surface distance was calculated based on the air-gap measurements for four applicator sizes. The field flatness and symmetry are well within 5%. Percentage depth dose in water was provided by factory measurements and can be verified using solid water slabs. Treatment duration was calculated based on the nominal dose rate, the prescription fraction size, the depth dose percentage, and the cutout factor. The output factor needs to be measured for each case with varying shapes of cutouts. Together with TG-61, the authors' methodology provides comprehensive calibration procedures for medical physicists for using the Xoft eBx system and skin applicators for nonmelanoma skin cancer treatments.

  19. A nonintrusive laser interferometer method for measurement of skin friction

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A method is described for monitoring the changing thickness of a thin oil film subject to an aerodynamic shear stress using two focused laser beams. The measurement is then simply analyzed in terms of the surface skin friction of the flow. The analysis includes the effects of arbitrarily large pressure and skin friction gradients, gravity, and time varying oil temperature. It may also be applied to three dimensional flows with unknown direction. Applications are presented for a variety of flows, including two dimensional flows, three dimensional swirling flows, separated flow, supersonic high Reynolds number flows, and delta wing vortical flows. Previously announced in STAR as N83-12393

  20. Aircraft Metal Skin Repair and Honeycomb Structure Repair; Sheet Metal Work 3: 9857.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course helps students determine types of repairs, compute repair sizes, and complete the repair through surface protection. Course content includes goals, specific objectives, protection of metals, repairs to metal skin, and honeycomb structure repair. A bibliography and post-test are appended. A prerequisite for this course is mastery of the…

  1. SkinChip, a new tool for investigating the skin surface in vivo.

    PubMed

    Lévêque, Jean Luc; Querleux, Bernard

    2003-11-01

    Non-invasive methods used for characterizing skin micro-relief and skin surface hydration were developed in the 1980s. Although they allowed some progress in the knowledge of skin properties, they are not completely satisfactory in many aspects. Today, new technologies are emerging that may address such issues. We adapted the technology produced by the ST Microelectronics Company for sensing fingerprint for the measurement of skin surface properties. Accordingly, we developed acquisition software for obtaining routinely the distribution of skin surface capacitance along different body sites. Image analysis softwares were also processed for collecting both the main orientations of the micro-relief lines and their density. The average value of skin capacitance is also obtained. The images allow a highly precise observation of the skin topography that can be easily quantified in terms of line density and line orientation. The mean gray levels of the images appear much closely correlated to the Corneometer values. This new device appears to be a very convenient way for characterizing the properties of the skin surface. With regard to hydration, it usefully provides both the average value and the hydration chart of the investigated skin zones.

  2. The Role of Airborne Proteins in Atopic Dermatitis

    PubMed Central

    Hostetler, Sarah Grim; Kaffenberger, Benjamin; Hostetler, Todd

    2010-01-01

    Atopic dermatitis is a common, chronic skin condition. A subpopulation of patients may have cutaneous exposure to common airborne proteins exacerbating their disease through direct proteolytic activity, direct activation of proteinase-activated receptor-2 itch receptors, and immunoglobulin E binding. The most common airborne proteins significant in atopic dermatitis include house dust mites, cockroach, pet dander, and multiple pollens. The literature on atopy patch testing, skin-prick testing, and specific IgE is mixed, with greater support for the use of atopy patch test. Patients with airborne proteins contributing to their disease typically have lesions predominately on air-exposed skin surfaces including the face, neck, and arms; a history of exacerbations after exposure to airborne proteins; severe disease resistant to conventional therapies; and concurrent asthma. Treatment strategies include airborne protein avoidance, removal of airborne proteins from the skin, and barrier repair. Further research is needed to establish the benefit of allergen-specific immunotherapy. PMID:20725535

  3. Skindeep Ulysses.

    PubMed

    Freedman, Ariela

    2008-01-01

    This essay is about Joyce as an epidermist and Joyce as a chronicler and cataloguer of the "skindeep" surfaces of Dublin in Ulysses. The book is crowded with skins: tanned skins, blushing skins, skins enhanced by makeup and creams, skins marked by race or religion, skins legible and visible, skins imagined and inaccessible and associated with both authenticity and disguise. Skin in Joyce becomes, in Steven Connor's terms, in The Book of Skin, "a place of minglings; a mingling of places," a space where medical, cultural, and aesthetic meanings jostle and intersect and are inscribed and projected on the surface that both expresses and conceals the subject. A skin-deep analysis of Ulysses can reveal to us the entanglement of surface and depth that characterizes Joyce's novel.

  4. Microscopic contact area and friction between medical textiles and skin.

    PubMed

    Derler, S; Rotaru, G-M; Ke, W; El Issawi-Frischknecht, L; Kellenberger, P; Scheel-Sailer, A; Rossi, R M

    2014-10-01

    The mechanical contact between medical textiles and skin is relevant in the health care for patients with vulnerable skin or chronic wounds. In order to gain new insights into the skin-textile contact on the microscopic level, the 3D surface topography of a normal and a new hospital bed sheet with a regular surface structure was measured using a digital microscope. The topographic data was analysed concerning material distribution and real contact area against smooth surfaces as a function of surface deformations. For contact conditions that are relevant for the skin of patients lying in a hospital bed it was found that the order of magnitude of the ratio of real and apparent contact area between textiles and skin or a mechanical skin model lies between 0.02 and 0.1 and that surface deformations, i.e. penetration of the textile surface asperities into skin or a mechanical skin model, range from 10 to 50µm. The performed analyses of textile 3D surface topographies and comparisons with previous friction measurement results provided information on the relationship between microscopic surface properties and macroscopic friction behaviour of medical textiles. In particular, the new bed sheet was found to be characterised by a trend towards a smaller microscopic contact area (up to a factor of two) and by a larger free interfacial volume (more than a factor of two) in addition to a 1.5 times lower shear strength when in contact with counter-surfaces. The applied methods can be useful to develop improved and skin-adapted materials and surfaces for medical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dose-surface analysis for prediction of severe acute radio-induced skin toxicity in breast cancer patients.

    PubMed

    Pastore, Francesco; Conson, Manuel; D'Avino, Vittoria; Palma, Giuseppe; Liuzzi, Raffaele; Solla, Raffaele; Farella, Antonio; Salvatore, Marco; Cella, Laura; Pacelli, Roberto

    2016-01-01

    Severe acute radiation-induced skin toxicity (RIST) after breast irradiation is a side effect impacting the quality of life in breast cancer (BC) patients. The aim of the present study was to develop normal tissue complication probability (NTCP) models of severe acute RIST in BC patients. We evaluated 140 consecutive BC patients undergoing conventional three-dimensional conformal radiotherapy (3D-CRT) after breast conserving surgery in a prospective study assessing acute RIST. The acute RIST was classified according to the RTOG scoring system. Dose-surface histograms (DSHs) of the body structure in the breast region were extracted as representative of skin irradiation. Patient, disease, and treatment-related characteristics were analyzed along with DSHs. NTCP modeling by Lyman-Kutcher-Burman (LKB) and by multivariate logistic regression using bootstrap resampling techniques was performed. Models were evaluated by Spearman's Rs coefficient and ROC area. By the end of radiotherapy, 139 (99%) patients developed any degree of acute RIST. G3 RIST was found in 11 of 140 (8%) patients. Mild-moderate (G1-G2) RIST was still present at 40 days after treatment in six (4%) patients. Using DSHs for LKB modeling of acute RIST severity (RTOG G3 vs. G0-2), parameter estimates were TD50=39 Gy, n=0.38 and m=0.14 [Rs = 0.25, area under the curve (AUC) = 0.77, p = 0.003]. On multivariate analysis, the most predictive model of acute RIST severity was a two-variable model including the skin receiving ≥30 Gy (S30) and psoriasis [Rs = 0.32, AUC = 0.84, p < 0.001]. Using body DSH as representative of skin dose, the LKB n parameter was consistent with a surface effect for the skin. A good prediction performance was obtained using a data-driven multivariate model including S30 and a pre-existing skin disease (psoriasis) as a clinical factor.

  6. Electrotactile and vibrotactile displays for sensory substitution systems

    NASA Technical Reports Server (NTRS)

    Kaczmarek, Kurt A.; Webster, John G.; Bach-Y-rita, Paul; Tompkins, Willis J.

    1991-01-01

    Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used or with the information processed in some useful way. The authors review the methods used to present visual, auditory, and modified tactile information to the skin and discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). The relevant sensory physiology of the skin, including the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile, or electrocutaneous, stimulation), is reviewed. The information-processing ability of the tactile sense and its relevance to sensory substitution is briefly summarized. The limitations of current tactile display technologies are discussed.

  7. Immediate breast reconstruction using autologous skin graft associated with breast implant.

    PubMed

    Dutra, A K; Andrade, W P; Carvalho, S M T; Makdissi, F B A; Yoshimatsu, E K; Domingues, M C; Maciel, M S

    2012-02-01

    Immediate breast reconstruction with skin graft is still little mentioned in the literature. Follow-up studies regarding the technique aspects are particularly scarce. The objective was to detail immediate breast reconstruction using autologous skin graft. Patients (n = 49) who underwent mastectomies and autologous immediate breast reconstruction with skin graft associated with a breast implant at A. C. Camargo Hospital (São Paulo, Brazil) between January 2007 and July 2010 were included. Information on clinical data, technique details and clinical outcome were prospectively collected. Following mastectomy, the autologous full-thickness skin graft was obtained through an inframammary fold incision along the contralateral breast in most patients. The skin graft was placed on the surface of the pectoralis major muscle after adjustments to conform to the mastectomy defect. A minimum of 10-month follow-up period was established. Patients' age ranged from 35 to 55 years and all received a silicone gel textured surface implant to obtain the necessary breast mound. The mean surgical time was 45 min, and the mean amount of skin resection was 4.5 cm in the largest diameter. Follow-up ranged from 10 to 35 months (median 23). All patients had silicone-gel textured surface implants to perform the breast mound reconstruction. No complications were observed in 87.8% of reconstructions. Forty-six patients (94%) had no complaints about the donor-site aesthetics. The result was a breast mound with a central ellipse of healed skin graft. Three (6%) poor results were observed. Thirty-six patients (67%) reported the results as good or very good. Our results lead us to conclude that autologous skin graft provided a reliable option in immediate breast reconstruction to skin-sparing mastectomy defects. The technique accomplished a single-stage implant breast reconstruction when there is inadequate skin coverage. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  9. Recent Advances and Perspectives in Liposomes for Cutaneous Drug Delivery.

    PubMed

    Carita, Amanda C; Eloy, Josimar O; Chorilli, Marlus; Lee, Robert J; Leonardi, Gislaine Ricci

    2018-02-13

    The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Land Surface Data Assimilation and the Northern Gulf Coast Land/Sea Breeze

    NASA Technical Reports Server (NTRS)

    Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske; Arnold, James E. (Technical Monitor)

    2002-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSU/NCAR MM5 V3-4 and applied on a 4-km domain for this particular application. It is recognized that a 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.

  11. Application of Land Surface Data Assimilation to Simulations of Sea Breeze Circulations

    NASA Technical Reports Server (NTRS)

    Mackaro, Scott; Lapenta, William M.; Blackwell, Keith; Suggs, Ron; McNider, Richard T.; Jedlovec, Gary; Kimball, Sytske

    2003-01-01

    A technique has been developed for assimilating GOES-derived skin temperature tendencies and insolation into the surface energy budget equation of a mesoscale model so that the simulated rate of temperature change closely agrees with the satellite observations. A critical assumption of the technique is that the availability of moisture (either from the soil or vegetation) is the least known term in the model's surface energy budget. Therefore, the simulated latent heat flux, which is a function of surface moisture availability, is adjusted based upon differences between the modeled and satellite- observed skin temperature tendencies. An advantage of this technique is that satellite temperature tendencies are assimilated in an energetically consistent manner that avoids energy imbalances and surface stability problems that arise from direct assimilation of surface shelter temperatures. The fact that the rate of change of the satellite skin temperature is used rather than the absolute temperature means that sensor calibration is not as critical. The sea/land breeze is a well-documented mesoscale circulation that affects many coastal areas of the world including the northern Gulf Coast of the United States. The focus of this paper is to examine how the satellite assimilation technique impacts the simulation of a sea breeze circulation observed along the Mississippi/Alabama coast in the spring of 2001. The technique is implemented within the PSUNCAR MM5 V3-5 and applied at spatial resolutions of 12- and 4-km. It is recognized that even 4-km grid spacing is too coarse to explicitly resolve the detailed, mesoscale structure of sea breezes. Nevertheless, the model can forecast certain characteristics of the observed sea breeze including a thermally direct circulation that results from differential low-level heating across the land-sea interface. Our intent is to determine the sensitivity of the circulation to the differential land surface forcing produced via the assimilation of GOES skin temperature tendencies. Results will be quantified through statistical verification techniques.

  12. Fusion of cone-beam CT and 3D photographic images for soft tissue simulation in maxillofacial surgery

    NASA Astrophysics Data System (ADS)

    Chung, Soyoung; Kim, Joojin; Hong, Helen

    2016-03-01

    During maxillofacial surgery, prediction of the facial outcome after surgery is main concern for both surgeons and patients. However, registration of the facial CBCT images and 3D photographic images has some difficulties that regions around the eyes and mouth are affected by facial expressions or the registration speed is low due to their dense clouds of points on surfaces. Therefore, we propose a framework for the fusion of facial CBCT images and 3D photos with skin segmentation and two-stage surface registration. Our method is composed of three major steps. First, to obtain a CBCT skin surface for the registration with 3D photographic surface, skin is automatically segmented from CBCT images and the skin surface is generated by surface modeling. Second, to roughly align the scale and the orientation of the CBCT skin surface and 3D photographic surface, point-based registration with four corresponding landmarks which are located around the mouth is performed. Finally, to merge the CBCT skin surface and 3D photographic surface, Gaussian-weight-based surface registration is performed within narrow-band of 3D photographic surface.

  13. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch.

    PubMed

    Kim, K; Lee, S

    2015-05-01

    Diagnosis of skin conditions is dependent on the assessment of skin surface properties that are represented by more tactile properties such as stiffness, roughness, and friction than visual information. Due to this reason, adding tactile feedback to existing vision based diagnosis systems can help dermatologists diagnose skin diseases or disorders more accurately. The goal of our research was therefore to develop a tactile rendering system for skin examinations by dynamic touch. Our development consists of two stages: converting a single image to a 3D haptic surface and rendering the generated haptic surface in real-time. Converting to 3D surfaces from 2D single images was implemented with concerning human perception data collected by a psychophysical experiment that measured human visual and haptic sensibility to 3D skin surface changes. For the second stage, we utilized real skin biomechanical properties found by prior studies. Our tactile rendering system is a standalone system that can be used with any single cameras and haptic feedback devices. We evaluated the performance of our system by conducting an identification experiment with three different skin images with five subjects. The participants had to identify one of the three skin surfaces by using a haptic device (Falcon) only. No visual cue was provided for the experiment. The results indicate that our system provides sufficient performance to render discernable tactile rendering with different skin surfaces. Our system uses only a single skin image and automatically generates a 3D haptic surface based on human haptic perception. Realistic skin interactions can be provided in real-time for the purpose of skin diagnosis, simulations, or training. Our system can also be used for other applications like virtual reality and cosmetic applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Microbiota fingerprints lose individually identifying features over time.

    PubMed

    Wilkins, David; Leung, Marcus H Y; Lee, Patrick K H

    2017-01-09

    Humans host individually unique skin microbiota, suggesting that microbiota traces transferred from skin to surfaces could serve as forensic markers analogous to fingerprints. While it is known that individuals leave identifiable microbiota traces on surfaces, it is not clear for how long these traces persist. Moreover, as skin and surface microbiota change with time, even persistent traces may lose their forensic potential as they would cease to resemble the microbiota of the person who left them. We followed skin and surface microbiota within households for four seasons to determine whether accurate microbiota-based matching of individuals to their households could be achieved across long time delays. While household surface microbiota traces could be matched to the correct occupant or occupants with 67% accuracy, accuracy decreased substantially when skin and surface samples were collected in different seasons, and particularly when surface samples were collected long after skin samples. Most OTUs persisted on skin or surfaces for less than one season, indicating that OTU loss was the major cause of decreased matching accuracy. OTUs that were more useful for individual identification persisted for less time and were less likely to be deposited from skin to surface, suggesting a trade-off between the longevity and identifying value of microbiota traces. While microbiota traces have potential forensic value, unlike fingerprints they are not static and may degrade in a way that preferentially erases features useful in identifying individuals.

  15. Enhancement of human skin facial revitalization by moringa leaf extract cream.

    PubMed

    Ali, Atif; Akhtar, Naveed; Chowdhary, Farzana

    2014-05-01

    Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan(®) VC 98 for a period of 3 months. Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects.

  16. Enhancement of human skin facial revitalization by moringa leaf extract cream

    PubMed Central

    Akhtar, Naveed; Chowdhary, Farzana

    2014-01-01

    Introduction Solar ultraviolet exposure is the main cause of skin damage by initiation of reactive oxygen species (ROS) leading to skin collagen imperfection and eventually skin roughness. This can be reduced by proper revitalization of skin enhancing younger and healthier appearance. Aim To evaluate the skin facial revitalization effect of a cream formulation containing the Moringa oleifera leaf extract on humans. Material and methods Active cream containing 3% of the concentrated extract of moringa leaves was developed by entrapping in the inner aqueous phase of cream. Base contained no extract. Skin revitalizing parameters, i.e. surface, volume, texture parameters and surface evaluation of the living skin (SELS) were assessed comparatively after application of the base and active cream on human face using Visioscan® VC 98 for a period of 3 months. Results Surface values were increased by the base and decreased by the active cream. Effects produced for the base and active cream were significant and insignificant, respectively, as observed in the case of surface. Unlike the base, the active cream showed significant effects on skin volume, texture parameters (energy, variance and contrast) and SELS, SEr (skin roughness), SEsc (skin scaliness), SEsm (skin smoothness), and SEw (skin wrinkles) parameters. Conclusions The results suggested that moringa cream enhances skin revitalization effect and supports anti-aging skin effects. PMID:25097471

  17. Inter- and intra-individual differences in skin hydration and surface lipids measured with mid-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.

    2016-03-01

    Skin health is characterized by heterogeneous system of water and lipids in upper layers providing protection from external environment and preventing loss of vital components of the body. Skin hydration (moisture) and sebum (skin surface lipids) are considered to be important factors in skin health; a right balance between these components is an indication of healthy skin and plays a central role in protecting and preserving skin integrity. In this manuscript we present inter- and intra-individual variation in skin hydration and surface lipids measured with a home-built experimental prototype based on infrared spectroscopy. Results show good agreement with measurements performed by commercially available instruments Corneometer and Sebumeter used for skin hydration and sebum measurements respectively.

  18. 3D skin surface reconstruction from a single image by merging global curvature and local texture using the guided filtering for 3D haptic palpation.

    PubMed

    Lee, K; Kim, M; Kim, K

    2018-05-11

    Skin surface evaluation has been studied using various imaging techniques. However, all these studies had limited impact because they were performed using visual exam only. To improve on this scenario with haptic feedback, we propose 3D reconstruction of the skin surface using a single image. Unlike extant 3D skin surface reconstruction algorithms, we utilize the local texture and global curvature regions, combining the results for reconstruction. The first entails the reconstruction of global curvature, achieved by bilateral filtering that removes noise on the surface while maintaining the edge (ie, furrow) to obtain the overall curvature. The second entails the reconstruction of local texture, representing the fine wrinkles of the skin, using an advanced form of bilateral filtering. The final image is then composed by merging the two reconstructed images. We tested the curvature reconstruction part by comparing the resulting curvatures with measured values from real phantom objects while local texture reconstruction was verified by measuring skin surface roughness. Then, we showed the reconstructed result of our proposed algorithm via the reconstruction of various real skin surfaces. The experimental results demonstrate that our approach is a promising technology to reconstruct an accurate skin surface with a single skin image. We proposed 3D skin surface reconstruction using only a single camera. We highlighted the utility of global curvature, which has not been considered important in the past. Thus, we proposed a new method for 3D reconstruction that can be used for 3D haptic palpation, dividing the concepts of local and global regions. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. 7 CFR 51.1175 - Classification of defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the surface. Creasing Materially weakens the skin, or extends over more than one-third of the surface Seriously weakens the skin, or extends over more than one-half of the surface Very seriously weakens the skin, or is distributed over practically the entire surface. Dryness or mushy condition Affecting all...

  20. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes.

    PubMed

    Gallo, Richard L

    2017-06-01

    Human skin contains an abundant and diverse population of microbial organisms. Many of these microbes inhabit follicular structures of the skin. Furthermore, numerous studies have shown that the interaction of some members of the skin microbiome with host cells will result in changes in cell function. However, estimates of the potential for the microbiome to influence human health through skin have ignored the inner follicular surface, and therefore vastly underestimated the potential of the skin microbiome to have a systemic effect on the human body. By calculating the surface area of follicular and the interfollicular epithelial surface it is shown that skin provides a vast interface for interactions with the microbiome. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  1. An easy, rapid, and reproducible way to create a split-thickness wound for experimental purposes.

    PubMed

    Gümüş, Nazim; Özkaya, Neşe Kurt; Bulut, Hüseyin Eray; Yilmaz, Sarper

    2014-09-01

    Partial-thickness wound models of rat skin have some difficulties in creating the wounds in equal size and depth. Moreover, making a split-thickness wound on the rat skin seems not to be simple and rapid. A new alternative method was presented here to overcome these obstacles, by using a waterjet device to create a split-thickness wound on rat skin. Twenty-four male Wistar rats were randomly divided into 3 groups. An area of 4 × 4 cm in diameter was marked on the center of the dorsal skin. Waterjet hydrosurgery system was used to create a wound on the dorsal rat skin, by removing the outer layers of the skin. In group 1, rat skin was wounded with setting 1 to create a superficial skin wound. In group 2, it was injured with setting 5 to make a deeper wound, and in group 3, skin wound was performed with setting 10 making the deepest wound in the experiment. After the wounds were created on the rat skin, a full-thickness skin biopsy was taken from the middle of the cranial margin of the wound, including both the wound surface and the healthy skin in a specimen. Healing time of the wounds of animals was recorded in the experiment groups. Then, the results were compared statistically between the groups. In the histologic assessment, both the thickness of the remnant of the epidermis in the wound surface and the thickness of the healthy epidermis were measured under light microscope. Thickness of the epidermis remaining after wounding was statistically compared among the groups and with the healthy epidermis. The mean thickness of the remaining epidermis was determined for each group. It was higher in the superficial wounds than in the deep wounds, because of the removal of the skin from its outer surface through the deep layers of the skin with waterjet device. The most superficial wound in the experiment was observed in group 1, which was statistically different from the wounds of group 3, whereas there was no difference between the wounds of groups 1 and 2. Compared with the wounds of groups 1 and 2, the wounds in group 3 were significantly deeper than the wounds of other groups, which was statistically significant. In all groups, mean thickness of epidermis in the wound surface showed statistically significant difference from that in the healthy skin. When compared with the healing times of the wounds in the groups, a statistically significant difference was found between them. Creation of a split-skin wound, by using the waterjet system, provides a wound in reproducible size and depth, also in a standardized and rapid manner. Moreover, it makes precise and controlled wound creation in the rat skin.

  2. The effect of preheated versus room-temperature skin disinfection on bacterial colonization during pacemaker device implantation: a randomized controlled non-inferiority trial.

    PubMed

    Wistrand, Camilla; Söderquist, Bo; Magnusson, Anders; Nilsson, Ulrica

    2015-01-01

    In clinical practice, patients who are awake often comment that cold surgical skin disinfectant is unpleasant. This is not only a problem of patients' experience; heat loss during the disinfection process is a problem that can result in hypothermia. Evidence for the efficacy of preheated disinfection is scarce. We tested whether preheated skin disinfectant was non-inferior to room-temperature skin disinfectant on reducing bacterial colonization during pacemaker implantation. This randomized, controlled, non-inferiority trial included 220 patients allocated to skin disinfection with preheated (36 °C) or room-temperature (20 °C) chlorhexidine solution in 70 % ethanol. Cultures were obtained by swabbing at 4 time-points; 1) before skin disinfection (skin surface), 2) after skin disinfection (skin surface), 3) after the incision (subcutaneously in the wound), and 4) before suturing (subcutaneously in the wound). The absolute difference in growth between patients treated with preheated versus room-temperature skin disinfectant was zero (90 % CI -0.101 to 0.101; preheated: 30 of 105 [28.6 %] vs. room-temperature: 32 of 112 [28.6 %]). The pre-specified margin for statistical non-inferiority in the protocol was set at 10 % for the preheated disinfectant. There were no significant differences between groups regarding SSIs three month postoperatively, which occurred in 0.9 % (1 of 108) treated with preheated and 1.8 % (2 of 112) treated with room-temperature skin disinfectant. Preheated skin disinfection is non-inferior to room-temperature disinfection in bacterial reduction. We therefore suggest that preheated skin disinfection become routine in clean surgery. The study is registered at ClinicalTrials.gov (NCTO2260479).

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, John T.; Ivanov, Ilia N.; Shibata, Jason

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the innermore » surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.« less

  4. Some Physical and Computational Issues in Land Surface Data Assimilation of Satellite Skin Temperatures

    NASA Astrophysics Data System (ADS)

    Mackaro, Scott M.; McNider, Richard T.; Biazar, Arastoo Pour

    2012-03-01

    Skin temperatures that reflect the radiating temperature of a surface observed by infrared radiometers are one of the most widely available products from polar orbiting and geostationary satellites and the most commonly used satellite data in land surface assimilation. Past work has indicated that a simple land surface scheme with a few key parameters constrained by observations such as skin temperatures may be preferable to complex land use schemes with many unknown parameters. However, a true radiating skin temperature is sometimes not a prognostic variable in weather forecast models. Additionally, recent research has shown that skin temperatures cannot be directly used in surface similarity forms for inferring fluxes. This paper examines issues encountered in using satellite derived skin temperatures to improve surface flux specifications in weather forecast and air quality models. Attention is given to iterations necessary when attempting to nudge the surface energy budget equation to a desired state. Finally, the issue of mathematical operator splitting is examined in which the surface energy budget calculations are split with the atmospheric vertical diffusion calculations. However, the high level of connectivity between the surface and first atmospheric level means that the operator splitting leads to high frequency oscillations. These oscillations may hinder the assimilation of skin temperature derived moisture fluxes.

  5. Skin friction related behaviour of artificial turf systems.

    PubMed

    Tay, Sock Peng; Fleming, Paul; Hu, Xiao; Forrester, Steph

    2017-08-01

    The occurrence of skin friction related injuries is an issue for artificial turf sports pitches and remains a barrier to their acceptance. The purpose of this study was to evaluate the current industry standard Securisport® Sports Surface Tester that measures skin surface related frictional behaviour of artificial turf. Little research has been published about the device and its efficacy, despite its widespread use as a standard FIFA test instrument. To achieve a range of frictional behaviours, several "third generation" (3G) carpet and infill combinations were investigated; friction time profiles throughout the Securisport rotations were assessed in combination with independent measurements of skin roughness before and after friction testing via 3D surface scanning. The results indicated that carpets without infill had greatest friction (coefficients of friction 0.97-1.20) while those completely filled with sand or rubber had similar and lower values independent of carpet type (coefficient of friction (COF) ≈0.57). Surface roughness of a silicone skin (s-skin) decreased after friction testing, with the largest change on sand infilled surfaces, indicating an "abrasive" polishing effect. The combined data show that the s-skin is damaged in a surface-specific manner, thus the Securisport COF values appear to be a poor measure of the potential for skin abrasion. It is proposed that the change in s-skin roughness improves assessment of the potential for skin damage when players slide on artificial turf.

  6. SU-G-201-14: Is Maximum Skin Dose a Reliable Metric for Accelerated Partial Breast Irradiation with Brachytherapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S; Ragab, O; Patel, S

    Purpose: To evaluate the reliability of the maximum point dose (Dmax) to the skin surface as a dosimetric constraint, we investigated the correlation between Dmax at the skin surface and dose metrics at various definitions of skin thickness. Methods: 42 patients treated with APBI using a Strut Adjusted Volume Implant (SAVI) applicator between 2010 and 2014 were retrospectively reviewed. Target (PTV-EVAL) and organs at risk (OARs: skin, lung, and ribs) were delineated on a CT following NSABP B-39 guidelines. Six skin structures were contoured: a rind 3cm external to the body surface and 1, 2, 3, 4, and 5mm thickmore » rinds deep to the body surface. Inverse planning simulated annealing optimization was used to deliver 32–34Gy in 8-10 fractions to the target while minimizing OAR doses. Dmax, D0.1cc, D1.0cc, and D2.0cc to the various skin structures were calculated. Linear regressions between the metrics were evaluated using the coefficient of determination (R{sup 2}). Results: The average±SD PTV-EVAL volume and cavity-to-skin distances were 71.1±28.5cc and 6.9±5.0mm. The target V90 and V95 were 97.3±2.3% and 95.1±3.2%. The Dmax to the skin structures were 78.7±10.2% (skin surface), 82.2±10.7% (skin-1mm), 89.4±12.6% (skin-2mm), 97.9±15.4% (skin-3mm), 114.1±32.5% (skin-4mm), and 157.0±85.3% (skin-5mm). Linear regression analysis showed D1.0cc and D2.0cc to the skin 1mm and Dmax to the skin-4mm and 5mm were poorly correlated with other metrics (R{sup 2}=0.413±0.204). Dmax to the skin surface was well correlated (R{sup 2}=0.910±0.047) and D1.0cc to the skin-3mm was strongly correlated with all subsurface skin layers (R{sup 2}=0.935±0.050). Conclusion: Dmax to the skin surface is a relevant metric for breast skin dose. Contouring discontinuities in the skin with a 1mm subsurface rind and the active dwells in the skin 4 and 5mm introduced significant variations in skin DVH. D0.1cc, D1.0cc, and D2.0cc to a 3mm skin rind are more robust metrics in breast brachytherapy.« less

  7. An experimental and computational investigation of the flow field about a transonic airfoil in supercritical flow with turbulent boundary-layer separation

    NASA Technical Reports Server (NTRS)

    Rubesin, M. W.; Okuno, A. F.; Levy, L. L., Jr.; Mcdevitt, J. B.; Seegmiller, H. L.

    1976-01-01

    A combined experimental and computational research program is described for testing and guiding turbulence modeling within regions of separation induced by shock waves incident in turbulent boundary layers. Specifically, studies are made of the separated flow the rear portion of an 18%-thick circular-arc airfoil at zero angle of attack in high Reynolds number supercritical flow. The measurements include distributions of surface static pressure and local skin friction. The instruments employed include highfrequency response pressure cells and a large array of surface hot-wire skin-friction gages. Computations at the experimental flow conditions are made using time-dependent solutions of ensemble-averaged Navier-Stokes equations, plus additional equations for the turbulence modeling.

  8. Athletic equipment microbiota are shaped by interactions with human skin

    DOE PAGES

    Wood, Mariah; Gibbons, Sean M.; Lax, Simon; ...

    2015-06-19

    Background: Americans spend the vast majority of their lives in built environments. Even traditionally outdoor pursuits, such as exercising, are often now performed indoors. Bacteria that colonize these indoor ecosystems are primarily derived from the human microbiome. The modes of human interaction with indoor surfaces and the physical conditions associated with each surface type determine the steady-state ecology of the microbial community. Results: Bacterial assemblages associated with different surfaces in three athletic facilities, including floors, mats, benches, free weights, and elliptical handles, were sampled every other hour (8 am to 6 pm) for 2 days. Surface and equipment type hadmore » a stronger influence on bacterial community composition than the facility in which they were housed. Surfaces that were primarily in contact with human skin exhibited highly dynamic bacterial community composition and non-random co-occurrence patterns, suggesting that different host microbiomes—shaped by selective forces—were being deposited on these surfaces through time. Bacterial assemblages found on the floors and mats changed less over time, and species co-occurrence patterns appeared random, suggesting more neutral community assembly. Conclusions: These longitudinal patterns highlight the dramatic turnover of microbial communities on surfaces in regular contact with human skin. By uncovering these longitudinal patterns, this study promotes a better understanding of microbe-human interactions within the built environment.« less

  9. Adenomatous hyperplasia of the mucous glands in captive Archey's frogs (Leiopelma archeyi).

    PubMed

    Shaw, S D; Berger, L; Harvey, C; Alley, M R; Bishop, P J; Speare, R

    2017-05-01

    To describe the gross and light microscopic characteristics of skin lesions observed on the ventral skin of captive Archey's frogs (Leiopelma archeyi) between 2000 and 2012, and to investigate their occurrence, possible aetiology and association with survival. Postmortem skin samples were obtained for histological evaluation from 37 frogs, with and without skin lesions, that died while in captivity at Auckland Zoo between 2000 and 2012. Four frogs with skin lesions were biopsied under general anaesthesia and samples used for both light and transmission electron microscopy. The records of 94 frogs held at the University of Otago and Auckland Zoo between 2000-2012 were reviewed, which included some frogs recently collected from the wild. Information about the occurrence of skin lesions, and mortality associated with skin lesions was collated. Grossly the skin lesions varied in appearance; most were circular, pale grey papules, which measured from <0.5-1.5 mm in diameter with no umbilication. The overlying epidermis was not fragile and there was no associated inflammation. Contents often appeared clear or semi-transparent. Lesions were located predominantly on ventral surfaces including trunk, thighs, lower legs and forearms, and gular region, but not on digits. The number ranged from single to multiple, often confluent lesions covering the entire ventral surface of the frog. Histologically the lesions consisted of enlarged proliferating mucous glands that expanded the dermis and elevated the epidermis. They were semi-organised, solid or occasionally cavitated acinar structures with central lumina which sometimes contained mucus. Nuclei showed moderate anisokaryosis and mitotic figures were uncommon. Transmission electron microscopy did not show any infectious agents. Between 2000 and 2012, skin lesions were recorded in 35/94 (37%) frogs. The size and location of skin lesions varied over time, with some resolving and sometimes reappearing. Skin lesions were not associated with an increased risk of death. The skin lesions had the gross and microscopic characteristics of adenomatous hyperplasia of the dermal mucous glands. The aetiology of this adenomatous hyperplasia is unknown, but factors associated with the captive environment are the most likely cause. This is the first description of adenomatous hyperplasia of the cutaneous mucous glands in amphibians.

  10. WE-AB-303-04: A Tissue Model of Cherenkov Emission From the Skin Surface During Megavoltage X-Ray Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, A. N.; Loyalka, S. K.; Izaguirre, E. W.

    Purpose: To develop a tissue model of Cherenkov radiation emitted from the skin surface during external beam radiotherapy. Imaging Cherenkov radiation emitted from human skin allows visualization of the beam position and potentially surface dose estimates, and our goal is to characterize the optical properties of these emissions. Methods: We developed a Monte Carlo model of Cherenkov radiation generated in a semi-infinite tissue slab by megavoltage x-ray beams with optical transmission properties determined by a two-layered skin model. We separate the skin into a dermal and an epidermal layer in our model, where distinct molecular absorbers modify the Cherenkov intensitymore » spectrum in each layer while we approximate the scattering properties with Mie and Rayleigh scattering from the highly structured molecular organization found in human skin. Results: We report on the estimated distributions of the Cherenkov wavelength spectrum, emission angles, and surface distribution for the modeled irradiated skin surface. The expected intensity distribution of Cherenkov radiation emitted from skin shows a distinct intensity peak around 475 nm, the blue region of the visible spectrum, between a pair of optical absorption bands in hemoglobin and a broad plateau beginning near 600 nm and extending to at least 700 nm where melanin and hemoglobin absorption are both low. We also find that the Cherenkov intensity decreases with increasing angle from the surface normal, the majority being emitted within 20 degrees of the surface normal. Conclusion: Our estimate of the spectral distribution of Cherenkov radiation emitted from skin indicates an advantage to using imaging devices with long wavelength spectral responsivity. We also expect the most efficient imaging to be near the surface normal where the intensity is greatest; although for contoured surfaces, the relative intensity across the surface may appear to vary due to decreasing Cherenkov intensity with increased angle from the skin normal. This research was supported in part by a GAANN Fellowship from the Department of Education.« less

  11. Flexible Skins Containing Integrated Sensors and Circuitry

    NASA Technical Reports Server (NTRS)

    Liu, Chang

    2007-01-01

    Artificial sensor skins modeled partly in imitation of biological sensor skins are undergoing development. These sensor skins comprise flexible polymer substrates that contain and/or support dense one- and two-dimensional arrays of microscopic sensors and associated microelectronic circuits. They afford multiple tactile sensing modalities for measuring physical phenomena that can include contact forces; hardnesses, temperatures, and thermal conductivities of objects with which they are in contact; and pressures, shear stresses, and flow velocities in fluids. The sensor skins are mechanically robust, and, because of their flexibility, they can be readily attached to curved and possibly moving and flexing surfaces of robots, wind-tunnel models, and other objects that one might seek to equip for tactile sensing. Because of the diversity of actual and potential sensor-skin design criteria and designs and the complexity of the fabrication processes needed to realize the designs, it is not possible to describe the sensor-skin concept in detail within this article.

  12. Clinical experience with Leptospermum honey use for treatment of hard to heal neonatal wounds: case series.

    PubMed

    Boyar, V; Handa, D; Clemens, K; Shimborske, D

    2014-02-01

    Preterm, critically ill neonates represent a challenge in wound healing. Many factors predispose infants to skin injuries, including decreased epidermal-dermal cohesion, deficient stratum corneum, relatively alkaline pH of skin surface, impaired nutrition and presence of multiple devices on the skin. We present a case series describing the use of medical-grade honey-Leptospermum honey (Medihoney), for successful treatment of slowly healing neonatal wounds, specifically stage 3 pressure ulcer, dehiscent and infected sternal wound, and full-thickness wound from an extravasation injury.

  13. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    NASA Astrophysics Data System (ADS)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more-or-less fixed. The surplus energy, from absorbing increasing levels of infrared radiation, is found to adjust the curvature of the thermal skin layer such that there is a smaller gradient at the interface between the thermal skin layer and the mixed layer beneath. The vertical conduction of heat from the mixed layer to the surface is therefore hindered while the additional energy within the thermal skin layer is supporting the gradient changes of the skin layer's temperature profile. This results in heat beneath the thermal skin layer, which is a product of the absorption of solar radiation during the day, to be retained and cause an increase in upper ocean heat content. The accuracy of four published skin layer models were evaluated by comparison with the field results. The results show a need to include radiative effects, which are currently absent, in such models as they do not replicate the findings from the field data and do not elucidate the effects of the absorption of infrared radiation.

  14. Skin Effect Modeling in Conductors of Arbitrary Shape Through a Surface Admittance Operator and the Contour Integral Method

    NASA Astrophysics Data System (ADS)

    Patel, Utkarsh R.; Triverio, Piero

    2016-09-01

    An accurate modeling of skin effect inside conductors is of capital importance to solve transmission line and scattering problems. This paper presents a surface-based formulation to model skin effect in conductors of arbitrary cross section, and compute the per-unit-length impedance of a multiconductor transmission line. The proposed formulation is based on the Dirichlet-Neumann operator that relates the longitudinal electric field to the tangential magnetic field on the boundary of a conductor. We demonstrate how the surface operator can be obtained through the contour integral method for conductors of arbitrary shape. The proposed algorithm is simple to implement, efficient, and can handle arbitrary cross-sections, which is a main advantage over the existing approach based on eigenfunctions, which is available only for canonical conductor's shapes. The versatility of the method is illustrated through a diverse set of examples, which includes transmission lines with trapezoidal, curved, and V-shaped conductors. Numerical results demonstrate the accuracy, versatility, and efficiency of the proposed technique.

  15. CHARACTERIZING TRANSFER OF SURFACE RESIDUES TO SKIN USING A VIDEO-FLUORESCENT IMAGING TECHNIQUE

    EPA Science Inventory

    Surface-to-skin transfer of contaminants is a complex process. For children's residential exposure, transfer of chemicals from contaminated surfaces such as floors and furniture is potentially significant. Once on the skin, residues and contaminated particles can be transferred b...

  16. Effect of Fluid Intake on Hydration Status and Skin Barrier Characteristics in Geriatric Patients: An Explorative Study.

    PubMed

    Akdeniz, Merve; Boeing, Heiner; Müller-Werdan, Ursula; Aykac, Volkan; Steffen, Annika; Schell, Mareike; Blume-Peytavi, Ulrike; Kottner, Jan

    2018-01-01

    Inadequate fluid intake is assumed to be a trigger of water-loss dehydration, which is a major health risk in aged and geriatric populations. Thus, there is a need to search for easy to use diagnostic tests to identify dehydration. Our overall aim was to investigate whether skin barrier parameters could be used for predicting fluid intake and/or hydration status in geriatric patients. An explorative observational comparative study was conducted in a geriatric hospital including patients aged 65 years and older. We measured 3-day fluid intake, skin barrier parameters, Overall Dry Skin Score, serum osmolality, cognitive and functional health, and medications. Forty patients were included (mean age 78.45 years and 65% women) with a mean fluid intake of 1,747 mL/day. 20% of the patients were dehydrated and 22.5% had an impending dehydration according to serum osmolality. Multivariate analysis suggested that skin surface pH and epidermal hydration at the face were associated with fluid intake. Serum osmolality was associated with epidermal hydration at the leg and skin surface pH at the face. Fluid intake was not correlated with serum osmolality. Diuretics were associated with high serum osmolality. Approximately half of the patients were diagnosed as being dehydrated according to osmolality, which is the current reference standard. However, there was no association with fluid intake, questioning the clinical relevance of this measure. Results indicate that single skin barrier parameters are poor markers for fluid intake or osmolality. Epidermal hydration might play a role but most probably in combination with other tests. © 2018 S. Karger AG, Basel.

  17. Allergy risks with laptop computers - nickel and cobalt release.

    PubMed

    Midander, Klara; Hurtig, Anna; Borg Tornberg, Anette; Julander, Anneli

    2016-06-01

    Laptop computers may release nickel and cobalt when they come into contact with skin. Few computer brands have been studied. To evaluate nickel and cobalt release from laptop computers belonging to several brands by using spot tests, and to quantify the release from one new computer by using artificial sweat solution. Nickel and cobalt spot tests were used on the lid and wrist supports of 31 laptop computers representing five brands. The same surfaces were tested on all computers. In addition, one new computer was bought and dismantled for release tests in artificial sweat according to the standard method described in EN1811. Thirty-nine per cent of the laptop computers were nickel spot test-positive, and 6% were positive for cobalt. The nickel on the surface could be worn off by consecutive spot testing of the same surface. The release test in artificial sweat of one computer showed that nickel and cobalt were released, although in low concentrations. As they constitute a potential source of skin exposure to metals, laptop computers should qualify as objects to be included within the restriction of nickel in REACH, following the definition of 'prolonged skin contact'. Skin contact resulting from laptop use may contribute to an accumulated skin dose of nickel that can be problematic for sensitized individuals. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Surface protection in bio-shields via a functional soft skin layer: Lessons from the turtle shell.

    PubMed

    Shelef, Yaniv; Bar-On, Benny

    2017-09-01

    The turtle shell is a functional bio-shielding element, which has evolved naturally to provide protection against predator attacks that involve biting and clawing. The near-surface architecture of the turtle shell includes a soft bi-layer skin coating - rather than a hard exterior - which functions as a first line of defense against surface damage. This architecture represents a novel type of bio-shielding configuration, namely, an inverse structural-mechanical design, rather than the hard-coated bio-shielding elements identified so far. In the current study, we used experimentally based structural modeling and FE simulations to analyze the mechanical significance of this unconventional protection architecture in terms of resistance to surface damage upon extensive indentations. We found that the functional bi-layer skin of the turtle shell, which provides graded (soft-softer-hard) mechanical characteristics to the bio-shield exterior, serves as a bumper-buffer mechanism. This material-level adaptation protects the inner core from the highly localized indentation loads via stress delocalization and extensive near-surface plasticity. The newly revealed functional bi-layer coating architecture can potentially be adapted, using synthetic materials, to considerably enhance the surface load-bearing capabilities of various engineering configurations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Coffee polyphenols extracted from green coffee beans improve skin properties and microcirculatory function.

    PubMed

    Fukagawa, Satoko; Haramizu, Satoshi; Sasaoka, Shun; Yasuda, Yuka; Tsujimura, Hisashi; Murase, Takatoshi

    2017-09-01

    Coffee polyphenols (CPPs), including chlorogenic acid, exert various physiological activities. The purpose of this study was to investigate the effects of CPPs on skin properties and microcirculatory function in humans. In this double-blind, placebo-controlled study, 49 female subjects with mildly xerotic skin received either a test beverage containing CPPs (270 mg/100 mL/day) or a placebo beverage for 8 weeks. The ingestion of CPPs significantly lowered the clinical scores for skin dryness, decreased transepidermal water loss, skin surface pH, and increased stratum corneum hydration and the responsiveness of skin blood flow during local warming. Moreover, the amounts of free fatty acids and lactic acid in the stratum corneum significantly increased after the ingestion of CPPs. These results suggest that an 8-week intake of CPPs improve skin permeability barrier function and hydration, with a concomitant improvement in microcirculatory function, leading to efficacy in the alleviation of mildly xerotic skin.

  20. Base Passive Porosity for Vehicle Drag Reduction

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X. S. (Inventor); Wood, Richard M. (Inventor)

    2003-01-01

    A device for controlling drag on a ground vehicle. The device consists of a porous skin or skins mounted on the trailing surface and/or aft portions of the ground vehicle. The porous skin is separated from the vehicle surface by a distance of at least the thickness of the porous skin. Alternately, the trailing surface, sides, and/or top surfaces of the ground vehicle may be porous. The device minimizes the strength of the separation in the base and wake regions of the ground vehicle, thus reducing drag.

  1. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.

    PubMed

    Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng

    2011-01-01

    In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes.

  2. Design, Fabrication and Experimental Validation of a Novel Dry-Contact Sensor for Measuring Electroencephalography Signals without Skin Preparation

    PubMed Central

    Liao, Lun-De; Wang, I-Jan; Chen, Sheng-Fu; Chang, Jyh-Yeong; Lin, Chin-Teng

    2011-01-01

    In the present study, novel dry-contact sensors for measuring electro-encephalography (EEG) signals without any skin preparation are designed, fabricated by an injection molding manufacturing process and experimentally validated. Conventional wet electrodes are commonly used to measure EEG signals; they provide excellent EEG signals subject to proper skin preparation and conductive gel application. However, a series of skin preparation procedures for applying the wet electrodes is always required and usually creates trouble for users. To overcome these drawbacks, novel dry-contact EEG sensors were proposed for potential operation in the presence or absence of hair and without any skin preparation or conductive gel usage. The dry EEG sensors were designed to contact the scalp surface with 17 spring contact probes. Each probe was designed to include a probe head, plunger, spring, and barrel. The 17 probes were inserted into a flexible substrate using a one-time forming process via an established injection molding procedure. With these 17 spring contact probes, the flexible substrate allows for high geometric conformity between the sensor and the irregular scalp surface to maintain low skin-sensor interface impedance. Additionally, the flexible substrate also initiates a sensor buffer effect, eliminating pain when force is applied. The proposed dry EEG sensor was reliable in measuring EEG signals without any skin preparation or conductive gel usage, as compared with the conventional wet electrodes. PMID:22163929

  3. Implementation of Coupled Skin Temperature Analysis and Bias Correction in a Global Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Radakovich, Jon; Bosilovich, M.; Chern, Jiun-dar; daSilva, Arlindo

    2004-01-01

    The NASA/NCAR Finite Volume GCM (fvGCM) with the NCAR CLM (Community Land Model) version 2.0 was integrated into the NASA/GMAO Finite Volume Data Assimilation System (fvDAS). A new method was developed for coupled skin temperature assimilation and bias correction where the analysis increment and bias correction term is passed into the CLM2 and considered a forcing term in the solution to the energy balance. For our purposes, the fvDAS CLM2 was run at 1 deg. x 1.25 deg. horizontal resolution with 55 vertical levels. We assimilate the ISCCP-DX (30 km resolution) surface temperature product. The atmospheric analysis was performed 6-hourly, while the skin temperature analysis was performed 3-hourly. The bias correction term, which was updated at the analysis times, was added to the skin temperature tendency equation at every timestep. In this presentation, we focus on the validation of the surface energy budget at the in situ reference sites for the Coordinated Enhanced Observation Period (CEOP). We will concentrate on sites that include independent skin temperature measurements and complete energy budget observations for the month of July 2001. In addition, MODIS skin temperature will be used for validation. Several assimilations were conducted and preliminary results will be presented.

  4. Fish skin bacteria: Colonial and cellular hydrophobicity.

    PubMed

    Sar, N; Rosenberg, E

    1987-05-01

    Bacteria were desorbed from the skin of healthy, fast-swimming fish by several procedures, including brief exposure to sonic oscillation and treatment with nontoxic surface active agents. The surface properties of these bacteria were studied by measuring their adhesion to hexadecane, as well as by a newly developed, simple method for studying the hydrophobicity of bacterial lawns. This method, referred to as the "Direction of Spreading" (DOS) method, consists of recording the direction to which a water drop spreads when introduced at the border between bacterial lawns and other surfaces. Of the 13 fish skin isolates examined, two strains were as hydrophobic as polystyrene by the DOS method. Suspended cells of one of these strains adhered strongly to hexadecane (84%), whereas cells of the other strain adhered poorly (13%). Another strain which was almost as hydrophobic as polystyrene by the DOS method did not adhere to hexadecane at all. Similarly, lawns of three other strains were more hydrophobic than glass by the DOS method, but cell suspensions prepared from these colonies showed little or no adhesion to hexadecane. The high colonial but relatively low cellular hydrophobicity could be due to a hydrophobic slime that is removed during the suspension and washing procedures. The possibility that specific bacteria assist in fish locomotion by changing the surface properties of the fish skin and by producing drag-reducing polymers is discussed.

  5. Skin care in nursing: A critical discussion of nursing practice and research.

    PubMed

    Kottner, Jan; Surber, Christian

    2016-09-01

    Skin (self-)care is part of human life from birth until death. Today many different skin care practices, preferences, traditions and routines exist in parallel. In addition, preventive and therapeutic skin care is delivered in nursing and healthcare by formal and informal caregivers. The aim of this contribution is a critical discussion about skin care in the context of professional nursing practice. An explicit skin assessment using accurate diagnostic statements is needed for clinical decision making. Special attention should be paid on high risk skin areas, which may be either too dry or too moist. From a safety perspective the protection and maintenance of skin integrity should have the highest priority. Skin cleansing is the removal of unwanted substances from the skin surface. Despite cleansing efficacy soap, other surfactants and water will inevitably always result in the destruction of the skin barrier. Thousands of products are available to hydrate, moisturize, protect and restore skin properties dependent upon their formulation and the concentration of ingredients. These products intended to left in contact with skin exhibit several actions on and in the skin interfering with skin biology. Unwanted side effects include hyper-hydration and disorganization of lipid bilayers in the stratum corneum, a dysfunctional barrier, increased susceptibility to irritants and allergies, and increases of skin surface pH. Where the skin barrier is impaired appropriate interventions, e.g. apply lipophilic products in sufficient quantity to treat dry skin or protect the skin from exposure to irritants should be provided. A key statement of this contribution is: every skin care activity matters. Every time something is placed on the skin, a functional and structural response is provoked. This response can be either desired or undesired, beneficial or harmful. The choice of all skin care interventions in nursing and healthcare practice must be based on an accurate assessment of the skin and concomitant health conditions and on a clearly defined outcome. A standardized skin care and skin care product language is needed for researchers planning and conducting clinical trials, for reviewers doing systematic reviews and evidence-base summaries, for nurses and other healthcare workers to deliver evidence-based and safe skin care. Copyright © 2016. Published by Elsevier Ltd.

  6. Method and apparatus to measure the depth of skin burns

    DOEpatents

    Dickey, Fred M.; Holswade, Scott C.

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  7. Investigation on large-area fabrication of vivid shark skin with superior surface functions

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Xin; Ma, Lingxi; Che, Da; Zhang, Deyuan; Sudarshan, T. S.

    2014-10-01

    Shark skin has attracted worldwide attention because of its superior drag reduction, antifouling performance induced from its unique surface morphology. Although the vivid shark skin has been fabricated by a bio-replicated micro-imprinting approach in previous studies and superior drag reduction effect has been validated in water tunnel, continuous large-area fabrication is still an obstacle to wide apply. In this paper, one novel bio-replication coating technology is proposed for large-area transfer of shark skin based on rapid UV curable paint. Apart from design of coating system, bio-replication accuracy of surface morphology was validated about 97% by comparison between shark skin template and coating surface morphology. Finally, the drag reduction and anti-fouling function of coating surface were tested in water tunnel and open algae pond respectively. Drag reduction rate of coating surface was validated about 12% higher and anti-fouling was proved to about hundred times ameliorate, all of which are more excellent than simple 2D riblet surface.

  8. Use of a coverlet system for the management of skin microclimate.

    PubMed

    Collier, Mark; Potts, Carol; Shaw, Elaine

    2014-08-12

    Pressure and shear are the two key extrinsic factors that cause pressure ulcer damage. However, if the resilience of the skin and soft tissue deteriorates, the individual's susceptibility to such pressure damage will increase. The risk is greater if the microclimate at the interface between the skin and the support surface is impaired. This will occur when the skin temperature is elevated and there is excess moisture on the skin surface. Microclimate management therefore plays an important role in pressure ulcer prevention. This article describes how use of a new coverlet system (Skin IQ Microclimate Manager, ArjoHuntleigh) can avoid the accumulation of heat and moisture at the patient/support-surface interface.

  9. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures.

    PubMed

    Filippov, Alexander E; Gorb, Stanislav N

    2016-03-23

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate.

  10. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures

    PubMed Central

    Filippov, Alexander E.; Gorb, Stanislav N.

    2016-01-01

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate. PMID:27005001

  11. Modelling of the frictional behaviour of the snake skin covered by anisotropic surface nanostructures

    NASA Astrophysics Data System (ADS)

    Filippov, Alexander E.; Gorb, Stanislav N.

    2016-03-01

    Previous experimental data clearly revealed anisotropic friction on the ventral scale surface of snakes. However, it is known that frictional properties of the ventral surface of the snake skin range in a very broad range and the degree of anisotropy ranges as well to a quite strong extent. This might be due to the variety of species studied, diversity of approaches used for the friction characterization, and/or due to the variety of substrates used as a counterpart in the experiments. In order to understand the interactions between the nanostructure arrays of the ventral surface of the snake skin, this study was undertaken, which is aimed at numerical modeling of frictional properties of the structurally anisotropic surfaces in contact with various size of asperities. The model shows that frictional anisotropy appears on the snake skin only on the substrates with a characteristic range of roughness, which is less or comparable with dimensions of the skin microstructure. In other words, scale of the skin relief should reflect an adaptation to the particular range of surfaces asperities of the substrate.

  12. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  13. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2016-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project, i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  14. A novel sampling method for identification of endogenous skin surface compounds by use of DART-MS and MALDI-MS.

    PubMed

    Mess, Aylin; Enthaler, Bernd; Fischer, Markus; Rapp, Claudius; Pruns, Julia K; Vietzke, Jens-Peter

    2013-01-15

    Identification of endogenous skin surface compounds is an intriguing challenge in comparative skin investigations. Notably, this short communication is focused on the analysis of small molecules, e.g. natural moisturizing factor (NMF) components and lipids, using a novel sampling method with DIP-it samplers for non-invasive examination of the human skin surface. As a result, extraction of analytes directly from the skin surface by use of various solvents can be replaced with the mentioned procedure. Screening of measureable compounds is achieved by direct analysis in real time mass spectrometry (DART-MS) without further sample preparation. Results are supplemented by dissolving analytes from the DIP-it samplers by use of different solvents, and subsequent matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) measurements. An interesting comparison of the mentioned MS techniques for determination of skin surface compounds in the mass range of 50-1000 Da is presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Simulation study and guidelines to generate Laser-induced Surface Acoustic Waves for human skin feature detection

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Chen, Kun; Dorantes-Gonzalez, Dante J.; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2015-12-01

    Despite the seriously increasing number of people contracting skin cancer every year, limited attention has been given to the investigation of human skin tissues. To this regard, Laser-induced Surface Acoustic Wave (LSAW) technology, with its accurate, non-invasive and rapid testing characteristics, has recently shown promising results in biological and biomedical tissues. In order to improve the measurement accuracy and efficiency of detecting important features in highly opaque and soft surfaces such as human skin, this paper identifies the most important parameters of a pulse laser source, as well as provides practical guidelines to recommended proper ranges to generate Surface Acoustic Waves (SAWs) for characterization purposes. Considering that melanoma is a serious type of skin cancer, we conducted a finite element simulation-based research on the generation and propagation of surface waves in human skin containing a melanoma-like feature, determine best pulse laser parameter ranges of variation, simulation mesh size and time step, working bandwidth, and minimal size of detectable melanoma.

  16. Composite foam structures

    NASA Technical Reports Server (NTRS)

    Williams, Brian E. (Inventor); Brockmeyer, Jerry (Inventor); Tuffias, Robert H. (Inventor)

    2005-01-01

    A composite rigid foam structure that has a skin or coating on at least one of its surfaces. The skin is formed in situ by thermal spray techniques. The skin is bonded substantially throughout the surface of the porous substrate to the peripheries of the pores. The skin on the average does not penetrate the surface of the substrate by more than the depth of about 2 to 5 pores. Thus, thermal spraying the skin onto the rigid foam produces a composite that is tightly and uniformly bonded together without unduly increasing the weight of the composite structure. Both thermal conductivity and bonding are excellent.

  17. Effect of temperature on the passivation behavior of steel rebar

    NASA Astrophysics Data System (ADS)

    Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke

    2014-05-01

    Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.

  18. Advances in Measurement of Skin Friction in Airflow

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    2006-01-01

    The surface interferometric skin-friction (SISF) measurement system is an instrument for determining the distribution of surface shear stress (skin friction) on a wind-tunnel model. The SISF system utilizes the established oil-film interference method, along with advanced image-data-processing techniques and mathematical models that express the relationship between interferograms and skin friction, to determine the distribution of skin friction over an observed region of the surface of a model during a single wind-tunnel test. In the oil-film interference method, a wind-tunnel model is coated with a thin film of oil of known viscosity and is illuminated with quasi-monochromatic, collimated light, typically from a mercury lamp. The light reflected from the outer surface of the oil film interferes with the light reflected from the oil-covered surface of the model. In the present version of the oil-film interference method, a camera captures an image of the illuminated model and the image in the camera is modulated by the interference pattern. The interference pattern depends on the oil-thickness distribution on the observed surface, and this distribution can be extracted through analysis of the image acquired by the camera. The oil-film technique is augmented by a tracer technique for observing the streamline pattern. To make the streamlines visible, small dots of fluorescentchalk/oil mixture are placed on the model just before a test. During the test, the chalk particles are embedded in the oil flow and produce chalk streaks that mark the streamlines. The instantaneous rate of thinning of the oil film at a given position on the surface of the model can be expressed as a function of the instantaneous thickness, the skin-friction distribution on the surface, and the streamline pattern on the surface; the functional relationship is expressed by a mathematical model that is nonlinear in the oil-film thickness and is known simply as the thin-oil-film equation. From the image data acquired as described, the time-dependent oil-thickness distribution and streamline pattern are extracted and by inversion of the thin-oil-film equation it is then possible to determine the skin-friction distribution. In addition to a quasi-monochromatic light source, the SISF system includes a beam splitter and two video cameras equipped with filters for observing the same area on a model in different wavelength ranges, plus a frame grabber and a computer for digitizing the video images and processing the image data. One video camera acquires the interference pattern in a narrow wavelength range of the quasi-monochromatic source. The other video camera acquires the streamline image of fluorescence from the chalk in a nearby but wider wavelength range. The interference- pattern and fluorescence images are digitized, and the resulting data are processed by an algorithm that inverts the thin-oil-film equation to find the skin-friction distribution.

