Numerical optimization of conical flow waveriders including detailed viscous effects
NASA Technical Reports Server (NTRS)
Bowcutt, Kevin G.; Anderson, John D., Jr.; Capriotti, Diego
1987-01-01
A family of optimized hypersonic waveriders is generated and studied wherein detailed viscous effects are included within the optimization process itself. This is in contrast to previous optimized waverider work, wherein purely inviscid flow is used to obtain the waverider shapes. For the present waveriders, the undersurface is a streamsurface of an inviscid conical flowfield, the upper surface is a streamsurface of the inviscid flow over a tapered cylinder (calculated by the axisymmetric method of characteristics), and the viscous effects are treated by integral solutions of the boundary layer equations. Transition from laminar to turbulent flow is included within the viscous calculations. The optimization is carried out using a nonlinear simplex method. The resulting family of viscous hypersonic waveriders yields predicted high values of lift/drag, high enough to break the L/D barrier based on experience with other hypersonic configurations. Moreover, the numerical optimization process for the viscous waveriders results in distinctly different shapes compared to previous work with inviscid-designed waveriders. Also, the fine details of the viscous solution, such as how the shear stress is distributed over the surface, and the location of transition, are crucial to the details of the resulting waverider geometry. Finally, the moment coefficient variations and heat transfer distributions associated with the viscous optimized waveriders are studied.
A study of viscous interaction effects on hypersonic waveriders. Ph.D. Thesis, Dec. 1991
NASA Technical Reports Server (NTRS)
Chang, Jinhwa
1992-01-01
The effects of viscous interaction in the analysis and design of improved classes of viscous optimized hypersonic waveriders is examined. The Corda computer program is used to generate viscous optimized hypersonic waveriders from conical flow fields without viscous interaction. Each waverider is optimized for maximum L/D, and comparison studies are made between cases with and without viscous interaction. The results show that aerodynamic performance of the viscous interaction waveriders are reduced due mainly to a large increase in skin-friction drag associated with the viscous interaction phenomena that grows with increasing Mach number and altitude, but some of this performance loss can be recouped by including viscous interactions within the optimization procedure. When the waverider is optimized for viscous interaction, the shape can change dramatically. A significant result of the present work delineates on a velocity-altitude map the region where viscous interaction effects are significant for modern hypersonic waveriders by performing parametric runs to produce L/D, C sub L, and C sub D contour plots for Mach numbers from 6 to 30 at altitudes from 30 to 80 km.
Wake curvature and trailing edge interaction effects in viscous flow over airfoils
NASA Technical Reports Server (NTRS)
Melnik, R. E.
1979-01-01
A theory developed for analyzing viscous flows over airfoils at high Reynolds numbers is described. The theory includes a complete treatment of viscous interaction effects induced by the curved wake behind the airfoil and accounts for normal pressure gradients across the boundary layer in the trailing edge region. A brief description of a computer code that was developed to solve the extended viscous interaction equations is given. Comparisons of the theoretical results with wind tunnel data for two rear loaded airfoils at supercritical conditions are presented.
Microfluidic System Simulation Including the Electro-Viscous Effect
NASA Technical Reports Server (NTRS)
Rojas, Eileen; Chen, C. P.; Majumdar, Alok
2007-01-01
This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.
Effect of viscous dissipation and radiation in an annular cone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, N. J. Salman; Kamangar, Sarfaraz; Khan, T. M. Yunus, E-mail: yunus.tatagar@gmail.com
The viscous dissipation is an effect due to which heat is generated inside the medium. The presence of radiation further complicates the heat transfer behavior inside porous medium. The present paper discusses the combined effect of viscous dissipation and radiation inside a porous medium confined in an annular cone with inner radius r{sub i}. The viscous dissipation and radiation terms are included in the energy equation thereby solving the coupled momentum and energy equations with the help of finite element method. The results are presented in terms of isothermal and streamline indicating the thermal and fluid flow behavior of porousmore » medium. It is found that the combination of viscous dissipation and radiation parameter and the cone angle has significant effect on the heat transfer and fluid flow behavior inside the porous medium. The fluid velocity is found to increase with the increase in Raleigh number.« less
Status and Prospects of Computational Fluid Dynamics for Unsteady Transonic Viscous Flows.
1984-10-01
including external stores) at transonic flight conditions for which viscous effects are important, and to couple these aerodynamic characteristics with the...OBTAINED * EXPENSIVE FOR MANY RUNS * SCALING (VISCOUS EFFECTS , * CHEMICAL NONEQUILIBRIUM. etc.) USE BOTH TOGETHER - ~. om~innta rv -cliD tor aero:nautical...8217onl’-eir ~ nvsc j 963s 1970s Re-averige, * ’aver-71 :J, ’r ’s 1980S t.urb, enr,, (38 Ius* 19805* ~’ii~~ .r **~’, r o nstead; effects ~~~~~~~~~i, trOr
Some Simple Solutions to the Problem of Predicting Boundary-Layer Self-Induced Pressures
NASA Technical Reports Server (NTRS)
Bertram, Mitchel H.; Blackstock, Thomas A.
1961-01-01
Simplified theoretical approaches are shown, based on hypersonic similarity boundary-layer theory, which allow reasonably accurate estimates to be made of the surface pressures on plates on which viscous effects are important. The consideration of viscous effects includes the cases where curved surfaces, stream pressure gradients, and leadingedge bluntness are important factors.
A discrete geometric approach for simulating the dynamics of thin viscous threads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Audoly, B., E-mail: audoly@lmm.jussieu.fr; Clauvelin, N.; Brun, P.-T.
We present a numerical model for the dynamics of thin viscous threads based on a discrete, Lagrangian formulation of the smooth equations. The model makes use of a condensed set of coordinates, called the centerline/spin representation: the kinematic constraints linking the centerline's tangent to the orientation of the material frame is used to eliminate two out of three degrees of freedom associated with rotations. Based on a description of twist inspired from discrete differential geometry and from variational principles, we build a full-fledged discrete viscous thread model, which includes in particular a discrete representation of the internal viscous stress. Consistencymore » of the discrete model with the classical, smooth equations for thin threads is established formally. Our numerical method is validated against reference solutions for steady coiling. The method makes it possible to simulate the unsteady behavior of thin viscous threads in a robust and efficient way, including the combined effects of inertia, stretching, bending, twisting, large rotations and surface tension.« less
Procedures for the computation of unsteady transonic flows including viscous effects
NASA Technical Reports Server (NTRS)
Rizzetta, D. P.
1982-01-01
Modifications of the code LTRAN2, developed by Ballhaus and Goorjian, which account for viscous effects in the computation of planar unsteady transonic flows are presented. Two models are considered and their theoretical development and numerical implementation is discussed. Computational examples employing both models are compared with inviscid solutions and with experimental data. Use of the modified code is described.
Viscosity as related to dietary fiber: a review.
Dikeman, Cheryl L; Fahey, George C
2006-01-01
Viscosity is a physicochemical property associated with dietary fibers, particularly soluble dietary fibers. Viscous dietary fibers thicken when mixed with fluids and include polysaccharides such as gums, pectins, psyllium, and beta-glucans. Although insoluble fiber particles may affect viscosity measurement, viscosity is not an issue regards insoluble dietary fibers. Viscous fibers have been credited for beneficial physiological responses in human, animal, and animal-alternative in vitro models. The following article provides a review of viscosity as related to dietary fiber including definitions and instrumentation, factors affecting viscosity of solutions, and effects of viscous polysaccharides on glycemic response, blood lipid attenuation, intestinal enzymatic activity, digestibility, and laxation.
A Note on the Wave Action Density of a Viscous Instability Mode on a Laminar Free-shear Flow
NASA Technical Reports Server (NTRS)
Balsa, Thomas F.
1994-01-01
Using the assumptions of an incompressible and viscous flow at large Reynolds number, we derive the evolution equation for the wave action density of an instability wave traveling on top of a laminar free-shear flow. The instability is considered to be viscous; the purpose of the present work is to include the cumulative effect of the (locally) small viscous correction to the wave, over length and time scales on which the underlying base flow appears inhomogeneous owing to its viscous diffusion. As such, we generalize our previous work for inviscid waves. This generalization appears as an additional (but usually non-negligible) term in the equation for the wave action. The basic structure of the equation remains unaltered.
NASA Technical Reports Server (NTRS)
Streett, C. L.
1981-01-01
A viscous-inviscid interaction method has been developed by using a three-dimensional integral boundary-layer method which produces results in good agreement with a finite-difference method in a fraction of the computer time. The integral method is stable and robust and incorporates a model for computation in a small region of streamwise separation. A locally two-dimensional wake model, accounting for thickness and curvature effects, is also included in the interaction procedure. Computation time spent in converging an interacted result is, many times, only slightly greater than that required to converge an inviscid calculation. Results are shown from the interaction method, run at experimental angle of attack, Reynolds number, and Mach number, on a wing-body test case for which viscous effects are large. Agreement with experiment is good; in particular, the present wake model improves prediction of the spanwise lift distribution and lower surface cove pressure.
NASA Astrophysics Data System (ADS)
Vijayakumar, B.; Kesavan, Sundarammal
2018-04-01
Piezo-viscous effect i.e., Viscosity-pressure dependency has an important part in the applications of fluid flows like fluid lubrication, micro fluidics and geophysics. In this paper, the joint effects of piezo-viscous dependency and non-Newtonian couple stresses on the performance of circular porous plate’s squeeze film bearing have been studied. The results for pressure with various values of viscosity-pressure parameters are numerically calculated and compared with iso-viscous couple stress and Newtonian lubricants. Due to piezo-viscous effect, the pressure with piezo-viscous Non-Newtonian is significantly higher than the pressure with iso-viscous Newtonian and iso-viscous Non-Newtonian fluid.
NASA Technical Reports Server (NTRS)
Lyell, Margaret J.
1992-01-01
The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.
NASA Technical Reports Server (NTRS)
Solomon, S. C.; Comer, R. P.; Head, J. W.
1982-01-01
A topographic profile of the young large lunar basin, Orientale, is presented in order to examine the effects of viscous relaxation on basin topography. Analytical models for viscous flow are considered, showing a wavelength-dependence of time constants for viscous decay on the decrease in viscosity with depth and on the extent of the isostatic compensation of the initial topography. Lunar rheological models which are developed include a half-space model for uniform Newtonian viscosity, density, and gravitational acceleration, a layer over inviscid half space model with material inviscid over geological time scales, and a layer with isostatic compensation where a uniformly viscous layer overlies an inviscid half space of higher density. Greater roughness is concluded, and has been observed, on the moon's dark side due to continued lower temperatures since the time of heavy bombardment.
Khan, K; Jovanovski, E; Ho, H V T; Marques, A C R; Zurbau, A; Mejia, S B; Sievenpiper, J L; Vuksan, V
2018-01-01
Dietary fiber intake, especially viscous soluble fiber, has been established as a means to reduce cardiometabolic risk factors. Whether this is true for blood pressure remains controversial. A systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to investigate the effects of viscous soluble fiber supplementation on blood pressure and quantify the effect of individual fibers. MEDLINE, Embase, and Cochrane databases were searched. We included RCTs of ≥4-weeks in duration assessing viscous fiber supplementation from five types: β-glucan from oats and barley, guar gum, konjac, pectin and psyllium, on systolic blood pressure (SBP) and diastolic blood pressure (DBP). Study data were pooled using the generic inverse variance method with random effects models and expressed as mean differences (MD) with 95% confidence intervals (CIs). Twenty-two (N = 1430) and twenty-one RCTs (N = 1343) were included in the final analysis for SBP and DBP, respectively. Viscous fiber reduced SBP (MD = -1.59 mmHg [95% CI: -2.72,-0.46]) and DBP (MD = -0.39 mmHg [95% CI: -0.76,-0.01]) at a median dose of 8.7 g/day (1.45-30 g/day) over a median follow-up of 7-weeks. Substantial heterogeneity in SBP (I 2 = 72%, P < 0.01) and DBP (I 2 = 67%, P < 0.01) analysis occurred. Within the five fiber types, SBP reductions were observed only for supplementation using psyllium fiber (MD = -2.39 mmHg [95% CI: -4.62,-0.17]). Viscous soluble fiber has an overall lowering effect on SBP and DBP. Inclusion of viscous fiber to habitual diets may have additional value in reducing CVD risk via improvement in blood pressure. ClinicalTrials.gov identifier-NCT02670967. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Effects of mantle rheologies on viscous heating induced by Glacial Isostatic Adjustment
NASA Astrophysics Data System (ADS)
Huang, PingPing; Wu, Patrick; van der Wal, Wouter
2018-04-01
It has been argued that viscous dissipation from mantle flow in response to surface loading during glacial cycles can result in short-term heating and thus trigger transient volcanism or changes in mantle properties, which may in turn affect mantle dynamics. Furthermore, heating near the Earth's surface can also affect the stability of ice sheets. We have studied the magnitude and spatial-temporal distribution of viscous heating induced in the mantle by the realistic ice model ICE-6G and gravitationally consistent ocean loads. Three types of mantle rheologies, including linear, non-linear and composite rheologies are considered to see if non-linear creep can induce larger viscous heating than linear rheology. We used the Coupled-Laplace-Finite-Element model of Glacial Isostatic Adjustment (GIA) to compute the strain, stress and shear heating during a glacial cycle. We also investigated the upper bound of temperature change and surface heat flux change due to viscous heating. We found that maximum viscous heating occurs near the end of deglaciation near the edge of the ice sheet with amplitude as high as 120 times larger than that of the chondritic radioactive heating. The maximum heat flux due to viscous heating can reach 30 mW m-2, but the area with large heat flux is small and the timescale of heating is short. As a result, the upper bound of temperature change due to viscous heating is small. Even if 30 glacial cycles are included, the largest temperature change can be of the order of 0.3 °C. Thus, viscous heating induced by GIA cannot induce volcanism and cannot significantly affect mantle material properties, mantle dynamics nor ice-sheet stability.
Investigation of parabolic computational techniques for internal high-speed viscous flows
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Power, G. D.
1985-01-01
A feasibility study was conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves were present. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.
Non-equilibrium radiation from viscous chemically reacting two-phase exhaust plumes
NASA Technical Reports Server (NTRS)
Penny, M. M.; Smith, S. D.; Mikatarian, R. R.; Ring, L. R.; Anderson, P. G.
1976-01-01
A knowledge of the structure of the rocket exhaust plumes is necessary to solve problems involving plume signatures, base heating, plume/surface interactions, etc. An algorithm is presented which treats the viscous flow of multiphase chemically reacting fluids in a two-dimensional or axisymmetric supersonic flow field. The gas-particle flow solution is fully coupled with the chemical kinetics calculated using an implicit scheme to calculate chemical production rates. Viscous effects include chemical species diffusion with the viscosity coefficient calculated using a two-equation turbulent kinetic energy model.
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation.
Weber, C R; Clark, D S; Cook, A W; Busby, L E; Robey, H F
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10-100.
Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
NASA Astrophysics Data System (ADS)
Weber, C. R.; Clark, D. S.; Cook, A. W.; Busby, L. E.; Robey, H. F.
2014-05-01
Achieving ignition in inertial confinement fusion (ICF) requires the formation of a high-temperature (>10 keV) central hot spot. Turbulence has been suggested as a mechanism for degrading the hot-spot conditions by altering transport properties, introducing colder, mixed material, or reducing the conversion of radially directed kinetic energy to hot-spot heating. We show, however, that the hot spot is very viscous, and the assumption of turbulent conditions in the hot spot is incorrect. This work presents the first high-resolution, three-dimensional simulations of National Ignition Facility (NIF) implosion experiments using detailed knowledge of implosion dynamics and instability seeds and including an accurate model of physical viscosity. We find that when viscous effects are neglected, the hot spot can exhibit a turbulent kinetic energy cascade. Viscous effects, however, are significant and strongly damp small-scale velocity structures, with a hot-spot Reynolds number in the range of only 10--100.
Observation of Rayleigh-Taylor-instability evolution in a plasma with magnetic and viscous effects
Adams, Colin S.; Moser, Auna L.; Hsu, Scott C.
2015-11-06
We present time-resolved observations of Rayleigh-Taylor-instability (RTI) evolution at the interface between an unmagnetized plasma jet colliding with a stagnated, magnetized plasma. The observed instability growth time (~10μs) is consistent with the estimated linear RTI growth rate calculated using experimentally inferred values of density (~10 14cm–3) and deceleration (~10 9 m/s 2). The observed mode wavelength (≳1 cm) nearly doubles within a linear growth time. Furthermore, theoretical estimates of magnetic and viscous stabilization and idealized magnetohydrodynamic simulations including a physical viscosity model both suggest that the observed instability evolution is subject to magnetic and/or viscous effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastero-Gil, Mar; Cerezo, Rafael; Berera, Arjun
2012-11-01
The effects of bulk viscosity are examined for inflationary dynamics in which dissipation and thermalization are present. A complete stability analysis is done for the background inflaton evolution equations, which includes both inflaton dissipation and radiation bulk viscous effects. Three representative approaches of bulk viscous irreversible thermodynamics are analyzed: the Eckart noncausal theory, the linear and causal theory of Israel-Stewart and a more recent nonlinear and causal bulk viscous theory. It is found that the causal theories allow for larger bulk viscosities before encountering an instability in comparison to the noncausal Eckart theory. It is also shown that the causalmore » theories tend to suppress the radiation production due to bulk viscous pressure, because of the presence of relaxation effects implicit in these theories. Bulk viscosity coefficients derived from quantum field theory are applied to warm inflation model building and an analysis is made of the effects to the duration of inflation. The treatment of bulk pressure would also be relevant to the reheating phase after inflation in cold inflation dynamics and during the radiation dominated regime, although very little work in both areas has been done; the methodology developed in this paper could be extended to apply to these other problems.« less
NASA Technical Reports Server (NTRS)
Tassa, Y.; Anderson, B. H.; Reshotko, E.
1977-01-01
An interactive procedure was developed for supersonic viscous flows that can be used for either two-dimensional or axisymmetric configurations. The procedure is directed to supersonic internal flows as well as those supersonic external flows that require consideration of mutual interaction between the outer flow and the boundary layer flow. The flow field is divided into two regions: an inner region which is highly viscous and mostly subsonic and an outer region where the flow is supersonic and in which viscous effects are small but not negligible. For the outer region a numerical solution is obtained by applying the method of characteristics to a system of equations which includes viscous and conduction transport terms only normal to the streamlines. The inner region is treated by a system of equations of the boundary layer type that includes higher order effects such as longitudinal and transverse curvature and normal pressure gradients. These equations are coupled and solved simultaneously in the physical coordinates by using an implicit finite difference scheme. This system can also be used to calculate laminar and turbulent boundary layers using a scalar eddy viscosity concept.
The effects of viscosity on the stability of a trailing-line vortex in compressible flow
NASA Technical Reports Server (NTRS)
Stott, Jillian A. K.; Duck, Peter W.
1994-01-01
We consider the effects of viscosity on the inviscid stability of the Batchelor vortex in a compressible flow. The problem is tackled asymptotically, in the limit of large (streamwise and azimuthal) wavenumbers, together with large Mach numbers. Previous studies, with viscous effects neglected, found that the nature of the solution passes through different regimes as the Mach number increases, relative to the wavenumber. This structure persists when viscous effects are included in the analysis. In the present study the mode present in the incompressible case ceases to be unstable at high Mach numbers and a center mode forms, whose stability characteristics are determined primarily by conditions close to the vortex axis. We find generally that viscosity has a stabilizing influence on the flow, while in the case of center modes, viscous effects become important at much larger Reynolds numbers than for the first class of disturbance.
Viscous wing theory development. Volume 1: Analysis, method and results
NASA Technical Reports Server (NTRS)
Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.
1986-01-01
Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.
Lubrication pressure and fractional viscous damping effects on the spring-block model of earthquakes
NASA Astrophysics Data System (ADS)
Tanekou, G. B.; Fogang, C. F.; Kengne, R.; Pelap, F. B.
2018-04-01
We examine the dynamical behaviours of the "single mass-spring" model for earthquakes considering lubrication pressure effects on pre-existing faults and viscous fractional damping. The lubrication pressure supports a part of the load, thereby reducing the normal stress and the associated friction across the gap. During the co-seismic phase, all of the strain accumulated during the inter-seismic duration does not recover; a fraction of this strain remains as a result of viscous relaxation. Viscous damping friction makes it possible to study rocks at depth possessing visco-elastic behaviours. At increasing depths, rock deformation gradually transitions from brittle to ductile. The fractional derivative is based on the properties of rocks, including information about previous deformation events ( i.e., the so-called memory effect). Increasing the fractional derivative can extend or delay the transition from stick-slip oscillation to a stable equilibrium state and even suppress it. For the single block model, the interactions of the introduced lubrication pressure and viscous damping are found to give rise to oscillation death, which corresponds to aseismic fault behaviour. Our result shows that the earthquake occurrence increases with increases in both the damping coefficient and the lubrication pressure. We have also revealed that the accumulation of large stresses can be controlled via artificial lubrication.
Stability of high-speed boundary layers in oxygen including chemical non-equilibrium effects
NASA Astrophysics Data System (ADS)
Klentzman, Jill; Tumin, Anatoli
2013-11-01
The stability of high-speed boundary layers in chemical non-equilibrium is examined. A parametric study varying the edge temperature and the wall conditions is conducted for boundary layers in oxygen. The edge Mach number and enthalpy ranges considered are relevant to the flight conditions of reusable hypersonic cruise vehicles. Both viscous and inviscid stability formulations are used and the results compared to gain insight into the effects of viscosity and thermal conductivity on the stability. It is found that viscous effects have a strong impact on the temperature and mass fraction perturbations in the critical layer and in the viscous sublayer near the wall. Outside of these areas, the perturbations closely match in the viscous and inviscid models. The impact of chemical non-equilibrium on the stability is investigated by analyzing the effects of the chemical source term in the stability equations. The chemical source term is found to influence the growth rate of the second Mack mode instability but not have much of an effect on the mass fraction eigenfunction for the flow parameters considered. This work was supported by the AFOSR/NASA/National Center for Hypersonic Laminar-Turbulent Transition Research.
One-dimensional reduction of viscous jets. I. Theory
NASA Astrophysics Data System (ADS)
Pitrou, Cyril
2018-04-01
We build a general formalism to describe thin viscous jets as one-dimensional objects with an internal structure. We present in full generality the steps needed to describe the viscous jets around their central line, and we argue that the Taylor expansion of all fields around that line is conveniently expressed in terms of symmetric trace-free tensors living in the two dimensions of the fiber sections. We recover the standard results of axisymmetric jets and we report the first and second corrections to the lowest order description, also allowing for a rotational component around the axis of symmetry. When applied to generally curved fibers, the lowest order description corresponds to a viscous string model whose sections are circular. However, when including the first corrections, we find that curved jets generically develop elliptic sections. Several subtle effects imply that the first corrections cannot be described by a rod model since it amounts to selectively discard some corrections. However, in a fast rotating frame, we find that the dominant effects induced by inertial and Coriolis forces should be correctly described by rod models. For completeness, we also recover the constitutive relations for forces and torques in rod models and exhibit a missing term in the lowest order expression of viscous torque. Given that our method is based on tensors, the complexity of all computations has been beaten down by using an appropriate tensor algebra package such as xAct, allowing us to obtain a one-dimensional description of curved viscous jets with all the first order corrections consistently included. Finally, we find a description for straight fibers with elliptic sections as a special case of these results, and recover that ellipticity is dynamically damped by surface tension. An application to toroidal viscous fibers is presented in the companion paper [Pitrou, Phys. Rev. E 97, 043116 (2018), 10.1103/PhysRevE.97.043116].
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
An analysis of the viscous flow through a compact radial turbine by the average passage approach
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Beach, Timothy A.
1990-01-01
A steady, three-dimensional viscous average passage computer code is used to analyze the flow through a compact radial turbine rotor. The code models the flow as spatially periodic from blade passage to blade passage. Results from the code using varying computational models are compared with each other and with experimental data. These results include blade surface velocities and pressures, exit vorticity and entropy contour plots, shroud pressures, and spanwise exit total temperature, total pressure, and swirl distributions. The three computational models used are inviscid, viscous with no blade clearance, and viscous with blade clearance. It is found that modeling viscous effects improves correlation with experimental data, while modeling hub and tip clearances further improves some comparisons. Experimental results such as a local maximum of exit swirl, reduced exit total pressures at the walls, and exit total temperature magnitudes are explained by interpretation of the flow physics and computed secondary flows. Trends in the computed blade loading diagrams are similarly explained.
NASA Technical Reports Server (NTRS)
Alfriend, K. T.
1973-01-01
A ring partially filled with a viscous fluid has been analyzed as a nutation damper for a spinning satellite. The fluid has been modelled as a rigid slug of finite length moving in a tube and resisted by a linear viscous force. It is shown that there are two distinct modes of motion, called the spin synchronous mode and the nutation synchronous mode. Time constants for each mode are obtained for both the symmetric and asymmetric satellite. The effects of a stop in the tube and an offset of the ring from the spin axis are also investigated. An analysis of test results is also given including a determination of the effect of gravity on the time constants in the two modes.
Transient thermal driven bubble's surface and its potential ultrasound-induced damage
NASA Astrophysics Data System (ADS)
Movahed, Pooya; Freund, Jonathan B.
2017-11-01
Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.
A Viscoelastic Hybrid Shell Finite Element
NASA Technical Reports Server (NTRS)
Johnson, Arthur
1999-01-01
An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
An analysis method for two-dimensional transonic viscous flow
NASA Technical Reports Server (NTRS)
Bavitz, P. C.
1975-01-01
A method for the approximate calculation of transonic flow over airfoils, including shock waves and viscous effects, is described. Numerical solutions are obtained by use of a computer program which is discussed in the appendix. The importance of including the boundary layer in the analysis is clearly demonstrated, as well as the need to improve on existing procedures near the trailing edge. Comparisons between calculations and experimental data are presented for both conventional and supercritical airfoils, emphasis being on the surface pressure distribution, and good agreement is indicated.
Effect of Viscous Agents on Corneal Density in Dry Eye Disease.
Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig
2015-10-01
To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.
NASA Technical Reports Server (NTRS)
Huerre, P.; Karamcheti, K.
1976-01-01
The theory of sound propagation is examined in a viscous, heat-conducting fluid, initially at rest and in a uniform state, and contained in a rigid, impermeable duct with isothermal walls. Topics covered include: (1) theoretical formulation of the small amplitude fluctuating motions of a viscous, heat-conducting and compressible fluid; (2) sound propagation in a two dimensional duct; and (3) perturbation study of the inplane modes.
Viscous-resistive layer in Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Silveira, F. E. M.; Orlandi, H. I.
2017-03-01
In this work, new scaling laws of the time growth rate γ of the Rayleigh-Taylor instability with the plasma resistivity η, kinematic viscosity ν, and electron number density ne are derived. A viscosity scale is defined in terms of the time decay of the perturbative fluid flow perpendicular to the equilibrium magnetic field, at the quasi-static approximation. Such a scale provides the identification of a viscous layer that can be combined with the resistive layer to produce a viscous-resistive layer. The latter, in turn, is found to satisfy an algebraic biquadratic equation. When viscous effects are negligible, it is shown that the viscous-resistive layer is given by the resistive layer. Somewhat surprisingly, when viscous effects cannot be neglected, it is shown that the viscous-resistive layer is given by the geometric mean of the resistive and viscous layers. A dispersion relation for the time growth rate is derived in terms of the viscous-resistive layer. When viscous effects cannot be neglected, two new scaling laws are found. At the quasi-static approximation, it is shown that γ ˜ (ην)1/4. However, on account of a finite electron mass, it is shown that γ˜(ν/ne ) 1 /3 . Further developments of our formulation are addressed in connection with a finite compressibility in the perturbative flow.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Howlett, James T.
1992-01-01
This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.
Unstructured Mesh Methods for the Simulation of Hypersonic Flows
NASA Technical Reports Server (NTRS)
Peraire, Jaime; Bibb, K. L. (Technical Monitor)
2001-01-01
This report describes the research work undertaken at the Massachusetts Institute of Technology. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of hypersonic viscous flows about re-entry vehicles. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use, of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the, code which incorporates real gas effects, has been produced. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. In figures I and 2, we show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although these initial results were encouraging, it became apparent that in order to develop a fully functional capability for viscous flows, several advances in gridding, solution accuracy, robustness and efficiency were required. As part of this research we have developed: 1) automatic meshing techniques and the corresponding computer codes have been delivered to NASA and implemented into the GridEx system, 2) a finite element algorithm for the solution of the viscous compressible flow equations which can solve flows all the way down to the incompressible limit and that can use higher order (quadratic) approximations leading to highly accurate answers, and 3) and iterative algebraic multigrid solution techniques.
Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
NASA Astrophysics Data System (ADS)
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2018-04-01
The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.
PDF modeling of near-wall turbulent flows
NASA Astrophysics Data System (ADS)
Dreeben, Thomas David
1997-06-01
Pdf methods are extended to include modeling of wall- bounded turbulent flows. For flows in which resolution of the viscous sublayer is desired, a Pdf near-wall model is developed in which the Generalized Langevin model is combined with an exact model for viscous transport. Durbin's method of elliptic relaxation is used to incorporate the wall effects into the governing equations without the use of wall functions or damping functions. Close to the wall, the Generalized Langevin model provides an analogy to the effect of the fluctuating continuity equation. This enables accurate modeling of the near-wall turbulent statistics. Demonstrated accuracy for fully-developed channel flow is achieved with a Pdf/Monte Carlo simulation, and with its related Reynolds-stress closure. For flows in which the details of the viscous sublayer are not important, a Pdf wall- function method is developed with the Simplified Langevin model.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyang; Deng, Xiao-Long
2016-04-01
In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.
Viscous decay of nonlinear oscillations of a spherical bubble at large Reynolds number
NASA Astrophysics Data System (ADS)
Smith, W. R.; Wang, Q. X.
2017-08-01
The long-time viscous decay of large-amplitude bubble oscillations is considered in an incompressible Newtonian fluid, based on the Rayleigh-Plesset equation. At large Reynolds numbers, this is a multi-scaled problem with a short time scale associated with inertial oscillation and a long time scale associated with viscous damping. A multi-scaled perturbation method is thus employed to solve the problem. The leading-order analytical solution of the bubble radius history is obtained to the Rayleigh-Plesset equation in a closed form including both viscous and surface tension effects. Some important formulae are derived including the following: the average energy loss rate of the bubble system during each cycle of oscillation, an explicit formula for the dependence of the oscillation frequency on the energy, and an implicit formula for the amplitude envelope of the bubble radius as a function of the energy. Our theory shows that the energy of the bubble system and the frequency of oscillation do not change on the inertial time scale at leading order, the energy loss rate on the long viscous time scale being inversely proportional to the Reynolds number. These asymptotic predictions remain valid during each cycle of oscillation whether or not compressibility effects are significant. A systematic parametric analysis is carried out using the above formula for the energy of the bubble system, frequency of oscillation, and minimum/maximum bubble radii in terms of the Reynolds number, the dimensionless initial pressure of the bubble gases, and the Weber number. Our results show that the frequency and the decay rate have substantial variations over the lifetime of a decaying oscillation. The results also reveal that large-amplitude bubble oscillations are very sensitive to small changes in the initial conditions through large changes in the phase shift.
Viscous Effects in the Elastodynamics of Thick Beams
NASA Technical Reports Server (NTRS)
Johnson, A. R.; Tessler, A.
1997-01-01
A viscoelastic higher-order thick beam finite element formulation is extended to include elastodynamic deformations. The material constitutive law is a special differential form of the Maxwell solid. In the constitutive model, the elastic strains and the conjugate viscous strains are coupled through a system of first- order ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. The elastodynamic equations of motion are derived from the virtual work principle. Computational examples are carried out for a thick orthotropic cantilevered beam. A quasi-static relaxation problem is employed as a validation test for the elastodynamic algorithm. The elastodynamic code is demonstrated by analyzing the damped vibrations of the beam which is deformed and then released to freely vibrate.
Aircraft wake vortex transport model
DOT National Transportation Integrated Search
1974-03-31
A wake vortex transport model has been developed which includes the effects of wind and wind : shear, buoyancy, mutual and self-induction, ground plane interaction, viscous decay, finite core : and Crow instability effects. Photographic and ground-wi...
NASA Astrophysics Data System (ADS)
Akbar, Noreen Sher; Tripathi, Dharmendra; Khan, Zafar Hayat; Bég, O. Anwar
2016-09-01
In this paper, a mathematical study is conducted of steady incompressible flow of a temperature-dependent viscous nanofluid from a vertical stretching sheet under applied external magnetic field and gravitational body force effects. The Reynolds exponential viscosity model is deployed. Electrically-conducting nanofluids are considered which comprise a suspension of uniform dimension nanoparticles suspended in viscous base fluid. The nanofluid sheet is extended with a linear velocity in the axial direction. The Buonjiornio model is utilized which features Brownian motion and thermophoresis effects. The partial differential equations for mass, momentum, energy and species (nano-particle concentration) are formulated with magnetic body force term. Viscous and Joule dissipation effects are neglected. The emerging nonlinear, coupled, boundary value problem is solved numerically using the Runge-Kutta fourth order method along with a shooting technique. Graphical solutions for velocity, temperature, concentration field, skin friction and Nusselt number are presented. Furthermore stream function plots are also included. Validation with Nakamura's finite difference algorithm is included. Increasing nanofluid viscosity is observed to enhance temperatures and concentrations but to reduce velocity magnitudes. Nusselt number is enhanced with both thermal and species Grashof numbers whereas it is reduced with increasing thermophoresis parameter and Schmidt number. The model is applicable in nano-material manufacturing processes involving extruding sheets.
The Effects of a Geomagnetic Storm on Thermospheric Circulation.
1987-01-01
frequency. .*. p air density. olU 2 Pedersen and Hall conductivities. a P height intergrated Pedersen conductivity. horizontal viscous stress. * east...equations need to be ex- ,n~panded upon. The energy density is: (.2 1 + V2). I~i~iCPT +<V 2 . The horizontal viscous stress, including molecular and...with Z=0 at 80 km and Z=14.4 at 450 km for a total of 49 levels each 0.3 of a scale height apart. Also, the horizontal wind velocity, gas energy
NASA Technical Reports Server (NTRS)
Anderson, B. H.
1983-01-01
A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Kiuchi, Kenta
2017-06-01
Employing a simplified version of the Israel-Stewart formalism of general-relativistic shear-viscous hydrodynamics, we explore the evolution of a remnant massive neutron star of binary neutron star merger and pay special attention to the resulting gravitational waveforms. We find that for the plausible values of the so-called viscous alpha parameter of the order 10-2 the degree of the differential rotation in the remnant massive neutron star is significantly reduced in the viscous time scale, ≲5 ms . Associated with this, the degree of nonaxisymmetric deformation is also reduced quickly, and as a consequence, the amplitude of quasiperiodic gravitational waves emitted also decays in the viscous time scale. Our results indicate that for modeling the evolution of the merger remnants of binary neutron stars we would have to take into account magnetohydrodynamics effects, which in nature could provide the viscous effects.
An inviscid-viscous interaction approach to the calculation of dynamic stall initiation on airfoils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cebeci, T.; Platzer, M.F.; Jang, H.M.
An interactive boundary-layer method is described for computing unsteady incompressible flow over airfoils, including the initiation of dynamic stall. The inviscid unsteady panel method developed by Platzer and Teng is extended to include viscous effects. The solutions of the boundary-layer equations are obtained with an inverse finite-difference method employing an interaction law based on the Hilbert integral, and the algebraic eddy-viscosity formulation of Cebeci and Smith. The method is applied to airfoils subject to periodic and ramp-type motions and its abilities are examined for a range of angles of attack, reduced frequency, and pitch rate.