  19. [The advantages in using cyanoacrylate glue over skin staples as a method of skin graft fixation in the pediatric burns population].

    PubMed

    Curings, P; Vincent, P-L; Viard, R; Gir, P; Comparin, J-P; Voulliaume, D

    2017-11-23

    Local postoperative care and burn wound management can present with a certain degree of difficulty in the pediatric population. While the use of skin staples as a method of skin graft fixation is a well-known, rapid and simple method, their removal can be painful and may necessitate some sedation or even general anesthesia. We studied in this article the advantages and economic value of using the cyanoacrylate glue as a fixation method for skin grafts. A comparative study was carried out from 2012 to 2016. Hundred and eighteen infants with burns up to 5% of total body surface area were included in the study. Seventy-two infants had split thickness skin grafts fixed with skin staples. Forty-six infants had split thickness skin grafts fixed with cyanoacrylate glue. We compared the quality of graft, the sedation used during the first postoperative dressing, the length of hospital stay, the amount of glue used and the presence of complications. There is a difference between the two groups studied in terms of age and total burn surface area. The rate of graft take was 100% in both groups. The first postoperative dressing was carried out without the use of powerful analgesia in the cyanoacrylate group, while it was necessary to use general anesthesia in 64% of the skin staples group. The average length of stay in hospital after skin grafting was 4.9 days for the cyanoacrylate glue versus 6.5 days in the skin staples group. No complications were noted in the 2 groups. The use of cyanoacrylate glue allows rapid fixation of skin grafts and avoid general anesthesia for postoperative cares. Subsequently the length of hospital stay is reduced within 25%. The medico-economic value of glue protocol is highly significant compared to skin staples, while having similar good results and without significant problems. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Multiple-reflection model of human skin and estimation of pigment concentrations

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Rie; Tominaga, Shoji; Tanno, Osamu

    2012-07-01

    We describe a new method for estimating the concentrations of pigments in the human skin using surface spectral reflectance. We derive an equation that expresses the surface spectral reflectance of the human skin. First, we propose an optical model of the human skin that accounts for the stratum corneum. We also consider the difference between the scattering coefficient of the epidermis and that of the dermis. We then derive an equation by applying the Kubelka-Munk theory to an optical model of the human skin. Unlike a model developed in a recent study, the present equation considers pigments as well as multiple reflections and the thicknesses of the skin layers as factors that affect the color of the human skin. In two experiments, we estimate the pigment concentrations using the measured surface spectral reflectances. Finally, we confirm the feasibility of the concentrations estimated by the proposed method by evaluating the estimated pigment concentrations in the skin.

  1. Examination of Ricochet Gunshot Wounds From Commonly Encountered Surfaces.

    PubMed

    Hlavaty, Leigh; Avedschmidt, Sarah; Root, Kelly; Amley, Jeffrey; Sung, LokMan

    2016-12-01

    Proper interpretation of gunshot wounds is vital for the forensic pathologist and requires experience and expertise, as well as consultation with a firearms and ballistics expert and careful scene investigation in cases of atypical gunshot wounds. This study is the first large-series examining ricochet gunshot wounds involving different firearm calibers. Typical gunshot wounds created from 4 handgun calibers (22 Long Rifle, 9 × 19 mm Parabellum, .40 Smith &Wesson, and .45 Automatic Colt Pistol) and 2 rifle calibers (5.56 and 7.62 mm) were compared with wounds caused by bullets of those same calibers ricocheting off commonly encountered surfaces (concrete, asphalt, aluminum traffic signs, clay brick, and dry wall). Porcine skin, a human skin analog, attached to sheets of cardboard serviced as witness panels for capturing the entrance wounds. Examination of over 150 handgun and rifle entrance wounds established that every caliber and every ricochet surface resulted in atypical features, including irregularity in size or shape, lack of marginal abrasion, or other injuries on the surrounding skin. The most significant factor influencing the variability of the ricochet wounds was the surface the bullet deflected off before striking the body.

  2. Flow over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Warncke Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2006-11-01

    Certain species of sharks (e.g. shortfin mako and common hammerhead) have a skin structure that could result in a bristling of their denticles (scales) during increased swimming speeds (Bechert, D. W., Bruse, M., Hage, W. and Meyer, R. 2000, Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 80:157-171). This unique surface geometry results in a three-dimensional array of cavities* (d-type roughness geometry) forming within the surface and has been given the acronym MAKO (Micro-roughness Array for Kinematic Optimization). Possible mechanisms leading to drag reduction over the shark's body by this unique roughness geometry include separation control thereby reducing pressure drag, skin friction reduction (via the `micro-air bearing' effect first proposed by Bushnell (AIAA 83-0227)), as well as possible transition delay in the boundary layer. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies. Support for this research by NSF SGER grant CTS-0630489 and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  3. Appearance benefits of skin moisturization.

    PubMed

    Jiang, Z-X; DeLaCruz, J

    2011-02-01

    Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.

  4. [Axillary hyperhidrosis--efficacy and tolerability of an aluminium chloride antiperspirant. Prospective evaluation on 20 patients with idiopathic axillary hyperhidrosis].

    PubMed

    Streker, M; Reuther, T; Verst, S; Kerscher, M

    2010-02-01

    The purpose of this study was to evaluate the efficacy and tolerability of aluminium chloride gel for treatment of axillary hyperhidrosis. A total of 20 patients aged 22-38 (mean age: 26.9+/-4.3) with idiopathic axillary hyperhidrosis were included and treated with an antiperspirant (Sweat-off, Sweat-off GmbH, Hügelsheim). Study duration was 42 days. Treatment efficacy was evaluated clinically, as well as by starch-iodine test, gravimetric analysis and evaluation of the skin surface pH. After treatment there was a significant clinical improvement accompanied by significant qualitative and quantitative reduction of sweat as well as a significant reduction of skin surface pH. Except for slight skin irritation in 6 patients, there were no other side effects. Patient satisfaction improved markedly during the study. Treatment of axillary hyperhidrosis with aluminium chloride is an effective, safe and inexpensive treatment modality.

  5. Interaction of atmospheric pressure plasmas with dry and wet wounded skin

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kushner, Mark

    2010-11-01

    Non-equilibrium plasmas in direct contact with living tissue can produce therapeutic effects. Dielectric barrier discharge (DBD) devices used for this purpose contain the powered electrode while the tissue being treated is usually the floating electrode. The plasma produces beneficial effects through: (i) electric fields, (ii) production of radicals and charged species, (iii) photons and (iv) energetic ions impinging onto wounds and tissue surfaces. Using a 2-d plasma hydrodynamics model, we discuss the interaction of DBD filaments with human skin. We model the propagation of the streamer across the gap, its intersection with skin, the charging of cell surfaces and the generation of conduction and displacement currents, and electric fields in the cells. The cellular structure in the first few mm of human skin is incorporated into the computational mesh with permittivity and conductivity to represent the electrical properties of the intra- and inter-cell structures. In this talk, we concentrate on the effects of plasmas on open wounds which are either dry or filled with blood serum. We will discuss the penetration of electric fields through the blood serum and into the underlying cells, including the possible interactions with blood platelets, and the distribution of ion energies onto the liquid and cellular surfaces.

  6. Effect of Size, Surface Charge, and Hydrophobicity of Poly(amidoamine) Dendrimers on Their Skin Penetration

    PubMed Central

    Yang, Yang; Sunoqrot, Suhair; Stowell, Chelsea; Ji, Jingli; Lee, Chan-Woo; Kim, Jin Woong; Khan, Seema A.; Hong, Seungpyo

    2012-01-01

    The barrier functions of the stratum corneum (SC) and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this paper, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid (OA) to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector. PMID:22621160

  7. The skin in psoriasis: assessment and challenges.

    PubMed

    Oji, Vinzenz; Luger, Thomas A

    2015-01-01

    The coexistence of psoriasis arthritis (PsA) and psoriasis vulgaris in about 20% of patients with psoriasis leads to a need for rheumatologic-dermatologic team work. We summarise the role of dermatologists in assessment of the skin in psoriasis. Chronic plaque psoriasis must be differentiated from other subtypes such as generalised pustular psoriasis (GPP) or palmoplantar pustulosis (PPP). Therapeutic management is based on the evaluation of the disease severity. Quantitative scoring of skin severity includes calculation of the Psoriasis Area and Severity Index (PASI), body surface area (BSA) as well as the Dermatology Life Quality Index (DLQI). These scoring systems do not replace the traditional dermatologic medical history and physical examination of the patient. The skin should be examined for additional skin diseases; moreover, patients should be monitored for comorbidity, most importantly PsA and cardiovascular comorbidity.

  8. Interpretation of the human skin biotribological behaviour after tape stripping

    PubMed Central

    Pailler-Mattei, C.; Guerret-Piécourt, C.; Zahouani, H.; Nicoli, S.

    2011-01-01

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ0, and the second term depending on the electric shear strength, τelec. The experimental results allowed to estimate a numerical value of the electric shear strength τelec. Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption. PMID:21227961

  9. Interpretation of the human skin biotribological behaviour after tape stripping.

    PubMed

    Pailler-Mattei, C; Guerret-Piécourt, C; Zahouani, H; Nicoli, S

    2011-07-06

    The present study deals with the modification of the human skin biotribological behaviour after tape stripping. The tape-stripping procedure consists in the sequential application and removal of adhesive tapes on the skin surface in order to remove stratum corneum (SC) layers, which electrically charges the skin surface. The skin electric charges generated by tape stripping highly change the skin friction behaviour by increasing the adhesion component of the skin friction coefficient. It has been proposed to rewrite the friction adhesion component as the sum of two terms: the first classical adhesion term depending on the intrinsic shear strength, τ(0), and the second term depending on the electric shear strength, τ(elec). The experimental results allowed to estimate a numerical value of the electric shear strength τ(elec). Moreover, a plan capacitor model with a dielectric material inside was used to modelize the experimental system. This physical model permitted to evaluate the friction electric force and the electric shear strength values to calculate the skin friction coefficient after the tape stripping. The comparison between the experimental and the theoretical value of the skin friction coefficient after the tape stripping has shown the importance of the electric charges on skin biotribological behaviour. The static electric charges produced by tape stripping on the skin surface are probably able to highly modify the interaction of formulations with the skin surface and their spreading properties. This phenomenon, generally overlooked, should be taken into consideration as it could be involved in alteration of drug absorption.

  10. Active Surfaces and Interfaces of Soft Materials

    NASA Astrophysics Data System (ADS)

    Wang, Qiming

    A variety of intriguing surface patterns have been observed on developing natural systems, ranging from corrugated surface of white blood cells at nanometer scales to wrinkled dog skins at millimeter scales. To mimetically harness functionalities of natural morphologies, artificial transformative skin systems by using soft active materials have been rationally designed to generate versatile patterns for a variety of engineering applications. The study of the mechanics and design of these dynamic surface patterns on soft active materials are both physically interesting and technologically important. This dissertation starts with studying abundant surface patterns in Nature by constructing a unified phase diagram of surface instabilities on soft materials with minimum numbers of physical parameters. Guided by this integrated phase diagram, an electroactive system is designed to investigate a variety of electrically-induced surface instabilities of elastomers, including electro-creasing, electro-cratering, electro-wrinkling and electro-cavitation. Combing experimental, theoretical and computational methods, the initiation, evolution and transition of these instabilities are analyzed. To apply these dynamic surface instabilities to serving engineering and biology, new techniques of Dynamic Electrostatic Lithography and electroactive anti-biofouling are demonstrated.

  11. A Hydrogel/Carbon-Nanotube Needle-Free Device for Electrostimulated Skin Drug Delivery.

    PubMed

    Guillet, Jean-François; Flahaut, Emmanuel; Golzio, Muriel

    2017-10-06

    The permeability of skin allows passive diffusion across the epidermis to reach blood vessels but this is possible only for small molecules such as nicotine. In order to achieve transdermal delivery of large molecules such as insulin or plasmid DNA, permeability of the skin and mainly the permeability of the stratum corneum skin layer has to be increased. Moreover, alternative routes that avoid the use of needles will improve the quality of life of patients. A method known as electropermeabilisation has been shown to increase skin permeability. Herein, we report the fabrication of an innovative hydrogel made of a nanocomposite material. This nanocomposite device aims to permeabilise the skin and deliver drug molecules at the same time. It includes a biocompatible polymer matrix (hydrogel) and double-walled carbon nanotubes (DWCNTs) in order to bring electrical conductivity and improve mechanical properties. Carbon nanotubes and especially DWCNTs are ideal candidates, combining high electrical conductivity with a very high specific surface area together with a good biocompatibility when included into a material. The preparation and characterization of the nanocomposite hydrogel as well as first results of electrostimulated transdermal delivery using an ex vivo mouse skin model are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  13. Quantification of texture match of the skin graft: function and morphology of the stratum corneum.

    PubMed

    Inoue, K; Matsumoto, K

    1986-01-01

    In an attempt to analyze the "texture match" of grafted skin, functional and morphological aspects of the stratum corneum were studied using the Skin Surface Hydrometer (IBS Inc.) and the scanning electron microscope. The results showed that hygroscopicity and water holding capacity of the stratum corneum played a crucial role in making the skin surface soft and smooth. Morphologically there were regional differences in the surface pattern and the mean area of corneocytes, suggesting that these differences affect skin texture. It is suggested that the present functional and morphological studies of the stratum corneum can provide a quantitative measure of the "texture match".

  14. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations.

    PubMed

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D

    2012-10-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using the wavelet analysis of blood flow oscillations in rats. Twelve Sprague-Dawley rats were randomly assigned to three protocols, including pressure with local cooling (Δt = -10 °C), pressure with local heating (Δt = 10 °C) and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin blood flow was measured using laser Doppler flowmetry. The 3 h loading period was divided into non-overlapping 30 min epochs for the analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased under the conditions of pressure with heating and of pressure without temperature changes, but maintained stable under the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers.

  15. Local cooling reduces skin ischemia under surface pressure in rats: an assessment by wavelet analysis of laser Doppler blood flow oscillations

    PubMed Central

    Jan, Yih-Kuen; Lee, Bernard; Liao, Fuyuan; Foreman, Robert D.

    2012-01-01

    The objectives of this study were to investigate the effects of local cooling on skin blood flow response to prolonged surface pressure and to identify associated physiological controls mediating these responses using wavelet analysis of blood flow oscillations in rats. Twelve Sprague Dawley rats were randomly assigned into three protocols, including pressure with local cooling (Δt= −10°C), pressure with local heating (Δt= 10°C), and pressure without temperature changes. Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 hours. Skin blood flow was measured using laser Doppler flowmetry. The 3-hour loading period was divided into non-overlapping 30 min epochs for analysis of the changes of skin blood flow oscillations using wavelet spectral analysis. The wavelet amplitudes and powers of three frequencies (metabolic, neurogenic and myogenic) of skin blood flow oscillations were calculated. The results showed that after an initial loading period of 30 min, skin blood flow continually decreased in the conditions of pressure with heating and of pressure without temperature changes, but maintained stable in the condition of pressure with cooling. Wavelet analysis revealed that stable skin blood flow under pressure with cooling was attributed to changes in the metabolic and myogenic frequencies. This study demonstrates that local cooling may be useful for reducing ischemia of weight-bearing soft tissues that prevents pressure ulcers. PMID:23010955

  16. Frequent isolation of Propionibacterium acnes from the shoulder dermis despite skin preparation and prophylactic antibiotics.

    PubMed

    Phadnis, Joideep; Gordon, David; Krishnan, Jeganath; Bain, Gregory Ian

    2016-02-01

    In vitro, Propionibacterium acnes (P acnes) is highly susceptible to commonly used antibiotics and antiseptics, yet in vivo, it still causes postsurgical infections of the shoulder. We hypothesized that the local environment within the pilosebaceous glands protects P acnes and that incision of the skin transects these glands, exposing viable P acnes to the wound. Fifty consecutive patients undergoing open shoulder surgery were prospectively studied. Prophylactic antibiotics were administered to all patients. Microbiologic swabs of the skin surface were taken before and after skin preparation with 70% alcoholic chlorhexidine. The skin was incised, and a further swab and dermal biopsy specimen were taken. P acnes was cultured in 21 of 50 prepreparation skin surface swabs (42%), 7 of 50 postpreparation skin surface swabs (14%), 26 of 50 dermal swabs (52%), and 20 of 50 dermal biopsy specimens (40%). There was a significantly higher incidence of P acnes growth from the skin surface (P = .009) and dermis (P = .01) of patients aged ≤50 years old and in the dermal biopsy specimens of patients undergoing revision surgery (P = .01) and a trend toward increased incidence of P acnes in men. P acnes growth from a prepreparation skin surface swab had a sensitivity of 69%, specificity of 88%, positive predictive value of 86%, and negative predictive value of 72% at predicting subsequent P acnes growth from the dermal swab or biopsy specimen. Viable P acnes persists within the skin dermis, despite standard antimicrobial precautions. These findings suggest that incising the skin is likely to lead to deep seeding of the surgical wound, which has implications for the pathogenesis and prevention of postsurgical shoulder infections. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  17. The effect of skin moisture on the density distribution of OH and O close to the skin surface

    NASA Astrophysics Data System (ADS)

    Wu, F.; Li, J.; Liu, F.; Zhou, X.; Lu, X.

    2018-03-01

    OH radicals and O atoms are believed to be two of the most important reactive species in various biomedical applications of atmospheric pressure plasma jets. In this study, the effect of the skin moisture on the density distribution of OH and O close to the surface of the ex vivo pig skin is investigated by using laser-induced fluorescence technology. The skin moistures used in this study are 20%, 40%, 60%, and 80%, respectively. The experiment results indicate that, at a gas flow rate of 0.5 L/min, when the skin moisture is increased, the OH density close to the skin surface increases, while the O density decreases. On the other hand, when the gas flow rate is increased to 1 L/min, the OH density close to the skin surface is less sensitive with the moisture of the skin surface. Besides, when the skin moisture is 80%, the OH density increases with the increase in the concentration of H2O in the working gas and it reaches its maximum 7.9 × 1013 cm-3 when the concentration of H2O in the working gas is about 500 ppm. The OH density starts to decrease while the H2O concentration in the working gas keeps increasing. On the order hand, the O density shows a maximum 7.4 × 1014 cm-3 when the gas flow rate is 0.5 L/min with no O2 added and the skin moisture is 20%. But, when the gas flow rate is increased to about 1 to 2 L/min, the O density achieves its maximum when 0.5% of O2 is added to the working gas. The possible reasons for these observations are discussed.

  18. Does dietary fluid intake affect skin hydration in healthy humans? A systematic literature review.

    PubMed

    Akdeniz, M; Tomova-Simitchieva, T; Dobos, G; Blume-Peytavi, U; Kottner, J

    2018-02-02

    Associations between daily amounts of drinking water and skin hydration and skin physiology receive increasingly attention in the daily life and in clinical practice. However, there is a lack of evidence of dermatological benefits from drinking increased amounts of water. Pubmed and Web of Science were searched without any restrictions of publication dates. References of included papers and related reviews were checked. Eligibility criteria were primary intervention and observational studies investigating the effects of fluid intake on skin properties in English, German, Spanish or Portuguese language, including subjects being healthy and 18+ years. Searches resulted in 216 records, 23 articles were read in full text, and six were included. The mean age of the samples ranged from 24 to 56 years. Overall the evidence is weak in terms of quantity and methodological quality. Disregarding the methodological limitations a slight increase in stratum corneum and "deep" skin hydration was observed after additional water intake, particularly in individuals with lower prior water consumption. Reductions of clinical signs of dryness and roughness were observed. The extensibility and elasticity of the skin increased slightly. Unclear associations were shown between water intake and transepidermal water loss, sebum content, and skin surface pH. Additional dietary water intake may increase stratum corneum hydration. The underlying biological mechanism for this possible relationship is unknown. Whether this association also exists in aged subjects is unclear. Research is needed to answer the question whether increased fluid intake decreases signs of dry skin. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier

    PubMed Central

    Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.

    2016-01-01

    Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403

  20. Cutaneous skin tag

    MedlinePlus

    Skin tag; Acrochordon; Fibroepithelial polyp ... have diabetes. They are thought to occur from skin rubbing against skin. ... The tag sticks out of the skin and may have a short, narrow stalk connecting it to the surface of the skin. Some skin tags are as long as ...

  1. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy.

    PubMed

    Meinke, Martina C; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  2. Characterization of atopic skin and the effect of a hyperforin-rich cream by laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.

    2015-05-01

    Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.

  3. Age-related differences in morphological characteristics of residual skin surface components collected from the surface of facial skin of healthy male volunteers.

    PubMed

    Chalyk, N E; Bandaletova, T Y; Kyle, N H; Petyaev, I M

    2017-05-01

    Global increase of human longevity results in the emergence of previously ignored ageing-related problems. Skin ageing is a well-known phenomenon, but active search for scientific approaches to its prevention and even skin rejuvenation is a relatively new area. Although the structure and composition of the stratum corneum (SC), the superficial layer of epidermis, is well studied, relatively little is known about the residual skin surface components (RSSC) that overlay the surface of the SC. The aim of this study was to examine morphological features of RSSC samples non-invasively collected from the surface of human facial skin for the presence of age-related changes. Residual skin surface component samples were collected by swabbing from the surface of facial skin of 60 adult male volunteers allocated in two age groups: 34 subjects aged in the range 18-32 years and 26 subjects aged in the range 58-72 years. The collected samples were analysed microscopically: the size of the lipid droplets was measured; desquamated corneocytes and lipid crystals were counted; and microbial presence was assessed semi-quantitatively. Age-related changes were revealed for all studied components of the RSSC. There was a significant (P = 0.0126) decrease in the size of lipid droplets among older men. Likewise, significantly (P = 0.0252) lower numbers of lipid crystals were present in this group. In contrast, microbial presence in the RSSC was significantly (P = 0.0019) increased in the older group. There was also a trend towards more abundant corneocyte desquamation among older men, but the difference has not reached statistical significance (P = 0.0636). Non-invasively collected RSSC samples present an informative material for studying age-related changes on the surface of the SC of human facial skin. The results of this study confirm earlier observations regarding age-associated decline of the efficiency of the epidermal barrier and can be used for testing new approaches to skin ageing prevention. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Differences in the skin surface pH and bacterial microflora due to the long-term application of synthetic detergent preparations of pH 5.5 and pH 7.0. Results of a crossover trial in healthy volunteers.

    PubMed

    Korting, H C; Hübner, K; Greiner, K; Hamm, G; Braun-Falco, O

    1990-01-01

    Skin cleansing preparations consisting of identical synthetic detergents but differing in pH-value (pH 5.5 and 7.0) were applied twice daily on the forehead and forearm of healthy volunteers in a randomized crossover trial. The skin surface pH was found to be significantly higher when the neutral preparation had been used, as was the propionibacterial count (p less than 0.05). The number of propionibacteria was significantly linked to the skin pH. Hence even minor differences in the pH of skin cleansing preparations seem to be of importance for the integrity of the skin surface. This should be taken into account when planning the formulation of optimal skin care products.

  5. Skin-Friction Measurements in Incompressible Flow

    NASA Technical Reports Server (NTRS)

    Smith, Donald W.; Walker, John H.

    1959-01-01

    Experiments have been conducted to measure the local surface-shear stress and the average skin-friction coefficient in Incompressible flow for a turbulent boundary layer on a smooth flat plate having zero pressure gradient. Data were obtained for a range of Reynolds numbers from 1 million to 45 million. The local surface-shear stress was measured by a floating-element skin-friction balance and also by a calibrated total head tube located on the surface of the test wall. The average skin-friction coefficient was obtained from boundary-layer velocity profiles.

  6. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces

    NASA Astrophysics Data System (ADS)

    Bixler, Gregory D.; Bhushan, Bharat

    2013-08-01

    Researchers are continually inspired by living nature to solve complex challenges. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we present an overview of rice leaf and butterfly wing fluid drag and self-cleaning studies. In addition, we examine two other promising aquatic surfaces in nature known for such properties, including fish scales and shark skin. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of wettability, viscosity, and velocity. Liquid repellent coatings are utilized to recreate or combine various effects. Discussion is provided along with conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for applications in the medical, marine, and industrial fields.

  7. Comparison of two kinds of skin imaging analysis software: VISIA® from Canfield and IPP® from Media Cybernetics.

    PubMed

    Wang, X; Shu, X; Li, Z; Huo, W; Zou, L; Tang, Y; Li, L

    2018-01-27

    Skin imaging analysis, acting as a supplement to noninvasive bioengineering devices, has been widely used in medical cosmetology and cosmetic product evaluation. The main aim of this study is to assess the differences and correlations in measuring skin spots, wrinkles, vascular features, porphyrin, and pore between two commercially available image analysis software. Seventy healthy women were included in the study. Before taking pictures, the dermatologist evaluated subjects' skin conditions. Test sites included the forehead, cheek, and periorbital skin. A 2 × 2 cm cardboard was used to make a mark on the skin surface. Pictures were taken using VISIA ® under three kinds light conditions and analyzed using VISIA ® and IPP ® respectively. (1) Skin pore, red area, ultraviolet spot, brown spot, porphyrin, and wrinkle measured with VISIA ® were correlated with those measured with IPP ® (P < .01). (2) Spot, wrinkle, fine line, brown spot, and red area analyzed with VISIA ® were correlated with age on the forehead and periorbital skin (P < .05). L-value, Crow's feet, ultraviolet spot, brown spot, and red area analyzed with IPP ® were correlated with age on the periorbital skin (P < .05). (3) L-value, spot, wrinkle, fine line, porphyrin, red area, and pore analyzed with VISIA ® and IPP ® showed correlations with the subjective evaluation scores (P < .05). VISIA ® and IPP ® showed acceptable correlation in measuring various skin conditions. VISIA ® showed a high sensibility when measured on the forehead skin. IPP ® is available as an alternative software program to evaluate skin features. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. From Flexible and Stretchable Meta-Atom to Metamaterial: A Wearable Microwave Meta-Skin with Tunable Frequency Selective and Cloaking Effects

    PubMed Central

    Yang, Siming; Liu, Peng; Yang, Mingda; Wang, Qiugu; Song, Jiming; Dong, Liang

    2016-01-01

    This paper reports a flexible and stretchable metamaterial-based “skin” or meta-skin with tunable frequency selective and cloaking effects in microwave frequency regime. The meta-skin is composed of an array of liquid metallic split ring resonators (SRRs) embedded in a stretchable elastomer. When stretched, the meta-skin performs as a tunable frequency selective surface with a wide resonance frequency tuning range. When wrapped around a curved dielectric material, the meta-skin functions as a flexible “cloaking” surface to significantly suppress scattering from the surface of the dielectric material along different directions. We studied frequency responses of multilayer meta-skins to stretching in a planar direction and to changing the spacing between neighboring layers in vertical direction. We also investigated scattering suppression effect of the meta-skin coated on a finite-length dielectric rod in free space. This meta-skin technology will benefit many electromagnetic applications, such as frequency tuning, shielding, and scattering suppression. PMID:26902969

  9. Infrared fiber optic evanescent wave spectroscopy: applications in biology and medicine

    NASA Astrophysics Data System (ADS)

    Afanasyeva, Natalia I.; Bruch, Reinhard F.; Katzir, Abraham

    1999-04-01

    A new powerful and highly sensitive technique for non-invasive biomedical diagnostics in vivo has been developed using Infrared Fiberoptic Evanescent Wave Fourier Transform Spectroscopy (FEW-FTIR). This compact and portable method allows to detect functional chemical groups and bonds via vibrational spectroscopy directly from surfaces including living tissue. Such differences and similarities in molecular structure of tissue and materials can be evaluated online. Operating in the attenuated total reflection (ATR) regime in the middle-infrared (MIR) range, the FEW-FTIR technique provides direct contact between the fiber probe and tissue for non-destructive, non-invasive, fast and remote (few meters) diagnostics and quality control of materials. This method utilizes highly flexible and extremely low loss unclad fibers, for example silver halide fibers. Applications of this method include investigations of normal skin, precancerous and cancerous conditions, monitoring of the process of aging, allergic reactions and radiation damage to the skin. This setup is suitable as well for the detection of the influence of environmental factors (sun, water, pollution, and weather) on skin surfaces. The FEW-FTIR technique is very promising also for fast histological examinations in vitro. In this review, we present recent investigations of skin, breast, lung, stomach, kidney tissues in vivo and ex vivo (during surgery) to define the areas of tumor localization. The main advantages of the FEW-FTIR technique for biomedical, clinical, and environmental applications are discussed.

  10. PERSPECTIVE Working towards a community-wide understanding of satellite skin temperature observations

    NASA Astrophysics Data System (ADS)

    Shreve, Cheney

    2010-12-01

    With more than sixty free and publicly available high-quality datasets, including ecosystem variables, radiation budget variables, and land cover products, the MODIS instrument and the MODIS scientific team have contributed significantly to scientific investigations of ecosystems across the globe. The MODIS instrument, launched in December 1999, has 36 spectral bands, a viewing swath of 2330 km, and acquires data at 250 m, 500 m, and 1000 m spatial resolution every one to two days. Radiation budget variables include surface reflectance, skin temperature, emissivity, and albedo, to list a few. Ecosystem variables include several vegetation indices and productivity measures. Land cover characteristics encompass land cover classifications as well as model parameters and vegetation classifications. Many of these products are instrumental in constraining global climate models and climate change studies, as well as monitoring events such as the recent flooding in Pakistan, the unprecedented oil spill in the Gulf of Mexico, or phytoplankton bloom in the Barents Sea. While product validation efforts by the MODIS scientific team are both vigorous and continually improving, validation is unquestionably one of the most difficult tasks when dealing with remotely derived datasets, especially at the global scale. The quality and availability of MODIS data have led to widespread usage in the scientific community that has further contributed to validation and development of the MODIS products. In their recent paper entitled 'Land surface skin temperature climatology: benefitting from the strengths of satellite observations', Jin and Dickinson review the scientific theory behind, and demonstrate application of, a MODIS temperature product: surface skin temperature. Utilizing datasets from the Global Historical Climatological Network (GHCN), daily skin and air temperature from the Atmospheric Radiation Measurement (ARM) program, and MODIS products (skin temperature, albedo, land cover, water vapor, cloud cover), they show that skin temperature is clearly a different physical parameter from air temperature and varies from air temperature in magnitude, response to atmospheric conditions, and diurnal phase. Although the accuracy of skin temperature (Tskin) algorithms has improved to within 0.5-1°C for field measurements and clear-sky satellite observations (Becker and Li 1995, Goetz et al 1995, Wan and Dozier 1996), general confusion regarding the physical definition of 'surface temperature' and how it can be used for climate studies has persisted throughout the scientific community and limited the applications of these data (Jin and Dickinson 2010). For example, satellite sea surface temperature was used as evidence of global climate change instead of skin temperature in the IPCC 2001 and 2007 reports (Jin and Dickinson 2010). This work provides clarity in the theoretical definition of temperature variables, demonstrates the difference between air and skin temperature, and aids the understanding of the MODIS Tskin product, which could be very beneficial for future climate studies. As outlined by Jin and Dickinson, 'surface temperature' is a vague term commonly used in reference to air temperature, aerodynamic temperature, and skin temperature. Air temperature (Tair), or thermodynamic temperature, is measured by an in situ instrument usually 1.5-2 m above the ground. Aerodynamic temperature (Taero) refers to the temperature at the height of the roughness length of heat. Satellite derived skin temperature (Tskin) is the radiometric temperature derived from the inverse of Planck's function. While these different temperature variables are typically correlated, they differ as a result of environmental conditions (e.g. land cover and sky conditions; Jin and Dickinson 2010). With an extensive network of Tair measurements, some have questioned the benefits of using Tskin at all (Peterson et al 1997, 1998). Tskin and Tair can vary depending on land cover or sky conditions and variations may be large, e.g., for sparsely vegetated areas where net radiation is largely balanced by sensible heat flux (Hall et al 1992, Sun and Mahrt 1995, Jin et al 1997). Tskin can be higher than Taero at midday and lower at night (Sun and Mahrt 1995) and some models use Taero to approximate surface radiative temperature (Hubband and Monteith 1986). One of the strengths of the MODIS instrument is the simultaneous collection of surface and atmospheric conditions. By incorporating a range of MODIS variables in their comparison to Tskin, the authors examine the relationship of Tskin to atmospheric and surface conditions. Results from their global evaluation of Tskin highlight its variability on an inter-annual basis, its variation with solar zenith angle, and diurnal variations, which are not achievable with Tair measurements. Comparison with land cover type illustrates the seasonality of Tskin for different land covers. Comparison with the enhanced vegetation index (EVI) suggests more vegetation reduces skin temperature. Using the MODIS albedo, they demonstrate a clear relationship between yearly averaged Tskin and land surface albedo. Lastly, their examination of water vapor and cloud cover in comparison to Tskin suggests similar seasonality between these two variables. The MODIS Tskin product is not without uncertainty; retrieving Tskin requires a calculation of radiative transfer to account for atmospheric emission and molecular absorption, which is time and resource intensive (Jin and Dickinson 2010). Additionally, surface emissivity, instrument noise, and view angle geometry contribute to error in Tskin estimations (Jin and Dickinson 2010). The transparency of the scientific theory underlying this work, and the clear demonstration of the distinction between temperature measures on varying scales, demonstrates the usefulness of Tskin despite the uncertainties. Perhaps equally as important is the tone; in a time when the controversy surrounding climate change is peaking and the very ethics of the scientific community are being questioned, it is more critical than ever to be transparent in one's work and to assist the scientific community in understanding the tools we have available to us for investigating climate change. References Becker F and Li Z-L 1995 Surface temperature and emissivity at different scales: definition, measurement and related problems Remote Sensing Rev. 12 225-53 Goetz S J, Halthore R, Hall F G and Markham B L 1995 Surface temperature retrieval in a temperate grassland with multi-resolution sensors J. Geophys. Res. Atmos. 100 25397-410 Hall F G, Huemmrich K F, Goetz P J, Sellers P J and Nickeson J E 1992 Satellite remote sensing of the surface energy balance: success, failures and unresolved issues in FIFE J. Geophys. Res. Atmos. 97 19061-90 Jin M and Dickinson R E 2010 Land surface skin temperature climatology: benefitting from the strengths of satellite observations Environ. Res. Lett. 5 044004 Jin M, Dickinson R E and Vogelmann A M 1997 A comparison of CCM2/BATS skin temperature and surface-air temperature with satellite and surface observations J. Climate 10 1505-24 Hubband N D S and Monteith J L 1986 Radiative surface temperature and energy balance of a wheat canopy Boundary Layer Meteorol. 36 107-16 Peterson T C and Vose R S 1997 An overview of the Global Historical Climatology Network temperature data base Bull. Am. Meteorol. Soc. 78 2837-49 Peterson T C, Karl T R, Jamason P F, Knight R and Easterling D R 1998 The first difference method: maximizing station density for the calculation of long-term global temperature change J. Geophys. Res. Atmos. 103 25967-74 Sun J and Mahrt L 1995 Determination of surface fluxes from the surface radiative temperature Atmos. Sci. 52 1096-106 Wan Z and Dozier J 1996 A generalized split-window algorithm for retrieving land-surface temperature from space IEEE Trans. Geosci. Remote Sensing 34 892-905

  11. Microplasma effect on skin scaffold for melanoma cancer treatment

    NASA Astrophysics Data System (ADS)

    Abdullah, Zulaika; Zaaba, S. K.; Mustaffa, M. T.; Mohamad, C. W. S. R.; Zakaria, A.

    2017-03-01

    An atmospheric plasma system using Helium gas was developed. The effect of helium plasma treatment on skin scaffold surface was studied by scanning electron microscopy (SEM). The changes of skin scaffold surfaces before and after helium plasma treatment was recorded. The surface of skin scaffold changed with the prolonged of helium plasma treatment time. The depth of helium plasma penetration was studied using methylene blue dye staining method. The methylene blue will detect the presence or absence of an oxygen that was induced from plasma excitation. The presence of the oxygen indicated on the depth of helium plasma penetration. Results showed plasma are able to penetrate 4mm of skin scaffold after 1200 seconds of exposure.

  12. The diversity and distribution of fungi on residential surfaces.

    PubMed

    Adams, Rachel I; Miletto, Marzia; Taylor, John W; Bruns, Thomas D

    2013-01-01

    The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. "Weedy" genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents' foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear - to varying degrees - to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria.

  13. Analysis of the in vivo confocal Raman spectral variability in human skin

    NASA Astrophysics Data System (ADS)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  14. Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granero, D., E-mail: dgranero@eresa.com; Candela-Juan, C.; Vijande, J.

    2016-05-15

    Purpose: High dose rate (HDR) brachytherapy for treatment of small skin lesions using the Leipzig and Valencia applicators is a widely used technique. These applicators are equipped with an attachable plastic cap to be placed during fraction delivery to ensure electronic equilibrium and to prevent secondary electrons from reaching the skin surface. The purpose of this study is to report on the dosimetric impact of the cap being absent during HDR fraction delivery, which has not been explored previously in the literature. Methods: GEANT4 Monte Carlo simulations (version 10.0) have been performed for the Leipzig and Valencia applicators with andmore » without the plastic cap. In order to validate the Monte Carlo simulations, experimental measurements using radiochromic films have been done. Results: Dose absorbed within 1 mm of the skin surface increases by a factor of 1500% for the Leipzig applicators and of 180% for the Valencia applicators. Deeper than 1 mm, the overdosage flattens up to a 10% increase. Conclusions: Differences of treating with or without the plastic cap are significant. Users must check always that the plastic cap is in place before any treatment in order to avoid overdosage of the skin. Prior to skin HDR fraction delivery, the timeout checklist should include verification of the cap placement.« less

  15. Carbon nanotubes (CNTs) based advanced dermal therapeutics: current trends and future potential.

    PubMed

    Kuche, Kaushik; Maheshwari, Rahul; Tambe, Vishakha; Mak, Kit-Kay; Jogi, Hardi; Raval, Nidhi; Pichika, Mallikarjuna Rao; Kumar Tekade, Rakesh

    2018-05-17

    The search for effective and non-invasive delivery modules to transport therapeutic molecules across skin has led to the discovery of a number of nanocarriers (viz.: liposomes, ethosomes, dendrimers, etc.) in the last few decades. However, available literature suggests that these delivery modules face several issues including poor stability, low encapsulation efficiency, and scale-up hurdles. Recently, carbon nanotubes (CNTs) emerged as a versatile tool to deliver therapeutics across skin. Superior stability, high loading capacity, well-developed synthesis protocol as well as ease of scale-up are some of the reason for growing interest in CNTs. CNTs have a unique physical architecture and a large surface area with unique surface chemistry that can be tailored for vivid biomedical applications. CNTs have been thus largely engaged in the development of transdermal systems such as tuneable hydrogels, programmable nonporous membranes, electroresponsive skin modalities, protein channel mimetic platforms, reverse iontophoresis, microneedles, and dermal buckypapers. In addition, CNTs were also employed in the development of RNA interference (RNAi) based therapeutics for correcting defective dermal genes. This review expounds the state-of-art synthesis methodologies, skin penetration mechanism, drug liberation profile, loading potential, characterization techniques, and transdermal applications along with a summary on patent/regulatory status and future scope of CNT based skin therapeutics.

  16. Skin hydration and cooling effect produced by the Voltaren® vehicle gel.

    PubMed

    Hug, Agnes M; Schmidts, Thomas; Kuhlmann, Jens; Segger, Dörte; Fotopoulos, Grigorios; Heinzerling, Johanna

    2012-05-01

    Voltaren vehicle gel is the carrier substance of the topical Voltaren products. This vehicle gel is especially formulated to be easily applied on the skin, while providing some sensory benefits. The present study aims to substantiate the widely perceived hydrating and cooling effect of Voltaren vehicle gel. Volar forearm skin hydration and transepidermal water loss (TEWL) were measured and user satisfaction was evaluated by questionnaires, after application in 31 healthy, female volunteers. The cooling effect was investigated for 40 min with thermal imaging on 12 forearm sites of six healthy subjects. Voltaren vehicle gel application increased skin hydration by 13.1% (P = 0.0002) when compared with the untreated site, 8 h after the final treatment after 2 weeks. TEWL decreased on both treated (0.37 g/m(2) /h) and untreated (0.74 g/m(2) /h) forearm sites after 2 weeks (8 h after last treatment), demonstrating a relative increase of 6.5% in water loss. Voltaren vehicle gel application resulted in a rapid reduction of skin surface temperature by 5.1°C after only 3 min with an average maximum reduction of 5.8°C after 10 min. The cooling effect was experienced by 94% subjects, while 74% felt that their skin became softer. No adverse events, including skin irritation, were reported during the study and by the 37 participants. This study showed a statistically significant increase in skin hydration as well as a rapid cooling effect lasting approximately 30 min, after application of Voltaren vehicle gel. The small relative increase in water loss may be attributed to an additional skin surface water loss secondary to the increased water content brought into the skin by the Voltaren vehicle gel. The use did not induce any skin irritation and was found acceptable to use by the majority of participants. © 2011 John Wiley & Sons A/S.

  17. Explosively activated egress area

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W. (Inventor)

    1983-01-01

    A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges.

  18. The Infant Skin Barrier: Can We Preserve, Protect, and Enhance the Barrier?

    PubMed Central

    Telofski, Lorena S.; Morello, A. Peter; Mack Correa, M. Catherine; Stamatas, Georgios N.

    2012-01-01

    Infant skin is different from adult in structure, function, and composition. Despite these differences, the skin barrier is competent at birth in healthy, full-term neonates. The primary focus of this paper is on the developing skin barrier in healthy, full-term neonates and infants. Additionally, a brief discussion of the properties of the skin barrier in premature neonates and infants with abnormal skin conditions (i.e., atopic dermatitis and eczema) is included. As infant skin continues to mature through the first years of life, it is important that skin care products (e.g., cleansers and emollients) are formulated appropriately. Ideally, products that are used on infants should not interfere with skin surface pH or perturb the skin barrier. For cleansers, this can be achieved by choosing the right type of surfactant, by blending surfactants, or by blending hydrophobically-modified polymers (HMPs) with surfactants to increase product mildness. Similarly, choosing the right type of oil for emollients is important. Unlike some vegetable oils, mineral oil is more stable and is not subject to oxidation and hydrolysis. Although emollients can improve the skin barrier, more studies are needed to determine the potential long-term benefits of using emollients on healthy, full-term neonates and infants. PMID:22988452

  19. Global Skin-Friction Measurements Using Particle Image Surface FLow Visualization and a Luminescent Oil-Film

    NASA Technical Reports Server (NTRS)

    Husen, Nicholas; Roozeboom, Nettie; Liu, Tianshu; Sullivan, John P.

    2015-01-01

    A quantitative global skin-friction measurement technique is proposed. An oil-film is doped with a luminescent molecule and thereby made to fluoresce in order to resolve oil-film thickness, and Particle Image Surface Flow Visualization is used to resolve the velocity field of the surface of the oil-film. Skin-friction is then calculated at location x as (x )xh, where x is the displacement of the surface of the oil-film and is the dynamic viscosity of the oil. The data collection procedure and data analysis procedures are explained, and preliminary experimental skin-friction results for flow over the wing of the CRM are presented.

  20. Burns (Part 2). Tops and flops using cultured epithelial autografts in children.

    PubMed

    Meuli, M; Raghunath, M

    1997-09-01

    The goal of this article is to review the status of cultured epithelial autografts in clinical practice with particular focus on the pediatric subset of patients. The current indications include massive deep burns (>60 - 70% total body surface area), resurfacing-type postburn scar revisions, and skin defect coverage following excision of large skin lesions like giant nevi. Although this method can be lifesaving for massively burned patients, and although excellent functional and cosmetic results may be obtained under ideal circumstances, formidable problems continue to exist. Take is inconsistent, cultured grafts are extremely susceptible to infection, and skin breakdown during the first months post grafting may occur due to mechanical instability of the regenerating skin. It may take one more decade of concerted research, jointly performed by clinicians and tissue culture technology experts in order to fabricate more skin-like grafts which are robust, reliable, and less expensive. Then, "cultured skin" will conquer the world and benefit countless patients.

  1. Detecting hidden exfoliation corrosion in aircraft wing skins using thermography

    NASA Astrophysics Data System (ADS)

    Prati, John

    2000-03-01

    A thermal wave (pulse) thermography inspection technique demonstrated the ability to detect hidden subsurface exfoliation corrosion adjacent to countersunk fasteners in aircraft wing skins. In the wing skin, exfoliation corrosion is the result of the interaction between the steel fastener and the aluminum skin material in the presence of moisture. This interaction results in corrosion cracks that tend to grow parallel to the skin surface. The inspection technique developed allows rapid detection and evaluation of hidden (not visible on the surface) corrosion, which extends beyond the head of fastener countersinks in the aluminum skins.

  2. Electrical measurement of the hydration state of the skin surface in vivo.

    PubMed

    Tagami, H

    2014-09-01

    Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.

  3. Role of imprint/exfoliative cytology in ulcerated skin neoplasms.

    PubMed

    Ramakrishnaiah, Vishnu Prasad Nelamangala; Babu, Ravindra; Pai, Dinker; Verma, Surendra Kumar

    2013-12-01

    Imprint cytology is a method of studying cells by taking an imprint from the cut surface of a wedge biopsy specimen or from the resected margins of a surgical specimen. It is rapid, simple and fairly accurate. Exfoliative cytology is an offshoot from the imprint cytology where in cells obtained from the surface of ulcers, either by scrape or brush, are analyzed for the presence of malignant cells. We undertook this study to see the role of imprint/exfoliative cytology in the diagnosis of ulcerated skin neoplasm and to check the adequacy of resected margins intra-operatively. This was a prospective investigative study conducted from September 2003 to July 2005. All patients presenting to surgical clinic with ulcerated skin and soft tissue tumours were included in the study. A wedge biopsy obtained from the ulcer and imprint smears were taken from the cut surface. Exfoliative cytology was analyzed from the surface smears. Wedge biopsy specimen was sent for histopathological (HPE) examination. The cytology and HPE were analyzed by a separate pathologist. Imprint cytology was also used to check the adequacy of resected margins in case of wide excision. This was compared with final HPE. Total of 107 patients was included in the present study and 474 imprint smears were done, with an average of 4.43 slides per lesion. Out of 59 wide excision samples, 132 imprint smears were prepared for assessing resected margins accounting for an average of 2.24 slides per each excised lesion. On combining imprint cytology with exfoliative cytology the overall sensitivity, specificity and positive predictive value were 90.38 %, 100 % and 90.38 % respectively. Only one out of 59 cases had a positive resected margin which was not picked by imprint cytology. Imprint cytology can be used for rapid and accurate diagnosis of various skin malignancies. It can also be used to check the adequacy of the resected margin intraoperatively.

  4. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  5. Effect of gold subsurface layer on the surface activity and segregation in Pt/Au/Pt3M (where M = 3d transition metals) alloy catalyst from first-principles.

    PubMed

    Kim, Chang-Eun; Lim, Dong-Hee; Jang, Jong Hyun; Kim, Hyoung Juhn; Yoon, Sung Pil; Han, Jonghee; Nam, Suk Woo; Hong, Seong-Ahn; Soon, Aloysius; Ham, Hyung Chul

    2015-01-21

    The effect of a subsurface hetero layer (thin gold) on the activity and stability of Pt skin surface in Pt3M system (M = 3d transition metals) is investigated using the spin-polarized density functional theory calculation. First, we find that the heterometallic interaction between the Pt skin surface and the gold subsurface in Pt/Au/Pt3M system can significantly modify the electronic structure of the Pt skin surface. In particular, the local density of states projected onto the d states of Pt skin surface near the Fermi level is drastically decreased compared to the Pt/Pt/Pt3M case, leading to the reduction of the oxygen binding strength of the Pt skin surface. This modification is related to the increase of surface charge polarization of outmost Pt skin atoms by the electron transfer from the gold subsurface atoms. Furthermore, a subsurface gold layer is found to cast the energetic barrier to the segregation loss of metal atoms from the bulk (inside) region, which can enhance the durability of Pt3M based catalytic system in oxygen reduction condition at fuel cell devices. This study highlights that a gold subsurface hetero layer can provide an additional mean to tune the surface activity toward oxygen species and in turn the oxygen reduction reaction, where the utilization of geometric strain already reaches its practical limit.

  6. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system.

    PubMed

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts.

  7. Assimilation for Skin SST in the NASA GEOS Atmospheric Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2017-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modelling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near-surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extend beyond the thermal infrared bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld insitu buoy measurement of near-surface SST. Evaluation of forecast skill scores show neutral to marginal benefit from the modified Ts.

  8. A modified technique (using polyester tape) of skin surface biopsy. Its interest for the investigation of athlete's foot.

    PubMed

    Lachapelle, J M; Gouverneur, J C; Boulet, M; Tennstedt, D

    1977-07-01

    A technical modification of skin surface biopsy has been introduced by using plastic tape instead of glass as holder, mainly to investigate mycological infections of skin folds. Among various brands of plastic sheets, a polyester film (Melinex O UCB-SIDAC) has been demonstrated as the most suitable. A direct microscopic comparison has been made between our modified technique and conventional scraping as procedures for collecting material from interdigital spaces in 30 patients with bilateral athlete's foot. It has been shown that the skin surface biopsy gives a slightly greater number of positive results (presence of dermatophytes or Candida species) than the conventional scraping technique, although the difference between both techniques is not statistically significant at the 0-05 level (0-05 less than P less than 0-10). Some advantages of the modified skin surface biopsy are emphasized.

  9. Design Optimization and Residual Strength Assessment of a Cylindrical Composite Shell Structure

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    2000-01-01

    A summary of research conducted during the specified period is presented. The research objectives included the investigation of an efficient technique for the design optimization and residual strength assessment of a semi-monocoque cylindrical shell structure made of composite materials. The response surface methodology is used in modeling the buckling response of individual skin panels under the combined axial compression and shear loading. These models are inserted into the MSC/NASTRAN code for design optimization of the cylindrical structure under a combined bending-torsion loading condition. The comparison between the monolithic and sandwich skin design cases indicated a 35% weight saving in using sandwich skin panels. In addition, the residual strength of the optimum design was obtained by identifying the most critical region of the structure and introducing a damage in the form of skin-stringer and skin-stringer-frame detachment. The comparison between the two skin design concepts indicated that the sandwich skin design is capable of retaining a higher residual strength than its monolithic counterpart. The results of this investigation are presented and discussed in this report.

  10. Surface spectral emissivity derived from MODIS data

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Young, David F.

    2003-04-01

    Surface emissivity is essential for many remote sensing applications including the retrieval of the surface skin temperature from satellite-based infrared measurements, determining thresholds for cloud detection and for estimating the emission of longwave radiation from the surface, an important component of the energy budget of the surface-atmosphere interface. In this paper, data from the Terra MODIS (MODerate-resolution Imaging Spectroradiometer) taken at 3.7, 8.5, 10.8, 12.0 micron are used to simultaneously derive the skin temperature and the surface emissivities at the same wavelengths. The methodology uses separate measurements of the clear-sky temperatures that are determined by the CERES (Clouds and Earth's Radiant Energy System) scene classification in each channel during the daytime and at night. The relationships between the various channels at night are used during the day when solar reflectance affects the 3.7 micron data. A set of simultaneous equations is then solved to derive the emissivities. Global results are derived from MODIS. Numerical weather analyses are used to provide soundings for correcting the observed radiances for atmospheric absorption. These results are verified and will be available for remote sensing applications.

  11. In vivo measurement of skin surface strain and sub-surface layer deformation induced by natural tissue stretching.

    PubMed

    Maiti, Raman; Gerhardt, Lutz-Christian; Lee, Zing S; Byers, Robert A; Woods, Daniel; Sanz-Herrera, José A; Franklin, Steve E; Lewis, Roger; Matcher, Stephen J; Carré, Matthew J

    2016-09-01

    Stratum corneum and epidermal layers change in terms of thickness and roughness with gender, age and anatomical site. Knowledge of the mechanical and tribological properties of skin associated with these structural changes are needed to aid in the design of exoskeletons, prostheses, orthotics, body mounted sensors used for kinematics measurements and in optimum use of wearable on-body devices. In this case study, optical coherence tomography (OCT) and digital image correlation (DIC) were combined to determine skin surface strain and sub-surface deformation behaviour of the volar forearm due to natural tissue stretching. The thickness of the epidermis together with geometry changes of the dermal-epidermal junction boundary were calculated during change in the arm angle, from flexion (90°) to full extension (180°). This posture change caused an increase in skin surface Lagrange strain, typically by 25% which induced considerable morphological changes in the upper skin layers evidenced by reduction of epidermal layer thickness (20%), flattening of the dermal-epidermal junction undulation (45-50% reduction of flatness being expressed as Ra and Rz roughness profile height change) and reduction of skin surface roughness Ra and Rz (40-50%). The newly developed method, DIC combined with OCT imaging, is a powerful, fast and non-invasive methodology to study structural skin changes in real time and the tissue response provoked by mechanical loading or stretching. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Malassezia species and their associated skin diseases.

    PubMed

    Harada, Kazutoshi; Saito, Mami; Sugita, Takashi; Tsuboi, Ryoji

    2015-03-01

    Malassezia spp. are lipophilic fungi that occur on all skin surfaces of humans and animals as commensal and pathogenic organisms. In the 2000s, several new species were added to the Malassezia genus by Japanese researchers. The genus Malassezia now includes 14 species of basidiomycetous yeast. Culture-independent molecular analysis clearly demonstrated that the DNA of Malassezia spp. was predominantly detected in core body and arm sites, suggesting that they are the dominant fungal flora of the human body. Malassezia spp. have been implicated in skin diseases including pityriasis versicolor (PV), Malassezia folliculitis (MF), seborrheic dermatitis (SD) and atopic dermatitis (AD). While Malassezia spp. are directly responsible for the infectious diseases, PV and MF, they act as an exacerbating factor in AD and SD. The fatty acids generated by Malassezia lipase can induce inflammation of the skin, resulting in development of SD. Patch and serum immunoglobulin E tests revealed that AD patients were hypersensitive to Malassezia. However, these findings only partially elucidated the mechanism by which Malassezia spp. induce inflammation in the skin; understanding of the pathogenetic role of Malassezia spp. in SD or AD remains incomplete. In this article, the latest findings of Malassezia research are reviewed with special attention to skin diseases. © 2015 Japanese Dermatological Association.

  13. In vivo characterization of structural changes after topical application of glucocorticoids in healthy human skin

    NASA Astrophysics Data System (ADS)

    Jung, Sora; Lademann, Jürgen; Darvin, Maxim E.; Richter, Claudia; Pedersen, Claus Bang; Richter, Heike; Schanzer, Sabine; Kottner, Jan; Blume-Peytavi, Ulrike; Røpke, Mads Almose

    2017-07-01

    Topical glucocorticoids (GC) are known to induce changes in human skin with the potential to develop skin atrophy. Here, atrophogenic effects and subsequent structural changes in the skin after topical application of GC were investigated in vivo. Sixteen healthy volunteers were topically treated daily on the forearms with clobetasol propionate, betamethasone dipropionate, and the petrolatum vehicle for 4 weeks. All treated skin areas and a nontreated control area were examined by ultrasound, optical coherence tomography, confocal laser scanning microscopy, multiphoton tomography (MPT), and resonance Raman spectroscopy at baseline 1 day after last application and 1 week after last application. Investigated parameters included stratum corneum thickness, epidermal, and full skin thickness, keratinocyte size and density, keratinocyte nucleus-to-cytoplasm ratio, skin surface classification, relative collagen and elastin signal intensity, second-harmonic generation-to-autofluorescence aging index of dermis (SAAID), and the antioxidant status of the skin. A reduction in epidermal and dermal skin thickness was observed in GC treated as well as in vehicle-treated and untreated skin areas on the volar forearm. MPT analysis showed an increased epidermal cell density and reduced cell size and nucleus-to-cytoplasm ratio and a significant increase of SAAID after GC treatment indicating a restructuring or compression of collagen fibers clinically being observed as atrophic changes.

  14. Newborn infant skin: physiology, development, and care.

    PubMed

    Visscher, Marty O; Adam, Ralf; Brink, Susanna; Odio, Mauricio

    2015-01-01

    Infant skin is critical to the newborn child's transition from the womb environment to the journey to self-sufficiency. This review provides an integrative perspective on the skin development in full term and premature infants. There is a particular focus on the role of vernix caseosa and on the implications of skin development for epidermal penetration of exogenous compounds. Healthy full-term newborn skin is well-developed and functional at birth, with a thick epidermis and well-formed stratum corneum (SC) layers. Transepidermal water loss is very low at birth, equal to, or lower than adults, indicating a highly effective skin barrier. Vernix facilitates SC development in full-term infants through a variety of mechanisms including physical protection from amniotic fluid and enzymes, antimicrobial effects, skin surface pH lowering, provision of lipids, and hydration. Premature infants, particularly those of very low birth weight, have a poor skin barrier with few cornified layers and deficient dermal proteins. They are at increased risk for skin damage, increased permeability to exogenous agents and infection. The SC barrier develops rapidly after birth but complete maturation requires weeks to months. The best methods for caring for infant skin, particularly in the diaper region, are described and related to these developmental changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Histoplasma skin test

    MedlinePlus

    Histoplasmosis skin test ... health care provider cleans an area of your skin, usually the forearm. An allergen is injected just below the cleaned skin surface. An allergen is a substance that causes ...

  16. Structure, biomimetics, and fluid dynamics of fish skin surfaces*

    NASA Astrophysics Data System (ADS)

    Lauder, George V.; Wainwright, Dylan K.; Domel, August G.; Weaver, James C.; Wen, Li; Bertoldi, Katia

    2016-10-01

    The interface between the fluid environment and the surface of the body in swimming fishes is critical for both physiological and hydrodynamic functions. The skin surface in most species of fishes is covered with bony scales or toothlike denticles (in sharks). Despite the apparent importance of fish surfaces for understanding aquatic locomotion and near-surface boundary layer flows, relatively little attention has been paid to either the nature of surface textures in fishes or possible hydrodynamic effects of variation in roughness around the body surface within an individual and among species. Fish surfaces are remarkably diverse and in many bony fishes scales can have an intricate surface texture with projections, ridges, and comblike extensions. Shark denticles (or scales) are toothlike and project out of the skin to form a complexly textured surface that interacts with free-stream flow. Manufacturing biomimetic foils with fishlike surfaces allows hydrodynamic testing and we emphasize here the importance of dynamic test conditions where the effect of surface textures is assessed under conditions of self-propulsion. We show that simple two-dimensional foils with patterned cuts do not perform as well as a smooth control surface, but that biomimetic shark skin foils can swim at higher self-propelled speeds than smooth controls. When the arrangement of denticles on the foil surface is altered, we find that a staggered-overlapped pattern outperforms other arrangements. Flexible foils made of real shark skin outperform sanded controls when foils are moved with a biologically realistic motion program. We suggest that focus on the mechanisms of drag reduction by fish surfaces has been too limiting and an additional role of fish surface textures may be to alter leading edge vortices and flow patterns on moving surfaces in a way that enhances thrust. Analysis of water flow over an artificial shark skin foil under both static and dynamic conditions shows that a shear layer develops over the denticle surface and we propose that there is limited flow under the expanded surfaces of shark denticles. The diversity of fish scale types and textures and the effect of these surfaces on boundary layer flows and fish locomotor energetics is a rich area for future investigation.

  17. Adaptive Skin Meshes Coarsening for Biomolecular Simulation

    PubMed Central

    Shi, Xinwei; Koehl, Patrice

    2011-01-01

    In this paper, we present efficient algorithms for generating hierarchical molecular skin meshes with decreasing size and guaranteed quality. Our algorithms generate a sequence of coarse meshes for both the surfaces and the bounded volumes. Each coarser surface mesh is adaptive to the surface curvature and maintains the topology of the skin surface with guaranteed mesh quality. The corresponding tetrahedral mesh is conforming to the interface surface mesh and contains high quality tetrahedral that decompose both the interior of the molecule and the surrounding region (enclosed in a sphere). Our hierarchical tetrahedral meshes have a number of advantages that will facilitate fast and accurate multigrid PDE solvers. Firstly, the quality of both the surface triangulations and tetrahedral meshes is guaranteed. Secondly, the interface in the tetrahedral mesh is an accurate approximation of the molecular boundary. In particular, all the boundary points lie on the skin surface. Thirdly, our meshes are Delaunay meshes. Finally, the meshes are adaptive to the geometry. PMID:21779137

  18. Effect of an exfoliating skincare regimen on the numbers of epithelial squames on the skin of operating theatre staff, studied by surface microscopy.

    PubMed

    Wernham, A G; Cain, O L; Thomas, A M

    2018-03-23

    The shedding of epithelial squames (skin scales) by staff in operating theatre air is an important source of deep infection following joint replacement surgery. This is a serious complication, resulting in significant morbidity for the patient and substantial cost implications for healthcare systems. Much effort has been put into providing clean air in operating theatres, yet little attention has been given to reducing the shedding of surface skin scales at source. To develop a novel method for calculating surface skin scale density using surface microscopy, and to use it to evaluate the effect of a skincare regimen on operating theatre staff. Surface microscopy with Z-stacked imaging was used to visualize the effect of a skincare regimen involving three stages: washing with soap; exfoliation; and application of emollient. A USB microscope was then used in a field study to take images of the skin of operating theatre staff who applied the regimen to one lower limb the night before testing. The other limb was used as a control. Two blinded assessors analysed scale density. Z-stack images from the surface microscope enabled observations of the skincare regimen. The USB microscope also provided adequate images that enabled assessment of skin scale density. In the operating theatre staff, a 72.1% reduction in visible skin scales was observed following application of the skincare regimen. Further work is required to demonstrate how this effect correlates with dispersion of skin particles in a cleanroom, and subsequently in live operating theatre studies. Copyright © 2018 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    DOEpatents

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  20. The vulvar skin microenvironment: impact of tight-fitting underwear on microclimate, pH and microflora.

    PubMed

    Runeman, Bo; Rybo, Göran; Forsgren-Brusk, Ulla; Larkö, Olle; Larsson, Peter; Faergemann, Jan

    2005-01-01

    The aim of the present study was to investigate if tight-fitting underwear (string panties) equipped with string panty liners affected the vulvar skin microenvironment differently to regular panties with standard panty liners. Thirty-two healthy women participated in a crossover study where temperature, humidity, surface pH and aerobic microflora were measured on vulvar skin. Vulvar skin temperature was 35.2 +/- 0.19 (mean +/- SEM) and 35.3 +/- 0.17 degrees C, respectively, for the two underwear systems. Mean humidity and mean skin surface pH at vulvar skin did not differ between the two systems. Barely noticeable differences were found for the aerobic microflora both at labium majus and at perineum. The mean total number of microorganisms in the two different panty liners was the same, 6.0 +/- 0.15 and 6.0 +/- 0.16, respectively (log CFU per panty liner). The differences in panty and panty liner design studied seem to have negligible impact on the vulvar skin microclimate, skin surface pH and aerobic microflora. No support was found for the assumption that a string panty system would result in higher contamination of vulvar skin by anorectal microflora.

  1. Experimental forensic and bioanthropological aspects of soft tissue taphonomy: 1. Factors influencing postmortem tissue desiccation rate.

    PubMed

    Aturaliya, S; Lukasewycz, A

    1999-09-01

    Euthanized rats' carcasses were exposed in an environmental chamber to multiple variables including: (1) position, (2) enveloping clothing, and (3) soil interment in an effort to determine the individual variables' effect on postmortem rate of body and visceral organ water loss. Results indicated that body water loss was enhanced by a horizontal position versus vertical, probably because of wider spread of bacteria- and enzyme-laden abdominal fluid secondary to diaphragm digestion with consequent greater tissue digestion and liquefaction. Clothing also accelerated the desiccation rate. Desiccation was about equally as effective by soil interment as by air exposure, though simulating windy conditions by tripling the air flow rate resulted in much more rapid desiccation in the air-exposed specimen. These studies suggest that the single most important factor influencing postmortem body water loss rate is the environment at the skin surface that acts to enhance or impair water removal from the skin surface and thus influences the water concentration gradient between the skin and underlying deeper tissues.

  2. Analysis and classification of normal and pathological skin tissue spectra using neural networks

    NASA Astrophysics Data System (ADS)

    Bruch, Reinhard F.; Afanasyeva, Natalia I.; Gummuluri, Satyashree

    2000-07-01

    An innovative spectroscopic diagnostic method has been developed for investigation of different regions of normal human skin tissue, as well as cancerous and precancerous conditions in vivo, ex vivo and in vitro. This new method is a combination of fiber-optical evanescent wave Fourier Transform infrared (FEW-FTIR) spectroscopy and fiber optic techniques using low-loss, highly flexible and nontoxic fiber optical sensors. The FEW-FTIR technique is nondestructive and very sensitive to changes of vibrational spectra in the IR region without heating and staining and thus altering the skin tissue. A special software package was developed for the treatment of the spectra. This package includes a database, programs for data preparation and presentation, and neural networks for classification of disease states. An unsupervised neural competitive learning neural network is implemented for skin cancer diagnosis. In this study, we have investigated and classified skin tissue in the range of 1400 to 1800 cm-1 using these programs. The results of our surface analysis of skin tissue are discussed in terms of molecular structural similarities and differences as well as in terms of different skin states represented by eleven different skin spectra classes.

  3. Novel Biodegradable Porous Scaffold Applied to Skin Regeneration

    PubMed Central

    Wang, Hui-Min; Chou, Yi-Ting; Wen, Zhi-Hong; Wang, Zhao-Ren; Chen, Chun-Hong; Ho, Mei-Ling

    2013-01-01

    Skin wound healing is an important lifesaving issue for massive lesions. A novel porous scaffold with collagen, hyaluronic acid and gelatin was developed for skin wound repair. The swelling ratio of this developed scaffold was assayed by water absorption capacity and showed a value of over 20 g water/g dried scaffold. The scaffold was then degraded in time- and dose-dependent manners by three enzymes: lysozyme, hyaluronidase and collagenase I. The average pore diameter of the scaffold was 132.5±8.4 µm measured from SEM images. With human skin cells growing for 7 days, the SEM images showed surface fractures on the scaffold due to enzymatic digestion, indicating the biodegradable properties of this scaffold. To simulate skin distribution, the human epidermal keratinocytes, melanocytes and dermal fibroblasts were seeded on the porous scaffold and the cross-section immunofluorescent staining demonstrated normal human skin layer distributions. The collagen amount was also quantified after skin cells seeding and presented an amount 50% higher than those seeded on culture wells. The in vivo histological results showed that the scaffold ameliorated wound healing, including decreasing neutrophil infiltrates and thickening newly generated skin compared to the group without treatments. PMID:23762223

  4. Hollow agarose microneedle with silver coating for intradermal surface-enhanced Raman measurements: a skin-mimicking phantom study

    NASA Astrophysics Data System (ADS)

    Yuen, Clement; Liu, Quan

    2015-06-01

    Human intradermal components contain important clinical information beneficial to the field of immunology and disease diagnosis. Although microneedles have shown great potential to act as probes to break the human skin barrier for the minimally invasive measurement of intradermal components, metal microneedles that include stainless steel could cause the following problems: (1) sharp waste production, and (2) contamination due to reuse of microneedles especially in developing regions. In this study, we fabricate agarose microneedles coated with a layer of silver (Ag) and demonstrate their use as a probe for the realization of intradermal surface-enhanced Raman scattering measurements in a set of skin-mimicking phantoms. The Ag-coated agarose microneedle quantifies a range of glucose concentrations from 5 to 150 mM inside the skin phantoms with a root-mean-square error of 5.1 mM within 10 s. The needle is found enlarged by 53.9% after another 6 min inside the phantom. The shape-changing capability of this agarose microneedle ensures that the reuse of these microneedles is impossible, thus avoiding sharp waste production and preventing needle contamination, which shows the great potential for safe and effective needle-based measurements.

  5. Sunscreen use optimized by two consecutive applications

    PubMed Central

    Torsnes, Linnea R.; Philipsen, Peter A.; Wulf, Hans Christian

    2018-01-01

    Sunscreen users are often inadequately protected and become sunburned. This study aimed to investigate how much two consecutive sunscreen applications increased the quantity of sunscreen applied and decreased the skin area left without sunscreen (missed area) compared to a single application. Thirty-one healthy volunteers wearing swimwear were included and applied sunscreen two consecutive times in a laboratory environment. Participants had pictures taken in black light before and after each application. As sunscreens absorb black light, the darkness of the skin increased with increasing amounts of sunscreen applied. We conducted a standard curve establishing a link between change in picture darkness and quantity of sunscreen. The quantity of sunscreen at selected skin sites as well as the percentage of missed area was determined after each application. Participants had missed a median of 20% of their available body surface after a single application. After double application they had missed 9%. The decrease in missed areas was significant for the whole body surface and for each of the body regions separately. The median participant had applied between 13% and 100% more sunscreen at the selected skin sites after double application than after single application. We recommend double application, especially before intense sun exposure. PMID:29590142

  6. Abrasion behavior of aluminum and composite skin coupons, stiffened skins and stiffened panels representative of transport airplane structures

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    A three-phase investigation was conducted to compare the friction and wear response of aluminum and graphite-epoxy composite materials when subjected to loading conditions similar to those experienced by the skin panels on the underside of a transport airplane during an emergency belly landing on a runway surface. The first phase involved a laboratory test which used a standard belt sander to provide the sliding abrasive surface. Small skin-coupon test specimens were abraded over a range of pressures and velocities to determine the effects of these variables on the coefficient of friction and wear rate. The second phase involved abrading I-beam stiffened skins on actual runway surface over the same range of pressures and velocities used in the first phase. In the third phase, large stiffened panels which most closely resembled transport fuelage skin construction were abraded on a runway surface. This report presents results from each phase of the investigation and shows comparisons between the friction and wear behavior of the aluminum and graphite-epoxy composite materials.

  7. Relation between skin micro-topography, roughness, and skin age.

    PubMed

    Trojahn, C; Dobos, G; Schario, M; Ludriksone, L; Blume-Peytavi, U; Kottner, J

    2015-02-01

    The topography of the skin surface consists of lines, wrinkles, and scales. Primary and secondary lines form a network like structure that may be identified as polygons. Skin surface roughness measurements are widely applied in dermatological research and practice but the relation between roughness parameters and their anatomical equivalents are unclear. This study aimed to investigate whether the number of closed polygons (NCP) per measurement field can be used as a reliable parameter to measure skin surface topography. For this purpose, we analysed the relation between skin surface roughness parameters and NCP in different age groups. Images of the volar forearm skin of 38 subjects (14 children, 12 younger, and 12 older adults) were obtained with the VisioScan VC98. The NCP was counted by three independent researchers and selected roughness parameters were measured. Interrater reliability of counting the number of closed polygons and correlations between NCP, roughness parameters, and age were calculated. The mean NCP/mm² in children was 3.1 (SD 1.1), in younger adults 1.0 (SD 0.7), and in older adults 1.0 (SD 0.9). The interrater reliability was 0.9. A negative correlation of NCP/mm² with age was observed, whereas measured roughness parameters were positively associated with age. NCP/mm² was weakly related to skin roughness. The NCP/mm² is a reproducible parameter for characterizing the skin surface topography. It is proposed as an additional parameter in dermatological research and practice because it represents distinct aspects of the cutaneous profile not covered by established roughness parameters. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Implementation and analysis of relief patterns of the surface of benign and malignant lesions of the skin by microtopography

    NASA Astrophysics Data System (ADS)

    López Pacheco, María del Carmen; Filipe Pereira da Cunha Martins-Costa, Manuel; Pérez Zapata, Aura Judith; Domínguez Cherit, Judith; Ramón Gallegos, Eva

    2005-12-01

    The objective of this study was to be able to distinguish between healthy skin tissue and malignant ones, furthermore determining a unique pattern of roughness for each skin lesion by microtopographic analysis of the skin surface of Mexican patients during the period from April to October 2002. The standard technique used in this study for the diagnosis of skin cancer and the comparison of the results was the haematoxylin eosin histopathological technique. Latex impressions were taken from skin lesions as well as from the healthy skin of each patient to serve as control samples. These impressions were analysed by the MICROTOP.03.MFC microtopographic system inspection. It was observed that when the tumour becomes rougher, more malign will be the lesion. On average, the melanoma present an increase of roughness of 67% compared to healthy skin, obtaining a roughness relation of 1:2.54. The percentage decreases to 49% (49%, 1:60) in the case of basal cell carcinoma and to 40% in pre-malignant lesions such as melanocytic nevus (40%, 1:150). In benign lesions such as the seborrhoea keratosis only a small increase in roughness was noted (4%, 1:0.72). Microtopographic inspection of the skin surface can be considered as a complementary diagnostic technique for skin cancer.

  9. Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening.

    PubMed

    Fasoli, Marianna; Dell'Anna, Rossana; Dal Santo, Silvia; Balestrini, Raffaella; Sanson, Andrea; Pezzotti, Mario; Monti, Francesca; Zenoni, Sara

    2016-06-01

    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism-a β-galactosidase, a pectin(methyl)esterase and a pectate lyase-and a xyloglucan endotransglucosylase/hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Skin surface cooling improves orthostatic tolerance following prolonged head-down bed rest

    PubMed Central

    Keller, David M.; Low, David A.; Davis, Scott L.; Hastings, Jeff

    2011-01-01

    Prolonged exposure to microgravity, as well as its ground-based analog, head-down bed rest (HDBR), reduces orthostatic tolerance in humans. While skin surface cooling improves orthostatic tolerance, it remains unknown whether this could be an effective countermeasure to preserve orthostatic tolerance following HDBR. We therefore tested the hypothesis that skin surface cooling improves orthostatic tolerance after prolonged HDBR. Eight subjects (six men and two women) participated in the investigation. Orthostatic tolerance was determined using a progressive lower-body negative pressure (LBNP) tolerance test before HDBR during normothermic conditions and on day 16 or day 18 of 6° HDBR during normothermic and skin surface cooling conditions (randomized order post-HDBR). The thermal conditions were achieved by perfusing water (normothermia ∼34°C and skin surface cooling ∼12–15°C) through a tube-lined suit worn by each subject. Tolerance tests were performed after ∼30 min of the respective thermal stimulus. A cumulative stress index (CSI; mmHg LBNP·min) was determined for each LBNP protocol by summing the product of the applied negative pressure and the duration of LBNP at each stage. HDBR reduced normothermic orthostatic tolerance as indexed by a reduction in the CSI from 1,037 ± 96 mmHg·min to 574 ± 63 mmHg·min (P < 0.05). After HDBR, skin surface cooling increased orthostatic tolerance (797 ± 77 mmHg·min) compared with normothermia (P < 0.05). While the reduction in orthostatic tolerance following prolonged HDBR was not completely reversed by acute skin surface cooling, the identified improvements may serve as an important and effective countermeasure for individuals exposed to microgravity, as well as immobilized and bed-stricken individuals. PMID:21454746

  11. 3D profilometric characterization of the aged skin surface using a skin replica and alicona Mex software.

    PubMed

    Pirisinu, Marco; Mazzarello, Vittorio

    2016-05-01

    The skin's surface is characterized by a network of furrows and wrinkles showing different height and depth. Different studies showed that processes such as aging, photo aging and cancer may alter dermal ultrastructure surface. The quantitative analysis of skin topography is a key point for understanding health condition of the skin. Here, for the first time, the skin fine structure was studied via a new approach where replica method was combined with Mex Alicona software and scanning electron microscopy (SEM). The skin texture of cheek and forearm were studied in 120 healthy sardinian volunteers. Patients were divided into three different aged groups. The skin areas of interest were reproduced by the silicone replica method, each replica was explored by SEM and digital images were taken. By using Mex Alicona software were created 3D imagine and a list of 24 surface texture parameters were obtained, of these the most representative were chosen in order to assess eventual changes between groups. The skin's texture of forearm and cheek showed a gradually loss of its typical polyhedric mesh with increasing age group. In particular, the photoexposition increased loss of dermal texture. At today, Alicona mex technology was exclusively used on palaeontology studies, our results showed that a deep analyze of skin texture was performed and support Mex alicona software as a new promising tool on dermatological research. This new analytical approach provided an easy and fast process to appreciate skin texture and its changes, by using high quality 3D dimension images. SCANNING 38:213-220, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  12. Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics

    PubMed Central

    Wang, Yuxiang; Baba, Yoshichika; Lumpkin, Ellen A.

    2016-01-01

    Distinct patterns in neuronal firing are observed between classes of cutaneous afferents. Such differences may be attributed to end-organ morphology, distinct ion-channel complements, and skin microstructure, among other factors. Even for just the slowly adapting type I afferent, the skin's mechanics for a particular specimen might impact the afferent's firing properties, especially given the thickness and elasticity of skin can change dramatically over just days. Here, we show computationally that the skin can reliably convey indentation magnitude, rate, and spatial geometry to the locations of tactile receptors even amid changes in skin's structure. Using finite element analysis and neural dynamics models, we considered the skin properties of six mice that span a representative cohort. Modeling the propagation of the surface stimulus to the interior of the skin demonstrated that there can be large variance in stresses and strains near the locations of tactile receptors, which can lead to large variance in static firing rate. However, variance is significantly reduced when the stimulus tip is controlled by surface pressure and compressive stress is measured near the end organs. This particular transformation affords the least variability in predicted firing rates compared with others derived from displacement, force, strain energy density, or compressive strain. Amid changing skin mechanics, stimulus control by surface pressure may be more naturalistic and optimal and underlie how animals actively explore the tactile environment. PMID:27098029

  13. International guidelines for the in vivo assessment of skin properties in non-clinical settings: part 1. pH

    PubMed Central

    Stefaniak, Aleksandr B; du Plessis, Johan; John, Swen M; Eloff, Fritz; Agner, Tove; Chou, Tzu-Chieh; Nixon, Rosemary; Steiner, Markus F C; Kudla, Irena; Holness, D Linn

    2013-01-01

    Background Skin surface pH is known to influence the dissolution and partitioning of chemicals and may influence exposures that lead to skin diseases. Non-clinical environments (e.g. workplaces) are highly variable, thereby presenting unique measurement challenges that are not typically encountered in clinical settings. Hence, guidelines are needed for consistent measurement of skin surface pH in environments that are difficult to control. Methods An expert workshop was convened at the 5th International Conference on Occupational and Environmental Exposure of Skin to Chemicals to review available data on factors that could influence the determination of skin surface pH in non-clinical settings with emphasis on the workplace as a worst case scenario. Results The key elements of the guidelines are: (i) minimize, to the extent feasible, the influences of relevant endogenous (anatomical position, skin health, time of day), exogenous (hand washing, barrier creams, soaps and detergents, occlusion), environmental (seasonality), and measurement (atmospheric conditions) factors; (ii) report pH measurements results as a difference or percent change (not absolute values) using a measure of central tendency and variability; and (iii) report notable deviations from these guidelines and other relevant factors that may influence measurements. Conclusion Guidelines on the measurement and reporting of skin surface pH in non-clinical settings should promote consistency in data reporting, facilitate inter-comparison of study results, and aid in understanding and preventing occupational skin diseases. PMID:23279097

  14. Influence of the chopped frequency of light on optical transport characteristics of human skin including at acupuncture points

    NASA Astrophysics Data System (ADS)

    Yang, Hong-qin; Xie, Shu-sen; Liu, Song-hao; Li, Hui; Wang, Yu-hua; Guo, Zhou-yi

    2007-11-01

    An experimental protocol was established for noninvasively measuring the optical transport characteristics of skin tissue along human meridian direction over body surface including at acupuncture points. The diffuse remittance for 658 nm light radiation along the pericardium meridian and non-meridian directions were measured respectively. The influence of the chopped frequency of light on the detected light signal was investigated. It is shown that the optical transport characteristics of skin tissue accords with the Beer's exponential attenuation law along the meridian including at acupuncture points and non-median directions. However there is an obvious difference between the propagations along the meridian direction and non-meridian direction (P<0.05). Furthermore, the chopped frequency can affect the detected signal. The diffuse remittance signal decreased with the chopped frequency's increase and it was different between the meridian and non-meridian directions. These findings are important and meaningful for interpreting the human meridian phenomena by biomedical optics.

  15. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    PubMed

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. [The clinical use of cryopreserved human skin allografts for transplantation].

    PubMed

    Martínez-Flores, Francisco; Chacón-Gómez, María; Madinaveitia-Villanueva, Juan Antonio; Barrera-Lopez, Araceli; Aguirre-Cruz, Lucinda; Querevalu-Murillo, Walter

    2015-01-01

    The biological recovery of human skin allografts is the gold standard for preservation in Skin Banks. However, there is no worldwide consensus about specific allocation criteria for preserved human skin allografts with living cells. A report is presented on the results of 5 years of experience of using human skin allografts in burned patient in the Skin and Tissue Bank at the "Instituto Nacional de Rehabilitacion" The human skin allografts were obtained from multi-organ donors. processed and preserved at -80 °C for 12 months. Allocation criteria were performed according to blood type match, clinical history, and burned body surface. Up to now, the Skin and Tissue Bank at 'Instituto Nacional de Rehabilitacion" has processed and recovered 125,000 cm(2) of human skin allografts. It has performed 34 surgical implants on 21 burned patients. The average of burn body surface was 59.2%. More than two-thirds (67.7%) of recipients of skin allografts were matched of the same to type blood of the donor, and 66.6% survived after 126 days hospital stay. It is proposed to consider recipient's blood group as allocation criteria to assign tissue; and use human skin allografts on patiens affected with burns over 30% of body surface (according the "rule of the 9"). Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  17. A comparison of all-weather land surface temperature products

    NASA Astrophysics Data System (ADS)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere, which is assumed to have no heat storage. The modelled skin temperatures are in fair agreement with LST directly estimated from SEVIRI observations. However, in contrast to LST retrievals from SEVIRI/MSG (or other infrared sensors) the SVAT model solves the energy budget equation under all-sky conditions. The SVAT surface skin temperature is then used to fill gaps in LST fields caused by clouds. Since under cloudy conditions the direct incoming solar radiation is greatly reduced, thermal balance at the surface is more easily achieved and directional effects are also less important. Therefore, a better performance of the model skin temperature may be expected. In contrast, under clear skies the satellite LST showed to be more reliable, since the SVAT model shows biases in the daily amplitude of the skin temperature. In the context of the GlobTemperature project (http://www.globtemperature.info/), all-weather LST datasets using AMSR-E microwave radiances were produced, which are compared here to the SVAT-based LST. Both products were validated against in situ data - particularly from Gobabeb & Farm Heimat (Namibia), and Évora (Portugal) - to show that under cloudy conditions the agreement between in-situ LST and modelled skin temperature is acceptable. Compared to the SVAT-based LST, AMSR-E LST is closer to satellite observations (level 2 product); the complementarity of the two approaches is assessed.

  18. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  19. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  20. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate

    PubMed Central

    Lopez, Renata F.V.; Seto, Jennifer E.; Blankschtein, Daniel; Langer, Robert

    2010-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively-coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ~0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500–1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. PMID:20971504

  1. Enhancing the transdermal delivery of rigid nanoparticles using the simultaneous application of ultrasound and sodium lauryl sulfate.

    PubMed

    Lopez, Renata F V; Seto, Jennifer E; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study

    PubMed Central

    Su, Ya; Yao, X. Steve; Li, Zhihong; Meng, Zhuo; Liu, Tiegen; Wang, Longzhi

    2015-01-01

    We present detailed measurement results of optical attenuation’s thermal coefficients (referenced to the temperature of the skin surface) in different depth regions of in vivo human forearm skins using optical coherence tomography (OCT). We first design a temperature control module with an integrated optical probe to precisely control the surface temperature of a section of human skin. We propose a method of using the correlation map to identify regions in the skin having strong correlations with the surface temperature of the skin and find that the attenuation coefficient in these regions closely follows the variation of the surface temperature without any hysteresis. We observe a negative thermal coefficient of attenuation in the epidermis. While in dermis, the slope signs of the thermal coefficient of attenuation are different at different depth regions for a particular subject, however, the depth regions with a positive (or negative) slope are different in different subjects. We further find that the magnitude of the thermal coefficient of attenuation coefficient is greater in epidermis than in dermis. We believe the knowledge of such thermal properties of skins is important for several noninvasive diagnostic applications, such as OCT glucose monitoring, and the method demonstrated in this paper is effective in studying the optical and biological properties in different regions of skin. PMID:25780740

  3. Biophysical and photobiological basics of water-filtered infrared-A hyperthermia of superficial tumors.

    PubMed

    Vaupel, Peter; Piazena, Helmut; Müller, Werner; Notter, Markus

    2018-05-10

    Thermography-controlled, water-filtered infrared-A (wIRA) is a novel, effective and approved heating technique listed in the ESHO quality assurance guidelines for superficial hyperthermia clinical trials (2017). In order to assess the special features and the potential of wIRA-hyperthermia (wIRA-HT), detailed and updated information about its physical and photobiological background is presented. wIRA allows for (a) application of high irradiances without skin pain and acute grade 2-4 skin toxicities, (b) prolonged, therapeutically relevant exposure times using high irradiances (150-200 mW/cm 2 ) and (c) faster and deeper heat extension within tissues. The deeper radiative penetration depth is mainly caused by forward Mie-scattering. At skin surface temperatures of 42-43 °C, the effective heating depth is 15 mm (T ≥ 40 °C) and 20 mm (T ≥ 39.5 °C). Advantages of wIRA include its contact-free energy input, easy power steering by a feed-back loop, extendable treatment fields, real-time and noninvasive surface temperature monitoring with observation of dynamic changes during HT, and - if necessary - rapid protection of temperature-sensitive structures. wIRA makes the compliant heating of ulcerated and/or bleeding tumors possible, allows for HT of irregularly shaped and diffusely spreading tumors, is independent of individual body contours, allows for very short 'transits' between HT and RT (1-4 min) or continuous heating between both therapeutic interventions. New treatment options for wIRA-HT may include malignant melanoma, vulvar carcinoma, skin metastases of different primary tumors, cutaneous T-and B-cell lymphoma, large-area hemangiomatosis, inoperable squamous cell, basal cell and eccrine carcinoma of the skin with depth extensions ≤20 mm.

  4. Firewalking: A Lesson in Physics.

    ERIC Educational Resources Information Center

    Taylor, John R.

    1989-01-01

    Emphasizes firewalking as a good illustration of basic concepts in thermodynamics. Describes the basic principles of firewalking and other factors including the cooling of the surface embers, moisture of the feet, thick skin on the feet, tolerance for pain, and other uncontrolled factors. (YP)

  5. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

  6. Turbine vane structure

    DOEpatents

    Irwin, John A.

    1980-08-19

    A liquid cooled stator blade assembly for a gas turbine engine includes an outer shroud having a pair of liquid inlets and a pair of liquid outlets supplied through a header and wherein means including tubes support the header radially outwardly of the shroud and also couple the header with the pair of liquid inlets and outlets. A pair of turbine vanes extend radially between the shroud and a vane platform to define a gas turbine motive fluid passage therebetween; and each of the vanes is cooled by an internal body casting of super alloy material with a grooved layer of highly heat conductive material that includes spaced apart flat surface trailing edges in alignment with a flat trailing edge of the casting joined to wall segments of the liner which are juxtaposed with respect to the internal casting to form an array of parallel liquid inlet passages on one side of the vane and a second plurality of parallel liquid return passages on the opposite side of the vane; and a superalloy heat and wear resistant imperforate skin covers the outer surface of the composite blade including the internal casting and the heat conductive layer; a separate trailing edge section includes an internal casting and an outer skin butt connected to the end surfaces of the internal casting and the heat conductive layer to form an easily assembled liquid cooled trailing edge section in the turbine vane.

  7. Analysis of absorption and spreading of moisturizer on the microscopic region of the skin surface with near-infrared imaging.

    PubMed

    Arimoto, H; Yanai, M; Egawa, M

    2016-11-01

    Near-infrared (NIR) light with high water absorption enables us to visualize the water content distribution appeared in the superficial skin layer. The light penetration depth with the wavelength of 1920 nm is almost 100 μm from the skin surface. Thus, the water distribution in the stratum corneum can be effectively imaged by detecting the wavelength band around 1920 nm. The aim of this article was to measure the time-lapse behavior of the tiny droplet of the moisturizer spreading on the skin surface by imaging in 1920 nm wavelength band for investigating the correlation with the traditional index of the skin condition such as the water content and transepidermal water loss (TEWL). Experiment is performed with three moisturizer products and seven volunteer subjects. The NIR image is acquired by an originally designed imaging scope equipped with the white light of the strong brightness [super continuum (SC) light], the bandpass filter with the center wavelength of 1920 nm, and the NIR image sensor. A tiny droplet of the moisturizer is put on the surface of the skin and the time-lapse images are saved. Each acquired image is analyzed from a view point of the droplet area and elapsed time for absorption into the skin. The water content and TEWL of all subjects are measured by the conventional electrical method for investigating the relationship with the measured droplet dynamics parameters. Elapsed time for moisturizer droplet to be absorbed into the skin, the droplet area just before absorption for three moisturizer products, skin water contents, and TEWL for seven subjects were measured and correlation coefficients for each parameters were calculated. It was found that the skin with higher water contents or lower TEWL absorbed the moisturizer faster and spreads moisturizer wider. Also absorption and spreading speed depend on moisturizer property (moisturizing or fresh) which is originated from the moisturizer constituents. The correlation values between the moisturizer dynamics on the skin surface and the traditional index of the skin property were clarified. It was found that the skin with the high water content or low TEWL absorbs the moisturizer droplet fast. The spreading area depends not only on the skin property but on the constituents of the moisturizers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Sprayed skin turbine component

    DOEpatents

    Allen, David B

    2013-06-04

    Fabricating a turbine component (50) by casting a core structure (30), forming an array of pits (24) in an outer surface (32) of the core structure, depositing a transient liquid phase (TLP) material (40) on the outer surface of the core structure, the TLP containing a melting-point depressant, depositing a skin (42) on the outer surface of the core structure over the TLP material, and heating the assembly, thus forming both a diffusion bond and a mechanical interlock between the skin and the core structure. The heating diffuses the melting-point depressant away from the interface. Subsurface cooling channels (35) may be formed by forming grooves (34) in the outer surface of the core structure, filling the grooves with a fugitive filler (36), depositing and bonding the skin (42), then removing the fugitive material.

  9. Predicting skin deficits through surface area measurements in ear reconstruction and adult ear surface area norms.

    PubMed

    Yazar, Memet; Sevim, Kamuran Zeynep; Irmak, Fatih; Yazar, Sevgi Kurt; Yeşilada, Ayşin Karasoy; Karşidağğ, Semra Hacikerim; Tatlidede, Hamit Soner

    2013-07-01

    Ear reconstruction is one of the most challenging procedures in plastic surgery practice. Many studies and techniques have been described in the literature for carving a well-pronounced framework. However, just as important as the cartilage framework is the ample amount of delicate skin coverage of the framework. In this report, we introduce an innovative method of measuring the skin surface area of the auricle from a three-dimensional template created from the healthy ear.The study group consisted of 60 adult Turkish individuals who were randomly selected (30 men and 30 women). The participant ages ranged from 18 to 45 years (mean, 31.5 years), and they had no history of trauma or congenital anomalies. The template is created by dividing the ear into aesthetic subunits and using ImageJ software to estimate the necessary amount of total skin surface area required.Reconstruction of the auricle is a complicated process that requires experience and patience to provide the auricular details. We believe this estimate will shorten the learning curve for residents and surgeons interested in ear reconstruction and will help surgeons obtain adequate skin to drape over the well-sculpted cartilage frameworks by providing a reference list of total ear skin surface area measurements for Turkish men and women.

  10. High Quality Bioreplication of Intricate Nanostructures from a Fragile Gecko Skin Surface with Bactericidal Properties

    NASA Astrophysics Data System (ADS)

    Green, David William; Lee, Kenneth Ka-Ho; Watson, Jolanta Anna; Kim, Hyun-Yi; Yoon, Kyung-Sik; Kim, Eun-Jung; Lee, Jong-Min; Watson, Gregory Shaun; Jung, Han-Sung

    2017-01-01

    The external epithelial surfaces of plants and animals are frequently carpeted with small micro- and nanostructures, which broadens their adaptive capabilities in challenging physical habitats. Hairs and other shaped protuberances manage with excessive water, light contaminants, predators or parasites in innovative ways. We are interested in transferring these intricate architectures onto biomedical devices and daily-life surfaces. Such a project requires a very rapid and accurate small-scale fabrication process not involving lithography. In this study, we describe a simple benchtop biotemplating method using shed gecko lizard skin that generates duplicates that closely replicate the small nanotipped hairs (spinules) that cover the original skin. Synthetic replication of the spinule arrays in popular biomaterials closely matched the natural spinules in length. More significantly, the shape, curvature and nanotips of the synthetic arrays are virtually identical to the natural ones. Despite some small differences, the synthetic gecko skin surface resisted wetting and bacterial contamination at the same level as natural shed skin templates. Such synthetic gecko skin surfaces are excellent platforms to test for bacterial control in clinical settings. We envision testing the biocidal properties of the well-matched templates for fungal spores and viral resistance in biomedicine as well as co/multi-cultures.

  11. Ocean haline skin layer and turbulent surface convections

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zhang, X.

    2012-04-01

    The ocean haline skin layer is of great interest to oceanographic applications, while its attribute is still subject to considerable uncertainty due to observational difficulties. By introducing Batchelor micro-scale, a turbulent surface convection model is developed to determine the depths of various ocean skin layers with same model parameters. These parameters are derived from matching cool skin layer observations. Global distributions of salinity difference across ocean haline layers are then simulated, using surface forcing data mainly from OAFlux project and ISCCP. It is found that, even though both thickness of the haline layer and salinity increment across are greater than the early global simulations, the microwave remote sensing error caused by the haline microlayer effect is still smaller than that from other geophysical error sources. It is shown that forced convections due to sea surface wind stress are dominant over free convections driven by surface cooling in most regions of oceans. The free convection instability is largely controlled by cool skin effect for the thermal microlayer is much thicker and becomes unstable much earlier than the haline microlayer. The similarity of the global distributions of temperature difference and salinity difference across cool and haline skin layers is investigated by comparing their forcing fields of heat fluxes. The turbulent convection model is also found applicable to formulating gas transfer velocity at low wind.

  12. A thermal microjet system with tapered micronozzles fabricated by inclined UV lithography for transdermal drug delivery

    NASA Astrophysics Data System (ADS)

    Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R.; Allen, Mark G.

    2011-02-01

    Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.

  13. The laser interferometer skin-friction meter - A numerical and experimental study

    NASA Technical Reports Server (NTRS)

    Murphy, J. D.; Westphal, R. V.

    1986-01-01

    Limits to the applicability of thin-film lubrication theory are established. The following two problems are considered: (1) the response of the oil film to a time-varying skin friction such as is encountered in turbulent boundary layers, and (2) a 'surface-wave instability' encountered at high skin-friction levels. Results corresponding to the first problem reveal that the laser interferometer skin-friction meter may, in principle, be applied to the measurement of instantaneous skin friction. In addressing the second problem, it is shown that the observed surface waves are not the result of a hydrodynamic instability.

  14. Bilateral Symmetry of Distortions of Tactile Size Perception.

    PubMed

    Longo, Matthew R; Ghosh, Arko; Yahya, Tasneem

    2015-01-01

    The perceived distance between touches on the limbs is generally bigger for distances oriented across the width of the limb than for distances oriented along the length of the limb. The present study aimed to investigate the coherence of such distortions of tactile size perception across different skin surfaces. We investigated distortions of tactile size perception on the dorsal and palmar surfaces of both the left and right hands as well as the forehead. Participants judged which of two tactile distances felt larger. One distance was aligned with the proximodistal axis (along the body), the other with the mediolateral axis (across the body). Clear distortions were found on all five skin surfaces, with stimuli oriented across the width of the body being perceived as farther apart than those oriented along the length of the body. Consistent with previous results, distortions were smaller on the palmar than on the dorsal hand surface. Distortion on the forehead was intermediate between the dorsal and palmar surfaces. There were clear correlations between distortion on the left and right hands, for both the dorsal and palmar skin surfaces. In contrast, within each hand, there was no significant correlation between the two skin surfaces. Distortion on the forehead was not significantly correlated with that on any of the other skin surfaces. These results provide evidence for bilaterally symmetric representations underlying tactile size perception. © The Author(s) 2015.

  15. Investigation of follicular and non-follicular pathways for polyarginine and oleic acid modified nanoparticles

    PubMed Central

    Hayden, Patrick; Singh, Mandip

    2013-01-01

    Purpose The aim of the current study was to investigate the percutaneous permeation pathways of cell penetrating peptide modified lipid nanoparticles and oleic acid modified polymeric nanoparticles. Methods Confocal microscopy was performed on skin cultures (EpiDermFT™) for modified and un-modified nanoparticles. Differential stripping was performed following in vitro skin permeation of Ibuprofen (Ibu) encapsulated nanoparticles to estimate Ibu levels in different skin layers and receiver compartment. The hair follicles (HF) were blocked and in vitro skin permeation of nanoparticles was then compared with unblocked HF. The surface modified nanoparticles were investigated for response on allergic contact dermatitis (ACD). Results Surface modified nanoparticles showed a significant higher (p < 0.05) in fluorescence in EpiDermFT™ cultures compared to controls. The HF play less than 5% role in total nanoparticle permeation into the skin. The Ibu levels were significantly high (p<0.05) for surface modified nanoparticles compared to controls. The Ibu levels in skin and receiver compartment were not significantly different when HF were open or closed. Modified nanoparticles showed significant improvement in treatment of ACD compared to solution. Conclusions Our studies demonstrate that increased skin permeation of surface modified nanoparticles is not only dependent on a follicular pathway but also occur through non-follicular pathway(s). PMID:23187866

  16. Application of Plasma Technology in the Life Sciences

    NASA Astrophysics Data System (ADS)

    Short, Robert

    2002-10-01

    This paper explores the versatility of plasma polymerization in the fabrication of surfaces for use in the Life Sciences and Tissue Engineering, highlighting three successful applications of plasma polymerized surfaces. 1. Plasma polymerized acrylic acid surfaces have been used as substrates for the culture and delivery of keratinocytes (skin cells) to chronic wounds. In proof of concept studies weekly delivery of keratinocytes have promoted healing in previously non-healing wounds. These include diabetic foot ulcers and wounds where skin grafts would normally be considered, but were contra-indicated. 2. Surface chemical patterning on the micrometer scale- length, by use of pre-fabricated masks, has been used to control the spatial binding of proteins and cells. This technology makes possible a significant reduction in size of biological assays, reducing the amount of material (e.g. antibody) or cells required. 3. Surface chemical potential gradients, from a few tens of micrometers to a few centrimeters, have been fabricated by "plasma writing", a technique currently being developed in Sheffield. These gradients are being developed to separate mixtures of biomolecules or cells.

  17. Total skin electron irradiation: evaluation of dose uniformity throughout the skin surface.

    PubMed

    Anacak, Yavuz; Arican, Zumre; Bar-Deroma, Raquel; Tamir, Ada; Kuten, Abraham

    2003-01-01

    In this study, in vivo dosimetic data of 67 total skin electron irradiation (TSEI) treatments were analyzed. Thermoluminescent dosimetry (TLD) measurements were made at 10 different body points for every patient. The results demonstrated that the dose inhomogeneity throughout the skin surface is around 15%. The homogeneity was better at the trunk than at the extratrunk points, and was worse when a degrader was used. There was minimal improvement of homogeneity in subsequent days of treatment.

  18. Pollution and Sun Exposure: a Deleterious Synergy. Mechanisms and Opportunities for Skin Protection.

    PubMed

    Marrot, Laurent

    2017-09-18

    Pollutants are highly diverse chemical entities, including gases such as ozone or nitrogen and sulphur oxides and particulate matter of different sizes and with different chemical constituents. PM2.5 is composed of particles that are sometimes about ten nanometres or so in size (ultrafine particles) which can be deposited in lung alveoli, translocated into capillaries and then distributed to all organs through blood circulation. PM2.5 is often associated with toxic chemicals such as heavy metals or polycyclic aromatic hydrocarbons (PAHs) and some photo-reactive PAHs can induce strong oxidative stress under UVA exposure. Skin may thus be impacted by external influences through oxidation of some of its surface components. Moreover, internal contamination is highly probable since some pollutants present in plasma could be delivered by the circulation of the blood. In fact, aggravation of skin diseases such as atopy or eczema during peaks in pollution suggests that skin surface is not the only one to be impacted. Moreover, epidemiological data pointed to a significant correlation between exposure to pollution or cigarette smoke and early occurrence of aging markers. Oxidative stress, inflammation and metabolic impairments are among the most probable mechanisms of pollution-derived dermatological hazards which might be amplified by the deleterious synergy of pollution and sun, particularly UVA. Protection strategies should thus combine surface protection (sunscreens with high UVA absorption, antioxidants preventing lipid peroxidation) and enhanced deeper skin tissue resistance to oxidative stress and inflammation, with antioxidants targeting mitochondria or the induction of natural antioxidation and detoxification such as the Nrf2 pathway. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation.

    PubMed

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Janoušková, Olga; Koubková, Jana; Kumorek, Marta M; Rypáček, František

    2016-01-11

    Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold's outer surface at the air-liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications.

  20. Antibacterial Activity of Zinc Oxide-Coated Nanoporous Alumina

    DTIC Science & Technology

    2012-05-17

    microorganisms, including Bacillus subtilis, Enterococcus faecalis, E. coli, methicillin - sensitive S. aureus , methicillin - resistant S. aureus , S... Staphylococcus aureus , and Staphylococcus epidermidis. On the other hand, zinc 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus , and

  1. Some aerodynamic considerations related to wind tunnel model surface definition

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1980-01-01

    The aerodynamic considerations related to model surface definition are examined with particular emphasis in areas of fabrication tolerances, model surface finish, and orifice induced pressure errors. The effect of model surface roughness texture on skin friction is also discussed. It is shown that at a given Reynolds number, any roughness will produce no skin friction penalty.

  2. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity.

    PubMed

    Ma, Teng; Fu, Qiang; Su, Hai-Yan; Liu, Hong-Yang; Cui, Yi; Wang, Zhen; Mu, Ren-Tao; Li, Wei-Xue; Bao, Xin-He

    2009-05-11

    Tunable surface: The surface structure of the Fe-Pt bimetallic catalyst can be reversibly modulated between the iron-oxide-rich Pt surface and the Pt-skin structure with subsurface Fe via alternating reduction and oxidation treatments (see figure). The regenerated active Pt-skin structure is active in reactions involving CO and/or O.

  3. SU-E-T-09: A Clinical Implementation and Optimized Dosimetry Study of Freiberg Flap Skin Surface Treatment in High Dose Rate Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syh, J; Syh, J; Patel, B

    Purpose: This case study was designated to confirm the optimized plan was used to treat skin surface of left leg in three stages. 1. To evaluate dose distribution and plan quality by alternating of the source loading catheters pattern in flexible Freiberg Flap skin surface (FFSS) applicator. 2. To investigate any impact on Dose Volume Histogram (DVH) of large superficial surface target volume coverage. 3. To compare the dose distribution if it was treated with electron beam. Methods: The Freiburg Flap is a flexible mesh style surface mold for skin radiation or intraoperative surface treatments. The Freiburg Flap consists ofmore » multiple spheres that are attached to each other, holding and guiding up to 18 treatment catheters. The Freiburg Flap also ensures a constant distance of 5mm from the treatment catheter to the surface. Three treatment trials with individual planning optimization were employed: 18 channels, 9 channels of FF and 6 MeV electron beam. The comparisons were highlighted in target coverage, dose conformity and dose sparing of surrounding tissues. Results: The first 18 channels brachytherapy plan was generated with 18 catheters inside the skin-wrapped up flap (Figure 1A). A second 9 catheters plan was generated associated with the same calculation points which were assigned to match prescription for target coverage as 18 catheters plan (Figure 1B). The optimized inverse plan was employed to reduce the dose to adjacent structures such as tibia or fibula. The comparison of DVH’s was depicted on Figure 2. External beam of electron RT plan was depicted in Figure 3. Overcall comparisons among these three were illustrated in Conclusion: The 9-channel Freiburg flap flexible skin applicator offers a reasonably acceptable plan without compromising the coverage. Electron beam was discouraged to use to treat curved skin surface because of low target coverage and high dose in adjacent tissues.« less

  4. Cryogenic performance of slotted brazed Rene 41 honeycomb panels

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Swegle, A. R.

    1982-01-01

    Two brazed Rene 41 honeycomb panels that would incorporate a frame element were designed, fabricated and tested. The panels were representative of the lower surface of an advanced space transportation vehicle. The first panel was a two span panel supported by a center frame and on edges parallel to it. The second panel was a two span panel supported by a center frame and on edges parallel to it. The second panel was a three span panel supported on two frames and on edges parallel to the frames. Each panel had its outer skin slotted to reduce the thermal stresses of the panel skins. The first panel was tested under simulated boost conditions that included liquid hydrogen exposure of the frame and inner skin and radiant heat to 478K on the outer skins. The first panel was tested to investigate the effect of thermal stresses in skins and core caused by the panel being restrained by a cold integral frame and to observe the effects of frost formation and possible liquid air development in and around outer skin slots.

  5. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    PubMed

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  6. Community-acquired methicillin-resistant Staphylococcus aureus: an emerging pathogen in orthopaedics.

    PubMed

    Marcotte, Anthony L; Trzeciak, Marc A

    2008-02-01

    Staphylococcus aureus (S aureus) remains one of the most common pathogens for skin and soft-tissue infections encountered by the orthopaedic surgeon. Community-acquired methicillin-resistant S aureus (CA-MRSA) has become increasingly prevalent, particularly among athletes, children in day care, homeless persons, intravenous drug users, men who have sex with men, military recruits, certain minorities (ie, Alaskan Natives, Native Americans, Pacific Islanders), and prison inmates. Risk factors include antibiotic use within the preceding year, crowded living conditions, compromised skin integrity, contaminated surfaces, frequent skin-to-skin contact, shared items, and suboptimal cleanliness. When a patient presents with a skin or soft-tissue infection, the clinician should determine whether an abscess or other infection needs to be surgically incised and drained. Cultures should be performed. When the patient is a member of an at-risk group or has any of the risk factors for CA-MRSA, beta-lactam antibiotics (eg, methicillin) are no longer a reasonable choice for treatment. Empiric treatment should consist of non-beta-lactam antibiotics active against CA-MRSA.

  7. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  8. Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values.

    PubMed

    MacRae, Braid A; Annaheim, Simon; Spengler, Christina M; Rossi, René M

    2018-01-01

    Background: Skin temperature ( T skin ) is commonly measured using T skin sensors affixed directly to the skin surface, although the influence of setup variables on the measured outcome requires clarification. Objectives: The two distinct objectives of this systematic review were (1) to examine measurements from contact T skin sensors considering equilibrium temperature and temperature disturbance, sensor attachments, pressure, environmental temperature, and sensor type, and (2) to characterise the contact T skin sensors used, conditions of use, and subsequent reporting in studies investigating sports, exercise, and other physical activity. Data sources and study selection: For the measurement comparison objective, Ovid Medline and Scopus were used (1960 to July 2016) and studies comparing contact T skin sensor measurements in vivo or using appropriate physical models were included. For the survey of use, Ovid Medline was used (2011 to July 2016) and studies using contact temperature sensors for the measurement of human T skin in vivo during sport, exercise, and other physical activity were included. Study appraisal and synthesis methods: For measurement comparisons, assessments of risk of bias were made according to an adapted version of the Cochrane Collaboration's risk of bias tool. Comparisons of temperature measurements were expressed, where possible, as mean difference and 95% limits of agreement (LoA). Meta-analyses were not performed due to the lack of a common reference condition. For the survey of use, extracted information was summarised in text and tabular form. Results: For measurement comparisons, 21 studies were included. Results from these studies indicated minor (<0.5°C) to practically meaningful (>0.5°C) measurement bias within the subgroups of attachment type, applied pressure, environmental conditions, and sensor type. The 95% LoA were often within 1.0°C for in vivo studies and 0.5°C for physical models. For the survey of use, 172 studies were included. Details about T skin sensor setup were often poorly reported and, from those reporting setup information, it was evident that setups widely varied in terms of type of sensors, attachments, and locations used. Conclusions: Setup variables and conditions of use can influence the measured temperature from contact T skin sensors and thus key setup variables need to be appropriately considered and consistently reported.

  9. Assimilation for skin SST in the NASA GEOS atmospheric data assimilation system

    PubMed Central

    Akella, Santha; Todling, Ricardo; Suarez, Max

    2018-01-01

    The present article describes the sea surface temperature (SST) developments implemented in the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric Data Assimilation System (ADAS). These are enhancements that contribute to the development of an atmosphere-ocean coupled data assimilation system using GEOS. In the current quasi-operational GEOS-ADAS, the SST is a boundary condition prescribed based on the OSTIA product, therefore SST and skin SST (Ts) are identical. This work modifies the GEOS-ADAS Ts by modeling and assimilating near sea surface sensitive satellite infrared (IR) observations. The atmosphere-ocean interface layer of the GEOS atmospheric general circulation model (AGCM) is updated to include near surface diurnal warming and cool-skin effects. The GEOS analysis system is also updated to directly assimilate SST-relevant Advanced Very High Resolution Radiometer (AVHRR) radiance observations. Data assimilation experiments designed to evaluate the Ts modification in GEOS-ADAS show improvements in the assimilation of radiance observations that extends beyond the thermal IR bands of AVHRR. In particular, many channels of hyperspectral sensors, such as those of the Atmospheric Infrared Sounder (AIRS), and Infrared Atmospheric Sounding Interferometer (IASI) are also better assimilated. We also obtained improved fit to withheld, in-situ buoy measurement of near-surface SST. Evaluation of forecast skill scores show marginal to neutral benefit from the modified Ts. PMID:29628531

  10. On the modeling and characterization of an interlocked flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Khalili, Nazanin; Shen, Xuechen; Naguib, Hani E.

    2017-04-01

    Development of an electronic skin with ultra-high pressure sensitivity is now of critical importance due its broad range of applications including prosthetic skins and biomimetic robotics. Microstructured conductive composite elastomers can acquire mechanical and electrical properties analogous to those of natural skin. One of the most prominent features of human skin is its tactile sensing property which can be mimicked in an electronic skin. Herein, an electrically conductive composite comprising polydimethylsiloxane and conductive fillers is used as a flexible and stretchable piezoresistive sensor. The electrical conductivity is induced within the elastomer matrix via carbon nanotubes whereas the piezoresistivity is obtained by means of microstructuring the surface of the substrate. An interlocked array of pyramids in micro-scale allows the change in the contact resistance between two thin layers of the composite upon application of an external load. Deformation of the interlocked arrays endows the sensor with an ultra-high sensitivity to the external pressures within the range of human skin perception. Moreover, using finite element analysis, the change in the contact are between the two layers was captured for different geometries. The structure of the sensor can be optimized through an optimization model in order to acquire maximum sensitivity.

  11. Functional and morphological studies of photodamaged skin on the hands of middle-aged Japanese golfers.

    PubMed

    Kikuchi-Numagami, K; Suetake, T; Yanai, M; Takahashi, M; Tanaka, M; Tagami, H

    2000-06-01

    The skin of golfers' hands provides a suitable model to study the effect of chronic sun exposure, because one of their hands is exposed to the outer environment, especially sunlight, while the other one is always protected by a glove during play. Our purpose was to find out the influence of photodamage on the properties of the skin surface of middle-aged Japanese by using non-invasive methods. We measured hydration state, and water barrier function of the stratum corneum (SC) and the color of the skin of the dorsum of the hands. In a separate study, we evaluated the skin surface contour by using replicas taken from the skin in a slightly stretched or relaxed position. We found a significant decrease in hydration of the skin surface of the exposed skin as compared to that of the protected skin, whereas no such difference was found with transepidermal water loss, a parameter for water barrier function of the SC. Luminance of skin color was also reduced in the sun-exposed skin. Replica analysis revealed that large wrinkles developing in a relaxed position were more prominent on the exposed than on the protected skin, while fine furrows noted in a slightly stretched position were shallower on the former than the latter. The data obtained indicate that the chronically exposed skin of golfers' hands shows morphological and functional changes resulting from long time exposure to the outer environment especially sunlight. Furthermore, bioengineering non-invasive methods are found to be useful to detect early photodamage of the skin in a more quantitative fashion which is rather difficult to demonstrate clinically.

  12. Relationship between Deck Level, Body Surface Temperature and Carcass Damages in Italian Heavy Pigs after Short Journeys at Different Unloading Environmental Conditions.

    PubMed

    Arduini, Agnese; Redaelli, Veronica; Luzi, Fabio; Dall'Olio, Stefania; Pace, Vincenzo; Nanni Costa, Leonardo

    2017-02-10

    In order to evaluate the relationships between deck level, body surface temperature and carcass damages after a short journey (30 min), 10 deliveries of Italian heavy pigs, including a total of 1400 animals from one farm, were examined. Within 5 min after the arrival at the abattoir, the vehicles were unloaded. Environmental temperature and relative humidity were recorded and a Temperature Humidity Index (THI) was calculated. After unloading, maximum temperatures of dorsal and ocular regions were measured by a thermal camera on groups of pigs from each of the unloaded decks. After dehairing, quarters and whole carcasses were evaluated subjectively by a trained operator for skin damage using a four-point scale. On the basis of THI at unloading, deliveries were grouped into three classes. Data of body surface temperature and skin damage score were analysed in a model including THI class, deck level and their interaction. Regardless of pig location in the truck, the maximum temperature of the dorsal and ocular regions increased with increasing THI class. Within each THI class, the highest and lowest body surface temperatures were found in pigs located on the middle and upper decks, respectively. Only THI class was found to affect the skin damage score ( p < 0.05), which increased on quarters and whole carcasses with increasing THI class. The results of this study on short-distance transport of Italian heavy pigs highlighted the need to control and ameliorate the environmental conditions in the trucks, even at relatively low temperature and THI, in order to improve welfare and reduce loss of carcass value.

  13. Direct measurements and analysis of skin friction and cooling downstream of multiple flush-slot injection into a turbulent Mach 6 boundary layer

    NASA Technical Reports Server (NTRS)

    Howard, F. G.; Strokowski, A. J.

    1978-01-01

    Experiments were conducted to determine the reduction in surface skin friction and the effectiveness of surface cooling downstream of one to four successive flush slots injecting cold air at an angle of 10 deg into a turbulent Mach 6 boundary layer. Data were obtained by direct measurement of surface shear and equilibrium temperatures, respectively. Increasing the number of slots decreased the skin friction, but the incremental improvement in skin-friction reduction decreased as the number of slots was increased. Cooling effectiveness was found to improve, for a given total mass injection, as the number of slots was increased from one to four. Comparison with previously reported step-slot data, however, indicated that step slots with tangential injection are more effective for both reducing skin friction and cooling than the present flush-slot configuration. Finite-difference predictions are in reasonable agreement with skin-friction data and with boundary-layer profile data.

  14. Depigmentation Therapies for Vitiligo.

    PubMed

    Grimes, Pearl E; Nashawati, Rama

    2017-04-01

    The general goals of medical management of vitiligo are to repigment vitiliginous areas of skin and to stabilize the progression of depigmentation. However, for some patients with vitiligo affecting extensive body surface areas who are unresponsive to repigmentation therapies, depigmentation of the remaining normal skin may be a better choice. Candidates for depigmentation therapy should be carefully screened and patient education is essential. Permanent topical therapies used for depigmentation include monobenzyl ether of hydroquinone, 4-methoxyphenol, and 88% phenol. Physical modalities, such as cryotherapy and lasers, are also being used successfully. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Acousto-optical assessment of skin viscoelasticity

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.; Duncan, Donald D.

    2003-07-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto-optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  16. Optical assessment of tissue mechanics: acousto-optical elastography of skin

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Sean J.

    2003-10-01

    A multiphysics approach, combining acoustics, optics, and mechanics can be used to detect regions of skin with distinct mechanical behavior that may indicate a pathology, such as a cancerous skin lesion. Herein, an acousto - optical approach to evaluating the viscoelastic behavior of superficial skin layers will be presented. The method relies upon inducing low frequency guided surface waves in the skin and detecting these waves by monitoring the shift in the backscattered laser speckle pattern created by illuminating a small region of the skin with coherent light. Artificial lesions in the form of chemical cross-linking and chemical softening were induced in superficial porcine skin layers and detected based upon variations in local mechanical behavior. The lesions affect not only the time-of-flight of the guided surface waves, but also change the relative phase of the acoustic waves as determined optically. The method may be applicable in the study and diagnosis of superficial skin lesions.

  17. Evaluation of NASA GEOS-ADAS Modeled Diurnal Warming Through Comparisons to SEVIRI and AMSR2 SST Observations

    NASA Astrophysics Data System (ADS)

    Gentemann, C. L.; Akella, S.