Viscous-shock-layer analysis of hypersonic flows over long slender vehicles. Ph.D. Thesis, 1988
NASA Technical Reports Server (NTRS)
Lee, Kam-Pui; Gupta, Roop N.
1992-01-01
An efficient and accurate method for solving the viscous shock layer equations for hypersonic flows over long slender bodies is presented. The two first order equations, continuity and normal momentum, are solved simultaneously as a coupled set. The flow conditions included are from high Reynolds numbers at low altitudes to low Reynolds numbers at high altitudes. For high Reynolds number flows, both chemical nonequilibrium and perfect gas cases are analyzed with surface catalytic effects and different turbulence models, respectively. At low Reynolds number flow conditions, corrected slip models are implemented with perfect gas case. Detailed comparisons are included with other predictions and experimental data.
VISCOUS CHARACTERICTICS ANALYSIS
NASA Technical Reports Server (NTRS)
Jenkins, R. V.
1994-01-01
Current investigations of the hydrogen-fueled supersonic combustion ramjet engine have delineated several technological problem areas. One area, the analysis of the injection, turbulent mixing, and combusiton of hydrogen, requires the accurate calculation of the supersonic combustion flow fields. This calculation has proven difficult because of an interesting phenomena which makes possible the transition from supersonic to subsonic flow in the combustion field, due to the temperature transitions which occur in the flow field. This computer program was developed to use viscous characteristics theory to analyze supersonic combustion flow fields with imbedded subsonic regions. Intended to be used as a practical design tool for two-dimensional and axisymmetric supersonic combustor development, this program has proven useful in the analysis of such problems as determining the flow field of a single underexpanded hydrogen jet, the internal flow of a gas sampling probe, the effects of fuel-injector strut shape, and the effects of changes in combustor configuration. Both combustion and diffusive effects can significantly alter the wave pattern in a supersonic field and generate significant pressure gradients in both the axial and radial directions. The induced pressure, in turn, substantially influences the ignition delay and reaction times as well as the velocity distribution. To accurately analyze the flow fields, the effects of finite rate chemistry, mixing, and wave propagation must be properly linked to one another. The viscous characteristics theory has been used in the past to describe flows that are purely supersonic; however, the interacting pressure effects in the combustor often allow for the development of shock waves and imbedded subsonic regions. Numerical investigation of these transonic situations has required the development of a new viscous characteristics procedure which is valid within the subsonic region and can be coupled with the standard viscous characteristics procedure in the supersonic region. The basic governing equations used are the 'viscous-inviscid' equations, similar to those employed in higher-order boundary layer analyses, with finite rate chemistry terms included. In addition, the Rankine-Hugoniot and Prandtl-Meyer relations are used to compute shock and expansion conditions. The program can handle up to 20 simultaneous shock waves. Chemistry terms are computed for a 7-species 8-mechanism hydrogen-air reaction scheme. The user input consists of a physical description of the combustor and flow determination parameters. Output includes detail flow parameter values at selected points within the flow field. This computer program is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 175 with a central memory requirement of approximately 114K (octal) of 60 bit words. The program was developed in 1978.
Higher-Than-Ballistic Conduction in Viscous Electron Fluids
NASA Astrophysics Data System (ADS)
Levitov, Leonid
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. This talk will argue that in viscous flows interactions facilitate transport, allowing conductance to exceed the fundamental Sharvin-Landauer quantum-ballistic limit. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum-mechanical ballistic transport at T = 0 but governed by electron hydrodynamics at elevated temperatures. Conductance grows as a square of the constriction width, i.e. faster than the linear width dependence for noninteracting fermions. The crossover between the ballistic and viscous regimes occurs when the mean free path for e-e collisions becomes comparable to the constriction width. Further, we will discuss the negative nonlocal response, a signature effect of viscous transport. This response exhibits an interesting nonmonotonic behavior vs. T at the viscous-to-balistic transition. The response is negative but small in the highly viscous regime at elevated temperatures. The value grows as the temperature is lowered and the system becomes less viscous, reaching the most negative values in the crossover region where the mean free path is comparable to the distance between contacts. Subsequently, it reverses sign at even lower temperatures, becoming positive as the system enters the ballistic regime. This peculiar behavior provides a clear signature of the ballistic-to-viscous transition and enables a direct measurement of the electron-electron collision mean free path.
Development of an Unstructured Mesh Code for Flows About Complete Vehicles
NASA Technical Reports Server (NTRS)
Peraire, Jaime; Gupta, K. K. (Technical Monitor)
2001-01-01
This report describes the research work undertaken at the Massachusetts Institute of Technology, under NASA Research Grant NAG4-157. The aim of this research is to identify effective algorithms and methodologies for the efficient and routine solution of flow simulations about complete vehicle configurations. For over ten years we have received support from NASA to develop unstructured mesh methods for Computational Fluid Dynamics. As a result of this effort a methodology based on the use of unstructured adapted meshes of tetrahedra and finite volume flow solvers has been developed. A number of gridding algorithms, flow solvers, and adaptive strategies have been proposed. The most successful algorithms developed from the basis of the unstructured mesh system FELISA. The FELISA system has been extensively for the analysis of transonic and hypersonic flows about complete vehicle configurations. The system is highly automatic and allows for the routine aerodynamic analysis of complex configurations starting from CAD data. The code has been parallelized and utilizes efficient solution algorithms. For hypersonic flows, a version of the code which incorporates real gas effects, has been produced. The FELISA system is also a component of the STARS aeroservoelastic system developed at NASA Dryden. One of the latest developments before the start of this grant was to extend the system to include viscous effects. This required the development of viscous generators, capable of generating the anisotropic grids required to represent boundary layers, and viscous flow solvers. We show some sample hypersonic viscous computations using the developed viscous generators and solvers. Although this initial results were encouraging it became apparent that in order to develop a fully functional capability for viscous flows, several advances in solution accuracy, robustness and efficiency were required. In this grant we set out to investigate some novel methodologies that could lead to the required improvements. In particular we focused on two fronts: (1) finite element methods and (2) iterative algebraic multigrid solution techniques.
Actuator with built-in viscous damping for isolation and structural control
NASA Astrophysics Data System (ADS)
Hyde, T. Tupper; Anderson, Eric H.
1994-05-01
This paper describes the development and experimental application of an actuator with built-in viscous damping. An existing passive damper was modified for use as a novel actuation device for isolation and structural control. The device functions by using the same fluid for viscous damping and as a hydraulic lever for a voice coil actuator. Applications for such an actuator include structural control and active isolation. Lumped parameter models capturing structural and fluid effects are presented. Component tests of free stroke, blocked force, and passive complex stiffness are used to update the assumed model parameters. The structural damping effectiveness of the new actuator is shown to be that of a regular D-strut passively and that of a piezoelectric strut with load cell feedback actively in a complex testbed structure. Open and closed loop results are presented for a force isolation application showing an 8 dB passive and 20 dB active improvement over an undamped mount. An optimized design for a future experimental testbed is developed.
Extension of a three-dimensional viscous wing flow analysis
NASA Technical Reports Server (NTRS)
Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.
1990-01-01
Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.
Higher-than-ballistic conduction of viscous electron flows
Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S.
2017-01-01
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit Gball. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at T=0 but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation G=Gball+Gvis, where the viscous contribution Gvis dominates over Gball in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics. PMID:28265079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Na; Zhang, Peng; Kang, Wei
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters aremore » systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately.« less
Theoretical Calculation of Viscous-Inviscid Transonic Flows.
1980-08-01
Taylor Naval Ship Research and Development Center Aviation and Surface Effects Department / (See reverse side) Bethesda, Maryland 20084 ! CONTROLLING...Interactions ... .......... ... 46 18 -ffect of Boundary Layer on Blade Surface Pressures in a Transonic Fan Rotor Tip Section Cascade...complicated by the viscous effect . The strong viscous-inviscid interaction caused by the shock wave thickens the boundary layer rapidly, and the flow eventually
Deformation of interface in a partially miscible system during favorable displacement
NASA Astrophysics Data System (ADS)
Suzuki, Ryuta; Nagatsu, Yuichiro; Mishra, Manoranjan; Ban, Takahiko
2017-11-01
The Saffman-Taylor instability triggers a well-known viscous fingering (VF, called unfavorable displacement), occurring when a less viscous fluid displaces a more viscous one in porous media or in a Hele-Shaw cell because the boundary of the two fluids becomes hydrodynamically unstable. In the reverse situation (called favorable displacement) in which a more viscous fluid displaces a less viscous one, no instabilities occur due to hydrodynamically stable system. It has been reported that the favorable displacements become unstable by several physicochemical effects. So far, studies of both displacements have focused on fluids that are either fully miscible or immiscible. However, little attention has been paid to displacements in partially miscible system. Here, we have discovered that a partial miscibility triggers fingering instability in a favorable displacement without any chemical reactions. The occurrence of this new instability is induced by not hydrodynamic effects but a thermodynamic effect that is so-called Korteweg effect in which convection is induced during phase separation process in a partially miscible system.
Higher-than-ballistic conduction of viscous electron flows.
Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S
2017-03-21
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.
NASA Technical Reports Server (NTRS)
Greenberg, Harry; Sternfield, Leonard
1944-01-01
The relation between the elevator hinge moment parameters and the control forces for changes in forward speed and in maneuvers is shown for several values of static stability and elevator mass balance. The stability of the short period oscillations is shown as a series of boundaries giving the limits of the stable regions in terms of the elevator hinge moment parameters. The effects of static stability, elevator moment of inertia, elevator mass unbalance, and airplane density are also considered. Dynamic instability is likely to occur if there is mass unbalance of the elevator control system combined with a small restoring tendency (high aerodynamic balance). This instability can be prevented by a rearrangement of the unbalancing weights which, however, involves an increase of the amount of weight necessary. It can also be prevented by the addition of viscous friction to the elevator control system provided the airplane center of gravity is not behind a certain critical position. For high values of the density parameter, which correspond to high altitudes of flight, the addition of moderate amounts of viscous friction may be destabilizing even when the airplane is statically stable. In this case, increasing the viscous friction makes the oscillation stable again. The condition in which viscous friction causes dynamic instability of a statically stable airplane is limited to a definite range of hinge moment parameters. It is shown that, when viscous friction causes increasing oscillations, solid friction will produce steady oscillations having an amplitude proportional to the amount of friction.
Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.
Rana, Chinar; Mishra, Manoranjan
2014-12-07
Viscous fingering is a hydrodynamic instability that sets in when a low viscous fluid displaces a high viscous fluid and creates complex patterns in porous media flows. Fundamental facets of the displacement process, such as the solute concentration distribution, spreading length, and the solute mixing, depend strongly on the type of pattern created by the unstable interface of the underlying fluids. In the present study, the frontal interface of the sample shows viscous fingering and the strong solvent causes the retention of the solute to depend on the solvent concentration. This work presents a computational investigation to explore the effect of the underlying physico-chemical phenomena, (i.e., the combined effects of solvent strength, retention, and viscous fingering) on the dynamics of the adsorbed solute. A linear adsorption isotherm has been assumed between the mobile and stationary phases of the solute. We carried out the numerical simulations by considering a rectangular Hele-Shaw cell as an analog to 2D-porous media containing a three component system (displacing fluid, sample solvent, solute) to map out the evolution of the solute concentration. We observed that viscous fingering at the frontal interface of the strong sample solvent intensifies the band broadening of the solute zone. Also notable increase in the spreading dynamics of the solute has been observed for less viscous and strong sample solvent as compared to the high viscous sample slices or in the pure dispersive case. On the contrary, the solute gets intensively mixed at early times for more viscous sample in comparison to less viscous one. The results of the simulations are in qualitative agreement with the behavior observed in the liquid chromatography column experiments.
Photon emission from quark-gluon plasma out of equilibrium
NASA Astrophysics Data System (ADS)
Hauksson, Sigtryggur; Jeon, Sangyong; Gale, Charles
2018-01-01
The photon emission from a nonequilibrium quark-gluon plasma is analyzed. We derive an integral equation that describes photon production through quark-antiquark annihilation and quark bremsstrahlung. It includes coherence between different scattering sites, also known as the Landau-Pomeranchuk-Migdal effect. These leading-order processes are studied for the first time together in an out-of-equilibrium field theoretical treatment that enables the inclusion of viscous corrections to the calculation of electromagnetic emission rates. In the special case of an isotropic, viscous, plasma the integral equation only depends on three constants, which capture the nonequilibrium nature of the medium.
A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows
NASA Astrophysics Data System (ADS)
Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng
2018-05-01
A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.
[Dietary fiber in internal medicine].
Capurso, L; Koch, M; Capurso, G; Koch, G
1996-01-01
The suggestion that dietary fibre is of particular importance in our diet is a relatively recent concept. Much of the initial emphasis for increased dietary fibre began with the pioneering work of Burkitt and Trowell in the 1960s who observed that traditional African populations consumed diets high in plant fibre and that these populations experienced very low incidences of non-communicable diseases including cardio-vascular disease, diabetes mellitus and non-infectious bowel diseases, including cancer. Although it is difficult to predict from the chemical structure how dietary fibres will behave physiologically, generally dietary fibre sources can be grouped into two major types: (a) soluble, viscous, fermentable and (b) insoluble, non-viscous, slowly fermentable. As detailed below, these sources of fibres appear to have quite different physiological effects.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. The numerical scheme is verified on a number of difficult benchmark problems.
Prospects for computing airfoil aerodynamics with Reynolds averaged Navier-Stokes codes
NASA Technical Reports Server (NTRS)
Deiwert, G. S.; Bailey, H. E.
1979-01-01
The Reynolds averaged Navier-Stokes equations are solved numerically for a variety of transonic airfoil configurations where viscous phenomena are important. Illustrative examples include flows past sensitive geometries, Reynolds number effects, and buffet phenomena.
Planar, free oscillations of a cylindrical fluid filament
NASA Astrophysics Data System (ADS)
Dasgupta, Ratul; Farsoiya, Palas Kumar
2017-11-01
A viscous cylindrical fluid filament of infinite axial extent is immersed in another viscous fluid at rest. We perturb the circular cross section of the filament with an azimuthal Fourier mode (exp(imθ) with wavenumber m real). Under/over damped free oscillations occur due to surface tension and we study these theoretically and through DNS. In the invisicd, irrotational approximation the dispersion relation for these oscillations was first obtained by Rayleigh (Proc. Roy. Soc. Lond., 29, 71, 1879) ignoring the inertia of the ambient fluid. Fyfe et al.. (J. Comp. Phys., 76, 349-384, 1988) subsequently included the inertia of the ambient fluid to the dispersion relation. We study the viscous correction to this relation, including viscosity of both the fluids. Unlike the inviscid dispersion relation which is an algebraic equation, the viscous dispersion relation turns out to be a transcendental equation. We study the roots of this equation on the complex frequency plane. In addition to the discrete spectrum, the viscous problem also has a continuous spectrum. The solution to the initial value problem which includes both, will be presented. Comparisons of analytical results with DNS results obtained from an in house developed VOF code, will be discussed.
Damping of drop oscillations by surfactants and surface viscosity
NASA Technical Reports Server (NTRS)
Rush, Brian M.; Nadim, Ali
1999-01-01
An energy equation is derived for the general case of a viscous drop suspended in a viscous medium with surfactants contaminating the interface. It contains terms that clearly identify dissipation contributions from the viscous effects in the bulk fluids, surface shear and dilatational viscosity effects at the interface, and surfactant transport. An efficient boundary integral method is developed which incorporates the effects of a constant surface dilatational viscosity in simulations of an oscillating two-dimensional inviscid drop. Surface dilatational viscosity is shown to have a significant damping effect on the otherwise undamped inviscid oscillations.
Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces
Grewal, H. S.; Nam Kim, Hong; Cho, Il-Joo; Yoon, Eui-Sung
2015-01-01
We investigate the role of viscous forces on the wetting of hydrophobic, semi-hydrophobic, and hydrophilic textured surfaces as second-order effects. We show that during the initial contact, the transition from inertia- to viscous-dominant regime occurs regardless of their surface topography and chemistry. Furthermore, we demonstrate the effect of viscosity on the apparent contact angle under quasi-static conditions by modulating the ratio of a water/glycerol mixture and show the effect of viscosity, especially on the semi-hydrophobic and hydrophobic textured substrates. The reason why the viscous force does not affect the apparent contact angle of the hydrophilic surface is explained based on the relationship between the disjoining pressure and surface chemistry. We further propose a wetting model that can predict the apparent contact angle of a liquid drop on a textured substrate by incorporating a viscous force component in the force balance equation. This model can predict apparent contact angles on semi-hydrophobic and hydrophobic textured surfaces exhibiting Wenzel state more accurately than the Wenzel model, indicating the importance of viscous forces in determining the apparent contact angle. The modified model can be applied for estimating the wetting properties of arbitrary engineered surfaces. PMID:26390958
Electrokinetic-flow-induced viscous drag on a tethered DNA inside a nanopore.
Ghosal, Sandip
2007-12-01
Recent work has shown that the resistive force arising from viscous effects within the pore region could explain observed translocation times in certain experiments involving voltage-driven translocations of DNA through nanopores [Ghosal, Phys. Rev. E 71, 051904 (2006); Phys. Rev. Lett. 98, 238104 (2007)]. The electrokinetic flow inside the pore and the accompanying viscous effects also play a crucial role in the interpretation of experiments where the DNA is immobilized inside a nanopore [Keyser, Nat. Phys. 2, 473 (2006)]. In this paper the viscous force is explicitly calculated for a nanopore of cylindrical geometry. It is found that the reductions of the tether force due to viscous drag and due to charge reduction by Manning condensation are of similar size. The result is of importance in the interpretation of experimental data on tethered DNA.
Computation of viscous flows over airfoils, including separation, with a coupling approach
NASA Technical Reports Server (NTRS)
Leballeur, J. C.
1983-01-01
Viscous incompressible flows over single or multiple airfoils, with or without separation, were computed using an inviscid flow calculation, with modified boundary conditions, and by a method providing calculation and coupling for boundary layers and wakes, within conditions of strong viscous interaction. The inviscid flow is calculated with a method of singularities, the numerics of which were improved by using both source and vortex distributions over profiles, associated with regularity conditions for the fictitious flows inside of the airfoils. The viscous calculation estimates the difference between viscous flow and inviscid interacting flow, with a direct or inverse integral method, laminar or turbulent, with or without reverse flow. The numerical method for coupling determines iteratively the boundary conditions for the inviscid flow. For attached viscous layers regions, an underrelaxation is locally calculated to insure stability. For separated or separating regions, a special semi-inverse algorithm is used. Comparisons with experiments are presented.
Method of casting pitch based foam
Klett, James W.
2002-01-01
A process for producing molded pitch based foam is disclosed which minimizes cracking. The process includes forming a viscous pitch foam in a container, and then transferring the viscous pitch foam from the container into a mold. The viscous pitch foam in the mold is hardened to provide a carbon foam having a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts.
Viscous pressure correction in the irrotational flow outside Prandtl's boundary layer
NASA Astrophysics Data System (ADS)
Joseph, Daniel; Wang, Jing
2004-11-01
We argue that boundary layers on solid with irrotational motion outside are like a gas bubble because the shear stress vanishes at the edge of the boundary layer but the irrotational shear stress does not. This discrepancy induces a pressure correction and an additional drag which can be advertised as due to the viscous dissipation of the irrotational flow. Typically, this extra correction to the drag would be relatively small. A much more interesting implication of the extra pressure theory arises from the consideration of the effects of viscosity on the normal stress on a solid boundary which are entirely neglected in Prandtl's theory. It is very well known and easily demonstrated that as a consequence of the continuity equation the viscous normal stress must vanish on a rigid solid. It follows that all the greatly important effects of viscosity on the normal stress are buried in the pressure and the leading order effects of viscosity on the normal stress can be obtained from the viscous correction of viscous potential flow.
Investigation of REST-Class Hypersonic Inlet Designs
NASA Technical Reports Server (NTRS)
Gollan, Rowan; Ferlemann, Paul G.
2011-01-01
Rectangular-to-elliptical shape-transition (REST) inlets are of interest for use on scramjet engines because they are efficient and integrate well with the forebody of a planar vehicle. The classic design technique by Smart for these inlets produces an efficient inlet but the complex three-dimensional viscous effects are only approximately included. Certain undesirable viscous features often occur in these inlets. In the present work, a design toolset has been developed which allows for rapid design of REST-class inlet geometries and the subsequent Navier-Stokes analysis of the inlet performance. This gives the designer feedback on the complex viscous effects at each design iteration. This new tool is applied to design an inlet for on-design operation at Mach 8. The tool allows for rapid investigation of design features that was previously not possible. The outcome is that the inlet shape can be modified to affect aspects of the flow field in a positive way. In one particular example, the boundary layer build-up on the bodyside of the inlet was reduced by 20% of the thickness associated with the classically designed inlet shape.
One-dimensional reduction of viscous jets. II. Applications
NASA Astrophysics Data System (ADS)
Pitrou, Cyril
2018-04-01
In a companion paper [Phys. Rev. E 97, 043115 (2018), 10.1103/PhysRevE.97.043115], a formalism allowing to describe viscous fibers as one-dimensional objects was developed. We apply it to the special case of a viscous fluid torus. This allows to highlight the differences with the basic viscous string model and with its viscous rod model extension. In particular, an elliptic deformation of the torus section appears because of surface tension effects, and this cannot be described by viscous string nor viscous rod models. Furthermore, we study the Rayleigh-Plateau instability for periodic deformations around the perfect torus, and we show that the instability is not sufficient to lead to the torus breakup in several droplets before it collapses to a single spherical drop. Conversely, a rotating torus is dynamically attracted toward a stationary solution, around which the instability can develop freely and split the torus in multiple droplets.
Electron hydrodynamics dilemma: Whirlpools or no whirlpools
NASA Astrophysics Data System (ADS)
Pellegrino, Francesco M. D.; Torre, Iacopo; Geim, Andre K.; Polini, Marco
2016-10-01
In highly viscous electron systems such as high-quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools. It has also been shown that, although both effects originate from high electron viscosity, a negative voltage drop does not principally require current backflow. In this work, we study the role of geometry on viscous flow and show that confinement effects and relative positions of injector and collector contacts play a pivotal role in the occurrence of whirlpools. Certain geometries may exhibit backflow at arbitrarily small values of the electron viscosity, whereas others require a specific threshold value for whirlpools to emerge.
Are your patients with risk of CVD getting the viscous soluble fiber they need?
Shamliyan, Tatyana A; Jacobs, David R; Raatz, Susan K; Nordstrom, David L; Keenan, Joseph M
2006-09-01
A diet that includes 5 to 10 g/d of viscous soluble fiber reduces cardiovascular disease (CVD) events and death independent of baseline risk. Consuming foods rich in viscous soluble fiber reduces low-density lipoprotein cholesterol (LDL-C) blood levels 10% to 15% with expected reduction in CVD events by 10% to 15%. Routinely counsel adults at risk of CVD to promote a healthy diet: assess dietary fiber consumption; recommend specific foods rich in viscous soluble fiber; monitor LDL-C levels and encourage increased dietary fiber intake at follow-up visits; motivate patients to comply with recommendations.
Inviscid Wall-Modeled Large Eddy Simulations for Improved Efficiency
NASA Astrophysics Data System (ADS)
Aikens, Kurt; Craft, Kyle; Redman, Andrew
2015-11-01
The accuracy of an inviscid flow assumption for wall-modeled large eddy simulations (LES) is examined because of its ability to reduce simulation costs. This assumption is not generally applicable for wall-bounded flows due to the high velocity gradients found near walls. In wall-modeled LES, however, neither the viscous near-wall region or the viscous length scales in the outer flow are resolved. Therefore, the viscous terms in the Navier-Stokes equations have little impact on the resolved flowfield. Zero pressure gradient flat plate boundary layer results are presented for both viscous and inviscid simulations using a wall model developed previously. The results are very similar and compare favorably to those from another wall model methodology and experimental data. Furthermore, the inviscid assumption reduces simulation costs by about 25% and 39% for supersonic and subsonic flows, respectively. Future research directions are discussed as are preliminary efforts to extend the wall model to include the effects of unresolved wall roughness. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. Computational resources on TACC Stampede were provided under XSEDE allocation ENG150001.
Parameterizing the Morse Potential for Coarse-Grained Modeling of Blood Plasma
Zhang, Na; Zhang, Peng; Kang, Wei; Bluestein, Danny; Deng, Yuefan
2014-01-01
Multiscale simulations of fluids such as blood represent a major computational challenge of coupling the disparate spatiotemporal scales between molecular and macroscopic transport phenomena characterizing such complex fluids. In this paper, a coarse-grained (CG) particle model is developed for simulating blood flow by modifying the Morse potential, traditionally used in Molecular Dynamics for modeling vibrating structures. The modified Morse potential is parameterized with effective mass scales for reproducing blood viscous flow properties, including density, pressure, viscosity, compressibility and characteristic flow dynamics of human blood plasma fluid. The parameterization follows a standard inverse-problem approach in which the optimal micro parameters are systematically searched, by gradually decoupling loosely correlated parameter spaces, to match the macro physical quantities of viscous blood flow. The predictions of this particle based multiscale model compare favorably to classic viscous flow solutions such as Counter-Poiseuille and Couette flows. It demonstrates that such coarse grained particle model can be applied to replicate the dynamics of viscous blood flow, with the advantage of bridging the gap between macroscopic flow scales and the cellular scales characterizing blood flow that continuum based models fail to handle adequately. PMID:24910470
Time-derivative preconditioning for viscous flows
NASA Technical Reports Server (NTRS)
Choi, Yunho; Merkle, Charles L.
1991-01-01
A time-derivative preconditioning algorithm that is effective over a wide range of flow conditions from inviscid to very diffusive flows and from low speed to supersonic flows was developed. This algorithm uses a viscous set of primary dependent variables to introduce well-conditioned eigenvalues and to avoid having a nonphysical time reversal for viscous flow. The resulting algorithm also provides a mechanism for controlling the inviscid and viscous time step parameters to be of order one for very diffusive flows, thereby ensuring rapid convergence at very viscous flows as well as for inviscid flows. Convergence capabilities are demonstrated through computation of a wide variety of problems.
Effect of an eigenstrain on slow viscous flow of compressible fluid films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, P.E.
We present a general formulation of the mechanics of slow viscous flow of slightly compressible fluid films in the presence of an eigenstrain. An eigenstrain represents a constrained volume change due to temperature, concentration of a dissolved species, or a chemical transformation. A silicon dioxide film grown on a silicon surface is an example of a viscous fluid film that is affected by a constrained volume change. We obtain a general expression for pressure in a fluid film produced by a surface chemical reaction accompanied by a volume change. This result is used to study the effect of an eigenstrainmore » on viscous stress relaxation in fluid films.« less
General relativistic viscous hydrodynamics of differentially rotating neutron stars
NASA Astrophysics Data System (ADS)
Shibata, Masaru; Kiuchi, Kenta; Sekiguchi, Yu-ichiro
2017-04-01
Employing a simplified version of the Israel-Stewart formalism for general-relativistic shear-viscous hydrodynamics, we perform axisymmetric general-relativistic simulations for a rotating neutron star surrounded by a massive torus, which can be formed from differentially rotating stars. We show that with our choice of a shear-viscous hydrodynamics formalism, the simulations can be stably performed for a long time scale. We also demonstrate that with a possibly high shear-viscous coefficient, not only viscous angular momentum transport works but also an outflow could be driven from a hot envelope around the neutron star for a time scale ≳100 ms with the ejecta mass ≳10-2 M⊙ , which is comparable to the typical mass for dynamical ejecta of binary neutron-star mergers. This suggests that massive neutron stars surrounded by a massive torus, which are typical outcomes formed after the merger of binary neutron stars, could be the dominant source for providing neutron-rich ejecta, if the effective shear viscosity is sufficiently high, i.e., if the viscous α parameter is ≳10-2. The present numerical result indicates the importance of a future high-resolution magnetohydrodynamics simulation that is the unique approach to clarify the viscous effect in the merger remnants of binary neutron stars by the first-principle manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vossoughi, S.; Green, D.W.; Smith, J.E.
Dispersion and viscous fingering are important parameters in miscible displacement. Effects of dispersion on concentration profiles in porous media can be simulated when the viscosity ratio is favorable. The capability to simulate viscous fingering is limited. This paper presents a new method to simulate effects of viscous fingering on miscible displacement processes in porous media. The method is based on the numerical solution of a general form of the convection-dispersion equation. In this equation the convection term is represented by a fractional flow function. The fractional flow function is derived from Darcy's law by using a concentration-dependent average viscosity andmore » relative flow area to each fluid at any point in the bed. The method was extended to the description of a polymer flood by including retention and inaccessible PV. A Langmuir-type model for polymer retention in the rock was used. The resulting convection-dispersion equation for displacement by polymer was solved numerically by the use of a finite-element method with linear basis functions and Crank-Nicholson derivative approximation. History matches were performed on four sets of laboratory data to verify the model: (1) an unfavorable viscosity ratio displacement, (2) stable displacement of glycerol by polymer solution, (3) unstable displacement of brine by a slug of polymer solution, and (4) a favorable viscosity ratio displacement. In general, computed results from the model matched laboratory data closely. Good agreement of the model with experiments over a significant range of variables lends support to the analysis.« less
NASA Technical Reports Server (NTRS)
Nadim, Ali; Rush, Brian M.
2000-01-01
This report summarizes our derivations of analytical expressions for the frequencies and damping constants for small-amplitude axisymmetric shape oscillations of a liquid drop suspended in an immiscible fluid host in microgravity. In particular, this work addresses large Reynolds number shape oscillations and focuses on the surface rheological effects that arise from the presence of insoluble surfactants at the interface. Parameters characterizing viscous effects from the bulk phases, surface viscous effects, Marangoni effects from the surface advection and diffusion of surfactants, and the Gibbs elasticity are all considered and analyzed to determine the relative importance of each contribution. Supplementing the analytical treatment for small-amplitude oscillations, a numerical boundary integral equation formulation is developed for the study of large-amplittide axisymmetric oscillations of a drop in vacuum. The boundary integral formulation is an extension of classical potential flow theory and approximately accounts for viscous effects in the bulk fluid as well as the surface viscous and Marangoni effects resulting from an insoluble surfactant contaminating the interface. Theoretical and numerical results are presented for four distinct cases. These, range from the case when the effects of the surfactants are 'negligible' to 'large' when compared to the viscous effects in the bulk phases. The feasibility of the non-contact measurement of the surface parameters, using experimental observations for the oscillation frequencies and damping constants of drops and bubbles, is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; ...
2017-01-20
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forcesmore » on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this second part of a two-part series, the general formulation of the AMP scheme is presented including the form of the AMP interface conditions and added-damping tensors for general geometries. A fully second-order accurate implementation of the AMP scheme is developed in two dimensions based on a fractional-step method for the incompressible Navier-Stokes equations using finite difference methods and overlapping grids to handle the moving geometry. Here, the numerical scheme is verified on a number of difficult benchmark problems.« less
NASA Astrophysics Data System (ADS)
Mirzadeh, Mohammad; Bazant, Martin
2017-11-01
Interfacial instabilities are ubiquitous in Fluid Mechanics and have been one of the main the subjects of pattern formation. However, these instabilities could lead to inefficiencies which are undesired in many applications. For instance, viscous fingering results in residual trapping of oil during secondary recovery when a low-viscosity fluid, e.g. water, is used for injection. In their seminal work, Saffman and Taylor showed that the onset of this instability is controlled by the viscosity ratio of the two fluids. However, other physiochemical processes could enhance or suppress viscous fingering. Here we consider the role of salinity effects on the front stability. Our recent theory suggests that viscous fingering could be controlled, and even suppressed, by appropriately injecting electric currents. However, even in the absence of any external currents, strong electrokinetic coupling (present in small pores when the electric double layers overlap) can reduce viscous fingering by increasing the ``effective viscosity'' of the injected fluid. These findings suggest that it might be possible to improve extraction efficiencies by appropriately controlling the salt concentration of the injected fluid.
Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerashchenko, Sergiy; Livescu, Daniel
Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less
Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
Gerashchenko, Sergiy; Livescu, Daniel
2016-07-28
Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less
Cheng, Lei; Li, Yizeng; Grosh, Karl
2013-01-01
An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem. PMID:23729844
Cheng, Lei; Li, Yizeng; Grosh, Karl
2013-08-15
An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.
Crystallization, flow and thermal histories of lunar and terrestrial compositions
NASA Technical Reports Server (NTRS)
Uhlmann, D. R.
1979-01-01
Contents: a kinetic treatment of glass formation; effects of nucleating heterogeneities on glass formation; glass formation under continuous cooling conditions; crystallization statistics; kinetics of crystal nucleation; diffusion controlled crystal growth; crystallization of lunar compositions; crystallization between solidus and liquidus; crystallization on reheating a glass; temperature distributions during crystallization; crystallization of anorthite and anorthite-albite compositions; effect of oxidation state on viscosity; diffusive creep and viscous flow; high temperature flow behavior of glass-forming liquids, a free volume interpretation; viscous flow behavior of lunar compositions; thermal history of orange soil material; breccias formation by viscous sintering; viscous sintering; thermal histories of breccias; solute partitioning and thermal history of lunar rocks; heat flow in impact melts; and thermal histories of olivines.
NASA Astrophysics Data System (ADS)
Borderie, Sandra; Graveleau, Fabien; Witt, César; Vendeville, Bruno C.
2018-01-01
Fold-and-thrust belts (FTBs) can be segmented both across and along strike because of various factors including tectonic and stratigraphic inheritance. In this study, we investigated along/across-strike structural interactions in a FTB propagating toward a foreland which displays contrasted lithological sequences. A set of analogue models was performed in a compressional box where a single viscous level of varying width was interbedded within a frictional series. The tectonic interaction between the viscous and the frictional provinces was tested both along and across strike. Results indicate that a frictional province influences the along-strike tectonic evolution of an adjacent viscous province. This influence decreases when the width of the viscous province increases. The frictional provinces control the taper, structural style, obliquity of the structures' trend and kinematics of the shallow deformation front of the viscous province. Results evidence how far a frictional province can impact the deformation of an adjacent viscous province. For frictional-viscous wedges, it appears that the critical taper theory, which is generally applied in 2-D, should be likely considered in terms of 3-D. Moreover, the kinematics of the deep deformation front shows mutual influences between the adjacent viscous and frictional provinces. Experimental results are compared to natural examples in the Kuqa Basin (Southern Tian Shan, China) and the Salt Range (Pakistan), and give an insight to a better understanding of the dynamics of fold-and-thrust belts bearing a viscous décollement, such as salt.
Impact of Beads and Drops on a Repellent Solid Surface: A Unified Description
NASA Astrophysics Data System (ADS)
Arora, S.; Fromental, J.-M.; Mora, S.; Phou, Ty; Ramos, L.; Ligoure, C.
2018-04-01
We investigate freely expanding sheets formed by ultrasoft gel beads, and liquid and viscoelastic drops, produced by the impact of the bead or drop on a silicon wafer covered with a thin layer of liquid nitrogen that suppresses viscous dissipation thanks to an inverse Leidenfrost effect. Our experiments show a unified behavior for the impact dynamics that holds for solids, liquids, and viscoelastic fluids and that we rationalize by properly taking into account elastocapillary effects. In this framework, the classical impact dynamics of solids and liquids, as far as viscous dissipation is negligible, appears as the asymptotic limits of a universal theoretical description. A novel material-dependent characteristic velocity that includes both capillary and bulk elasticity emerges from this unified description of the physics of impact.
Study of the Motion of a Vertically Falling Sphere in a Viscous Fluid
ERIC Educational Resources Information Center
Soares, A. A.; Caramelo, L.; Andrade, M. A. P. M.