    2018-02-01

    An analysis of the ocean skin Sea Surface Temperature (SST) has been included in the Goddard Earth Observing System (GEOS) - Atmospheric Data Assimilation System (ADAS), Version 5 (GEOS-ADAS). This analysis is based on the GEOS atmospheric general circulation model (AGCM) that simulates near-surface diurnal warming and cool skin effects. Analysis for the skin SST is performed along with the atmospheric state, including Advanced Very High Resolution Radiometer (AVHRR) satellite radiance observations as part of the data assimilation system. One month (September, 2015) of GEOS-ADAS SSTs were compared to collocated satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSTs to examine how the GEOS-ADAS diurnal warming compares to the satellite measured warming. The spatial distribution of warming compares well to the satellite observed distributions. Specific diurnal events are analyzed to examine variability within a single day. The dependence of diurnal warming on wind speed, time of day, and daily average insolation is also examined. Overall the magnitude of GEOS-ADAS warming is similar to the warming inferred from satellite retrievals, but several weaknesses in the GEOS-AGCM simulated diurnal warming are identified and directly related back to specific features in the formulation of the diurnal warming model.

  18. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  19. Management of psoriasis with nutraceuticals: An update.

    PubMed

    Raut, Gauravi; Wairkar, Sarika

    2018-05-01

    Psoriasis is a chronic skin disorder that speeds up the life cycle of skin cells, typically on the surface of the skin. Additional skin cells form thick scales and red fixes which are awfully itchy and sometimes painful. Although there are many therapeutic systems available to get symptomatic relief, unfortunately replete cure for psoriasis is not yet reported. Moreover, poor treatment outcomes as well as high toxicity profile of drugs makes these therapies more inconvenient to treat psoriasis. In search of alternative and complementary therapy for this disease, the focus has been shifted to nutraceuticals, few of them were reported since ages. It includes vitamins, herbal extracts, phytochemicals and dietary supplements. In this review, the attempt has been made to highlight key nutraceuticals for better management of psoriasis. Supplementation of appropriate nutraceutical may improve the quality of patient's life and have positive impact on overall state of disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. We need wrinkle on the skin

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Lee, Sang Joon

    2015-11-01

    Wrinkle formation on the skin is an unwelcome guest to everybody. But if we truly understand how wrinkles can contribute to important biological functions, then we readily admit the wrinkles positively. In this study, we show how the wrinkles are advantageous and useful in many systems. In a plant system for example, by forming line patterned wrinkles the hydrogels covering on the seed surface contribute to delay the dehydration against varying water supply environments. Inspired by this plant hydrogel, it is experimentally and theoretically investigated how lined wrinkles are useful to conserve water inside while protect the individual from drying-out. This study would contribute to a variety of humidity-sensitive system development including artificial skin, humidity-actuated sensors and the like.

  1. The Diversity and Distribution of Fungi on Residential Surfaces

    PubMed Central

    Adams, Rachel I.; Miletto, Marzia; Taylor, John W.; Bruns, Thomas D.

    2013-01-01

    The predominant hypothesis regarding the composition of microbial assemblages in indoor environments is that fungal assemblages are structured by outdoor air with a moderate contribution by surface growth, whereas indoor bacterial assemblages represent a mixture of bacteria entered from outdoor air, shed by building inhabitants, and grown on surfaces. To test the fungal aspect of this hypothesis, we sampled fungi from three surface types likely to support growth and therefore possible contributors of fungi to indoor air: drains in kitchens and bathrooms, sills beneath condensation-prone windows, and skin of human inhabitants. Sampling was done in replicated units of a university-housing complex without reported mold problems, and sequences were analyzed using both QIIME and the new UPARSE approach to OTU-binning, to the same result. Surfaces demonstrated a mycological profile similar to that of outdoor air from the same locality, and assemblages clustered by surface type. “Weedy” genera typical of indoor air, such as Cladosporium and Cryptococcus, were abundant on sills, as were a diverse set of fungi of likely outdoor origin. Drains supported more depauperate assemblages than the other surfaces and contained thermotolerant genera such as Exophiala, Candida, and Fusarium. Most surprising was the composition detected on residents’ foreheads. In addition to harboring Malassezia, a known human commensal, skin also possessed a surprising richness of non-resident fungi, including plant pathogens such as ergot (Claviceps purperea). Overall, fungal richness across indoor surfaces was high, but based on known autecologies, most of these fungi were unlikely to be growing on surfaces. We conclude that while some endogenous fungal growth on typical household surfaces does occur, particularly on drains and skin, all residential surfaces appear – to varying degrees – to be passive collectors of airborne fungi of putative outdoor origin, a view of the origins of the indoor microbiome quite different from bacteria. PMID:24223861

  2. Skin pathology in Hawaiian goldring surgeonfish, Ctenochaetus strigosus (Bennett)

    USGS Publications Warehouse

    Work, Thierry M.; Aeby, Greta S.

    2014-01-01

    Twenty-eight goldring surgeonfish, Ctenochaetus strigosus (Bennett), manifesting skin lesions and originating from the north-western and main Hawaiian Islands were examined. Skin lesions were amorphous and ranged from simple dark or light discolouration to multicoloured tan to white sessile masses with an undulant surface. Skin lesions covered 2–66% of the fish surface, and there was no predilection for lesions affecting a particular part of the fish. Males appeared over-represented. Microscopy revealed the skin lesions to be hyperplasia, melanophoromas or iridophoromas. The presence of skin tumours in a relatively unspoiled area of Hawaii is intriguing. Explaining their distribution, cause and impact on survivorship of fish all merit further study because C. strigosus is an economically important fish in the region.

  3. The adhesion and hysteresis effect in friction skin with artificial materials

    NASA Astrophysics Data System (ADS)

    Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H. S.

    2017-02-01

    Human skin is a soft biomaterial with a complex anatomical structure and it has a complex material behavior during the mechanical contact with objects and surfaces. The friction adhesion component is defined by means of the theories of Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis - Dugdale (MD). We shall consider the human skin entering into contact with a rigid surface. The deformation (hysteresis) component of the skin friction is evaluated with Voigt rheological model for the spherical contact, with the original model, developed in MATHCAD software. The adhesive component of the skin friction is greater than the hysteresis component for all friction parameters (load, velocity, the strength of interface between skin and the artificial material).

  4. Lipid vesicles and other colloids as drug carriers on the skin.

    PubMed

    Cevc, Gregor

    2004-03-27

    Colloids from an aqueous suspension can cross the skin barrier only through hydrophilic pathways. Various colloids have a different ability to do this by penetrating narrow pores of fixed size in the skin, or the relevant nano-pores in barriers modelling the skin. Such ability is governed by colloid adaptability, which must be high enough to allow penetrant deformation to the size of a pore in such barrier: for a 100 nm colloid trespassing the skin this means at least 5-fold deformation/elongation. (Lipid) Bilayer vesicles are normally more adaptable than the comparably large (lipid coated) fluid droplets. One of the reasons for this, and an essential condition for achieving a high bilayer adaptability and pore penetration, is a high bilayer membrane elasticity. The other reason is the relaxation of changing colloid's volume-to-surface constraint during pore penetration; it stands to reason that such relaxation requires a concurrent, but only transient and local, bilayer permeabilisation. Both these phenomena are reflected in bilayer composition sensitivity, which implies non-linear pressure dependency of the apparent barrier penetrability, for example. Amphipats that acceptably weaken a membrane (surfactants, (co)solvents, such as certain alcohols, etc.) consequently facilitate controlled, local bilayer destabilisation and increase lipid bilayer flexibility. When used in the right quantity, such additives thus lower the energetic expense for elastic bilayer deformation, associated with pore penetration. Another prerequisite for aggregate transport through the skin is the colloid-induced opening of the originally very narrow ( approximately 0.4 nm) gaps between cells in the barrier to pores with diameter above 30 nm. Colloids incapable of enforcing such widening-and simultaneously of self-adapting to the size of 20-30 nm without destruction-are confined to the skin surface. All relatively compact colloids seem to fall in this latter category. This includes mixed lipid micelles, solid (nano)particles, nano-droplets, biphasic vesicles, etc. Such colloids, therefore, merely enter the skin through the rare wide gaps between groups of skin cells near the organ surface. Transdermal drug delivery systems based on corresponding drug formulations, therefore, rely on simple drug diffusion through the skin; the colloid then, at best, can modulate drug transport through the barrier. In contrast, the adaptability-and stability-optimised mixed lipid vesicles (Transfersomes, a trademark of IDEA AG) can trespass much narrower pathways between most cells in the skin; such highly adaptable colloids thus mediate drug transport through the skin. Sufficiently stable ultra-adaptable carriers, therefore, can ensure targeted drug delivery deep below the application site. This has already been shown in numerous preclinical tests and several phase I and phase II clinical studies. Drug delivery by means of highly adaptable drug carriers, moreover, allows highly efficient and well-tolerated drug targeting into the skin proper. Sustained drug release through the skin into systemic blood circulation is another field of ultradeformable drug carrier application.

  5. Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Zhang, Rong; Witkowski, Sarah; Crandall, Craig G.

    2002-01-01

    Orthostatic tolerance is reduced in the heat-stressed human. The purpose of this project was to identify whether skin-surface cooling improves orthostatic tolerance. Nine subjects were exposed to 10 min of 60 degrees head-up tilting in each of four conditions: normothermia (NT-tilt), heat stress (HT-tilt), normothermia plus skin-surface cooling 1 min before and throughout tilting (NT-tilt(cool)), and heat stress plus skin-surface cooling 1 min before and throughout tilting (HT-tilt(cool)). Heating and cooling were accomplished by perfusing 46 and 15 degrees C water, respectively, though a tube-lined suit worn by each subject. During HT-tilt, four of nine subjects developed presyncopal symptoms resulting in the termination of the tilt test. In contrast, no subject experienced presyncopal symptoms during NT-tilt, NT-tilt(cool), or HT-tilt(cool). During the HT-tilt procedure, mean arterial blood pressure (MAP) and cerebral blood flow velocity (CBFV) decreased. However, during HT-tilt(cool), MAP, total peripheral resistance, and CBFV were significantly greater relative to HT-tilt (all P < 0.01). No differences were observed in calculated cerebral vascular resistance between the four conditions. These data suggest that skin-surface cooling prevents the fall in CBFV during upright tilting and improves orthostatic tolerance, presumably via maintenance of MAP. Hence, skin-surface cooling may be a potent countermeasure to protect against orthostatic intolerance observed in heat-stressed humans.

  6. Red Hot: Determining the Physical Properties of Lava Lake Skin

    NASA Astrophysics Data System (ADS)

    Ford, C.; Lev, E.

    2015-12-01

    Lava lakes are the surface expression of conduits that bring magma to the mouth of a volcano from deep within the earth. Time-lapse footage from a thermal imaging camera at Halema'uma'u lake at Kilauea volcano, Hawaii was used to investigate the cooling rate of the lava lake's surface. The data was then combined with an analytical model of lava flow cooling to constrain the porosity of the lava lake skin. The data was processed to account for the influence that the camera's position relative to the lake had on the image geometry and the recorded temperature values. We examined lake cooling in two separate scenarios: First, we calculated the cooling rate of the skin immediately after large gas bubbles burst at the lake's surface. Second, the temperature of the skin was measured as a function of distance from molten spreading centers (cracks) on the surface, and then converted to cooling as a function of the skin's age using the local lake surface velocity. The resulting cooling time-series were compared against cooling curves produced by a model that simulates lava flow cooling based on a myriad of physical factors. We performed quantitative data analysis to determine the approximate porosity of the lava lake skin. Preliminary comparisons reveal that the calculated cooling rates most closely correspond to the cooling curves that were produced with a lava porosity value of at least 80%.

  7. In vitro skin decontamination of the organophosphorus pesticide Paraoxon with nanometric cerium oxide CeO2.

    PubMed

    Salerno, Alicia; Devers, Thierry; Bolzinger, Marie-Alexandrine; Pelletier, Jocelyne; Josse, Denis; Briançon, Stéphanie

    2017-04-01

    Organophosphorus compounds (OP), which mainly penetrate via the percutaneous pathway, represent a threat for both military and civilians. Body surface decontamination is vital to prevent victims poisoning. The development of a cost-effective formulation, which could be efficient and easy to handle in case of mass contamination, is therefore crucial. Metal oxides nanoparticles, due their large surface areas and the large amount of highly reactive sites, present high reactivity towards OP. First, this study aimed at evaluating the reaction of CeO 2 nanoparticles, synthetized by microwave path and calcined at 500 or 600 °C, with Paraoxon (POX) in aqueous solution. Results showed that both nanoparticles degraded 60%-70% of POX. CeO 2 calcined at 500 °C, owing to its larger specific area, was the most effective. Moreover, the degradation was significantly increased under Ultra-Violet irradiation (initial degradation rate doubled). Then, skin decontamination was studied in vitro using the Franz cell method with pig-ear skin samples. CeO 2 powder and an aqueous suspension of CeO 2 (CeO 2 -W) were applied 1 h after POX exposure. The efficiency of decontamination, including removal and/or degradation of POX, was compared to Fuller's earth (FE) and RSDL lotion which are, currently, the most efficient systems for skin decontamination. CeO 2 -W and RSDL were the most efficient to remove POX from the skin surface and decrease skin absorption by 6.4 compared to the control not decontaminated. FE reduced significantly (twice) the absorbed fraction of POX, contrarily to CeO 2 powder. Considering only the degradation rate of POX, the products ranged in the order CeO 2  > RSDL > CeO 2 -W > FE (no degradation). This study showed that CeO 2 nanoparticles are a promising material for skin decontamination of OP if formulated as a dispersion able to remove POX like CeO 2 -W and to degrade it as CeO 2 powder. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Human (Homo sapiens) facial attractiveness in relation to skin texture and color.

    PubMed

    Fink, B; Grammer, K; Thornhill, R

    2001-03-01

    The notion that surface texture may provide important information about the geometry of visible surfaces has attracted considerable attention for a long time. The present study shows that skin texture plays a significant role in the judgment of female facial beauty. Following research in clinical dermatology, the authors developed a computer program that implemented an algorithm based on co-occurrence matrices for the analysis of facial skin texture. Homogeneity and contrast features as well as color parameters were extracted out of stimulus faces. Attractiveness ratings of the images made by male participants relate positively to parameters of skin homogeneity. The authors propose that skin texture is a cue to fertility and health. In contrast to some previous studies, the authors found that dark skin, not light skin, was rated as most attractive.

  9. Influence of application amount on sunscreen photodegradation in in vitro sun protection factor evaluation: proposal of a skin-mimicking substrate.

    PubMed

    Miura, Yoshimasa; Hirao, Tetsuji; Hatao, Masato

    2012-01-01

    Widely used polymethylmethacrylate substrates for in vitro sun protection factor (SPF) testing of sunscreens do not mimic the rough surface structure of skin, and in addition, sample loading is less than that used in in vivo SPF testing (2.00 mg cm(-2)). We have developed a skin-mimicking substrate (SMS), which has furrows and ridges on its surface, like human skin. A comparison of the photodegradation profiles of sunscreens on commercially available substrates (including SMS) at the recommended application amounts, and on SMS at various application amounts showed that the photodegradation rate of photounstable sunscreen was dependent on the application amount being higher at lower application amounts. SMS at the recommended application amount of 2.00 mg cm(-2) provided in vitro SPF values that were comparable with in vivo SPF values. Our results confirm that, in order to develop a reliable in vitro SPF method, which is consistent with in vivo SPF determination, it is important to use the same application amount of sample as in the in vivo method, in order to take proper account of sunscreen photostability. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  10. Measurement of conformability and adhesion energy of polymeric ultrathin film to skin model

    NASA Astrophysics Data System (ADS)

    Sugano, Junki; Fujie, Toshinori; Iwata, Hiroyasu; Iwase, Eiji

    2018-06-01

    We measured the conformability and adhesion energy of a polymeric ultrathin film “nanosheet” with hundreds of nanometer thickness to a skin model with epidermal depressions. To compare the confirmability of the nanosheets with different thicknesses and/or under different attaching conditions, we proposed a measurement method using skin models with the same surface profile and defined the surface strain εS as the quantified value of the conformability. Then, we measured the adhesion energy of the nanosheet at each conformability through a vertical tensile test. Experimental results indicate that the adhesion energy does not depend on the liquid used in wetting the nanosheet before attaching to the skin model and increases monotonously as the surface strain εS increases.

  11. Quantitative evaluation methods of skin condition based on texture feature parameters.

    PubMed

    Pang, Hui; Chen, Tianhua; Wang, Xiaoyi; Chang, Zhineng; Shao, Siqi; Zhao, Jing

    2017-03-01

    In order to quantitatively evaluate the improvement of the skin condition after using skin care products and beauty, a quantitative evaluation method for skin surface state and texture is presented, which is convenient, fast and non-destructive. Human skin images were collected by image sensors. Firstly, the median filter of the 3 × 3 window is used and then the location of the hairy pixels on the skin is accurately detected according to the gray mean value and color information. The bilinear interpolation is used to modify the gray value of the hairy pixels in order to eliminate the negative effect of noise and tiny hairs on the texture. After the above pretreatment, the gray level co-occurrence matrix (GLCM) is calculated. On the basis of this, the four characteristic parameters, including the second moment, contrast, entropy and correlation, and their mean value are calculated at 45 ° intervals. The quantitative evaluation model of skin texture based on GLCM is established, which can calculate the comprehensive parameters of skin condition. Experiments show that using this method evaluates the skin condition, both based on biochemical indicators of skin evaluation methods in line, but also fully consistent with the human visual experience. This method overcomes the shortcomings of the biochemical evaluation method of skin damage and long waiting time, also the subjectivity and fuzziness of the visual evaluation, which achieves the non-destructive, rapid and quantitative evaluation of skin condition. It can be used for health assessment or classification of the skin condition, also can quantitatively evaluate the subtle improvement of skin condition after using skin care products or stage beauty.

  12. Enhanced chlorhexidine skin penetration with eucalyptus oil

    PubMed Central

    2010-01-01

    Background Chlorhexidine digluconate (CHG) is a widely used skin antiseptic, however it poorly penetrates the skin, limiting its efficacy against microorganisms residing beneath the surface layers of skin. The aim of the current study was to improve the delivery of chlorhexidine digluconate (CHG) when used as a skin antiseptic. Method Chlorhexidine was applied to the surface of donor skin and its penetration and retention under different conditions was evaluated. Skin penetration studies were performed on full-thickness donor human skin using a Franz diffusion cell system. Skin was exposed to 2% (w/v) CHG in various concentrations of eucalyptus oil (EO) and 70% (v/v) isopropyl alcohol (IPA). The concentration of CHG (μg/mg of skin) was determined to a skin depth of 1500 μm by high performance liquid chromatography (HPLC). Results The 2% (w/v) CHG penetration into the lower layers of skin was significantly enhanced in the presence of EO. Ten percent (v/v) EO in combination with 2% (w/v) CHG in 70% (v/v) IPA significantly increased the amount of CHG which penetrated into the skin within 2 min. Conclusion The delivery of CHG into the epidermis and dermis can be enhanced by combination with EO, which in turn may improve biocide contact with additional microorganisms present in the skin, thereby enhancing antisepsis. PMID:20860796

  13. Parameters effects study on pulse laser for the generation of surface acoustic waves in human skin detection applications

    NASA Astrophysics Data System (ADS)

    Li, Tingting; Fu, Xing; Dorantes-Gonzalez, Dante J.; Chen, Kun; Li, Yanning; Wu, Sen

    2015-10-01

    Laser-induced Surface Acoustic Waves (LSAWs) has been promisingly and widely used in recent years due to its rapid, high accuracy and non-contact evaluation potential of layered and thin film materials. For now, researchers have applied this technology on the characterization of materials' physical parameters, like Young's Modulus, density, and Poisson's ratio; or mechanical changes such as surface cracks and skin feature like a melanoma. While so far, little research has been done on providing practical guidelines on pulse laser parameters to best generate SAWs. In this paper finite element simulations of the thermos-elastic process based on human skin model for the generation of LSAWs were conducted to give the effects of pulse laser parameters have on the generated SAWs. And recommendations on the parameters to generate strong SAWs for detection and surface characterization without cause any damage to skin are given.

  14. Antimicrobial-impregnated dressing combined with negative-pressure wound therapy increases split-thickness skin graft engraftment: a simple effective technique.

    PubMed

    Wu, Cheng-Chun; Chew, Khong-Yik; Chen, Chien-Chang; Kuo, Yur-Ren

    2015-01-01

    Immobilization and adequate surface contact to wounds are critical for skin graft take. Techniques such as the tie-over dressing, cotton bolster, and vacuum-assisted closure are used to address this, but each has its limitations. This study is designed to assess the effect of antimicrobial-impregnated dressing (AMD) combined with negative-pressure wound therapy (NPWT) on skin graft survival. Retrospective case-control study : Patients with chronic or contaminated wounds treated with split-thickness skin graft. A broad spectrum of wounds was included, from causes such as trauma, burns, chronic diabetic ulcers, and infection. Antimicrobial-impregnated dressing, which contains 0.2% polyhexamethylene biguanide, with NPWT MAIN OUTCOME MEASURE:: Success of skin graft : In the AMD group, all skin grafts achieved 100% take without secondary intervention. No infection or graft failure was observed in any patients, and no complications, such as hematoma or seroma formation, were noted, although in the control group partial loss of skin grafts was noted in 3 patients. Infection and inadequate immobilization were thought to be the main reasons. There were no hematoma or seroma formations in the control group. Use of an AMD dressing with NPWT after split-thickness skin grafting can be an effective method to ensure good graft to wound contact and enhances skin graft take in chronic and contaminated wounds.

  15. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners

    PubMed Central

    Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker

    2016-01-01

    Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780

  16. Measured body composition and geometrical data of four ``virtual family'' members for thermoregulatory modeling

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojiang; Rioux, Timothy P.; MacLeod, Tynan; Patel, Tejash; Rome, Maxwell N.; Potter, Adam W.

    2017-03-01

    The purpose of this paper is to develop a database of tissue composition, distribution, volume, surface area, and skin thickness from anatomically correct human models, the virtual family. These models were based on high-resolution magnetic resonance imaging (MRI) of human volunteers, including two adults (male and female) and two children (boy and girl). In the segmented image dataset, each voxel is associated with a label which refers to a tissue type that occupies up that specific cubic millimeter of the body. The tissue volume was calculated from the number of the voxels with the same label. Volumes of 24 organs in body and volumes of 7 tissues in 10 specific body regions were calculated. Surface area was calculated from the collection of voxels that are touching the exterior air. Skin thicknesses were estimated from its volume and surface area. The differences between the calculated and original masses were about 3 % or less for tissues or organs that are important to thermoregulatory modeling, e.g., muscle, skin, and fat. This accurate database of body tissue distributions and geometry is essential for the development of human thermoregulatory models. Data derived from medical imaging provide new effective tools to enhance thermal physiology research and gain deeper insight into the mechanisms of how the human body maintains heat balance.

  17. Extraction of skin-friction fields from surface flow visualizations as an inverse problem

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu

    2013-12-01

    Extraction of high-resolution skin-friction fields from surface flow visualization images as an inverse problem is discussed from a unified perspective. The surface flow visualizations used in this study are luminescent oil-film visualization and heat-transfer and mass-transfer visualizations with temperature- and pressure-sensitive paints (TSPs and PSPs). The theoretical foundations of these global methods are the thin-oil-film equation and the limiting forms of the energy- and mass-transport equations at a wall, which are projected onto the image plane to provide the relationships between a skin-friction field and the relevant quantities measured by using an imaging system. Since these equations can be re-cast in the same mathematical form as the optical flow equation, they can be solved by using the variational method in the image plane to extract relative or normalized skin-friction fields from images. Furthermore, in terms of instrumentation, essentially the same imaging system for measurements of luminescence can be used in these surface flow visualizations. Examples are given to demonstrate the applications of these methods in global skin-friction diagnostics of complex flows.

  18. Characterization of a new MOSFET detector configuration for in vivo skin dosimetry.

    PubMed

    Scalchi, Paolo; Francescon, Paolo; Rajaguru, Priyadarshini

    2005-06-01

    The dose released to the patient skin during a radiotherapy treatment is important when the skin is an organ at risk, or on the contrary, is included in the target volume. Since most treatment planning programs do not predict dose within several millimeters of the body surface, it is important to have a method to verify the skin dose for the patient who is undergoing radiotherapy. A special type of metal oxide semiconductors field-effect transistors (MOSFET) was developed to perform in vivo skin dosimetry for radiotherapy treatments. Water-equivalent depth (WED), both manufacturing and sensor reproducibility, dependence on both field size and angulation of the sensor were investigated using 6 MV photon beams. Patient skin dosimetries were performed during 6 MV total body irradiations (TBI). The resulting WEDs ranged from 0.04 and 0.15 mm (0.09 mm on average). The reproducibility of the sensor response, for doses of 50 cGy, was within +/-2% (maximum deviation) and improves with increasing sensitivity or dose level. As to the manufacturing reproducibility, it was found to be +/-0.055 mm. No WED dependence on the field size was verified, but possible variations of this quantity with the field size could be hidden by the assessment uncertainty. The angular dependence, for both phantom-surface and in-air setups, when referred to the mean response, is within +/-27% until 80 degree rotations. The results of the performed patient skin dosimetries showed that, normally, our TBI setup was suitable to give skin the prescribed dose, but, for some cases, interventions were necessary: as a consequence the TBI setup was corrected. The water-equivalent depth is, on average, less than the thinnest thermoluminescent dosimeters (TLD). In addition, when compared with TLDs, the skin MOSFETs have significant advantages, like immediate both readout and reuse, as well as the permanent storage of dose. These sensors are also waterproof. The in vivo dosimetries performed prove the importance of verifying the dose to the skin of the patient undergoing radiotherapy.

  19. Deposition of radon progeny on skin surfaces and resulting radiation doses in radon therapy.

    PubMed

    Tempfer, H; Hofmann, W; Schober, A; Lettner, H; Dinu, A L

    2010-05-01

    In the Gastein valley, Austria, radon-rich thermal water and air have been used for decades for the treatment of various diseases. To explore the exposure pathway of radon progeny adsorbed to the skin, progeny activities on the skin of patients exposed to thermal water (in a bathtub) and hot vapour (in a vapour chamber) were measured by alpha spectrometry. Average total alpha activities on the patients' skin varied from 1.2 to 4.1 Bq/cm(2) in the bathtub, and from 1.1 to 2.6 Bq/cm(2) in the vapour bath. Water pH-value and ion concentration did affect radon progeny adsorption on the skin, whereas skin greasiness and blood circulation did not. Measurements of the penetration of deposited radon progeny into the skin revealed a roughly exponential activity distribution in the upper layers of the skin. Based on the radon progeny surface activity concentrations and their depth distributions, equivalent doses to different layers of the skin, in particular to the Langerhans cells located in the epidermis, ranged from 0.12 mSv in the thermal bath to 0.33 mSv in the vapour bath, exceeding equivalent doses to the inner organs (kidneys) by inhaled radon and progeny by about a factor 3, except for the lung, which receives the highest doses via inhalation. These results suggest that radon progeny attachment on skin surfaces may play a major role in the dosimetry for both thermal water and hot vapour treatment schemes.

  20. 21 CFR 878.4730 - Surgical skin degreaser or adhesive tape solvent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Surgical skin degreaser or adhesive tape solvent... Surgical skin degreaser or adhesive tape solvent. (a) Identification. A surgical skin degreaser or an... dissolve surface skin oil or adhesive tape. (b) Classification. Class I (general controls). The device is...

  1. Static aeroelastic deformation of flexible skin for continuous variable trailing-edge camber wing

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Yin, Weilong; Dai, Fuhong; Liu, Yanju; Leng, Jinsong

    2011-03-01

    The method for analyzing the static aeroelastic deformation of flexible skin under the air loads was developed. The effect of static aeroelastic deformation of flexible skin on the aerodynamic characteristics of aerofoil and the design parameters of skin was discussed. Numerical results show that the flexible skin on the upper surface of trailing-edge will bubble under the air loads and the bubble has a powerful effect on the aerodynamic pressure near the surface of local deformation. The static aeroelastic deformation of flexible skin significantly affects the aerodynamic characteristics of aerofoil. At small angle of attack, the drag coefficient increases and the lift coefficient decreases. With the increasing angle of attack, the effect of flexible skin on the aerodynamic characteristics of aerofoil is smaller and smaller. The deformation of flexible skin becomes larger and larger with the free-stream velocity increasing. When the free-stream velocity is greater than a value, both of the deformation of flexible skin and the drag coefficient of aerofoil increase rapidly. The maximum tensile strain of flexible skin is increased with consideration of the static aeroelastic deformation.

  2. In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin.

    PubMed

    Liu, Gangjun; Jia, Wangcun; Nelson, J Stuart; Chen, Zhongping

    2013-12-01

    Port-wine stain (PWS) is a congenital, progressive vascular malformation of the dermis. The use of optical coherence tomography (OCT) for the characterization of blood vessels in PWS skin has been demonstrated by several groups. In the past few years, advances in OCT technology have greatly increased imaging speed. Sophisticated numerical algorithms have improved the sensitivity of Doppler OCT dramatically. These improvements have enabled the noninvasive, high-resolution, three-dimensional functional imaging of PWS skin. Here, we demonstrate high-resolution, three-dimensional, microvasculature imaging of PWS and normal skin using Doppler OCT technique. The OCT system uses a swept source laser which has a central wavelength of 1,310 nm, an A-line rate of 50 kHz and a total average power of 16 mW. The system uses a handheld imaging probe and has an axial resolution of 9.3 µm in air and a lateral resolution of approximately 15 µm. Images were acquired from PWS subjects at the Beckman Laser Institute and Medical Clinic. Microvasculature of the PWS skin and normal skin were obtained from the PWS subject. High-resolution, three-dimensional microvasculature of PWS and normal skin were obtained. Many enlarged PWS vessels are detected in the dermis down to 1.0 mm below the PWS skin surface. In one subject, the blood vessel diameters range from 40 to 90 µm at the epidermal-dermal junction and increase up to 300-500 µm at deeper regions 700-1,000 µm below skin surface. The blood vessels close to the epidermal-dermal junction are more uniform, in terms of diameter. The more tortuous and dilated PWS blood vessels are located at deeper regions 600-1,000 µm below the skin surface. In another subject example, the PWS skin blood vessels are dilated at very superficial layers at a depth less than 500 µm below the skin surface. The PWS skin vessel diameters range from 60 to 650 µm, with most vessels having a diameter of around 200 µm. OCT can be used to quantitatively image in vivo skin micro-vasculature. Analysis of the PWS and normal skin blood vessels were performed and the results can provide quantitative information to optimize laser treatment on an individual patient basis. © 2013 Wiley Periodicals, Inc.

  3. Friction coefficient of skin in real-time.

    PubMed

    Sivamani, Raja K; Goodman, Jack; Gitis, Norm V; Maibach, Howard I

    2003-08-01

    Friction studies are useful in quantitatively investigating the skin surface. Previous studies utilized different apparatuses and materials for these investigations but there was no real-time test parameter control or monitoring. Our studies incorporated the commercially available UMT Series Micro-Tribometer, a tribology instrument that permits real-time monitoring and calculation of the important parameters in friction studies, increasing the accuracy over previous tribology and friction measurement devices used on skin. Our friction tests were performed on four healthy volunteers and on abdominal skin samples. A stainless steel ball was pressed on to the skin with at a pre-set load and then moved across the skin at a constant velocity of 5 mm/min. The UMT continuously monitored the friction force of the skin and the normal force of the ball to calculate the friction coefficient in real-time. Tests investigated the applicability of Amonton's law, the impact of increased and decreased hydration, and the effect of the application of moisturizers. The friction coefficient depends on the normal load applied, and Amonton's law does not provide an accurate description for the skin surface. Application of water to the skin increased the friction coefficient and application of isopropyl alcohol decreased it. Fast acting moisturizers immediately increased the friction coefficient, but did not have the prolonged effect of the slow, long lasting moisturizers. The UMT is capable of making real-time measurements on the skin and can be used as an effective tool to study friction properties. Results from the UMT measurements agree closely with theory regarding the skin surface.

  4. AN EQUILIBRIUM-APPROACH MODEL FOR SIMULATING CONTAMINANT TRANSFER BETWEEN SURFACES AND SKIN IN SUPPORT OF FQPA

    EPA Science Inventory

    The Food Quality Protection Act (FQPA) demands that exposure of infants and children to pesticide residues from non-dietary sources be included in EPA's aggregate risk assessment. Ideally, the informed assessment would aggregate exposures from all reasonable sources, primarily ...

  5. Avoiding secondary skin graft donor site morbidity in the fibula free flap harvest.

    PubMed

    Kim, Paul D; Fleck, Terry; Heffelfinger, Ryan; Blackwell, Keith E

    2008-12-01

    To compare donor site morbidity in patients who have undergone fibula free flap reconstruction in which the skin graft was taken from the expected cutaneous paddle of the fibula with the known complications of the popular technique of obtaining a split-thickness skin graft (STSG) from a secondary donor site. Cohort study. The tertiary care centers at Loma Linda University Medical Center and University of California, Los Angeles, Medical Center. From September 1, 2006, to March 30, 2007, 30 patients underwent fibula free flap harvest by 2 surgeons at separate tertiary care centers. Twenty-one of those procedures took place at the University of California, Los Angeles, and 9 at Loma Linda University. Patients included 15 men (50%) and 15 women (50%), with a mean age of 58 (range, 19-88) years. All 30 patients underwent fibula free flap harvest with a split-thickness skin graft (graft thickness, 0.04 cm), obtained from osteocutaneous paddle using a 5.1-cm-wide dermatome, as well as oral cavity and oropharyngeal reconstruction with the de-epithelialized skin paddle. Measures of donor site morbidity, including graft failure and wound breakdown, and measures of recipient site morbidity, including flap failure, hardware complications, intraoral complications, and the need for additional surgery. Of the 30 patients who underwent this procedure, 4 had partial skin graft failures, for a complete skin graft survival of 87%. There were no complete skin graft losses. Regarding the fibula osteocutaneous free flap, there were no complete flap losses, 1 skin paddle necrosis that required debridement, 2 postoperative orocutaneous fistulas, 1 case of infected/extruded hardware, and 1 adhesion formation that required additional surgery for lysis of adhesion and placement of the split-thickness skin graft. The outlined novel technique has similar rates of free flap survival and skin graft take compared with previously described methods. Harvesting the skin graft over the expected osteocutaneous paddle results in decreased lower extremity morbidity by providing equivalent graft tissue for donor site closure and eliminating the morbidity of a secondary donor site. As long as there will not be 2 large opposing grafted surfaces, this technique should be considered when harvesting fibula free flaps for reconstruction of oromandibular resection defects, especially in cancers of the alveolar ridge and floor of the mouth.

  6. High resolution SAW elastography for ex-vivo porcine skin specimen

    NASA Astrophysics Data System (ADS)

    Zhou, Kanheng; Feng, Kairui; Wang, Mingkai; Jamera, Tanatswa; Li, Chunhui; Huang, Zhihong

    2018-02-01

    Surface acoustic wave (SAW) elastography has been proven to be a non-invasive, non-destructive method for accurately characterizing tissue elastic properties. Current SAW elastography technique tracks generated surface acoustic wave impulse point by point which are a few millimeters away. Thus, reconstructed elastography has low lateral resolution. To improve the lateral resolution of current SAW elastography, a new method was proposed in this research. A M-B scan mode, high spatial resolution phase sensitive optical coherence tomography (PhS-OCT) system was employed to track the ultrasonically induced SAW impulse. Ex-vivo porcine skin specimen was tested using this proposed method. A 2D fast Fourier transform based algorithm was applied to process the acquired data for estimating the surface acoustic wave dispersion curve and its corresponding penetration depth. Then, the ex-vivo porcine skin elastogram was established by relating the surface acoustic wave dispersion curve and its corresponding penetration depth. The result from the proposed method shows higher lateral resolution than that from current SAW elastography technique, and the approximated skin elastogram could also distinguish the different layers in the skin specimen, i.e. epidermis, dermis and fat layer. This proposed SAW elastography technique may have a large potential to be widely applied in clinical use for skin disease diagnosis and treatment monitoring.

  7. Aerial thermography studies of power plant heated lakes

    NASA Astrophysics Data System (ADS)

    Villa-Aleman, Eliel; Garrett, Alfred J.; Kurzeja, Robert J.; Pendergast, Malcolm M.

    2000-03-01

    Remote sensing temperature measurements of water bodies is complicated by the temperature differences between the true surface or `skin' water and the bulk water below. Weather conditions control the reduction of the skin temperature relative to the bulk water temperature. Typical skin temperature depressions range from a few tenths of a degree Celsius to more than one degree. In this research project, the Savannah River Technology Center used aerial thermography and surface-based meteorological and water temperature measurements to study a power plant cooling lake in South Carolina. Skin and bulk water temperatures were measured simultaneously for imagery calibration and to product a database for modeling of skin temperature depressions as a function of weather and bulk water temperatures. This paper will present imagery that illustrates how the skin temperature depression was affected by different conditions in several locations on the lake and will present skin temperature modeling results.

  8. Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces.

    PubMed

    Zhang, Yong-Lai; Wang, Jian-Nan; He, Yan; He, Yinyan; Xu, Bin-Bin; Wei, Shu; Xiao, Feng-Shou

    2011-10-18

    Reported here is a facile synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Taking this nanoporous polymer as a media, superhydrophobicity is rapidly imparted onto three typical kinds of substrates, including paper, transparent polydimethylsiloxane (PDMS), and finger skin. Quantitative characterization showed that the adhesion between the water droplet and polymer-coated substrates decreased significantly compared to that on the original surface, further indicating the effective wetting mode transformation. The nanoporous polymer coating would open a new door for facile, rapid, safe, and larger scale fabrication of superhydrophobic surfaces on general substrates. © 2011 American Chemical Society

  9. Cultured Skin Substitutes Reduce Donor Skin Harvesting for Closure of Excised, Full-Thickness Burns

    PubMed Central

    Boyce, Steven T.; Kagan, Richard J.; Yakuboff, Kevin P.; Meyer, Nicholas A.; Rieman, Mary T.; Greenhalgh, David G.; Warden, Glenn D.

    2002-01-01

    Objective Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Summary Background Data Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Methods Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Results Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. Conclusions The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting. PMID:11807368

  10. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns.

    PubMed

    Boyce, Steven T; Kagan, Richard J; Yakuboff, Kevin P; Meyer, Nicholas A; Rieman, Mary T; Greenhalgh, David G; Warden, Glenn D

    2002-02-01

    Comparison of cultured skin substitutes (CSS) and split-thickness skin autograft (AG) was performed to assess whether donor-site harvesting can be reduced quantitatively and whether functional and cosmetic outcome is similar qualitatively in the treatment of patients with massive cutaneous burns. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates populated with autologous fibroblasts and keratinocytes have been shown to close full-thickness skin wounds in preclinical and clinical studies with acceptable functional and cosmetic results. Qualitative outcome was compared between CSS and AG in 45 patients on an ordinal scale (0, worst; 10, best) with primary analyses at postoperative day 28 and after about 1 year for erythema, pigmentation, pliability, raised scar, epithelial blistering, and surface texture. In the latest 12 of the 45 patients, tracings were performed of donor skin biopsies and wounds treated with CSS at postoperative days 14 and 28 to calculate percentage engraftment, the ratio of closed wound:donor skin areas, and the percentage of total body surface area closed with CSS. Measures of qualitative outcome of CSS or AG were not different statistically at 1 year after grafting. Engraftment at postoperative day 14 exceeded 75% in the 12 patients evaluated. The ratio of closed wound:donor skin areas for CSS at postoperative day 28 was significantly greater than for conventional 4:1 meshed autografts. The percentage of total body surface area closed with CSS at postoperative day 28 was significantly less than with AG. The requirement for harvesting of donor skin for CSS was less than for conventional skin autografts. These results suggest that acute-phase recovery of patients with extensive burns is facilitated and that complications are reduced by the use of CSS together with conventional skin grafting.

  11. Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances

    NASA Technical Reports Server (NTRS)

    Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.

    2007-01-01

    Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.

  12. An antiaging skin care system containing alpha hydroxy acids and vitamins improves the biomechanical parameters of facial skin

    PubMed Central

    Tran, Diana; Townley, Joshua P; Barnes, Tanya M; Greive, Kerryn A

    2015-01-01

    Background The demand for antiaging products has dramatically increased in recent years, driven by an aging population seeking to maintain the appearance of youth. This study investigates the effects of an antiaging skin care system containing alpha hydroxy acids (AHAs) in conjunction with vitamins B3, C, and E on the biomechanical parameters of facial skin. Methods Fifty two volunteers followed an antiaging skin care regimen comprising of cleanser, eye cream, day moisturizer, and night moisturizer for 21 days. Wrinkle depth (Ry) and skin roughness (Ra) were measured by skin surface profilometry of the crow’s feet area, and skin elasticity parameters R2 (gross elasticity), R5 (net elasticity), R6 (viscoelastic portion), and R7 (recovery after deformation) were determined for facial skin by cutometer, preapplication and after 7, 14, and 21 days. Volunteers also completed a self-assessment questionnaire. Results Compared to baseline, Ry and Ra significantly improved by 32.5% (P<0.0001) and 42.9% (P<0.0001), respectively, after 21 days of antiaging skin care treatment. These results were observed by the volunteers with 9 out of 10 discerning an improvement in skin texture and smoothness. Compared to baseline, R2 and R5 significantly increased by 15.2% (P<0.0001) and 12.5% (P=0.0449), respectively, while R6 significantly decreased by 17.7% (P<0.0001) after 21 days. R7 increased by 9.7% after 21 days compared to baseline but this was not significant over this time period. Conclusion An antiaging skin care system containing AHAs and vitamins significantly improves the biomechanical parameters of the skin including wrinkles and skin texture, as well as elasticity without significant adverse effects. PMID:25552908

  13. An antiaging skin care system containing alpha hydroxy acids and vitamins improves the biomechanical parameters of facial skin.

    PubMed

    Tran, Diana; Townley, Joshua P; Barnes, Tanya M; Greive, Kerryn A

    2015-01-01

    The demand for antiaging products has dramatically increased in recent years, driven by an aging population seeking to maintain the appearance of youth. This study investigates the effects of an antiaging skin care system containing alpha hydroxy acids (AHAs) in conjunction with vitamins B3, C, and E on the biomechanical parameters of facial skin. Fifty two volunteers followed an antiaging skin care regimen comprising of cleanser, eye cream, day moisturizer, and night moisturizer for 21 days. Wrinkle depth (Ry ) and skin roughness (Ra ) were measured by skin surface profilometry of the crow's feet area, and skin elasticity parameters R2 (gross elasticity), R5 (net elasticity), R6 (viscoelastic portion), and R7 (recovery after deformation) were determined for facial skin by cutometer, preapplication and after 7, 14, and 21 days. Volunteers also completed a self-assessment questionnaire. Compared to baseline, Ry and Ra significantly improved by 32.5% (P<0.0001) and 42.9% (P<0.0001), respectively, after 21 days of antiaging skin care treatment. These results were observed by the volunteers with 9 out of 10 discerning an improvement in skin texture and smoothness. Compared to baseline, R2 and R5 significantly increased by 15.2% (P<0.0001) and 12.5% (P=0.0449), respectively, while R6 significantly decreased by 17.7% (P<0.0001) after 21 days. R7 increased by 9.7% after 21 days compared to baseline but this was not significant over this time period. An antiaging skin care system containing AHAs and vitamins significantly improves the biomechanical parameters of the skin including wrinkles and skin texture, as well as elasticity without significant adverse effects.

  14. Role of UV light in photodamage, skin aging, and skin cancer: importance of photoprotection.

    PubMed

    Gonzaga, Evelyn R

    2009-01-01

    Solar, and particularly UV, radiation causes molecular and cellular damage with resultant histopathologic and clinical degenerative changes, leading in turn to photosensitivity, photo-aging, and skin cancer. While our bodies have some natural UV defenses, additional protection from the sun is essential, including sun avoidance, physical protection, and sunscreen use. Sun avoidance includes limiting exposure during peak UV times (10am-4pm), avoiding UV-reflective surfaces such as sand, snow and water, and eliminating photosensitizing drugs. Physical protection includes wearing photoprotective clothing such as a broad-brimmed hat and long sleeves and use of UV-blocking films on windows. Sunscreen containing avobenzone, titanium dioxide, zinc oxide or encamsule should be used daily and frequently reapplied. To guard against the UVB spectrum, zinc oxide and titanium dioxide are particularly recommended. Sunscreen is generally under-applied at only 25% of the recommended dose, seriously compromising photoprotection. Dosage guidelines recommend using more than half a teaspoon each on head and neck area and each arm, and more than a teaspoon each on anterior torso, posterior torso, and each leg (approximately 2 mg/cm(2)).

  15. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population.

    PubMed

    Man, M Q; Xin, S J; Song, S P; Cho, S Y; Zhang, X J; Tu, C X; Feingold, K R; Elias, P M

    2009-01-01

    Evidence suggests the importance of skin biophysical properties in predicting diseases and in developing appropriate skin care. The results to date of studies on skin surface pH, stratum corneum (SC) hydration and sebum content in both genders and at various ages have been inconclusive, which was in part due to small sample size. Additionally, little is known about the skin physical properties of Asian, especially Chinese, subjects. In the present study, we assess the difference in skin surface pH, sebum content and SC hydration at various ages and in both genders in a large Chinese population without skin diseases. 713 subjects (328 males and 385 females) aged 0.5-94 years were enrolled in this study. The subjects were divided by age into 5 groups, i.e., 0-12, 13-35, 36-50, 51-70 and over 70 years old. A multifunctional skin physiology monitor was used to measure SC hydration, skin surface pH and sebum content on both the forehead and the forearms. In males, the highest sebum content was found on the forearm and the forehead in the age groups 36-50 (93.47 +/- 10.01 microg/cm(2)) and 51-70 years (9.16 +/- 1.95 microg/cm(2)), while in females, the highest sebum content was found on the forearm and the forehead in the age groups 13-35 (61.91 +/- 6.12 microg/cm(2)) and 51-70 years (7.54 +/- 2.55 microg/cm(2)). The forehead sebum content was higher in males aged 13-70 years than in age-matched females; the sebum content on the forehead in both males and females was higher than that on the forearm. Skin surface pH on the forehead of both males and females over the age of 70 years was higher than that in younger groups. SC hydration on the forehead in both males and females was lower above the age of 70, and the one in males aged 13-35 was higher than that in females (43.99 +/- 1.88 vs. 36.38 +/- 1.67 AU, p < 0.01). SC hydration on the forehead in both males and females did not significantly differ from that on the forearm. In a large Chinese cohort, the skin surface pH, sebum content and SC hydration vary with age, gender and body site. Copyright 2009 S. Karger AG, Basel.

  16. Variation of Skin Surface pH, Sebum Content and Stratum Corneum Hydration with Age and Gender in a Large Chinese Population

    PubMed Central

    Man, M.Q.; Xin, S.J.; Song, S.P.; Cho, S.Y.; Zhang, X.J.; Tu, C.X.; Feingold, K.R.; Elias, P.M.

    2009-01-01

    Background and Objectives Evidence suggests the importance of skin biophysical properties in predicting diseases and in developing appropriate skin care. The results to date of studies on skin surface pH, stratum corneum (SC) hydration and sebum content in both genders and at various ages have been inconclusive, which was in part due to small sample size. Additionally, little is known about the skin physical properties of Asian, especially Chinese, subjects. In the present study, we assess the difference in skin surface pH, sebum content and SC hydration at various ages and in both genders in a large Chinese population without skin diseases. Methods 713 subjects (328 males and 385 females) aged 0.5–94 years were enrolled in this study. The subjects were divided by age into 5 groups, i.e., 0–12, 13–35, 36–50, 51–70 and over 70 years old. A multifunctional skin physiology monitor was used to measure SC hydration, skin surface pH and sebum content on both the forehead and the forearms. Results In males, the highest sebum content was found on the forearm and the forehead in the age groups 36–50 (93.47 ± 10.01 μg/cm2) and 51–70 years (9.16 ± 1.95 μg/cm2), while in females, the highest sebum content was found on the forearm and the forehead in the age groups 13–35 (61.91 ± 6.12 μg/cm2) and 51–70 years (7.54 ± 2.55 μg/cm2). The forehead sebum content was higher in males aged 13–70 years than in age-matched females; the sebum content on the forehead in both males and females was higher than that on the forearm. Skin surface pH on the forehead of both males and females over the age of 70 years was higher than that in younger groups. SC hydration on the forehead in both males and females was lower above the age of 70, and the one in males aged 13–35 was higher than that in females (43.99 ± 1.88 vs. 36.38 ± 1.67 AU, p < 0.01). SC hydration on the forehead in both males and females did not significantly differ from that on the forearm. Conclusions In a large Chinese cohort, the skin surface pH, sebum content and SC hydration vary with age, gender and body site. PMID:19648780

  17. Thermography-based blood flow imaging in human skin of the hands and feet: a spectral filtering approach.

    PubMed

    Sagaidachnyi, A A; Fomin, A V; Usanov, D A; Skripal, A V

    2017-02-01

    The determination of the relationship between skin blood flow and skin temperature dynamics is the main problem in thermography-based blood flow imaging. Oscillations in skin blood flow are the source of thermal waves propagating from micro-vessels toward the skin's surface, as assumed in this study. This hypothesis allows us to use equations for the attenuation and dispersion of thermal waves for converting the temperature signal into the blood flow signal, and vice versa. We developed a spectral filtering approach (SFA), which is a new technique for thermography-based blood flow imaging. In contrast to other processing techniques, the SFA implies calculations in the spectral domain rather than in the time domain. Therefore, it eliminates the need to solve differential equations. The developed technique was verified within 0.005-0.1 Hz, including the endothelial, neurogenic and myogenic frequency bands of blood flow oscillations. The algorithm for an inverse conversion of the blood flow signal into the skin temperature signal is addressed. The examples of blood flow imaging of hands during cuff occlusion and feet during heating of the back are illustrated. The processing of infrared (IR) thermograms using the SFA allowed us to restore the blood flow signals and achieve correlations of about 0.8 with a waveform of a photoplethysmographic signal. The prospective applications of the thermography-based blood flow imaging technique include non-contact monitoring of the blood supply during engraftment of skin flaps and burns healing, as well the use of contact temperature sensors to monitor low-frequency oscillations of peripheral blood flow.

  18. Utilization of Satellite Data in Land Surface Hydrology: Sensitivity and Assimilation

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    This paper investigates the sensitivity of potential evapotranspiration to input meteorological variables, viz- surface air temperature and surface vapor pressure. The sensitivity studies have been carried out for a wide range of land surface variables such as wind speed, leaf area index and surface temperatures. Errors in the surface air temperature and surface vapor pressure result in errors of different signs in the computed potential evapotranspiration. This result has implications for use of estimated values from satellite data or analysis of surface air temperature and surface vapor pressure in large scale hydrological modeling. The comparison of cumulative potential evapotranspiration estimates using ground observations and satellite observations over Manhattan, Kansas for a period of several months shows very little difference between the two. The cumulative differences between the ground based and satellite based estimates of potential evapotranspiration amounted to less that 20mm over a 18 month period and a percentage difference of 15%. The use of satellite estimates of surface skin temperature in hydrological modeling to update the soil moisture using a physical adjustment concept is studied in detail including the extent of changes in soil moisture resulting from the assimilation of surface skin temperature. The soil moisture of the surface layer is adjusted by 0.9mm over a 10 day period as a result of a 3K difference between the predicted and the observed surface temperature. This is a considerable amount given the fact that the top layer can hold only 5mm of water.

  19. Methodology for estimation of time-dependent surface heat flux due to cryogen spray cooling.

    PubMed

    Tunnell, James W; Torres, Jorge H; Anvari, Bahman

    2002-01-01

    Cryogen spray cooling (CSC) is an effective technique to protect the epidermis during cutaneous laser therapies. Spraying a cryogen onto the skin surface creates a time-varying heat flux, effectively cooling the skin during and following the cryogen spurt. In previous studies mathematical models were developed to predict the human skin temperature profiles during the cryogen spraying time. However, no studies have accounted for the additional cooling due to residual cryogen left on the skin surface following the spurt termination. We formulate and solve an inverse heat conduction (IHC) problem to predict the time-varying surface heat flux both during and following a cryogen spurt. The IHC formulation uses measured temperature profiles from within a medium to estimate the surface heat flux. We implement a one-dimensional sequential function specification method (SFSM) to estimate the surface heat flux from internal temperatures measured within an in vitro model in response to a cryogen spurt. Solution accuracy and experimental errors are examined using simulated temperature data. Heat flux following spurt termination appears substantial; however, it is less than that during the spraying time. The estimated time-varying heat flux can subsequently be used in forward heat conduction models to estimate temperature profiles in skin during and following a cryogen spurt and predict appropriate timing for onset of the laser pulse.

  20. Regional and circadian variations of sweating rate and body surface temperature in camels (Camelus dromedarius).

    PubMed

    Abdoun, Khalid A; Samara, Emad M; Okab, Aly B; Al-Haidary, Ahmed A

    2012-07-01

    It was the aim of this study to investigate the regional variations in surface temperature and sweating rate and to visualize body thermal windows responsible for the dissipation of excess body heat in dromedary camels. This study was conducted on five dromedary camels with mean body weight of 450 ± 20.5 kg and 2 years of age. Sweating rate, skin and body surface temperature showed significant (P < 0.001) circadian variation together with the variation in ambient temperature. However, daily mean values of sweating rate, skin and body surface temperature measured on seven regions of the camel body did not significantly differ. The variation in body surface temperature compared to the variation in skin temperature was higher in the hump compared to the axillary and flank regions, indicating the significance of camel's fur in protecting the skin from daily variation in ambient temperature. Infrared thermography revealed that flank and axillary regions had lower thermal gradients at higher ambient temperature (T(a) ) and higher thermal gradients at lower T(a) , which might indicate the working of flank and axillary regions as thermal windows dissipating heat during the night. Sweating rate showed moderate correlation to skin and body surface temperatures, which might indicate their working as potential thermal drivers of sweating in camels. © 2012 The Authors. Animal Science Journal © 2012 Japanese Society of Animal Science.

  1. A new skin flap method for total auricular reconstruction in microtia patients with a reconstructed ear canal: extended scalp and extended mastoid postauricular skin flaps.

    PubMed

    Hwang, Euna; Kim, Young Soo; Chung, Seum

    2014-06-01

    Before visiting a plastic surgeon, some microtia patients may undergo canaloplasty for hearing improvement. In such cases, scarred tissues and the reconstructed external auditory canal in the postauricular area may cause a significant limitation in using the posterior auricular skin flap for ear reconstruction. In this article, we present a new method for auricular reconstruction in microtia patients with previous canaloplasty. By dividing a postauricular skin flap into an upper scalp extended skin flap and a lower mastoid extended skin flap at the level of a reconstructed external auditory canal, the entire anterior surface of the auricular framework can be covered with the two extended postauricular skin flaps. The reconstructed ear shows good color match and texture, with the entire anterior surface of the reconstructed ear being resurfaced with the skin flaps. Clinical question/level of evidence; therapeutic level IV. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  3. Skin Cancer Treatment

    MedlinePlus

    ... of skin biopsies: Shave biopsy : A sterile razor blade is used to “shave-off” the abnormal-looking ... the surface of the skin with a small blade. Electrodesiccation and curettage : The tumor is cut from ...

  4. A general and Robust Ray-Casting-Based Algorithm for Triangulating Surfaces at the Nanoscale

    PubMed Central

    Decherchi, Sergio; Rocchia, Walter

    2013-01-01

    We present a general, robust, and efficient ray-casting-based approach to triangulating complex manifold surfaces arising in the nano-bioscience field. This feature is inserted in a more extended framework that: i) builds the molecular surface of nanometric systems according to several existing definitions, ii) can import external meshes, iii) performs accurate surface area estimation, iv) performs volume estimation, cavity detection, and conditional volume filling, and v) can color the points of a grid according to their locations with respect to the given surface. We implemented our methods in the publicly available NanoShaper software suite (www.electrostaticszone.eu). Robustness is achieved using the CGAL library and an ad hoc ray-casting technique. Our approach can deal with any manifold surface (including nonmolecular ones). Those explicitly treated here are the Connolly-Richards (SES), the Skin, and the Gaussian surfaces. Test results indicate that it is robust to rotation, scale, and atom displacement. This last aspect is evidenced by cavity detection of the highly symmetric structure of fullerene, which fails when attempted by MSMS and has problems in EDTSurf. In terms of timings, NanoShaper builds the Skin surface three times faster than the single threaded version in Lindow et al. on a 100,000 atoms protein and triangulates it at least ten times more rapidly than the Kruithof algorithm. NanoShaper was integrated with the DelPhi Poisson-Boltzmann equation solver. Its SES grid coloring outperformed the DelPhi counterpart. To test the viability of our method on large systems, we chose one of the biggest molecular structures in the Protein Data Bank, namely the 1VSZ entry, which corresponds to the human adenovirus (180,000 atoms after Hydrogen addition). We were able to triangulate the corresponding SES and Skin surfaces (6.2 and 7.0 million triangles, respectively, at a scale of 2 grids per Å) on a middle-range workstation. PMID:23577073

  5. INVESTIGATION OF TRANSFER OF FLUORESCENT TRACERS FROM SURFACES TO SKIN

    EPA Science Inventory

    Under the provisions of the Food Quality Protection Act (FQPA), aggregate exposure assessments must be conducted for pesticides proposed for registration. Many aspects of dermal exposure assessment remain poorly quantified. For purposes of assessing surface-to-skin transfers ...

  6. Tissue responses to fractional transient heating with sinusoidal heat flux condition on skin surface.

    PubMed

    Ezzat, Magdy A; El-Bary, Alaa A; Al-Sowayan, Noorah S

    2016-10-01

    A fractional model of Bioheat equation for describing quantitatively the thermal responses of skin tissue under sinusoidal heat flux conditions on skin surface is given. Laplace transform technique is used to obtain the solution in a closed form. The resulting formulation is applied to one-dimensional application to investigate the temperature distribution in skin with instantaneous surface heating for different cases. According to the numerical results and its graphs, conclusion about the fractional bioheat transfer equation has been constructed. Sensitivity analysis is performed to explore the thermal effects of various control parameters on tissue temperature. The comparisons are made with the results obtained in the case of the absence of time-fractional order. © 2016 Japanese Society of Animal Science. © 2016 Japanese Society of Animal Science.

  7. The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin

    PubMed Central

    Manfredi, Louise R.; Baker, Andrew T.; Elias, Damian O.; Dammann, John F.; Zielinski, Mark C.; Polashock, Vicky S.; Bensmaia, Sliman J.

    2012-01-01

    Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin. PMID:22348055

  8. Methamphetamine absorption by skin lipids: accumulated mass, partition coefficients, and the influence of fatty acids.

    PubMed

    Parker, K; Morrison, G

    2016-08-01

    Occupants of former methamphetamine laboratories, often residences, may experience increased exposure through the accumulation of the methamphetamine in the organic films that coat skin and indoor surfaces. The objectives of this study were to determine equilibrium partition coefficients of vapor-phase methamphetamine with artificial sebum (AS-1), artificial sebum without fatty acids (AS-2), and real skin surface films, herein called skin oils. Sebum and skin oil-coated filters were exposed to vapor-phase methamphetamine at concentrations ranging from 8 to 159 ppb, and samples were analyzed for exposure time periods from 2 h to 60 days. For a low vapor-phase methamphetamine concentration range of ~8-22 ppb, the equilibrium partition coefficient for AS-1 was 1500 ± 195 μg/g/ppb. For a high concentration range of 98-112 ppb, the partition coefficient was lower, 459 ± 80 μg/g/ppb, suggesting saturation of the available absorption capacity. The low partition coefficient for AS-2 (33 ± 6 μg/g/ppb) suggests that the fatty acids in AS-1 and skin oil are responsible for much high partition coefficients. We predict that the methamphetamine concentration in skin lipids coating indoor surfaces can exceed recommended surface remediation standards even for air concentrations well below 1 ppb. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Increased syndecan-4 expression in sera and skin of patients with atopic dermatitis.

    PubMed

    Nakao, Momoko; Sugaya, Makoto; Takahashi, Naomi; Otobe, Sayaka; Nakajima, Rina; Oka, Tomonori; Kabasawa, Miyoko; Suga, Hiraku; Morimura, Sohshi; Miyagaki, Tomomitsu; Fujita, Hideki; Asano, Yoshihide; Sato, Shinichi

    2016-11-01

    Syndecan-4 (SDC-4) is a cell surface proteoglycan, which participates in signaling during cell adhesion, migration, proliferation, endocytosis, and mechanotransduction, and is expressed on various cells, including endothelial cells, epithelial cells, T cells, and eosinophils. Emerging evidences have suggested that SDC-4 might contribute to Th2-driven allergic immune responses. Here, we examined the role of SDC-4 in patients with atopic dermatitis (AD). Serum SDC-4 levels in AD patients were significantly higher than in healthy individuals, and they increased according to the disease severity. Importantly, they positively correlated with Eczema Area and Severity Index and itch visual analogue scale scores. Furthermore, serum SDC-4 levels decreased after treatment. We also analyzed SDC-4 expression in AD lesional skin. SDC-4 mRNA levels in AD skin were significantly higher than those of normal skin. Immunohistochemical staining revealed that SDC-4 was highly expressed in the epidermis and endothelial cells in AD lesional skin. Taken together, our study has demonstrated that SDC-4 expression was increased in sera and skin of AD patients, suggesting that SDC-4 may contribute to the development of AD.

  10. Safety of dermal diphoterine application: an active decontamination solution for chemical splash injuries.

    PubMed

    Hall, Alan H; Cavallini, Maurizio; Mathieu, Laurence; Maibach, Howard I

    2009-01-01

    Diphoterine (Laboratoire Prevor, Valmondois, France) is an active, amphoteric, polyvalent, chelating, slightly hypertonic decontamination solution for chemical splashes to the skin and eyes. It chemically binds a large number of chemical substances present on the skin surface without causing a significant release of heat (exothermic reactions). Because of its amphoteric properties, it can bind chemically opposite substances such as acids and bases or oxidizers and reducing agents. No adverse effects have been observed in an ongoing postmarketing surveillance program during many years of use in European industrial facilities. Diphoterine has more recently been used in hospitals for delayed management of chemical burns to the skin and eyes. There is interest in having protocols for both immediate and delayed diphoterine use for skin decontamination. Whereas studies of diphoterine efficacy, clinical and in vitro or ex vivo, have been published or are in the process of being prepared for publication, no review has yet been published focusing solely on the safety of this decontamination solution. Therefore, all available studies on the safety of diphoterine are described here, including recent studies demonstrating no harmful effects on the skin. Diphoterine can be used, even on damaged skin, without toxic, irritant, allergenic, or sensitizing effects.

  11. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin.

    PubMed

    Edwards, N P; Barden, H E; van Dongen, B E; Manning, P L; Larson, P L; Bergmann, U; Sellers, W I; Wogelius, R A

    2011-11-07

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms.

  12. Infrared mapping resolves soft tissue preservation in 50 million year-old reptile skin

    PubMed Central

    Edwards, N. P.; Barden, H. E.; van Dongen, B. E.; Manning, P. L.; Larson, P. L.; Bergmann, U.; Sellers, W. I.; Wogelius, R. A.

    2011-01-01

    Non-destructive Fourier Transform InfraRed (FTIR) mapping of Eocene aged fossil reptile skin shows that biological control on the distribution of endogenous organic components within fossilized soft tissue can be resolved. Mapped organic functional units within this approximately 50 Myr old specimen from the Green River Formation (USA) include amide and sulphur compounds. These compounds are most probably derived from the original beta keratin present in the skin because fossil leaf- and other non-skin-derived organic matter from the same geological formation do not show intense amide or thiol absorption bands. Maps and spectra from the fossil are directly comparable to extant reptile skin. Furthermore, infrared results are corroborated by several additional quantitative methods including Synchrotron Rapid Scanning X-Ray Fluorescence (SRS-XRF) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). All results combine to clearly show that the organic compound inventory of the fossil skin is different from the embedding sedimentary matrix and fossil plant material. A new taphonomic model involving ternary complexation between keratin-derived organic molecules, divalent trace metals and silicate surfaces is presented to explain the survival of the observed compounds. X-ray diffraction shows that suitable minerals for complex formation are present. Previously, this study would only have been possible with major destructive sampling. Non-destructive FTIR imaging methods are thus shown to be a valuable tool for understanding the taphonomy of high-fidelity preservation, and furthermore, may provide insight into the biochemistry of extinct organisms. PMID:21429928

  13. Stages of Skin Cancer

    MedlinePlus

    ... of skin biopsies: Shave biopsy : A sterile razor blade is used to “shave-off” the abnormal-looking ... the surface of the skin with a small blade. Electrodesiccation and curettage : The tumor is cut from ...

  14. In vivo effect of carbon dioxide laser-skin resurfacing and mechanical abrasion on the skin's microbial flora in an animal model.

    PubMed

    Manolis, Evangelos N; Tsakris, Athanassios; Kaklamanos, Ioannis; Markogiannakis, Antonios; Siomos, Konstadinos

    2006-03-01

    Although beam-scanning carbon dioxide (CO2) lasers have provided a highly efficient tool for esthetic skin rejuvenation there has been no comprehensive animal studies looking into microbial skin changes following CO2 laser skin resurfacing. To evaluate the in vivo effects of CO2 laser skin resurfacing in an experimental rat model in comparison with mechanical abrasion on the skin microbial flora. Four separate cutaneous sections of the right dorsal surface of 10 Wistar rats were treated with a CO2 laser, operating at 18 W and delivering a radiant energy of 5.76 J/cm2, while mechanical abrasions of the skin were created on four sections of the left dorsal surface using a scalpel. Samples for culture and biopsies were obtained from the skin surfaces of the rats on day 1 of application of the CO2 laser or mechanical abrasion, as well as 10, 30, and 90 days after the procedure. The presence of four microorganisms (staphylococci, streptococci, diphtheroids, and yeasts) was evaluated as a microbe index for the skin flora, and colony counts were obtained using standard microbiological methods. Skin biopsy specimens, following CO2 laser treatment, initially showed epidermal and papillary dermal necrosis and later a re-epithelization of the epidermis as well as the generation of new collagen on the upper papillary dermis. The reduction in microbial counts on day 1 of the CO2 laser-inflicted wound was statistically significant for staphylococci and diphtheroids compared with the baseline counts (p=.004 and p<.001, respectively), and for staphylococci, diphtheroids, and yeasts compared with the scalpel-inflicted wound on the same day (p=0.029, p<.001, and p=.030, respectively). Skin resurfacing using CO2 lasers considerably reduces microbial counts of most microorganisms in comparison with either normal skin flora or a scalpel-inflicted wound. This might contribute to the positive clinical outcome of laser skin resurfacing.

  15. The skin microbiome in healthy and allergic dogs.

    PubMed

    Rodrigues Hoffmann, Aline; Patterson, Adam P; Diesel, Alison; Lawhon, Sara D; Ly, Hoai Jaclyn; Elkins Stephenson, Christine; Mansell, Joanne; Steiner, Jörg M; Dowd, Scot E; Olivry, Thierry; Suchodolski, Jan S

    2014-01-01

    Changes in the microbial populations on the skin of animals have traditionally been evaluated using conventional microbiology techniques. The sequencing of bacterial 16S rRNA genes has revealed that the human skin is inhabited by a highly diverse and variable microbiome that had previously not been demonstrated by culture-based methods. The goals of this study were to describe the microbiome inhabiting different areas of the canine skin, and to compare the skin microbiome of healthy and allergic dogs. DNA extracted from superficial skin swabs from healthy (n = 12) and allergic dogs (n = 6) from different regions of haired skin and mucosal surfaces were used for 454-pyrosequencing of the 16S rRNA gene. Principal coordinates analysis revealed clustering for the different skin sites across all dogs, with some mucosal sites and the perianal regions clustering separately from the haired skin sites. The rarefaction analysis revealed high individual variability between samples collected from healthy dogs and between the different skin sites. Higher species richness and microbial diversity were observed in the samples from haired skin when compared to mucosal surfaces or mucocutaneous junctions. In all examined regions, the most abundant phylum and family identified in the different regions of skin and mucosal surfaces were Proteobacteria and Oxalobacteriaceae. The skin of allergic dogs had lower species richness when compared to the healthy dogs. The allergic dogs had lower proportions of the Betaproteobacteria Ralstonia spp. when compared to the healthy dogs. The study demonstrates that the skin of dogs is inhabited by much more rich and diverse microbial communities than previously thought using culture-based methods. Our sequence data reveal high individual variability between samples collected from different patients. Differences in species richness was also seen between healthy and allergic dogs, with allergic dogs having lower species richness when compared to healthy dogs.

  16. The Skin Microbiome in Healthy and Allergic Dogs

    PubMed Central

    Rodrigues Hoffmann, Aline; Patterson, Adam P.; Diesel, Alison; Lawhon, Sara D.; Ly, Hoai Jaclyn; Stephenson, Christine Elkins; Mansell, Joanne; Steiner, Jörg M.; Dowd, Scot E.; Olivry, Thierry; Suchodolski, Jan S.

    2014-01-01

    Background Changes in the microbial populations on the skin of animals have traditionally been evaluated using conventional microbiology techniques. The sequencing of bacterial 16S rRNA genes has revealed that the human skin is inhabited by a highly diverse and variable microbiome that had previously not been demonstrated by culture-based methods. The goals of this study were to describe the microbiome inhabiting different areas of the canine skin, and to compare the skin microbiome of healthy and allergic dogs. Methodology/Principal Findings DNA extracted from superficial skin swabs from healthy (n = 12) and allergic dogs (n = 6) from different regions of haired skin and mucosal surfaces were used for 454-pyrosequencing of the 16S rRNA gene. Principal coordinates analysis revealed clustering for the different skin sites across all dogs, with some mucosal sites and the perianal regions clustering separately from the haired skin sites. The rarefaction analysis revealed high individual variability between samples collected from healthy dogs and between the different skin sites. Higher species richness and microbial diversity were observed in the samples from haired skin when compared to mucosal surfaces or mucocutaneous junctions. In all examined regions, the most abundant phylum and family identified in the different regions of skin and mucosal surfaces were Proteobacteria and Oxalobacteriaceae. The skin of allergic dogs had lower species richness when compared to the healthy dogs. The allergic dogs had lower proportions of the Betaproteobacteria Ralstonia spp. when compared to the healthy dogs. Conclusions/Significance The study demonstrates that the skin of dogs is inhabited by much more rich and diverse microbial communities than previously thought using culture-based methods. Our sequence data reveal high individual variability between samples collected from different patients. Differences in species richness was also seen between healthy and allergic dogs, with allergic dogs having lower species richness when compared to healthy dogs. PMID:24421875

  17. 40 CFR 170.150 - Decontamination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and temperature that will not cause illness or injury when it contacts the skin or eyes or if it is... worker contacts anything that has been treated with the pesticide, including, but not limited to soil... permitted by § 170.112 and involving contact with treated surfaces and the decontamination supplies would...

  18. Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases.

    PubMed

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J; Elsner, Peter; Kaatz, Martin

    2009-07-01

    We report on the first clinical study based on optical coherence tomography (OCT) in combination with multiphoton tomography (MPT) and dermoscopy. 47 patients with a variety of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases have been investigated with (i) state-of-the-art OCT systems for dermatology including multibeam swept source OCT, (ii) the femtosecond laser multiphoton tomograph, and (iii) dermoscopes. Dermoscopy provides two-dimensional color images of the skin surface. OCT images reflect modifications of the intratissue refractive index whereas MPT is based on nonlinear excitation of endogenous fluorophores and second harmonic generation. A stack of cross-sectional OCT "wide field" images with a typical field of view of 5 x 2 mm(2) gave fast information on the depth and the volume of the lesion. Multiphoton tomography provided 0.36 x 0.36 mm(2) horizontal/diagonal optical sections within seconds of a particular region of interest with superior submicron resolution down to a tissue depth of 200 mum. The combination of OCT and MPT provides a unique powerful optical imaging modality for early detection of skin cancer and other skin diseases as well as for the evaluation of the efficiency of treatments.

  19. Pedunculated and telangiectatic merkel cell carcinoma: an unusual clinical presentation.

    PubMed

    Errichetti, Enzo; Piccirillo, Angelo; Ricciuti, Federico; Ricciuti, Francesco

    2013-05-01

    Merkel cell carcinoma (MCC) is an uncommon aggressive neuroendocrine tumor of the skin that classically presents on chronic sun-damaged skin as a skin-colored, red or violaceous, firm and nontender papule or nodule with a smooth and shiny surface. Ulcerations can be observed very seldom and only in very advanced lesions. We present a unique case of a MCC presenting with two unusual clinical features: The Telangiectatic surface and the pedunculated aspect.

  20. MELTING AND PURIFICATION OF URANIUM

    DOEpatents

    Spedding, F.H.; Gray, C.F.

    1958-09-16

    A process is described for treating uranium ingots having inner metal portions and an outer oxide skin. The method consists in partially supporting such an ingot on the surface of a grid or pierced plate. A sufficient weight of uranium is provided so that when the mass becomes molten, the oxide skin bursts at the unsupported portions of its bottom surface, allowing molten urantum to flow through the burst skin and into a container provided below.

  1. Central Role for Dermal Fibroblasts in Skin Model Protection against Candida albicans.

    PubMed

    Kühbacher, Andreas; Henkel, Helena; Stevens, Philip; Grumaz, Christian; Finkelmeier, Doris; Burger-Kentischer, Anke; Sohn, Kai; Rupp, Steffen

    2017-06-01

    The fungal pathogen Candida albicans colonizes basically all human epithelial surfaces, including the skin. Under certain conditions, such as immunosuppression, invasion of the epithelia occurs. Not much is known about defense mechanisms against C. albicans in subepithelial layers such as the dermis. Using immune cell-supplemented 3D skin models we defined a new role for fibroblasts in the dermis and identified a minimal set of cell types for skin protection against C. albicans invasion. Dual RNA sequencing of individual host cell populations and C. albicans revealed that dermal invasion is directly impeded by dermal fibroblasts. They are able to integrate signals from the pathogen and CD4+ T cells and shift toward an antimicrobial phenotype with broad specificity that is dependent on Toll-like receptor 2 and interleukin 1β. These results highlight a central function of dermal fibroblasts for skin protection, opening new possibilities for treatment of infectious diseases. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  2. Treatment Options for Nonmelanoma Skin Cancer

    MedlinePlus

    ... of skin biopsies: Shave biopsy : A sterile razor blade is used to “shave-off” the abnormal-looking ... the surface of the skin with a small blade. Electrodesiccation and curettage : The tumor is cut from ...

  3. In vivo measurement of skin microrelief using photometric stereo in the presence of interreflections.

    PubMed

    Sohaib, Ali; Farooq, Abdul R; Atkinson, Gary A; Smith, Lyndon N; Smith, Melvyn L; Warr, Robert

    2013-03-01

    This paper proposes and describes an implementation of a photometric stereo-based technique for in vivo assessment of three-dimensional (3D) skin topography in the presence of interreflections. The proposed method illuminates skin with red, green, and blue colored lights and uses the resulting variation in surface gradients to mitigate the effects of interreflections. Experiments were carried out on Caucasian, Asian, and African American subjects to demonstrate the accuracy of our method and to validate the measurements produced by our system. Our method produced significant improvement in 3D surface reconstruction for all Caucasian, Asian, and African American skin types. The results also illustrate the differences in recovered skin topography due to the nondiffuse bidirectional reflectance distribution function (BRDF) for each color illumination used, which also concur with the existing multispectral BRDF data available for skin.

  4. Microbiome dynamics of human epidermis following skin barrier disruption

    PubMed Central

    2012-01-01

    Background Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. Results We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. Conclusions We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis. PMID:23153041

  5. An FTIR investigation of isocyanate skin absorption using in vitro guinea pig skin.

    PubMed

    Bello, Dhimiter; Smith, Thomas J; Woskie, Susan R; Streicher, Robert P; Boeniger, Mark F; Redlich, Carrie A; Liu, Youcheng

    2006-05-01

    Isocyanates may cause contact dermatitis, sensitization and asthma. Dermal exposure to aliphatic and aromatic isocyanates can occur in various exposure settings. The fate of isocyanates on skin is an important unanswered question. Do they react and bind to the outer layer of skin or do they penetrate through the epidermis as unreacted compounds? Knowing the kinetics of these processes is important in developing dermal exposure sampling or decontamination strategies, as well as understanding potential health implications such exposure may have. In this paper the residence time of model isocyanates on hairless guinea pig skin was investigated in vitro using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometry. Model isocyanates tested were octyl isocyanate, polymeric hexamethylene diisocyanate isocyanurate (pHDI), polymeric isophorone diisocyanate isocyanurate (pIPDI) and methylenediphenyl diisocyanate (MDI). Isocyanates in ethyl acetate (30 microL) were spiked directly on the skin to give 0.2-1.8 micromol NCO cm(-2) (NCO = -N=C=O), and absorbance of the isocyanate group and other chemical groups of the molecule were monitored over time. The ATR-FTIR findings showed that polymeric isocyanates pHDI and pIPDI may remain on the skin as unreacted species for many hours, with only 15-20% of the total isocyanate group disappearing in one hour, while smaller compounds octyl isocyanate and MDI rapidly disappear from the skin surface (80+% in 30 min). Isocyanates most likely leave the skin surface by diffusion predominantly, with minimal reaction with surface proteins. The significance of these findings and their implications for dermal exposure sampling and isocyanate skin decontamination are discussed.

  6. Efficacy of micronutrient supplementation on skin aging and seasonal variation: a randomized, placebo-controlled, double-blind study

    PubMed Central

    Fanian, Ferial; Mac-Mary, Sophie; Jeudy, Adeline; Lihoreau, Thomas; Messikh, Rafat; Ortonne, Jean-Paul; Sainthillier, Jean-Marie; Elkhyat, Ahmed; Guichard, Alexandre; Kenari, Kamran Hejazi; Humbert, Philippe

    2013-01-01

    Background Several studies have confirmed dramatic changes in skin surface parameters during the winter months. Although there are many studies supporting the positive effects of topical treatment, there are no published studies demonstrating the effects of oral supplementation in the prevention of negative skin changes during winter. The purpose of this study was to evaluate the efficacy of an oral micronutrient supplement in preventing the negative effects of winter weather on skin quality using noninvasive biometrologic instruments. Methods This study included 80 healthy female volunteers aged 35–55 years with phototype II–IV skin. Randomization was balanced. Two tablets of a micronutrient supplement (Perfectil® Platinum) or placebo were administered once daily for 4 months. The volunteers were examined at baseline, after 4 months, and 6 weeks after termination of treatment (month 5.5). The evaluation included skin microrelief by Visioscan® as the main outcome, and the secondary outcomes were results on standard macrophotography, skin tension by Reviscometer®, skin high-frequency ultrasound, and self-assessment. Results For all pseudoroughness and microrelief indicators, there was a significant increase from baseline to month 4 in the placebo group (P<0.05) but no change in the active group. Descriptive statistics for the mean minimum, mean maximum, and minimum to maximum ratio on the nonexposed study zone showed a significant and dramatic difference between baseline and month 4 and between baseline and month 5.5 (P<0.05) in the active group, indicating decreasing anisotropy of the skin. High-frequency ultrasound on the exposed study zone revealed that skin thickness was significantly decreased in the placebo group during winter but was stable in the treated group (P<0.01). The photography scaling and self-assessment questionnaire revealed no significant changes in either group. Conclusion These results indicate that the skin is prone to seasonal changes during winter, particularly in exposed areas. The data also indicate that oral supplementation can be a safe treatment, with no serious side effects, and may prevent or even eliminate the negative effects of winter on the skin. PMID:24255597

  7. Efficacy of micronutrient supplementation on skin aging and seasonal variation: a randomized, placebo-controlled, double-blind study.

    PubMed

    Fanian, Ferial; Mac-Mary, Sophie; Jeudy, Adeline; Lihoreau, Thomas; Messikh, Rafat; Ortonne, Jean-Paul; Sainthillier, Jean-Marie; Elkhyat, Ahmed; Guichard, Alexandre; Kenari, Kamran Hejazi; Humbert, Philippe

    2013-01-01

    Several studies have confirmed dramatic changes in skin surface parameters during the winter months. Although there are many studies supporting the positive effects of topical treatment, there are no published studies demonstrating the effects of oral supplementation in the prevention of negative skin changes during winter. The purpose of this study was to evaluate the efficacy of an oral micronutrient supplement in preventing the negative effects of winter weather on skin quality using noninvasive biometrologic instruments. This study included 80 healthy female volunteers aged 35-55 years with phototype II-IV skin. Randomization was balanced. Two tablets of a micronutrient supplement (Perfectil® Platinum) or placebo were administered once daily for 4 months. The volunteers were examined at baseline, after 4 months, and 6 weeks after termination of treatment (month 5.5). The evaluation included skin microrelief by Visioscan® as the main outcome, and the secondary outcomes were results on standard macrophotography, skin tension by Reviscometer®, skin high-frequency ultrasound, and self-assessment. For all pseudoroughness and microrelief indicators, there was a significant increase from baseline to month 4 in the placebo group (P<0.05) but no change in the active group. Descriptive statistics for the mean minimum, mean maximum, and minimum to maximum ratio on the nonexposed study zone showed a significant and dramatic difference between baseline and month 4 and between baseline and month 5.5 (P<0.05) in the active group, indicating decreasing anisotropy of the skin. High-frequency ultrasound on the exposed study zone revealed that skin thickness was significantly decreased in the placebo group during winter but was stable in the treated group (P<0.01). The photography scaling and self-assessment questionnaire revealed no significant changes in either group. These results indicate that the skin is prone to seasonal changes during winter, particularly in exposed areas. The data also indicate that oral supplementation can be a safe treatment, with no serious side effects, and may prevent or even eliminate the negative effects of winter on the skin.

  8. TLD extrapolation for skin dose determination in vivo.

    PubMed

    Kron, T; Butson, M; Hunt, F; Denham, J

    1996-11-01

    Prediction of skin reactions requires knowledge of the dose at various depths in the human skin. Using thermoluminescence dosimeters of three different thicknesses, the dose can be extrapolated to the surface and interpolated between the different depths. A TLD holder was designed for these TLD extrapolation measurements on patients during treatment which allowed measurements of entrance and exit skin dose with a day to day variability of +/-7% (S.D. of mean reading). In a pilot study on 18 patients undergoing breast irradiation, it was found that the angle of incidence of the radiation beam is the most significant factor influencing skin entrance dose. In most of these measurements the beam exit dose contributed 50% more to the surface dose than the entrance dose.

  9. Surface Imaging Skin Friction Instrument and Method

    NASA Technical Reports Server (NTRS)

    Brown, James L. (Inventor); Naughton, Jonathan W. (Inventor)

    1999-01-01

    A surface imaging skin friction instrument allowing 2D resolution of spatial image by a 2D Hilbert transform and 2D inverse thin-oil film solver, providing an innovation over prior art single point approaches. Incoherent, monochromatic light source can be used. The invention provides accurate, easy to use, economical measurement of larger regions of surface shear stress in a single test.

  10. Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Converse, Mark C.; Chang, John T.; Duoss, Eric B.

    A wearable antenna is operably positioned on a wearer's skin and is operably connected the wearer's tissue. A first antenna matched to the wearer's tissue is operably positioned on the wearer's skin. A second antenna matched to the air is operably positioned on the wearer's skin. Transmission lines connect the first antenna and the second antenna.

  11. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals.

    PubMed

    Grahn, D A; Dillon, J L; Heller, H C

    2009-07-01

    Insulation reduces heat exchange between a body and the environment. Glabrous (nonhairy) skin surfaces (palms of the hands, soles of the feet, face, and ears) constitute a small percentage of total body surface area but contain specialized vascular structures that facilitate heat loss. We have previously reported that cooling the glabrous skin surfaces is effective in alleviating heat stress and that the application of local subatmospheric pressure enhances the effect. In this paper, we compare the effects of cooling multiple glabrous skin surfaces with and without vacuum on thermal recovery in heavily insulated heat-stressed individuals. Esophageal temperatures (T(es)) and heart rates were monitored throughout the trials. Water loss was determined from pre- and post-trial nude weights. Treadmill exercise (5.6 km/h, 9-16% slope, and 25-45 min duration) in a hot environment (41.5 degrees C, 20-30% relative humidity) while wearing insulating pants and jackets was used to induce heat stress (T(es)>or=39 degrees C). For postexercise recovery, the subjects donned additional insulation (a balaclava, winter gloves, and impermeable boot covers) and rested in the hot environment for 60 min. Postexercise cooling treatments included control (no cooling) or the application of a 10 degrees C closed water circulating system to (a) the hand(s) with or without application of a local subatmospheric pressure, (b) the face, (c) the feet, or (d) multiple glabrous skin regions. Following exercise induction of heat stress in heavily insulated subjects, the rate of recovery of T(es) was 0.4+/-0.2 degrees C/h(n=12), but with application of cooling to one hand, the rate was 0.8+/-0.3 degrees C/h(n=12), and with one hand cooling with subatmospheric pressure, the rate was 1.0+/-0.2 degrees C/h(n=12). Cooling alone yielded two responses, one resembling that of cooling with subatmospheric pressure (n=8) and one resembling that of no cooling (n=4). The effect of treating multiple surfaces was additive (no cooling, DeltaT(es)=-0.4+/-0.2 degrees C; one hand, -0.9+/-0.3 degrees C; face, -1.0+/-0.3 degrees C; two hands, -1.3+/-0.1 degrees C; two feet, -1.3+/-0.3 degrees C; and face, feet, and hands, -1.6+/-0.2 degrees C). Cooling treatments had a similar effect on water loss and final resting heart rate. In heat-stressed resting subjects, cooling the glabrous skin regions was effective in lowering T(es). Under this protocol, the application of local subatmospheric pressure did not significantly increase heat transfer per se but, presumably, increased the likelihood of an effect.

  12. Air-borne and tissue-borne sensitivities of bioacoustic sensors used on the skin surface.

    PubMed

    Zañartu, Matías; Ho, Julio C; Kraman, Steve S; Pasterkamp, Hans; Huber, Jessica E; Wodicka, George R

    2009-02-01

    Measurements of body sounds on the skin surface have been widely used in the medical field and continue to be a topic of current research, ranging from the diagnosis of respiratory and cardiovascular diseases to the monitoring of voice dosimetry. These measurements are typically made using light-weight accelerometers and/or air-coupled microphones attached to the skin. Although normally neglected, air-borne sounds generated by the subject or other sources of background noise can easily corrupt such recordings, which is particularly critical in the recording of voiced sounds on the skin surface. In this study, the sensitivity of commonly used bioacoustic sensors to air-borne sounds was evaluated and compared with their sensitivity to tissue-borne body sounds. To delineate the sensitivity to each pathway, the sensors were first tested in vitro and then on human subjects. The results indicated that, in general, the air-borne sensitivity is sufficiently high to significantly corrupt body sound signals. In addition, the air-borne and tissue-borne sensitivities can be used to discriminate between these components. Although the study is focused on the evaluation of voiced sounds on the skin surface, an extension of the proposed methods to other bioacoustic applications is discussed.

  13. Effects of soap-water wash on human epidermal penetration.

    PubMed

    Zhu, Hanjiang; Jung, Eui-Chang; Phuong, Christina; Hui, Xiaoying; Maibach, Howard

    2016-08-01

    Skin decontamination is a primary interventional method used to decrease dermal absorption of hazardous contaminants, including chemical warfare agents, pesticides and industrial pollutants. Soap and water wash, the most common and readily available decontamination system, may enhance percutaneous absorption through the "wash-in effect." To understand better the effect of soap-water wash on percutaneous penetration, and provide insight to improving skin decontamination methods, in vitro human epidermal penetration rates of four C(14) -labeled model chemicals (hydroquinone, clonidine, benzoic acid and paraoxon) were assayed using flow-through diffusion cells. Stratum corneum (SC) absorption rates of these chemicals at various hydration levels (0-295% of the dry SC weights) were determined and compared with the results of the epidermal penetration study to clarify the effect of SC hydration on skin permeability. Results showed accelerated penetration curves of benzoic acid and paraoxon after surface wash at 30 min postdosing. Thirty minutes after washing (60 min postdosing), penetration rates of hydroquinone and benzoic acid decreased due to reduced amounts of chemical on the skin surface and in the SC. At the end of the experiment (90 min postdosing), a soap-water wash resulted in lower hydroquinone penetration, greater paraoxon penetration and similar levels of benzoic acid and clonidine penetration compared to penetration levels in the non-wash groups. The observed wash-in effect agrees with the enhancement effect of SC hydration on the SC chemical absorption rate. These results suggest SC hydration derived from surface wash to be one cause of the wash-in effect. Further, the occurrence of a wash-in effect is dependent on chemical identity and elapsed time between exposure and onset of decontamination. By reducing chemical residue quantity on skin surface and in the SC reservoir, the soap-water wash may decrease the total quantity of chemical absorbed in the long term; however, the more immediate accelerated absorption of chemical toxins, particularly chemical warfare agents, may be lethal. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Skin friction under pressure. The role of micromechanics

    NASA Astrophysics Data System (ADS)

    Leyva-Mendivil, Maria F.; Lengiewicz, Jakub; Limbert, Georges

    2018-03-01

    The role of contact pressure on skin friction has been documented in multiple experimental studies. Skin friction significantly raises in the low-pressure regime as load increases while, after a critical pressure value is reached, the coefficient of friction of skin against an external surface becomes mostly insensitive to contact pressure. However, up to now, no study has elucidated the qualitative and quantitative nature of the interplay between contact pressure, the material and microstructural properties of the skin, the size of an indenting slider and the resulting measured macroscopic coefficient of friction. A mechanistic understanding of these aspects is essential for guiding the rational design of products intended to interact with the skin through optimally-tuned surface and/or microstructural properties. Here, an anatomically-realistic 2D multi-layer finite element model of the skin was embedded within a computational contact homogenisation procedure. The main objective was to investigate the sensitivity of macroscopic skin friction to the parameters discussed above, in addition to the local (i.e. microscopic) coefficient of friction defined at skin asperity level. This was accomplished via the design of a large-scale computational experiment featuring 312 analyses. Results confirmed the potentially major role of finite deformations of skin asperities on the resulting macroscopic friction. This effect was shown to be modulated by the level of contact pressure and relative size of skin surface asperities compared to those of a rigid slider. The numerical study also corroborated experimental observations concerning the existence of two contact pressure regimes where macroscopic friction steeply and non-linearly increases up to a critical value, and then remains approximately constant as pressure increases further. The proposed computational modelling platform offers attractive features which are beyond the reach of current analytical models of skin friction, namely, the ability to accommodate arbitrary kinematics, non-linear constitutive properties and the complex skin microstructure.

  15. The EUSTACE project: delivering global, daily information on surface air temperature

    NASA Astrophysics Data System (ADS)

    Ghent, D.; Rayner, N. A.

    2017-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-2018, https://www.eustaceproject.eu) we have developed an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. This includes developing new "Big Data" analysis methods as the data volumes involved are considerable. We will present recent progress along this road in the EUSTACE project, i.e.: • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  16. Polyester polymer alloy as a high-performance membrane.

    PubMed

    Igoshi, Tadaaki; Tomisawa, Narumi; Hori, Yoshinori; Jinbo, Yoichi

    2011-01-01

    Polyester polymer alloy (PEPA) membrane is developed as a synthetic polymermembrane. It consists of two polymers - polyethersulfone (PES) and polyarylate (PAR).The pore size in membrane can be controlled by a blend ratio of PES and PAR. One unique characteristic is that PEPA membrane has three layers of a skin layer on the inner surface, a porous layer in the membrane, and a skin layer on the outer surface, respectively. The permeability of water and substances is controlled by the skin layer on the inner surface. PEPA membrane dialyzer can be adequately considered as a high-performance dialyzer. Furthermore, the skin layer on the outer surface can block endotoxin from the dialysis fluid side. PEPA membrane can therefore be used as an endotoxin-retentive filter. The other unique characteristic is that each amount of albumin loss or β2-microglobulin removal can be controlled by an additive amount of polyvinylpyrrolidone. This means that the PEPA dialyzer can be clinically used to meet the conditions of the patient. Copyright © 2011 S. Karger AG, Basel.

  17. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols

    PubMed Central

    Bomar, Lindsey; Brugger, Silvio D.; Yost, Brian H.; Davies, Sean S.

    2016-01-01

    ABSTRACT Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. PMID:26733066

  18. MO-D-213-04: The Proximity to the Skin of PTV Affects PTV Coverage and Skin Dose for TomoTherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reynolds, T; Higgins, P; Watanabe, Y

    Purpose: The proximity to the skin surface of the PTV for the patients with skin disease could be a concern in terms of the PTV coverage and actual surface dose (SD). IMRT optimization algorithms increase the beam intensity close to the skin in order to compensate for lack of scattering material, leading to enhanced SD but potential hot spots. This study aims to investigate the effect of PTV proximity to the skin on planning and measured SD Methods: All measurements were done for 6 MV X-ray beam of Helical TomoTherapy. An anthropomorphic phantom was scanned in a CT simulator inmore » a routine manner with thermoplastic mask immobilization. PTVs were created with varying distances to the skin of 0 mm -(PTV1), 1 mm- (PTV2), 2 mm-(PTV3) and 3 mm-(PTV4). Also, a 5 mm bolus was used with PTV1 (PTV5). All planning constraints were kept the same in all studies (hard constraint: 95% of the prescription dose covered 95% of the PTV). Gafchromic film (EBT3) was placed under the mask on the phantom surface, and the resulting dose was estimated using RIT software. Results: Optimizing the dose using different PTVs lead to average planned target doses of 10.8, 10.3, 10.2, 10.3 and 10.0 Gy, with maximum doses 12.2, 11.2, 11.1, 11.1 and 10.0 Gy for PTV1, PTV2, PTV3, PTV4 and PTV5, respectively. EBT3 measurements indicated a significant decrease of SD with skin distance by 12.7% (PTV1), 21.9% (PTV2), 24.8% (PTV3) and 28.4% (PTV4) comparing to prescription dose. Placement of a 5 mm bolus on the phantom surface resulted in a SD close to prescribed (+0.5%). Conclusion: This work provides a clear demonstration of the relationship between the skin dose and the PTV to the skin distance. The results indicate the necessity of a bolus even for TomoTherapy when high skin dose is required.« less

  19. Spontaneous cell sorting of fibroblasts and keratinocytes creates an organotypic human skin equivalent.

    PubMed

    Wang, C K; Nelson, C F; Brinkman, A M; Miller, A C; Hoeffler, W K

    2000-04-01

    We show that an inherent ability of two distinct cell types, keratinocytes and fibroblasts, can be relied upon to accurately reconstitute full-thickness human skin including the dermal-epidermal junction by a cell-sorting mechanism. A cell slurry containing both cell types added to silicone chambers implanted on the backs of severe combined immunodeficient mice sorts out to reconstitute a clearly defined dermis and stratified epidermis within 2 wk, forming a cell-sorted skin equivalent. Immunostaining of the cell-sorted skin equivalent with human cell markers showed patterns similar to those of normal full-thickness skin. We compared the cell-sorted skin equivalent model with a composite skin model also made on severe combined immunodeficient mice. The composite grafts were constructed from partially differentiated keratinocyte sheets placed on top of a dermal equivalent constructed of devitalized dermis. Electron microscopy revealed that both models formed ample numbers of normal appearing hemidesmosomes. The cell-sorted skin equivalent model, however, had greater numbers of keratin intermediate filaments within the basal keratinocytes that connected to hemidesmosomes, and on the dermal side both collagen filaments and anchoring fibril connections to the lamina densa were more numerous compared with the composite model. Our results may provide some insight into why, in clinical applications for treating burns and other wounds, composite grafts may exhibit surface instability and blistering for up to a year following grafting, and suggest the possible usefulness of the cell-sorted skin equivalent in future grafting applications.

  20. Pedunculated and Telangiectatic Merkel Cell Carcinoma: An Unusual Clinical Presentation

    PubMed Central

    Errichetti, Enzo; Piccirillo, Angelo; Ricciuti, Federico; Ricciuti, Francesco

    2013-01-01

    Merkel cell carcinoma (MCC) is an uncommon aggressive neuroendocrine tumor of the skin that classically presents on chronic sun-damaged skin as a skin-colored, red or violaceous, firm and nontender papule or nodule with a smooth and shiny surface. Ulcerations can be observed very seldom and only in very advanced lesions. We present a unique case of a MCC presenting with two unusual clinical features: The Telangiectatic surface and the pedunculated aspect. PMID:23723504

  1. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system.

    PubMed

    Rana, V K; Rudin, S; Bednarek, D R

    2016-09-01

    Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries.

  2. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    PubMed Central

    Rana, V. K.; Rudin, S.; Bednarek, D. R.

    2016-01-01

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, a data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries. PMID:27587043

  3. A tracking system to calculate patient skin dose in real-time during neurointerventional procedures using a biplane x-ray imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, V. K., E-mail: vkrana@buffalo.edu

    Purpose: Neurovascular interventional procedures using biplane fluoroscopic imaging systems can lead to increased risk of radiation-induced skin injuries. The authors developed a biplane dose tracking system (Biplane-DTS) to calculate the cumulative skin dose distribution from the frontal and lateral x-ray tubes and display it in real-time as a color-coded map on a 3D graphic of the patient for immediate feedback to the physician. The agreement of the calculated values with the dose measured on phantoms was evaluated. Methods: The Biplane-DTS consists of multiple components including 3D graphic models of the imaging system and patient, an interactive graphical user interface, amore » data acquisition module to collect geometry and exposure parameters, the computer graphics processing unit, and functions for determining which parts of the patient graphic skin surface are within the beam and for calculating dose. The dose is calculated to individual points on the patient graphic using premeasured calibration files of entrance skin dose per mAs including backscatter; corrections are applied for field area, distance from the focal spot and patient table and pad attenuation when appropriate. The agreement of the calculated patient skin dose and its spatial distribution with measured values was evaluated in 2D and 3D for simulated procedure conditions using a PMMA block phantom and an SK-150 head phantom, respectively. Dose values calculated by the Biplane-DTS were compared to the measurements made on the phantom surface with radiochromic film and a calibrated ionization chamber, which was also used to calibrate the DTS. The agreement with measurements was specifically evaluated with variation in kVp, gantry angle, and field size. Results: The dose tracking system that was developed is able to acquire data from the two x-ray gantries on a biplane imaging system and calculate the skin dose for each exposure pulse to those vertices of a patient graphic that are determined to be in the beam. The calculations are done in real-time with a typical graphic update time of 30 ms and an average vertex separation of 3 mm. With appropriate corrections applied, the Biplane-DTS was able to determine the entrance dose within 6% and the spatial distribution of the dose within 4% compared to the measurements with the ionization chamber and film for the SK150 head phantom. The cumulative dose for overlapping fields from both gantries showed similar agreement. Conclusions: The Biplane-DTS can provide a good estimate of the peak skin dose and cumulative skin dose distribution during biplane neurointerventional procedures. Real-time display of this information should help the physician manage patient dose to reduce the risk of radiation-induced skin injuries.« less

  4. Characterization of differences in calculated and actual measured skin doses to canine limbs during stereotactic radiosurgery using Gafchromic film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jerri; Colorado State University, Fort Collins, CO; Ryan, Stewart

    Accurate calculation of absorbed dose to the skin, especially the superficial and radiosensitive basal cell layer, is difficult for many reasons including, but not limited to, the build-up effect of megavoltage photons, tangential beam effects, mixed energy scatter from support devices, and dose interpolation caused by a finite resolution calculation matrix. Stereotactic body radiotherapy (SBRT) has been developed as an alternative limb salvage treatment option at Colorado State University Veterinary Teaching Hospital for dogs with extremity bone tumors. Optimal dose delivery to the tumor during SBRT treatment can be limited by uncertainty in skin dose calculation. The aim of thismore » study was to characterize the difference between measured and calculated radiation dose by the Varian Eclipse (Varian Medical Systems, Palo Alto, CA) AAA treatment planning algorithm (for 1-mm, 2-mm, and 5-mm calculation voxel dimensions) as a function of distance from the skin surface. The study used Gafchromic EBT film (International Specialty Products, Wayne, NJ), FilmQA analysis software, a limb phantom constructed from plastic water Trade-Mark-Sign (fluke Biomedical, Everett, WA) and a canine cadaver forelimb. The limb phantom was exposed to 6-MV treatments consisting of a single-beam, a pair of parallel opposed beams, and a 7-beam coplanar treatment plan. The canine forelimb was exposed to the 7-beam coplanar plan. Radiation dose to the forelimb skin at the surface and at depths of 1.65 mm and 1.35 mm below the skin surface were also measured with the Gafchromic film. The calculation algorithm estimated the dose well at depths beyond buildup for all calculation voxel sizes. The calculation algorithm underestimated the dose in portions of the buildup region of tissue for all comparisons, with the most significant differences observed in the 5-mm calculation voxel and the least difference in the 1-mm voxel. Results indicate a significant difference between measured and calculated data extending to average depths of 2.5 mm, 3.4 mm, and 10 mm for the 1-mm, 2-mm, and 5-mm dimension calculation matrices, respectively. These results emphasize the importance of selecting as small a treatment planning software calculation matrix dimension as is practically possible and of taking a conservative approach for skin treatment planning objectives. One suggested conservative approach is accomplished by defining the skin organ as the outermost 2-3 mm of the body such that the high dose tail of the skin organ dose-volume histogram curve represents dose on the deep side of the skin where the algorithm is more accurate.« less

  5. Optimizing Geometry Mediated Skin Friction Drag on Riblet-Textured Surfaces

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth

    2016-11-01

    Micro-scale riblets have been shown to modify the skin friction drag on patterned surfaces. Shark skin is widely known as a natural example of this passive drag reduction mechanism and artificial riblet tapes have been previously used in the America's Cups tournament resulting in a 1987 victory. Previous experiments with riblet surfaces in turbulent boundary layer flow have shown 4-8% reduction in the skin friction drag. Our computations with sinusoidal riblet surfaces in high Reynolds number laminar boundary layer flow and experiments with V-grooves in laminar Taylor-Couette flow also show that the reduction in skin friction can be substantial and depends on the spacing and height of the riblets. In the boundary layer setting, this frictional reduction is also a function of the length of the plate in the flow direction, while in the Taylor Couette setting it depends on the gap size. In the current work, we use scaling arguments and conformal mapping to establish a simplified theory for laminar flow over V-groove riblets and explore the self-similarity of the velocity contours near the patterned surface. We combine these arguments with theoretical and numerical calculations using Matlab and OpenFOAM to show that the drag reduction achievable in laminar flow over riblet surfaces depends on a rescaled form of the Reynolds number combined with the aspect ratio of the texture (defined in terms of the ratio of the height to spacing of the riblets). We then use these results to explain the underlying physical mechanisms driving frictional drag reduction and offer recommendations for designing low drag surfaces.

  6. Surface and Flow Field Measurements on the FAITH Hill Model

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.

    2012-01-01

    A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail

  7. Assessment of Turbulent Shock-Boundary Layer Interaction Computations Using the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Schwing, A. M.; Blaisdell, G> A.; Lyrintzis, A. S.

    2007-01-01

    The performance of two popular turbulence models, the Spalart-Allmaras model and Menter s SST model, and one relatively new model, Olsen & Coakley s Lag model, are evaluated using the OVERFLOWcode. Turbulent shock-boundary layer interaction predictions are evaluated with three different experimental datasets: a series of 2D compression ramps at Mach 2.87, a series of 2D compression ramps at Mach 2.94, and an axisymmetric coneflare at Mach 11. The experimental datasets include flows with no separation, moderate separation, and significant separation, and use several different experimental measurement techniques (including laser doppler velocimetry (LDV), pitot-probe measurement, inclined hot-wire probe measurement, preston tube skin friction measurement, and surface pressure measurement). Additionally, the OVERFLOW solutions are compared to the solutions of a second CFD code, DPLR. The predictions for weak shock-boundary layer interactions are in reasonable agreement with the experimental data. For strong shock-boundary layer interactions, all of the turbulence models overpredict the separation size and fail to predict the correct skin friction recovery distribution. In most cases, surface pressure predictions show too much upstream influence, however including the tunnel side-wall boundary layers in the computation improves the separation predictions.

  8. In vitro human skin permeation and decontamination of 2-chloroethyl ethyl sulfide (CEES) using Dermal Decontamination Gel (DDGel) and Reactive Skin Decontamination Lotion (RSDL).

    PubMed

    Cao, Yachao; Hui, Xiaoying; Zhu, Hanjiang; Elmahdy, Akram; Maibach, Howard

    2018-07-01

    This study compared the efficiency for in vitro human skin decontamination using DDGel and RSDL. Experiments were performed using in vitro human skin models, in which skin was mounted onto Flow-Through diffusion cells. The mass of 14 -C CEES removed from skin surface after decontamination was quantitated by measuring radioactivity with a liquid scintillation spectrometer. Both decontaminants removed more than 82% of CEES from skin. DDGel skin decontamination significantly reduced toxicant amount when compared to RSDL. Mean CEES remaining in stratum corneum (SC), viable epidermis, dermis, and systemic absorption of DDGel and RSDL were, 0.12 and 0.55% (P < 0.01), 0.31 and 0.95% (p < 0.01), 1.08 and 2.92% (p < 0.05), 3.13 and 6.34% (p < 0.05), respectively. DDGel showed higher decontamination efficiency (twice decontamination efficacy factor, DEF) than RSDL and efficiently removed chemicals from the skin surface, importantly back-extracted from the SC, and significantly reduced both chemical penetration into skin and systemic absorption. Thus, DDGel can offer a potential as a next generation skin decontamination platform technology for military and civilian applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Application of the fiber-optic perfusion fluorometer to absorption and exsorption studies in hairless mouse skin.

    PubMed

    Shackleford, J M; Yielding, K L

    1987-09-01

    This study was undertaken to test the fiber-optic perfusion fluorometer as a direct means of evaluating skin absorption and exsorption in hairless mice. Skin-barrier compromise was accomplished in the absorption experiments by application of dimethyl sulfoxide to the skin surface or by partial removal of the stratum corneum with sticky tape. Absorbed fluorescein was measured easily in unanesthetized control (skin-barrier intact) and experimental mice. Unabsorbed chemical did not fluoresce 15 minutes after application, although it was present on the surface of the skin as a dry powder. The time course of fluorescein elimination from the skin was related to a rapid phase (vascular removal) and a slow phase (reservoir entrapment). In the exsorption experiments the fluorescein was injected intraperitoneally. Back skin on the right side was swabbed with either dimethyl sulfoxide or 1% capsaicin in alcohol prior to the injections, and differences in skin fluorescence on the left (control) and right sides were recorded. One application of dimethyl sulfoxide or capsaicin increased the level of skin exsorption. Three applications of dimethyl sulfoxide almost doubled the amount of exsorbed dye, whereas three applications of the capsaicin inhibited the exsorption process. It was concluded that the fiber-optic perfusion fluorometer provides an excellent technique in support of other methods of investigating the skin.

  10. Stability of Microbiota Facilitated by Host Immune Regulation: Informing Probiotic Strategies to Manage Amphibian Disease

    PubMed Central

    Küng, Denise; Bigler, Laurent; Davis, Leyla R.; Gratwicke, Brian; Griffith, Edgardo; Woodhams, Douglas C.

    2014-01-01

    Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant – skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control – sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7–12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. PMID:24489847

  11. Effect of local cooling on pro-inflammatory cytokines and blood flow of the skin under surface pressure in rats: feasibility study.

    PubMed

    Lee, Bernard; Benyajati, Siribhinya; Woods, Jeffrey A; Jan, Yih-Kuen

    2014-05-01

    The primary purpose of this feasibility study was to establish a correlation between pro-inflammatory cytokine accumulation and severity of tissue damage during local pressure with various temperatures. The secondary purpose was to compare skin blood flow patterns for assessing the efficacy of local cooling on reducing skin ischemia under surface pressure. Eight Sprague-Dawley rats were assigned to two protocols, including pressure with local cooling (Δt = -10 °C) and pressure with local heating (Δt = 10 °C). Pressure of 700 mmHg was applied to the right trochanter area of rats for 3 h. Skin perfusion quantified by laser Doppler flowmetry and TNF-∗ and IL-1β levels were measured. Our results showed that TNF-α concentrations were increased more significantly with local heating than with local cooling under pressure whereas IL-1β did not change. Our results support the notion that weight bearing soft tissue damage may be reduced through temperature modulation and that non-invasive perfusion measurements using laser Doppler flowmetry may be capable of assessing viability. Furthermore, these results show that perfusion response to loading pressure may be correlated with changes in local pro-inflammatory cytokines. These relationships may be relevant for the development of cooling technologies for reducing risk of pressure ulcers. Copyright © 2014 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  12. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes.

    PubMed

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-01-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm(2)) results in skin surface temperature of 43 degrees C. Higher intensities (forearm 335 mW/cm(2), back 250 mW/cm(2)) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm(2)), pain occurs within 30 s at temperatures of 46 degrees C+/-1 degrees C (hand and forearm), and 43 degrees C+/-2 degrees C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 degrees C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  13. Thermal effects of white light illumination during microsurgery: clinical pilot study on the application safety of surgical microscopes

    NASA Astrophysics Data System (ADS)

    Hibst, Raimund; Saal, David; Russ, Detlef; Kunzi-Rapp, Karin; Kienle, Alwin; Stock, Karl

    2010-07-01

    Modern operating microscopes offer high power illumination to ensure optimal visualization, but can also cause thermal damage. The aim of our study is to quantify the thermal effects in vivo and discuss conditions for safe use. In a pilot study on volunteers, we measured the temperature at the skin surface during microscope illumination, including the influence of anaesthesia and the effects of staining, draping, or moistening of the skin. Irradiation within the limit given by safety regulations (200 mW/cm2) results in skin surface temperature of 43 °C. Higher intensities (forearm 335 mW/cm2, back 250 mW/cm2) are tolerated, resulting in reversible hyperaemia. At a very high illumination intensity (750 mW/cm2), pain occurs within 30 s at temperatures of 46 °C+/-1 °C (hand and forearm), and 43 °C+/-2 °C (back), respectively. Anaesthesia has no distinct effect on the temperature, whereas staining and drapes result in much higher temperatures (>100 °C). Moistening at practicable flow rates can reduce temperature efficiently when combined with a light absorbing and water absorbent drape. In conclusion, surgeons must be aware that surgical microscope illumination without protective means can cause skin temperatures to rise much above pain threshold, which in our study serves as a (conservative) benchmark for potential damage.

  14. Transcutaneous Electrical Stimulation Increased Nitric Oxide-Cyclic GMP Release Biocaptured Over Skin Surface of Pericardium Meridian and Acupuncture Points in Humans

    PubMed Central

    Ma, Sheng-Xing; Mayer, Emeran; Lee, Paul; Li, Xi-yan; Gao, Ellen Z.

    2015-01-01

    Objectives The purpose of this study was to consecutively capture and quantify nitric oxide (NO) and cGMP, the second messenger of NO, over the skin surface of acupuncture points (acupoints), meridian line without acupoint, and non-meridian control regions of the Pericardium meridian (PC) in humans, and investigate their response to transcutaneous electrical nerve stimulation (TENS). Design, setting, and main outcome measures Adhesive biocapture tubes were attached to the skin surface along PC regions and injected with 2-Phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl solution, an NO-scavenging compound, contacting the skin surface for 20 minutes each during 4 consecutive biocapture intervals. TENS (1.0 mA, 6 Hz, 1.0 msec duration) was applied over acupoints PC 8 and PC 3 during the 2nd biocapture for 20 min. Total nitrite and nitrate (NOx-), the stable metabolic products of NO, and cGMP in biocaptured samples were quantified using chemiluminescence and ELISA. Results NOx- levels in the 1st biocapture over PC regions are almost two fold higher compared to subsequent biocaptures and are higher over PC acupoints versus non-meridian control region. Following TENS, NOx- concentrations over PC regions were significantly increased, and cGMP is predominantly released from the skin surface of PC acupoints. Conclusions TENS induces elevations of NO-cGMP concentrations over local skin region with a high level at acupoints. The enhanced signal molecules improve local circulation, which contributes to beneficial effects of the therapy. PMID:26369251

  15. Development of a sensitive, generic and easy to use organophosphate skin disclosure kit.

    PubMed

    Worek, Franz; Wosar, Andreas; Baumann, Madlen; Thiermann, Horst; Wille, Timo

    2017-10-05

    Various organophosphorus compounds (OP), primarily the nerve agent VX and other V-agents, are highly toxic to humans after skin exposure. Percutaneous exposure by such OP results in a delayed onset of toxic signs which enables the initiation of specific countermeasures if contamination is detected rapidly. Presently available mobile detection systems can hardly detect skin exposure by low volatile OP. In order to fill this gap an OP skin disclosure kit was developed which should fulfill different requirements, i.e. a high sensitivity, coverage of human toxic OP, easy handling, rapid results, small dimension and weight. The kit includes a cotton swab to sample skin, human AChE as target and chemicals for a color reaction based on the Ellman assay which is recorded by visual inspection. OP is dissolved from the sampler in a test tube filled with phosphate buffer (0.1M, pH 7.4) and incubated with lyophilized human AChE for 1min. The reaction with acetylthiocholine and 5,5'-dithio-bis-2-nitrobenzoic acid (1min) results in a rich yellow color in the absence of OP and in contrast, in transparent or pale yellow buffer in the presence of OP. At the recommended conditions, the limit of detection is 100ng VX and Russian VX and 50ng Chinese VX on plain surface and 200ng VX on rat skin. With activated pesticides, paraoxon and malaoxon, a concentration of ∼10μg can be detected on plain surface. The ready-to-use kit has a weight of 16g and a size of 10×12×1cm. In the end, this kit has the potential to fill a major gap and to enable timely detection of OP skin exposure and initiation of life-saving countermeasures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Encapsulation of natural ingredient for skin protection via nanoemulsion process

    NASA Astrophysics Data System (ADS)

    Asmatulu, Eylem; Usta, Aybala; Alzahrani, Naif; Patil, Vinay; Vanderwall, Adeesha

    2017-04-01

    Many of the sunscreens are used during the hot summer time to protect the skin surface. However, some of ingredients in the sunscreens, such as oxybenzone, retinyl palmitate and synthetic fragrances including parabens, phthalates and synthetic musk may disrupt the cells on the skin and create harmful effects to human body. Natural oils may be considered for substitution of harmful ingredients in sunscreens. Many natural oils (e.g., macadamia oil, sesame oil, almond oil and olive oil) have UV protective property and on top of that they have natural essences. Among the natural oils, olive oil has a long history of being used as a home remedy for skincare. Olive oil is used or substituted for cleanser, moisturizer, antibacterial agent and massage reliever for muscle fatigue. It is known that sun protection factor (SPF) of olive oil is around eight. There has been relatively little scientific work performed on the effect of olive oil on the skin as sunscreen. With nanoencapsulation technique, UV light protection of the olive oil can be extended which will provide better coverage for the skin throughout the day. In the present study, natural olive oil was incorporated with DI water and surfactant (sodium dodecyl sulfate - SDS) and sonicated using probe sonicators. Sonication time, and concentrations of olive oil, DI water and surfactant were investigated in detail. The produced nanoemulsions were characterized using dynamic light scattering, and UV-Vis spectroscopy. It is believed that the nanoencupsulation of olive oil could provide better skin protection by slow releasing and deeper penetration of the nanoemulsion on skin surface. Undergraduate engineering students were involved in the project and observed all the process during the laboratory studies, as well as data collection, analysis and presentation. This experience based learning will likely enhance the students' skills and interest in the scientific and engineering studies.

  17. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells.

    PubMed

    Wang, Gongwei; Huang, Bing; Xiao, Li; Ren, Zhandong; Chen, Hao; Wang, Deli; Abruña, Héctor D; Lu, Juntao; Zhuang, Lin

    2014-07-09

    The dependence on Pt catalysts has been a major issue of proton-exchange membrane (PEM) fuel cells. Strategies to maximize the Pt utilization in catalysts include two main approaches: to put Pt atoms only at the catalyst surface and to further enhance the surface-specific catalytic activity (SA) of Pt. Thus far there has been no practical design that combines these two features into one single catalyst. Here we report a combined computational and experimental study on the design and implementation of Pt-skin catalysts with significantly improved SA toward the oxygen reduction reaction (ORR). Through screening, using density functional theory (DFT) calculations, a Pt-skin structure on AuCu(111) substrate, consisting of 1.5 monolayers of Pt, is found to have an appropriately weakened oxygen affinity, in comparison to that on Pt(111), which would be ideal for ORR catalysis. Such a structure is then realized by substituting the Cu atoms in three surface layers of AuCu intermetallic nanoparticles (AuCu iNPs) with Pt. The resulting Pt-skinned catalyst (denoted as Pt(S)AuCu iNPs) has been characterized in depth using synchrotron XRD, XPS, HRTEM, and HAADF-STEM/EDX, such that the Pt-skin structure is unambiguously identified. The thickness of the Pt skin was determined to be less than two atomic layers. Finally the catalytic activity of Pt(S)AuCu iNPs toward the ORR was measured via rotating disk electrode (RDE) voltammetry through which it was established that the SA was more than 2 times that of a commercial Pt/C catalyst. Taking into account the ultralow Pt loading in Pt(S)AuCu iNPs, the mass-specific catalytic activity (MA) was determined to be 0.56 A/mg(Pt)@0.9 V, a value that is well beyond the DOE 2017 target for ORR catalysts (0.44 A/mg(Pt)@0.9 V). These findings provide a strategic design and a realizable approach to high-performance and Pt-efficient catalysts for fuel cells.