2012-01-01
This paper aims at contributing to a better understanding of the motion of spherical particles in viscous fluids. The classical problem of spheres falling through viscous fluids for small Reynolds numbers was solved taking into account the effects of added mass. The analytical solution for the motion of a falling sphere, from the beginning to the…
Ma, Xianghong
2016-01-01
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate–fluid interaction problem is developed on the basis of linearized Navier–Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions. PMID:27118914
Wu, Zhangming; Ma, Xianghong
2016-03-01
The aim of this paper is to study the dynamic characteristics of micromechanical rectangular plates used as sensing elements in a viscous compressible fluid. A novel modelling procedure for the plate-fluid interaction problem is developed on the basis of linearized Navier-Stokes equations and no-slip conditions. Analytical expression for the fluid-loading impedance is obtained using a double Fourier transform approach. This modelling work provides us an analytical means to study the effects of inertial loading, acoustic radiation and viscous dissipation of the fluid acting on the vibration of microplates. The numerical simulation is conducted on microplates with different boundary conditions and fluids with different viscosities. The simulation results reveal that the acoustic radiation dominates the damping mechanism of the submerged microplates. It is also proved that microplates offer better sensitivities (Q-factors) than the conventional beam type microcantilevers being mass sensing platforms in a viscous fluid environment. The frequency response features of microplates under highly viscous fluid loading are studied using the present model. The dynamics of the microplates with all edges clamped are less influenced by the highly viscous dissipation of the fluid than the microplates with other types of boundary conditions.
Viscous Effect of Drop Impacting on Liquid Film
NASA Astrophysics Data System (ADS)
Tang, Xiaoyu; Saha, Abhishek; Law, Chung K.; Sun, Chao
2017-11-01
Drop impacting a liquid film is commonly observed in many processes including inkjet printing and thermal sprays. The accumulation and growth of the film depend on the outcome of subsequent drop impact on the initially formed film. In our recent study (Tang, et al. Soft Matter 2016), we have proposed a regime diagram based on the Weber number We (ratio of impact inertia and surface tension) and the film thickness, characterizing non-monotonic transitions between the bouncing and merging outcomes and providing scaling analysis for the boundaries for a single liquid (n-tetradecane). Since liquid viscosity fundamentally affects the impact outcome, through its influence on the flow field and dissipation of the kinetic energy, here we extend the study for a number of alkanes and silicone oils, covering a wide range of viscosity, to evaluate its effect on the regime diagram. We will show that while the regime diagram maintains its general structure, the merging regime becomes smaller for more viscous liquids and eventually the non-monotonicity disappears. We will model the viscous effects and present a modified scaling. This new scaling attempts to unify all liquids and provides a useful tool to manipulate the outcome of drop impact on liquid film. The work at Princeton University is supported by the Army Research Office and the Xerox Corporation.
GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows
NASA Technical Reports Server (NTRS)
2003-01-01
With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.
Development of Predictive Wake Vortex Transport Model for Terminal Area Wake Vortex Avoidance
DOT National Transportation Integrated Search
1976-05-01
The wake vortex transport program has been expanded to include viscous effects and the influence of initial roll-up, atmospheric turbulence, and wind shear on the persistence and motion of wake vortices in terminal areas. Analysis of wake characteris...
An improved viscid/inviscid interaction procedure for transonic flow over airfoils
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R. R.; Mead, H. R.; Jameson, A.
1985-01-01
A new interacting boundary layer approach for computing the viscous transonic flow over airfoils is described. The theory includes a complete treatment of viscous interaction effects induced by the wake and accounts for normal pressure gradient effects across the boundary layer near trailing edges. The method is based on systematic expansions of the full Reynolds equation of turbulent flow in the limit of Reynolds numbers, Reynolds infinity. Procedures are developed for incorporating the local trailing edge solution into the numerical solution of the coupled full potential and integral boundary layer equations. Although the theory is strictly applicable to airfoils with cusped or nearly cusped trailing edges and to turbulent boundary layers that remain fully attached to the airfoil surface, the method was successfully applied to more general airfoils and to flows with small separation zones. Comparisons of theoretical solutions with wind tunnel data indicate the present method can accurately predict the section characteristics of airfoils including the absolute levels of drag.
Transient viscous response of the human cornea probed with the Surface Force Apparatus.
Zappone, Bruno; Patil, Navinkumar J; Lombardo, Marco; Lombardo, Giuseppe
2018-01-01
Knowledge of the biomechanical properties of the human cornea is crucial for understanding the development of corneal diseases and impact of surgical treatments (e.g., corneal laser surgery, corneal cross-linking). Using a Surface Force Apparatus we investigated the transient viscous response of the anterior cornea from donor human eyes compressed between macroscopic crossed cylinders. Corneal biomechanics was analyzed using linear viscoelastic theory and interpreted in the framework of a biphasic model of soft hydrated porous tissues, including a significant contribution from the pressurization and viscous flow of fluid within the corneal tissue. Time-resolved measurements of tissue deformation and careful determination of the relaxation time provided an elastic modulus in the range between 0.17 and 1.43 MPa, and fluid permeability of the order of 10-13 m4/(N∙s). The permeability decreased as the deformation was increased above a strain level of about 10%, indicating that the interstitial space between fibrils of the corneal stromal matrix was reduced under the effect of strong compression. This effect may play a major role in determining the observed rate-dependent non-linear stress-strain response of the anterior cornea, which underlies the shape and optical properties of the tissue.
NASA Technical Reports Server (NTRS)
Mueller, T. J. (Editor)
1985-01-01
Topics of interest in the design, flow modeling and visualization, and turbulence and flow separation effects for low Reynolds number (Re) airfoils are discussed. Design methods are presented for Re from 50,000-500,000, including a viscous-inviscid coupling method and by using a constrained pitching moment. The effects of pressure gradients, unsteady viscous aerodynamics and separation bubbles are investigated, with particular note made of factors which most influence the size and location of separation bubbles and control their effects. Attention is also given to experimentation with low Re airfoils and to numerical models of symmetry breaking and lift hysteresis from separation. Both steady and unsteady flow experiments are reviewed, with the trials having been held in wind tunnels and the free atmosphere. The topics discussed are of interest to designers of RPVs, high altitude aircraft, sailplanes, ultralights and wind turbines.
Natural convection in annular cone: Influence of radius ratio
NASA Astrophysics Data System (ADS)
Ahmed, N. J. Salman; Kamangar, Sarfaraz; Al-Rashed, Abdullah A. A. A.; Govindaraju, Kalimuthu; Khan, T. M. Yunus
2018-05-01
The viscous dissipation in the fluid flow refers to the transformation of the kinetic energy to the internal energy due to the viscosity of the fluid. The current work investigates the effect of viscous dissipation and radius ratio on the heat transfer characteristics and fluid flow behavior in an annular cone embedded with the porous medium. It is observed that the viscous dissipation effect leads to the decrease in the heat transfer rate from the external wall of the cone to the inner region of the geometry.
Radiation and viscous dissipation effect on square porous annulus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badruddin, Irfan Anjum; Quadir, G. A.
The present study is carried out to investigate the effect of radiation and viscous dissipation in a square porous annulus subjected to outside hot T{sub h} and inside cold T{sub c} temperature. The square annulus has a hollow section of dimension D×D at the interior of annulus. The flow is assumed to obey Darcy law. The governing equations are non-dimensionalised and solved with the help of finite element method. Results are discussed with respect to viscous dissipation parameter, radiation parameter and size of the hollow section of annulus.
Bianchi I cosmology in the presence of a causally regularized viscous fluid
NASA Astrophysics Data System (ADS)
Montani, Giovanni; Venanzi, Marta
2017-07-01
We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced.
Theory of viscous transonic flow over airfoils at high Reynolds number
NASA Technical Reports Server (NTRS)
Melnik, R. E.; Chow, R.; Mead, H. R.
1977-01-01
This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.
Profile Optimization Method for Robust Airfoil Shape Optimization in Viscous Flow
NASA Technical Reports Server (NTRS)
Li, Wu
2003-01-01
Simulation results obtained by using FUN2D for robust airfoil shape optimization in transonic viscous flow are included to show the potential of the profile optimization method for generating fairly smooth optimal airfoils with no off-design performance degradation.
Method for extruding pitch based foam
Klett, James W.
2002-01-01
A method and apparatus for extruding pitch based foam is disclosed. The method includes the steps of: forming a viscous pitch foam; passing the precursor through an extrusion tube; and subjecting the precursor in said extrusion tube to a temperature gradient which varies along the length of the extrusion tube to form an extruded carbon foam. The apparatus includes an extrusion tube having a passageway communicatively connected to a chamber in which a viscous pitch foam formed in the chamber paring through the extrusion tube, and a heating mechanism in thermal communication with the tube for heating the viscous pitch foam along the length of the tube in accordance with a predetermined temperature gradient.
Lubricant-impregnated surfaces for drag reduction in viscous laminar flow
NASA Astrophysics Data System (ADS)
Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team
2013-11-01
For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).
Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xueyu; Xie, Baoyi; Chen, You
2016-03-15
With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.
Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence
NASA Astrophysics Data System (ADS)
Danish, Mohammad; Meneveau, Charles
2018-04-01
Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial range into the viscous range, the subgrid-stress effect decreases more rapidly as a function of scale than the viscous effects increase. To make up for the difference, the pressure Hessian also behaves somewhat differently in the viscous than in the inertial range. The results have implications for models for the velocity gradient tensor showing that the effects of subgrid scales may not be simply modeled via a constant eddy viscosity in the inertial range if one wishes to reproduce the observed trends.
NASA Astrophysics Data System (ADS)
Daripa, Prabir
2011-11-01
We numerically investigate the optimal viscous profile in constant time injection policy of enhanced oil recovery. In particular, we investigate the effect of a combination of interfacial and layer instabilities in three-layer porous media flow on the overall growth of instabilities and thereby characterize the optimal viscous profile. Results based on monotonic and non-monotonic viscous profiles will be presented. Time permitting. we will also present results on multi-layer porous media flows for Newtonian and non-Newtonian fluids and compare the results. The support of Qatar National Fund under a QNRF Grant is acknowledged.
NASA Astrophysics Data System (ADS)
Filippucci, Marilena; Tallarico, Andrea; Dragoni, Michele
2017-05-01
The cooling and the dynamics of a lava flowing down an inclined channel under the effect of the gravity force is studied through the finite volume method, taking into account the effect of viscous dissipation in the heat equation. The considered rheology is shear thinning and temperature dependent. The numerical solution is tested in order to verify the independence from the mesh. The dynamic and heat problems are addressed obtaining both the stationary and the transient solution. Results indicate that, considering viscous dissipation in the heat equation, a fluid with temperature-dependent nonlinear viscosity is faster and hotter with respect to the case in which viscous dissipation is neglected. The most important effect of viscous dissipation is on the solid boundaries where the fluid warms up, and the use of a variable Reynolds number allowed us to conclude that areas in which the flow is in the laminar regime and areas in which the flow is in the turbulent regime can coexist inside the fluid. This behavior seems independent of the channel shape and can explain the observed warming back after the initial cooling in the lava flow lobes emplacement on Kilauea Volcano.
Theoretical modeling of electron mobility in superfluid {sup 4}He
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aitken, Frédéric; Bonifaci, Nelly; Haeften, Klaus von
The Orsay-Trento bosonic density functional theory model is extended to include dissipation due to the viscous response of superfluid {sup 4}He present at finite temperatures. The viscous functional is derived from the Navier-Stokes equation by using the Madelung transformation and includes the contribution of interfacial viscous response present at the gas-liquid boundaries. This contribution was obtained by calibrating the model against the experimentally determined electron mobilities from 1.2 K to 2.1 K along the saturated vapor pressure line, where the viscous response is dominated by thermal rotons. The temperature dependence of ion mobility was calculated for several different solvation cavitymore » sizes and the data are rationalized in the context of roton scattering and Stokes limited mobility models. Results are compared to the experimentally observed “exotic ion” data, which provides estimates for the corresponding bubble sizes in the liquid. Possible sources of such ions are briefly discussed.« less
NASA Technical Reports Server (NTRS)
Howlett, James T.; Bland, Samuel R.
1987-01-01
A method is described for calculating unsteady transonic flow with viscous interaction by coupling a steady integral boundary-layer code with an unsteady, transonic, inviscid small-disturbance computer code in a quasi-steady fashion. Explicit coupling of the equations together with viscous -inviscid iterations at each time step yield converged solutions with computer times about double those required to obtain inviscid solutions. The accuracy and range of applicability of the method are investigated by applying it to four AGARD standard airfoils. The first-harmonic components of both the unsteady pressure distributions and the lift and moment coefficients have been calculated. Comparisons with inviscid calcualtions and experimental data are presented. The results demonstrate that accurate solutions for transonic flows with viscous effects can be obtained for flows involving moderate-strength shock waves.
Viscous effects on the Rayleigh-Taylor instability with background temperature gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerashchenko, S.; Livescu, D., E-mail: livescu@lanl.gov
The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analyticalmore » solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less
Simulation of upwind maneuvering of a sailing yacht
NASA Astrophysics Data System (ADS)
Harris, Daniel Hartrick
A time domain maneuvering simulation of an IACC class yacht suitable for the analysis of unsteady upwind sailing including tacking is presented. The simulation considers motions in six degrees of freedom. The hydrodynamic and aerodynamic loads are calculated primarily with unsteady potential theory supplemented by empirical viscous models. The hydrodynamic model includes the effects of incident waves. Control of the rudder is provided by a simple rate feedback autopilot which is augmented with open loop additions to mimic human steering. The hydrodynamic models are based on the superposition of force components. These components fall into two groups, those which the yacht will experience in calm water, and those due to incident waves. The calm water loads are further divided into zero Froude number, or "double body" maneuvering loads, hydrostatic loads, gravitational loads, free surface radiation loads, and viscous/residual loads. The maneuvering loads are calculated with an unsteady panel code which treats the instantaneous geometry of the yacht below the undisturbed free surface. The free surface radiation loads are calculated via convolution of impulse response functions derived from seakeeping strip theory. The viscous/residual loads are based upon empirical estimates. The aerodynamic model consists primarily of a database of steady state sail coefficients. These coefficients treat the individual contributions to the total sail force of a number of chordwise strips on both the main and jib. Dynamic effects are modeled by using the instantaneous incident wind velocity and direction as the independent variables for the sail load contribution of each strip. The sail coefficient database was calculated numerically with potential methods and simple empirical viscous corrections. Additional aerodynamic load calculations are made to determine the parasitic contributions of the rig and hull. Validation studies compare the steady sailing hydro and aerodynamic loads, seaway induced motions, added resistance in waves, and tacking performance with trials data and other sources. Reasonable agreement is found in all cases.
Inverse transonic airfoil design methods including boundary layer and viscous interaction effects
NASA Technical Reports Server (NTRS)
Carlson, L. A.
1979-01-01
The development and incorporation into TRANDES of a fully conservative analysis method utilizing the artificial compressibility approach is described. The method allows for lifting cases and finite thickness airfoils and utilizes a stretched coordinate system. Wave drag and massive separation studies are also discussed.
Miscible viscous fingering with chemical reaction involving precipitation.
NASA Astrophysics Data System (ADS)
Bae, Si-Kyun; Nagatsu, Yuichiro; Kato, Yoshihito; Tada, Yutaka
2007-11-01
When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. The present study has experimentally examined how precipitation produced by chemical reaction affects miscible viscous fingering pattern. A 97 wt % glycerin solution containing iron(III) nitrate (yellow) and a solution containing potassium hexacyano ferrate(II) (colorless) were used as the more- and less-viscous liquids, respectively. In this case, the chemical reaction instantaneously takes place and produces the precipitation being dark blue in color. The experiments were done by varying reactant concentrations, the cell's gap width, and the displacement speed. We compared the patterns involving the precipitation reaction with those in the non-reactive cases. We have found fylfot-like pattern is observed, depending on the experimental condition, which has never been formed in the non-reactive experiments. As the reactant concentrations are increased or the displacement speed is decreased, the effects of the precipitation on the patterns are more pronounced.
On a viscous critical-stress model of martensitic phase transitions
NASA Astrophysics Data System (ADS)
Weatherwax, John; Vaynblat, Dimitri; Bruno, Oscar; Rosales, Ruben
2007-09-01
The solid-to-solid phase transitions that result from shock loading of certain materials, such as the graphite-to-diamond transition and the α-ɛ transition in iron, have long been subjects of a substantial theoretical and experimental literature. Recently a model for such transitions was introduced which, based on a CS condition (CS) and without use of fitting parameters, accounts quantitatively for existing observations in a number of systems [Bruno and Vaynblat, Proc. R. Soc. London, Ser. A 457, 2871 (2001)]. While the results of the CS model match the main features of the available experimental data, disagreements in some details between the predictions of this model and experiment, attributable to an ideal character of the CS model, do exist. In this article we present a version of the CS model, the viscous CS model (vCS), as well as a numerical method for its solution. This model and the corresponding solver results in a much improved overall CS modeling capability. The innovations we introduce include: (1) Enhancement of the model by inclusion of viscous phase-transition effects; as well as a numerical solver that allows for a fully rigorous treatment of both, the (2) Rarefaction fans (which had previously been approximated by "rarefaction discontinuities"), and (3) viscous phase-transition effects, that are part of the vCS model. In particular we show that the vCS model accounts accurately for well known "gradual" rises in the α-ɛ transition which, in the original CS model, were somewhat crudely approximated as jump discontinuities.
NASA Astrophysics Data System (ADS)
Qiao, Y.; Andersen, P. Ø.; Evje, S.; Standnes, D. C.
2018-02-01
It is well known that relative permeabilities can depend on the flow configuration and they are commonly lower during counter-current flow as compared to co-current flow. Conventional models must deal with this by manually changing the relative permeability curves depending on the observed flow regime. In this paper we use a novel two-phase momentum-equation-approach based on general mixture theory to generate effective relative permeabilities where this dependence (and others) is automatically captured. In particular, this formulation includes two viscous coupling effects: (i) Viscous drag between the flowing phases and the stagnant porous rock; (ii) viscous drag caused by momentum transfer between the flowing phases. The resulting generalized model will predict that during co-current flow the faster moving fluid accelerates the slow fluid, but is itself decelerated, while for counter-current flow they are both decelerated. The implications of these mechanisms are demonstrated by investigating recovery of oil from a matrix block surrounded by water due to a combination of gravity drainage and spontaneous imbibition, a situation highly relevant for naturally fractured reservoirs. We implement relative permeability data obtained experimentally through co-current flooding experiments and then explore the model behavior for different flow cases ranging from counter-current dominated to co-current dominated. In particular, it is demonstrated how the proposed model seems to offer some possible interesting improvements over conventional modeling by providing generalized mobility functions that automatically are able to capture more correctly different flow regimes for one and the same parameter set.
Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes
NASA Astrophysics Data System (ADS)
Muhammad, Taseer; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
The present research explores the three-dimensional stretched flow of viscous fluid in the presence of prescribed heat (PHF) and concentration (PCF) fluxes. Mathematical formulation is developed in the presence of chemical reaction, viscous dissipation and Joule heating effects. Fluid is electrically conducting in the presence of an applied magnetic field. Appropriate transformations yield the nonlinear ordinary differential systems. The resulting nonlinear system has been solved. Graphs are plotted to examine the impacts of physical parameters on the temperature and concentration distributions. Skin friction coefficients and local Nusselt and Sherwood numbers are computed and analyzed.
Topics in viscous potential flow of two-phase systems
NASA Astrophysics Data System (ADS)
Padrino Inciarte, Juan Carlos
Two-phase flows are ubiquitous, from natural and domestic environments to industrial settings. However, due to their complexity, modeling these fluid systems remains a challenge from both the perspective of fundamental questions on the dynamics of an individual, smooth interface, and the perspective of integral analyses, which involve averaging of the conservation laws over large domains, thereby missing local details of the flow. In this work, we consider a set of five problems concerning the linear and non-linear dynamics of an interface or free surface and the study of cavitation inception. Analyses are carried out by assuming the fluid motion to be irrotational, that is, with zero vorticity, and the fluids to be viscous, although results from rotational analyses are presented for the purpose of comparison. The problems considered here are the following: First, we analyze the non-linear deformation and break-up of a bubble or drop immersed in a uniaxial extensional flow of an incompressible viscous fluid. The method of viscous potential flow, in which the flow field is irrotational and viscosity enters through the balance of normal stresses at the interface, is used in the analysis. The governing equations are solved numerically to track the motion of the interface by coupling a boundary element method with a time-integration routine. When break-up occurs, the break-up time computed here is compared with results obtained elsewhere from numerical simulations of the Navier.Stokes equations, which thus keeps vorticity in the analysis, for several combinations of the relevant dimensionless parameters of the problem. For the bubble, for Weber numbers 3 ≤ We ≤ 6, predictions from viscous potential flow shows good agreement with the results from the Navier.Stokes equations for the bubble break-up time, whereas for larger We, the former underpredicts the results given by the latter. Including viscosity increases the break-up time with respect to the inviscid case. For the drop, as expected, increasing the viscous effects of the irrotational motion produces large, elongated drops that take longer to break up in comparison with results for inviscid fluids. In the second problem, we compute the force acting on a spherical bubble of variable radius moving within a liquid with an outer spherical boundary. Viscous potential flow and the dissipation method, which is another purely irrotational approach stemming from the mechanical energy equation, are both systematically implemented. This exposes the role of the choice of the outer boundary condition for the stress on the drag, an issue not explained in the literature known to us. By means of the well-known "cell-model" analysis, the results for the drag are then applied to the case of a swarm of rising bubbles having a certain void fraction. Computations from the dissipation method for the drag coefficient and rise velocity for a bubble swarm agree with numerical solutions; evaluation against experimental data for high Reynolds and low Weber numbers shows that all the models considered, including those given in the literature, overpredict the bubble swarm rise velocity. In the next two problems, we apply the analysis of viscous potential flow and the dissipation method to study the linear dynamics of waves of "small" amplitude acting either on a plane or on a spherical interface separating a liquid from a dynamically inactive fluid. It is shown that the viscous irrational theories exhibit the features of the wave dynamics by comparing with the exact solution. The range of parameters for which good agreement with the exact solution exists is presented. The general trend shows that for long waves the dissipation method results in the best approximation, whereas for short waves, even for very viscous liquids, viscous potential flow demonstrates better agreement. Finally, the problem of cavitation inception for the flow of a viscous liquid past a stationary sphere is studied by means of the theory of stress-induced cavitation. The flow field for a single phase needed in the analysis is found from three different methods, namely, the numerical solution of the Navier--Stokes equations, the irrotational motion of a viscous fluid, and, in the limit of no inertia, the Stokes flow formulation. The new predictions are then compared with those obtained from the classical pressure criterion. The main finding is that at a fixed cavitation number more viscous liquids are at greater risk to cavitation.
A study of the temporal stability of multiple cell vortices
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.
1989-01-01
The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.
Shock wave-free interface interaction
NASA Astrophysics Data System (ADS)
Frolov, Roman; Minev, Peter; Krechetnikov, Rouslan
2016-11-01
The problem of shock wave-free interface interaction has been widely studied in the context of compressible two-fluid flows using analytical, experimental, and numerical techniques. While various physical effects and possible interaction patterns for various geometries have been identified in the literature, the effects of viscosity and surface tension are usually neglected in such models. In our study, we apply a novel numerical algorithm for simulation of viscous compressible two-fluid flows with surface tension to investigate the influence of these effects on the shock-interface interaction. The method combines together the ideas from Finite Volume adaptation of invariant domains preserving algorithm for systems of hyperbolic conservation laws by Guermond and Popov and ADI parallel solver for viscous incompressible NSEs by Guermond and Minev. This combination has been further extended to a two-fluid flow case, including surface tension effects. Here we report on a quantitative study of how surface tension and viscosity affect the structure of the shock wave-free interface interaction region.
A soft porous drop in linear flows
NASA Astrophysics Data System (ADS)
Young, Yuan-Nan; Miksis, Michael; Mori, Yoichiro; Shelley, Michael
2017-11-01
The cellular cytoplasm consists a viscous fluid filled with fibrous networks that also have their own dynamics. Such fluid-structure interactions have been modeled as a soft porous material immersed in a viscous fluid. In this talk we focus on the hydrodynamics of a viscous drop filled with soft porous material inside. Suspended in a Stokes flow, such a porous viscous drop is allowed to deform, both the drop interface and the porous structures inside. Special focus is on the deformation dynamics of both the porosity and the shape of the drop under simple flows such as a uniform streaming flow and linear flows. We examine the effects of flow boundary conditions at interface between the porous drop and the surrounding viscous fluid. We also examine the dynamics of a porous drop with active stress from the porous network.
NASA Technical Reports Server (NTRS)
Kinard, Tim A.; Harris, Brenda W.; Raj, Pradeep
1995-01-01
Vortex flows on a twin-tail and a single-tail modular transonic vortex interaction (MTVI) model, representative of a generic fighter configuration, are computationally simulated in this study using the Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM). The primary objective is to provide an assessment of viscous effects on benign (10 deg angle of attack) and burst (35 deg angle of attack) vortex flow solutions. This study was conducted in support of a NASA project aimed at assessing the viability of using Euler technology to predict aerodynamic characteristics of aircraft configurations at moderate-to-high angles of attack in a preliminary design environment. The TEAM code solves the Euler and Reynolds-average Navier-Stokes equations on patched multiblock structured grids. Its algorithm is based on a cell-centered finite-volume formulation with multistage time-stepping scheme. Viscous effects are assessed by comparing the computed inviscid and viscous solutions with each other and experimental data. Also, results of Euler solution sensitivity to grid density and numerical dissipation are presented for the twin-tail model. The results show that proper accounting of viscous effects is necessary for detailed design and optimization but Euler solutions can provide meaningful guidelines for preliminary design of flight vehicles which exhibit vortex flows in parts of their flight envelope.
Wanders, Anne J; Feskens, Edith J M; Jonathan, Melliana C; Schols, Henk A; de Graaf, Cees; Mars, Monica
2014-04-10
An increased intake of dietary fiber has been associated with reduced appetite and reduced energy intake. Research on the effects of seemingly identical classes of dietary fiber on appetite has, however, resulted in conflicting findings. The present study investigated the effects of different fiber properties, including methods of supplementation, on appetite and energy intake. This was a randomized crossover study with 29 subjects (21±2 y, BMI: 21.9±1.8 kg/m(2)) consuming dairy based liquid test products (1.5 MJ, 435 g) containing either: no pectin, bulking pectin (10 g), viscous pectin (10 g), or gelled pectin (10 g). The gelled pectin was also supplemented as capsules (10 g), and as liquid (10 g). Physicochemical properties of the test products were assessed. Appetite, glucose, insulin and gastric emptying were measured before ingestion and after fixed time intervals. Energy intake was measured after 3 h. Preload viscosity was larger for gelled>viscous>bulking>no pectin, and was larger for gelled>liquid>capsules. Appetite was reduced after ingestion of gelled pectin compared to bulking (p<0.0001), viscous (p=0.005) and no pectin (p<0.0001), without differences in subsequent energy intake (p=0.32). Gastric emptying rate was delayed after gelled pectin (82±18 min) compared to no pectin (70±19 min, p=0.015). Furthermore, gelled (p=0.002) and viscous (p<0.0001) pectin lowered insulin responses compared to no pectin, with minor reductions in glucose response. Regarding methods of supplementation, appetite was reduced after ingestion of the gelled test product compared to after capsules (p<0.0001) and liquid (p<0.0001). Energy intake was lower after ingestion of capsules compared to liquid (-12.4%, p=0.03). Different methods of supplementation resulted in distinct metabolic parameters. Results suggest that different physicochemical properties of pectin, including methods of supplementation, impact appetite and energy intake differently. Reduced appetite was probably mediated by preload physical properties, whereas inconsistent associations with metabolic parameters were found. Copyright © 2014 Elsevier Inc. All rights reserved.
Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.
NASA Astrophysics Data System (ADS)
Han, Wei
1995-11-01
This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.
Aerothermodynamic environment of a Titan aerocapture vehicle
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Chow, H.
1982-01-01
The extent of convective and radiative heating for a Titan aerocapture vehicle is investigated. The flow in the shock layer is assumed to be axisymmetric, steady, viscous, and compressible. It is further assumed that the gas is in chemical and local thermodynamic equilibrium and tangent slab approximation is used for the radiative transport. The effect of the slip boundary conditions on the body surface and at the shock wave are included in the analysis of high-altitude entry conditions. The implicit finite difference techniques is used to solve the viscous shock-layer equations for a 45 degree sphere cone at zero angle of attack. Different compositions for the Titan atmosphere are assumed, and results are obtained for the entry conditions specified by the Jet Propulsion Laboratory.
Coupling of an acoustic wave to shear motion due to viscous heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Bin; Goree, J.
2016-07-15
Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less
Shafer, Scott F.
2002-01-01
The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.
Long-wavelength asymptotics of unstable crossflow modes, including the effect of surface curvature
NASA Technical Reports Server (NTRS)
Choudhari, Meelan
1994-01-01
Stationary vortex instabilities with wavelengths significantly larger than the thickness of the underlying three-dimensional boundary layer are studied with asymptotic methods. The long-wavelength Rayleigh modes are locally neutral and are aligned with the direction of the local inviscid streamline. For a spanwise wave number Beta much less than 1, the spatial growth rate of these vortices is O(Beta(exp 3/2)). When Beta becomes O(R(exp -1/7)), the viscous correction associated with a thin sublayer near the surface modifies the inviscid growth rate to the leading order. As Beta is further decreased through this regime, viscous effects assume greater significance and dominate the growth-rate behavior. The spatial growth rate becomes comparable to the real part of the wave number when Beta = O(R(exp -1/4)). At this stage, the disturbance structure becomes fully viscous-inviscid interactive and is described by the triple-deck theory. For even smaller values of Beta, the vortex modes become nearly neutral again and align themselves with the direction of the wall-shear stress. Thus, the study explains the progression of the crossflow-vortex structure from the inflectional upper branch mode to nearly neutral long-wavelength modes that are aligned with the wall-shear direction.
Towards a Viscous Wall Model for Immersed Boundary Methods
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.
NASA Astrophysics Data System (ADS)
Pathak, Ashish; Raessi, Mehdi
2016-11-01
Using an in-house computational framework, we have studied the interaction of water waves with pitching flap-type ocean wave energy converters (WECs). The computational framework solves the full 3D Navier-Stokes equations and captures important effects, including the fluid-solid interaction, the nonlinear and viscous effects. The results of the computational tool, is first compared against the experimental data on the response of a flap-type WEC in a wave tank, and excellent agreement is demonstrated. Further simulations at the model and prototype scales are presented to assess the validity of the Froude scaling. The simulations are used to address some important questions, such as the validity range of common WEC modeling approaches that rely heavily on the Froude scaling and the inviscid potential flow theory. Additionally, the simulations examine the role of the Keulegan-Carpenter (KC) number, which is often used as a measure of relative importance of viscous drag on bodies exposed to oscillating flows. The performance of the flap-type WECs is investigated at various KC numbers to establish the relationship between the viscous drag and KC number for such geometry. That is of significant importance because such relationship only exists for simple geometries, e.g., a cylinder. Support from the National Science Foundation is gratefully acknowledged.
RTOD- RADIAL TURBINE OFF-DESIGN PERFORMANCE ANALYSIS
NASA Technical Reports Server (NTRS)
Glassman, A. J.
1994-01-01
The RTOD program was developed to accurately predict radial turbine off-design performance. The radial turbine has been used extensively in automotive turbochargers and aircraft auxiliary power units. It is now being given serious consideration for primary powerplant applications. In applications where the turbine will operate over a wide range of power settings, accurate off-design performance prediction is essential for a successful design. RTOD predictions have already illustrated a potential improvement in off-design performance offered by rotor back-sweep for high-work-factor radial turbines. RTOD can be used to analyze other potential performance enhancing design features. RTOD predicts the performance of a radial turbine (with or without rotor blade sweep) as a function of pressure ratio, speed, and stator setting. The program models the flow with the following: 1) stator viscous and trailing edge losses; 2) a vaneless space loss between the stator and the rotor; and 3) rotor incidence, viscous, trailing-edge, clearance, and disk friction losses. The stator and rotor viscous losses each represent the combined effects of profile, endwall, and secondary flow losses. The stator inlet and exit and the rotor inlet flows are modeled by a mean-line analysis, but a sector analysis is used at the rotor exit. The leakage flow through the clearance gap in a pivoting stator is also considered. User input includes gas properties, turbine geometry, and the stator and rotor viscous losses at a reference performance point. RTOD output includes predicted turbine performance over a specified operating range and any user selected flow parameters. The RTOD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 100K of 8 bit bytes. The RTOD program was developed in 1983.
Asymptotic investigations into the `fluid mechanical sewing machine'
NASA Astrophysics Data System (ADS)
Blount, Maurice; Lister, John
2008-11-01
The fall of a slender viscous thread from a nozzle onto a moving horizontal belt exhibits a wide range of behaviour. Steady motion is observed above a critical belt speed. Below this speed the thread undergoes a buckling instability, and lays down on the belt a variety of stable, periodic patterns referred to as a `fluid mechanical sewing machine'. We expand on previous theoretical progress [1] by including the effects arising from the resistance of the thread to bending. While the bending resistance of a slender viscous thread is small, under certain circumstances it has a dominant effect. We work in the asymtotic limit of a slender thread, and investigate the full range of steady solutions. An asymptotic refinement to the estimate derived in [1] for the onset of buckling instability is presented, and the behaviour of the thread near onset is discussed. [1] S. Chiu-Webster & J.R. Lister, J. Fluid Mech. 569, 89-111.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Islam, Ajmila; Civitarese, Anthony E; Hesslink, Robert L; Gallaher, Daniel D
2012-02-01
Dietary interventions that reduce accumulation of body fat are of great interest. Consumption of viscous dietary fibers cause well-known positive metabolic effects, such as reductions in the postprandial glucose and insulin concentrations. However, their effect on body composition and fuel utilization has not been previously studied. To examine this, rats were fed a viscous nonfermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), for 6 weeks. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and fat pad weight. Plasma adipokines, AMP kinase activation, and enzyme and mRNA analysis of key regulators of energetics in liver and soleus muscle were measured. The HPMC diet significantly lowered percent body fat mass and increased percent lean body mass, compared to a cellulose-containing diet (no viscosity). Fasting leptin was reduced 42% and resistin 28% in the HPMC group compared to the cellulose group. Rats fed HPMC had greater activation of AMP kinase in liver and muscle and lower phosphoenolpyruvate carboxykinase (PEPCK) expression in liver. mRNA expression in skeletal muscle was significantly increased for carnitine palmitoyltransferase 1B (CPT-1B), PPARγ coactivator 1α, PPARδ and uncoupling protein 3 (UCP3), as was citrate synthase (CS) activity, in the HPMC group relative to the cellulose group. These results indicate that viscous dietary fiber preserves lean body mass and reduces adiposity, possibly by increasing mitochondrial biogenesis and fatty acid oxidation in skeletal muscle, and thus represents a metabolic effect of viscous fiber not previously described. Thus, viscous dietary fiber may be a useful dietary component to assist in reduction of body fat.
Diffusivity measurements of volatile organics in levitated viscous aerosol particles
NASA Astrophysics Data System (ADS)
Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas
2017-07-01
Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).
Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Wilcox, D. C.
1977-01-01
Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.
NASA Astrophysics Data System (ADS)
Kannan, R. M.; Pullepu, Bapuji; Immanuel, Y.
2018-04-01
A two dimensional mathematical model is formulated for the transient laminar free convective flow with heat transfer over an incompressible viscous fluid past a vertical cone with uniform surface heat flux with combined effects of viscous dissipation and radiation. The dimensionless boundary layer equations of the flow which are transient, coupled and nonlinear Partial differential equations are solved using the Network Simulation Method (NSM), a powerful numerical technique which demonstrates high efficiency and accuracy by employing the network simulator computer code Pspice. The velocity and temperature profiles have been investigated for various factors, namely viscous dissipation parameter ε, Prandtl number Pr and radiation Rd are analyzed graphically.
Prediction of forces and moments for hypersonic flight vehicle control effectors
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Long, Lyle N.; Guilmette, Neal; Pagano, Peter
1993-01-01
This research project includes three distinct phases. For completeness, all three phases of the work are briefly described in this report. The goal was to develop methods of predicting flight control forces and moments for hypersonic vehicles which could be used in a preliminary design environment. The first phase included a preliminary assessment of subsonic/supersonic panel methods and hypersonic local flow inclination methods for such predictions. While these findings clearly indicated the usefulness of such methods for conceptual design activities, deficiencies exist in some areas. Thus, a second phase of research was conducted in which a better understanding was sought for the reasons behind the successes and failures of the methods considered, particularly for the cases at hypersonic Mach numbers. This second phase involved using computational fluid dynamics methods to examine the flow fields in detail. Through these detailed predictions, the deficiencies in the simple surface inclination methods were determined. In the third phase of this work, an improvement to the surface inclination methods was developed. This used a novel method for including viscous effects by modifying the geometry to include the viscous/shock layer.
NASA Technical Reports Server (NTRS)
Stanewsky, E.; Freimuth, P.
1989-01-01
A comparison of results from conventional and adaptive wall wind tunnels with regard to Reynolds number effects was carried out. The special objective of this comparison was to confirm or reject earlier conclusions, soley based on conventional wind tunnel results, concerning the influence of viscous effects on the characteristics of partially open wind tunnel walls, hence wall interference. The following postulations could be confirmed: (1) certain classes of supercritical airfoils exhibit a non-linear increase in lift which is, at least in part, related to viscous-inviscid interactions on the airfoil. This non-linear lift characteristic can erroneously be suppressed by sidewall interference effects in addition to being affected by changes in Reynolds number. Adaptive walls seem to relieve the influence of sidewall interference; (2) the degree of (horizontal) wall interference effects can be significantly affected by changes in Reynolds number, thus appearing as true Reynolds number effects; (3) perforated wall characteristics seem much more susceptible to viscous changes than the characteristics of slotted walls; here, blockage interference may be most severely influenced by viscous changes; and (4) real Reynolds number effects are present on the CAST 10-2/DOA 2 airfoil; they were shown to be appreciable also by the adaptive wall wind tunnel tests.
Control of pulmonary absorption of water-soluble compounds by various viscous vehicles.
Yamamoto, Akira; Yamada, Keigo; Muramatsu, Hideaki; Nishinaka, Asako; Okumura, Shigeki; Okada, Naoki; Fujita, Takuya; Muranishi, Shozo
2004-09-10
Effects of various viscous vehicles on the pulmonary absorption of water-soluble drugs were examined by an in situ pulmonary absorption experiment. Gelatin, polyvinylacohol (PVA), hydroxypropylcellose (HPC), chondroitin sulfate A sodium salt (CS), polyacrylic acid (PAA), methylcellulose #400 (MC400) and hyaluronic acid sodium salt (HA) were used as models of viscous vehicles. 5(6)-Carboxyfluorescein (CF) and fluorescein isothiocayanate-labeled dextran with an average molecular weight of 4000 (FD4) were used as water-soluble drugs. The plasma concentration of CF was controlled and regulated in the presence of these viscous vehicles, especially gelatin (1-5%) and polyvinyl alcohol (PVA) 1%. In the pharmacokinetic analysis, the Cmax values of CF significantly decreased, and its Tmax values increased in the presence of these viscous vehicles compared with the control. The MRT and MAT values of CF with these vehicles were significantly higher than those without these vehicles. Therefore, these findings indicated that the viscous vehicles were effective to regulate the absorption rate of CF. On the other hand, the pulmonary absorption of FD4 was not so much affected even in the presence of gelatin and PVA, although PVA slightly decreased MRT value, and significantly decreased Tmax value. Furthermore, we examined the release rate of CF from the cellulose tube containing various concentrations of gelatin. The release rate of CF from the cellulose tube with gelatin was inversely related to the viscosity of gelatin. In addition, the release rate of CF was inversely related to DeltaMAT (DeltaMAT = MATgel(MAT with gelatin)-MATsol(MAT without gelatin)) in the presence of varying concentrations of gelatin. These findings indicated that these viscous vehicles were effective to control the pulmonary absorption of CF, a water-soluble drug with low molecular weight and they might be useful to increase the local concentration of drugs in the lung.
NASA Astrophysics Data System (ADS)
Lakshminarayana, B.; Ho, Y.; Basson, A.
1993-07-01
The objective of this research is to simulate steady and unsteady viscous flows, including rotor/stator interaction and tip clearance effects in turbomachinery. The numerical formulation for steady flow developed here includes an efficient grid generation scheme, particularly suited to computational grids for the analysis of turbulent turbomachinery flows and tip clearance flows, and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, and is applicable to both viscous and inviscid flows. The values of these artificial dissipation is optimized to achieve accuracy and convergency in the solution. The numerical model is used to investigate the structure of tip clearance flows in a turbine nozzle. The structure of leakage flow is captured accurately, including blade-to-blade variation of all three velocity components, pitch and yaw angles, losses and blade static pressures in the tip clearance region. The simulation also includes evaluation of such quantities of leakage mass flow, vortex strength, losses, dominant leakage flow regions and the spanwise extent affected by the leakage flow. It is demonstrated, through optimization of grid size and artificial dissipation, that the tip clearance flow field can be captured accurately. The above numerical formulation was modified to incorporate time accurate solutions. An inner loop iteration scheme is used at each time step to account for the non-linear effects. The computation of unsteady flow through a flat plate cascade subjected to a transverse gust reveals that the choice of grid spacing and the amount of artificial dissipation is critical for accurate prediction of unsteady phenomena. The rotor-stator interaction problem is simulated by starting the computation upstream of the stator, and the upstream rotor wake is specified from the experimental data. The results show that the stator potential effects have appreciable influence on the upstream rotor wake. The predicted unsteady wake profiles are compared with the available experimental data and the agreement is good. The numerical results are interpreted to draw conclusions on the unsteady wake transport mechanism in the blade passage.
NASA Astrophysics Data System (ADS)
Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W.; Tang, Qi
2017-08-01
A stable partitioned algorithm is developed for fluid-structure interaction (FSI) problems involving viscous incompressible flow and rigid bodies. This added-mass partitioned (AMP) algorithm remains stable, without sub-iterations, for light and even zero mass rigid bodies when added-mass and viscous added-damping effects are large. The scheme is based on a generalized Robin interface condition for the fluid pressure that includes terms involving the linear acceleration and angular acceleration of the rigid body. Added-mass effects are handled in the Robin condition by inclusion of a boundary integral term that depends on the pressure. Added-damping effects due to the viscous shear forces on the body are treated by inclusion of added-damping tensors that are derived through a linearization of the integrals defining the force and torque. Added-damping effects may be important at low Reynolds number, or, for example, in the case of a rotating cylinder or rotating sphere when the rotational moments of inertia are small. In this first part of a two-part series, the properties of the AMP scheme are motivated and evaluated through the development and analysis of some model problems. The analysis shows when and why the traditional partitioned scheme becomes unstable due to either added-mass or added-damping effects. The analysis also identifies the proper form of the added-damping which depends on the discrete time-step and the grid-spacing normal to the rigid body. The results of the analysis are confirmed with numerical simulations that also demonstrate a second-order accurate implementation of the AMP scheme.
Accounting For Compressibility In Viscous Flow In Pipes
NASA Technical Reports Server (NTRS)
Steinle, Frank W.; Gee, Ken; Murthy, Sreedhara V.
1991-01-01
Method developed to account for effects of compressibility in viscous flows through long, circular pipes of uniform diameter. Based on approximation of variations in density and velocity across pipe cross section by profile equations developed for boundary-layer flow between flat plates.
Langley Symposium on Aerodynamics, volume 1
NASA Technical Reports Server (NTRS)
Stack, Sharon H. (Compiler)
1986-01-01
The purpose of this work was to present current work and results of the Langley Aeronautics Directorate covering the areas of computational fluid dynamics, viscous flows, airfoil aerodynamics, propulsion integration, test techniques, and low-speed, high-speed, and transonic aerodynamics. The following sessions are included in this volume: theoretical aerodynamics, test techniques, fluid physics, and viscous drag reduction.
Taniguchi-Fukatsu, Akiko; Yamanaka-Okumura, Hisami; Naniwa-Kuroki, Yuko; Nishida, Yuka; Yamamoto, Hironori; Taketani, Yutaka; Takeda, Eiji
2012-04-01
We previously suggested that the consumption of natto and viscous vegetables as part of a Japanese-style meal based on white rice (WR) reduced postprandial glucose and insulin levels in healthy subjects. The aim of the present study was to assess whether a single breakfast of natto and viscous vegetables or the same breakfast consumed for 2 weeks could improve glucose control, insulin sensitivity, lipid metabolism and oxidative stress in overweight subjects with impaired glucose tolerance (IGT). A total of eleven free-living subjects with IGT followed a randomised, crossover breakfast intervention for 2 weeks. The test meal included boiled WR with natto (viscous fermented soyabeans), Japanese yam and okra. The control meal included WR with non-viscous boiled soyabeans, potatoes and broccoli. Both meals contained comparable amounts of carbohydrate, fat, protein and fibre. The test meal reduced acute glucose and insulin responses compared to the control meal in the study participants. Insulin sensitivity was assessed using the composite insulin sensitivity index (CISI) after both the test and control meal periods. The test meal resulted in improvements in CISI compared to the baseline, whereas no significant changes were observed after the control meal period. Serum levels of both total and LDL-cholesterol were assessed before and after the test meal period and found to decrease significantly. There was also a tendency towards reduced serum malondialdehyde-modified LDL and N(ɛ)-carboxymethyllysine. No differences were observed in the measures of chronic glycaemic control. Thus, we conclude that a breakfast of natto and viscous vegetables consumed for 2 weeks improves insulin sensitivity, serum lipid and oxidative stress.
NASA Astrophysics Data System (ADS)
Chen, Yi-Feng; Fang, Shu; Wu, Dong-Sheng; Hu, Ran
2017-09-01
Immiscible fluid-fluid displacement in permeable media is important in many subsurface processes, including enhanced oil recovery and geological CO2 sequestration. Controlled by capillary and viscous forces, displacement patterns of one fluid displacing another more viscous one exhibit capillary and viscous fingering, and crossover between the two. Although extensive studies investigated viscous and capillary fingering in porous media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture-visualization system, we studied how the two forces impact the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M=1/1000,1/500,1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. We also proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse/backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.
NASA Astrophysics Data System (ADS)
Hanumagowda, B. N.; Savitramma, G.; Salma, A.; Noorjahan
2018-04-01
In this article, the theoretical analysis of the combined study of non-Newtonian couple stresses with piezo-viscous dependency for annular plates squeeze film bearings have been carried out, with help of stokes micro continuum theory along with the exponential variation of viscosity with pressure. An approximate analytical solution is found using a small perturbation method. The solution for pressure and load capacity with distinct values of viscosity-pressure parameter are calculated and compared with iso-viscous couple stress and Newtonian lubricants and the results reveals that the effect of couple stresses and pressure-dependent viscosity variation enhances the load-carrying capacity and lengthens the squeeze film time.
NASA Technical Reports Server (NTRS)
Elder, D. J.
1975-01-01
An experimental aerodynamic investigation was conducted in the AEDC-VKF Hypervelocity Wind Tunnel (Tunnel F) at a nomial Mach number of 19 to determine hypersonic viscous interaction effects on the space shuttle orbiter. The tests were conducted at an angle of attack of 30 degrees over a free-stream Reynolds number (based on fuselage length) variation from 0.1 to 0.4 million. Viscous interaction parameter was varied from 0.02 to 0.06. Six component static stability force and moment data were measured by an internally compensated internal strain gage balance. Resulting data are presented.
Effects of viscous pressure on warm inflationary generalized cosmic Chaplygin gas model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharif, M.; Saleem, Rabia, E-mail: msharif.math@pu.edu.pk, E-mail: rabiasaleem1988@yahoo.com
This paper is devoted to study the effects of bulk viscous pressure on an inflationary generalized cosmic Chaplygin gas model using FRW background. The matter contents of the universe are assumed to be inflaton and imperfect fluid. We evaluate inflaton fields, potentials and entropy density for variable as well as constant dissipation and bulk viscous coefficients in weak as well as high dissipative regimes during intermediate era. In order to discuss inflationary perturbations, we evaluate entropy density, scalar (tensor) power spectra, their corresponding spectral indices, tensor-scalar ratio and running of spectral index in terms of inflaton which are constrained usingmore » recent Planck, WMAP7 and Bicep2 probes.« less
Solid oxide fuel cell having a glass composite seal
De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob
2013-04-16
A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.
Bland, Michael T.; McKinnon, William B.
2018-01-01
Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.
NASA Astrophysics Data System (ADS)
Bland, Michael T.; McKinnon, William B.
2018-05-01
Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.
NASA Technical Reports Server (NTRS)
Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)
2013-01-01
Fluid-flow simulation over a computer-generated aircraft surface is generated using inviscid and viscous simulations. A fluid-flow mesh of fluid cells is obtained. At least one inviscid fluid property for the fluid cells is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. A set of intersecting fluid cells that intersects the aircraft surface are identified. One surface mesh polygon of the surface mesh is identified for each intersecting fluid cell. A boundary-layer prediction point for each identified surface mesh polygon is determined. At least one boundary-layer fluid property for each boundary-layer prediction point is determined using the at least one inviscid fluid property of the corresponding intersecting fluid cell and a boundary-layer simulation that simulates fluid viscous effects. At least one updated fluid property for at least one fluid cell is determined using the at least one boundary-layer fluid property and the inviscid fluid simulation.
Topography associated with crustal flow in continental collisions, with application to Tibet
NASA Astrophysics Data System (ADS)
Bendick, R.; McKenzie, D.; Etienne, J.
2008-10-01
Collision between an undeformable indenter and a viscous region generates isostatically compensated topography by solid-state flow. We model this process numerically, using a finite element scheme. The slope, amplitude and symmetry of the topographic signal depend on the indenter size and the Argand number of the viscous region, a dimensionless ratio of gravitational body forces to viscous forces. When applied to convergent continental settings, these scaling rules provide estimates of the position of an indenter at depth and the mechanical properties of the viscous region, especially effective viscosity. In Tibet, forward modelling suggests that some elevated, low relief topography within the northern plateau may be attributed to lower crustal flow, stimulated by a crustal indenter, possibly Indian lithosphere. The best-fit model constrains the northernmost limit of this indenter to 33.7°N and the maximum effective viscosity of Eurasian middle and lower crust to 1 × 1020 +/- 0.3 × 1020 Pa s.
Viscous Effects on Wave Forces on A Submerged Horizontal Circular Cylinder
NASA Astrophysics Data System (ADS)
Teng, Bin; Mao, Hong-Fei; Lu, Lin
2018-06-01
Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.
Viscous peeling with capillary suction
NASA Astrophysics Data System (ADS)
Peng, Gunnar; Lister, John
2014-11-01
If an elastic tape is stuck to a rigid substrate by a thin film of viscous fluid and then peeled off by pulling at a small angle to the horizontal, then both viscous and capillary forces affect the peeling speed (McEwan and Taylor, 1966). If there is no capillary meniscus (e.g. if the peeling is due to viscous fluid being injected under the tape), then the peeling speed is given by a Cox-Voinov-like law, and is an increasing function of the peeling angle. We show that, with a meniscus present, the effect of the capillary forces is to suck down the tape, reducing the effective peeling angle and hence the peeling speed. When surface tension dominates and the peeling speed tends to zero, the system transitions to a new state whose time-evolution can be described by a system of coupled ordinary differential equations. These asymptotic results are confirmed by numerical calculations. Similar results hold for the peeling-by-bending of elastic beams, with ``angle'' replaced by ``curvature'' (i.e. bending moment).
Aeroelastic optimization methodology for viscous and turbulent flows
NASA Astrophysics Data System (ADS)
Barcelos Junior, Manuel Nascimento Dias
2007-12-01
In recent years, the development of faster computers and parallel processing allowed the application of high-fidelity analysis methods to the aeroelastic design of aircraft. However, these methods are restricted to the final design verification, mainly due to the computational cost involved in iterative design processes. Therefore, this work is concerned with the creation of a robust and efficient aeroelastic optimization methodology for inviscid, viscous and turbulent flows by using high-fidelity analysis and sensitivity analysis techniques. Most of the research in aeroelastic optimization, for practical reasons, treat the aeroelastic system as a quasi-static inviscid problem. In this work, as a first step toward the creation of a more complete aeroelastic optimization methodology for realistic problems, an analytical sensitivity computation technique was developed and tested for quasi-static aeroelastic viscous and turbulent flow configurations. Viscous and turbulent effects are included by using an averaged discretization of the Navier-Stokes equations, coupled with an eddy viscosity turbulence model. For quasi-static aeroelastic problems, the traditional staggered solution strategy has unsatisfactory performance when applied to cases where there is a strong fluid-structure coupling. Consequently, this work also proposes a solution methodology for aeroelastic and sensitivity analyses of quasi-static problems, which is based on the fixed point of an iterative nonlinear block Gauss-Seidel scheme. The methodology can also be interpreted as the solution of the Schur complement of the aeroelastic and sensitivity analyses linearized systems of equations. The methodologies developed in this work are tested and verified by using realistic aeroelastic systems.
NASA Astrophysics Data System (ADS)
Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny
2006-12-01
A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.
Zakharov equations for viscous flow and their use in the blood clot formation
NASA Astrophysics Data System (ADS)
Zhou, Ai-Ping; Li, Xiao-Qing
2017-12-01
For theoretical study, blood can be regarded as a viscous electrically conducting fluid of negative ions and protons. Zakharov equations including viscosity are relevant for describing the behaviour of blood plasma. The dispersion formula is derived from the perturbation method and is solved numerically. It turns out that the imaginary part of one root of the perturbation frequency is greater than zero, and modulation instability occurs. This would lead to the formation of blood clot. The viscous force can suppress the occurrence of instability and prevent thrombosis. One can find that the chaotic state of blood signals human health.
Mechanics of Hydraulic Fractures
NASA Astrophysics Data System (ADS)
Detournay, Emmanuel
2016-01-01
Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.
In Part I [Phys. Fluids B 2, 1190 (1990)] and Part II [Phys. Plasmas 12, 082508 (2005)], it was emphasized that the equilibrium plasma viscous forces when applied for the magnetohydrodynamic (MHD) modes are only rigorously valid at the mode rational surface where m-nq=0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety factor. This important fact has been demonstrated explicitly by calculating the viscous forces in the plateau regime in Parts I and II. Here, the effective viscous forces in the banana regime are calculated for MHD modes by solvingmore » the linear drift kinetic equation that is driven by the plasma flows first derived in Part I. At the mode rational surface, the equilibrium plasma viscous forces are reproduced. However, it is found that away from the mode rational surface, the viscous forces for MHD modes decrease, a behavior similar to that observed in the viscous forces for the plateau regime. The proper form of the momentum equation that is appropriate for the modeling of the MHD modes is also discussed.« less
Brockman, David A; Chen, Xiaoli; Gallaher, Daniel D
2012-11-12
Diets producing a high glycemic response result in exaggerated insulin secretion which induces hepatic lipogenesis, contributing to development of insulin resistance and fatty liver. Viscous dietary fibers blunt the postprandial rise in blood glucose, however their effect on type 2 diabetes and obesity are not entirely known. This study examined the effect of chronic consumption of the viscous, non-fermentable dietary fiber, hydroxypropyl methylcellulose (HPMC), on glucose control, insulin resistance and liver lipids in an obese diabetic rat model. Three groups of Zucker Diabetic Fatty (ZDF) rats were fed diets containing either 5% non-viscous cellulose (control), low viscosity HPMC (LV-HPMC) or high viscosity HPMC (HV- HPMC) for six weeks. Zucker lean littermates consuming cellulose served as a negative control. Markers of glucose control, including oral glucose tolerance test, glycated hemoglobin and urinary glucose, were measured as well as adiposity and the accumulation of liver lipids. The HPMC diets increased the viscosity of the small intestinal contents and reduced the postprandial rise in blood glucose. The food efficiency ratio was greater with HPMC feeding compared to the obese control and urinary excretion of glucose and ketone bodies was reduced. The two HPMC groups had lower glycated hemoglobin and kidney weights and a reduced area under the curve during a glucose tolerance test, indicating improved glucose control. Epididymal fat pad weight as percent of body weight was reduced in the HV-HPMC group compared to the obese control group. The HV-HPMC group also had lower concentrations of liver lipid and cholesterol and reduced liver weight. However, HV-HPMC feeding did not affect hepatic gene expression of SREBP-1c or FAS. Muscle concentration of acylcarnitines, a lipid intermediate in fatty acid β-oxidation, was not different between the HPMC groups and obese control, suggesting no change in muscle fatty acid oxidation by HPMC. Consumption of the viscous non-fermentable fiber HPMC decreased diabetic wasting, improved glucose control and reduced insulin resistance and fatty liver in a model of obesity with diabetes.
N-body simulations of viscous instability of planetary rings
NASA Astrophysics Data System (ADS)
Salo, Heikki; Schmidt, Jürgen
2010-04-01
We study viscous instability of planetary rings in terms of N-body simulations. We show that for rings composed of fairly elastic particles (e.g. as in Hatzes et al. [Hatzes, A., Bridges, F.G., Lin, D.N.C., 1988. Collisional properties of ice spheres at low impact velocities. Mon. Not. R. Astron. Soc. 231, 1091-1115]) the instability may lead to the spontaneous formation of dense ringlets in a background of lower density. In most parts of Saturn's rings the particle collisions are probably much more dissipative, as suggested by the presence of self-gravity wakes, and classic viscous instability should be suppressed. However, our results demonstrate that the mechanism of viscous instability itself is valid. The dynamical effects of size-dependent elasticity in a system with a size distribution have never been studied before. We show that this may in principle lead to a size-selective viscous instability, small particles concentrating on ringlets against the more uniform background of large particles.
Effects of gel properties produced by chemical reactions on viscous fingering
NASA Astrophysics Data System (ADS)
Ujiie, Tomohiro; Nagatsu, Yuichiro; Ban, Mitsumasa; Iwata, Shuichi; Kato, Yoshihito; Tada, Yutaka
2011-11-01
We have experimentally investigated viscous fingering with chemical reaction producing gel. Here, two systems were employed. In one system, sodium polyacrylate (SPA) solution and ferric ion solution were used as the more and less viscous liquids, respectively. In another system, xthantan gum (XG) solution and the ferric ion solution were used as the more and less viscous liquids, respectively. For high concentration of ferric ion, viscous fingering pattern was changed into spiral pattern in the former system, whereas into fracture pattern in the latter system. We consider that the difference in the change of the patterns in the two systems will be caused by the difference in the properties of the gels. Therefore, we have measured the rheological properties of the gels by means of a rheometer. We have found that the gel in the former case is more elastic. Furthermore, we have discussed the relationship between the measured rheological properties and the observed spiral or fracturing patterns.
A computational study of thrust augmenting ejectors based on a viscous-inviscid approach
NASA Technical Reports Server (NTRS)
Lund, Thomas S.; Tavella, Domingo A.; Roberts, Leonard
1987-01-01
A viscous-inviscid interaction technique is advocated as both an efficient and accurate means of predicting the performance of two-dimensional thrust augmenting ejectors. The flow field is subdivided into a viscous region that contains the turbulent jet and an inviscid region that contains the ambient fluid drawn into the device. The inviscid region is computed with a higher-order panel method, while an integral method is used for the description of the viscous part. The strong viscous-inviscid interaction present within the ejector is simulated in an iterative process where the two regions influence each other en route to a converged solution. The model is applied to a variety of parametric and optimization studies involving ejectors having either one or two primary jets. The effects of nozzle placement, inlet and diffuser shape, free stream speed, and ejector length are investigated. The inlet shape for single jet ejectors is optimized for various free stream speeds and Reynolds numbers. Optimal nozzle tilt and location are identified for various dual-ejector configurations.
Viscous theory of surface noise interaction phenomena
NASA Technical Reports Server (NTRS)
Yates, J. E.
1980-01-01
A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Viscous-shock-layer solutions with coupled radiation and ablation injection for earth entry
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Lee, Kam-Pui; Moos, James N.; Sutton, Kenneth
1990-01-01
Results are obtained for the forebody of a planetary exploration vehicle entering the earth's atmosphere. A viscous-shock-layer analysis is used assuming the flow to be laminar and in chemical equilibrium. Presented results include coupled radiation and ablation injection. This study further includes the effect of different transport and thermodynamic properties and radiation models. A Lewis number of 1.4 appears adequate for the radiation-dominated flows. Five velocities corresponding to different possible trajectory points at an altitude of 70 km have been further analyzed in detail. Sublimation and radiative equilibrium wall temperatures are employed for cases with and without coupled injection, respectively. For the cases analyzed here, the mass injection rates are small. However, the rates could become large if a lower altitude is used for aerobraking and/or the body size is increased. A comparison of the equilibrium results with finite-rate chemistry calculation shows the flowfield to be in chemical equilibrium.
Viscous versus inviscid exact coherent states in high Reynolds number wall flows
NASA Astrophysics Data System (ADS)
Montemuro, Brandon; Klewicki, Joe; White, Chris; Chini, Greg
2017-11-01
Streamwise-averaged motions consisting of streamwise-oriented streaks and vortices are key components of exact coherent states (ECS) arising in incompressible wall-bounded shear flows. These invariant solutions are believed to provide a scaffold in phase space for the turbulent dynamics realized at large Reynolds number Re . Nevertheless, many ECS, including upper-branch states, have a large- Re asymptotic structure in which the effective Reynolds number governing the streak and roll dynamics is order unity. Although these viscous ECS very likely play a role in the dynamics of the near-wall region, they cannot be relevant to the inertial layer, where the leading-order mean dynamics are known to be inviscid. In particular, viscous ECS cannot account for the observed regions of quasi-uniform streamwise momentum and interlaced internal shear layers (or `vortical fissures') within the inertial layer. In this work, a large- Re asymptotic analysis is performed to extend the existing self-sustaining-process/vortex-wave-interaction theory to account for largely inviscid ECS. The analysis highlights feedback mechanisms between the fissures and uniform momentum zones that can enable their self-sustenance at extreme Reynolds number. NSF CBET Award 1437851.
Surfactants non-monotonically modify the onset of Faraday waves
NASA Astrophysics Data System (ADS)
Strickland, Stephen; Shearer, Michael; Daniels, Karen
2017-11-01
When a water-filled container is vertically vibrated, subharmonic Faraday waves emerge once the driving from the vibrations exceeds viscous dissipation. In the presence of an insoluble surfactant, a viscous boundary layer forms at the contaminated surface to balance the Marangoni and Boussinesq stresses. For linear gravity-capillary waves in an undriven fluid, the surfactant-induced boundary layer increases the amount of viscous dissipation. In our analysis and experiments, we consider whether similar effects occur for nonlinear Faraday (gravity-capillary) waves. Assuming a finite-depth, infinite-breadth, low-viscosity fluid, we derive an analytic expression for the onset acceleration up to second order in ɛ =√{ 1 / Re } . This expression allows us to include fluid depth and driving frequency as parameters, in addition to the Marangoni and Boussinesq numbers. For millimetric fluid depths and driving frequencies of 30 to 120 Hz, our analysis recovers prior numerical results and agrees with our measurements of NBD-PC surfactant on DI water. In both case, the onset acceleration increases non-monotonically as a function of Marangoni and Boussinesq numbers. For shallower systems, our model predicts that surfactants could decrease the onset acceleration. DMS-0968258.
The effect of viscous flow and thermal flux on the rate of chemical reaction in dilute gases
NASA Astrophysics Data System (ADS)
Cukrowski, A. S.; Popielawski, J.
1986-11-01
Expression for the corrections describing the effect of viscous flow and thermal flux on the rate of chemical reaction have been derived for the reaction A + A = B + C described by Prigogine-Xhrouet and Present. These corrections are calculated for the velocity distribution function up to the second-order approximation for the Chapman-Enskog solution of the Boltzmann equation. These corrections are shown to be the same as those which would follow after application of the method of linearized-moments equations described by Eu and Li. The effects of viscous flow and thermal flux are presented as functions of activation energy of chemical reaction, temperature, density, coefficients of shear viscosity of thermal conductivity, and relevant gradients of mean molecular velocity or temperature. It is pointed out that for very slow reactions and for very large gradients (e.g. in shock waves) these effects can be quite significant.
Effect of Mantle Rheology on Viscous Heating induced during Ice Sheet Cycles
NASA Astrophysics Data System (ADS)
Huang, Pingping; Wu, Patrick; van der Wal, Wouter
2017-04-01
Hanyk et al. (2005) studied the viscous shear heating in the mantle induced by the surface loading and unloading of a parabolic-shaped Laurentide-size ice sheet. They found that for linear rheology, viscous heating is mainly concentrated below the ice sheet. The depth extent of the heating in the mantle is determined by the viscosity distribution. Also, the magnitude of viscous heating is significantly affected by the rate of ice thickness change. However, only one ice sheet has been considered in their work and the interactions between ice sheets and ocean loading have been neglected. Furthermore, only linear rheology has been considered, although they suggested that non-Newtonian rheology may have a stronger effect. Here we follow Hanyk et al. (2005) and computed the viscous dissipation for viscoelastic models using the finite element methodology of Wu (2004) and van der Wal et al. (2010). However, the global ICE6G model (Peltier et al. 2015) with realistic oceans is used here to provide the surface loading. In addition, viscous heating in non-linear rheology, composite rheology, in addition to linear rheology with uniform or VM5a profile are computed and compared. Our results for linear rheology mainly confirm the findings of Hanyk et al. (2005). For both non-linear and composite rheologies, viscous heating is also mainly distributed near and under the ice sheets, but, more concentrated; depending on the horizontal dimension of the ice sheet, it can extend into the lower mantle, but for some of the time, not as deep as that for linear rheology. For composite rheology, the viscous heating is dominated by the effect of non-linear relation between the stress and the strain. The ice history controls the time when the local maximum in viscous heating appears. However, the magnitude of the viscous heating is affected by mantle rheology as well as the ice loading. Due to viscosity stratification, the shape of the region with high viscous heating in model VM5a is a little more irregular than that from uniform viscosity model. However, peak heating in the VM5a model is as big as 22.5 times that of the chondritic radiogenic heating, and is much bigger than that from linear rheology with uniform viscosity (3.95 times the chondritic radiogenic heating), non-linear rheology model (10.14 times) and composite rheology model (10.04 times). Applications of viscous heating will also be discussed. References Hanyk, L., Matyska, C., & Yuen, D. A. (2005). Short time-scale heating of the Earth's mantle by ice-sheet dynamics. Earth, planets and space, 57(9), 895-902. Wu, P. (2004). Using commercial finite element packages for the study of earth deformations, sea levels and the state of stress. Geophysical Journal International, 158(2), 401-408. Van der Wal, W., P. Wu, H. Wang & M.G. Sideris, (2010). Sea levels and uplift rate from composite rheology in glacial isostatic adjustment modeling, J. Geod., J. Geod., 50:38-48. Peltier, W., Argus, D., and Drummond, R. (2015). Space geodesy constrains ice age terminal deglaciation: The global ICE-6GC (VM5a) model. Journal of Geophysical Research: Solid Earth, 120(1): 450-487
The Influence of Viscous Effects on Ice Accretion Prediction and Airfoil Performance Predictions
NASA Technical Reports Server (NTRS)
Kreeger, Richard E.; Wright, William B.
2005-01-01
A computational study was conducted to evaluate the effectiveness of using a viscous flow solution in an ice accretion code and the resulting accuracy of aerodynamic performance prediction. Ice shapes were obtained for one single-element and one multi-element airfoil using both potential flow and Navier-Stokes flowfields in the LEWICE ice accretion code. Aerodynamics were then calculated using a Navier-Stokes flow solver.
Velocity dependence of biphasic flow structuration: steady-state and oscillating flow effects
NASA Astrophysics Data System (ADS)
Tore Tallakstad, Ken; Jankov, Mihailo; Løvoll, Grunde; Toussaint, Renaud; Jørgen Mâløy, Knut; Grude Flekkøy, Eirik; Schmittbuhl, Jean; Schäfer, Gerhard; Méheust, Yves; Arendt Knudsen, Henning
2010-05-01
We study various types of biphasic flows in quasi-two-dimensional transparent porous models. These flows imply a viscous wetting fluid, and a lowly viscous one. The models are transparent, allowing the displacement process and structure to be monitored in space and time. Three different aspects will be presented: 1. In stationary biphasic flows, we study the relationship between the macroscopic pressure drop (related to relative permeability) and the average flow rate, and how this arises from the cluster size distribution of the lowly viscous fluid [1]. 2. In drainage situations, we study how the geometry of the invader can be explained, and how it gives rise to apparent dynamic capillary effects. We show how these can be explained by viscous effects on evolving geometries of invading fluid [2]. 3. We study the impact of oscillating pressure fields superimposed to a background flow over the flow regimes patterns [3]. Steady-State Two-Phase Flow in Porous Media: Statistics and Transport Properties. First, in stationary flow with a control of the flux of both fluids, we show how the pressure drop depends on the flow rate. We will show that the dynamics is dominated by the interplay between a viscous pressure field from the wetting fluid and bubble transport of a less viscous, nonwetting phase. In contrast with more studied displacement front systems, steady-state flow is in equilibrium, statistically speaking. The corresponding theoretical simplicity allows us to explain a data collapse in the cluster size distribution of lowly viscous fluid in the system, as well as the relation |?P|∞√Ca--. This allows to explain so called relative permeability effects by the morphological changes of the cluster size distribution. Influence of viscous fingering on dynamic saturation-pressure curves in porous media. Next, we study drainage in such models, and investigate the relationship between the pressure field and the morphology of the invading fluid. This allows to model the impact of the saturation changes in the system over the pressure difference between the wetting and non wetting phase. We show that the so-called dynamic effects referred in the hydrology literature of experimentally measured capillary pressure curves might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase and pressure changes caused by viscous effects. A detailed study of the structure optically followed shows that the geometry of the invader is self-similar with two different behaviors at small and large scales: the structure corresponds to the ones of invasion percolation models at small scales (capillary fingering structures with fractal dimension D=1.83), whereas at large scales, viscous pressure drops dominate over the capillary threshold variations, and the structures are self-similar fingering structures with a fractal dimension corresponding to Dielectric Breakdown Models (variants of the DLA model), with D ≠ 1.5. The cross-over scale is set by the scale at which capillary fluctuations are of the order of the viscous pressure drops. This leads physically to the fact that cross-over scale between the two fingering dimensions, goes like the inverse of the capillary number. This study utilizes these geometrical characteristics of the viscous fingers forming in dynamic drainage, to obtain a meaningfull scaling law for the saturation-pressure curve at finite speed, i.e. the so-called dynamic capillary pressure relations. We thus show how the micromechanical interplay between viscous and capillary forces leads to some pattern formation, which results in a general form of dynamic capillary pressure relations. By combining these detailed informations on the displacement structure with global measures of pressure, saturation and controlling the capillary number Ca, a scaling relation relating pressure, saturation, system size and capillary number is developed. By applying this scaling relation, pressure-saturation curves for a wide range of capillary numbers can be collapsed. Effects of pressure oscillations on drainage in an elastic porous medium: The effects of seismic stimulation on the flow of two immiscible fluids in an elastic synthetic porous medium is experimentally investigated. A wetting fluid is slowly evacuated from the medium, while a pressure oscillation is applied on the injected non-wetting fluid. The amplitude and frequency of the pressure oscillations as well as the evacuation speed are kept constant throughout an experiment. The resulting morphology of the invading structure is found to be strongly dependent on the interplay between the amplitude and the frequency of the applied pressure oscillations and the elasticity of the porous medium. Different combinations of these properties yield morphologically similar structures, allowing a classification of structures that is found to depend on a proposed dimensionless number. [1] Tallakstad, K.T., H.A. Knudsen, T. Ramstad, G. Løvoll, K.J. Maløy, R. Toussaint and E.G. Flekkøy , Steady-state two-phase flow in porous media: statistics and transport properties, Phys. Rev. Lett. 102, 074502 (2009). doi:10.1103/PhysRevLett.102.074502 [2] Løvoll, G., M. Jankov, K.J. Maløy, R. Toussaint, J. Schmittbuhl, G. Schaefer and Y. Ḿ eheust, Influence of viscous fingering on dynamic saturation-pressure curves in porous media, submitted to Transport In Porous Media, (2010) [3] Jankov, M., G. Løvoll, H.A. Knudsen, K.J. Maløy, R. Planet, R. Toussaint and E.G. Flekkøy; Effects of pressure oscillations on drainage in an elastic porous medium, Transport In Porous Media, in press (2010).