  18. Analysis of Wellbore Skin Samples-Typology, Composition, and Hydraulic Properties.

    PubMed

    Houben, Georg J; Halisch, Matthias; Kaufhold, Stephan; Weidner, Christoph; Sander, Jürgen; Reich, Morris

    2016-09-01

    The presence of a wellbore skin layer, formed during the drilling process, is a major impediment for the energy-efficient use of water wells. Many models exist that predict its potential impacts on well hydraulics, but so far its relevant hydraulic parameters were only estimates or, at best, model results. Here, we present data on the typology, thickness, composition, and hydraulic properties obtained from the sampling of excavated dewatering wells in lignite surface mines and from inclined core drilling into the annulus of an abandoned water well. Despite the limited number of samples, several types of skin were identified. Both surface cake filtration and particle straining in the aquifer occur. The presence of microcracks may be a determining feature for the hydraulic conductivity of skin layers. In the case of the well-developed water supply well, no skin layer was detected. The observed types and properties of wellbore skin samples can be used to test the many mathematical skin models. © 2016, National Ground Water Association.

  19. Screening Test for Shed Skin Cells by Measuring the Ratio of Human DNA to Staphylococcus epidermidis DNA.

    PubMed

    Nakanishi, Hiroaki; Ohmori, Takeshi; Hara, Masaaki; Takahashi, Shirushi; Kurosu, Akira; Takada, Aya; Saito, Kazuyuki

    2016-05-01

    A novel screening method for shed skin cells by detecting Staphylococcus epidermidis (S. epidermidis), which is a resident bacterium on skin, was developed. Staphylococcus epidermidis was detected using real-time PCR. Staphylococcus epidermidis was detected in all 20 human skin surface samples. Although not present in blood and urine samples, S. epidermidis was detected in 6 of 20 saliva samples, and 5 of 18 semen samples. The ratio of human DNA to S. epidermidisDNA was significantly smaller in human skin surface samples than in saliva and semen samples in which S. epidermidis was detected. Therefore, although skin cells could not be identified by detecting only S. epidermidis, they could be distinguished by measuring the S. epidermidis to human DNA ratio. This method could be applied to casework touch samples, which suggests that it is useful for screening whether skin cells and human DNA are present on potential evidentiary touch samples. © 2016 American Academy of Forensic Sciences.

  20. Captive bottlenose dolphins and killer whales harbor a species-specific skin microbiota that varies among individuals.

    PubMed

    Chiarello, M; Villéger, S; Bouvier, C; Auguet, J C; Bouvier, T

    2017-11-10

    Marine animals surfaces host diverse microbial communities, which play major roles for host's health. Most inventories of marine animal surface microbiota have focused on corals and fishes, while cetaceans remain overlooked. The few studies focused on wild cetaceans, making difficult to distinguish intrinsic inter- and/or intraspecific variability in skin microbiota from environmental effects. We used high-throughput sequencing to assess the skin microbiota from 4 body zones of 8 bottlenose dolphins (Tursiops truncatus) and killer whales (Orcinus orca), housed in captivity (Marineland park, France). Overall, cetacean skin microbiota is more diverse than planktonic communities and is dominated by different phylogenetic lineages and functions. In addition, the two cetacean species host different skin microbiotas. Within each species, variability was higher between individuals than between body parts, suggesting a high individuality of cetacean skin microbiota. Overall, the skin microbiota of the assessed cetaceans related more to the humpback whale and fishes' than to microbiotas of terrestrial mammals.

  1. A mild hand cleanser, alkyl ether sulphate supplemented with alkyl ether carboxylic acid and alkyl glucoside, improves eczema on the hand and prevents the growth of Staphylococcus aureus on the skin surface.

    PubMed

    Fukui, S; Morikawa, T; Hirahara, M; Terada, Y; Shimizu, M; Takeuchi, K; Takagi, Y

    2016-12-01

    Washing the hands using cleansers with antiseptic materials is the most popular method for hand hygiene and helps maintain health by preventing food poisoning and bacterial infections. However, repeated hand washing tends to induce eczema of the hand, such as dryness, cracking and erythema. Moreover, eczema on the hand leads to increased levels in Staphylococcus aureus (S. aureus) on the skin surface in contrast to expectations. Thus, mild hand cleansers which induce less eczema even with repeated washings are desired. Here, we evaluated the efficacy of a hand cleanser formulated with alkyl ether sulphate (AES), alkyl ether carboxylic acid (AEC) and alkyl glucoside (AG) that contains isopropyl methylphenol (IPMP) on skin symptoms and S. aureus levels. Eczema of the hand and the presence of S. aureus on the skin surface were analysed prior to and following 4 weeks of usage of the hand cleanser. A soap-based hand cleanser with IPMP was used as a reference cleanser. Eczema and cutaneous conditions were evaluated by visual grading, transepidermal water loss (TEWL), stratum corneum moisture-retention ability (MRA) and skin surface pH. The repeated use of the soap-based hand cleanser significantly worsened the hand dryness, scaling and cracks on the tips of the fingers and significantly increased the TEWL and decreased the MRA. In contrast, usage of the test cleanser only induced a significant increase in skin dryness but did not induce skin scaling or cracking and did not increase TEWL or decrease the MRA. Corresponding to these changes in skin symptoms, the presence of S. aureus increased the following use of the reference cleanser but not the test cleanser. There was no significant difference in skin surface pH between the two cleansers. Moreover, the increase in S. aureus was significantly correlated to the worsening of skin dryness and scaling. These results suggest that not only antimicrobial activity but also the mildness, which minimizes cutaneous effects, are important for hand cleansers to prevent the growth of S. aureus. The cleanser formulated with AES, AEC and AG containing IPMP is mild and is effective to promote hand hygiene. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Comparison of intensity-modulated radiotherapy and volumetric-modulated arc therapy dose measurement for head and neck cancer using optical stimulated luminescence dosimeter

    NASA Astrophysics Data System (ADS)

    Lai, Lu-Han; Chuang, Keh-Shih; Lin, Hsin-Hon; Liu, Yi-Chi; Kuo, Chiung-Wen; Lin, Jao-Perng

    2017-11-01

    The in-vivo dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), a newly developed technique, for head and neck cancer have been investigated for several years. The present study used a head-and-neck RANDO phantom to simulate the clinical conditions of nasopharyngeal carcinoma and compare the radiation doses between VMAT and IMRT. Three types of planning target volume (PTV) profiles were targeted by reducing the PTV surface margin by 0, 3, and 5 mm. An optically stimulated luminescence dosimeter was used to measure the surface doses. The results revealed that VMAT provided on average 16.8-13.8% lower surface doses within the PTV target areas than IMRT. When the PTV margin was reduced by 0 mm, the surface doses for IMRT reached their maximum value, accounting for 75.1% of its prescribed dose (Dp); however, the Dp value of VMAT was only 61.1%. When the PTV margin was reduced by 3 or 5 mm, the surface doses decreased considerably. The observed surface doses were insufficient when the tumours invaded the body surface; however, VMAT exerted larger skin-sparing effects than IMRT when the tumours away from the skin. These results suggest that the skin doses for these two techniques are insufficient for surface tumours. Notably, VMAT can provide lower skin doses for deep tumours.

  3. Gradient-Index Optics

    DTIC Science & Technology

    2010-03-31

    A Extruder B Melt Pump B Melt Pump A AB Feedblock Layer Multipliers Surface Layer Feedblock Surface Layer Extruder Skin Skin Nanolayers Number of...enough to enable accurate machining. Customarily, optics are held in place using vacuum chucks during the diamond turning process. The force with...which optics can be secured this way is proportional to their surface area. By ensuring that the vacuum force is larger than any forces imparted on

  4. Development of skin tissue phantom having a shape of sulcus cutis and crista cutis with lower temporal deterioration

    NASA Astrophysics Data System (ADS)

    Yuasa, Tomonori; Nagamori, Yutaro; Maeda, Takaaki; Funamizu, Hideki; Aizu, Yoshihisa

    2017-07-01

    Human skin surface has unevennesses called sulcus cutis and crista cutis. It is known that these affect the light propagation in human skin. In this study, we made a prototype of skin tissue phantom and investigated its spectral properties and problems to be solved.

  5. Associations between skin barrier characteristics, skin conditions and health of aged nursing home residents: a multi-center prevalence and correlational study.

    PubMed

    Hahnel, Elisabeth; Blume-Peytavi, Ulrike; Trojahn, Carina; Kottner, Jan

    2017-11-13

    Geriatric patients are affected by a range of skin conditions and dermatological diseases, functional limitations and chronic diseases. Skin problems are highly prevalent in elderly populations. Aim of this study was to investigate possible associations between health, functional and cutaneous variables in aged long-term care residents. This observational, cross-sectional, descriptive prevalence study was conducted in a random sample of 10 institutional long-term care facilities in Berlin. In total, n = 223 residents were included. Demographic and functional characteristics, xerosis cutis, incontinence associated dermatitis, pressure ulcers and skin tears were assessed. Stratum corneum hydration, transepidermal water loss, skin surface pH and skin temperature were measured. Data analysis was descriptive and explorative. To explore possible bivariate associations, a correlation matrix was created. The correlation matrix was also used to detect possible collinearity in the subsequent regression analyses. Mean age (n = 223) was 83.6 years, 67.7% were female. Most residents were affected by xerosis cutis (99.1%; 95% CI: 97.7% - 100.0%). The prevalence of pressure ulcers was 9.0% (95% CI: 5.0% - 13.0%), of incontinence associated dermatitis 35.4% (95% CI: 29.9% - 42.2%) and of skin tears 6.3% (95% CI: 3.2% - 9.5%). Biophysical skin parameters were not associated with overall care dependency, but with age and skin dryness. In general, skin dryness and measured skin barrier parameters were associated between arms and legs indicating similar overall skin characteristics of the residents. Prevalence of xerosis cutis, pressure ulcers and skin tears were high, indicating the load of these adverse skin conditions in this population. Only few associations of demographic characteristics, skin barrier impairments and the occurrence of dry skin, pressure ulcers, skin tears and incontinence-associated dermatitis have been detected, that might limit the diagnostic value of skin barrier parameters in this population. Overall, the measured skin barrier parameters seem to have limited diagnostic value for the reported skin conditions except xerosis cutis. This study is registered at https://clinicaltrials.gov/ct2/show/NCT02216526 . Registration date: 8th November 2014.

  6. Breathable and Stretchable Temperature Sensors Inspired by Skin.

    PubMed

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-22

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  7. Effects of hypobaric pressure on human skin: implications for cryogen spray cooling (part II).

    PubMed

    Aguilar, Guillermo; Franco, Walfre; Liu, Jie; Svaasand, Lars O; Nelson, J Stuart

    2005-02-01

    Clinical results have demonstrated that dark purple port wine stain (PWS) birthmarks respond favorably to laser induced photothermolysis after the first three to five treatments. Nevertheless, complete blanching is rarely achieved and the lesions stabilize at a red-pink color. In a feasibility study (Part I), we showed that local hypobaric pressure on PWS human skin prior to laser irradiation induced significant lesion blanching. The objective of the present study (Part II) is to investigate the effects of hypobaric pressures on the efficiency of cryogen spray cooling (CSC), a technique that assists laser therapy of PWS and other dermatoses. Experiments were carried out within a suction cup and vacuum chamber to study the effect of hypobaric pressure on the: (1) interaction of cryogen sprays with human skin; (2) spray atomization; and (3) thermal response of a model skin phantom. A high-speed camera was used to acquire digital images of spray impingement on in vivo human skin and spray cones generated at different hypobaric pressures. Subsequently, liquid cryogen was sprayed onto a skin phantom at atmospheric and 17, 34, 51, and 68 kPa (5, 10, 15, and 20 in Hg) hypobaric pressures. A fast-response temperature sensor measured sub-surface phantom temperature as a function of time. Measurements were used to solve an inverse heat conduction problem to calculate surface temperatures, heat flux, and overall heat extraction at the skin phantom surface. Under hypobaric pressures, cryogen spurts did not produce skin indentation and only minimal frost formation. Sprays also showed shorter jet lengths and better atomization. Lower minimum surface temperatures and higher overall heat extraction from skin phantoms were reached. The combined effects of hypobaric pressure result in more efficient cryogen evaporation that enhances heat extraction and, therefore, improves the epidermal protection provided by CSC. (c) 2005 Wiley-Liss, Inc.

  8. Development of technology for the fabrication of reliable laminar flow control panels on subsonic transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed.

  9. Effects of rutin on the physicochemical properties of skin fibroblasts membrane disruption following UV radiation.

    PubMed

    Dobrzyńska, Izabela; Gęgotek, Agnieszka; Gajko, Ewelina; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew A

    2018-02-25

    Human skin provides the body's first line of defense against physical and environmental assaults. This study sought to determine how rutin affects the membrane electrical properties, sialic acid content, and lipid peroxidation levels of fibroblast membranes after disruption by ultraviolet (UV) radiation. Changes in cell function may affect the basal electrical surface properties of cell membranes, and changes can be detected by electrokinetic measurements. The charge density of the fibroblast membrane surface was measured as a function of pH. A four-component equilibrium model was used to describe the interaction between ions in solution and ions on the membrane surface. Agreement was found between experimental and theoretical charge variation curves of fibroblast cells between pH 2.5 and 8. Sialic acid content was determined by Svennerholm's resorcinol method, and lipid peroxidation was estimated by measuring the malondialdehyde level. Compared to untreated cells, ultraviolet A (UVA)- or ultraviolet B (UVB)-treated skin cell membranes exhibited higher concentrations of acidic functional groups and higher average association constants with hydroxyl ions, but lower average association constants with hydrogen ions. Moreover, our results showed that UVA and UVB radiation is associated with increased levels of sialic acid and lipid peroxidation products in fibroblasts. Rutin protected cells from some deleterious UV-associated membrane changes, including changes in electrical properties, oxidative state, and biological functions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH.

    PubMed

    Luebberding, S; Krueger, N; Kerscher, M

    2013-10-01

    Evidence is given that differences in skin physiological properties exist between men and women. However, despite an assessable number of available publications, the results are still inconsistent. Therefore, the aim of this clinical study is the first systematic assessment of gender-related differences in skin physiology in men and women, with a special focus on changes over lifetime. A total of 300 healthy male and female subjects (20-74 years) were selected following strict criteria including age, sun behaviour or smoking habits. TEWL, hydration level, sebum production and pH value were measured with worldwide-acknowledged biophysical measuring methods at forehead, cheek, neck, volar forearm and dorsum of hand. Until the age of 50 men's TEWL is significantly lower than the water loss of women of the same age, regardless of the location. With ageing gender-related differences in TEWL assimilate. Young men show higher SC hydration in comparison with women. But, whereas SC hydration is stable or even increasing in women over lifetime, the skin hydration in men is progressively decreasing, beginning at the age of 40. Sebum production in male skin is always higher and stays stable with increasing age, whereas sebum production in women progressively decreases over lifetime. Across all localizations and age groups, the pH value in men is below 5, the pH value of female subjects is, aside from limited expectations, higher than 5. Skin physiological distinctions between the sexes exist and are particularly remarkable with regard to sebum production and pH value. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  11. Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials

    NASA Astrophysics Data System (ADS)

    Hermens, U.; Kirner, S. V.; Emonts, C.; Comanns, P.; Skoulas, E.; Mimidis, A.; Mescheder, H.; Winands, K.; Krüger, J.; Stratakis, E.; Bonse, J.

    2017-10-01

    Inorganic materials, such as steel, were functionalized by ultrashort laser pulse irradiation (fs- to ps-range) to modify the surface's wetting behavior. The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A systematic experimental study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, spikes, etc.). Analyses of the surface using optical as well as scanning electron microscopy revealed morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally a two-step laser processing strategy was established for realizing hierarchical microstructures. In this approach, micrometer-scaled capillaries (step 1) were superimposed by a laser-generated regular array of small dimples (step 2). Optical focus variation imaging measurements finally disclosed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties.

  12. Experimental study on axial pedicled composite flap prefabrication with high density porous polyethylene implants: medporocutaneous flap.

    PubMed

    Kocman, A Emre; Kose, Aydan A; Karabagli, Yakup; Baycu, Cengiz; Cetin, Cengiz

    2008-01-01

    Composite flaps including soft tissues with bone or cartilage are widely used in reconstruction of three-dimensional defects, but have some disadvantages. Flap prefabrication with alloplastic implants is an alternative procedure. Axial pattern vascularised high density porous polyethylene (HDPP) implants are capable of sustaining skin grafts. The purpose of this study was to examine the vascularisation pattern of the skin island in a composite flap prefabrication model prepared with vascularised HDPP implants. Forty male Wistar rats divided into four groups were used. A 9.5 x 6 x 2 mm HDPP block was centered on the dissected saphenous pedicle and anchored under the abdominal skin in the experimental group I (n=10). In experimental group II (n=10) saphenous artery and vein were put between the skin and the implant. Thus, the structures were laid as skin, HDPP block, pedicle in experimental group I and skin, pedicle, HDPP block in experimental group II. HDPP block-implanted and pedicle-implanted only groups served as control groups I and II, respectively. Eight weeks after prefabrication, skin islands 1.5 x 5 cm in size incorporated with implants were elevated based on saphenous vessels in the experimental groups and skin islands only based on the pedicle in control group II. Skin islands of the same dimensions were raised as grafts in control group I. Nylon sheets were put under the flaps and grafts to prevent vascularisation from the recipient bed. Flap viability was assessed by measuring the surface area on the 7th day. Total necrosis developed in composite grafts of control group I. Flap survival was higher in experimental group II and control group II (45% and 46.8%) than in group I (29.28%). Histologic studies demonstrated fibrovascular ingrowth into the HDPP implants, except in control group I, with significant inflammatory response and necrosis. Vascularisation of skin and implants from the pedicle was seen also microangiographically. In conclusion, a composite flap prefabrication model including vascularised HDPP implant, skin and vascular carrier was developed. This new flap was termed a 'medporocutaneous flap'.

  13. Accurate Measurements of the Skin Surface Area of the Healthy Auricle and Skin Deficiency in Microtia Patients

    PubMed Central

    van Doremalen, Rob F. M.; Melchels, Ferry P. W.; Kolodzynski, Michail N.; Pouran, Behdad; Malda, Jos; Kon, Moshe; Breugem, Corstiaan C.

    2016-01-01

    Background: The limited cranial skin covering auricular implants is an important yet underrated factor in auricular reconstruction for both reconstruction surgery and tissue engineering strategies. We report exact measurements on skin deficiency in microtia patients and propose an accessible preoperative method for these measurements. Methods: Plaster ear models (n = 11; male:female = 2:1) of lobular-type microtia patients admitted to the University Medical Center Utrecht in The Netherlands were scanned using a micro-computed tomographic scanner or a cone-beam computed tomographic scanner. The resulting images were converted into mesh models from which the surface area could be calculated. Results: The mean total skin area of an adult-size healthy ear was 47.3 cm2, with 49.0 cm2 in men and 44.3 cm2 in women. Microtia ears averaged 14.5 cm2, with 15.6 cm2 in men and 12.6 cm2 in women. The amount of skin deficiency was 25.4 cm2, with 26.7 cm2 in men and 23.1 cm2 in women. Conclusions: This study proposes a novel method to provide quantitative data on the skin surface area of the healthy adult auricle and the amount of skin deficiency in microtia patients. We demonstrate that the microtia ear has less than 50% of skin available compared with healthy ears. Limited skin availability in microtia patients can lead to healing problems after auricular reconstruction and poses a significant challenge in the development of tissue-engineered cartilage implants. The results of this study could be used to evaluate outcomes and investigate new techniques with regard to tissue-engineered auricular constructs. PMID:28293505

  14. The "Haptic Finger"- a new device for monitoring skin condition.

    PubMed

    Tanaka, Mami; Lévêque, Jean Luc; Tagami, Hachiro; Kikuchi, Katsuko; Chonan, Seifi

    2003-05-01

    Touching the skin is of great importance for the Clinician for assessing roughness, softness, firmness, etc. This type of clinical assessment is very subjective and therefore non-reproducible from one Clinician to another one or even from time to time for the same Clinician. In order to objectively monitor skin texture, we developed a new sensor, placed directly on the Clinician's finger, which generate some electric signal when slid over the skin surface. The base of this Haptic Finger sensor is a thin stainless steel plate on which sponge rubber, PVDF foil, acetate film and gauze are layered. The signal generated by the sensor was filtered and digitally stored before processing. In a first in vitro experiment, the sensor was moved over different skin models (sponge rubber covered by silicon rubber) of varying hardness and roughness. These experiments allowed the definition of two parameters characterizing textures. The first parameter is variance of the signal processed using wavelet analysis, representing an index of roughness. The second parameter is dispersion of the power spectrum density in the frequency domain, corresponding to hardness. To validate these parameters, the Haptic Finger was used to scan skin surfaces of 30 people, 14 of whom displayed a skin disorder: xerosis (n = 5), atopic dermatitis (n = 7), and psoriasis (n = 2). The results obtained by means of the sensor were compared with subjective, clinical evaluations by a Clinician who scored both roughness and hardness of the skin. Good agreement was observed between clinical assessment of the skin and the two parameters generated using the Haptic Finger. Use of this sensor could prove extremely valuable in cosmetic research where skin surface texture (in terms of tactile properties) is difficult to measure.

  15. 7 CFR 51.3146 - U.S. Extra No. 1.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... from decay, broken skins which are not healed, worms, worm holes and free from injury caused by split... percent of the nectarines in any lot shall show some blushed or red color including therein at least 50 percent of the nectarines with not less than one-third of the fruit surface showing red color...

  16. 7 CFR 51.3146 - U.S. Extra No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... from decay, broken skins which are not healed, worms, worm holes and free from injury caused by split... percent of the nectarines in any lot shall show some blushed or red color including therein at least 50 percent of the nectarines with not less than one-third of the fruit surface showing red color...

  17. Surface dosimetry for breast radiotherapy in the presence of immobilization cast material

    NASA Astrophysics Data System (ADS)

    Kelly, Andrew; Hardcastle, Nicholas; Metcalfe, Peter; Cutajar, Dean; Quinn, Alexandra; Foo, Kerwyn; Cardoso, Michael; Barlin, Sheree; Rosenfeld, Anatoly

    2011-02-01

    Curative breast radiotherapy typically leaves patients with varying degrees of cosmetic damage. One problem interfering with cosmetically acceptable breast radiotherapy is the external contour for large pendulous breasts which often results in high doses to skin folds. Thermoplastic casts are often employed to secure the breasts to maintain setup reproducibility and limit the presence of skin folds. This paper aims to determine changes in surface dose that can be attributed to the use of thermoplastic immobilization casts. Skin dose for a clinical hybrid conformal/IMRT breast plan was measured using radiochromic film and MOSFET detectors at a range of water equivalent depths representative of the different skin layers. The radiochromic film was used as an integrating dosimeter, while the MOSFETs were used for real-time dosimetry to isolate the contribution of skin dose from individual IMRT segments. Strips of film were placed at various locations on the breast and the MOSFETs were used to measure skin dose at 16 positions spaced along the film strips for comparison of data. The results showed an increase in skin dose in the presence of the immobilization cast of up to 45.7% and 62.3% of the skin dose without the immobilization cast present as measured with Gafchromic EBT film and MOSFETs, respectively. The increase in skin dose due to the immobilization cast varied with the angle of beam incidence and was greatest when the beam was normally incident on the phantom. The increase in surface dose with the immobilization cast was greater under entrance dose conditions compared to exit dose conditions.

  18. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.

    2017-08-01

    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  19. The feline skin microbiota: The bacteria inhabiting the skin of healthy and allergic cats

    PubMed Central

    Diesel, Alison; Patterson, Adam P.; Meason-Smith, Courtney; Johnson, Timothy J.; Mansell, Joanne; Suchodolski, Jan S.; Rodrigues Hoffmann, Aline

    2017-01-01

    Background The skin is inhabited by a multitude of microorganisms. An imbalance of these microorganisms is associated with disease, however, the causal relationship between skin microbiota and disease remains unknown. To describe the cutaneous bacterial microbiota of cats and determine whether bacterial dysbiosis occurs on the skin of allergic cats, the skin surfaces on various regions of 11 healthy cats and 10 allergic cats were sampled. Methodology/Principal findings Genomic DNA was extracted from skin swabs and sequenced using primers that target the V4 region of the bacterial 16S rRNA. The bacterial sequences from healthy cats revealed that there are differences in species diversity and richness between body sites and different epithelial surfaces. Bacterial communities preferred body site niches in the healthy cats, however, the bacterial communities on allergic cat skin tended to be more unique to the individual cat. Overall, the number of bacterial species was not significantly different between the two health status groups, however, the abundances of these bacterial species were different between healthy and allergic skin. Staphylococcus, in addition to other taxa, was more abundant on allergic skin. Conclusions/Significance This study reveals that there are more bacterial species inhabiting the skin of cats than previously thought and provide some evidence of an association between dysbiosis and skin disease. PMID:28575016

  20. Going skin deep: A direct comparison of penetration potential of lipid-based nanovesicles on the isolated perfused human skin flap model.

    PubMed

    Ternullo, Selenia; de Weerd, Louis; Holsæter, Ann Mari; Flaten, Gøril Eide; Škalko-Basnet, Nataša

    2017-12-01

    Phospholipid-based nanocarriers are attractive drug carriers for improved local skin therapy. In the present study, the recently developed isolated perfused human skin flap (IPHSF) model was used to directly compare the skin penetration enhancing potential of the three commonly used nanocarriers, namely conventional liposomes (CLs), deformable liposomes (DLs) and solid lipid nanoparticles (SLNs). Two fluorescent markers, calcein (hydrophilic) or rhodamine (lipophilic), were incorporated individually in the three nanosystems. The nanocarrier size ranged between 200 and 300nm; the surface charge and entrapment efficiency for both markers were dependent on the lipid composition and the employed surfactant. Both carrier-associated markers could not penetrate the full thickness human skin, confirming their suitability for dermal drug delivery. CLs exhibited higher retention of both markers on the skin surface compared to DLs and SLNs, indicating a depo formation. DLs and SLNs enabled the deeper penetration of the two markers into the skin layers. In vitro and ex vivo skin penetration studies performed on the cellophane membrane and full thickness pig/human skin, respectively, confirmed the findings. In conclusion, efficient dermal drug delivery can be achieved by optimization of a lipid nanocarrier on the suitable skin-mimicking model to assure system's accumulation in the targeted skin layer. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A laser interferometer for measuring skin friction in three-dimensional flows

    NASA Technical Reports Server (NTRS)

    Monson, D. J.

    1983-01-01

    A new, nonintrusive method is described for measuring skin friction in three-dimensional flows with unknown direction. The method uses a laser interferometer to measure the changing slope of a thin oil film applied to a surface experiencing shear stress. The details of the method are described, and skin friction measurements taken in a swirling three-dimensional boundary-layer flow are presented. Comparisons between analytical results and experimental values from the laser interferometer method and from a bidirectional surface-fence gauge are made.

  2. Seborrheic Dermatitis and Dandruff: A Comprehensive Review

    PubMed Central

    Borda, Luis J.; Wikramanayake, Tongyu C.

    2016-01-01

    Seborrheic Dermatitis (SD) and dandruff are of a continuous spectrum of the same disease that affects the seborrheic areas of the body. Dandruff is restricted to the scalp, and involves itchy, flaking skin without visible inflammation. SD can affect the scalp as well as other seborrheic areas, and involves itchy and flaking or scaling skin, inflammation and pruritus. Various intrinsic and environmental factors, such as sebaceous secretions, skin surface fungal colonization, individual susceptibility, and interactions between these factors, all contribute to the pathogenesis of SD and dandruff. In this review, we summarize the current knowledge on SD and dandruff, including epidemiology, burden of disease, clinical presentations and diagnosis, treatment, genetic studies in humans and animal models, and predisposing factors. Genetic and biochemical studies and investigations in animal models provide further insight on the pathophysiology and strategies for better treatment. PMID:27148560

  3. [Radiation load on the skin using a silicone-coated polyamide wound dressing during photon and electron radiotherapy].

    PubMed

    Thilmann, C; Adamietz, I A; Ramm, U; Mose, S; Saran, F; Böttcher, H D

    1996-05-01

    Silicone-coated polyamide wound dressing is frequently used for the supportive treatment in patients with radiation induced skin lesions. The use of this kind of dressing during radiotherapy with high energy beams shifts the dose built-up effect towards the skin surface. Thus the dose delivered to the skin increases. The present work quantifies changes of the skin dose by a commercial silicon-coated polyamide wound dressing. The dependence on the beam quality and on different treatment techniques is investigated. Measurements were performed with photon (60Co, 6 MV, 42 MV) and electron (7 MeV, 20 MeV, 40 MeV) beams using thin LiF thermoluminescence dosimeters (TLD) in a perspex phantom. The beams were directed perpendicularly to the phantom surface. For 60Co and 6 MV photon beams the skin dose was evaluated in vivo at different beam arrangements and at a given reference dose. For 60Co, 6 MV and 42 MV photon beams wound dressing caused a dose increase on the surface of the perspex phantom by a factor of 1.65, 1.39 and 1.33 respectively. Using oblique or rotational techniques for 60Co and 6 MV photon irradiation the wound dressing increased the skin dose but less compared to perpendicular beam direction. For electron beams the skin dose is relatively high (from 84% to 92%) and an increase by a dressing has no clinical relevance (factor 1.03 to 1.05). The silicone-coated polyamide wound dressing causes no relevant skin dose increase during radiation treatment with electron beams and can be left on the skin during irradiation. During radiation treatment with photon beams like 60Co and 6 MV the protective procedure should be adapted to skin changes, in case of strong skin reactions a removal during the time of irradiation should be considered.

  4. Accelerated barrier recovery and enhancement of the barrier integrity and properties by topical application of a pH 4 compared to a pH 5.8 w/o emulsion in aged skin.

    PubMed

    Angelova-Fischer, I; Fischer, T W; Abels, C; Zillikens, D

    2018-03-25

    Increased skin surface pH is an important host-related factor for deteriorated barrier function in the aged. We investigated whether restoration of the skin pH through topical application of a water-in-oil (w/o) emulsion with pH 4 improved the barrier homeostasis in aged skin and compared the effects to an identical galenic formulation with pH 5.8. The effects of the test formulations on the barrier recovery were investigated by repeated measurements of transepidermal water loss (TEWL) and skin pH 3 h, 6 h and 24 h after acetone-induced impairment of the barrier function in aged skin. The long-term effects of the pH 4 and pH 5.8 emulsions were analyzed by investigation of the barrier integrity/cohesion, the skin surface pH and the skin roughness and scaliness before and after a 4-week, controlled application of the formulations. The application of the pH 4 emulsion accelerated the barrier recovery in aged skin: 3 h and 6 h after acetone-induced barrier disruption the differences in the TEWL recovery between the pH4-treated and acetone control field were significant. Furthermore, the long-term application of the pH 4 formulation resulted in significantly decreased skin pH, enhanced barrier integrity and reduced skin surface roughness and scaliness. At the same time points, the pH 5.8 formulation exerted only minor effects on the barrier function parameters. Exogenous acidification through topical application of a w/o emulsion with pH 4 leads to improvement of the barrier function and maintenance of the barrier homeostasis in aged skin. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Laser speckle and skin cancer: skin roughness assessment

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Zeng, Haishan; McLean, David I.; Lui, Harvey

    2009-10-01

    Incidence of skin cancer has been increasing rapidly since the last few decades. Non-invasive optical diagnostic tools may improve the diagnostic accuracy. In this paper, skin structure, skin cancer statistics and subtypes of skin cancer are briefly reviewed. Among the subtypes, malignant melanoma is the most aggressive and dangerous; early detection dramatically improves the prognosis. Therefore, a non-invasive diagnostic tool for malignant melanoma is especially needed. In addition, in order for the diagnostic tool to be useful, it must be able to differentiate melanoma from common skin conditions such as seborrheic keratosis, a benign skin disease that resembles melanoma according to the well known clinical-assessment ABCD rule. The key diagnostic feature between these two diseases is surface roughness. Based on laser speckle contrast, our research team has recently developed a portable, optical, non-invasive, in-vivo diagnostic device for quantifying skin surface roughness. The methodology of our technique is described in details. Examining the preliminary data collected in a pilot clinical study for the prototype, we found that there was a difference in roughness between melanoma and seborrheic keratosis. In fact, there was a perfect cutoff value for the two diseases based on our initial data.

  6. 3D bioprinting of functional human skin: production and in vivo analysis.

    PubMed

    Cubo, Nieves; Garcia, Marta; Del Cañizo, Juan F; Velasco, Diego; Jorcano, Jose L

    2016-12-05

    Significant progress has been made over the past 25 years in the development of in vitro-engineered substitutes that mimic human skin, either to be used as grafts for the replacement of lost skin, or for the establishment of in vitro human skin models. In this sense, laboratory-grown skin substitutes containing dermal and epidermal components offer a promising approach to skin engineering. In particular, a human plasma-based bilayered skin generated by our group, has been applied successfully to treat burns as well as traumatic and surgical wounds in a large number of patients in Spain. There are some aspects requiring improvements in the production process of this skin; for example, the relatively long time (three weeks) needed to produce the surface required to cover an extensive burn or a large wound, and the necessity to automatize and standardize a process currently performed manually. 3D bioprinting has emerged as a flexible tool in regenerative medicine and it provides a platform to address these challenges. In the present study, we have used this technique to print a human bilayered skin using bioinks containing human plasma as well as primary human fibroblasts and keratinocytes that were obtained from skin biopsies. We were able to generate 100 cm 2 , a standard P100 tissue culture plate, of printed skin in less than 35 min (including the 30 min required for fibrin gelation). We have analysed the structure and function of the printed skin using histological and immunohistochemical methods, both in 3D in vitro cultures and after long-term transplantation to immunodeficient mice. In both cases, the generated skin was very similar to human skin and, furthermore, it was indistinguishable from bilayered dermo-epidermal equivalents, handmade in our laboratories. These results demonstrate that 3D bioprinting is a suitable technology to generate bioengineered skin for therapeutical and industrial applications in an automatized manner.

  7. Surface contamination to UV-curable acrylates in the furniture and parquet industry.

    PubMed

    Surakka, J; Lindh, T; Rosén, G; Fischer, T

    2001-03-01

    Surface contamination to ultraviolet radiation curable coatings (UV coatings), used increasingly in the parquet and furniture industry, is a matter of concern as a source for skin contamination. UV coatings contain chemically and biologically reactive acrylates, well known as skin contact irritants and sensitizers. Surface contamination may spread secondarily to equipment and other unexpected areas even outside the workplace. Yet, studies concerning this type of contamination are lacking due to lack of suitable sampling methods. Surface contamination of the work environment with risk for skin exposure to UV coating was measured employing a quantitative adhesive tape sampling method developed for this purpose. A pilot study was first performed at three workplaces to evaluate the contamination. In the main study, we wanted to locate and identify in detail the surface contamination of areas where problems exist, and to determine the extent of the problem. Measurements were performed at seven workplaces on two separate workdays (round 1 and 2) within a six-month period. Samples were collected from the workplaces based on the video monitoring of skin contact frequency with the surfaces and categorized into three groups to analyze risk. The pilot study indicated that surface contamination to TPGDA containing UV coatings was common, found in 76 percent of the surfaces, and varied with a maximum of 909 microg TPGDA 10 cm(-2) sampling area. In the main study TPGDA was found in 153 out of 196 collected samples (78.1%); for round one 78.1 percent (82 out of 105 samples) and for round two 78.0 percent (71 out of 91 samples). The average TPGDA mass on positive surface samples was on the first round 2,247 +/- 7,462 microg, and on the second round 2,960 +/- 4,590 microg. We conclude that surface contamination to uncured UV coatings at UV-curing lines is common and this involves a risk for harmful, unintentional skin exposure to acrylates.

  8. Analyses and tests for design of an electro-impulse de-icing system

    NASA Technical Reports Server (NTRS)

    Zumwalt, G. W.; Schrag, R. L.; Bernhart, W. D.; Friedberg, R. A.

    1985-01-01

    De-icing of aircraft by using the electro-magnetic impulse phenomenon was proposed and demonstrated in several European countries. However, it is not available as a developed system due to lack of research on the basic physical mechanisms and necessary design parameters. The de-icing is accomplished by rapidly discharging high voltage capacitors into a wire coil rigidly supported just inside the aircraft skin. Induced eddy currents in the skin create a repulsive force resulting in a hammer-like force which cracks, de-bonds, and expels ice on the skin surface. The promised advantages are very low energy, high reliability of de-icing, and low maintenance. Three years of Electo-Impulse De-icing (EIDI) research is summarized and the analytical studies and results of testing done in the laboratory, in the NASA Icing Research Tunnel, and in flight are presented. If properly designed, EIDI was demonstrated to be an effective and practical ice protection system for small aircraft, turbojet engine inlets, elements of transport aircraft, and shows promise for use on helicopter rotor blades. Included are practical techniques of fabrication of impulse coils and their mountings. The use of EIDI with nonmetallic surface materials is also described.

  9. A new species of Entobdella Blainville in Lamarck, 1818 (Monogenea: Capsalidae: Entobdellinae) from the Greenland halibut, Reinhardtius hippoglossoides.

    PubMed

    Kearn, Graham; Karlsbakk, Egil; Evans-Gowing, Richard; Gerasev, Pavel

    2015-09-01

    A previously undescribed species of Entobdella is reported from the skin of the Greenland halibut, Reinhardtius hippoglossoides (Pleuronectiformes, Pleuronectidae). Entobdella whittingtoni sp. nov. differs from other species of Entobdella, including skin parasites of the related pleuronectids Hippoglossus hippoglossus (Atlantic halibut) and H. stenolepis (Pacific halibut), in lacking papillae on the ventral surface of the haptor. Other characteristics of E. whittingtoni are as follows: the absence of vitelline follicles lateral to the pharynx thereby exposing gut caeca in this region of whole mounts; the presence of a circular feature of unknown function, resembling a rosette in sections, attached to the wall of the internal male accessory reservoir; the lack of eyes. Papillae are also absent from the ventral surface of the haptor of the gill-parasitic entobdelline Branchobdella pugetensis, a gill parasite of the pleuronectid Atheresthes stomias. This raises the question as to whether this gill parasite has evolved from a skin-parasitic ancestor similar to E. whittingtoni. An answer to this question requires a more detailed study of the male reproductive apparatus of B. pugetensis and the use of molecular techniques to explore the relationship between B. pugetensis and E. whittingtoni.

  10. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  11. Effects of water nanodroplets on skin moisture and viscoelasticity during air-conditioning.

    PubMed

    Ohno, Hideo; Nishimura, Naoki; Yamada, Kuniyuki; Shimizu, Yuuki; Iwase, Satoshi; Sugenoya, Junichi; Sato, Motohiko

    2013-11-01

    In air-conditioned rooms, dry air exacerbates some skin diseases, for example, senile xerosis, atopic dermatitis, and surface roughness. Humidifiers are used to improve air dryness, which often induces excess humidity and thermal discomfort. To address this issue, we investigated the effects of water nanodroplets (mist) on skin hydration, which may increase skin hydration by penetrating into the interstitial spaces between corneocytes of the stratum corneum (SC) without increasing air humidity. We examined biophysical parameters, including skin conductance and transepidermal water loss (TEWL), and biomechanical parameters of skin distension/retraction before and after suction at the forehead, lateral canthus, and cheek, with or without mist, in a testing environment (24°C, 35% relative humidity) for 120 min. In the group without mist, TEWL values significantly decreased at all the sites after 1 h compared with the initial values. However, in the presence of mist, TEWL values were maintained at the initial values through the test, yielding significant differences vs. the group without mist. There were no significant differences between mist and mist-free groups in terms of skin conductance. Skin distension was significantly increased in the group with mist compared with that in the group without mist at the forehead and cheek, suggesting a softening effect of mist. Skin deformation of the face was improved by mist, suggesting hydration of the SC by mist. The change in TEWL was influenced by mist, suggesting supply of water to the skin, particularly the SC, by mist. These data indicated that a mist of water nanodroplets played an important role in softening skin in an air-conditioned room without increasing excess humidity. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Hand and finger dexterity as a function of skin temperature, EMG, and ambient condition.

    PubMed

    Chen, Wen-Lin; Shih, Yuh-Chuan; Chi, Chia-Fen

    2010-06-01

    This article examines the changes in skin temperature (finger, hand, forearm), manual performance (hand dexterity and strength), and forearm surface electromyograph (EMG) through 40-min, 11 degrees C water cooling followed by 15-min, 34 degrees C water rewarming; additionally, it explores the relationship between dexterity and the factors of skin temperature, EMG, and ambient condition. Hand exposure in cold conditions is unavoidable and significantly affects manual performance. Two tasks requiring gross and fine dexterity were designed, namely, nut loosening and pin insertion, respectively. The nested-factorial design includes factors of gender, participant (nested within gender), immersion duration, muscle type (for EMG), and location (for skin temperature). The responses are changes in dexterity, skin temperature, normalized amplitude of EMG, and grip strength. Finally, factor analysis and stepwise regression are used to explore factors affecting hand and finger dexterity. Dexterity, EMG, and skin temperature fell with prolonged cooling, but the EMG of the flexor digitorum superficialis remained almost unchanged during the nut loosening task. All responses but the forearm skin temperature recovered to the baseline level at the end of rewarming. The three factors extracted by factor analysis are termed skin temperature, ambient condition, and EMG. They explain approximately two thirds of the variation of the linear models for both dexterities, and the factor of skin temperature is the most influential. Sustained cooling and warming significantly decreases and increases finger, hand, and forearm skin temperature. Dexterity, strength, and EMG are positively correlated to skin temperature. Therefore, keeping the finger, hand, and forearm warm is important to maintaining hand performance. The findings could be helpful to building safety guidelines for working in cold environments.

  13. Diaphragm depth in normal subjects.

    PubMed

    Shahgholi, Leili; Baria, Michael R; Sorenson, Eric J; Harper, Caitlin J; Watson, James C; Strommen, Jeffrey A; Boon, Andrea J

    2014-05-01

    Needle electromyography (EMG) of the diaphragm carries the potential risk of pneumothorax. Knowing the approximate depth of the diaphragm should increase the test's safety and accuracy. Distances from the skin to the diaphragm and from the outer surface of the rib to the diaphragm were measured using B mode ultrasound in 150 normal subjects. When measured at the lower intercostal spaces, diaphragm depth varied between 0.78 and 4.91 cm beneath the skin surface and between 0.25 and 1.48 cm below the outer surface of the rib. Using linear regression modeling, body mass index (BMI) could be used to predict diaphragm depth from the skin to within an average of 1.15 mm. Diaphragm depth from the skin can vary by more than 4 cm. When image guidance is not available to enhance accuracy and safety of diaphragm EMG, it is possible to reliably predict the depth of the diaphragm based on BMI. Copyright © 2013 Wiley Periodicals, Inc.

  14. Soft microfluidic assemblies of sensors, circuits, and radios for the skin.

    PubMed

    Xu, Sheng; Zhang, Yihui; Jia, Lin; Mathewson, Kyle E; Jang, Kyung-In; Kim, Jeonghyun; Fu, Haoran; Huang, Xian; Chava, Pranav; Wang, Renhan; Bhole, Sanat; Wang, Lizhe; Na, Yoon Joo; Guan, Yue; Flavin, Matthew; Han, Zheshen; Huang, Yonggang; Rogers, John A

    2014-04-04

    When mounted on the skin, modern sensors, circuits, radios, and power supply systems have the potential to provide clinical-quality health monitoring capabilities for continuous use, beyond the confines of traditional hospital or laboratory facilities. The most well-developed component technologies are, however, broadly available only in hard, planar formats. As a result, existing options in system design are unable to effectively accommodate integration with the soft, textured, curvilinear, and time-dynamic surfaces of the skin. Here, we describe experimental and theoretical approaches for using ideas in soft microfluidics, structured adhesive surfaces, and controlled mechanical buckling to achieve ultralow modulus, highly stretchable systems that incorporate assemblies of high-modulus, rigid, state-of-the-art functional elements. The outcome is a thin, conformable device technology that can softly laminate onto the surface of the skin to enable advanced, multifunctional operation for physiological monitoring in a wireless mode.

  15. Epidermal hydration and skin surface lipids in patients with long-term complications of sulfur mustard poisoning.

    PubMed

    Layegh, Pouran; Maleki, Masoud; Mousavi, Seyed Reza; Yousefzadeh, Hadis; Momenzadeh, Akram; Golmohammadzadeh, Shiva; Balali-Mood, Mahdi

    2015-07-01

    Despite almost the three decades passed since the chemical attacks of Iraqi's army against the Iranian troops, some veterans are still suffering from long-term complications of sulfur mustard (SM) poisoning, including certain skin complaints specially dryness, burning, and pruritus. We thus aimed to evaluate the skin's water and lipid content in patients with a disability of >25% due to complications of SM poisoning and compare them with a matched control group. Sixty-nine male participants were included in this study; 43 SM-exposed patients, and 26 normal controls from their close relatives. The water and lipid content was measured in four different locations: Extensor and flexor sides of forearms and lateral and medial sides of legs by the Corneometer CM 820/Sebumeter SM 810. Collected data was analyzed and P ≤ 0.05 was considered as statistically significant. The mean age of the patients and controls was 49.53 ± 11.34 (ranges: 40-71) and 29.08 ± 8.836 (ranges: 15-49 years), respectively. In the veterans group, the main cutaneous complaint was itching and skin dryness. Cherry angioma, dry skin, and pruritus were significantly more common in the SM-exposed cases than in the controls. (P = 0.01, 0.05, and 0.04, respectively). The moisture and lipid content of all areas were lower in the SM-exposed group, but it was only significant in skin sebum of lateral sides of legs (P = 0.02). Exposure to SM could decrease the function of stratum corneum and lipid production as a barrier, even after several years of its exposure.

  16. Improving diaper design to address incontinence associated dermatitis

    PubMed Central

    2010-01-01

    Background Incontinence associated dermatitis (IAD) is an inflammatory skin disease mainly triggered by prolonged skin contact with urine, feces but also liberal detergent use when cleansing the skin. To minimize the epidermal barrier challenge we optimized the design of adult incontinence briefs. In the fluid absorption area we interposed a special type of acidic, curled-type of cellulose between the top sheet in contact with the skin and the absorption core beneath containing the polyacrylate superabsorber. The intention was to minimize disturbance of the already weak acid mantle of aged skin. We also employed air-permeable side panels to minimize skin occlusion and swelling of the stratum corneum. Methods The surface pH of diapers was measured after repeated wetting with a urine substitute fluid at the level of the top sheet. Occlusive effects and hydration of the stratum corneum were measured after a 4 hour application of different side panel materials by corneometry on human volunteers. Finally, we evaluated skin symptoms in 12 patients with preexisting IAD for 21 days following the institutional switch to the optimized diaper design. Local skin care protocols remained in place unchanged. Results The improved design created a surface pH of 4.6 which was stable even after repeated wetting throughout a 5 hour period. The "standard design" briefs had values of 7.1, which is alkaline compared to the acidic surface of normal skin. Side panels made from non-woven material with an air-permeability of more than 1200 l/m2/s avoided excessive hydration of the stratum corneum when compared to the commonly employed air-impermeable plastic films. Resolution of pre-existing IAD skin lesions was noted in 8 out of 12 patients after the switch to the optimized brief design. Conclusions An improved design of adult-type briefs can create an acidic pH on the surface and breathable side panels avoid over-hydration of the stratum corneum and occlusion. This may support the epidermal barrier function and may help to reduce the occurrence of IAD. PMID:21092161

  17. NDI method to locate intergranular corrosion around fastener holes in aluminum wing skins

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.

    1998-03-01

    Contact between galvanically dissimilar metals, such as cadmium plated steel fasteners and aluminum wing skins are known to be a source of corrosion. There is a design requirement to fill the void between the contacting surfaces of steel fasteners with a wet sealant. However, if the contacting surface is damaged or a void exists between the fastener head and the aluminum skin, moisture can collect and intergranular corrosion may occur along aluminum grain boundaries, which run parallel to the surface of the wing skin. If intergranular corrosion is allowed to propagate, delamination of the thin layers of aluminum, known as exfoliation corrosion will occur. When this intergranular corrosion reaches an exfoliated state, extensive rework is involved in removing the corrosion. This paper discusses the results of a USAF E-3A Engineering Service Task 89-E3B3-16 to develop a nondestructive inspection procedure to detect intergranular corrosion in an incipient state before it reaches exfoliation. Eddy current and ultrasonic inspection techniques were evaluated. A novel ultrasonic pulse echo technique was developed which utilizes a focus transducer with a hand held fixture. Inspections were performed on test parts which were removed from the upper wing skin of a retired 707 which had varying degrees of intergranular and exfoliation corrosion. Inspection results are compared to the results from the mechanical rework of the wing skin and dissection of a wing skin fastener hole.

  18. Infrared thermography based studies on mobile phone induced heating

    NASA Astrophysics Data System (ADS)

    Lahiri, B. B.; Bagavathiappan, S.; Soumya, C.; Jayakumar, T.; Philip, John

    2015-07-01

    Here, we report the skin temperature rise due to the absorption of radio frequency (RF) energy from three handheld mobile phones using infrared thermography technique. Experiments are performed under two different conditions, viz. when the mobile phones are placed in soft touch with the skin surface and away from the skin surface. Additionally, the temperature rise of mobile phones during charging, operation and simultaneous charging and talking are monitored under different exposure conditions. It is observed that the temperature of the cheek and ear regions monotonically increased with time during the usage of mobile phones and the magnitude of the temperature rise is higher for the mobile phone with higher specific absorption rate. The increase in skin temperature is higher when the mobile phones are in contact with the skin surface due to the combined effect of absorption of RF electromagnetic power and conductive heat transfer. The increase in the skin temperature in non-contact mode is found to be within the safety limit of 1 °C. The measured temperature rise is in good agreement with theoretical predictions. The empirical equation obtained from the temperature rise on the cheek region of the subjects correlates well with the specific absorption rate of the mobile phones. Our study suggests that the use of mobile phones in non-contact mode can significantly lower the skin temperature rise during its use and hence, is safer compared to the contact mode.

  19. Changes in Bacteria Induce Inflammatory Skin Diseases | Center for Cancer Research

    Cancer.gov

    Atopic dermatitis (AD) is a chronic inflammatory skin disease that manifests as dry skin with a relentless itch and eczema. AD is considered an allergic disease in which the skin inflammation manifests in response to chronic exposure to contact allergens. However, identification of a responsible allergen is uncommon. Meanwhile, analyses have demonstrated that the surface of

  20. Tomographic reconstruction of layered tissue structures

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian

    2001-11-01

    In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.

  1. Applicability of confocal laser scanning microscopy for evaluation and monitoring of cutaneous wound healing

    NASA Astrophysics Data System (ADS)

    Lange-Asschenfeldt, Susanne; Bob, Adrienne; Terhorst, Dorothea; Ulrich, Martina; Fluhr, Joachim; Mendez, Gil; Roewert-Huber, Hans-Joachim; Stockfleth, Eggert; Lange-Asschenfeldt, Bernhard

    2012-07-01

    There is a high demand for noninvasive imaging techniques for wound assessment. In vivo reflectance confocal laser scanning microscopy (CLSM) represents an innovative optical technique for noninvasive evaluation of normal and diseased skin in vivo at near cellular resolution. This study was designed to test the feasibility of CLSM for noninvasive analysis of cutaneous wound healing in 15 patients (7 male/8 female), including acute and chronic, superficial and deep dermal skin wounds. A commercially available CLSM system was used for the assessment of wound bed and wound margins in order to obtain descriptive cellular and morphological parameters of cutaneous wound repair noninvasively and over time. CLSM was able to visualize features of cutaneous wound repair in epidermal and superficial dermal wounds, including aspects of inflammation, neovascularisation, and tissue remodelling in vivo. Limitations include the lack of mechanic fixation of the optical system on moist surfaces restricting the analysis of chronic skin wounds to the wound margins, as well as a limited optical resolution in areas of significant slough formation. By describing CLSM features of cutaneous inflammation, vascularisation, and epithelialisation, the findings of this study support the role of CLSM in modern wound research and management.

  2. Sequential cryogen spraying for heat flux control at the skin surface

    NASA Astrophysics Data System (ADS)

    Majaron, Boris; Aguilar, Guillermo; Basinger, Brooke; Randeberg, Lise L.; Svaasand, Lars O.; Lavernia, Enrique J.; Nelson, J. Stuart

    2001-05-01

    Heat transfer rate at the skin-air interface is of critical importance for the benefits of cryogen spray cooling in combination with laser therapy of shallow subsurface skin lesions, such as port-wine stain birthmarks. With some cryogen spray devices, a layer of liquid cryogen builds up on the skin surface during the spurt, which may impair heat transfer across the skin surface due to relatively low thermal conductivity and potentially higher temperature of the liquid cryogen layer as compared to the spray droplets. While the mass flux of cryogen delivery can be adjusted by varying the atomizing nozzle geometry, this may strongly affect other spray properties, such as lateral spread (cone), droplet size, velocity, and temperature distribution. We present here first experiments with sequential cryogen spraying, which may enable accurate mass flux control through variation of spray duty cycle, while minimally affecting other spray characteristics. The observed increase of cooling rate and efficiency at moderate duty cycle levels supports the above described hypothesis of isolating liquid layer, and demonstrates a novel approach to optimization of cryogen spray devices for individual laser dermatological applications.

  3. Flow Measurements over a Biomimetic Surface Roughness Microgeometry

    NASA Astrophysics Data System (ADS)

    Lang, Amy; Hidalgo, Pablo; Westcott, Matthew

    2007-11-01

    Certain species of sharks (e.g. shortfin mako) have a skin structure that results in a bristling of their denticles (scales) during increased swimming speeds. This unique surface geometry results in the formation of a 3D array of cavities* (d-type roughness geometry) within the shark skin, thus causing it to potentially act as a means of boundary layer control. Initial work is confined to scaling up the geometry from 0.2 mm on the shark skin to 2 cm, with a scaling down in characteristic velocity from 10 - 20 m/s to 10 - 20 cm/s for laminar flow boundary layer water tunnel studies over a shark skin model. The hypothesized formation of cavity vortices within the shark skin replica has been measured using DPIV. We have also shown that with the sufficient growth of a boundary layer upstream of the model (local Re = 200,000), transition is not tripped by the surface and the flow skips over the cavities. Support for this research by a NSF SGER grant (CTS-0630489), Lindbergh Foundation Grant and a University of Alabama RAC grant is gratefully acknowledged. * Patent pending.

  4. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    PubMed

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical analogy between local thermal models and local electrical (charge transport) models, thereby allowing robust, circuit simulation software to obtain solutions to Kirchhoff's laws for the system model. Transport lattices allow systematic introduction of realistic geometry and spatially heterogeneous heat transport mechanisms. Local representations for both simple, passive functions and more complex local models can be easily and intuitively included into the system model of a tissue.

  5. Modeling Skin Injury from Hot Rice Porridge Spills

    PubMed Central

    2018-01-01

    The present work analyzes skin burns from spills of hot rice and milk products. The traditional Norwegian rice porridge serves as an example. By testing spills on objects emulating an arm, it was concluded that spills were seldom thinner than 3 mm, and stayed in place due to the viscosity of the porridge for more than one minute. The Pennes bioheat equation was solved numerically for such spills, including heat conduction to the skin and convective heat losses from the porridge surface. Temperatures were analyzed in the porridge and skin layers, and the resulting skin injury was calculated based on the basal layer temperature. Parameters influencing burn severity, such as porridge layer thickness, porridge temperature, removal of the porridge and thermal effects of post scald tempered (15 °C) water cooling were analyzed. The spilled porridge resulted in a prolonged heat supply to the skin, and the skin injury developed significantly with time. The porridge temperature turned out to be the most important injury parameter. A 70 °C porridge temperature could develop superficial partial-thickness burns. Porridge temperatures at processing temperatures nearly instantly developed severe burns. It was demonstrated that prompt removal of the hot porridge significantly reduced the injury development. The general advice is to avoid serving porridge and similar products at temperatures above 65 °C and, if spilled on the skin, to remove it quickly. After such scald incidents, it is advised to cool the injured area by tempered water for a prolonged period to stimulate healing. PMID:29677134

  6. Evaluation of the Potential Risk of Hepatitis B Virus Transmission in Skin Allografting.

    PubMed

    Wang, D; Xie, W; Chen, T; Dong, C; Zhao, C; Tan, H; Tian, H; Xie, Q

    2015-01-01

    Skin transplantation is associated with potential risk of infectious disease transmission; however, the exclusion of donors owing to hepatitis B virus (HBV) infection will worsen the shortage of allograft skin supply. We report a paired study to evaluate the potential risk of HBV transmission in skin allografting. The presence of HBV DNA in the serum and skin from 37 burn patients with chronic HBV infection (CHB) was monitored by a HBV polymerase chain reaction (PCR) and the positive rates were compared by Fisher's exact probability test. There was a high consistency in the HBV serology profile between HBV DNA PCR (83.78%) and the clinical HBV test. Only 2 patients who were positive for hepatitis B surface antigen, hepatitis B e antigen, and hepatitis B core antibody had detectable HBV DNA in the skin tissue; however, no hepatitis B surface antigen was detected as examined by immunohistochemistry staining. There was a significant difference between the positive rates of HBV DNA in the serum and skin (χc(2) = 27.03; P < .001). The potential risk for HBV transmission by skin allografting is very low. Given that China has a large population of patients with HBV, the acceptance of skin from donors with CHB to the skin bank would increase the number of tissue donations to meet the urgent medical need for skin transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Transport pathways and enhancement mechanisms within localized and non-localized transport regions in skin treated with low-frequency sonophoresis and sodium lauryl sulfate.

    PubMed

    Polat, Baris E; Figueroa, Pedro L; Blankschtein, Daniel; Langer, Robert

    2011-02-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (r(pore)) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than r(pore) of native skin samples (13.6 Å). Conversely, r(pore) within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (>300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased r(pore) values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming. Copyright © 2010 Wiley-Liss, Inc.

  8. Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate

    PubMed Central

    Polat, Baris E.; Figueroa, Pedro L.; Blankschtein, Daniel; Langer, Robert

    2011-01-01

    Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (rpore) within non-LTRs are frequency-independent, ranging from 18.2 – 18.5 Å, but significantly larger than rpore of native skin samples (13.6 Å). Conversely, rpore within LTRs increases significantly with decreasing frequency from 161 Å, to 276 Å, and to ∞ (>300Å) for LFS/SLS-treated skin at 60 kHz, 40 kHz, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, while the increased rpore values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming. PMID:20740667

  9. Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.

    PubMed

    Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae

    2018-01-10

    One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.

  10. Penetration of stimuli of fish skin for Acanthostomum brauni cercariae.

    PubMed

    Ostrowski de Nuñez, M; Haas, W

    1991-02-01

    The cercaria of Acanthostomum brauni penetrates the skin of its fish host in response to a combination of two chemical signals from the fish skin surface: free fatty acids and a macro-molecular mucus component. The latter seems to be a protein, as the penetration-stimulating activity of fish skin surface mucus is eliminated by digestion with proteinase, but not by digestion with glycosidases, nor by a removal of glycosaminoglycans. These penetration-stimulating host signals differ from the glycoproteins that stimulate the attachment of A. brauni cercariae to the host and also from the macromolecular fish host signals which have been found to stimulate the attachment and penetration by Opisthorchis viverrini cercariae.

  11. Skin Friction Measurements Using Luminescent Oil Films

    NASA Astrophysics Data System (ADS)

    Husen, Nicholas M.

    As aircraft are designed to a greater extent on computers, the need for accurate and fast CFD algorithms has never been greater. The development of CFD algorithms requires experimental data against which CFD output can be validated and from which insight about flow physics can be acquired. Skin friction, in particular, is an important quantity to predict with CFD, and experimental skin friction data sets aid not only with the validation of the CFD predictions, but also in tuning the CFD models to predict specific flow fields. However, a practical experimental technique for collecting spatially and temporally resolved skin friction data on complex models does not yet exist. This dissertation develops and demonstrates a new luminescent oil film skin friction meter which can produce spatially-resolved quantitative steady and unsteady skin friction data on models with complex curvature. The skin friction acting on the surface of a thin film of oil can be approximated by the expression tauw =mu ouh/h, where mu o is the dynamic viscosity of the oil, uh is the velocity of the surface of the oil film, and h is the thickness of the oil film. The new skin friction meter determines skin friction by measuring h and uh. The oil film thickness h is determined by ratioing the intensity of the fluorescent emissions from the oil film with the intensity of the incident light which is scattered from the surface of the model. When properly calibrated, that ratio provides an absolute oil film thickness value. This oil film thickness meter is therefore referred as the Ratioed-Image Film-Thickness (RIFT) Meter. The oil film velocity uh is determined by monitoring the evolution of tagged molecules within the oil film: Photochromic molecules are dissolved into the fluorescent oil and a pattern is written into the oil film using an ultraviolet laser. The evolution of the pattern is recorded, and standard cross-correlation techniques are applied to the resulting sequence of images. This newly developed skin friction meter is therefore called the Luminescent Oil Film Flow-Tagging skin friction meter, or the LOFFT skin friction meter. The LOFFT skin friction meter is demonstrated by collecting time-averaged skin friction measurements on NASA's FAITH model and by collecting unsteady skin friction measurements with a frequency response of 600Hz. Higher frequency response is possible and is dependent on the experimental setup. This dissertation also contributes to the work done on the Global Luminescent Oil Film Skin Friction Meter (GLOFSFM) by noting that the technique could be influenced by ripples at the oil-air interface. An experiment studying the evolution of ripples at the oil-air interface was conducted to determine under what oil film conditions the GLOFSFM can be appropriately applied. The RIFT meter was crucial for this experiment, as it facilitated quantitative distributed oil film thickness measurements during the wind-tunnel run. The resulting data set is rich in content, permitting the computation of mean wavelengths, peak-to-trough ripple heights, wave speeds, and mean thicknesses. In addition to determining under what oil film conditions the GLOFSFM may be applied, this experiment directly determined the oil film conditions under which the velocity of the ripples may be used to proxy the velocity of the oil film surface. The RIFT meter and the ability to determine oil film surface velocity by monitoring ripple velocities admit yet another time-averaged skin friction meter, the Fluorescent-Oil Ripple-Velocity (FORV) skin friction meter. The FORV skin friction meter recovers skin friction as tau w = muovrip/H, where vrip is the velocity of the ripples, and H is the oil film thickness averaged over the thickness fluctuations due to the ripples. The FORV skin friction meter is demonstrated on NASA's FAITH model.

  12. Imaging microscopic distribution of antifungal agents in dandruff treatments with stimulated Raman scattering microscopy

    NASA Astrophysics Data System (ADS)

    Garrett, Natalie L.; Singh, Bhumika; Jones, Andrew; Moger, Julian

    2017-06-01

    Treatment of dandruff condition usually involves use of antidandruff shampoos containing antifungal agents. Different antifungal agents show variable clinical efficacy based on their cutaneous distribution and bioavailability. Using stimulated Raman scattering (SRS), we mapped the distribution of unlabeled low-molecular weight antifungal compounds zinc pyrithione (ZnPT) and climbazole (CBZ) on the surface of intact porcine skin with cellular precision. SRS has sufficient chemical selectivity and sensitivity to detect the agents on the skin surface based on their unique chemical motifs that do not occur naturally in biological tissues. Moreover, SRS is able to correlate the distribution of the agents with the morphological features of the skin using the CH2 stretch mode, which is abundant in skin lipids. This is a significant strength of the technique since it allows the microscopic accumulation of the agents to be correlated with physiological features and their chemical environment without the use of counter stains. Our findings show that due to its lower solubility, ZnPT coats the surface of the skin with a sparse layer of crystals in the size range of 1 to 4 μm. This is consistent with the current understanding of the mode of action of ZnPT. In contrast, CBZ being more soluble and hydrophobic resulted in diffuse homogeneous distribution. It predominantly resided in microscopic lipid-rich crevasses and penetrated up to 60 μm into the infundibular spaces surrounding the hair shaft. The ability of the SRS to selectively map the distribution of agents on the skin's surface has the potential to provide insight into the mechanisms underpinning the topical application of antifungal or skin-active agents that could lead to the rational engineering of enhanced formulations.

  13. Sensitizing Clostridium difficile Spores with Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms

    PubMed Central

    Nerandzic, Michelle M.; Donskey, Curtis J.

    2017-01-01

    Background Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to > 2.5 log10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands. PMID:29167835

  14. Crack-Free, Soft Wrinkles Enable Switchable Anisotropic Wetting.

    PubMed

    Rhee, Dongjoon; Lee, Won-Kyu; Odom, Teri W

    2017-06-01

    Soft skin layers on elastomeric substrates are demonstrated to support mechano-responsive wrinkle patterns that do not exhibit cracking under applied strain. Soft fluoropolymer skin layers on pre-strained poly(dimethylsiloxane) slabs achieved crack-free surface wrinkling at high strain regimes not possible by using conventional stiff skin layers. A side-by-side comparison between the soft and hard skin layers after multiple cycles of stretching and releasing revealed that the soft skin layer enabled dynamic control over wrinkle topography without cracks or delamination. We systematically characterized the evolution of wrinkle wavelength, amplitude, and orientation as a function of tensile strain to resolve the crack-free structural transformation. We demonstrated that wrinkled surfaces can guide water spreading along wrinkle orientation, and hence switchable, anisotropic wetting was realized. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Increased mast cell expression of PAR-2 in skin inflammatory diseases and release of IL-8 upon PAR-2 activation.

    PubMed

    Carvalho, Ricardo Filipe da Silva; Nilsson, Gunnar; Harvima, Ilkka Tapani

    2010-02-01

    Mast cells are increasingly present in the lesional skin of chronic skin inflammatory diseases including psoriasis and basal cell carcinoma (BCC). It has previously been shown that proteinase-activated receptor (PAR)-2 is expressed by mast cells, and tryptase is a potent activator of this receptor. In this study, skin biopsies from both healthy-looking and lesional skin of patients with psoriasis and superficial spreading BCC were collected and the expression of PAR-2 immunoreactivity in tryptase-positive mast cells was analysed. PAR-2 expression was confirmed in vitro in different mast cell populations. Cord-blood derived mast cells (CBMC) were stimulated with a PAR-2 activating peptide, 2-furoyl-LIGRLO-NH(2). Consequently, IL-8 and histamine production was analysed in the supernatants. We observed a significant increase in the percentage of mast cells expressing PAR-2 in the lesional skin of psoriasis and BCC patients compared with the healthy-looking skin. HMC-1.2, LAD-2 and CBMC mast cells all expressed PAR-2 both intracellularly and on the cell surface. CBMC activation with the PAR-2 activating peptide resulted in an increased secretion of IL-8, but no histamine release was observed. Furthermore, both PAR-2 and IL-8 were co-localized to the same tryptase-positive mast cells in the lesional BCC skin. These results show that mast cells express increased levels of PAR-2 in chronic skin inflammation. Also, mast cells can be activated by a PAR-2 agonist to secrete IL-8, a chemokine which can contribute to the progress of inflammation.

  16. Infrared thermography in newborns: the first hour after birth.

    PubMed

    Christidis, Iris; Zotter, Heinz; Rosegger, Hellfried; Engele, Heidi; Kurz, Ronald; Kerbl, Reinhold

    2003-01-01

    It was the aim of this study to investigate the surface temperature in newborns within the first hour after delivery. Furthermore, the influence of different environmental conditions with regard to surface temperature was documented. Body surface temperature was recorded under several environmental conditions by use of infrared thermography. 42 newborns, all delivered at term and with weight appropriate for date, were investigated under controlled conditions. The surface temperature immediately after birth shows a uniform picture of the whole body; however, it is significantly lower than the core temperature. Soon after birth, peripheral sites become cooler whereas a constant temperature is maintained at the trunk. Bathing in warm water again leads to a more even temperature profile. Radiant heaters and skin-to-skin contact with the mother are both effective methods to prevent heat loss in neonates. Infrared thermography is a simple and reliable tool for the measurement of skin temperature profiles in neonates. Without the need of direct skin contact, it may be helpful for optimizing environmental conditions at delivery suites and neonatal intensive-care units. Copyright 2003 S. Karger AG, Basel

  17. Flight test results of riblets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Zuniga, Fanny A.; Anderson, Bianca T.; Bertelrud, Arild

    1992-01-01

    A flight experiment to test and evaluate the skin friction drag characteristics of a riblet surface in turbulent flow at supersonic speeds was conducted at NASA Dryden. Riblets of groove sizes 0.0030 and 0.0013 in. were mounted on the F-104G flight test fixture. The test surfaces were surveyed with boundary layer rakes and pressure orifices to examine the boundary layer profiles and pressure distributions of the flow. Skin friction reductions caused by the riblet surface were reported based on measured differences of momentum thickness between the smooth and riblet surfaces obtained from the boundary layer data. Flight test results for the 0.0030 in. riblet show skin friction reductions of 4 to 8 % for Mach numbers ranging from 1.2 to 1.6 and Reynolds numbers ranging from 2 to 3.4 million per unit foot. The results from the 0.0013 in. riblets show skin friction reductions of 4 to 15 % for Mach 1.2 to 1.4 and Reynolds numbers ranging from 3.6 to 6 million per unit foot.

  18. Immune Cell-Supplemented Human Skin Model for Studying Fungal Infections.

    PubMed

    Kühbacher, Andreas; Sohn, Kai; Burger-Kentischer, Anke; Rupp, Steffen

    2017-01-01

    Human skin is a niche for various fungal species which either colonize the surface of this tissue as commensals or, primarily under conditions of immunosuppression, invade the skin and cause infection. Here we present a method for generation of a human in vitro skin model supplemented with immune cells of choice. This model represents a complex yet amenable tool to study molecular mechanisms of host-fungi interactions at human skin.

  19. Lasers as an approach for promoting drug delivery via skin.

    PubMed

    Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You

    2014-04-01

    Using lasers can be an effective drug permeation-enhancement approach for facilitating drug delivery into or across the skin. The controlled disruption and ablation of the stratum corneum (SC), the predominant barrier for drug delivery, is achieved by the use of lasers. The possible mechanisms of laser-assisted drug permeation are the direct ablation of the skin barrier, optical breakdown by a photomechanical wave and a photothermal effect. It has been demonstrated that ablative approaches for enhancing drug transport provide some advantages, including increased bioavailability, fast treatment time, quick recovery of SC integrity and the fact that skin surface contact is not needed. In recent years, the concept of using laser techniques to treat the skin has attracted increasing attention. This review describes recent developments in using nonablative and ablative lasers for drug absorption enhancement. This review systematically introduces the concepts and enhancement mechanisms of lasers, highlighting the potential of this technique for greatly increasing drug absorption via the skin. Lasers with different wavelengths and types are employed to increase drug permeation. These include the ruby laser, the erbium:yttrium-gallium-garnet laser, the neodymium-doped yttrium-aluminum-garnet laser and the CO2 laser. Fractional modality is a novel concept for promoting topical/transdermal drug delivery. The laser is useful in enhancing the permeation of a wide variety of permeants, such as small-molecule drugs, macromolecules and nanoparticles. This potential use of the laser affords a new treatment for topical/transdermal application with significant efficacy. Further studies using a large group of humans or patients are needed to confirm and clarify the findings in animal studies. Although the laser fluence or output energy used for enhancing drug absorption is much lower than for treatment of skin disorders and rejuvenation, the safety of using lasers is still an issue. Caution should be used in optimizing the feasible conditions of the lasers in balancing the effectiveness of permeation enhancement and skin damage.

  20. Noninvasive detection of cardiovascular pulsations by optical Doppler techniques

    NASA Astrophysics Data System (ADS)

    Hong, HyunDae; Fox, Martin D.

    1997-10-01

    A system has been developed based on the measurement of skin surface vibration that can be used to detect the underlying vascular wall motion of superficial arteries and the chest wall. Data obtained from tissue phantoms suggested that the detected signals were related to intravascular pressure, an important clinical and physiological parameter. Unlike the conventional optical Doppler techniques that have been used to measure blood perfusion in skin layers and blood flow within superficial arteries, the present system was optimized to pick up skin vibrations. An optical interferometer with a 633-nm He:Ne laser was utilized to detect micrometer displacements of the skin surface. Motion velocity profiles of the skin surface near each superficial artery and auscultation points on a chest for the two heart valve sounds exhibited distinctive profiles. The theoretical and experimental results demonstrated that the system detected the velocity of skin movement, which is related to the time derivative of the pressure. The system also reduces the loading effect on the pulsation signals and heart sounds produced by the conventional piezoelectric vibration sensors. The system's sensitivity, which could be optimized further, was 366.2 micrometers /s for the present research. Overall, optical cardiovascular vibrometry has the potential to become a simple noninvasive approach to cardiovascular screening.

  1. The likelihood of sunburn in sunscreen users is disproportionate to the SPF.

    PubMed

    Pissavini, Marc; Diffey, Brian

    2013-06-01

    Sunburn is a common feature in sunscreen users. The purpose of this paper is to estimate the expected frequency and magnitude of sunburn resulting from typical use of sunscreens labelled SPF15 and SPF30 by people spending long periods outdoors in strong summer sunshine. By combining the probability distribution of the measured sun protection factor (SPF) in vivo with those for the average application thickness and the uniformity of application over the skin surface, a simulation model was developed to estimate the variation in delivered protection over the exposed skin surface from consumer use of sunscreens. While either sunscreen, if delivering the nominal SPF over the entire exposed skin, would be sufficient to prevent any erythema, the simulation indicates that the combination of the average quantity applied with the variability in thickness over the skin surface will lead to erythema, especially in SPF15 sunscreen users. People who intend spending long periods outside in strong sunshine would be better advised to use SPF30 labelled sunscreens than SPF15 sunscreens, and to apply the product carefully over exposed skin if they wish to minimize their risk of sunburn and, by implication, skin cancer. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. [A comparison of the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of elderly patients with abdominal surgery].

    PubMed

    Park, Hyosun; Yoon, Haesang

    2007-12-01

    The purpose of this study was to compare the effects of intravenous fluid warming and skin surface warming on peri-operative body temperature and acid base balance of abdominal surgical patients under general anesthesia. Data collection was performed from January 4th, to May 31, 2004. The intravenous fluid warming(IFW) group (30 elderly patients) was warmed through an IV line by an Animec set to 37 degrees C. The skin surface warming (SSW) group (30 elderly patients) was warmed by a circulating-water blanket set to 38 degrees C under the back and a 60W heating lamp 40 cm above the chest. The warming continued from induction of general anesthesia to two hours after completion of surgery. Collected data was analyzed using Repeated Measures ANOVA, and Bonferroni methods. SSW was more effective than IFW in preventing hypothermia(p= .043), preventing a decrease of HCO(3)(-)(p= .000) and preventing base excess (p= .000) respectively. However, there was no difference in pH between the SSW and IFW (p= .401) groups. We conclude that skin surface warming is more effective in preventing hypothermia, and HCO(3)(-) and base excess during general anesthesia, and returning to normal body temperature after surgery than intravenous fluid warming; however, skin surface warming wasn't able to sustain a normal body temperature in elderly patients undergoing abdominal surgery under general anesthesia.

  3. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part 1—diagnosis based on clinical presentation, cytology and culture

    PubMed Central

    Beco, L.; Guaguère, E.; Méndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of therapy are to confirm that an infection is present, identify the causative bacteria, select the most appropriate antimicrobial, ensure that the infection is treated correctly, and to identify and manage any underlying conditions. This is the first of two articles that will provide evidence-led guidelines to help practitioners address these issues. This article covers diagnosis, including descriptions of the different clinical presentations of surface, superficial and deep bacterial skin infections, how to perform and interpret cytology, and how to best use bacterial culture and sensitivity testing. Part 2 will discuss therapy, including choice of drug and treatment regimens. PMID:23292951

  4. Host- and microbe determinants that may influence the success of S. aureus colonization

    PubMed Central

    Johannessen, Mona; Sollid, Johanna E.; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed. PMID:22919647

  5. Host- and microbe determinants that may influence the success of S. aureus colonization.

    PubMed

    Johannessen, Mona; Sollid, Johanna E; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25-30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.

  6. Near-surface temperature inversion during summer at Summit, Greenland, and its relation to MODIS-derived surface temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, Alden C.; Albert, Mary R.; Hall, Dorothy K.

    2018-03-01

    As rapid warming of the Arctic occurs, it is imperative that climate indicators such as temperature be monitored over large areas to understand and predict the effects of climate changes. Temperatures are traditionally tracked using in situ 2 m air temperatures and can also be assessed using remote sensing techniques. Remote sensing is especially valuable over the Greenland Ice Sheet, where few ground-based air temperature measurements exist. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and the temperature of the actual snow surface (referred to as skin temperature) can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign extending from 8 June to 18 July 2015, near Summit Station in Greenland, to study surface temperature using the following measurements: skin temperature measured by an infrared (IR) sensor, 2 m air temperature measured by a National Oceanic and Atmospheric Administration (NOAA) meteorological station, and a Moderate Resolution Imaging Spectroradiometer (MODIS) surface temperature product. Our data indicate that 2 m air temperature is often significantly higher than snow skin temperature measured in situ, and this finding may account for apparent biases in previous studies of MODIS products that used 2 m air temperature for validation. This inversion is present during our study period when incoming solar radiation and wind speed are both low. As compared to our in situ IR skin temperature measurements, after additional cloud masking, the MOD/MYD11 Collection 6 surface temperature standard product has an RMSE of 1.0 °C and a mean bias of -0.4 °C, spanning a range of temperatures from -35 to -5 °C (RMSE = 1.6 °C and mean bias = -0.7 °C prior to cloud masking). For our study area and time series, MODIS surface temperature products agree with skin surface temperatures better than previous studies indicated, especially at temperatures below -20 °C, where other studies found a significant cold bias. We show that the apparent cold bias present in other comparisons of 2 m air temperature and MODIS surface temperature may be a result of the near-surface temperature inversion. Further investigation of how in situ IR skin temperatures compare to MODIS surface temperature at lower temperatures (below -35 °C) is warranted to determine whether a cold bias exists for those temperatures.

  7. Breathable and Stretchable Temperature Sensors Inspired by Skin

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  8. A bio-inspired, active morphing skin for camber morphing structures

    NASA Astrophysics Data System (ADS)

    Feng, Ning; Liu, Liwu; Liu, Yanju; Leng, Jinson

    2015-03-01

    In this study, one kind of developed morphing skin embedded with pneumatic muscle fibers (PMFs) was manufactured and was employed for camber morphing structures. The output force and contraction of PMF as well as the morphing skin were experimentally characterized at a series of discrete actuator pressures varying from 0.15 to 0.35 MPa. The active morphing skin test results show that the output force is 73.59 N and the contraction is 0.097 (9.7%) at 0.35 MPa. Due to these properties, this active morphing skin could be easily used for the morphing structures. Then the proper airfoil profile was chosen to manufacture the adaptive airfoil in this study. The chord-wise bending airfoil structure was achieved by employing this kind of active morphing skin. Finally the deformed shapes of this chord-wise bending airfoil structure were obtained by 3-dimensions scanning measurement. Meanwhile the camber morphing structures were analyzed through the finite element method (FEM) and the deformed shapes of the upper surface skins were obtained. The experimental result and FEM analysis result of deformed shapes of the upper surface skins were compared in this paper.

  9. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  10. Breathable and Stretchable Temperature Sensors Inspired by Skin

    PubMed Central

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  11. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    PubMed

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  12. Peer-to-peer nursing rounds and hospital-acquired pressure ulcer prevalence in a surgical intensive care unit: a quality improvement project.

    PubMed

    Kelleher, Alyson Dare; Moorer, Amanda; Makic, MaryBeth Flynn

    2012-01-01

    We conducted a quality improvement project in order to evaluate the effect of nurse-to-nurse bedside "rounding" as a strategy to decrease hospital-acquired pressure ulcers (HAPU) in a surgical intensive care unit. We instituted weekly peer-to-peer bedside skin rounds in a 17-bed surgical intensive care unit. Two nurses were identified as skin champions and trained by the hospital's certified WOC nurse to conduct skin rounds. The skin champion nurses conducted weekly peer-to-peer rounds that included discussions about key elements of our patients' skin status including current Braden Scale for Pressure Sore Risk score, and implementation of specific interventions related to subscale risk assessment. If a pressure ulcer was present, the current action plan was reevaluated for effectiveness. Quarterly HAPU prevalence studies were conducted from January 2008 to December 2010. Nineteen patients experienced a HAPU: 17 were located on the coccyx and 2 on the heel. Ten ulcers were classified as stage II, 3 PU were stage IV, 5 were deemed unstageable, and 1 was classified as a deep tissue injury. The frequency of preventive interventions rose during our quality improvement project. Specifically, the use of prevention surfaces increased 92%, repositioning increased 30%, nutrition interventions increased 77%, and moisture management increased 100%. Prior to focused nursing rounds, the highest HAPU prevalence rate was 27%. After implementing focused nursing rounds, HAPU rates trended down and were 0% for 3 consecutive quarters.

  13. SU-F-T-151: Measurement Evaluation of Skin Dose in Scanning Proton Beam Therapy for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J; Nichols, E; Strauss, D

    Purpose: To measure the skin dose and compare it with the calculated dose from a treatment planning system (TPS) for breast cancer treatment using scanning proton beam therapy (SPBT). Methods: A single en-face-beam SPBT plan was generated by a commercial TPS for two breast cancer patients. The treatment volumes were the entire breasts (218 cc and 1500 cc) prescribed to 50.4 Gy (RBE) in 28 fractions. A range shifter of 5 cm water equivalent thickness was used. The organ at risk (skin) was defined to be 5 mm thick from the surface. The skin doses were measured in water withmore » an ADCL calibrated parallel plate (PP) chamber. The measured data were compared with the values calculated in the TPS. Skin dose calculations can be subject to uncertainties created by the definition of the external contour and the limitations of the correction based algorithms, such as proton convolution superposition. Hence, the external contours were expanded by 0, 3 mm and 1 cm to include additional pixels for dose calculation. In addition, to examine the effects of the cloth gown on the skin dose, the skin dose measurements were conducted with and without gown. Results: On average the measured skin dose was 4% higher than the calculated values. At deeper depths, the measured and calculated doses were in better agreement (< 2%). Large discrepancy occur for the dose calculated without external expansion due to volume averaging. The addition of the gown only increased the measured skin dose by 0.4%. Conclusion: The implemented TPS underestimated the skin dose for breast treatments. Superficial dose calculation without external expansion would result in large errors for SPBT for breast cancer.« less

  14. Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin, Butterfly and Rice Leaf Effects

    NASA Astrophysics Data System (ADS)

    Bixler, Gregroy D.

    In this thesis, first presented is an overview of inorganic-fouling and biofouling which is generally undesirable for many medical, marine, and industrial applications. A survey of nature's flora and fauna are studied in order to discover new antifouling methods that could be mimicked for engineering applications. New antifouling methods will presumably incorporate a combination of physical and chemical controls. Presented are mechanisms and experimental results focusing on laminar and turbulent drag reducing shark skin inspired riblet surfaces. This includes new laser etched and riblet film samples for closed channel drag using water, oil, and air as well as in wind tunnel. Also presented are mechanisms and experimental results focusing on the newly discovered rice and butterfly wing effect surfaces. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions, wettability, viscosity, and velocity. Hierarchical liquid repellent coatings combining nano- and micro-sized features and particles are utilized to recreate or combine various effects. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Discussion is provided along with new conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for medical, marine, and industrial applications.

  15. The use of optical coherence tomography to analyze the efficacy of skin care products

    NASA Astrophysics Data System (ADS)

    Irani, Sarosh; Turani, Zahra; Fotouhi, Audrey; Daveluy, Steven; Mehregan, Darius; Chen, Wei; Gelovani, Juri; Nasiriavanaki, Mohammadreza

    2018-02-01

    In this study, we assess the applicability of optical coherence tomography (OCT) for non-invasive imaging of skin morphology for the assessment of efficacy of cosmetic skin wrinkle-reduction products in humans. Evaluation of skin care products for reduction of facial wrinkles is largely limited to photographic (non-quantitative) comparison of skin surface texture before and after either single or prolonged application of skin care product. OCT could be a technique for monitoring changes in cross-sectional skin morphology. An optical attenuation coefficient analysis is also carried out to quantitatively study the changes in different layers of the skin.

  16. Potential use of caprylic acid in broiler chickens: effect on Salmonella enteritidis.

    PubMed

    Skřivanová, Eva; Hovorková, Petra; Čermák, Ladislav; Marounek, Milan

    2015-01-01

    The effect of dietary caprylic acid (CA) on Salmonella Enteritidis, as well as the surface treatment of chicken skin contaminated with Salmonella Enteritidis was evaluated. To evaluate the dietary effect of CA on Salmonella Enteritidis, the individually housed broiler chickens (n=48) were divided into 4 groups (positive control, negative control, 2.5 g/kg of CA in the feed, and 5 g/kg of CA in the feed). The feed of all groups, except the negative control, was artificially contaminated with Salmonella Enteritidis ATCC 13076 (10(7) colony-forming units/100 g of feed). Both concentrations of dietary CA significantly decreased counts of Salmonella Enteritidis in the crop and cecum of experimental chickens (p<0.05). The effect of CA in the crop contents was more pronounced than in the cecum. Surface treatment of chilled chicken halves with CA at 1.25 and 2.5 mg/mL significantly decreased Salmonella Enteritidis contamination of chicken skin (p<0.05). The sensory evaluation of the skin and meat showed that treatment of the skin with 1.25 mg/mL of CA worsened odor and appearance of the chicken skin, while sensory traits of chicken meat were not significantly affected. Taste and overall acceptability was not influenced by CA in both meat and skin. Treatment of the skin with 2.5 mg/mL of CA resulted in more pronounced changes of the skin odor and appearance. In conclusion, dietary CA reduced carriage of Salmonella Enteritidis in chickens, whereas surface-treatment reduced or eliminated Salmonella Enteritidis contamination in the processed bird.

  17. Volumetric Visualization of Human Skin

    NASA Astrophysics Data System (ADS)

    Kawai, Toshiyuki; Kurioka, Yoshihiro

    We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.

  18. Preliminary demonstration using localized skin temperature elevation as observed with thermal imaging as an indicator of fat-specific absorption during focused-field radiofrequency therapy.

    PubMed

    Key, Douglas J

    2014-07-01

    This study incorporates concurrent thermal camera imaging as a means of both safely extending the length of each treatment session within skin surface temperature tolerances and to demonstrate not only the homogeneous nature of skin surface temperature heating but the distribution of that heating pattern as a reflection of localization of subcutaneous fat distribution. Five subjects were selected because of a desire to reduce abdomen and flank fullness. Full treatment field thermal camera imaging was captured at 15 minute intervals, specifically at 15, 30, and 45 minutes into active treatment with the purpose of monitoring skin temperature and avoiding any patterns of skin temperature excess. Peak areas of heating corresponded anatomically to the patients' areas of greatest fat excess ie, visible "pinchable" fat. Preliminary observation of high-resolution thermal camera imaging used concurrently with focused field RF therapy show peak skin heating patterns overlying the areas of greatest fat excess.

  19. Five years' experience of the modified Meek technique in the management of extensive burns.

    PubMed

    Hsieh, Chun-Sheng; Schuong, Jen-Yu; Huang, W S; Huang, Ted T

    2008-05-01

    The Meek technique of skin expansion is useful for covering a large open wound with a small piece of skin graft, but requires a carefully followed protocol. Over the past 5 years, a skin graft expansion technique following the Meek principle was used to treat 37 individuals who had sustained third degree burns involving more than 40% of the body surface. A scheme was devised whereby the body was divided into six areas, in order to clarify the optimal order of wound debridements and skin grafting procedures as well as the regimen of aftercare. The mean body surface involvement was 72.9% and the mean area of third degree burns was 41%. The average number of operations required was 1.84. There were four deaths among in this group of patients. The Meek technique of skin expansion and the suggested protocol are together efficient and effective in covering an open wound, particularly where there is a paucity of skin graft donor sites.

  20. SU-F-T-621: Impact of Vacuum and Treatment Couch On Surface Dose in Stereotactic Body Radiation Therapy With and Without a Flattening Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, HT; Lu, SH; Kuo, SH

    2016-06-15

    Purpose: When treating lung cancer patients with stereotactic body radiation therapy (SBRT), better immobilization is needed for accurate delivery of high-dose radiation. However, using a treatment couch (TrueBeamTM) and vacuum bag (BlueBAGTM) may increase the surface dose and skin toxicity. This study investigated the influence of couch and vacuum bag on the surface dose. Methods: The relative surface dose (D{sub 0}/DMAX) was measured in an ion-chamber (Markus-type PTW, 0.05cm{sup 3}) with a solid water phantom and SSD to 100 cm. A comprehensive comparison of different parameter settings, including the different energies (6MV-FFF, 10MV-FF, and 10MV-FFF), field sizes (3 X 3more » cm{sup 2}, 5 × 5 cm{sup 2}, 8 × x cm{sup 2} , 10 × 10 cm{sup 2}, and 15 × 15 cm{sup 2}), thickness of the vacuum bag (5mm, 15mm, 30mm, 39mm and 55mm), and couch (with and without), was performed. Results: The FFF increases the surface dose as compared to FF mode. In a similar setting with field of 10 × 10 cm{sup 2}, FFF mode increases the surface dose from 26.0% to 32.8% for 6 MV, and 17.4% to 21.5% for 10 MV. When the beam passes through the couch, the surface dose increases to 3.6, 4.6, 2.9, and 3.7 times for 6 MV-FF, 10 MV-FF, 6 MV-FFF, and 10 MV-FFF, respectively. At the same energy, the surface dose increases to 3.93, 4.11, 4.23, 4.16 and 4.24 times at 5 mm, 15 mm, 30 mm, 39 mm and 55 mm thickness of the vacuum, respectively. Conclusion: Using a couch and vacuum significantly increases the surface dose. For SBRT with a superficial target close to the couch and immobilization vacuum, reduction of vacuum thickness and careful attention to skin dose in planning would be helpful in avoiding severe skin toxicity.« less

  1. Controlling reactive oxygen species in skin at their source to reduce skin aging.

    PubMed

    Kern, Dale G; Draelos, Zoe D; Meadows, Christiaan; James Morré, D; Morré, Dorothy M

    2010-01-01

    Activity of an age-related, superoxide-forming, cell-surface oxidase (arNOX) comparing dermis, epidermis, serum, and saliva from female and male subjects ages 28-72 years measured spectrophotometrically using reduction of ferricytochrome c correlated with oxidative skin damage as estimated from autofluoresence of skin using an Advanced Glycation End products Reader (AGE-Reader; DiagnOptics B.V., Netherlands). By reducing arNOX activity in skin with arNOX-inhibitory ingredients (NuSkin's ageLOC technology), skin appearance was improved through decreased protein cross-linking and an accelerated increase in collagen.

  2. Skin cancer in black patients.

    PubMed

    Fleming, I D; Barnawell, J R; Burlison, P E; Rankin, J S

    1975-03-01

    Skin cancer is rare in black patients. The clinical course and pathology of 58 cases are presented and reviewed. These include 38 squamous cell carcinomas, 13 malignant melanomas, and 7 basal cell carcinomas. Sixty-one percent of the squamous cell carcinomas developed in unexposed areas, with sunlight exposure apparently not being an important etiologic factor. Forty-one percent of the squamous cell carcinomas had predisposing factors such as burn scars or chronic infection. Squamous cell carcinoma in black patients is an aggressive disease, with 29% developing regional lymph node metastasis, and a mortality of 29%. Malignant melanomas occurred most frequently on the plantar surface of the foot (76%). Melanoma is also a virulent tumor in black patients, with 11 of 13 patients developing lymph node metastasis and only 2 patients surviving. Skin cancer in black patients presents a very different clinical picture than that seen in white patients. It is important that these factors be considered when planning therapy.

  3. [Skin care and prevention of bed sores in bedridden patients].

    PubMed

    Martínez Cuervo, Fernando; Soldevilla Agreda, J Javier; Verdú Soriano, José; Segovia Gómez, Teresa; García Fernández, Francisco Pedro; Pancorbo Hidalgo, Pedro Luís

    2007-12-01

    The aging process and environmental aggressions will leave their imprints on the state of a person's skin, possibly compromising some of its functions. Age is a risk factor for the development of bed sores, but not the only factor nor the most important one; therefore, we need to develop prevention programs directed to all patients who spend long periods of time sedentary or bedridden. Prevention programs for bed sores must be based on the best evidence available and include a risk evaluation on these factors: suffering a lesion due to pressure, specific skin treatment, incontinence control, excessive humidity posture changes and the use of special surfaces to manage pressure during an increase in mobility or activity by the patient, local pressure reducing devices as well as paying attention to special situations. All of these care measures have to be developed based on a continuity of treatment among the institutions and caretakers involved with treating each patient.

  4. Color structured light imaging of skin

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lesicko, John; Moy, Austin; Reichenberg, Jason; Sacks, Michael; Tunnell, James W.

    2016-05-01

    We illustrate wide-field imaging of skin using a structured light (SL) approach that highlights the contrast from superficial tissue scattering. Setting the spatial frequency of the SL in a regime that limits the penetration depth effectively gates the image for photons that originate from the skin surface. Further, rendering the SL images in a color format provides an intuitive format for viewing skin pathologies. We demonstrate this approach in skin pathologies using a custom-built handheld SL imaging system.

  5. Near Surface Thermal Stratification during Summer at Summit, Greenland, and its Impact on MODIS-derived Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Adolph, A. C.; Albert, M. R.; Hall, D. K.

    2017-12-01

    As rapid warming of the Arctic occurs, it is imperative that we monitor climate parameters such as temperature over large areas to understand and predict the extent of climate changes. Temperatures are often tracked using in-situ 2 m air temperatures, but in remote locations such as on the Greenland Ice Sheet, temperature can be studied more comprehensively using remote sensing techniques. Because of the presence of surface-based temperature inversions in ice-covered areas, differences between 2 m air temperature and skin temperature can be significant and are particularly relevant when considering validation and application of remote sensing temperature data. We present results from a field campaign at Summit Station in Greenland to study surface temperature using the following measurements: skin temperature measured by IR sensors, thermochrons, and thermocouples; 2 m air temperature measured by a NOAA meteorological station; and two different MODerate-resolution Imaging Spectroradiometer (MODIS) surface temperature products. We confirm prior findings that in-situ 2 m air temperature is often significantly higher in the summer than in-situ skin temperature when incoming solar radiation and wind speed are low. This inversion may account for biases in previous MODIS surface temperature studies that used 2 m air temperature for validation. As compared to the in-situ IR skin temperature measurements, the MOD/MYD11 Collection 6 surface-temperature standard product has an RMSE of 1.0°C, and that the MOD29 Collection 6 product has an RMSE of 1.5°C, spanning a range of temperatures from -35°C to -5°C. For our study area and time series, MODIS surface temperature products agree with skin temperatures better than many previous studies have indicated, especially at temperatures below -20°C where other studies found a significant cold bias. Further investigation at temperatures below -35°C is warranted to determine if this bias does indeed exist.

  6. Evaluation of the association between fecal excretion of Mycobacterium avium subsp paratuberculosis and detection in colostrum and on teat skin surfaces of dairy cows

    USDA-ARS?s Scientific Manuscript database

    Objective—To evaluate the association between fecal excretion of Mycobacterium avium subsp paratuberculosis (MAP) by dairy cows in the periparturient period and detection of MAP DNA in colostrum specimens and on teat skin surfaces. Design—Cross-sectional study. Animals—112 Holstein cows. Procedures—...

  7. Stress wave riveting. [of aircraft metal skin

    NASA Technical Reports Server (NTRS)

    Leftheris, B. P.

    1972-01-01

    The stress wave riveter deforms the rivet material by a high amplitude stress wave. Thus, the entire rivet is set in motion radially. The rivet expands rapidly and impacts the hole surface before the rivet tail begins to form. Unlike the oversqueezed rivets, therefore, it sets up uniform interference without distortion in the skins. Furthermore, the radial velocity is so high (over 200 in./sec) that upon impact with the hole surface it deforms the surface plastically. This is especially effective in aluminum skins. Thus the SWR combines the advantages of plastically deforming the hole and the economic advantage of a relatively nonprecision hole and inexpensive rivets like those used in oversqueezing. The additional advantage SWR offers is that it is a portable tool.

  8. Fractional laser-assisted delivery of methyl aminolevulinate: Impact of laser channel depth and incubation time.

    PubMed

    Haak, Christina S; Farinelli, William A; Tam, Joshua; Doukas, Apostolos G; Anderson, R Rox; Haedersdal, Merete

    2012-12-01

    Pretreatment of skin with ablative fractional lasers (AFXL) enhances the uptake of topical photosensitizers used in photodynamic therapy (PDT). Distribution of photosensitizer into skin layers may depend on depth of laser channels and incubation time. This study evaluates whether depth of intradermal laser channels and incubation time may affect AFXL-assisted delivery of methyl aminolevulinate (MAL). Yorkshire swine were treated with CO2 AFXL at energy levels of 37, 190, and 380 mJ/laser channel and subsequent application of MAL cream (Metvix) for 30, 60, 120, and 180 minutes incubation time. Fluorescence photography and fluorescence microscopy quantified MAL-induced porphyrin fluorescence (PpIX) at the skin surface and at five specific skin depths (120, 500, 1,000, 1,500, and 1,800 µm). Laser channels penetrated into superficial (∼300 µm), mid (∼1,400 µm), and deep dermis/upper subcutaneous fat layer (∼2,100 µm). Similar fluorescence intensities were induced at the skin surface and throughout skin layers independent of laser channel depth (180 minutes; P < 0.19). AFXL accelerated PpIX fluorescence from skin surface to deep dermis. After laser exposure and 60 minutes MAL incubation, surface fluorescence was significantly higher compared to intact, not laser-exposed skin at 180 minutes (AFXL-MAL 60 minutes vs. MAL 180 minutes, 69.16 a.u. vs. 23.49 a.u.; P < 0.01). Through all skin layers (120-1,800 µm), laser exposure and 120 minutes MAL incubation induced significantly higher fluorescence intensities in HF and dermis than non-laser exposed sites at 180 minutes (1,800 µm, AFXL-MAL 120 minutes vs. MAL 180 minutes, HF 14.76 a.u. vs. 6.69 a.u. and dermis 6.98 a.u. vs. 5.87 a.u.; P < 0.01). AFXL pretreatment accelerates PpIX accumulation, but intradermal depth of laser channels does not affect porphyrin accumulation. Further studies are required to examine these findings in clinical trials. Copyright © 2012 Wiley Periodicals, Inc.

  9. A scanning electron microscopy study of CO2 laser-albumin soldering in the rabbit model.

    PubMed

    Levanon, Daniel; Katzir, Abraham; Ravid, Avi

    2004-12-01

    We sought to assess the rabbit as an experimental animal in the investigation of laser skin soldering. We studied, using the scanning electron microscope (SEM), the surface appearances of experimental incisions made on the rabbit back skin and soldered by CO(2) laser. Laser soldering of incisions in various tissues is a modality of wound healing of a very promising clinical value. At present, more component studies on animals directed at paving the way towards clinical protocols are needed. Surgical incisions on rabbits back skin were bonded using either albumin-assisted CO(2) laser soldering (experimental) or thread suturing (reference). The incisions closed were excised 2, 3, 4, and 5 days postoperatively, and skin surfaces were studied in the SEM. Naked eye inspection and SEM analysis showed that full-length sealing of soldered and sutured incisions was discernible as early as day 2. In the SEM, all incisions were found confluently coated by epidermal cells along the former cut streak. Soldering subserved to bond incisions efficiently, with surface smooth and close to normal skin. On the other hand, the surface of sutured incisions appeared convoluted and its aesthetic quality inferior to that of the former. Some of the days two and three soldered incisions suffered dehiscence on excision, which suggests an incomplete regeneration of tensile strength at this early phase of healing. Sutured incisions tolerated excision, very probably due to the microthread still present in the skin tissue rather than because of breaking strength regained during wound healing. Also, hair stumps re-grown on the skin by day 5 postoperative might impair satisfactory microscopy of bonded incisions. CO(2) laser soldering of incisions on the rabbit back skin effected rapid wound sealing and resulted in smooth scars indistinguishable from normal skin. The rabbit is well suited for this kind of studies, provided that excision of experimental cuts takes place not later than 5 days post-incision so that hair stumps may not grow large enough to jeopardize the quality of scanning electron microscopy.

  10. Effects of water-filtered infrared-A and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin--first results.

    PubMed

    Piazena, Helmut; Pittermann, Wolfgang; Müller, Werner; Jung, Katinka; Kelleher, Debra K; Herrling, Thomas; Meffert, Peter; Uebelhack, Ralf; Kietzmann, Manfred

    2014-09-05

    The effects of water-filtered infrared-A (wIRA) and of convective heat on viability, inflammation, inducible free radicals and antioxidative power were investigated in natural and viable skin using the ex vivo Bovine Udder System (BUS) model. Therefore, skin samples from differently treated parts of the udder of a healthy cow were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, by prostaglandin E2 (PGE2) measurement and by electron spin resonance (ESR) spectroscopy. Neither cell viability, the inflammation status, the radical status or the antioxidative defence systems of the skin were significantly affected by wIRA applied within 30 min by using an irradiance of 1900 W m(-2) which is of relevance for clinical use, but which exceeded the maximum solar IR-A irradiance at the Earth's surface more than 5 times and which resulted in a skin surface temperature of about 45 °C without cooling and of about 37 °C with convective cooling by air ventilation. No significant effects on viability and on inflammation were detected when convective heat was applied alone under equivalent conditions in terms of the resulting skin surface temperatures and exposure time. As compared with untreated skin, free radical formation was almost doubled, whereas the antioxidative power was reduced to about 50% after convective heating to about 45 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    PubMed

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vital sign monitoring for elderly at home: development of a compound sensor for pulse rate and motion.

    PubMed

    Sum, K W; Zheng, Y P; Mak, A F T

    2005-01-01

    This paper describes the development of a miniaturized wearable vital sign monitor which is aimed for use by elderly at home. The development of a compound sensor for pulse rate, motion, and skin temperature is reported. A pair of infrared sensor working in reflection mode was used to detect the pulse rate from various sites over the body including the wrist and finger. Meanwhile, a motion sensor was used to detect the motion of the body. In addition, the temperature on the skin surface was sensed by a semiconductor temperature sensor. A prototype has been built into a box with a dimension of 2 x 2.5 x 4 cm3. The device includes the sensors, microprocessor, circuits, battery, and a wireless transceiver for communicating data with a data terminal.

  13. Evaluation of skin surface hydration state and barrier function of stratum corneum of dorsa of hands and heels treated with PROTECT X2 skin protective cream.

    PubMed

    Kubota, Takahiro

    2012-06-01

    Skin roughness is a term commonly used in Japan to describe a poor skin condition related to a rough and dry skin surface that develops as a result of various damaging effects from the environment or skin inflammation. Recovery from skin roughness requires skin care for a long period, thus it is important to prevent development of such skin changes. PROTECT X2 contains agents used for a protective covering of the skin from frequent hand washing or use of alcohol-based disinfectants. These unique components are also thought to be effective to treat skin roughness of the dorsa of the hands and heels. In the present study, we evaluated the effectiveness of PROTECT X2 to increase skin surface hydration state, as well as enhance the barrier function of the stratum corneum of the dorsa of the hands and heels in elderly individuals. A total of 8 elderly subjects and their caretakers without any skin diseases participated in the study. They applied PROTECT X2 by themselves to the dorsum area of 1 hand and heel 3 to 5 times daily for 1 month, while the opposite sides were left untreated. We measured stratum corneum (SC) hydration and transepidermal water loss (TEWL) before beginning treatment, then 1 week and 1 month after the start of treatment to compare between the treated and untreated skin. SC hydration state after applications of PROTECT X2 was 1.5- to 3.0-fold higher than that of the untreated skin in the dorsa of both hands and heels, indicating that the moisturizing ingredients accompanied by water were replenished in those areas where the cream was applied. Also, TEWL in the dorsum of the hands was 17.0-27.9% lower on the treated side, indicating improvement in SC barrier function. On the basis of these findings, we concluded that PROTECT X2 enhances water-holding in the SC and aids the barrier function of the skin in the dorsum of the hands. In addition, we consider that this formulation is useful for not only protecting the hands from the effects of such agents as detergents and alcohol-based disinfectants, but also for protecting heel skin covered by a thick SC from dry and cold conditions such as those encountered in winter. However, since the SC in that area is much thicker than that of the hands, the barrier function was not significantly improved within 1 month of daily treatments.

  14. Fractional laser microablation of skin aimed at enhancing its permeability for nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genina, Elina A; Dolotov, L E; Bashkatov, A N

    2011-05-31

    A new method for delivering nanoparticles into the skin using the fractional laser microablation of its surface and the ultrasonic treatment is proposed. As a result of in vitro and in vivo studies, it is shown that the 290-nm laser pulses with the energy from 0.5 to 3.0 J provide the penetration of nanoparticles of titanium dioxide with the diameter {approx}100 nm from the skin surface to the depth, varying from 150 to 400 {mu}m. Histological testing of the skin areas, subjected to the treatment, shows that the particles stay in the dermis at the depth up to 400 {mu}mmore » no less than for three weeks. (optical technologies in biophysics and medicine)« less

  15. Hydrophobicity and biofilm formation of lipophilic skin corynebacteria.

    PubMed

    Kwaszewska, Anna K; Brewczyńska, Anna; Szewczyk, Eligia M

    2006-01-01

    Lipophilic corynebacteria isolated as natural flora of human skin were examined. Among 119 assayed strains 94% presented a hydrophobic cell surface and 75.6% were able to form biofilms. These attributes, as well as aggregation in liquid media, were statistically connected with each other and promote the developing of biofilms on solid surfaces. This was characteristic of all the lipophilic Corynebacterium species found on human skin that were examined in this study. C. jeikeium and CDC group G2 strains dominated in this population, and they could be responsible for investigated features in the whole lipophilic skin bacterial population. These two groups are the most common coryneform bacteria isolated from nosocomial infections and these attributes most likely promote them to cause opportunistic infections.

  16. The Fringe-Imaging Skin Friction Technique PC Application User's Manual

    NASA Technical Reports Server (NTRS)

    Zilliac, Gregory G.

    1999-01-01

    A personal computer application (CXWIN4G) has been written which greatly simplifies the task of extracting skin friction measurements from interferograms of oil flows on the surface of wind tunnel models. Images are first calibrated, using a novel approach to one-camera photogrammetry, to obtain accurate spatial information on surfaces with curvature. As part of the image calibration process, an auxiliary file containing the wind tunnel model geometry is used in conjunction with a two-dimensional direct linear transformation to relate the image plane to the physical (model) coordinates. The application then applies a nonlinear regression model to accurately determine the fringe spacing from interferometric intensity records as required by the Fringe Imaging Skin Friction (FISF) technique. The skin friction is found through application of a simple expression that makes use of lubrication theory to relate fringe spacing to skin friction.

  17. The Relationship Between Facial Skin Surface Temperature Reactivity and Traditional Polygraph Measures Used in the Psychophysiological Detection of Deception: A Preliminary Investigation

    DTIC Science & Technology

    2002-03-01

    Surface Temperature and Polygraph Measures 19 References Cook , E. and Turpin , G. ( 1997 ). Differentiating orienting, startle, and defense responses... Turpin , 1997 ). The results of the present study also suggest that, in the forehead and periorbital region, the situation is complex. A multivariate...Facial Skin Surface Temperature and Polygraph Measures 3 areas would be differentially affected by participants’ fear-induced central and ANS responses to

  18. The distance from the extramedullary cutting guide rod to the skin surface as a reference guide for the tibial slope in total knee arthroplasty.

    PubMed

    Tsukeoka, Tadashi; Tsuneizumi, Yoshikazu

    2016-03-01

    Although sagittal tibial alignment in total knee arthroplasty (TKA) is important, no landmarks exist to achieve a reproducible slope. The purpose of this study was to evaluate the clinical usefulness of the distance from the guide rod to the skin surface for the tibial slope in TKA. Computer simulation studies were performed on 100 consecutive knees scheduled for TKA. The angle between the line connecting the most anterior point of the predicted tibial cut surface and the skin surface 20 cm distal to the predicted cut surface (Line S) and the mechanical axis (MA) of the tibia in the sagittal plane was measured. The mean (±SD) absolute angle difference between the Line S and the MA was 0.9°±0.7°. The Line S was almost parallel to the MA in the sagittal plane (95% and 99% within two degrees and three degrees of deviation from MA, respectively). The guide rod orientation is a surrogate for the tibial cut slope because the targeted posterior slope is usually built into the cutting block and ensuring the rod is parallel to the MA in the sagittal plane is recommended. Therefore the distance between the skin surface and the rod can be a useful guide for the tibial slope. II. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Thermogenic and psychogenic recruitment of human eccrine sweat glands: Variations between glabrous and non-glabrous skin surfaces.

    PubMed

    Machado-Moreira, Christiano A; Taylor, Nigel A S

    2017-04-01

    Human eccrine sweat-gland recruitment and secretion rates were investigated from the glabrous (volar) and non-glabrous hand surfaces during psychogenic (mental arithmetic) and thermogenic stimuli (mild hyperthermia). It was hypothesised that these treatments would activate glands from both skin surfaces, with the non-thermal stimulus increasing secretion rates primarily by recruiting more sweat glands. Ten healthy men participated in two seated, resting trials in temperate conditions (25-26°C). Trials commenced under normothermic conditions during which the first psychogenic stress was applied. That was followed by passive heating (0.5°C mean body temperature elevation) and thermal clamping, with a second cognitive challenge then applied. Sudomotor activity was evaluated from both hands, with colourimetry used to identify activated sweat glands, skin conductance to determine the onset of precursor sweating and ventilated sweat capsules to measure rates of discharged sweating. From glandular activation and sweat rate data, sweat-gland outputs were derived. These psychogenic and thermogenic stimuli activated sweat glands from both the glabrous and non-glabrous skin surfaces, with the former dominating at the glabrous skin and the latter at the non-glabrous surface. Indeed, those stimuli individually accounted for ~90% of the site-specific maximal number of activated sweat glands observed when both stimuli were simultaneously applied. During the normothermic psychological stimulation, sweating from the glabrous surface was elevated via a 185% increase in the number of activated glands within the first 60s. The hypothetical mechanism for this response may involve the serial activation of additional eccrine sweat glands during the progressive evolution of psychogenic sweating. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Vacuum-assisted closure device as a split-thickness skin graft bolster in the burn population.

    PubMed

    Waltzman, Joshua T; Bell, Derek E

    2014-01-01

    The vacuum-assisted closure device (VAC) is associated with improved wound healing outcomes. Its use as a bolster device to secure a split-thickness skin graft has been previously demonstrated; however, there is little published evidence demonstrating its benefits specifically in the burn population. With use of the VAC becoming more commonplace, its effect on skin graft take and overall time to healing in burn patients deserves further investigation. Retrospective review of burn registry database at a high-volume level I trauma center and regional burn center during a 16-month period was performed. Patients who had a third-degree burn injury requiring a split-thickness skin graft and who received a VAC bolster were included. Data points included age, sex, burn mechanism, burn location, grafted area in square centimeters, need for repeat grafting, percent graft take, and time to complete reepithelialization. Sixty-seven patients were included in the study with a total of 88 skin graft sites secured with a VAC. Age ranged from <1 year to 84 years (average 41 years). The average grafted area was 367 ± 545 cm. The three most common were the leg, thigh, and arm (28, 15, and 12%, respectively). Average percent graft take was 99.5 ± 1.5%. Notably, no patients returned to the operating room for repeat grafting. The average time to complete reepithelialization was 16 ± 7 days. The VAC is a highly reliable and reproducible method to bolster a split-thickness skin graft in the burn population. The observed rate of zero returns to the operating room for repeat grafting was especially encouraging. Its ability to conform to contours of the body and cover large surface areas makes it especially useful in securing a graft. This method of bolstering results in decreased repeat grafting and minimal graft loss, thus decreasing morbidity compared with conventional bolster dressings.

  1. A laboratory investigation of the effectiveness of various skin and surface decontaminants for aliphatic polyisocyanates.

    PubMed

    Bello, Dhimiter; Woskie, Susan R; Streicher, Robert P; Stowe, Meredith H; Sparer, Judy; Redlich, Carrie A; Cullen, Mark R; Liu, Youcheng

    2005-07-01

    Isocyanates may cause contact dermatitis and respiratory sensitization leading to asthma. Dermal exposure to aliphatic isocyanates in auto body shops is very common. However, little is known about the effectiveness of available commercial products used for decontaminating aliphatic polyisocyanates. This experimental study evaluated the decontamination effectiveness of aliphatic polyisocyanates for several skin and surface decontaminants available for use in the auto body industry. The efficiency of two major decontamination mechanisms, namely (i) consumption of free isocyanate groups via chemical reactions with active hydrogen components of the decontaminant and (ii) physical removal processes such as dissolution were studied separately for each decontaminant. Considerable differences were observed among surface decontaminants in their rate of isocyanate consumption, of which those containing free amine groups performed the best. Overall, Pine-Sol(R) MEA containing monoethanolamine was the most efficient surface decontaminant, operating primarily via chemical reaction with the isocyanate group. Polypropylene glycol (PPG) had the highest physical removal efficiency and the lowest reaction rate with isocyanates. All tested skin decontaminants performed similarly, accomplishing decontamination primarily via physical processes and removing 70-80% of isocyanates in one wiping. Limitations of these skin decontaminants are discussed and alternatives presented. In vitro testing using animal skins and in vivo testing with field workers are being conducted to further assess the efficiency and identify related determinants.

  2. 3-D profilometer using a CCD linear image sensor: application to skin surface topography measurement.

    PubMed

    Nita, D; Mignot, J; Chuard, M; Sofa, M

    1998-08-01

    Measurement of cutaneous surface topography can be made by three-dimensional (3-D) profilometry. Different equipment is used for this measurement. The magnitude of the vertical scale required, which can vary from several tens of micrometers (microrelief) to several millimeters (skin pathologies), depends also on the precision required and the duration of acquisition time. Over the last few years, different apparatuses have been produced, with a vertical range that is most frequently used for classical industrial applications, i.e., 0-1000 μm. The system developed here has a wide range of about 7 mm and is accurate enough to analyse each of the different skin surfaces that fall in this range without changing magnification. An optical principle, operating without any contact with a skin replica, allows a precise measurement with a high scanning speed. The profilometer has a vertical sensitivity of 4 μm within a vertical range of 7 mm. This sensitivity is lower than that of a mechanical or focusing profilometer, but the vertical range is wider. The system has several advantages: because of its verticale range, it can measure large surfaces with great roughness variations; the initial position of the replica beneath the profilometer must be within the 7 mm vertical range; and skin topography can be quantified, without contact, in a short time.

  3. Skin surface removal on breast microwave imagery using wavelet multiscale products

    NASA Astrophysics Data System (ADS)

    Flores-Tapia, Daniel; Thomas, Gabriel; Pistorius, Stephen

    2006-03-01

    In many parts of the world, breast cancer is the leading cause mortality among women and it is the major cause of cancer death, next only to lung cancer. In recent years, microwave imaging has shown its potential as an alternative approach for breast cancer detection. Although advances have improved the likelihood of developing an early detection system based on this technology, there are still limitations. One of these limitations is that target responses are often obscured by surface reflections. Contrary to ground penetrating radar applications, a simple reference subtraction cannot be easily applied to alleviate this problem due to differences in the breast skin composition between patients. A novel surface removal technique for the removal of these high intensity reflections is proposed in this paper. This paper presents an algorithm based on the multiplication of adjacent wavelet subbands in order to enhance target echoes while reducing skin reflections. In these multiscale products, target signatures can be effectively distinguished from surface reflections. A simple threshold is applied to the signal in the wavelet domain in order to eliminate the skin responses. This final signal is reconstructed to the spatial domain in order to obtain a focused image. The proposed algorithm yielded promising results when applied to real data obtained from a phantom which mimics the dielectric properties of breast, cancer and skin tissues.

  4. Varicella infection in a neonate with subsequent staphylococcal scalded skin syndrome and fatal shock.

    PubMed

    Singh, Shakal Narayan; Tahazzul, Mohammad; Singh, Anita; Chandra, Surabhi

    2012-08-01

    A male term neonate, at day 23 of life, presented with vesicular lesions over the trunk, which spread to allover the body on the next day. Five days later, he started developing blistering of the skin over the trunk and extremities, which subsequently ruptured, leaving erythematous, tender raw areas with peeling of the skin. The mother had vesicular eruptions, which started on the second day of delivery and progressed over the next 3 days. Subsequently, similar eruptions were noticed in two of the siblings before affecting the neonate. On the basis of the exposure history and clinical picture, a diagnosis was made of varicella infection with staphylococcal scalded skin syndrome (SSSS). The blood culture and the wound surface culture grew Staphylococcus aureus. Treatment included intravenous fluid, antibiotics, acyclovir and wound care. However, after 72 h of hospitalisation, the neonate first developed shock, refractory to fluid boluses, vasopressors and catecholamine along with other supports; and he then succumbed. In all neonates, staphylococcal infection with varicella can be fatal due to SSSS, the toxic shock syndrome or septicaemia.

  5. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  6. Microorganisms inhabiting follicular contents of facial acne are not only Propionibacterium but also Malassezia spp.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko

    2016-08-01

    To clarify the relationship between major cutaneous microorganisms (Propionibacterium, Staphylococcus and Malassezia spp.) and acne vulgaris (acne), we examined the microbiota quantitatively in the follicular contents of inflammatory acne and on the facial skin of patients with acne. Fifteen Japanese untreated acne outpatients were studied. The follicular contents from inflammatory acne lesions of the face were collected using a comedo extractor. The skin surface samples were obtained by the swab method from 10 cm(2) of facial skin. The microbiota was analyzed using polymerase chain reaction. The microbiota in follicular contents was similar to that on the skin surface, namely, there were large populations of Propionibacterium spp., Staphylococcus spp. and Malassezia spp. Moreover, the number of Malassezia spp. on the skin surface was correlated with that of inflammatory acne and that in follicular contents. This study clarified that there are large populations of Propionibacterium spp., Staphylococcus spp. and Malassezia spp. in follicular contents. These results suggest the possibility that not only Propionibacterium acnes but also other cutaneous resident microorganisms are related to acne. Particularly, we considered that Malassezia spp. is closely related. © 2015 Japanese Dermatological Association.