Homentcovschi, Dorel; Miles, Ronald N.
2008-01-01
The paper presents a model for the squeezed film damping, the resistance of the holes, and the corresponding spring forces for a periodic perforated microstructure including the effects of compressibility, inertia, and rarefied gas. The viscous damping and spring forces are obtained by using the continuity equation. The analytical formula for the squeezed film damping is applied to analyze the response of an ultrasonic transducer. The inclusion of these effects in a model significantly improves the agreement with measured results. Finally, it is shown that the frequency dependence of the total damping and total spring force for a cell are very similar to those corresponding to a rectangular open microstructure without holes. A separate analysis reveals the importance of each particular correction. The most important is the compressibility correction; the inertia has to be considered only for determining the spring force and the damping force for sufficiently high frequencies. PMID:18646964
Viscous hydrodynamic instability theory of the peak and minimum pool boiling heat fluxes
NASA Technical Reports Server (NTRS)
Dhir, V. K.
1972-01-01
Liquid viscosity was included in the Bellman-Pennington theory of the Taylor wave in a liquid vapor interface. Predictions of the most susceptible wavelength, and of the wave frequency, were made as a function of a liquid viscosity parameter and the Bond number. The stability of a gas jet in a viscous liquid was studied and the result is used to predict the peak heat flux on large horizontal heaters. Experimental measurements of the dominant Taylor wave and its growth rate were made during the film boiling of cyclohexanol on cylindrical heaters. The results bear out the predictions quite well. The thickness of the vapor blanket surrounding a cylindrical heater was measured and a correlation suggested. The effect of large fluxes of vapor volume on the dominant wavelength was also noted. Theoretical results of the peak heat flux are compared with the experimental data, and the effect of finite geometry of flat plate heaters on the peak heat flux is also discussed.
NASA Technical Reports Server (NTRS)
Radwan, S. F.; Rockwell, D. O.; Johnson, S. H.
1982-01-01
Existing interpretations of the trailing edge condition, addressing both theoretical and experimental works in steady, as well as unsteady flows are critically reviewed. The work of Kutta and Joukowski on the trailing edge condition in steady flow is reviewed. It is shown that for most practical airfoils and blades (as in the case of most turbomachine blades), this condition is violated due to rounded trailing edges and high frequency effects, the flow dynamics in the trailing edge region being dominated by viscous forces; therefore, any meaningful modelling must include viscous effects. The question of to what extent the trailing edge condition affects acoustic radiation from the edge is raised; it is found that violation of the trailing edge condition leads to significant sound diffraction at the tailing edge, which is related to the problem of noise generation. Finally, various trailing edge conditions in unsteady flow are discussed, with emphasis on high reduced frequencies.
NASA Technical Reports Server (NTRS)
Dang, Anthony; Nickerson, Gary R.
1987-01-01
For the development of a Heavy Lift Launch Vehicle (HLLV) several engines with different operating cycles and using LOX/Hydrocarbon propellants are presently being examined. Some concepts utilize hydrogen for thrust chamber wall cooling followed by a gas generator turbine drive cycle with subsequent dumping of H2/O2 combustion products into the nozzle downstream of the throat. In the Space Transportation Booster Engine (STBE) selection process the specific impulse will be one of the optimization criteria; however, the current performance prediction programs do not have the capability to include a third propellant in this process, nor to account for the effect of dumping the gas-generator product tangentially inside the nozzle. The purpose is to describe a computer program for accurately predicting the performance of such an engine. The code consists of two modules; one for the inviscid performance, and the other for the viscous loss. For the first module, the two-dimensional kinetics program (TDK) was modified to account for tripropellant chemistry, and for the effect of tangential slot injection. For the viscous loss, the Mass Addition Boundary Layer program (MABL) was modified to include the effects of the boundary layer-shear layer interaction, and tripropellant chemistry. Calculations were made for a real engine and compared with available data.
Drift due to viscous vortex rings
NASA Astrophysics Data System (ADS)
Morrell, Thomas; Spagnolie, Saverio; Thiffeault, Jean-Luc
2016-11-01
Biomixing is the study of fluid mixing due to swimming organisms. While large organisms typically produce turbulent flows in their wake, small organisms produce less turbulent wakes; the main mechanism of mixing is the induced net particle displacement (drift). Several experiments have examined this drift for small jellyfish, which produce vortex rings that trap and transport a fair amount of fluid. Inviscid theory implies infinite particle displacements for the trapped fluid, so the effect of viscosity must be included to understand the damping of real vortex motion. We use a model viscous vortex ring to compute particle displacements and other relevant quantities, such as the integrated moments of the displacement. Fluid entrainment at the tail end of a growing vortex 'envelope' is found to play an important role in the total fluid transport and drift. Partially supported by NSF Grant DMS-1109315.
A new approach for the design of hypersonic scramjet inlets
NASA Astrophysics Data System (ADS)
Raj, N. Om Prakash; Venkatasubbaiah, K.
2012-08-01
A new methodology has been developed for the design of hypersonic scramjet inlets using gas dynamic relations. The approach aims to find the optimal inlet geometry which has maximum total pressure recovery at a prescribed design free stream Mach number. The design criteria for inlet is chosen as shock-on-lip condition which ensures maximum capture area and minimum intake length. Designed inlet geometries are simulated using computational fluid dynamics analysis. The effects of 1D, 2D inviscid and viscous effects on performance of scramjet inlet are reported here. A correction factor in inviscid design is reported for viscous effects to obtain shock-on-lip condition. A parametric study is carried out for the effect of Mach number at the beginning of isolator for the design of scramjet inlets. Present results show that 2D and viscous effects are significant on performance of scramjet inlet. Present simulation results are matching very well with the experimental results available from the literature.
Film thickness for different regimes of fluid-film lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.
1980-01-01
Film thickness equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic lubrication of low-elastic-modulus materials (soft EHL), or isoviscous-elastic; and elastohydrodynamic lubrication of high-elastic-modulus materials (hard EHL), or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The results are presented as a map of the lubrication regimes, with film thickness contours on a log-log grid of the viscosity and elasticity for three values of the ellipticity parameter.
The global evolution of the primordial solar nebula
NASA Technical Reports Server (NTRS)
Ruden, S. P.; Lin, D. N. C.
1986-01-01
Complete radial, time-dependent calculations of the structure and evolution of the primordial solar nebula during the viscous diffusion stage are presented. The viscous stress is derived from analytic one-zone models of the vertical nebular structure based on detailed grain opacities. Comparisons with full numerical integrations indicate that the effective viscous alpha parameter is about 0.01. The evolution time of a minimum mass nebula is one-million yr or less. The flow pattern of fluid elements in the disk is examined and the implications the results have on the theory of the formation of the solar system are discussed.
A non-viscous-featured fractograph in metallic glasses
NASA Astrophysics Data System (ADS)
Yang, G. N.; Shao, Y.; Yao, K. F.
2016-02-01
A fractograph of non-viscous feature but pure shear-offsets was found in three-point bending samples of a ductile Pd-Cu-Si metallic glass. A sustainable shear band multiplication with large plasticity during notch propagation was observed. Such non-viscous-featured fractograph was formed by a crack propagation manner of continual multiple shear bands formation in front of the crack-tip, instead of the conventional rapid fracture along shear bands. With a 2D model of crack propagation by multiple shear bands, we showed that such fracture process was achieved by a faster stress relaxation than shear-softening effect in the sample. This study confirmed that the viscous fracture along shear bands could be not a necessary process in ductile metallic glasses fracture, and could provide new ways to understand the plasticity in the shear-softened metallic glasses.
NASA Astrophysics Data System (ADS)
Gat, Amir; Friedman, Yonathan
2017-11-01
The characteristic time of low-Reynolds number fluid-structure interaction scales linearly with the ratio of fluid viscosity to solid Young's modulus. For sufficiently large values of Young's modulus, both time- and length-scales of the viscous-elastic dynamics may be similar to acoustic time- and length-scales. However, the requirement of dominant viscous effects limits the validity of such regimes to micro-configurations. We here study the dynamics of an acoustic plane wave impinging on the surface of a layered sphere, immersed within an inviscid fluid, and composed of an inner elastic sphere, a creeping fluid layer and an external elastic shell. We focus on configurations with similar viscous-elastic and acoustic time- and length-scales, where the viscous-elastic speed of interaction between the creeping layer and the elastic regions is similar to the speed of sound. By expanding the linearized spherical Reynolds equation into the relevant spectral series solution for the hyperbolic elastic regions, a global stiffness matrix of the layered elastic sphere was obtained. This work relates viscous-elastic dynamics to acoustic scattering and may pave the way to the design of novel meta-materials with unique acoustic properties. ISF 818/13.
Cibis, Merih; Jarvis, Kelly; Markl, Michael; Rose, Michael; Rigsby, Cynthia; Barker, Alex J.; Wentzel, Jolanda J.
2016-01-01
Viscous dissipation inside Fontan circulation, a parameter associated with the exercise intolerance of Fontan patients, can be derived from computational fluid dynamics (CFD) or 4D flow MRI velocities. However, the impact of spatial resolution and measurement noise on the estimation of viscous dissipation is unclear. Our aim was to evaluate the influence of these parameters on viscous dissipation calculation. Six Fontan patients underwent whole heart 4D flow MRI. Subject-specific CFD simulations were performed. The CFD velocities were down-sampled to isotropic spatial resolutions of 0.5 mm, 1 mm, 2 mm and to MRI resolution. Viscous dissipation was compared between (1) high resolution CFD velocities, (2) CFD velocities down-sampled to MRI resolution, (3) down-sampled CFD velocities with MRI mimicked noise levels, and (4) in-vivo 4D flow MRI velocities. Relative viscous dissipation between subjects was also calculated. 4D flow MRI velocities (15.6±3.8 cm/s) were higher, although not significantly different than CFD velocities (13.8±4.7 cm/s, p=0.16), down-sampled CFD velocities (12.3±4.4 cm/s, p=0.06) and the down-sampled CFD velocities with noise (13.2±4.2 cm/s, p=0.06). CFD-based viscous dissipation (0.81±0.55 mW) was significantly higher than those based on down-sampled CFD (0.25±0.19 mW, p=0.03), down-sampled CFD with noise (0.49±0.26 mW, p=0.03) and 4D flow MRI (0.56±0.28 mW, p=0.06). Nevertheless, relative viscous dissipation between different subjects was maintained irrespective of resolution and noise, suggesting that comparison of viscous dissipation between patients is still possible. PMID:26298492
Viscous cosmology in new holographic dark energy model and the cosmic acceleration
NASA Astrophysics Data System (ADS)
Singh, C. P.; Srivastava, Milan
2018-03-01
In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.
Operational tests of two viscous DAP fire retardants
James B. Davis; Clinton B. Phillips; Dean L. Dibble; Leo V. Steck
1963-01-01
Operational tests conducted from air tanker bases in California in 1962 confirmed earlier laboratory and field studies and showed that viscous solutions of diammonium phosphate (DAP) are more effective than any other presently known fire retardant. These tests also indicated that corrosion is not a serious problem if inhibitors are used and equipment is...
Properties of foam and composite materials made o starch and cellulose fiber
USDA-ARS?s Scientific Manuscript database
Composite materials were made of starch and cellulose fibers. Pre-gelatinized starch was effective in dispersing pulp fiber in a starch matrix to form a viscous starch/fiber dough. The starch/fiber dough was a useful feedstock for various composite foam and plastic materials. Viscous blends of star...
Influence of heterogeneity on second-kind self-similar solutions for viscous gravity currents
Zheng, Zhong; Christov, Ivan C.; Stone, Howard A.
2014-05-01
We report experimental, theoretical and numerical results on the effects of horizontal heterogeneities on the propagation of viscous gravity currents. We use two geometries to highlight these effects: (a) a horizontal channel (or crack) whose gap thickness varies as a power-law function of the streamwise coordinate; (b) a heterogeneous porous medium whose permeability and porosity have power-law variations. We demonstrate that two types of self-similar behaviours emerge as a result of horizontal heterogeneity: (a) a first-kind self-similar solution is found using dimensional analysis (scaling) for viscous gravity currents that propagate away from the origin (a point of zero permeability); (b)more » a second-kind self-similar solution is found using a phase-plane analysis for viscous gravity currents that propagate toward the origin. These theoretical predictions, obtained using the ideas of self-similar intermediate asymptotics, are compared with experimental results and numerical solutions of the governing partial differential equation developed under the lubrication approximation. All three results are found to be in good agreement.« less
Irreversible Brownian Heat Engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2017-10-01
We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.
Dynamics of charged bulk viscous collapsing cylindrical source with heat flux
NASA Astrophysics Data System (ADS)
Shah, S. M.; Abbas, G.
2017-04-01
In this paper, we have explored the effects of dissipation on the dynamics of charged bulk viscous collapsing cylindrical source which allows the out-flow of heat flux in the form of radiations. The Misner-Sharp formalism has been implemented to drive the dynamical equation in terms of proper time and radial derivatives. We have investigated the effects of charge and bulk viscosity on the dynamics of collapsing cylinder. To determine the effects of radial heat flux, we have formulated the heat transport equations in the context of Müller-Israel-Stewart theory by assuming that thermodynamics viscous/heat coupling coefficients can be neglected within some approximations. In our discussion, we have introduced the viscosity by the standard (non-causal) thermodynamics approach. The dynamical equations have been coupled with the heat transport equation; the consequences of the resulting coupled heat equation have been analyzed in detail.
Martínez-Rodríguez, Carmen; Anel-López, Luis; Alvarez, Mercedes; Ortega-Ferrusola, Cristina; Boixo, Juan Carlos; Peña, Fernando J; Anel, Luis; de Paz, Paulino
2018-05-15
Forward progressive motility of spermatozoa is an essential prerequisite for reproductive success, and sperm navigation is assisted by guidance mechanisms that may depend on micro-environmental factors. In the present study, we performed an integrated analysis of long-distance ram sperm migration in vitro that combined two environmental factors (10 μM progesterone and a geotactic effect) and the physiological status of the cells (capacitation treatment). A penetration assay was used in which spermatozoa had to travel 20 mm in a viscous medium (two media of differing viscosity: acrylamide and hyaluronic acid) through a tube device. The number of migrating spermatozoa, the physiology of the cells (motility analyzed using a CASA system; acrosomal status, viability and active mitochondria evaluated by flow cytometry; DNA fragmentation index calculated by quantitative PCR) and the morphometry of sperm heads (performed using an image analysis system) were evaluated after long-distance sperm migration. Ram sperm capacitation significantly stimulates cell migration through viscous media under geotactic conditions, and this effect is enhanced by progesterone induction. The rheological characteristics of viscous media have a marked impact on ram sperm migration, and acrylamide more favorably facilitates navigation over a large distance. The migrating spermatozoa are morphologically better adapted (high ellipticity) for displacement in viscous media and exhibit remarkably depleted mitochondrial membrane potential. Copyright © 2018 Elsevier Inc. All rights reserved.
Modelling the normal bouncing dynamics of spheres in a viscous fluid
NASA Astrophysics Data System (ADS)
Izard, Edouard; Lacaze, Laurent; Bonometti, Thomas
2017-06-01
Bouncing motions of spheres in a viscous fluid are numerically investigated by an immersed boundary method to resolve the fluid flow around solids which is combined to a discrete element method for the particles motion and contact resolution. Two well-known configurations of bouncing are considered: the normal bouncing of a sphere on a wall in a viscous fluid and a normal particle-particle bouncing in a fluid. Previous experiments have shown the effective restitution coefficient to be a function of a single parameter, namely the Stokes number which compares the inertia of the solid particle with the fluid viscous dissipation. The present simulations show a good agreement with experimental observations for the whole range of investigated parameters. However, a new definition of the coefficient of restitution presented here shows a dependence on the Stokes number as in previous works but, in addition, on the fluid to particle density ratio. It allows to identify the viscous, inertial and dry regimes as found in experiments of immersed granular avalanches of Courrech du Pont et al. Phys. Rev. Lett. 90, 044301 (2003), e.g. in a multi-particle configuration.
Thermal and viscous effects on sound waves: revised classical theory.
Davis, Anthony M J; Brenner, Howard
2012-11-01
In this paper the recently developed, bi-velocity model of fluid mechanics based on the principles of linear irreversible thermodynamics (LIT) is applied to sound propagation in gases taking account of first-order thermal and viscous dissipation effects. The results are compared and contrasted with the classical Navier-Stokes-Fourier results of Pierce for this same situation cited in his textbook. Comparisons are also made with the recent analyses of Dadzie and Reese, whose molecularly based sound propagation calculations furnish results virtually identical with the purely macroscopic LIT-based bi-velocity results below, as well as being well-supported by experimental data. Illustrative dissipative sound propagation examples involving application of the bi-velocity model to several elementary situations are also provided, showing the disjoint entropy mode and the additional, evanescent viscous mode.
Report of the panel on theoretical aerodynamics. [for the National Transonic Facility
NASA Technical Reports Server (NTRS)
Bobbitt, P. J.; Carter, J. E.
1977-01-01
Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.
A Numerical Wind Tunnel Study of Viscous-Inviscid Interaction
1992-01-01
partially successful. In Task 1 we devised surface boundary conditions for the multiscale model including effects of roughness and blowing. This work tied up ...directed at cleaning up some loose ends in de- veloping the Wilcox multiscale model (see Appendix R). The most significant issue was the development of...the following correlation between SR and k , will reproduce measured effects of sand-grain roughness for values of k up to about 400. ( k, ញ SiR (42
AOFA- THREE-DIMENSIONAL SUPERSONIC VISCOUS FLOW
NASA Technical Reports Server (NTRS)
Rakich, J. V.
1994-01-01
This program, which is called 'AOFA', determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle. Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic. Input to this program consists of two parts. Problem description is conveyed to the program by namelist input. Initial data is acquired by the program as formatted data. Because of the large amount of run time this program can consume the program includes a restart capability. Output is in printed format and magnetic tape for further processing. This program is written in FORTRAN IV and has been implemented on a CDC 7600 with a central memory requirement of approximately 35K (octal) of 60 bit words.
Study of role of meniscus and viscous forces during liquid-mediated contacts separation
NASA Astrophysics Data System (ADS)
Dhital, Prabin
Menisci may form between two solid surfaces with the presence of an ultra-thin liquid film. When the separation operation is needed, meniscus and viscous forces contribute to an adhesion leading stiction, high friction, possibly high wear and potential failure of the contact systems, for instance microdevices, magnetic head disks and diesel fuel injectors. The situation may become more pronounced when the contacting surfaces are ultra-smooth and the normal load is small. Various design parameters, such as contact angle, initial separation height, surface tension and liquid viscosity, have been investigated during liquid-mediated contact separation. However, how the involved forces will change roles for various liquid is of interest and is necessary to be studied. In this study, meniscus and viscous forces due to water and liquid lubricants during separation of two flat surfaces are studied. Previously established mathematical model for meniscus and viscous forces during flat on flat contact separation is simulated. The effect of meniscus and viscous force on critical meniscus area at which those forces change role is studied with different liquid properties for flat on flat contact surfaces. The roles of the involved forces at various meniscus areas are analyzed. Experiments are done in concerns to studying the effect of surface roughness on contact angle. The impact of liquid properties, initial separation heights and contact angle on critical meniscus area for different liquid properties are analyzed. The study provides a fundamental understanding of the forces of the separation process and its value for the design of interfaces. The effect of surface roughness and liquid properties on contact angle are studied.
Mogensen, Stine; Treldal, Charlotte; Feldager, Erik; Pulis, Sylvia; Jacobsen, Jette; Andersen, Ove; Rasmussen, Mette
2012-01-01
Objective To evaluate the effect and acceptance of a new lidocaine lozenge compared with a lidocaine viscous oral solution as a pharyngeal anesthetic before upper gastrointestinal endoscopy (UGE), a diagnostic procedure commonly performed worldwide during which many patients experience severe discomfort mostly because of the gag reflex. Participants The single-blinded, randomized, controlled study involved 110 adult patients undergoing diagnostic UGE at the Department of Gastroenterology, Hvidovre University Hospital, Denmark. Methods The patients were randomized to receive either 100 mg lidocaine as a lozenge or 5 mL lidocaine viscous oral solution 2%. Intravenous midazolam was administered if needed. The effect of a lidocaine lozenge in reducing patient discomfort, including the gag reflex, during UGE compared with a lidocaine oral solution was assessed. Results Questionnaires from the patients showed that the gag reflex was acceptable for 64% in the lozenge group compared with 33% in the oral solution group (P = 0.0072). UGE was evaluated as acceptable by 69% in the lozenge group compared with 39% in the oral solution group (P = 0.0092). The taste was evaluated as good by 78% in the lozenge group (P < 0.0001), and 82% found the lozenge to have good texture (P < 0.0001). Conclusion The lozenge reduced the gag reflex, diminished patients’ discomfort during UGE, and was evaluated as having a good taste and texture. The lozenge improved patients’ acceptance of UGE. PMID:22915898
Radiative Viscous Shock Layer Analysis of Fire, Apollo, and PAET Flight Data
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Park, Chul; Green, Michael J.
1986-01-01
Equilibrium, radiating viscous shock layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well with two engineering correlations, except at high altitudes corresponding to low densities. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70% are observed between measured data and the viscous calculations. Because of boundary-layer absorption, viscous effects reduce the intensity to the wall by as much as 30% compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict an enhancement to the radiation owing to the chemical relaxation. Stagnation point solutions are also presented for future aeroassisted orbital transfer vehicle geometries with nose radii of 0.3-15 m.
Radiative viscous-shock-layer analysis of Fire, Apollo, and PAET flight data
NASA Technical Reports Server (NTRS)
Balakrishnan, A.; Park, C.; Green, M. J.
1985-01-01
Equilibrium, radiating viscous-shock-layer solutions are obtained for a number of trajectory points of the Fire II, Apollo 4, and PAET experimental flight vehicles. Convective heating rates calculated by a benchmark code agree well, except at high altitudes corresponding to low densities, with two engineering correlations. Calculated radiation intensities are compared with the flight radiometer data and with inviscid flow results. Differences as great as 70 percent are observed between measured data and the viscous calculations. Viscous effects reduce the intensity toward the wall, because of boundary-layer absorption, by as much as 30 percent, compared with inviscid intensities. Preliminary chemical and thermal nonequilibrium flow calculations along a stagnation streamline for a PAET trajectory predict enhancement of radiation owing to chemical relaxation. Stagnation point solutions are also presented for future air-assisted orbital transfer vehicle geometries with nose radii ranging from 0.3 to 15 m.
NASA Technical Reports Server (NTRS)
Steinke, Ronald J.
1989-01-01
The Rai ROTOR1 code for two-dimensional, unsteady viscous flow analysis was applied to a supersonic throughflow fan stage design. The axial Mach number for this fan design increases from 2.0 at the inlet to 2.9 at the outlet. The Rai code uses overlapped O- and H-grids that are appropriately packed. The Rai code was run on a Cray XMP computer; then data postprocessing and graphics were performed to obtain detailed insight into the stage flow. The large rotor wakes uniformly traversed the rotor-stator interface and dispersed as they passed through the stator passage. Only weak blade shock losses were computerd, which supports the design goals. High viscous effects caused large blade wakes and a low fan efficiency. Rai code flow predictions were essentially steady for the rotor, and they compared well with Chima rotor viscous code predictions based on a C-grid of similar density.
NASA Astrophysics Data System (ADS)
Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.
2018-02-01
Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.
Viscous investigation of a flapping foil propulsor
NASA Astrophysics Data System (ADS)
Posri, Attapol; Phoemsapthawee, Surasak; Thaweewat, Nonthipat
2018-01-01
Inspired by how fishes propel themselves, a flapping-foil device is invented as an alternative propulsion system for ships and boats. The performance of such propulsor has been formerly investigated using a potential flow code. The simulation results have shown that the device has high propulsive efficiency over a wide range of operation. However, the potential flow gives good results only when flow separation is not present. In case of high flapping frequency, the flow separation can occur over a short instant due to fluid viscosity and high angle of attack. This may cause a reduction of propulsive efficiency. A commercial CFD code based on Lattice Boltzmann Method, XFlow, is then employed in order to investigate the viscous effect over the propulsive performance of the flapping foil. The viscous results agree well with the potential flow results, confirming the high efficiency of the propulsor. As expected, viscous results show lower efficiency in high flapping frequency zone.
A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
NASA Astrophysics Data System (ADS)
Ciancio, Vincenzo; Palumbo, Annunziata
2018-04-01
In this paper the heat conduction in viscous fluids is described by using the theory of classical irreversible thermodynamics with internal variables. In this theory, the deviation from the local equilibrium is characterized by vectorial internal variables and a generalized entropy current density expressed in terms of so-called current multipliers. Cross effects between heat conduction and viscosity are also considered and some phenomenological generalizations of Fourier's and Newton's laws are obtained.
Nanoconfined ionic liquids: Disentangling electrostatic and viscous forces
NASA Astrophysics Data System (ADS)
Lhermerout, Romain; Perkin, Susan
2018-01-01
Recent reports of surface forces across nanoconfined ionic liquids have revealed the existence of an anomalously long-ranged interaction apparently of electrostatic origin. Ionic liquids are viscous, and therefore it is important to inspect rigorously whether the observed repulsive forces are indeed equilibrium forces or, rather, arise from the viscous force during drainage of the fluid between two confining surfaces. In this paper we present our direct measurements of surface forces between mica sheets approaching in the ionic liquid [C2C1Im ] [NTf2] , exploring three orders of magnitude in approach velocity. Trajectories are systematically fitted by solving the equation of motion, allowing us to disentangle the viscous and equilibrium contributions. First, we find that the drainage obeys classical hydrodynamics with a negative slip boundary condition in the range of the structural force, implying that a nanometer -thick portion of the liquid in the vicinity of the solid surface is composed of ordered molecules that do not contribute to the flow. Second, we show that a long-range static force must indeed be invoked, in addition to the viscous force, in order to describe the data quantitatively. This equilibrium interaction decays exponentially and with decay length in agreement with the screening length reported for the same system in previous studies. In those studies the decay was simply checked to be independent of velocity and measured at a low approach rate, rather than explicitly taking account of viscous effects: we explain why this gives indistinguishable outcomes for the screening length by noting that the viscous force is linear to very good approximation over a wide range of distances.
Higher-than-ballistic conduction of viscous electron flows
NASA Astrophysics Data System (ADS)
Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S.
2017-03-01
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit
Numerical investigation of internal high-speed viscous flows using a parabolic technique
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Power, G. D.
1985-01-01
A feasibility study has been conducted to assess the applicability of an existing parabolic analysis (ADD-Axisymmetric Diffuser Duct), developed previously for subsonic viscous internal flows, to mixed supersonic/subsonic flows with heat addition simulating a SCRAMJET combustor. A study was conducted with the ADD code modified to include additional convection effects in the normal momentum equation when supersonic expansion and compression waves are present. A set of test problems with weak shock and expansion waves have been analyzed with this modified ADD method and stable and accurate solutions were demonstrated provided the streamwise step size was maintained at levels larger than the boundary layer displacement thickness. Calculations made with further reductions in step size encountered departure solutions consistent with strong interaction theory. Calculations were also performed for a flow field with a flame front in which a specific heat release was imposed to simulate a SCRAMJET combustor. In this case the flame front generated relatively thick shear layers which aggravated the departure solution problem. Qualitatively correct results were obtained for these cases using a marching technique with the convective terms in the normal momentum equation suppressed. It is concluded from the present study that for the class of problems where strong viscous/inviscid interactions are present a global iteration procedure is required.
The least-squares finite element method for low-mach-number compressible viscous flows
NASA Technical Reports Server (NTRS)
Yu, Sheng-Tao
1994-01-01
The present paper reports the development of the Least-Squares Finite Element Method (LSFEM) for simulating compressible viscous flows at low Mach numbers in which the incompressible flows pose as an extreme. Conventional approach requires special treatments for low-speed flows calculations: finite difference and finite volume methods are based on the use of the staggered grid or the preconditioning technique; and, finite element methods rely on the mixed method and the operator-splitting method. In this paper, however, we show that such difficulty does not exist for the LSFEM and no special treatment is needed. The LSFEM always leads to a symmetric, positive-definite matrix through which the compressible flow equations can be effectively solved. Two numerical examples are included to demonstrate the method: first, driven cavity flows at various Reynolds numbers; and, buoyancy-driven flows with significant density variation. Both examples are calculated by using full compressible flow equations.
A unified wall function for compressible turbulence modelling
NASA Astrophysics Data System (ADS)
Ong, K. C.; Chan, A.
2018-05-01
Turbulence modelling near the wall often requires a high mesh density clustered around the wall and the first cells adjacent to the wall to be placed in the viscous sublayer. As a result, the numerical stability is constrained by the smallest cell size and hence requires high computational overhead. In the present study, a unified wall function is developed which is valid for viscous sublayer, buffer sublayer and inertial sublayer, as well as including effects of compressibility, heat transfer and pressure gradient. The resulting wall function applies to compressible turbulence modelling for both isothermal and adiabatic wall boundary conditions with the non-zero pressure gradient. Two simple wall function algorithms are implemented for practical computation of isothermal and adiabatic wall boundary conditions. The numerical results show that the wall function evaluates the wall shear stress and turbulent quantities of wall adjacent cells at wide range of non-dimensional wall distance and alleviate the number and size of cells required.
The controlling effect of viscous dissipation on magma flow in silicic conduits
Mastin, L.G.
2005-01-01
Nearly all volcanic conduit models assume that flow is Newtonian and isothermal. Such models predict that, during high-flux silicic eruptions, gradients in pressure with depth increase upward as magma accelerates and becomes more viscous, leading to extremely low pressure and fragmentation at a depth of kilometers below the surface. In this paper I show that shear heating, also known as viscous dissipation, dramatically reduces the pressure gradient required for flow and concentrates shear in narrow zones along the conduit margin. The reduction in friction may eliminate the zone of low pressure predicted by isothermal models and move the fragmentation level up to the surface.
Coiling and Folding of Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2007-11-01
The study of fluid jets impacting on a flat surface has industrial applications in many areas, including processing of foods and consumer goods, bottle filling, and polymer melt processing. Previous studies have focused primarily on purely viscous, Newtonian fluids, which exhibit a number of different dynamical regimes including dripping, steady jetting, folding, and steady coiling. Here we add another dimension to the problem by focusing on mobile (low viscosity) viscoelastic fluids, with the study of two wormlike-micellar fluids, a cetylpyridinum-salicylic acid salt (CPyCl/NaSal) solution, and an industrially relevant shampoo base. We investigate the effects of viscosity and elasticity on the dynamics of axi-symmetric jets. The viscoelasticity of the fluids is systematically controlled by varying the concentration of salt counterions. Experimental methods include shear and extensional rheology measurements to characterize the fluids, and high-speed digital video imaging. In addition to the regimes observed in purely viscous systems, we also find a novel regime in which the elastic jet buckles and folds on itself, and alternates between coiling and folding behavior. We suggest phase diagrams and scaling laws for the coiling and folding frequencies through a systematic exploration of the experimental parameter space (height of fall, imposed flow rate, elasticity of the solution).
Pin stack array for thermoacoustic energy conversion
Keolian, Robert M.; Swift, Gregory W.
1995-01-01
A thermoacoustic stack for connecting two heat exchangers in a thermoacoustic energy converter provides a convex fluid-solid interface in a plane perpendicular to an axis for acoustic oscillation of fluid between the two heat exchangers. The convex surfaces increase the ratio of the fluid volume in the effective thermoacoustic volume that is displaced from the convex surface to the fluid volume that is adjacent the surface within which viscous energy losses occur. Increasing the volume ratio results in an increase in the ratio of transferred thermal energy to viscous energy losses, with a concomitant increase in operating efficiency of the thermoacoustic converter. The convex surfaces may be easily provided by a pin array having elements arranged parallel to the direction of acoustic oscillations and with effective radial dimensions much smaller than the thicknesses of the viscous energy loss and thermoacoustic energy transfer volumes.
MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS*
CHAHINE, Georges L.; HSIAO, Chao-Tsung
2012-01-01
Controlling microbubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge, which can be achieved only through a combination of experimental and numerical/analytical techniques. The present communication presents a multi-physics approach to study the dynamics combining viscous- in-viscid effects, liquid and structure dynamics, and multi bubble interaction. While complex numerical tools are developed and used, the study aims at identifying the key parameters influencing the dynamics, which need to be included in simpler models. PMID:22833696
NASA Technical Reports Server (NTRS)
Garrett, L. B.; Smith, G. L.; Perkins, J. N.
1972-01-01
An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.
Shock-free turbomachinery blade design
NASA Technical Reports Server (NTRS)
Beauchamp, P. P.; Seebass, A. R.
1985-01-01
A computational method for designing shock-free, quasi-three-dimensional, transonic, turbomachinery blades is described. Shock-free designs are found by implementing Sobieczky's fictitious gas principle in the analysis of a baseline shape, resulting in an elliptic solution that is incorrect in the supersonic domain. Shock-free designs are obtained by combining the subsonic portion of this solution with a characteristic calculation of the correct supersonic flow using the sonic line data from the fictitious elliptic solution. This provides a new, shock-free blade design. Examples presented include the removal of shocks from two blades in quasi-three-dimensional flow and the development of a series of shock-free two-dimensional stators. The new designs all include modifications to the upper surface of an experimental stator blade developed at NASA Lewis Research Center. While the designs presented here are for inviscid flow, the same concepts have been successfully applied to the shock-free design of airfoils and three-dimensional wings with viscous effects. The extension of the present method to viscous flows is straightforward given a suitable analysis algorithm for the flow.
Coronal heating by the resonant absorption of Alfven waves: The effect of viscous stress tensor
NASA Technical Reports Server (NTRS)
Ofman, L.; Davila, J. M.; Steinolfson, R. S.
1994-01-01
The time-dependent linearized magnetohydrodynamics (MHD) equations for a fully compressible, low-beta, viscoresistive plasma are solved numerically using an implicit integration scheme. The full viscosity stress tensor (Braginskii 1965) is included with the five parameters eta(sub i) i = 0 to 4. In agreement with previous studies, the numerical simulations demonstrate that the dissipation on inhomogeneities in the background Alfven speed occurs in a narrow resonant layer. For an active region in the solar corona the values of eta(sub i) are eta(sub o) = 0.65 g/cm/s, eta(sub 1) = 3.7 x 10(exp -12) g/cm/s, eta(sub 2) = 4 eta(sub 1), eta(sub 3) = 1.4 x 10(exp -6) g/cm/s, eta(sub 4) = 2 eta(sub 3), with n = 10(exp 10)/cu cm, T = 2 x 10(exp 6) K, and B = 100 G. When the Lundquist number S = 10(exp 4) and R(sub 1) much greater than S (where R(sub 1) is the dimensionless shear viscous number) the width of the resistive dissipation layer d(sub r) is 0.22a (where a is the density gradient length scale) and d(sub r) approximately S(exp -1/3). When S much greater than R(sub 1) the shear viscous dissipation layer width d(sub r) scales as R(sub 1)(exp -1/3). The shear viscous and the resistive dissipation occurs in an overlapping narrow region, and the total heating rate is independent of the value of the dissipation parameters in agreement with previous studies. Consequently, the maximum values of the perpendicular velocity and perpendicular magnetic field scale as R(sub 1)(exp -1/3). It is evident from the simulations that for solar parameters the heating due to the compressive viscosity (R(sub 0) = 560) is negligible compared to the resistive and the shear viscous (R(sub 1)) dissipation and it occurs in a broad layer of order a in width. In the solar corona with S approximately equals 10(exp 4) and R(sub 1) approximately equals 10(exp 14) (as calculated from the Braginskii expressions), the shear viscous resonant heating is of comparable magnitude to the resistive resonant heating.