  7. Skin dose for head and neck cancer patients treated with intensity-modulated radiation therapy(IMRT)

    NASA Astrophysics Data System (ADS)

    Fu, Hsiao-Ju; Li, Chi-Wei; Tsai, Wei-Ta; Chang, Chih-Chia; Tsang, Yuk-Wah

    2017-11-01

    The reliability of thermoluminescent dosimeters (ultrathin TLD) and ISP Gafchromic EBT2 film to measure the surface dose in phantom and the skin dose in head-and-neck patients treated with intensity-modulated radiation therapy technique(IMRT) is the research focus. Seven-field treatment plans with prescribed dose of 180 cGy were performed on Eclipse treatment planning system which utilized pencil beam calculation algorithm(PBC). In calibration tests, the variance coefficient of the ultrathin TLDs were within 3%. The points on the calibration curve of the Gafchromic film was within 1% variation. Five measurements were taken on phantom using ultrathin TLD and EBT2 film respectively. The measured mean surface doses between ultrathin TLD or EBT2 film were within 5% deviation. Skin doses of 6 patients were measured for initial 5 fractions and the mean dose per-fraction was calculated. If the extrapolated doses for 30 fractions were below 4000 cGy, the skin reaction grading observed according to Radiation Therapy Oncology Group (RTOG) was either grade 1 or grade 2. If surface dose exceeded 5000 cGy in 32 fractions, then grade 3 skin reactions were observed.

  8. Variable Emittance Electrochromics Using Ionic Electrolytes and Low Solar Absorptance Coatings

    NASA Technical Reports Server (NTRS)

    Chandrasekhar, Prasanna

    2011-01-01

    One of the last remaining technical hurdles with variable emittance devices or skins based on conducting polymer electrochromics is the high solar absorptance of their top surfaces. This high solar absorptance causes overheating of the skin when facing the Sun in space. Existing technologies such as mechanical louvers or loop heat pipes are virtually inapplicable to micro (< 20 kg) and nano (< 5 kg) spacecraft. Novel coatings lower the solar absorption to Alpha(s) of between 0.30 and 0.46. Coupled with the emittance properties of the variable emittance skins, this lowers the surface temperature of the skins facing the Sun to between 30 and 60 C, which is much lower than previous results of 100 C, and is well within acceptable satellite operations ranges. The performance of this technology is better than that of current new technologies such as microelectromechanical systems (MEMS), electrostatics, and electrophoretics, especially in applications involving micro and nano spacecraft. The coatings are deposited inside a high vacuum, layering multiple coatings onto the top surfaces of variable emittance skins. They are completely transparent in the entire relevant infrared region (about 2 to 45 microns), but highly reflective in the visible-NIR (near infrared) region of relevance to solar absorptance.

  9. Relationships between skin temperature and temporal summation of heat and cold pain.

    PubMed

    Mauderli, Andre P; Vierck, Charles J; Cannon, Richard L; Rodrigues, Anthony; Shen, Chiayi

    2003-07-01

    Temporal summation of heat pain during repetitive stimulation is dependent on C nociceptor activation of central N-methyl-d-aspartate (NMDA) receptor mechanisms. Moderate temporal summation is produced by sequential triangular ramps of stimulation that control skin temperature between heat pulses but do not elicit distinct first and second pain sensations. Dramatic summation of second pain is produced by repeated contact of the skin with a preheated thermode, but skin temperature between taps is not controlled by this procedure. Therefore relationships between recordings of skin temperature and psychophysical ratings of heat pain were evaluated during series of repeated skin contacts. Surface and subcutaneous recordings of skin temperatures revealed efficient thermoregulatory compensation for heat stimulation at interstimulus intervals (ISIs) ranging from 2 to 8 s. Temporal summation of heat pain was strongly influenced by the ISIs and cannot be explained by small increases in skin temperature between taps or by heat storage throughout a stimulus series. Repetitive brief contact with a precooled thermode was utilized to evaluate whether temporal summation of cold pain occurs, and if so, whether it is influenced by skin temperature. Surface and subcutaneous recordings of skin temperature revealed a sluggish thermoregulatory compensation for repetitive cold stimulation. In contrast to heat stimulation, skin temperature did not recover between cold stimuli throughout ISIs of 3-8 s. Psychophysically, repetitive cold stimulation produced an aching pain sensation that progressed gradually and radiated beyond the site of stimulation. The magnitude of aching pain was well related to skin temperature and thus appeared to be established primarily by peripheral factors.

  10. Use of a human skin in vitro model to investigate the influence of 'every-day' clothing and skin surface decontamination on the percutaneous penetration of organophosphates.

    PubMed

    Moore, C A; Wilkinson, S C; Blain, P G; Dunn, M; Aust, G A; Williams, F M

    2014-08-17

    Organophosphates (OPs) are widely used in agriculture. Many studies have investigated the capability of personal protective equipment (PPE) to reduce chemical exposure; however, investigations into the protective effect of 'every-day' clothing are rare. The purpose of this study was to investigate the protective effect of 'every-day' clothing against dermal exposure and to measure early decontamination of skin following exposure to chlorpyrifos and dichlorvos. Using human skin in vitro, absorption of (14)C-labelled chlorpyrifos (500 ng/cm(2)), was shown to be significantly reduced when applied to clothed skin (cotton shirt), regardless of application vehicle (isopropanol (IPA) or propylene glycol (PG)). The majority of applied dose was retained within the clothing after 4 h exposure. Significant reduction in absorption of chlorpyrifos (in PG) was seen through clothed skin when supplemented with skin decontamination at 4 h, compared with clothed skin decontaminated after 24 h, however, this was not observed with IPA. Absorption of dichlorvos (5 μg/cm(2)) was greater through unclothed skin than chlorpyrifos for all vehicles (IPA, isopropyl myristate (IPM) and PG). Significant reduction in absorption was observed when decontaminating clothed skin at 30 min, compared with decontamination at 24 h (post-exposure) for all vehicles. indicate that 'every-day' clothing is effective at reducing exposure to chemicals in contact with skin. Washing the skin surface immediately following removal of exposed clothing can further reduce exposure, depending on the properties of the chemical and vehicle applied. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Softness sensor system for simultaneously measuring the mechanical properties of superficial skin layer and whole skin.

    PubMed

    Nakatani, Masashi; Fukuda, Toru; Arakawa, Naomi; Kawasoe, Tomoyuki; Omata, Sadao

    2013-02-01

    Few attempts have been made to distinguish the softness of different skin layers, though specific measurement of the superficial layer would be useful for evaluating the emollient effect of cosmetics and for diagnosis of skin diseases. We developed a sensor probe consisting of a piezoelectric tactile sensor and a load cell. To evaluate it, we firstly measured silicone rubber samples with different softness. Then, it was applied to human forearm skin before and after tape-stripping. A VapoMeter and skin-surface hygrometer were used to confirm removal of the stratum corneum. A Cutometer was used to obtain conventional softness data for comparison. Both the piezoelectric tactile sensor and the load cell could measure the softness of silicone rubber samples, but the piezoelectric tactile sensor was more sensitive than the load cell when the reaction force of the measured sample was under 100 mN in response to a 2-mm indentation. For human skin in vivo, transepidermal water loss and skin conductance were significantly changed after tape-stripping, confirming removal of the stratum corneum. The piezoelectric tactile sensor detected a significant change after tape-stripping, whereas the load cell did not. Thus, the piezoelectric tactile sensor can detect changes of mechanical properties at the skin surface. The load cell data were in agreement with Cutometer measurements, which showed no change in representative skin elasticity parameters after tape-stripping. These results indicate that our sensor can simultaneously measure the mechanical properties of the superficial skin layer and whole skin. © 2012 John Wiley & Sons A/S.

  12. Multimodal device for assessment of skin malformations

    NASA Astrophysics Data System (ADS)

    Bekina, A.; Garancis, V.; Rubins, U.; Spigulis, J.; Valeine, L.; Berzina, A.

    2013-11-01

    A variety of multi-spectral imaging devices is commercially available and used for skin diagnostics and monitoring; however, an alternative cost-efficient device can provide an advanced spectral analysis of skin. A compact multimodal device for diagnosis of pigmented skin lesions was developed and tested. A polarized LED light source illuminates the skin surface at four different wavelengths - blue (450 nm), green (545 nm), red (660 nm) and infrared (940 nm). Spectra of reflected light from the 25 mm wide skin spot are imaged by a CMOS sensor. Four spectral images are obtained for mapping of the main skin chromophores. The specific chromophore distribution differences between different skin malformations were analyzed and information of subcutaneous structures was consecutively extracted.

  13. Signatures of human skin in the millimetre wave band (80-100) GHz

    NASA Astrophysics Data System (ADS)

    Owda, Amani Y.; Rezgui, Nacer-Ddine; Salmon, Neil A.

    2017-10-01

    With the performance of millimeter wave security screening imagers improving (reduced speckle, greater sensitivity, and better spatial resolution) attention is turning to identification of anomalies which appear on the human body. Key to this identification is the understanding of how the emissive and reflective properties vary over the human body and between different categories of people, defined by age and gender for example. As the interaction of millimetre waves with the human body is only a fraction of a millimetre into the skin, precise measurement of the emission and reflection of this radiation will allow comparisons with the norm for that region of the body and person category. On an automated basis at security screening portals, this will increase detection probabilities and reduce false alarm rates, ensuring high throughputs at entrances to future airport departure lounges and transport networks. A technique to measure the human skin emissivity in vivo over the frequency band 80 GHz to 100 GHz is described. The emissivities of the skin of a sample of 60 healthy participants (36 males and 24 females) measured using a 90 GHz calibrated radiometer was found to range from 0.17+/-0.002 to 0.68+/-0.002. The radiometric measurements were made at four locations on the arm, namely: palm of hand, back of hand, dorsal surface of the forearm, and volar side of the forearm, where the water content and the skin thickness are known to be different. These measurements show significant variation in emissivity from person to person and, more importantly, significant variation at different locations on the arms of individuals. Males were found to have an emissivity 0.03 higher than those of females. The emissivity of the back of the hand, where the skin is thinner and the blood vessels are closer to the skin surface, was found to be lower by 0.0681 than the emissivity of the palm of the hand, where the skin is thicker. The measurements also show that the emissivity of the volar side location where the blood vessels are closer to the skin surface is lower by 0.0677 than the emissivity of the dorsal surface location. The measured differences agree with those differences estimated by a half space electromagnetic model of the interaction and can be interpreted in terms of the differing water contents and skin thickness of those regions of the body.

  14. Refining surface net radiation estimates in arid and semi-arid climates of Iran

    NASA Astrophysics Data System (ADS)

    Golkar, Foroogh; Rossow, William B.; Sabziparvar, Ali Akbar

    2018-06-01

    Although the downwelling fluxes exhibit space-time scales of dependency on characteristic of atmospheric variations, especially clouds, the upward fluxes and, hence the net radiation, depends on the variation of surface properties, particularly surface skin temperature and albedo. Evapotranspiration at the land surface depends on the properties of that surface and is determined primarily by the net surface radiation, mostly absorbed solar radiation. Thus, relatively high spatial resolution net radiation data are needed for evapotranspiration studies. Moreover, in more arid environments, the diurnal variations of surface (air and skin) temperature can be large so relatively high (sub-daily) time resolution net radiation is also needed. There are a variety of radiation and surface property products available but they differ in accuracy, space-time resolution and information content. This situation motivated the current study to evaluate multiple sources of information to obtain the best net radiation estimate with the highest space-time resolution from ISCCP FD dataset. This study investigates the accuracy of the ISCCP FD and AIRS surface air and skin temperatures, as well as the ISCCP FD and MODIS surface albedos and aerosol optical depths as the leading source of uncertainty in ISCCP FD dataset. The surface air temperatures, 10-cm soil temperatures and surface solar insolation from a number of surface sites are used to judge the best combinations of data products, especially on clear days. The corresponding surface skin temperatures in ISCCP FD, although they are known to be biased somewhat high, disagreed more with AIRS measurements because of the mismatch of spatial resolutions. The effect of spatial resolution on the comparisons was confirmed using the even higher resolution MODIS surface skin temperature values. The agreement of ISCCP FD surface solar insolation with surface measurements is good (within 2.4-9.1%), but the use of MODIS aerosol optical depths as an alternative was checked and found to not improve the agreement. The MODIS surface albedos differed from the ISCCP FD values by no more than 0.02-0.07, but because these differences are mostly at longer wavelengths, they did not change the net solar radiation very much. Therefore to obtain the best estimate of surface net radiation with the best combination of spatial and temporal resolution, we developed a method to adjust the ISCCP FD surface longwave fluxes using the AIRS surface air and skin temperatures to obtain the higher spatial resolution of the latter (45 km), while retaining the 3-h time intervals of the former. Overall, the refinements reduced the ISCCP FD longwave flux magnitudes by about 25.5-42.1 W/m2 RMS (maximum difference -27.5 W/m2 for incoming longwave radiation and -59 W/m2 for outgoing longwave radiation) with the largest differences occurring at 9:00 and 12:00 UTC near local noon. Combining the ISCCP FD net shortwave radiation data and the AIRS-modified net longwave radiation data changed the total net radiation for summertime by 4.64 to 61.5 W/m2 and for wintertime by 1.06 to 41.88 W/m2 (about 11.1-39.2% of the daily mean).

  15. [Impact of low level laser therapy on skin blood flow].

    PubMed

    Podogrodzki, Jacek; Lebiedowski, Michał; Szalecki, Mieczysław; Kępa, Izabela; Syczewska, Małgorzata; Jóźwiak, Sergiusz

    2016-01-01

    The aim of this study was to objectively assess the impact of low level laser therapy on skin blood flow, in terms of two of its components - the flow and trophic and therapeutic effect. Nineteen children aged 3-15 years have been included in the study (seven boys and twelve girls) with a diagnosis of meningomyelocele in the lumbosacral area. In nine of them (47.3%) bedsores were found in the area of paresis location. Studies of skin blood flow were performed using xenon 133 clearance in the Department of Nuclear Medicine of the Children's Memorial Health Institute. Xenon 133 radioisotope in saline with intrinsic activity 74 MBq in 1 ml was used as the marker. Laser application was performed immediately prior to the application of the marker with a tag shower 60 mW probe, emitting 680 nm red light with surface power density of 0.5 J/cm2. Within the tested children the laser application resulted in a significantly increased skin blood flow. Average results in tested group before LLLT are 7.47 ml/100 g/min, after LLLT 11.08 ml/100 g/min. 1. LLLT significantly increases the perfusion of the skin. 2. The effect of the increased perfusion as the result of laserotherapy in the most evident in children with skin trophic abnormalities. 3. Results confirmed by clinical observation indicate, that perfusion increase in relation to LLLT takes place with participation of trophic component of skin blood circulation.

  16. Characterization, sensorial evaluation and moisturizing efficacy of nanolipidgel formulations.

    PubMed

    Estanqueiro, M; Conceição, J; Amaral, M H; Sousa Lobo, J M

    2014-04-01

    Nanostructured lipid carriers (NLC) have been widely studied for cosmetic and dermatological applications due to their favourable properties that include the formation of an occlusive film on the skin surface that reduces the transepidermal water loss (TEWL) and increase in water content in the skin which improves the appearance on healthy human skin and reduces symptoms of some skin disorders like eczema. The main objective of this study was the development of semisolid formulations based NLC with argan oil or jojoba oil as liquid lipids, by addition of Carbopol®934 or Carbopol®980 as gelling agents, followed by comparison between instrumental analysis and sensorial evaluation and in vivo efficacy evaluation. Nanostructured lipid carriers dispersions were produced by the ultrasound technique, and to obtain a semisolid formulation, gelling agents were dispersed in the aqueous dispersion. Particle size, polydispersity index and zeta potential were determined. Instrumental characterization was performed by rheological and textural analysis; the sensorial evaluation was also performed. Finally, skin hydration and TEWL were studied by capacitance and evaporimetry evaluation, respectively. Particles showed a nanometric size in all the analysed formulations. All the gels present pseudoplastic behaviour. There is a correspondence between the properties firmness and adhesiveness as determined by textural analysis and the sensory evaluation. The formulations that showed a greater increase in skin hydration also presented appropriate technological and sensorial attributes for skin application. Nanolipidgel formulations with the addition of humectants are promising systems for cosmetic application with good sensory and instrumental attributes and moisturizing efficacy.

  17. Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage

    PubMed Central

    Li, Zongxi; Navarro-Alvarez, Nalu; Keeley, Emily J.; Nowell, Nicholas H.; Goncalves, Beatriz M. M.; Huang, Christene A.; Evans, Conor L.

    2017-01-01

    Inflammation involves a cascade of cellular and molecular mediators that ultimately lead to the infiltration of immune cells into the affected area. This inflammatory process in skin is common to many diseases including acne, infection, and psoriasis, with the presence or absence of immune cells a potential diagnostic marker. Here we show that skin inflammation can be non-invasively measured and mapped using a paint-on oxygen sensing bandage in an in vivo porcine inflammation model. After injection of a known inflammatory agent, the bandage could track the increase, plateau, and decrease in oxygen consumption at the injury site over 7 weeks, as well as discern inflammation resultant from injection at various depths beneath the surface of the skin. Both the initial rate of pO2 change and the change in bandage pO2 at equilibration (CBP20) were found to be directly related to the metabolic oxygen consumption rate of the tissue in contact. Healthy skin demonstrated an initial pO2 decrease rate of 6.5 mmHg⋅min−1, and CBP20 of 84 mmHg. Inflamed skin had a significantly higher initial consumption rate of 55 mmHg⋅min−1, and a larger CBP20 of 140 mmHg. The change in the bandage pO2 before and after equilibration with tissue was found to correlate well with histological evidence of skin inflammation in the animals. PMID:29082091

  18. Interaction of 1.319 μm laser with skin: an optical-thermal-damage model and experimental validation

    NASA Astrophysics Data System (ADS)

    Jiao, Luguang; Yang, Zaifu; Wang, Jiarui

    2014-09-01

    With the widespread use of high-power laser systems operating within the wavelength region of approximately 1.3 to 1.4 μm, it becomes very necessary to refine the laser safety guidelines setting the exposure limits for the eye and skin. In this paper, an optical-thermal-damage model was developed to simulate laser propagation, energy deposition, heat transfer and thermal damage in the skin for 1.319 μm laser irradiation. Meanwhile, an experiment was also conducted in vitro to measure the tempreture history of a porcine skin specimen irradiated by a 1.319 μm laser. Predictions from the model included light distribution in the skin, temperature response and thermal damge level of the tissue. It was shown that the light distribution region was much larger than that of the incident laser at the wavelength of 1.319 μm, and the maximum value of the fluence rate located on the interior region of the skin, not on the surface. By comparing the calculated temperature curve with the experimentally recorded temperautre data, good agreement was shown betweeen them, which validated the numerical model. The model also indicated that the damage integral changed little when the temperature of skin tissue was lower than about 55 °C, after that, the integral increased rapidly and denatunation of the tissue would occur. Based on this model, we can further explore the damage mechanisms and trends for the skin and eye within the wavelength region of 1.3 μm to 1.4 μm, incorporating with in vivo experimental investigations.

  19. Neuro-immune interactions at barrier surfaces

    PubMed Central

    Veiga-Fernandes, Henrique; Mucida, Daniel

    2016-01-01

    Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This review focuses on neuro-immune interactions at barrier surfaces, mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges. PMID:27153494

  20. Relationships Between the Bulk-Skin Sea Surface Temperature Difference, Wind, and Net Air-Sea Heat Flux

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society Air-Sea Interaction Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical processes needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel Baldwin in the preparation of their publication "Accuracy of in situ sea surface temperatures used to calibrate infrared satellite measurements". The remainder of this report is drawn from these publications and presentations.

  1. Surface-structured bacterial cellulose with guided assembly-based biolithography (GAB).

    PubMed

    Bottan, Simone; Robotti, Francesco; Jayathissa, Prageeth; Hegglin, Alicia; Bahamonde, Nicolas; Heredia-Guerrero, José A; Bayer, Ilker S; Scarpellini, Alice; Merker, Hannes; Lindenblatt, Nicole; Poulikakos, Dimos; Ferrari, Aldo

    2015-01-27

    A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.

  2. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface

    PubMed Central

    Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin A.; Srinivasan, Siddarth; Cohen, Robert E.; McKinley, Gareth H.

    2016-01-01

    Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface. PMID:27757417

  3. Validity and reliability of a structured-light 3D scanner and an ultrasound imaging system for measurements of facial skin thickness.

    PubMed

    Lee, Kang-Woo; Kim, Sang-Hwan; Gil, Young-Chun; Hu, Kyung-Seok; Kim, Hee-Jin

    2017-10-01

    Three-dimensional (3 D)-scanning-based morphological studies of the face are commonly included in various clinical procedures. This study evaluated validity and reliability of a 3 D scanning system by comparing the ultrasound (US) imaging system versus the direct measurement of facial skin. The facial skin thickness at 19 landmarks was measured using the three different methods in 10 embalmed adult Korean cadavers. Skin thickness was first measured using the ultrasound device, then 3 D scanning of the facial skin surface was performed. After the skin on the left half of face was gently dissected, deviating slightly right of the midline, to separate it from the subcutaneous layer, and the harvested facial skin's thickness was measured directly using neck calipers. The dissected specimen was then scanned again, then the scanned images of undissected and dissected faces were superimposed using Morpheus Plastic Solution (version 3.0) software. Finally, the facial skin thickness was calculated from the superimposed images. The ICC value for the correlations between the 3 D scanning system and direct measurement showed excellent reliability (0.849, 95% confidence interval = 0.799-0.887). Bland-Altman analysis showed a good level of agreement between the 3 D scanning system and direct measurement (bias = 0.49 ± 0.49 mm, mean±SD). These results demonstrate that the 3 D scanning system precisely reflects structural changes before and after skin dissection. Therefore, an in-depth morphological study using this 3 D scanning system could provide depth data about the main anatomical structures of face, thereby providing crucial anatomical knowledge for utilization in various clinical applications. Clin. Anat. 30:878-886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Differential Utilization and Localization of ErbB Receptor Tyrosine Kinases in Skin Compared to Normal and Malignant Keratinocytes1

    PubMed Central

    Stoll, Stefan W; Kansra, Sanjay; Peshick, Scott; Fry, David W; Leopold, Wilbur R; Wiesen, Jane F; Sibilia, Maria; Zhang, Tong; Werb, Zena; Derynck, Rik; Wagner, Erwin F; Elder, James T

    2001-01-01

    Abstract Induction of heparin-binding epidermal growth factor-like growth factor (HB-EGF) mRNA in mouse skin organ culture was blocked by two pan-ErbB receptor tyrosine kinase (RTK) inhibitors but not by genetic ablation of ErbB1, suggesting involvement of multiple ErbB species in skin physiology. Human skin, cultured normal keratinocytes, and A431 skin carcinoma cells expressed ErbB1, ErbB2, and ErbB3, but not ErbB4. Skin and A431 cells expressed more ErbB3 than did keratinocytes. Despite strong expression of ErbB2 and ErbB3, heregulin was inactive in stimulating tyrosine phosphorylation in A431 cells. In contrast, it was highly active in MDA-MB-453 breast carcinoma cells. ErbB2 displayed punctate cytoplasmic staining in A431 and keratinocytes, compared to strong cell surface staining in MDA-MB-453. In skin, ErbB2 was cytoplasmic in basal keratinocytes, assuming a cell surface pattern in the upper suprabasal layers. In contrast, ErbB1 retained a cell surface distribution in all epidermal layers. Keratinocyte proliferation in culture was found to be ErbB1-RTK-dependent, using a selective inhibitor. These results suggest that in skin keratinocytes, ErbB2 transduces ligand-dependent differentiation signals, whereas ErbB1 transduces ligand-dependent proliferation/survival signals. Intracellular sequestration of ErbB2 may contribute to the malignant phenotype of A431 cells, by allowing them to respond to ErbB1-dependent growth/survival signals, while evading ErbB2-dependent differentiation signals. PMID:11571634

  5. Spatial and Temporal Inter-Relationships between Anomalies and Trends of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  6. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  7. Skin microvascular flow during hypobaric exposure with and without a mechanical counter-pressure space suit glove

    NASA Technical Reports Server (NTRS)

    Tanaka, Kunihiko; Waldie, James; Steinbach, Gregory C.; Webb, Paul; Tourbier, Dietmar; Knudsen, Jeffrey; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    INTRODUCTION: Current space suits are rigid, gas-pressurized shells that protect astronauts from the vacuum of space. A tight elastic garment or mechanical-counter-pressure (MCP) suit generates pressure by compression and may have several advantages over current space suit technology. In this study, we investigated local microcirculatory effects produced with and without a prototype MCP glove. METHODS: The right hand of eight normal volunteers was studied at normal ambient pressure and during exposure to -50, -100 and -150 mm Hg with and without the MCP glove. Measurements included the pressure against the hand, skin microvascular flow, temperature on the dorsum of the hand, and middle finger girth. RESULTS: Without the glove, skin microvascular flow and finger girth significantly increased with negative pressure, and the skin temperature decreased compared with the control condition. The MCP glove generated approximately 200 mm Hg at the skin surface; all measured values remained at control levels during exposure to negative pressure. DISCUSSION: Without the glove, skin microvascular flow and finger girth increased with negative pressure, probably due to a blood shift toward the hand. The elastic compression of the material of the MCP glove generated pressure on the hand similar to that in current gas-pressurized space suit gloves. The MCP glove prevented the apparent blood shift and thus maintained baseline values of the measured variables despite exposure of the hand to negative pressure.

  8. Pitted keratolysis*

    PubMed Central

    de Almeida Jr, Hiram Larangeira; Siqueira, Rodrigo Nunes; Meireles, Renan da Silva; Rampon, Greice; de Castro, Luis Antonio Suita; Silva, Ricardo Marques e

    2016-01-01

    Pitted keratolysis is a skin disorder that affects the stratum corneum of the plantar surface and is caused by Gram-positive bacteria. A 30-year-old male presented with small punched-out lesions on the plantar surface. A superficial shaving was carried out for scanning electron microscopy. Hypokeratosis was noted on the plantar skin and in the acrosyringium, where the normal elimination of corneocytes was not seen. At higher magnification (x 3,500) bacteria were easily found on the surface and the described transversal bacterial septation was observed. PMID:26982791

  9. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    PubMed Central

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p < 0.001). The model simulations of superficial temperature correlated with the measured skin surface temperature (r > 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  10. Spatial and Temporal Inter-Relationships Between Anomalies of Temperature, Moisture, Cloud Cover, and OLR as Observed by AIRS/AMSU on Aqua

    NASA Technical Reports Server (NTRS)

    Susskind, Joel

    2008-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, percent cloud cover and cloud top pressure, and OLR. Near real time products, stating with September 2002, have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. Results in this paper included products through April 2008. The time period studied is marked by a substantial warming trend of Northern Hemisphere Extropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, are shown below, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. The ability to match this data represents a good test of a model's response to El Nino.

  11. Hyperhidrosis plantaris - a randomized, half-side trial for efficacy and safety of an antiperspirant containing different concentrations of aluminium chloride.

    PubMed

    Streker, Meike; Reuther, Tilmann; Hagen, Linda; Kerscher, Martina

    2012-02-01

    Primary focal hyperhidrosis plantaris can cause impairment in social, physical, leisure and occupational activities. Topical treatment with aluminium chloride is the first-line treatment. The aim of this trial was to evaluate efficacy and safety of two different concentrations of aluminium chloride hexa-hydrate (12.5%, 30%) for 6 weeks. 20 volunteers with hyperhidrosis plantaris were included. Efficacy was evaluated using a clinical rating scale of the hyperhidrosis level and qualitative assessments including Minor's (iodine-starch) test and a standardized sniff test. Furthermore a patient questionnaire and measurements of skin surface pH were done to evaluate the subjective assessments and side effects. The hyperhidrosis level significantly decreased in both concentrations. There were no differences in tolerability regarding the skin surface pH and the patient questionnaires. In addition the hidrotic areas decreased after application of both products and the sniff test improved. Topical application of an antiperspirant containing aluminium chloride reduced sweat production in plantar hyperhidrosis significantly. As both 12.5% and 30% were efficacious and safe, we would recommend 12.5% for outpatient treatment. © The Author • Journal compilation © Blackwell Verlag GmbH, Berlin.

  12. Mechanics of fluid flow over compliant wrinkled polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Raayai, Shabnam; McKinley, Gareth; Boyce, Mary

    2014-03-01

    Skin friction coefficients (based on frontal area) of sharks and dolphins are lower than birds, fish and swimming beetles. By either exploiting flow-induced changes in their flexible skin or microscale textures, dolphins and sharks can change the structure of the fluid flow around them and thus reduce viscous drag forces on their bodies. Inspired by this ability, investigators have tried using compliant walls and riblet-like textures as drag reduction methods in aircraft and marine industries and have been able to achieve reductions up to 19%. Here we investigate flow-structure interaction and wrinkling of soft polymer surfaces that can emulate shark riblets and dolphin's flexible skin. Wrinkling arises spontaneously as the result of mismatched deformation of a thin stiff coating bound to a thick soft elastic substrate. Wrinkles can be fabricated by controlling the ratio of the stiffness of the coating and substrate, the applied displacement and the thickness of the coating. In this work we will examine the evolution in the kinematic structures associated with steady viscous flow over the polymer wrinkled surfaces and in particular compare the skin friction with corresponding results for flow over non-textured and rigid surfaces.

  13. Standardization of skin cleansing in vivo: part I. Development of an Automated Cleansing Device (ACiD).

    PubMed

    Sonsmann, F K; Strunk, M; Gediga, K; John, C; Schliemann, S; Seyfarth, F; Elsner, P; Diepgen, T L; Kutz, G; John, S M

    2014-05-01

    To date, there are no legally binding requirements concerning product testing in cosmetics. This leads to various manufacturer-specific test methods and absent transparent information on skin cleansing products. A standardized in vivo test procedure for assessment of cleansing efficacy and corresponding barrier impairment by the cleaning process is needed, especially in the occupational context where repeated hand washing procedures may be performed at short intervals. For the standardization of the cleansing procedure, an Automated Cleansing Device (ACiD) was designed and evaluated. Different smooth washing surfaces of the equipment for ACiD (incl. goat hair, felt, felt covered with nitrile caps) were evaluated regarding their skin compatibility. ACiD allows an automated, fully standardized skin washing procedure. Felt covered with nitrile as washing surface of the rotating washing units leads to a homogenous cleansing result and does not cause detectable skin irritation, neither clinically nor as assessed by skin bioengineering methods (transepidermal water loss, chromametry). Automated Cleansing Device may be useful for standardized evaluation of the cleansing effectiveness and parallel assessment of the corresponding irritancy potential of industrial skin cleansers. This will allow objectifying efficacy and safety of industrial skin cleansers, thus enabling market transparency and facilitating rational choice of products. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Cortisol extraction through human skin by reverse iontophoresis.

    PubMed

    Ventura, Stephanie A; Heikenfeld, Jason; Brooks, Tiffany; Esfandiari, Leyla; Boyce, Steven; Park, Yoonjee; Kasting, Gerald B

    2017-04-01

    Continuous monitoring of cortisol at the surface of the skin would advance the diagnosis and treatment of cortisol-related diseases, or of elevated cortisol levels related to stress in otherwise healthy populations. Reliable and accurate detection of cortisol at the skin surface remains a limiting factor in real-time monitoring of cortisol. To address this limitation, cortisol extraction through excised human skin by reverse iontophoresis was studied in vitro in side-by-side diffusion cells using a radiolabeled probe. The skin was subjected to four direct current regimens (0, 28, 56, 113μAcm -2 ) with the anode in the donor chamber and the cumulative cortisol concentrations recorded in the receiver chamber. The 56 and 113μAcm -2 regimens significantly increased transport of 3 H-cortisol through the skin, and current density correlated directly with transcutaneous transport of 3 H-cortisol. The threshold of detection of electroosmotic versus passive diffusion of cortisol through the skin was between 28 and 56μAcm -2 . The results of this study are significant in examining how lipophilic analytes found in the bloodstream respond to reverse iontophoresis across the skin. In addition, a device integration technique is presented which illustrates how continuous cortisol extraction and sensing could potentially be achieved in a conventional wearable format. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. How people used ochre at Rose Cottage Cave, South Africa: Sixty thousand years of evidence from the Middle Stone Age

    PubMed Central

    Wadley, Lyn

    2017-01-01

    We describe colour, hardness, grain size, geological type and surface modifications of ochre pieces excavated, first by Malan and later by Harper, from the Middle Stone Age (MSA) of Rose Cottage Cave, 96, 000 to 30, 000 years ago. Soft, bright-red shales are abundant, and most ochre has clayey or silty grain sizes. The post-Howiesons Poort layers contain the most ochre pieces, but the Howiesons Poort layers have the highest frequency of ochre per sediment volume. The pre-Howiesons Poort layers have the highest utilization rate. Use-traces include rubbing, grinding, combined grinding and rubbing, and rare instances of scoring. The processing techniques are proxies for ochre use. Rubbing transfers red ochre powder directly onto soft surfaces, such as human skin, or animal hide. This is appropriate when skin colouring and marking or skin protection (for example from sun, insects or bacteria) is the purpose. Grinding produces ochre powder that can be used for a variety of tasks. It can be mixed with water or other products to create paint, cosmetics or adhesives. Multiple uses of ochre powder and ochre pieces are therefore implied at Rose Cottage and changes through time are apparent. PMID:28445491

  16. Tissue expansion and fluid absorption by skin tissue following intradermal injections through hollow microneedles

    NASA Astrophysics Data System (ADS)

    Shrestha, Pranav; Stoeber, Boris

    2017-11-01

    Hollow microneedles provide a promising alternative to conventional drug delivery techniques due to improved patient compliance and the dose sparing effect. The dynamics of fluid injected through hollow microneedles into skin, which is a heterogeneous and deformable porous medium, have not been investigated extensively in the past. We have introduced the use of Optical Coherence Tomography (OCT) for real-time visualization of fluid injections into excised porcine tissue. The results from ex-vivo experiments, including cross-sectional tissue images from OCT and pressure/flow-rate measurements, show a transient mode of high flow-rate into the tissue followed by a lower steady-state infusion rate. The injected fluid expands the underlying tissue and causes the external free surface of the skin to rise, forming a characteristic intradermal wheal. We have used OCT to visualize the evolution of tissue and free surface deformation, and advancement of the boundary between regions of expanding and stationary tissue. We will show the effect of different injection parameters such as fluid pressure, viscosity and microneedle retraction on the injected volume. This work has been supported through funding from the Collaborative Health Research Program by the Natural Science and Engineering Research Council of Canada and the Canadian Health Research Institute, and through the Canada Research Chairs program.

  17. MR image analytics to characterize upper airway architecture in children with OSAS

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Matsumoto, Monica M. S.; Sin, Sanghun; Arens, Raanan

    2015-03-01

    Mechanisms leading to Obstructive Sleep Apnea Syndrome (OSAS) in obese children are not well understood. We previously analyzed polysomnographic and demographic data to study the anatomical characteristics of the upper airway and body composition in two groups of obese children with and without OSAS, where object volume was evaluated. In this paper, in order to better understand the disease we expand the analysis considering a variety of features that include object-specific features such as size, surface area, sphericity, and image intensity properties of fourteen objects in the vicinity of the upper airway, as well as inter-object relationships such as distance between objects. Our preliminary results indicate several interesting phenomena: volumes and surface areas of adenoid and tonsils increase statistically significantly in OSAS. Standardized T2-weighted MR image intensities differ statistically significantly between the two groups, implying that perhaps intrinsic tissue composition undergoes changes in OSAS. Inter-object distances are significantly different between the two groups for object pairs (skin, oropharynx), (skin, fat pad), (skin, soft palate), (mandible, tongue), (oropharynx, soft palate), (left tonsil, oropharynx), (left tonsil, fat pad) and (left tonsil, right tonsil). We conclude that treatment methods for OSAS such as adenotonsillectomy should respect proportional object size relationships and spatial arrangement of objects as they exist in control subjects.

  18. A more accurate scheme for calculating Earth's skin temperature

    NASA Astrophysics Data System (ADS)

    Tsuang, Ben-Jei; Tu, Chia-Ying; Tsai, Jeng-Lin; Dracup, John A.; Arpe, Klaus; Meyers, Tilden

    2009-02-01

    The theoretical framework of the vertical discretization of a ground column for calculating Earth’s skin temperature is presented. The suggested discretization is derived from the evenly heat-content discretization with the optimal effective thickness for layer-temperature simulation. For the same level number, the suggested discretization is more accurate in skin temperature as well as surface ground heat flux simulations than those used in some state-of-the-art models. A proposed scheme (“op(3,2,0)”) can reduce the normalized root-mean-square error (or RMSE/STD ratio) of the calculated surface ground heat flux of a cropland site significantly to 2% (or 0.9 W m-2), from 11% (or 5 W m-2) by a 5-layer scheme used in ECMWF, from 19% (or 8 W m-2) by a 5-layer scheme used in ECHAM, and from 74% (or 32 W m-2) by a single-layer scheme used in the UCLA GCM. Better accuracy can be achieved by including more layers to the vertical discretization. Similar improvements are expected for other locations with different land types since the numerical error is inherited into the models for all the land types. The proposed scheme can be easily implemented into state-of-the-art climate models for the temperature simulation of snow, ice and soil.

  19. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: morpho-mechanical approach

    NASA Astrophysics Data System (ADS)

    Zahouani, H.; Djaghloul, M.; Vargiolu, R.; Mezghani, S.; Mansori, M. E. L.

    2014-03-01

    The structuring of the dermis with a network of collagen and elastic fibres gives a three-dimensional structure to the skin network with directions perpendicular and parallel to the skin surface. This three-dimensional morphology prints on the surface of the stratum corneum a three dimensional network of lines which express the mechanical tension of the skin at rest. To evaluate the changes of skin morphology, we used a three-dimensional confocal microscopy and characterization of skin imaging of volar forearm microrelief. We have accurately characterize the role of skin line network during chronological aging with the identification of depth scales on the network of lines (z <= 60μm) and the network of lines covering Langer's lines (z > 60 microns). During aging has been highlighted lower rows for elastic fibres, the decrease weakened the tension and results in enlargement of the plates of the microrelief, which gives us a geometric pertinent indicator to quantify the loss of skin tension and assess the stage of aging. The study of 120 Caucasian women shows that ageing in the volar forearm zone results in changes in the morphology of the line network organisation. The decrease in secondary lines (z <= 60 μm) is counterbalanced by an increase in the depth of the primary lines (z > 60 μm) and an accentuation of the anisotropy index.

  20. The underlying structure of skin wrinkles: a hyperspectral approach to crows feet

    NASA Astrophysics Data System (ADS)

    Puccetti, G.

    2017-02-01

    Skin wrinkles are visually perceived by consumers but they are also known to possess an underlying structure not apparent at the surface of the skin. This underlying structure can be brought out by polarized hyperspectral imaging. Wrinkle patterns of eye crow's feet are used as example to show a deeper existing pattern and their characterization versus age on a group of volunteers. The skin inhomogeneity changes within each layer of the skin and can be observed in the shorter wavelength region of the spectrum, about 450nm to 500nm which are well suited to image skin surface inhomogeneities within the central and deep epidermis. Imaging in the 550nm range can serve as a larger scale topology reference because of its deeper penetration into the upper dermis. This serves to bring out the underlying wrinkle pattern as imprinted by collagen anisotropies around deep folds but unapparent to the eye yet. The approach has potential applications in evaluating the internal skin patterns non visible to the eye by mapping their spectral dispersion. This method has thus potentials to evaluate the extent of subsurface structures such as acne and other scars and thereby the efficacy of treatments.

  1. Mechanism of action of stinging nettles.

    PubMed

    Cummings, Alexander J; Olsen, Michael

    2011-06-01

    Inadvertent exposure to the ubiquitous weed, Urtica dioica, called "stinging nettles" produces an immediate stinging and burning sensation on the skin. This investigation evaluates the structural effect that stinging nettle spicules may have on the clinical manifestation of these symptoms. This hypothesis was investigated by exposing murine skin to stinging nettles and then evaluating the skin using electron microscopy. It was hypothesized that the mechanism of action of stinging nettles is both biochemical and mechanical, which may have clinical significance regarding treatment for acute exposure. Fresh post-mortem dermis samples from the carcasses of genetically modified hairless mice were brushed under the stem and leaf of a stinging nettle plant, mimicking the clinical method of exposure a patient might experience. Another set of mouse skin samples was obtained but not exposed to the nettles. Both sets of skin samples were imaged with scanning electron microscopy. The skin samples that were not exposed to nettle leaves were uniform, with occasional striated hairs on the skin surface and no nettle spicules. The skin samples exposed to nettle leaves showed many smooth nettle spicules piercing the skin surface. A few spicules retained their bases, which appear empty of any liquid contents. The mechanism of action of stinging nettles dermatitis appears to be both biochemical and mechanical. Impalement of spicules into the skin likely accounts for the mechanical irritation in addition to the known adverse chemical effects of stinging nettles. Further investigation of treatment modalities is warranted. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  2. Energy efficient skylight construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jentoft, A.P.; Couture, P.A.

    1978-02-14

    An energy efficient skylight construction is described. A skylight cover is secured by a frame to a curbing comprised of an insulating core, the interior and exterior surfaces of which are covered by non-combustible shields separated along the upper and lower surfaces of the curbing by a gap which serves as a ''thermal break'' between the highly conductive inner and outer shields. The frame is pierced by drain openings the exterior of which are covered by a filter type material such as foam or glass fibers that is both absorbtive of moisture and resistant to the passage of air. Themore » frame is secured to the outward portion of the curbing and includes a flange extending inward across the gap between the shields, which serves as a gutter to collect condensation which drips off the glazing. The inward portion of the flange is covered with an insulating gasket which prevents condensation from forming on the flange and which prevents the warmer, more moisture laden, inside air from reaching the cold underside of the gutter flange or the edge of the outerskin. The core insulation is inserted, without adhesives, into the assembled inside skin, and then the exposed surface of the insulation is bonded to the inside surface of the outer skin.« less

  3. Radial and temporal variations in surface heat transfer during cryogen spray cooling.

    PubMed

    Franco, Walfre; Liu, Jie; Wang, Guo-Xiang; Nelson, J Stuart; Aguilar, Guillermo

    2005-01-21

    Cryogen spray cooling (CSC) is a heat extraction process that protects the epidermis from thermal damage during dermatologic laser surgery. The objective of the present work is to investigate radial and temporal variations in the heat transferred through the surface of a skin phantom during CSC. A fast-response thermal sensor is used to measure surface temperatures every 1 mm across a 16 mm diameter of the sprayed surface of the phantom. An analytical expression based on Fourier's law and Duhamel's theorem is used to compute surface heat fluxes from temperature measurements. Results show that radial and temporal variations of the boundary conditions have a strong influence on the homogeneity of heat extraction from the skin phantom. However, there is a subregion of uniform cooling whose size is time dependent. It is also observed that the surface heat flux undergoes a marked dynamic variation, with a maximum heat flux occurring at the centre of the sprayed surface early in the spurt followed by a quick decrease. The study shows that radial and temporal variations of boundary conditions must be taken into account and ideally controlled to guarantee uniform protection during CSC of human skin.

  4. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  5. Soft-tissue reactions following irradiation of primary brain and pituitary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baglan, R.J.; Marks, J.E.

    1981-04-01

    One hundred and ninety-nine patients who received radiation therapy for a primary brain or pituitary tumor were studied for radiation-induced soft-tissue reactions of the cranium, scalp, ears and jaw. The frequency of these reactions was studied as a function of: the radiation dose 5 mm below the skin surface, dose distribution, field size and fraction size. Forty percent of patients had complete and permanent epilation, while 21% had some other soft-tissue complication, including: scalp swelling-6%, external otitis-6%, otitis media-5%, ear swelling-4%, etc. The frequency of soft-tissue reactions correlates directly with the radiation dose at 5 mm below the skin surface.more » Patients treated with small portals (<70 cm/sup 2/) had few soft-tissue reactions. The dose to superficial tissues, and hence the frequency of soft-tissue reactions can be reduced by: (1) using high-energy megavoltage beams; (2) using equal loading of beams; and (3) possibly avoiding the use of electron beams.« less

  6. Different types of stainless steel used in equipment in meat plants do not affect the initial microbial transfer, including pathogens, from pork skin.

    PubMed

    Larivière-Gauthier, Guillaume; Quessy, Sylvain; Fournaise, Sylvain; Letellier, Ann; Fravalo, Philippe

    2015-07-01

    This study describes and measures the impact of different compositions and finishes of stainless steel used in equipment in the meat industry on the transfer of natural flora and selected pathogens from artificially contaminated pork skin. It is known that the adhesion to surfaces of Listeria monocytogenes and Salmonella, 2 pathogens frequently found in contaminated pork meat, depends on the nature and roughness of the surface. Our results show no statistically significant differences in microbial transfer regardless of the types of stainless steel considered, with the highest measured transfer difference being 0.18 log colony-forming units (CFUs)/800 cm(2). Moreover, no differences in total microbial community were observed after transfer on the 5 types of stainless steel using single-strand conformation polymorphism (SSCP). It was concluded that the different characteristics of the stainless steel tested did not affect the initial bacterial transfer in this study.

  7. Method of forming a continuous polymeric skin on a cellular foam material

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  8. User-interactive electronic skin for instantaneous pressure visualization

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components—thin-film transistor, pressure sensor and OLED arrays—are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  9. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  10. User-interactive electronic skin for instantaneous pressure visualization.

    PubMed

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  11. Increased Activity and Apoptosis of Eosinophils in Blister Fluids, Skin and Peripheral Blood of Patients with Bullous Pemphigoid.

    PubMed

    Engmann, Judith; Rüdrich, Urda; Behrens, Georg; Papakonstantinou, Eleni; Gehring, Manuela; Kapp, Alexander; Raap, Ulrike

    2017-04-06

    Bullous pemphigoid (BP) is an autoimmune blistering skin disease that is more common in elderly individuals. The aim of this study was to determine the functional activity of eosinophils in patients with BP compared with healthy donors. Blood, skin and blister-derived eosinophils were strongly activated in patients with BP, seen by increased surface expression of CD69 compared with controls. CD11b was also increased in BP blood eosinophils, which may explain the striking accumulation of eosinophils in BP (1×106 per ml blister fluid). Furthermore, CCL26 was expressed by activated eosinophils in BP skin and in blister fluid. BP eosinophils also released IL-6, IL-8 and IL-1α in BP blister fluids. Apoptosis in cultivated BP eosinophils was increased and accompanied by enhanced surface externalization of CD95. Caspase 3 positive eosinophils in lesional BP skin and blister fluid also showed the initiation of apoptosis. These results reveal novel pathophysiological aspects of BP, with a strong activation pattern and increased apoptosis of eosinophils in the peripheral blood, skin and blister fluids.

  12. Release and skin distribution of silicone-related compound(s) from a silicone gel sheet in vitro.

    PubMed

    Shigeki, S; Nobuoka, N; Murakami, T; Ikuta, Y

    1999-01-01

    The efficacy of topical silicone gel sheeting in prevention and/or reduction of keloids and hypertrophic scars is well recognized. In the present study, we reexamined the possible release of silicone-related compound(s) from a commercially available silicone gel sheet (Cica-Care, Smith and Nephew, Hull, England) in aqueous media in vitro. The silicone gel sheet was also applied on the excised skin surface to examine the possible distribution of silicone-related compounds into the skin in vitro. Silicone-related compounds were measured as silicon by an inductively coupled plasma-atomic emission spectrophotometer. When a piece of silicone gel sheet was placed in phosphate buffer solution (pH 3-9) at 37 degrees C for 7 days, the concentration of silicon in the medium increased with time, depending on the pH of the medium. This indicates that the released silicone-related compounds are water-soluble. When Cica-Care was applied on the surface of excised rat skin, human axilla skin and hypertrophic scars under hydrated conditions in vitro, silicon was detected in all skin samples. Greater distribution was observed in rat skin than in human axilla skin and hypertrophic scars. The release of silicone-related compounds from a silicone gel sheet (Cica-Care) and their distribution into the skin were demonstrated in vitro. Silicone-related compounds distributed into the skin may have pharmacological effects on the skin. Further investigation will be necessary to investigate in detail the action of silicone-related compounds on the proliferation of fibroblasts and excessive production of collagen.

  13. Dry skin (xerosis) in patients undergoing maintenance haemodialysis: the role of decreased sweating of the eccrine sweat gland.

    PubMed

    Park, T H; Park, C H; Ha, S K; Lee, S H; Song, K S; Lee, H Y; Han, D S

    1995-12-01

    The aetiology and the pathophysiological mechanisms underlying the development of dry skin in uraemia are still unclear, but the hydration status of stratum corneum clearly influences the appearance of skin. The xerotic skin texture is often referred to as 'dry skin' and has been suggested as a cause of uraemic pruritus. To understand the aetiology of dry skin in uraemia we measured the status of skin surface hydration of uraemic patients with the corneometer and skin surface hydrometer, the functional capacity and the urea concentration of stratum corneum and the response of eccrine sweat gland to sudorific agent (0.05% pilocarpine HCL) in 18 age-matched haemodialysis patients and 10 healthy volunteers. We also performed the water sorption-desorption test to uraemic and control subjects after application of urea in various concentrations. Uraemic patient's skin showed decreased water content compared to control subjects. However, we found no correlation between dry skin and pruritus. Although the urea concentration of the horny layer in uraemic patients was elevated compared to control subjects (28.2 microgram/cm2 vs 5.04 micrograms/cm2, P < 0.05), its moisturizing effect to relieve pruritus is questionable because its artificial application revealed no improvement of the functional capacity of horny layer in concentration 5 times higher than the physiological concentration. Uraemic patients showed decreased sweating response to sudorific agent. In conclusion, the functional abnormalities of eccrine sweat glands may be account for dry skin in uraemic patients at least in part, but there is no correlation between xerosis and pruritus.

  14. Cutaneous human papillomavirus types detected on the surface of male external genital lesions: A case series within the HPV Infection in Men Study

    PubMed Central

    Pierce Campbell, Christine M.; Messina, Jane L.; Stoler, Mark H.; Jukic, Drazen M.; Tommasino, Massimo; Gheit, Tarik; Rollison, Dana E.; Sichero, Laura; Sirak, Bradley A.; Ingles, Donna J.; Abrahamsen, Martha; Lu, Beibei; Villa, Luisa L.; Lazcano-Ponce, Eduardo; Giuliano, Anna R.

    2013-01-01

    Background Cutaneous human papillomaviruses (HPVs) may be associated with cutaneous epithelial lesions and non-melanoma skin cancers. No study has systematically evaluated the presence of genus beta [β]-HPV in male genital skin or external genital lesions (EGLs). Objectives To examine cutaneous β-HPV types detected on the surface of EGLs in men and describe their presence prior to EGL development. Study design A retrospective case series was conducted among 69 men with pathologically confirmed EGLs (n=72) who participated in the HPV Infection in Men Study. Archived exfoliated cells collected from the surface of each EGL and normal genital skin specimens 6–12 months preceding EGL development were tested for β-HPV DNA using a type-specific multiplex genotyping assay. Results β-HPV DNA was detected on 61.1% of all EGLs, with types 38 (16.7%), 5 (15.3%), and 12 (12.5%) most commonly identified. HPV prevalence differed across pathological diagnoses, with the largest number of β-HPV types detected on condylomas. Most β-HPV types were detected on normal genital skin prior to EGL development, though the prevalence was lower on EGLs compared to preceding normal genital skin. Conclusions EGLs and the normal genital skin of men harbor a large number of β-HPV types; however, it appears that β-HPVs are unrelated to EGL development in men. Despite evidence to support a causal role in skin carcinogenesis at UVR-exposed sites, cutaneous HPV appears unlikely to cause disease at the UVR-unexposed genitals. PMID:24210970

  15. Suitability of frequency modulated thermal wave imaging for skin cancer detection-A theoretical prediction.

    PubMed

    Bhowmik, Arka; Repaka, Ramjee; Mulaveesala, Ravibabu; Mishra, Subhash C

    2015-07-01

    A theoretical study on the quantification of surface thermal response of cancerous human skin using the frequency modulated thermal wave imaging (FMTWI) technique has been presented in this article. For the first time, the use of the FMTWI technique for the detection and the differentiation of skin cancer has been demonstrated in this article. A three dimensional multilayered skin has been considered with the counter-current blood vessels in individual skin layers along with different stages of cancerous lesions based on geometrical, thermal and physical parameters available in the literature. Transient surface thermal responses of melanoma during FMTWI of skin cancer have been obtained by integrating the heat transfer model for biological tissue along with the flow model for blood vessels. It has been observed from the numerical results that, flow of blood in the subsurface region leads to a substantial alteration on the surface thermal response of the human skin. The alteration due to blood flow further causes a reduction in the performance of the thermal imaging technique during the thermal evaluation of earliest melanoma stages (small volume) compared to relatively large volume. Based on theoretical study, it has been predicted that the method is suitable for detection and differentiation of melanoma with comparatively large volume than the earliest development stages (small volume). The study has also performed phase based image analysis of the raw thermograms to resolve the different stages of melanoma volume. The phase images have been found to be clearly individuate the different development stages of melanoma compared to raw thermograms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols.

    PubMed

    Bomar, Lindsey; Brugger, Silvio D; Yost, Brian H; Davies, Sean S; Lemon, Katherine P

    2016-01-05

    Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization. Copyright © 2016 Bomar et al.

  17. Skin and surface lead contamination, hygiene programs, and work practices of bridge surface preparation and painting contractors.

    PubMed

    Virji, M Abbas; Woskie, Susan R; Pepper, Lewis D

    2009-02-01

    A 2005 regulatory review of the lead in construction standard by the Occupational Safety and Health Administration (OSHA) noted that alternative pathways of exposure can be as significant as inhalation exposure and that noncompliance with the standard pertaining to hygiene facilities and practices was the second most commonly violated section of the standard. Noncompliance with provisions of the standard and unhealthy work and hygiene practices likely increase the likelihood of take-home lead via contaminated clothing, automobiles, and skin, thus contributing to elevated blood lead levels (BLL) among construction workers and their family members. We performed a cross-sectional study of bridge painters working for small contractors in Massachusetts to investigate causes of persistent elevated BLLs and to assess lead exposures. Thirteen work sites were evaluated for a 2-week period during which surface and skin wipe samples were collected and qualitative information was obtained on personal hygiene practices, decontamination and hand wash facilities, and respiratory protection programs. Results showed lead contamination on workers' skin, respirators, personal automobiles, and the decontamination unit, indicating a significant potential for take-home lead exposure. Overall, the geometric mean (GM) skin lead levels ranged from 373 microg on workers' faces at end of shift to 814 microg on hands at break time. The overall GM lead level inside respirators was 143 microg before work and 286 microg after work. Lead contamination was also present inside workers' personal vehicles as well as on surfaces inside the clean side of the decontamination unit. Review of the respiratory protection programs, work site decontamination and hand wash facilities, and personal hygiene practices indicated that these factors had significant impact on skin and surface contamination levels and identified significant opportunities for improving work site facilities and personal practices. Elevated lead exposure and BLL can be minimized by strict adherence to the OSHA provisions for functioning decontamination and hygiene facilities and healthy personal hygiene practices.

  18. Cutaneous lesions in pet rabbits following subcutaneous administration of a novel bivalent vaccine against myxomatosis and rabbit haemorrhagic disease.

    PubMed

    Selleri, Paolo; Di Girolamo, Nicola; Vögtlin, Andrea; Fileccia, Ivan; Hoop, Richard; Bongiovanni, Laura

    2014-12-01

    A novel bivalent vaccine to protect against myxomatosis and rabbit haemorrhagic disease is commercially available for pet rabbits. To describe the appearance of cutaneous lesions arising in pet rabbits positive for myxoma virus (MV) by RT-PCR evaluation shortly after vaccination. Four pet rabbits presenting with papular, crusting skin lesions ~10 days after vaccination. Histological evaluation of formalin-fixed skin biopsies obtained from lesional skin (case 1). Real-time polymerase chain reaction (RT-PCR) evaluation of paraffin-embedded tissue from skin biopsies (case 1) and crusts obtained from the lesion surface (cases 2-4) for myxoma virus are reported as cycle threshold (Ct ) values. Lesions affecting the ear pinna, dorsal aspect of the nose, vulva and/or conjunctiva are reported. Histopathological findings included severe ulcerative, necrotizing dermatitis and intralesional cytoplasmic inclusion bodies in myxoma cells. DNA was amplified from all the paraffin-embedded skin biopsies (Ct  = 34-35) and crusts (Ct  = 20-24). Although a wild virus challenge cannot be definitively excluded, veterinarians and pet-owners should be aware that cutaneous lesions have been observed after vaccination with this novel vaccine in low numbers of rabbits. © 2014 ESVD and ACVD.

  19. Composite corrugated structures for morphing wing skin applications

    NASA Astrophysics Data System (ADS)

    Thill, C.; Etches, J. A.; Bond, I. P.; Potter, K. D.; Weaver, P. M.

    2010-12-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles.

  20. Development of a guinea pig cutaneous radiation injury model using low penetrating X-rays.

    PubMed

    Rodgers, Kathleen E; Tan, Alick; Kim, Lila; Espinoza, Theresa; Meeks, Christopher; Johnston, William; Maulhardt, Holly; Donald, Melissa; Hill, Colin; diZerega, Gere S

    2016-08-01

    A guinea pig skin model was developed to determine the dose-dependent response to soft X-ray radiation into the dermis. X-ray exposure (50 kVp) was defined to a 4.0 × 4.0 cm area on the lateral surface of a guinea pig using lead shielding. Guinea pigs were exposed to a single fraction of X-ray irradiation ranging from 25-79 Gy via an XRAD320ix Biological Irradiator with the collimator removed. Gross skin changes were measured using clinical assessments defined by the Kumar scale. Skin contracture was assessed, as well as histological evaluations. Loss of dermal integrity was shown after a single dose of soft X-ray radiation at or above 32 Gy with the central 2.0 × 2.0 cm of the exposed site being the most affected. Hallmarks of the skin injury included moist desquamation, ulceration and wound contracture, as well as alterations in epithelium, dermis, muscle and adipose. Changes in the skin were time- and radiation dose-dependent. Full-thickness injury occurred without animal mortality or gross changes in the underlying organs. The guinea pig is an appropriate small animal model for the short-term screening of countermeasures for cutaneous radiation injury (CRI).

Top