Scaling behavior of immersed granular flows
NASA Astrophysics Data System (ADS)
Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.
2017-06-01
The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties (viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure). Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and exploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modified inertial number that incorporates viscous effects.
Use of viscous fibres in beverages for appetite control: a review of studies.
Ho, Irene H H; Matia-Merino, Lara; Huffman, Lee M
2015-01-01
Dietary fibres, particularly viscous fibres appear to be more effective for appetite control (reduce subjective appetite, energy intake and/or body weight). Three types of viscous fibres, pectin, alginate and cereal beta-glucan, were identified as potential satiety-enhancing ingredients. The aim of this review was to collect evidence from human intervention studies evaluating pectins, alginates and beta-glucans in beverages, liquid preloads and liquid test meals for their satiety effects. Our focused, narrative review of several satiety studies shows an overall consistent result on the effectiveness of pectin, alginate and beta-glucan for appetite control. Beverages or liquid test meals are probably the better delivery mode for these fibres, as their effect on satiety is affected by their physico-chemical properties. Most, if not all, of these reviewed studies gave little or no consideration to the potential effects of common food processing (e.g. pasteurisation, ultra-high temperature process) on the physico-chemical properties of these fibre-containing beverages. This is one of the research gaps we have identified warranting further work, which is likely to be of significance from the industry and consumer perspective.
Adaptive 3D single-block grids for the computation of viscous flows around wings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagmeijer, R.; Kok, J.C.
1996-12-31
A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.
Three mechanisms model of shale gas in real state transport through a single nanopore
NASA Astrophysics Data System (ADS)
Li, Dongdong; Zhang, Yanyu; Sun, Xiaofei; Li, Peng; Zhao, Fengkai
2018-02-01
At present, the apparent permeability models of shale gas consider only the viscous flow and Knudsen diffusion of free gas, but do not take into account the influence of surface diffusion. Moreover, it is assumed that shale gas is in ideal state. In this paper, shale gas is assumed in real state, a new apparent permeability model for shale gas transport through a single nanopore is developed that captures many important migration mechanisms, such as viscous flow and Knudsen diffusion of free gas, surface diffusion of adsorbed gas. According to experimental data, the accuracy of apparent permeability model was verified. What’s more, the effects of pressure and pore radius on apparent permeability, and the effects on the permeability fraction of viscous flow, Knudsen diffusion and surface diffusion were analysed, separately. Finally, the results indicate that the error of the developed model in this paper was 3.02%, which is less than the existing models. Pressure and pore radius seriously affect the apparent permeability of shale gas. When the pore radius is small or pressure is low, the surface diffusion cannot be ignored. When the pressure and the pore radius is big, the viscous flow occupies the main position.
NASA Astrophysics Data System (ADS)
Borderie, Sandra; Graveleau, Fabien; Witt, César; Vendeville, Bruno C.
2016-04-01
Accretionary wedges are generally segmented both across and along strike because of diverse factors including tectonic and stratigraphic inheritance. In fold-and-thrust belts, along-strike stratigraphic changes in the foreland sequence are classically observed and cause a curvature of the deformation front. Although the parameters controlling this curvature are well documented, the structural interactions and mutual influences between adjacent provinces are much less analyzed. To investigate this question, we deformed analogue models in a compressional box equipped with digital cameras and a topographic measurement apparatus. Models where shortened above a basal frictional detachment (glass microbeads) and segmentation was tested by having a region in which we added an interbedded viscous level (silicone polymer) within the sedimentary cover (dry sand). By changing the number (2 or 3) and the relative width of the purely frictional and viscous provinces, our goal was to characterize geometrically and kinematically the interactions between the viscous and the purely frictional provinces. We used a commercial geomodeller to generate 3-D geometrical models. The results indicate that regardless of the relative width of the purely frictional vs. viscous provinces, the deformation style in the frictional province is not influenced by the presence of the adjacent viscous province. On the contrary, the structural style and the deformation kinematics in the viscous province is significantly impacted by the presence or absence of an adjacent purely frictional province. At first order, the deformation style in the viscous province depends on its width, and three structural styles can be defined along strike. Far from the frictional area, structures are primarily of salt-massif type, and they do not seem to be influenced by the frictional wedge province. Towards the frictional province, deformation changes gradually to a zone of purely forethrusts (foreland verging), and finally to a highly faulted zone with both fore- and backthrusts (hinterland verging). In addition, a kinematic analysis indicates that narrow viscous provinces are strongly influenced by the presence of an adjacent frictional province. Indeed, propagation of shallow thrusts occurs in sequence and the deformation front reaches lately the external décollement pinchout. On the contrary, the deformation front of the wide viscous provinces propagates rapidly to the external décollement pinchout, then younger thrusts form out of sequence. Along-strike segmentation also affects the deep structures (thrusts detaching on the basal frictional décollement). In the viscous province, the presence of an upper viscous décollement opposes the advance of the basal deformation front. There, the rear of the wedge is characterized by imbrications of thrusts sheets (antiformal stacks), and the deep deformation front is convex towards the hinterland. Our experiments allow to better understand the dynamics of salt-controlled fold-and-thrust belts such as in the Huallaga (Peru) and Kuqa (China) basins or the Franklin Mountains (NW Canada).
Crustal fingering: solidification on a viscously unstable interface
NASA Astrophysics Data System (ADS)
Fu, Xiaojing; Jimenez-Martinez, Joaquin; Cueto-Felgueroso, Luis; Porter, Mark; Juanes, Ruben
2017-11-01
Motivated by the formation of gas hydrates in seafloor sediments, here we study the volumetric expansion of a less viscous gas pocket into a more viscous liquid when the gas-liquid interfaces readily solidify due to hydrate formation. We first present a high-pressure microfluidic experiment to study the depressurization-controlled expansion of a Xenon gas pocket in a water-filled Hele-Shaw cell. The evolution of the pocket is controlled by three processes: (1) volumetric expansion of the gas; (2) rupturing of existing hydrate films on the gas-liquid interface; and (3) formation of new hydrate films. These result in gas fingering leading to a complex labyrinth pattern. To reproduce these observations, we propose a phase-field model that describes the formation of hydrate shell on viscously unstable interfaces. We design the free energy of the three-phase system to rigorously account for interfacial effects, gas compressibility and phase transitions. We model the hydrate shell as a highly viscous fluid with shear-thinning rheology to reproduce shell-rupturing behavior. We present high-resolution numerical simulations of the model, which illustrate the emergence of complex crustal fingering patterns as a result of gas expansion dynamics modulated by hydrate growth at the interface.
Differential invariants in nonclassical models of hydrodynamics
NASA Astrophysics Data System (ADS)
Bublik, Vasily V.
2017-10-01
In this paper, differential invariants are used to construct solutions for equations of the dynamics of a viscous heat-conducting gas and the dynamics of a viscous incompressible fluid modified by nanopowder inoculators. To describe the dynamics of a viscous heat-conducting gas, we use the complete system of Navier—Stokes equations with allowance for heat fluxes. Mathematical description of the dynamics of liquid metals under high-energy external influences (laser radiation or plasma flow) includes, in addition to the Navier—Stokes system of an incompressible viscous fluid, also heat fluxes and processes of nonequilibrium crystallization of a deformable fluid. Differentially invariant solutions are a generalization of partially invariant solutions, and their active study for various models of continuous medium mechanics is just beginning. Differentially invariant solutions can also be considered as solutions with differential constraints; therefore, when developing them, the approaches and methods developed by the science schools of academicians N. N. Yanenko and A. F. Sidorov will be actively used. In the construction of partially invariant and differentially invariant solutions, there are overdetermined systems of differential equations that require a compatibility analysis. The algorithms for reducing such systems to involution in a finite number of steps are described by Cartan, Finikov, Kuranishi, and other authors. However, the difficultly foreseeable volume of intermediate calculations complicates their practical application. Therefore, the methods of computer algebra are actively used here, which largely helps in solving this difficult problem. It is proposed to use the constructed exact solutions as tests for formulas, algorithms and their software implementations when developing and creating numerical methods and computational program complexes. This combination of effective numerical methods, capable of solving a wide class of problems, with analytical methods makes it possible to make the results of mathematical modeling more accurate and reliable.
Microjet Generator for Highly Viscous Fluids
NASA Astrophysics Data System (ADS)
Onuki, Hajime; Oi, Yuto; Tagawa, Yoshiyuki
2018-01-01
This paper describes a simple system for generating a highly viscous microjet. The jet is produced inside a wettable thin tube partially submerged in a liquid. The gas-liquid interface inside the tube, which is initially concave, is kept much deeper than that outside the tube. An impulsive force applied at the bottom of a liquid container leads to significant acceleration of the liquid inside the tube followed by flow focusing due to the concave interface. The jet generation process can be divided into two parts that occur in different time scales, i.e., the impact interval [impact duration ≤O (10-4) s ] and the focusing interval [focusing duration ≫O (10-4) s ]. During the impact interval, the liquid accelerates suddenly due to the impact. During the focusing interval, the microjet emerges due to flow focusing. In order to explain the sudden acceleration inside the tube during the impact interval, we develop a physical model based on a pressure impulse approach. Numerical simulations confirm the proposed model, indicating that the basic mechanism of the acceleration of the liquid due to the impulsive force is elucidated. Remarkably, the viscous effect is negligible during the impact interval. In contrast, during the focusing interval, the viscosity plays an important role in the microjet generation. We experimentally and numerically investigate the velocity of microjets with various viscosities. We find that higher viscosities lead to reduction of the jet velocity, which can be described by using the Reynolds number (the ratio between the inertia force and the viscous force). This device may be a starting point for next-generation technologies, such as high-viscosity inkjet printers including bioprinters and needle-free injection devices for minimally invasive medical treatments.
Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing
2006-09-01
tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of
NASA Astrophysics Data System (ADS)
Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.
2018-04-01
A fundamental understanding of frictional sliding at rock surfaces is of practical importance for nucleation and propagation of earthquakes and rock slope stability. We investigate numerically the effect of different physical parameters such as inertia, viscous damping, temperature and normal stress on the chaotic behaviour of the two state variables rate and state friction (2sRSF) model. In general, a slight variation in any of inertia, viscous damping, temperature and effective normal stress reduces the chaotic behaviour of the sliding system. However, the present study has shown the appearance of chaos for the specific values of normal stress before it disappears again as the normal stress varies further. It is also observed that magnitude of system stiffness at which chaotic motion occurs, is less than the corresponding value of critical stiffness determined by using the linear stability analysis. These results explain the practical observation why chaotic nucleation of an earthquake is a rare phenomenon as reported in literature.
NASA Astrophysics Data System (ADS)
Karim, M. Enamul; Samad, M. Abdus; Ferdows, M.
2017-06-01
The present note investigates the magneto hall effect on unsteady flow of elastico-viscous nanofluid in a channel with slip boundary considering the presence of thermal radiation and heat generation with Brownian motion. Numerical results are achieved by solving the governing equations by the implicit Finite Difference Method (FDM) obtaining primary and secondary velocities, temperature, nanoparticles volume fraction and concentration distributions within the boundary layer entering into the problem. The influences of several interesting parameters such as elastico-viscous parameter, magnetic field, hall parameter, heat generation, thermal radiation and Brownian motion parameters on velocity, heat and mass transfer characteristics of the fluid flow are discussed with the help of graphs. Also the effects of the pertinent parameters, which are of physical and engineering interest, such as Skin friction parameter, Nusselt number and Sherwood number are sorted out. It is found that the flow field and other quantities of physical concern are significantly influenced by these parameters.
Choi, Sanghun; Choi, Jiwoong; Lin, Ching-Long
2018-01-01
The aim of this study was to investigate and quantify contributions of kinetic energy and viscous dissipation to airway resistance during inspiration and expiration at various flow rates in airway models of different bifurcation angles. We employed symmetric airway models up to the 20th generation with the following five different bifurcation angles at a tracheal flow rate of 20 L/min: 15 deg, 25 deg, 35 deg, 45 deg, and 55 deg. Thus, a total of ten computational fluid dynamics (CFD) simulations for both inspiration and expiration were conducted. Furthermore, we performed additional four simulations with tracheal flow rate values of 10 and 40 L/min for a bifurcation angle of 35 deg to study the effect of flow rate on inspiration and expiration. Using an energy balance equation, we quantified contributions of the pressure drop associated with kinetic energy and viscous dissipation. Kinetic energy was found to be a key variable that explained the differences in airway resistance on inspiration and expiration. The total pressure drop and airway resistance were larger during expiration than inspiration, whereas wall shear stress and viscous dissipation were larger during inspiration than expiration. The dimensional analysis demonstrated that the coefficients of kinetic energy and viscous dissipation were strongly correlated with generation number. In addition, the viscous dissipation coefficient was significantly correlated with bifurcation angle and tracheal flow rate. We performed multiple linear regressions to determine the coefficients of kinetic energy and viscous dissipation, which could be utilized to better estimate the pressure drop in broader ranges of successive bifurcation structures.
Lamarche, Benoît; Desroches, Sophie; Jenkins, David J A; Kendall, Cyril W C; Marchie, Augustine; Faulkner, Dorothea; Vidgen, Edward; Lapsley, Karen G; Trautwein, Elke A; Parker, Tina L; Josse, Robert G; Leiter, Lawrence A; Connelly, Philip W
2004-10-01
Studies conducted in the last 20 years have led to the identification of small dense LDL as an important risk factor for CVD. Consumption of plant sterols, soyabean proteins, viscous fibre and nuts are known to modulate the risk of CVD favourably through their cholesterol (Chol)-lowering properties, both independently and more recently in combination. Nevertheless, their combined impact on the LDL particle size phenotype has never been tested. In the present study, we assessed the effect of incorporating concurrently plant sterols (1 g/4.2 MJ), soyabean protein (23 g/4.2 MJ), viscous fibre (9 g/4.2 MJ) and almonds (15 g/4.2 MJ) into a diet very low in saturated fat in twelve patients with mildly elevated plasma LDL-Chol levels. Fasting blood lipids were obtained at the start of the study and at 2-week intervals during the 4-week study. The diet-induced reduction in plasma LDL-Chol of 30.0 (se 3.0) % (P<0.0001) was attributed to concurrent reductions in the serum Chol concentrations of large (>26.0 nm-30 (se 8) %, P<0.001), medium (25.5-26.0 nm-29 (se 3) %, P<0.001) and small (<25.5 nm-21 (sd 6) %, P<0.01) LDL particles, with near maximal reductions seen by week 2. These results indicate that foods and dietary components advocated for their potential to reduce the risk of CVD are effective in reducing serum concentrations of all LDL fractions including small dense LDL, thus potentially further contributing to an overall lower risk of CVD.
NASA Technical Reports Server (NTRS)
Chan, J. S.; Freeman, J. A.
1984-01-01
The viscous, axisymmetric flow in the thrust chamber of the space shuttle main engine (SSME) was computed on the CRAY 205 computer using the general interpolants method (GIM) code. Results show that the Navier-Stokes codes can be used for these flows to study trends and viscous effects as well as determine flow patterns; but further research and development is needed before they can be used as production tools for nozzle performance calculations. The GIM formulation, numerical scheme, and computer code are described. The actual SSME nozzle computation showing grid points, flow contours, and flow parameter plots is discussed. The computer system and run times/costs are detailed.
Solutions of conformal Israel-Stewart relativistic viscous fluid dynamics
NASA Astrophysics Data System (ADS)
Marrochio, Hugo; Noronha, Jorge; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2015-01-01
We use symmetry arguments developed by Gubser to construct the first radially expanding explicit solutions of the Israel-Stewart formulation of hydrodynamics. Along with a general semi-analytical solution, an exact analytical solution is given which is valid in the cold plasma limit where viscous effects from shear viscosity and the relaxation time coefficient are important. The radially expanding solutions presented in this paper can be used as nontrivial checks of numerical algorithms employed in hydrodynamic simulations of the quark-gluon plasma formed in ultrarelativistic heavy ion collisions. We show this explicitly by comparing such analytic and semi-analytic solutions with the corresponding numerical solutions obtained using the music viscous hydrodynamics simulation code.
A viscous-inviscid interactive compressor calculations
NASA Technical Reports Server (NTRS)
Johnston, W.; Sockol, P. M.
1978-01-01
A viscous-inviscid interactive procedure for subsonic flow is developed and applied to an axial compressor stage. Calculations are carried out on a two-dimensional blade-to-blade region of constant radius assumed to occupy a mid-span location. Hub and tip effects are neglected. The Euler equations are solved by MacCormack's method, a viscous marching procedure is used in the boundary layers and wake, and an iterative interaction scheme is constructed that matches them in a way that incorporates information related to momentum and enthalpy thicknesses as well as the displacement thickness. The calculations are quasi-three-dimensional in the sense that the boundary layer and wake solutions allow for the presence of spanwise (radial) velocities.
NASA Technical Reports Server (NTRS)
Grimm, Robert E.; Solomon, Sean C.
1988-01-01
Models for the viscous relaxation of impact crater topography are used to constrain the crustal thickness (H) and the mean lithospheric thermal gradient beneath the craters on Venus. A general formulation for gravity-driven flow in a linearly viscous fluid has been obtained which incorporates the densities and temperature-dependent effective viscosities of distinct crust and mantle layers. An upper limit to the crustal volume of Venus of 10 to the 10th cu km is obtained which implies either that the average rate of crustal generation has been much smaller on Venus than on earth or that some form of crustal recycling has occurred on Venus.
Compressible viscous flows generated by oscillating flexible cylinders
NASA Astrophysics Data System (ADS)
Van Eysden, Cornelis A.; Sader, John E.
2009-01-01
The fluid dynamics of oscillating elastic beams underpin the operation of many modern technological devices ranging from micromechanical sensors to the atomic force microscope. While viscous effects are widely acknowledged to have a strong influence on these dynamics, fluid compressibility is commonly neglected. Here, we theoretically study the three-dimensional flow fields that are generated by the motion of flexible cylinders immersed in viscous compressible fluids and discuss the implications of compressibility in practice. We consider cylinders of circular cross section and flat blades of zero thickness that are executing flexural and torsional oscillations of arbitrary wave number. Exact analytical solutions are derived for these flow fields and their resulting hydrodynamic loads.
Computational tool for the early screening of monoclonal antibodies for their viscosities
Agrawal, Neeraj J; Helk, Bernhard; Kumar, Sandeep; Mody, Neil; Sathish, Hasige A.; Samra, Hardeep S.; Buck, Patrick M; Li, Li; Trout, Bernhardt L
2016-01-01
Highly concentrated antibody solutions often exhibit high viscosities, which present a number of challenges for antibody-drug development, manufacturing and administration. The antibody sequence is a key determinant for high viscosity of highly concentrated solutions; therefore, a sequence- or structure-based tool that can identify highly viscous antibodies from their sequence would be effective in ensuring that only antibodies with low viscosity progress to the development phase. Here, we present a spatial charge map (SCM) tool that can accurately identify highly viscous antibodies from their sequence alone (using homology modeling to determine the 3-dimensional structures). The SCM tool has been extensively validated at 3 different organizations, and has proved successful in correctly identifying highly viscous antibodies. As a quantitative tool, SCM is amenable to high-throughput automated analysis, and can be effectively implemented during the antibody screening or engineering phase for the selection of low-viscosity antibodies. PMID:26399600
NASA Astrophysics Data System (ADS)
Ganesh Kumar, K.; Rudraswamy, N. G.; Gireesha, B. J.; Krishnamurthy, M. R.
2017-09-01
Present exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.
Parametric study of solar thermal rocket nozzle performance
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Landrum, D. Brian; Hawk, Clark W.
1995-01-01
This paper details a numerical investigation of performance losses in low-thrust solar thermal rocket nozzles. The effects of nozzle geometry on three types of losses were studied; finite rate dissociation-recombination kinetic losses, two dimensional axisymmetric divergence losses, and compressible viscous boundary layer losses. Short nozzle lengths and supersonic flow produce short residence times in the nozzle and a nearly frozen flow, resulting in large kinetic losses. Variations in geometry have a minimal effect on kinetic losses. Divergence losses are relatively small, and careful shaping of the nozzle can nearly eliminate them. The boundary layer in these small nozzles can grow to a major fraction of nozzle radius, and cause large losses. These losses are attributed to viscous drag on the nozzle walls and flow blockage by the boundary layer, especially in the throat region. Careful shaping of the nozzle can produce a significant reduction in viscous losses.
An experimental study of non-isothermal miscible displacements in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatsu, Yuichiro; Fujita, Norihito; Kato, Yoshihito
Non-isothermal miscible displacements in a radial Hele-Shaw cell were experimentally investigated using a scheme in which room temperature liquids of relatively high viscosity were displaced by high-temperature (80 C), less-viscous liquids. Fundamental characteristics have been presented regarding how the effect of a non-isothermal field on miscible displacement patterns varies in terms of factors such as the viscosity ratio of the more- and less-viscous liquids at 20 C, M{sub 20}, the rate of an increase in the pattern's area, R, and the gap width of the cell, b. The concept of area density was used to quantitatively evaluate the effect ofmore » the non-isothermal fields on the patterns. We have found that the effect of the non-isothermal field on the patterns does not monotonically vary with M{sub 20} and b. In contrast, it increases with R in the present experimental condition. The experimental results can be explained by introducing an assumption in which heat is transferred mainly to the plates of the cell, in other words, the temperature of the more-viscous liquid remains constant, whereas that of the less-viscous liquid spatiotemporally decreases and the viscosity of it increases along with the temperature decrease. Visualization of non-isothermal field in the cell has been done by means of a thermo sheet and the results support the assumption mentioned above. (author)« less
The formation of spikes in the displacement of miscible fluids
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.; Schroer, R. T.
2004-01-01
We report on experiments in which a more viscous fluid displaces a less viscous one in a vertical cylindrical tube. These experiments were performed using silicone oils in a vertical pipette of small diameter. The more viscous fluid also had a slightly larger density than the less viscous fluid. In the initial configuration, the fluids were at rest, and the interface was nominally flat. A dye was added to the more viscous fluid for ease of observation of the interface between the fluids. The flow was initiated by pumping the more viscous fluid into the less viscous one. The displacement velocity was such that the Reynolds number was smaller than unity and the Peclet number for mass transfer between the fluids was large compared to unity. For upward displacement of the more viscous fluid from an initially stable configuration, an axisymmetric finger was observed under all conditions. However, a needle-shaped spike was seen to propagate from the main finger in many cases, similar to that observed by Petitjeans and Maxworthy for the displacement of a more viscous fluid by a less viscous one.
Toxic effects of 2,4-dichlorophenoxyacetic acid on human sperm function in vitro.
Tan, Zhengyu; Zhou, Jun; Chen, Houyang; Zou, Qianxing; Weng, Shiqi; Luo, Tao; Tang, Yuxin
2016-01-01
The herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) is globally used in agriculture and has been linked to human sperm abnormalities in vivo. However, its effects on ejaculated human spermatozoa in vitro have not been characterized. Therefore, we examined the effects of 2,4-D on the functions of ejaculated human spermatozoa in vitro, including: sperm motility, the ability to move through a viscous medium, capacitation, and the acrosome reaction. Different doses of 2,4-D (10 nM, 100 nM, 1 µM, 10 µM, 100 µM, and 200 µM) were applied to human spermatozoa prepared from normal fresh semen samples. The results indicated that 2,4-D did not affect the viability, capacitation, or spontaneous acrosome reactions of human spermatozoa, but it dose-dependently inhibited the total motility, progressive motility, ability to penetrate viscous medium, and progesterone-induced capacitation and acrosome reaction rates. These results suggest that exposure to 2,4-D and its accumulation in the seminal plasma and follicular fluid might increase the risk of infertility. Our findings provide new insights for understanding the male reproductive toxicity of 2,4-D.
Calculations of transonic boattail flow at small angle of attack
NASA Technical Reports Server (NTRS)
Nakayama, A.; Chow, W. L.
1979-01-01
A transonic flow past a boattailed afterbody under a small angle of attack was examined. It is known that the viscous effect offers significant modifications of the pressure distribution on the afterbody. Thus, the formulation for the inviscid flow was based on the consideration of a flow past a nonaxisymmetric body. The full three dimensional potential equation was solved through numerical relaxation, and quasi-axisymmetric boundary layer calculations were performed to estimate the displacement effect. It was observed again that the viscous effects were not negligible. The trend of the final results agreed well with the experimental data.
NASA Astrophysics Data System (ADS)
Vujanovic, Gojko; Paquet, Jean-François; Denicol, Gabriel S.; Luzum, Matthew; Jeon, Sangyong; Gale, Charles
2016-07-01
The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1-dimensional viscous hydrodynamic simulation (music).
Viscous electron flow in mesoscopic two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Gusev, G. M.; Levin, A. D.; Levinson, E. V.; Bakarov, A. K.
2018-02-01
We report electrical and magneto transport measurements in mesoscopic size, two-dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the probe configuration and sample geometry strongly affects the temperature evolution of local resistance. We attribute all transport properties to the presence of hydrodynamic effects. Experimental results confirm the theoretically predicted significance of viscous flow in mesoscopic devices.
NASA Technical Reports Server (NTRS)
Talay, T. A.; White, N. H.; Naftel, J. C.
1984-01-01
Simulations of aerobraking trajectories of aeroassisted orbital transfer vehicles (AOTV's) returning from geosynchronous orbit were analyzed to examine the effects of high-altitude viscous interactions and off-nominal atmospheres on AOTV return weight, heating, and loads performance. Viscous interaction effects encountered at high altitudes had little detrimental effect on the return weight capabilities for AOTV's representing a range of lift/drag ratios. Most of the AOTV return weight increase over an all-propulsive OTV occurred for a low lift/drag ratio. Smaller increases in return weight were observed for higher lift/drag ratios, at the expense of significantly higher heating and aerodynamic loads. Off-nominal atmospheres based on Shuttle-derived data and multipliers on a U.S. Standard Atmosphere were considered. AOTV's intended for entry under standard atmospheric conditions either deorbited during the pass through the off-nominal atmospheres or missed the target phasing orbit by wide margins. The AOTV's could successfully negotiate these atmospheres when new bank-angle histories were implemented with little loss and sometimes with a gain in return weight.
Lack of correlation between HRM metrics and symptoms during the manometric protocol.
Xiao, Yinglian; Kahrilas, Peter J; Nicodème, Frédéric; Lin, Zhiyue; Roman, Sabine; Pandolfino, John E
2014-04-01
Although esophageal motor disorders are associated with chest pain and dysphagia, minimal data support a direct relationship between abnormal motor function and symptoms. This study investigated whether high-resolution manometry (HRM) metrics correlate with symptoms. Consecutive HRM patients without previous surgery were enrolled. HRM studies included 10 supine liquid, 5 upright liquid, 2 upright viscous, and 2 upright solid swallows. All patients evaluated their esophageal symptom for each upright swallow. Symptoms were graded on a 4-point likert score (0, none; 1, mild; 2, moderate; 3, severe). The individual liquid, viscous or solid upright swallow with the maximal symptom score was selected for analysis in each patient. HRM metrics were compared between groups with and without symptoms during the upright liquid protocol and the provocative protocols separately. A total of 269 patients recorded symptoms during the upright liquid swallows and 72 patients had a swallow symptom score of 1 or greater. Of the 269 patients, 116 recorded symptoms during viscous or solid swallows. HRM metrics were similar between swallows with and without associated symptoms in the upright, viscous, and solid swallows. No correlation was noted between HRM metrics and symptom scores among swallow types. Esophageal symptoms are not related to abnormal motor function defined by HRM during liquid, viscous or solid bolus swallows in the upright position. Other factors beyond circular muscle contraction patterns should be explored as possible causes of symptom generation.
NASA Astrophysics Data System (ADS)
Aftosmis, Michael J.
1992-10-01
A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.
Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model
NASA Astrophysics Data System (ADS)
Hu, Ran; Wan, Jiamin; Yang, Zhibing; Chen, Yi-Feng; Tokunaga, Tetsu
2018-04-01
When a more viscous fluid displaces a less viscous one in porous media, viscous pressure drop stabilizes the displacement front against capillary pressure fluctuation. For this favorable viscous ratio conditions, previous studies focused on the front instability under slow flow conditions but did not address competing effects of wettability and flow rate. Here we study how this competition controls displacement patterns. We propose a theoretical model that describes the crossover from fingering to stable flow as a function of invading fluid contact angle θ and capillary number Ca. The phase diagram predicted by the model shows that decreasing θ stabilizes the displacement for θ≥45° and the critical contact angle θc increases with Ca. The boundary between corner flow and cooperative filling for θ < 45° is also described. This work extends the classic phase diagram and has potential applications in predicting CO2 capillary trapping and manipulating wettability to enhance gas/oil displacement efficiency.
Teng, Ying; Liu, Yu; Jiang, Lanlan; Song, Yongchen; Zhao, Jiafei; Zhang, Yi; Wang, Dayong
2016-09-01
Gravity drainage characteristics are important to improve our understanding of gas-liquid or liquid-liquid two-phase flow in porous media. Stable or unstable displacement fronts that controlled by the capillary force, viscous force, gravitational force, etc., are relevant features of immiscible two-phase flow. In this paper, three dimensionless parameters, namely, the gravity number, the capillary number and the Bond number, were used to describe the effect of the above mentioned forces on two-phase drainage features, including the displacement front and final displacing-phase saturation. A series of experiments on the downward displacement of a viscous fluid by a less viscous fluid in a vertical vessel that is filled with quartz beads are performed by using magnetic resonance imaging (MRI). The experimental results indicate that the wetting properties at both high and low capillary numbers exert remarkable control on the fluid displacement. When the contact angle is lower than 90°, i.e., the displaced phase is the wetting phase, the average velocity Vf of the interface of the two phases (displacement front velocity) is observably lower than when the displaced phase is the non-wetting phase (contact angle higher than 90°). The results show that a fingering phenomenon occurs when the gravity number G is less than the critical gravity number G'=Δμ/μg. Moreover, the higher Bond number results in higher final displacing-phase saturation, whereas the capillary number has an opposite effect. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1971-01-01
An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.
Sato, Yasuhiko; Oba, Takuma; Danjo, Kazumi
2013-01-01
We have discussed the essential property for periodontal disease medication using protein, such as recombinant human basic fibroblast growth factor (rhbFGF). In our previous study, the criteria of thickener for the medication, viscosity, flowability etc., were set. The aim of this study was to evaluate the physical and chemical effect of concomitant use of general dental drug or device on thickener properties for the clinical use of viscous rhbFGF formulation. Viscous formulation was prepared with six cellulose derivatives, two types hydroxy propyl cellulose (HPC), three types hydroxy ethyl cellulose (HEC) and methyl cellulose (MC). Antibiotic ointment, local anesthetic, bone graft substitute, agent for gargle and mouthwashes, were chosen as general dental drug and device. These drugs and device were mixed with the viscous formulations and the change of viscosity and flowability, the remaining ratio of rhbFGF were evaluated. When the various thickener solutions were mixed with the liquid drugs, viscosity and flowability did not changed much. However, in the case of MC solution, viscous property declined greatly when MC solution was mixed with cationic surfactant for gargle. The flowabilities of thickener solutions were declined with insoluble bone graft. The stabilities of rhbFGF in thickener solutions were no problem for 24 hours even in the case of mixing with dental drug or device. Our findings suggested that the viscous rhbFGF formulations prepared in this research were not substantially affected by the concomitant use of dental drug or device, especially the formulation with HPC or HEC was useful.
NASA Technical Reports Server (NTRS)
Beatty, T. D.; Worthey, M. K.
1984-01-01
A computerized prediction method known as the Vought V/STOL Aircraft Propulsive Effects computer program (VAPE) for propulsive induced forces and moments in transition and Short TakeOff and Landing (STOL) flight is improved and evaluated. The VAPE program is capable of evaluating: (1) effects of relative wind about an aircraft, (2) effects of propulsive lift jet entrainment, vorticity and flow blockage, (3) effects of engine inlet flow on the aircraft flow field, (4) engine inlet forces and moments including inlet separation, (5) ground effects in the STOL region of flight, and (6) viscous effects on lifting surfaces.
Hypersonic Viscous Shock Layer of Nonequilibrium Dissociating Gas
NASA Technical Reports Server (NTRS)
Chung, Paul M.
1961-01-01
The nonequilibrium chemical reaction of dissociation and recombination is studied theoretically for air in the viscous shock layer at the stagnation region af axisymmetric bodies. The flight regime considered is for speeds near satellite speed and for altitudes between 200,000 and 300,000 feet. The convective heat transfer to noncatalytic walls is obtained. The effects of nose radius, wall temperature, and flight altitude on the chemical state of the shock layer are studied. An analysis is also made on the simultaneous effect of nonequilibrium chemical reaction and air rarefaction on the shock layer thickness.
Slender body theory programmed for bodies with arbitrary cross section. [including fuselages
NASA Technical Reports Server (NTRS)
Werner, J.; Krenkel, A. R.
1978-01-01
A computer program developed for determining the subsonic pressure, force, and moment coefficients for a fuselage-type body using slender body theory is described. The program is suitable for determining the angle of attack and sideslipping characteristics of such bodies in the linear range where viscous effects are not predominant. Procedures developed which are capable of treating cross sections with corners or regions of large curvature are outlined.
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization based on quasi-analytical sensitivities has been extended for practical three-dimensional aerodynamic applications. The flow analysis has been rendered by a fully implicit, finite-volume formulation of the Euler and Thin-Layer Navier-Stokes (TLNS) equations. Initially, the viscous laminar flow analysis for a wing has been compared with an independent computational fluid dynamics (CFD) code which has been extensively validated. The new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4 with coarse- and fine-grid based computations performed with Euler and TLNS equations. The influence of the initial constraints on the geometry and aerodynamics of the optimized shape has been explored. Various final shapes generated for an identical initial problem formulation but with different optimization path options (coarse or fine grid, Euler or TLNS), have been aerodynamically evaluated via a common fine-grid TLNS-based analysis. The initial constraint conditions show significant bearing on the optimization results. Also, the results demonstrate that to produce an aerodynamically efficient design, it is imperative to include the viscous physics in the optimization procedure with the proper resolution. Based upon the present results, to better utilize the scarce computational resources, it is recommended that, a number of viscous coarse grid cases using either a preconditioned bi-conjugate gradient (PbCG) or an alternating-direction-implicit (ADI) method, should initially be employed to improve the optimization problem definition, the design space and initial shape. Optimized shapes should subsequently be analyzed using a high fidelity (viscous with fine-grid resolution) flow analysis to evaluate their true performance potential. Finally, a viscous fine-grid-based shape optimization should be conducted, using an ADI method, to accurately obtain the final optimized shape.
Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Peng, Suping
2016-01-01
This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.
NASA Astrophysics Data System (ADS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-06-01
Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semi-discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.
Agglomeration Multigrid for an Unstructured-Grid Flow Solver
NASA Technical Reports Server (NTRS)
Frink, Neal; Pandya, Mohagna J.
2004-01-01
An agglomeration multigrid scheme has been implemented into the sequential version of the NASA code USM3Dns, tetrahedral cell-centered finite volume Euler/Navier-Stokes flow solver. Efficiency and robustness of the multigrid-enhanced flow solver have been assessed for three configurations assuming an inviscid flow and one configuration assuming a viscous fully turbulent flow. The inviscid studies include a transonic flow over the ONERA M6 wing and a generic business jet with flow-through nacelles and a low subsonic flow over a high-lift trapezoidal wing. The viscous case includes a fully turbulent flow over the RAE 2822 rectangular wing. The multigrid solutions converged with 12%-33% of the Central Processing Unit (CPU) time required by the solutions obtained without multigrid. For all of the inviscid cases, multigrid in conjunction with an explicit time-stepping scheme performed the best with regard to the run time memory and CPU time requirements. However, for the viscous case multigrid had to be used with an implicit backward Euler time-stepping scheme that increased the run time memory requirement by 22% as compared to the run made without multigrid.
Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern
NASA Astrophysics Data System (ADS)
Fuchs, L.; Becker, T. W.
2017-12-01
How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface deformation is reduced significantly and mainly governed by the location of the up- and downwellings. VSWH thereby affects plate dynamics due to two main properties: the intensity of weakening with increasing strain and the strain healing rate. As both increase, mobility increases as well and strain becomes more localized at the downwellings.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
The primary tasks during January 1990 to June 1990 have been the development and evaluation of various electron and electron-electronic energy equation models, the continued development of improved nonequilibrium radiation models for molecules and atoms, and the continued development and investigation of precursor models and their effects. In addition, work was initiated to develop a vibrational model for the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code. Also, an effort was started associated with the effects of including carbon species, say from an ablator, in the flowfield.
Effect of neoclassical toroidal viscosity on error-field penetration thresholds in tokamak plasmas.
Cole, A J; Hegna, C C; Callen, J D
2007-08-10
A model for field-error penetration is developed that includes nonresonant as well as the usual resonant field-error effects. The nonresonant components cause a neoclassical toroidal viscous torque that keeps the plasma rotating at a rate comparable to the ion diamagnetic frequency. The new theory is used to examine resonant error-field penetration threshold scaling in Ohmic tokamak plasmas. Compared to previous theoretical results, we find the plasma is less susceptible to error-field penetration and locking, by a factor that depends on the nonresonant error-field amplitude.
Cospectral budget of turbulence explains the bulk properties of smooth pipe flow.
Katul, Gabriel G; Manes, Costantino
2014-12-01
Connections between the wall-normal turbulent velocity spectrum E(ww)(k) at wave number k and the mean velocity profile (MVP) are explored in pressure-driven flows confined within smooth walls at moderate to high bulk Reynolds numbers (Re). These connections are derived via a cospectral budget for the longitudinal (u') and wall-normal (w') velocity fluctuations, which include a production term due to mean shear interacting with E(ww)(k), viscous effects, and a decorrelation between u' and w' by pressure-strain effects [=π(k)]. The π(k) is modeled using a conventional Rotta-like return-to-isotropy closure but adjusted to include the effects of isotropization of the production term. The resulting cospectral budget yields a generalization of a previously proposed "spectral link" between the MVP and the spectrum of turbulence. The proposed cospectral budget is also shown to reproduce the measured MVP across the pipe with changing Re including the MVP shapes in the buffer and wake regions. Because of the links between E(ww)(k) and the MVP, the effects of intermittency corrections to inertial subrange scales and the so-called spectral bottleneck reported as k approaches viscous dissipation eddy sizes (η) on the MVP shapes are investigated and shown to be of minor importance. Inclusion of a local Reynolds number correction to a parameter associated with the spectral exponential cutoff as kη→1 appears to be more significant to the MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in all regions of the pipe, the solution to the cospectral budget systematically underestimates the negative curvature of the MVP within the buffer layer.
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2017-12-01
We simulate earthquake cycles on a 2D strike-slip fault, modeling both rate-and-state fault friction and an off-fault nonlinear power-law rheology. The power-law rheology involves an effective viscosity that is a function of temperature and stress, and therefore varies both spatially and temporally. All phases of the earthquake cycle are simulated, allowing the model to spontaneously generate earthquakes, and to capture frictional afterslip and postseismic and interseismic viscous flow. We investigate the interaction between fault slip and bulk viscous flow, using experimentally-based flow laws for quartz-diorite in the crust and olivine in the mantle, representative of the Mojave Desert region in Southern California. We first consider a suite of three linear geotherms which are constant in time, with dT/dz = 20, 25, and 30 K/km. Though the simulations produce very different deformation styles in the lower crust, ranging from significant interseismc fault creep to purely bulk viscous flow, they have almost identical earthquake recurrence interval, nucleation depth, and down-dip coseismic slip limit. This indicates that bulk viscous flow and interseismic fault creep load the brittle crust similarly. The simulations also predict unrealistically high stresses in the upper crust, resulting from the fact that the lower crust and upper mantle are relatively weak far from the fault, and from the relatively small role that basal tractions on the base of the crust play in the force balance of the lithosphere. We also find that for the warmest model, the effective viscosity varies by an order of magnitude in the interseismic period, whereas for the cooler models it remains roughly constant. Because the rheology is highly sensitive to changes in temperature, in addition to the simulations with constant temperature we also consider the effect of heat generation. We capture both frictional heat generation and off-fault viscous shear heating, allowing these in turn to alter the effective viscosity. The resulting temperature changes may reduce the width of the shear zone in the lower crust and upper mantle, and reduce the effective viscosity.
The swimming behavior of flagellated bacteria in viscous and viscoelastic media
NASA Astrophysics Data System (ADS)
Qu, Zijie; Henderikx, Rene; Breuer, Kenneth
2016-11-01
The motility of bacteria E.coli in viscous and viscoelastic fluids has been widely studied although full understanding remains elusive. The swimming mode of wild-type E.coli is well-described by a run-and-tumble sequence in which periods of straight swimming at a constant speed are randomly interrupted by a tumble, defined as a sudden change of direction with a very low speed. Using a tracking microscope, we follow cells for extended periods of time and find that the swimming behavior can be more complex, and can include a wider variety of behaviors including a "slow random walk" in which the cells move at relatively low speed without the characteristic run. Significant variation between individual cells is observed, and furthermore, a single cell can change its motility during the course of a tracking event. Changing the viscosity and viscoelasticy of the swimming media also has profound effects on the average swimming speed and run-tumble nature of the cell motility, including changing the distribution, duration of tumbling and slow random walk events. The reasons for these changes are explained using a Purcell-style resistive force model for the cell and flagellar behavior as well as model for the changes in flagellar bundling in different fluid viscosities. National Science Foundation.
Impact of Motile Bacterial Suspensions on Viscous Fingering and Mixing
NASA Astrophysics Data System (ADS)
Chui, Jane; Auradou, Harold; de Anna, Pietro; Fahrner, Karen; Berg, Howard; Juanes, Ruben
2017-11-01
Viscous fingering is a hydrodynamic instability that occurs when a less viscous fluid displaces a more viscous one. Instead of progressing as a uniform front, the less viscous fluid forms fingers to create complex patterns. Understanding how these patterns and their associated gradients evolve over time is of critical importance in characterizing the mixing of two fluids, which in turn is important to applications such as enhanced oil recovery, bioremediation, and microfluidics. Here, we investigate the impact of replacing the less viscous fluid with an active suspension of motile bacteria. In this series of experiments, a suspension of motile Escherichia coli capable of collective swimming is injected into a microfluidic Hele-Shaw cell under viscous fingering conditions. Through videomicroscopy, we obtain high-resolution concentration fields to determine the evolution of the mixing zone (region with concentration gradients). We quantify the impact that active suspensions have on the formation of viscous fingering patterns and mixing efficiency between the two fluids, and-conversely-report details of the collective swimming behavior in the presence of a viscous-gradient front.
Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.
Rosati, Giulio; Oscari, Fabio; Pacchierotti, Claudio; Prattichizzo, Domenico
2014-01-01
Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.
Marangoni effect on small-amplitude capillary waves in viscous fluids
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
We derive a general integro-differential equation for the transient behavior of small-amplitude capillary waves on the planar surface of a viscous fluid in the presence of the Marangoni effect. The equation is solved for an insoluble surfactant solution in concentration below the critical micelle concentration undergoing convective-diffusive surface transport. The special case of a diffusion-driven surfactant is considered near the the critical damping wavelength. The Marangoni effect is shown to contribute to the overall damping mechanism, and a first-order term correction to the critical wavelength with respect to the surfactant concentration difference and the Schmidt number is proposed.
Self-similarity and scaling transitions during rupture of thin free films of Newtonian fluids
NASA Astrophysics Data System (ADS)
Thete, Sumeet Suresh; Anthony, Christopher; Doshi, Pankaj; Harris, Michael T.; Basaran, Osman A.
2016-09-01
Rupture of thin liquid films is crucial in many industrial applications and nature such as foam stability in oil-gas separation units, coating flows, polymer processing, and tear films in the eye. In some of these situations, a liquid film may have two free surfaces (referred to here as a free film or a sheet) as opposed to a film deposited on a solid substrate that has one free surface. The rupture of such a free film or a sheet of a Newtonian fluid is analyzed under the competing influences of inertia, viscous stress, van der Waals pressure, and capillary pressure by solving a system of spatially one-dimensional evolution equations for film thickness and lateral velocity. The dynamics close to the space-time singularity where the film ruptures is asymptotically self-similar and, therefore, the problem is also analyzed by reducing the transient partial differential evolution equations to a corresponding set of ordinary differential equations in similarity space. For sheets with negligible inertia, it is shown that the dominant balance of forces involves solely viscous and van der Waals forces, with capillary force remaining negligible throughout the thinning process in a viscous regime. On the other hand, for a sheet of an inviscid fluid for which the effect of viscosity is negligible, it is shown that the dominant balance of forces is between inertial, capillary, and van der Waals forces as the film evolves towards rupture in an inertial regime. Real fluids, however, have finite viscosity. Hence, for real fluids, it is further shown that the viscous and the inertial regimes are only transitory and can only describe the initial thinning dynamics of highly viscous and slightly viscous sheets, respectively. Moreover, regardless of the fluid's viscosity, it is shown that for sheets that initially thin in either of these two regimes, their dynamics transition to a late stage or final inertial-viscous regime in which inertial, viscous, and van der Waals forces balance each other while capillary force remains negligible, in accordance with the results of Vaynblat, Lister, and Witelski.
Cochlear perfusion with a viscous fluid.
Wang, Yi; Olson, Elizabeth S
2016-07-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawn from basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner's membrane (RM), while in cochleae perfused with 0.125% and 0.25% HA RM was torn. Thus, the CAP threshold elevation was likely due to the broken RM, likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and then clearance of viscous fluid within the cochlea, or to a temporary position shift of the Organ of Corti. After 0.5% HA perfusion, a short latency positive peak (P0) appeared in the CAP waveform. This P0 might be due to a change in the cochlea's traveling-wave pattern, or distortion in the cochlear microphonic. Copyright © 2016 Elsevier B.V. All rights reserved.
Cochlear perfusion with a viscous fluid
Wang, Yi; Olson, Elizabeth S.
2016-01-01
The flow of viscous fluid in the cochlea induces shear forces, which could provide benefit in clinical practice, for example to guide cochlear implant insertion or produce static pressure to the cochlear partition or wall. From a research standpoint, studying the effects of a viscous fluid in the cochlea provides data for better understanding cochlear fluid mechanics. However, cochlear perfusion with a viscous fluid may damage the cochlea. In this work we studied the physiological and anatomical effects of perfusing the cochlea with a viscous fluid. Gerbil cochleae were perfused at a rate of 2.4 μL/min with artificial perilymph (AP) and sodium hyaluronate (Healon, HA) in four different concentrations (0.0625%, 0.125%, 0.25%, 0.5%). The different HA concentrations were applied either sequentially in the same cochlea or individually in different cochleae. The perfusion fluid entered from the round window and was withdrawnfrom basal scala vestibuli, in order to perfuse the entire perilymphatic space. Compound action potentials (CAP) were measured after each perfusion. After perfusion with increasing concentrations of HA in the order of increasing viscosity, the CAP thresholds generally increased. The threshold elevation after AP and 0.0625% HA perfusion was small or almost zero, and the 0.125% HA was a borderline case, while the higher concentrations significantly elevated CAP thresholds. Histology of the cochleae perfused with the 0.0625% HA showed an intact Reissner’s membrane, while in cochleae perfused with 0.125% and 0.25% HA Reissner’s membrane (RM) was torn. Thus, the CAP threshold elevation was likely due to the broken of RM, which likely caused by the shear stress produced by the flow of the viscous fluid. Our results and analysis indicate that the cochlea can sustain, without a significant CAP threshold shift, up to a 1.5 Pa shear stress. Beside these finding, in the 0.125% and 0.25% HA perfusion cases, a temporary CAP threshold shift was observed, perhaps due to the presence and then clearance of viscous fluid within the cochlea, or to a temporary position shift of the Organ of Corti. After 0.5% HA perfusion, a short latency positive peak (P0) appeared in the CAP wavefrom. This P0 might be due to a change in the cochlea’s traveling-wave pattern, or distortion in the cochlear microphonic. PMID:27220484
Sol-gel synthesis and densification of aluminoborosilicate powders. Part 2: Densification
NASA Technical Reports Server (NTRS)
Bull, Jeffrey; Selvaduray, Guna; Leiser, Daniel
1992-01-01
Aluminoborosilicate (ABS) powders, high in alumina content, were synthesized by the sol-gel process utilizing four different methods of synthesis. The effect of these methods on the densification behavior of ABS powder compacts was studied. Five regions of shrinkage in the temperature range 25-1184 C were identified. In these regions, the greatest shrinkage occurred between the gel-to-glass transition temperature (T sub g approximately equal to 835 C) and the crystallization transformation temperature (T sub t approximately equal 900 C). The dominant mechanism of densification in this range was found to be viscous sintering. ABS powders were amorphous to x-rays up to T sub t at which a multiphasic structure crystallized. No 2Al2O3.B2O3 was found in these powders as predicted in the phase diagram. Above T sub t, densification was the result of competing mechanisms including grain growth and boria fluxed viscous sintering. Apparent activation energies for densification in each region varied according to the method of synthesis.
Rate-independent dissipation in phase-field modelling of displacive transformations
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2018-05-01
In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.
NASA Astrophysics Data System (ADS)
Chung, Pil Seung; Song, Wonyup; Biegler, Lorenz T.; Jhon, Myung S.
2017-05-01
During the operation of hard disk drive (HDD), the perfluoropolyether (PFPE) lubricant experiences elastic or viscous shear/elongation deformations, which affect the performance and reliability of the HDD. Therefore, the viscoelastic responses of PFPE could provide a finger print analysis in designing optimal molecular architecture of lubricants to control the tribological phenomena. In this paper, we examine the rheological responses of PFPEs including storage (elastic) and loss (viscous) moduli (G' and G″) by monitoring the time-dependent-stress-strain relationship via non-equilibrium molecular dynamics simulations. We analyzed the rheological responses by using Cox-Merz rule, and investigated the molecular structural and thermal effects on the solid-like and liquid-like behaviors of PFPEs. The temperature dependence of the endgroup agglomeration phenomena was examined, where the functional endgroups are decoupled as the temperature increases. By analyzing the relaxation processes, the molecular rheological studies will provide the optimal lubricant selection criteria to enhance the HDD performance and reliability for the heat-assisted magnetic recording applications.
NASA Astrophysics Data System (ADS)
Cao, Zhiqiang; Zhang, Xin
2004-10-01
The structural relaxation of plasma-enhanced chemical-vapor-deposited (PECVD) silane-based silicon oxide films during thermal cycling and annealing has been studied using wafer curvature measurements. These measurements, which determine stress in the amorphous silicon oxide films, are sensitive to both plastic deformation and density changes. A quantitative case study of such changes has been done based upon the experimental results. A microstructure-based mechanism elucidates seams as a source of density change and voids as a source of plastic deformation, accompanied by a viscous flow. This theory was then used to explain a series of experimental results that are related to thermal cycling as well as annealing of PECVD silicon oxide films including stress hysteresis generation and reduction and coefficient of thermal-expansion changes. In particular, the thickness effect was examined; PECVD silicon oxide films with a thickness varying from 1to40μm were studied, as certain demanding applications in microelectromechanical systems require such thick films serving as heat/electrical insulation layers.
Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A
2016-05-01
Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.
NASA Astrophysics Data System (ADS)
Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.
2016-05-01
Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.
Influence of interfacial viscosity on the dielectrophoresis of drops
NASA Astrophysics Data System (ADS)
Mandal, Shubhadeep; Chakraborty, Suman
2017-05-01
The dielectrophoresis of a Newtonian uncharged drop in the presence of an axisymmetric nonuniform DC electric field is studied analytically. The present study is focused on the effects of interfacial viscosities on the dielectrophoretic motion and shape deformation of an isolated suspended drop. The interfacial viscosities generate surface-excess viscous stress which is modeled as a two-dimensional Newtonian fluid which obeys the Boussinesq-Scriven constitutive law with constant values of interfacial tension, interfacial shear, and dilatational viscosities. In the regime of small drop deformation, we have obtained analytical solution for the drop velocity and deformed shape by neglecting surface charge convection and fluid inertia. Our study demonstrates that the drop velocity is independent of the interfacial shear viscosity, while the interfacial dilatational viscosity strongly affects the drop velocity. The interfacial viscous effects always retard the dielectrophoretic motion of a perfectly conducting/dielectric drop. Notably, the interfacial viscous effects can retard or augment the dielectrophoretic motion of a leaky dielectric drop depending on the electrohydrodynamic properties. The shape deformation of a leaky dielectric drop is found to decrease (or increase) due to interfacial shear (or dilatational) viscosity.
Zhang, Jingtao; Liu, Weizhen; Gauthier, Olivier; Sourice, Sophie; Pilet, Paul; Rethore, Gildas; Khairoun, Khalid; Bouler, Jean-Michel; Tancret, Franck; Weiss, Pierre
2016-02-01
In this study, we propose a simple and effective strategy to prepare injectable macroporous calcium phosphate cements (CPCs) by syringe-foaming via hydrophilic viscous polymeric solution, such as using silanized-hydroxypropyl methylcellulose (Si-HPMC) as a foaming agent. The Si-HPMC foamed CPCs demonstrate excellent handling properties such as injectability and cohesion. After hardening the foamed CPCs possess hierarchical macropores and their mechanical properties (Young's modulus and compressive strength) are comparable to those of cancellous bone. Moreover, a preliminary in vivo study in the distal femoral sites of rabbits was conducted to evaluate the biofunctionality of this injectable macroporous CPC. The evidence of newly formed bone in the central zone of implantation site indicates the feasibility and effectiveness of this foaming strategy that will have to be optimized by further extensive animal experiments. A major challenge in the design of biomaterial-based injectable bone substitutes is the development of cohesive, macroporous and self-setting calcium phosphate cement (CPC) that enables rapid cell invasion with adequate initial mechanical properties without the use of complex processing and additives. Thus, we propose a simple and effective strategy to prepare injectable macroporous CPCs through syringe-foaming using a hydrophilic viscous polymeric solution (silanized-hydroxypropyl methylcellulose, Si-HPMC) as a foaming agent, that simultaneously meets all the aforementioned aims. Evidence from our in vivo studies shows the existence of newly formed bone within the implantation site, indicating the feasibility and effectiveness of this foaming strategy, which could be used in various CPC systems using other hydrophilic viscous polymeric solutions. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Damage Mechanics Approach to Penetration of Water-filled Surface Crevasses
NASA Astrophysics Data System (ADS)
Duddu, R.; Jimenez, S. K.; Bassis, J. N.
2017-12-01
Iceberg calving is a natural process that occurs when crevasses penetrate the entire thickness of an ice shelf or a glacier leading to the detachment (birth) of icebergs. Calving from marine-terminating glaciers and floating ice shelves accounts for nearly 50% of the mass lost from both the Greenland and Antarctic ice sheets, which can directly or indirectly contribute to sealevel rise. A widely-accepted hypothesis is that crevasses in ice form due to brittle mode I fracture under the action of tensile stresses. Existing theoretical approaches for modeling crevasse propagation based on the above hypothesis include the Nye zero stress and fracture mechanics approaches. These theoretical approaches assume idealized geometry and boundary conditions, and ignore the effects of viscous creep deformations in ice over longer time scales; however, they still produced interesting results that matched well with sparse field observations available. An alternative is to use the continuum damage mechanics approach for modeling crevasse propagation, which is more easily incorporated into numerical ice sheet models that consider realistic geometries, boundary conditions and viscous creep effects. In this presentation, we describe the damage mechanics approach to penetration of dry and water-filled surface crevasses using the principles of poromechanics and compare our results with those from existing theoretical approaches. We investigate the upper limits on crevasse penetration depth in relation to ice thickness, water depth in the surface crevasse, seawater depth at the ice terminus and ice rheology (i.e., elastic vs. viscous). Our studies on idealized glaciers show that the damage mechanics approach is consistent with the fracture mechanics approach when the seawater depth at the ice terminus is low, but is inconsistent with the theoretical approaches when the seawater depth at the ice terminus is high (i.e., near floatation). Our studies also indicate that the upper limit on surface crevasse penetration depth is minimally sensitive to ice rheology when glacier geometry changes are ignored. However, viscous flow can cause geometry changes and induce stresses (e.g., due to bending) leading to deeper crevasse penetration in numerical ice sheet models.
NASA Astrophysics Data System (ADS)
Eldredge, Jeff
2005-11-01
Many biological mechanisms of locomotion involve the interaction of a fluid with a deformable surface undergoing large unsteady motion. Analysis of such problems poses a significant challenge to conventional grid-based computational approaches. Particularly in the moderate Reynolds number regime where many insects and fish function, viscous and inertial processes are both important, and vorticity serves a crucial role. In this work, the viscous vortex particle method is shown to provide an efficient, intuitive simulation approach for investigation of these biological systems. In contrast with a grid-based approach, the method solves the Navier--Stokes equations by tracking computational particles that carry smooth blobs of vorticity and exchange strength with one another to account for viscous diffusion. Thus, computational resources are focused on the physically relevant features of the flow, and there is no need for artificial boundary conditions. Building from previously-developed techniques for the creation of vorticity to enforce no-throughflow and no-slip conditions, the present method is extended to problems of coupled fluid--body dynamics by enforcement of global conservation of momenta. The application to several two-dimensional model problems is demonstrated, including single and multiple flapping wings and free swimming of a three-linkage fish.
Bubble suspension rheology and implications for conduit flow
NASA Astrophysics Data System (ADS)
Llewellin, E. W.; Manga, M.
2005-05-01
Bubbles are ubiquitous in magma during eruption and influence the rheology of the suspension. Despite this, bubble-suspension rheology is routinely ignored in conduit-flow and eruption models, potentially impairing accuracy and resulting in the loss of important phenomenological richness. The omission is due, in part, to a historical confusion in the literature concerning the effect of bubbles on the rheology of a liquid. This confusion has now been largely resolved and recently published studies have identified two viscous regimes: in regime 1, the viscosity of the two-phase (magma-gas) suspension increases as gas volume fraction ϕ increases; in regime 2, the viscosity of the suspension decreases as ϕ increases. The viscous regime for a deforming bubble suspension can be determined by calculating two dimensionless numbers, the capillary number Ca and the dynamic capillary number Cd. We provide a didactic explanation of how to include the effect of bubble-suspension rheology in continuum, conduit-flow models. Bubble-suspension rheology is reviewed and a practical rheological model is presented, followed by an algorithmic, step-by-step guide to including the rheological model in conduit-flow models. Preliminary results from conduit-flow models which have implemented the model presented are discussed and it is concluded that the effect of bubbles on magma rheology may be important in nature and results in a decrease of at least 800 m in calculated fragmentation-depth and an increase of between 40% and 250% in calculated eruption-rate compared with the assumption of Newtonian rheology.
Nonaxisymmetric evolution in protostellar disks
NASA Technical Reports Server (NTRS)
Laughlin, Gregory; Bodenheimer, Peter
1994-01-01
We present a two-dimensional, multigridded hydrodynamical simulation of the collapse of an axisymmetric, rotating, 1 solar mass protostellar cloud, which forms a resolved, hydrotastic disk. The code includes the effects of physical viscosity, radiative transfer and radiative acceleration but not magnetic fields. We examine how the disk is affected by the inclusion of turbulent viscosity by comparing a viscous simulation with an inviscid model evolved from the same initial conditions, and we derive a disk evolutionary timescale on the order of 300,000 years if alpha = 0.01. Effects arising from non-axisymmetric gravitational instabilities in the protostellar disk are followed with a three-dimensional SPH code, starting from the two-dimensional structure. We find that the disk is prone to a series of spiral instabilities with primary azimulthal mode number m = 1 and m = 2. The torques induced by these nonaxisymmetric structures elicit material transport of angular momentum and mass through the disk, readjusting the surface density profile toward more stable configurations. We present a series of analyses which characterize both the development and the likely source of the instabilities. We speculate that an evolving disk which maintains a minimum Toomre Q-value approximately 1.4 will have a total evolutionary span of several times 10(exp 5) years, comparable to, but somewhat shorter than the evolutionary timescale resulting from viscous turbulence alone. We compare the evolution resulting from nonaxisymmetric instabilities with solutions of a one-dimensional viscous diffusion equation applied to the initial surface density and temperature profile. We find that an effective alpha-value of 0.03 is a good fit to the results of the simulation. However, the effective alpha will depend on the minimum Q in the disk at the time the instability is activated. We argue that the major fraction of the transport characterized by the value of alpha is due to the action of gravitational torques, and does not arise from inherent viscosity within the smoothed particle hydrodynamics method.
Beri, A; Norton, J E; Norton, I T
2013-12-01
Water-in-oil emulsions in lipsticks could have the potential to improve moisturizing properties and deliver hydrophilic molecules to the lips. The aims of this work were (i) to investigate the effect of emulsifier type (polymer vs. monomer, and saturated vs. unsaturated chain) and concentration on droplet size and (ii) to investigate the effect of wax ratio (carnauba wax, microcrystalline wax, paraffin wax and performalene) and aqueous phase volume on material properties (Young's modulus, point of fracture, elastic modulus and viscous modulus). Emulsion formation was achieved using a high shear mixer. Results showed that the saturated nature of the emulsifier had very little effect on droplet size, neither did the use of an emulsifier with a larger head group (droplet size ~18-25 μm). Polyglycerol polyricinoleate (PGPR) resulted in emulsions with the smallest droplets (~3-5 μm), as expected from previous studies that show that it produces a thick elastic interface. The results also showed that both Young's modulus and point of fracture increase with increasing percentage of carnauba wax (following a power law dependency of 3), but decrease with increasing percentage of microcrystalline wax, suggesting that the carnauba wax is included in the overall wax network formed by the saturated components, whereas the microcrystalline wax forms irregular crystals that disrupt the overall wax crystal network. Young's modulus, elastic modulus and viscous modulus all decrease with increasing aqueous phase volume in the emulsions, although the slope of the decrease in elastic and viscous moduli is dependent on the addition of solid wax, as a result of strengthening the network. This work suggests the potential use for emulsions in lipstick applications, particularly when PGPR is used as an emulsifier, and with the addition of solid wax, as it increases network strength. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Novel Shapes of Miscible Interfaces Observed
NASA Technical Reports Server (NTRS)
Balasubramaniam, Ramaswamy; Rashidnia, Nasser
2001-01-01
The dynamics of miscible displacements in a cylindrical tube are being investigated experimentally and numerically, with a view to understand the complex processes that occur, for example, in enhanced oil recovery, hydrology, and filtration. We have observed complex shapes of the interface between two liquids that mix with each other when the less viscous liquid is displaced by the more viscous one in a tube. A less viscous fluid that displaces a more viscous fluid is known to propagate in the form of a "finger," and a flight experiment proposed by Maxworthy et al. to investigate the miscible-interface dynamics is currently being developed by NASA. From the current theory of miscible displacements, which was developed for a porous medium satisfying Darcy's law, it can be shown that in the absence of gravity the interface between the fluids is destabilized and thus susceptible to fingering only when a more viscous fluid is displaced by a less viscous one. Therefore, if the interface is initially flat and the more viscous fluid displaces the less viscous fluid, the interface ought to be stable and remain flat. However, numerical simulations by Chen and Meiburg for such displacement in a cylindrical tube show that the interface is unstable and a finger of the more viscous fluid is indeed formed. Preliminary experiments performed at the NASA Glenn Research Center show that not only can fingering occur when the more viscous fluid displaces a less viscous one in a cylindrical tube, but also that under certain conditions the advancing finger achieves a sinuous or snakelike shape. These experiments were performed using silicone oils in a vertical pipette of small diameter. In the initial configuration, the more viscous fluid rested on top of the less viscous one, and the interface was nominally flat. A dye was added to the upper liquid for ease of observation of the interface between the fluids. The flow was initiated by draining the lower fluid from the bottom of the pipette, at speeds less than 0.1 mm/sec.
The general solution to the classical problem of finite Euler Bernoulli beam
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Amba-Rao, C. L.
1977-01-01
An analytical solution is obtained for the problem of free and forced vibrations of a finite Euler Bernoulli beam with arbitrary (partially fixed) boundary conditions. The effects of linear viscous damping, Winkler foundation, constant axial tension, a concentrated mass, and an arbitrary forcing function are included in the analysis. No restriction is placed on the values of the parameters involved, and the solution presented here contains all cited previous solutions as special cases.
The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’
NASA Astrophysics Data System (ADS)
Chiu-Webster, S.; Lister, J. R.
2006-12-01
A viscous thread falling onto a steadily moving horizontal belt shows a surprisingly complex range of behaviour in experiments. Low belt speeds produce coiling, as might be expected from the behaviour of a thread falling onto a stationary surface. High belt speeds produce a steady thread, whose shape is predicted well by theory developed to describe a stretching viscous catenary with surface tension and inertia. Intermediate belt speeds show several novel modes of oscillation, which lay down a wide variety of patterns on the belt. The patterns include meanders, side kicks, slanted loops, braiding, figures-of-eight, Ws, and also period-doubled versions of figures-of-eight, meanders and coiling. The experimental boundary between steady and unsteady behaviour occurs at a slightly lower belt speed than the loss of the steady solution for a stretching catenary.
Onset of `stitching' in the fluid mechanical `sewing machine'
NASA Astrophysics Data System (ADS)
Ribe, Neil; Lister, John; Chiu-Webster, Sunny
2006-11-01
A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.
Fundamental Processes of Atomization in Fluid-Fluid Flows
NASA Technical Reports Server (NTRS)
McCready, M. J.; Chang, H.-C.; Leighton, D. T.
2001-01-01
This report outlines the major results of the grant "Fundamental Processes of Atomization in Fluid-Fluid Flows." These include: 1) the demonstration that atomization in liquid/liquid shear flow is driven by a viscous shear instability that triggers the formation of a long thin sheet; 2) discovery of a new mode of interfacial instability for oscillatory two-layer systems whereby a mode that originates within the less viscous liquid phase causes interfacial deformation as the oscillation proceeds; 3) the demonstration that rivulet formation from gravity front occurs because the local front shape specified by gravity and surface tension changes from a nose to a wedge geometry, thus triggering a large increase in viscous resistance; and 4) extension of the studies on nonlinear wave evolution on falling films and in stratified flow, particularly the evolution towards large-amplitude solitary waves that tend to generate drops.
NASA Technical Reports Server (NTRS)
Moss, J. N.
1971-01-01
Numerical solutions are presented for the viscous shocklayer equations where the chemistry is treated as being either frozen, equilibrium, or nonequilibrium. Also the effects of the diffusion model, surface catalyticity, and mass injection on surface transport and flow parameters are considered. The equilibrium calculations for air species using multicomponent: diffusion provide solutions previously unavailable. The viscous shock-layer equations are solved by using an implicit finite-difference scheme. The flow is treated as a mixture of inert and thermally perfect species. Also the flow is assumed to be in vibrational equilibrium. All calculations are for a 45 deg hyperboloid. The flight conditions are those for various altitudes and velocities in the earth's atmosphere. Data are presented showing the effects of the chemical models; diffusion models; surface catalyticity; and mass injection of air, water, and ablation products on heat transfer; skin friction; shock stand-off distance; wall pressure distribution; and tangential velocity, temperature, and species profiles.
Computational Methods Development at Ames
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Smith, Charles A. (Technical Monitor)
1998-01-01
This viewgraph presentation outlines the development at Ames Research Center of advanced computational methods to provide appropriate fidelity computational analysis/design capabilities. Current thrusts of the Ames research include: 1) methods to enhance/accelerate viscous flow simulation procedures, and the development of hybrid/polyhedral-grid procedures for viscous flow; 2) the development of real time transonic flow simulation procedures for a production wind tunnel, and intelligent data management technology; and 3) the validation of methods and the flow physics study gives historical precedents to above research, and speculates on its future course.
Viscous fingering and channeling in chemical enhanced oil recovery
NASA Astrophysics Data System (ADS)
Daripa, Prabir; Dutta, Sourav
2017-11-01
We have developed a hybrid numerical method based on discontinuous finite element method and modified method of characteristics to compute the multiphase multicomponent fluid flow in porous media in the context of chemical enhanced oil recovery. We use this method to study the effect of various chemical components on the viscous fingering and channeling in rectilinear and radial flow configurations. We will also discuss about the efficiency of various flooding schemes based on these understandings. Time permitting, we will discuss about the effect of variable injection rates in these practical setting. U.S. National Science Foundation Grant DMS-1522782.
Computations of ideal and real gas high altitude plume flows
NASA Technical Reports Server (NTRS)
Feiereisen, William J.; Venkatapathy, Ethiraj
1988-01-01
In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.
Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael James; ...
2015-01-20
Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger forcemore » levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. As a result, the parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.« less
Alternating currents and shear waves in viscous electronics
NASA Astrophysics Data System (ADS)
Semenyakin, M.; Falkovich, G.
2018-02-01
Strong interaction among charge carriers can make them move like viscous fluid. Here we explore alternating current (ac) effects in viscous electronics. In the Ohmic case, incompressible current distribution in a sample adjusts fast to a time-dependent voltage on the electrodes, while in the viscous case, momentum diffusion makes for retardation and for the possibility of propagating slow shear waves. We focus on specific geometries that showcase interesting aspects of such waves: current parallel to a one-dimensional defect and current applied across a long strip. We find that the phase velocity of the wave propagating along the strip respectively increases/decreases with the frequency for no-slip/no-stress boundary conditions. This is so because when the frequency or strip width goes to zero (alternatively, viscosity go to infinity), the wavelength of the current pattern tends to infinity in the no-stress case and to a finite value in a general case. We also show that for dc current across a strip with a no-stress boundary, there are only one pair of vortices, while there is an infinite vortex chain for all other types of boundary conditions.
The dynamics and shapes of a viscous sheet spreading on a moving liquid bath
NASA Astrophysics Data System (ADS)
Sebilleau, J.; Lebon, L.; Limat, L.; Quartier, L.; Receveur, M.
2010-10-01
We investigate the shape and dynamics of a floating viscous sheet formed by a jet falling on a static or moving bath under partial wetting conditions. For a static bath, the viscous sheet has a circular shape and spreads with a uniform thickness that is surprisingly larger than the static Langmuir equilibrium thickness. This thickening effect seems to be linked to a peculiarity of the oil used for the bath, which is in situation of total wetting on the sheet surface, and climbs the sheet a bit like a macroscopic "precursor film" that increases dissipation at the sheet perimeter. For a moving bath, the viscous sheet evolves from an ellipse to a ribbon, a transient remarkable pear shape being observed between these two states. A simple kinematic model of advection of the spreading sheet by the bath predicts very well the characteristics of the ribbon regime. Convected sheets whose shape is reminiscent of pendant drops in 2D are also observed at higher bath velocity, with interesting pinch off phenomena.
NASA Technical Reports Server (NTRS)
Gardner, Kevin D.; Liu, Jong-Shang; Murthy, Durbha V.; Kruse, Marlin J.; James, Darrell
1999-01-01
AlliedSignal Engines, in cooperation with NASA GRC (National Aeronautics and Space Administration Glenn Research Center), completed an evaluation of recently-developed aeroelastic computer codes using test cases from the AlliedSignal Engines fan blisk and turbine databases. Test data included strain gage, performance, and steady-state pressure information obtained for conditions where synchronous or flutter vibratory conditions were found to occur. Aeroelastic codes evaluated included quasi 3-D UNSFLO (MIT Developed/AE Modified, Quasi 3-D Aeroelastic Computer Code), 2-D FREPS (NASA-Developed Forced Response Prediction System Aeroelastic Computer Code), and 3-D TURBO-AE (NASA/Mississippi State University Developed 3-D Aeroelastic Computer Code). Unsteady pressure predictions for the turbine test case were used to evaluate the forced response prediction capabilities of each of the three aeroelastic codes. Additionally, one of the fan flutter cases was evaluated using TURBO-AE. The UNSFLO and FREPS evaluation predictions showed good agreement with the experimental test data trends, but quantitative improvements are needed. UNSFLO over-predicted turbine blade response reductions, while FREPS under-predicted them. The inviscid TURBO-AE turbine analysis predicted no discernible blade response reduction, indicating the necessity of including viscous effects for this test case. For the TURBO-AE fan blisk test case, significant effort was expended getting the viscous version of the code to give converged steady flow solutions for the transonic flow conditions. Once converged, the steady solutions provided an excellent match with test data and the calibrated DAWES (AlliedSignal 3-D Viscous Steady Flow CFD Solver). However, efforts expended establishing quality steady-state solutions prevented exercising the unsteady portion of the TURBO-AE code during the present program. AlliedSignal recommends that unsteady pressure measurement data be obtained for both test cases examined for use in aeroelastic code validation.
Transonic flow solutions using a composite velocity procedure for potential, Euler and RNS equations
NASA Technical Reports Server (NTRS)
Gordnier, R. E.; Rubin, S. G.
1986-01-01
Solutions for transonic viscous and inviscid flows using a composite velocity procedure are presented. The velocity components of the compressible flow equations are written in terms of a multiplicative composite consisting of a viscous or rotational velocity and an inviscid, irrotational, potential-like function. This provides for an efficient solution procedure that is locally representative of both asymptotic inviscid and boundary layer theories. A modified conservative form of the axial momentum equation that is required to obtain rotational solutions in the inviscid region is presented and a combined conservation/nonconservation form is applied for evaluation of the reduced Navier-Stokes (RNS), Euler and potential equations. A variety of results is presented and the effects of the approximations on entropy production, shock capturing, and viscous interaction are discussed.
Application of a Third Order Upwind Scheme to Viscous Flow over Clean and Iced Wings
NASA Technical Reports Server (NTRS)
Bangalore, A.; Phaengsook, N.; Sankar, L. N.
1994-01-01
A 3-D compressible Navier-Stokes solver has been developed and applied to 3-D viscous flow over clean and iced wings. This method uses a third order accurate finite volume scheme with flux difference splitting to model the inviscid fluxes, and second order accurate symmetric differences to model the viscous terms. The effects of turbulence are modeled using a Kappa-epsilon model. In the vicinity of the sold walls the kappa and epsilon values are modeled using Gorski's algebraic model. Sampling results are presented for surface pressure distributions, for untapered swept clean and iced wings made of NACA 0012 airfoil sections. The leading edge of these sections is modified using a simulated ice shape. Comparisons with experimental data are given.
NASA Technical Reports Server (NTRS)
Guillermo, P.
1975-01-01
A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.
Elemental and cooperative diffusion in a liquid, supercooled liquid and glass resolved
NASA Astrophysics Data System (ADS)
Cassar, Daniel R.; Lancelotti, Ricardo F.; Nuernberg, Rafael; Nascimento, Marcio L. F.; Rodrigues, Alisson M.; Diz, Luiza T.; Zanotto, Edgar D.
2017-07-01
The diffusion mechanisms controlling viscous flow, structural relaxation, liquid-liquid phase separation, crystal nucleation, and crystal growth in multicomponent glass-forming liquids are of great interest and relevance in physics, chemistry, materials, and glass science. However, the diffusing entities that control each of these important dynamic processes are still unknown. The main objective of this work is to shed some light on this mystery, advancing the knowledge on this phenomenon. For that matter, we measured the crystal growth rates, the viscosity, and lead diffusivities in PbSiO3 liquid and glass in a wide temperature range. We compared our measured values with published data covering 16 orders of magnitude. We suggest that above a certain temperature range Td (1.2Tg-1.3Tg), crystal growth and viscous flow are controlled by the diffusion of silicon and lead. Below this temperature, crystal growth and viscous flow are more sluggish than the diffusion of silicon and lead. Therefore, Td marks the temperature where decoupling between the (measured) cationic diffusivity and the effective diffusivities calculated from viscosity and crystal growth rates occurs. We reasonably propose that the nature or size of the diffusional entities controlling viscous flow and crystal growth below Td is quite different; the slowest is the one controlling viscous flow, but both processes require cooperative movements of some larger structural units rather than jumps of only one or a few isolated atoms.
NASA Technical Reports Server (NTRS)
Edwards, John W.
1996-01-01
A viscous-inviscid interactive coupling method is used for the computation of unsteady transonic flows involving separation and reattachment. A lag-entrainment integral boundary layer method is used with the transonic small disturbance potential equation in the CAP-TSDV (Computational Aeroelasticity Program - Transonic Small Disturbance) code. Efficient and robust computations of steady and unsteady separated flows, including steady separation bubbles and self-excited shock-induced oscillations are presented. The buffet onset boundary for the NACA 0012 airfoil is accurately predicted and shown computationally to be a Hopf bifurcation. Shock-induced oscillations are also presented for the 18 percent circular arc airfoil. The oscillation onset boundaries and frequencies are accurately predicted, as is the experimentally observed hysteresis of the oscillations with Mach number. This latter stability boundary is identified as a jump phenomenon. Transonic wing flutter boundaries are also shown for a thin swept wing and for a typical business jet wing, illustrating viscous effects on flutter and the effect of separation onset on the wing response at flutter. Calculations for both wings show limit cycle oscillations at transonic speeds in the vicinity of minimum flutter speed indices.
Enabling Technologies for Advanced Soft Tissue Modeling
2006-09-01
to date, we developed the system shown in Figure 5 to examine the feasibility of this technique. As shown in Figure 6, the first balloon expansion ...viscous response. For m>1 this relationship can be used to account for the effect of thermally activated processes. The rate of change of the viscous...locking stretch λLCap, initial (µ0Cap) and limiting shear moduli (µLimCap), and area expansion modulus (KCap) is also required as a material
NASA Astrophysics Data System (ADS)
Alagirisamy, Pasupathy S.; Jeronimidis, George; Le Moàl, Valerie
2009-08-01
Viscous coupling between filiform hair sensors of insects and arthropods has gained considerable interest recently. Study of viscous coupling between hairs at micro scale with current technologies is proving difficult and hence the hair system has been physically scaled up by a factor of 100. For instance, a typical filiform hair of 10 μm diameter and 1000 μm length has been physically scaled up to 1 mm in diameter and 100mm in length. At the base, a rotational spring with a bonded strain gauge provides the restoring force and measures the angle of deflection of the model hair. These model hairs were used in a glycerol-filled aquarium where the velocity of flow and the fluid properties were determined by imposing the Reynolds numbers compatible with biological system. Experiments have been conducted by varying the separation distance and the relative position between the moveable model hairs, of different lengths and between the movable and rigid hairs of different lengths for the steady velocity flow with Reynolds numbers of 0.02 and 0.05. In this study, the viscous coupling between hairs has been characterised. The effect of the distance from the physical boundaries, such as tank walls has also been quantified (wall effect). The purpose of this investigation is to provide relevant information for the design of MEMS systems mimicking the cricket's hair array.
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
She, Yumei; Li, Cheng; Lan, Tian; Peng, Xiaobin; Liu, Qianwen; Fan, Shangchun
2016-01-01
We demonstrated a multilayer molybdenum disulfide (MoS2) nanomechanical resonator by using optical Fabry-Perot (F-P) interferometric excitation and detection. The thin circular MoS2 nanomembrane with an approximate 8-nm thickness was transferred onto the endface of a ferrule with an inner diameter of 125 μm, which created a low finesse F-P interferometer with a cavity length of 39.92 μm. The effects of temperature and viscous air damping on resonance behavior of the resonator were investigated in the range of −10–80 °C. Along with the optomechanical behavior of the resonator in air, the measured resonance frequencies ranged from 36 kHz to 73 kHz with an extremely low inflection point at 20 °C, which conformed reasonably to those solved by previously obtained thermal expansion coefficients of MoS2. Further, a maximum quality (Q) factor of 1.35 for the resonator was observed at 0 °C due to viscous dissipation, in relation to the lower Knudsen number of 0.0025~0.0034 in the tested temperature range. Moreover, measurements of Q factor revealed little dependence of Q on resonance frequency and temperature. These measurements shed light on the mechanisms behind viscous air damping in MoS2, graphene, and other 2D resonators. PMID:28335290
Schroeder, Natalia; Marquart, Len F.; Gallaher, Daniel D.
2013-01-01
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination. PMID:23749206
Schroeder, Natalia; Marquart, Len F; Gallaher, Daniel D
2013-06-07
Dietary fiber may contribute to satiety. This study examined the effect of two dietary fiber characteristics, small intestinal contents viscosity and large intestinal fermentability, on satiety-and adiposity-related hormones in rats. Diets contained fiber sources that were non-viscous, somewhat viscous, or highly viscous, and either highly fermentable or non-fermentable, in a 2 × 3 factorial design. In the fed state (2 h postprandial), rats fed non-fermentable fibers had significantly greater plasma GLP-1 concentration than fermentable fibers. In the fasted state, among non-fermentable fibers, viscosity had no effect on GLP-1 concentration. However, among fermentable fibers, greater viscosity reduced GLP-1 concentration. Plasma peptide tyrosine tyrosine (PYY) concentrations in the fasted state were not influenced by the fermentability of the fiber overall, however animals consuming a fructooligosaccharide greater PYY concentration. In both the fed and fasted states, rats fed non-fermentable fibers had a significantly lower plasma ghrelin concentration than rats fed fermentable fibers. In the fasted state, rats fed non-fermentable fibers had a significantly lower plasma leptin concentration than rats fed fermentable fibers. Thus, fermentability and viscosity of dietary fiber interacted in complex ways to influence satiety- and adiposity-related plasma hormone concentrations. However, the results suggest that highly viscous, non-fermentable fibers may limit weight gain and reduce adiposity and non-fermentable fibers, regardless of viscosity, may promote meal termination.
Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi
2011-11-01
The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
NASA Astrophysics Data System (ADS)
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
Ferguson, V L
2009-08-01
The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior patterns that would otherwise be hidden within a more complex set of material property parameters.
NASA Astrophysics Data System (ADS)
Wang, Zizhen; Schmitt, Douglas R.; Wang, Ruihe
2017-08-01
A core scale modeling method for viscoelastic properties of rocks saturated with viscous fluid at low frequencies is developed based on the stress-strain method. The elastic moduli dispersion of viscous fluid is described by the Maxwell's spring-dash pot model. Based on this modeling method, we numerically test the effects of frequency, fluid viscosity, porosity, pore size, and pore aspect ratio on the storage moduli and the stress-strain phase lag of saturated rocks. And we also compared the modeling results to the Hashin-Shtrikman bounds and the coherent potential approximation (CPA). The dynamic moduli calculated from the modeling are lower than the predictions of CPA, and both of these fall between the Hashin-Shtrikman bounds. The modeling results indicate that the frequency and the fluid viscosity have similar effects on the dynamic moduli dispersion of fully saturated rocks. We observed the Debye peak in the phase lag variation with the change of frequency and viscosity. The pore structure parameters, such as porosity, pore size, and aspect ratio affect the rock frame stiffness and result in different viscoelastic behaviors of the saturated rocks. The stress-strain phase lags are larger with smaller stiffness contrasts between the rock frame and the pore fluid. The viscoelastic properties of saturated rocks are more sensitive to aspect ratio compared to other pore structure parameters. The results suggest that significant seismic dispersion (at about 50-200 Hz) might be expected for both compressional and shear waves passing through rocks saturated with highly viscous fluids.
NASA Astrophysics Data System (ADS)
Shahnazari, M. R.; Maleka Ashtiani, I.; Saberi, A.
2018-03-01
In this paper, the effect of channeling on viscous fingering instability of miscible displacement in porous media is studied. In fact, channeling is introduced as a solution to stabilize the viscous fingering instability. In this solution, narrow channels were placed next to the walls, and by considering an exponential function to model the channeling effect, a heterogeneous media is assumed. In linear stability analysis, the governing equations are transferred to Fourier space, and by introducing a novel numerical method, the transferred equations are analyzed. The growth rate based on the wave number diagram has been drawn up in three sections of the medium. It is found that the flow becomes more stable at the center and unstable along the walls when the permeability ratio is increased. Also when the permeability ratio is approximately equal to one, the channeling has no significant effect. In nonlinear simulations, by using stream function and vortices, new equations have been rewritten and it is shown that channeling has a profound effect on the growth of the fingers and mechanisms. In addition to the superposition of velocity vectors and concentration contours, the development of instability is investigated using the mixing length and sweep efficiency diagram. The results show that although channeling reduces instability, it increases the displacement process time.
Measurement of surface effects on the rotational diffusion of a colloidal particle.
Lobo, Sebastian; Escauriaza, Cristian; Celedon, Alfredo
2011-03-15
A growing number of nanotechnologies involve rotating particles. Because the particles are normally close to a solid surface, hydrodynamic interaction may affect particle rotation. Here, we track probes composed of two particles tethered to a solid surface by a DNA molecule to measure for the first time the effect of a surface on the rotational viscous drag. We use a model that superimposes solutions of the Stokes equation in the presence of a wall to confirm and interpret our measurements. We show that the hydrodynamic interaction between the surface and the probe increases the rotational viscous drag and that the effect strongly depends on the geometry of the probe.
NASA Astrophysics Data System (ADS)
Faghri, Amir; Chen, Ming-Ming
1989-10-01
The effects of conjugate heat transfer, vapor compressibility, and viscous dissipation in heat pipes are discussed. The accuracy of the partially parabolic versus the elliptic presentation of the governing equations is also examined. The results show that the axial wall conduction has a tendency to make the temperature distribution more uniform for heat pipes with large ratios of pipe wall to effective liquid-wick thermal conductivity. The compressible and incompressible models show very close agreement for the total pressure drop, while the local pressure variations along the heat pipe are quite different for these two models when the radial Reynolds number at the interface is high.
Updated users' guide for TAWFIVE with multigrid
NASA Technical Reports Server (NTRS)
Melson, N. Duane; Streett, Craig L.
1989-01-01
A program for the Transonic Analysis of a Wing and Fuselage with Interacted Viscous Effects (TAWFIVE) was improved by the incorporation of multigrid and a method to specify lift coefficient rather than angle-of-attack. A finite volume full potential multigrid method is used to model the outer inviscid flow field. First order viscous effects are modeled by a 3-D integral boundary layer method. Both turbulent and laminar boundary layers are treated. Wake thickness effects are modeled using a 2-D strip method. A brief discussion of the engineering aspects of the program is given. The input, output, and use of the program are covered in detail. Sample results are given showing the effects of boundary layer corrections and the capability of the lift specification method.
The fluid dynamics of the chocolate fountain
NASA Astrophysics Data System (ADS)
Townsend, Adam K.; Wilson, Helen J.
2016-01-01
We consider the fluid dynamics of the chocolate fountain. Molten chocolate is a mildly shear-thinning non-Newtonian fluid. Dividing the flow into three main domains—the pumped flow up the centre, the film flow over each dome, and the freely falling curtain flow between the domes—we generate a wide-ranging study of Newtonian and non-Newtonian fluid mechanics. The central pumped flow is a benchmark to elucidate the effects of shear-thinning. The dome flow can be modelled as a thin-film flow with the leading-order effects being a simple balance of gravity and viscosity. Finally, the curtain flow is analytically intractable but is related to the existing theory of water bells (both inviscid and viscous). In pipe flow, Newtonian fluids exhibit a parabolic velocity profile; shear-thinning makes the profile more blunted. In thin-film flow over the dome, gravitational and viscous effects balance and the dome shape is not important beyond the local slope. We find that the chocolate thins and slows down as it travels down the dome. Finally, in the curtain flow, we predict the shape of the falling sheet for an inviscid fluid, and compare this with the literature to predict the shape for a viscous fluid, having shown that viscous forces are too great to ignore. We also find that the primary effect driving the shape of the curtain (which falls inwards towards the axis of the fountain) is surface tension. We find that the three domains provide excellent introductions to non-Newtonian mechanics, the important mathematical technique of scaling, and how to manipulate existing data to make our own predictions. We also find that the topic generates interest among the public in our engagement work.
Study on rheological properties of CMC/Eu-Tb solutions with different concentrations
NASA Astrophysics Data System (ADS)
Fu, Z. C.; Ye, J.; Xiong, J.
2018-05-01
The rheological properties of polymer solution are sensitive to variations in the polymer structure. Carboxymethyl cellulose (CMC) aqueous solution has been used in many fields, such as food, medicine and paper industry. In this paper, the effects of different concentrations (2% - 6%) of CMC/Eu-Tb on their rheological properties were investigeted, including steady-state flow and viscoelastic response. The results show that, the viscosity of CMC/Eu-Tb is lower than that of CMC, at the same concentrations; the products solutions present a nearly Newtonian behavior at the low concentrations (2% - 3%); while at the higher concentrations (4% - 6%), the products solutions present a pseudoplastic behavior; shear-thinning behavior is due to the polymer chains unravel under the action of flow and the molecular chains are oriented in the flow direction. The results also show that the viscosity of the solutions decreases with increasing temperature. Dynamic rheological tests show that CMC/Eu-Tb has viscoelasticity in the concentrations of 2% - 6%. At lower concentrations, the elastic modulus G‧ is slightly higher than the viscous modulus G″, and as the concentrations increase, the elastic modulus G‧ is significantly higher than the viscous modulus G″. It means that at the lower solution concentrations, the solutions tend to be less elastic and easier to flow. Most of the energies are lost through the viscous flow. As the solution concentrations increase, the solutions tend to be more elastic, and the system tends to form a gel.
2D Inviscid and Viscous Inverse Design Using Continuous Adjoint and Lax-Wendroff Formulation
NASA Astrophysics Data System (ADS)
Proctor, Camron Lisle
The continuous adjoint (CA) technique for optimization and/or inverse-design of aerodynamic components has seen nearly 30 years of documented success in academia. The benefits of using CA versus a direct sensitivity analysis are shown repeatedly in the literature. However, the use of CA in industry is relatively unheard-of. The sparseness of industry contributions to the field may be attributed to the tediousness of the derivation and/or to the difficulties in implementation due to the lack of well-documented adjoint numerical methods. The focus of this work has been to thoroughly document the techniques required to build a two-dimensional CA inverse-design tool. To this end, this work begins with a short background on computational fluid dynamics (CFD) and the use of optimization tools in conjunction with CFD tools to solve aerodynamic optimization problems. A thorough derivation of the continuous adjoint equations and the accompanying gradient calculations for inviscid and viscous constraining equations follows the introduction. Next, the numerical techniques used for solving the partial differential equations (PDEs) governing the flow equations and the adjoint equations are described. Numerical techniques for the supplementary equations are discussed briefly. Subsequently, a verification of the efficacy of the inverse design tool, for the inviscid adjoint equations as well as possible numerical implementation pitfalls are discussed. The NACA0012 airfoil is used as an initial airfoil and surface pressure distribution and the NACA16009 is used as the desired pressure and vice versa. Using a Savitsky-Golay gradient filter, convergence (defined as a cost function<1E-5) is reached in approximately 220 design iteration using 121 design variables. The inverse-design using inviscid adjoint equations results are followed by the discussion of the viscous inverse design results and techniques used to further the convergence of the optimizer. The relationship between limiting step-size and convergence in a line-search optimization is shown to slightly decrease the final cost function at significant computational cost. A gradient damping technique is presented and shown to increase the convergence rate for the optimization in viscous problems, at a negligible increase in computational cost, but is insufficient to converge the solution. Systematically including adjacent surface vertices in the perturbation of a design variable, also a surface vertex, is shown to affect the convergence capability of the viscous optimizer. Finally, a comparison of using inviscid adjoint equations, as opposed to viscous adjoint equations, on viscous flow is presented, and the inviscid adjoint paired with viscous flow is found to reduce the cost function further than the viscous adjoint for the presented problem.
The effects of strain heating in lithospheric stretching models
NASA Technical Reports Server (NTRS)
Stanton, M.; Hodge, D.; Cozzarelli, F.
1985-01-01
The deformation by stretching of a continental type lithosphere has been formulated so that the problem can be solved by a continuum mechanical approach. The deformation, stress state, and temperature distribution are constrained to satisfy the physical laws of conservation of mass, energy, momentum, and an experimentally defined rheological response. The conservation of energy equation including a term of strain energy dissipation is given. The continental lithosphere is assumed to have the rheology of an isotropic, incompressible, nonlinear viscous, two layered solid.
Calculation of Viscous Effects on Ship Wave Resistance Using Axisymmetric Boundary Layer Approaches
1985-05-13
Layers in Pressure Gradients," NSRDC Report 3308, April 1970. 38. Garcia, J.M. and Zazurca, J.A.A., " Calculo de la Resistencia Viscosa de un Buque a...none USERS 21 ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED 22a NAME OF RESPONSIBLE INDIVIDUAL Henry T. Wang 22b TELEPHONE (Include Area Code...theory. Since then, calculation of the resistance due to the waves generated by a surface ship advancing at constant forward speed has been an area of
NASA Technical Reports Server (NTRS)
Potter, R. C.; Vandam, C. P.
1995-01-01
High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.
NASA Technical Reports Server (NTRS)
Anand, A. K.; Lakshminarayana, B.
1977-01-01
Analytical and experimental investigations of the characteristics of three dimensional turbulent boundary layers in a rotating helical passage of an inducer rotor are reported. Expressions are developed for the velocity profiles in the inner layer, where the viscous effects dominate, in the outer layer, where the viscous effects are small, and in the interference layer, where the end walls influence the flow. The prediction of boundary layer growth is based on the momentum integral technique. The equations derived are general enough to be valid for all turbomachinery rotors with arbitrary pressure gradients. The experimental investigations are carried out in a flat plate inducer 3 feet in diameter. The mean velocity profiles, turbulence intensities and shear stresses, wall shear stress, and limiting streamline angles are measured at various radial and chordwise locations by using rotating probes. The measurements are in general agreement with the predictions. The radial flows are well represented by an expression which includes the effect of stagger angle and radial pressure gradient. The radial flows in the rotor channel are higher than those on a single blade. The collateral region exists only very near the blade surface. The radial component of turbulence intensity is higher than the streamwise component because of the effect of rotation.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers
NASA Technical Reports Server (NTRS)
Rothmayer, A. P.
1992-01-01
The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.
Finite element analysis of low speed viscous and inviscid aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1977-01-01
A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.
Minimum film thickness in elliptical contacts for different regimes of fluid-film lubrication
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1978-01-01
The film-parameter equations are provided for four fluid-film lubrication regimes found in elliptical contacts. These regimes are isoviscous-rigid; viscous-rigid; elastohydrodynamic of low-elastic-modulus materials, or isoviscous-elastic; and elastohydrodynamic, or viscous-elastic. The influence or lack of influence of elastic and viscous effects is the factor that distinguishes these regimes. The film-parameter equations for the respective regimes come from earlier theoretical studies by the authors on elastohydrodynamic and hydrodynamic lubrication of elliptical conjunctions. These equations are restated and the results are presented as a map of the lubrication regimes, with film-thickness contours on a log-log grid of the viscosity and elasticity parameters for five values of the ellipticity parameter. The results present a complete theoretical film-parameter solution for elliptical contacts in the four lubrication regimes.
Bacterial accumulation in viscosity gradients
NASA Astrophysics Data System (ADS)
Waisbord, Nicolas; Guasto, Jeffrey
2016-11-01
Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.
Similar solutions for viscous hypersonic flow over a slender three-fourths-power body of revolution
NASA Technical Reports Server (NTRS)
Lin, Chin-Shun
1987-01-01
For hypersonic flow with a shock wave, there is a similar solution consistent throughout the viscous and inviscid layers along a very slender three-fourths-power body of revolution The strong pressure interaction problem can then be treated by the method of similarity. Numerical calculations are performed in the viscous region with the edge pressure distribution known from the inviscid similar solutions. The compressible laminar boundary-layer equations are transformed into a system of ordinary differential equations. The resulting two-point boundary value problem is then solved by the Runge-Kutta method with a modified Newton's method for the corresponding boundary conditions. The effects of wall temperature, mass bleeding, and body transverse curvature are investigated. The induced pressure, displacement thickness, skin friction, and heat transfer due to the previously mentioned parameters are estimated and analyzed.
NASA Astrophysics Data System (ADS)
Zhang, Bao-Ji; Zhang, Zhu-Xin
2015-09-01
To obtain low resistance and high efficiency energy-saving ship, minimum total resistance hull form design method is studied based on potential flow theory of wave-making resistance and considering the effects of tail viscous separation. With the sum of wave resistance and viscous resistance as objective functions and the parameters of B-Spline function as design variables, mathematical models are built using Nonlinear Programming Method (NLP) ensuring the basic limit of displacement and considering rear viscous separation. We develop ship lines optimization procedures with intellectual property rights. Series60 is used as parent ship in optimization design to obtain improved ship (Series60-1) theoretically. Then drag tests for the improved ship (Series60-1) is made to get the actual minimum total resistance hull form.
Jenkins, Alexandra L; Jenkins, David J A; Wolever, Thomas M S; Rogovik, Alexander L; Jovanovski, Elena; Bozikov, Velimir; Rahelić, Dario; Vuksan, Vladimir
2008-12-01
To compare the blood glucose-lowering effect of a highly viscous fiber blend (VFB) added to a starchy snack on postprandial glycemia between healthy participants and participants with diabetes mellitus. Ten healthy participants (4 men and 6 women, aged 28+/-2.6 years, body mass index [BMI], 24.3+/-0.8 kg/m(2)) and 9 participants with diabetes mellitus type 2 (3 men and 6 women, aged 68+/-3.8 years, BMI 28.8+/-1.2 kg/m(2)) on four separate occasions took either 50 g available carbohydrates as control biscuits, biscuits with 10 g of highly viscous fiber blend, white bread with 12 g of margarine, or white bread alone. Postprandial blood glucose response, glycemic index (GI), and palatability were determined. Mean (95% confidence interval) GI values of the viscous fiber blend biscuits were 26 (16-36) and 37 (27-47) GI units for healthy participants and participants with diabetes mellitus, respectively. These values were significantly lower than those of white bread, white bread with 12 g of margarine, and control biscuits (P<0.001, paired t test) both in healthy participants (GI 100, 108 [57-159], and 101 [44-158], respectively) and participants with diabetes mellitus (GI 100, 103 [79-127], and 94 [78-110], respectively). Viscous fiber blend significantly reduced the glycemic index by 74% (7.4 GI units/g of fiber) in healthy participants and by 63% (6.3 GI units/g of fiber) in participants with diabetes. The GI did not differ between control meals in both healthy participants and participants with diabetes. There were no significant differences in palatability among the types of meals, although participants with diabetes found the viscous fiber blend biscuits more palatable (P=0.002, t test). Viscous fiber blend is a very potent and palatable soluble fiber addition to a starchy snack, which is able to reduce the glycemic response to a similar extent in both healthy participants and individuals with diabetes mellitus. Biscuits with low GI, and possibly other viscous fiber blend fortified starchy foods, may potentially be a useful replacement of high GI snack foods in the diet.
Transmission problems for Mindlin–Timoshenko plates: frictional versus viscous damping mechanisms
NASA Astrophysics Data System (ADS)
Ferreira, Marcio V.; Muñoz Rivera, Jaime E.; Suárez, Fredy M. S.
2018-06-01
In this article, we make a comparative analysis of the stabilizing effect of the frictional dissipation with the dissipation produced by viscous materials of Kelvin-Voigt type both located in a part of a Mindlin-Timoshenko plate. We model these dissipative mechanisms through transmission problems and show that localized frictional damping, when effective over a strategic component of the plate, produces exponential stability of the corresponding semigroup. On the other hand, although the dissipation of Kelvin-Voigt is considered a strong dissipation, we prove that it loses its uniform stabilizing properties when localized over a component of the material and provides only a slower polynomial decay.
Influence of collision on the flow through in-vitro rigid models of the vocal folds
NASA Astrophysics Data System (ADS)
Deverge, M.; Pelorson, X.; Vilain, C.; Lagrée, P.-Y.; Chentouf, F.; Willems, J.; Hirschberg, A.
2003-12-01
Measurements of pressure in oscillating rigid replicas of vocal folds are presented. The pressure upstream of the replica is used as input to various theoretical approximations to predict the pressure within the glottis. As the vocal folds collide the classical quasisteady boundary layer theory fails. It appears however that for physiologically reasonable shapes of the replicas, viscous effects are more important than the influence of the flow unsteadiness due to the wall movement. A simple model based on a quasisteady Bernoulli equation corrected for viscous effect, combined with a simple boundary layer separation model does globally predict the observed pressure behavior.
NASA Astrophysics Data System (ADS)
Saini, Rajesh Kumar; Kuchlyan, Jagannath; Sarkar, Nilmoni
2016-09-01
The viscosity effect of homogeneous solvents on the dynamics of photoinduced electron transfer (PET) reaction among the coumarins and N,N-dimethylaniline (DMA) is investigated using steady-state and time-resolved fluorescence spectroscopy. A bell shape Marcus inversion in the ET rates has been detected in the plot of ET rate constant (kq) with free energy change (ΔG0) in viscous solvents decanol and EG, but it is not observed in DMSO like low viscous solvent. We have also reported that there is no complex formation between the coumarin dye and DMA molecule by using fluorescence correlation spectroscopy.
NASA Technical Reports Server (NTRS)
Anderson, E. C.; Moss, J. N.
1975-01-01
The viscous shock layer equations applicable to hypersonic laminar, transitional, and turbulent flows of a perfect gas over two-dimensional plane or axially symmetric blunt bodies are presented. The equations are solved by means of an implicit finite difference scheme, and the results are compared with a turbulent boundary layer analysis. The agreement between the two solution procedures is satisfactory for the region of flow where streamline swallowing effects are negligible. For the downstream regions, where streamline swallowing effects are present, the expected differences in the two solution procedures are evident.
Viscous dissipation impact on MHD free convection radiating fluid flow past a vertical porous plate
NASA Astrophysics Data System (ADS)
Raju, R. Srinivasa; Reddy, G. Jithender; Kumar, M. Anil
2018-05-01
An attempt has been made to study the radiation effects on unsteady MHD free convective flow of an incompressible fluid past an infinite vertical porous plate in the presence of viscous dissipation. The governing partial differential equations are solved numerically by using Galerkin finite element method. Computations were performed for a wide range of governing flow parameters viz., Magnetic Parameter, Schmidt number, Thermal radiation, Prandtl number, Eckert number and Permeability parameter. The effects of these flow parameters on velocity, temperature are shown graphically. In addition the local values of the Skin friction coefficient are shown in tabular form.
Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol
Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla; ...
2017-12-15
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less
Growth Kinetics and Size Distribution Dynamics of Viscous Secondary Organic Aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaveri, Rahul A.; Shilling, John E.; Zelenyuk, Alla
Low bulk diffusivity inside viscous semisolid atmospheric secondary organic aerosol (SOA) can prolong equilibration time scale, but its broader impacts on aerosol growth and size distribution dynamics are poorly understood. In this article, we present quantitative insights into the effects of bulk diffusivity on the growth and evaporation kinetics of SOA formed under dry conditions from photooxidation of isoprene in the presence of a bimodal aerosol consisting of Aitken (ammonium sulfate) and accumulation (isoprene or α-pinene SOA) mode particles. Aerosol composition measurements and evaporation kinetics indicate that isoprene SOA is composed of several semivolatile organic compounds (SVOCs), with some reversiblymore » reacting to form oligomers. Model analysis shows that liquid-like bulk diffusivities can be used to fit the observed evaporation kinetics of accumulation mode particles but fail to explain the growth kinetics of bimodal aerosol by significantly under-predicting the evolution of the Aitken mode. In contrast, the semisolid scenario successfully reproduces both evaporation and growth kinetics, with the interpretation that hindered partitioning of SVOCs into large viscous particles effectively promotes the growth of smaller particles that have shorter diffusion time scales. This effect has important implications for the growth of atmospheric ultrafine particles to climatically active sizes.« less
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Bae, Jung Min; Lee, Dong Won
2013-09-01
Because Asian faces are generally flatter than Caucasian faces, Asian women are increasingly requesting facial volume enhancement. To clarify the effectiveness and safety of a volumizing treatment using 20-mg/mL smooth, highly cohesive, viscous hyaluronic acid fillers in young Asian women. We retrospectively reviewed 320 patients who had been treated with this filler from March 2010 to February 2012. The filler was injected in the shape of a diamond to the glabella, both malar eminences, and chin. Overall, 4 to 6 mL of filler was sufficient to enhance the volume of a face in young Asian women. Both the physicians and patients rated effectiveness on the Global Aesthetic Improvement Scale at week 4. Need for touch-up and any adverse events were also evaluated. Most patients were very satisfied with this volumizing procedure, and there were no major complications. The 20-mg/mL smooth, highly cohesive, viscous hyaluronic acid filler is an effective, well-tolerated treatment option in young Asian women wishing for a more-three-dimensional profile. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.
A viscous flow analysis for the tip vortex generation process
NASA Technical Reports Server (NTRS)
Shamroth, S. J.; Briley, W. R.
1979-01-01
A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution
NASA Astrophysics Data System (ADS)
Bell, Eric F.
2002-12-01
Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.
NASA Astrophysics Data System (ADS)
Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn
2017-12-01
Rock deformation experiments are performed on fault gouge fabricated from 'Maryland Diabase' rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of γ˙ = 3 ·10-5 - 3 ·10-6 s-1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution.
Spiral pattern in a radial displacement in a Hele-Shaw cell
NASA Astrophysics Data System (ADS)
Ban, Mitsumasa; Nagatsu, Yuichiro; Hayashi, Atsushi; Kato, Yoshihiro; Tada, Yutaka
2008-11-01
When a reactive and miscible less-viscous liquid displaces a more-viscous liquid in a Hele-Shaw cell, reactive miscible viscous fingering takes place. We have experimentally shown that the pattern created by the displacement of a more-viscous fluid by a less-viscous one in a radial Hele-Shaw cell develops not radially but spirally when a more-viscous sodium polyacrylate solution is displaced by a less-viscous trivalent iron ion (Fe^3+) solution with a sufficiently high concentration of Fe^3+. Another experiment in order to investigate the mechanism of spiral pattern formation revealed that an instantaneous chemical reaction takes place between the two fluids and at high Fe^3+ concentrations it produces a film of the gel at the contact plane. The gel is formed by three-dimensional network structures between the polyacrylate solution and the trivalent iron ion (Fe^3+) solution. We have proposed a physical model that the gel's film is responsible for the form of the spiral pattern.
Formation and survival of Population III stellar systems
NASA Astrophysics Data System (ADS)
Hirano, Shingo; Bromm, Volker
2017-09-01
The initial mass function of the first, Population III (Pop III), stars plays a vital role in shaping galaxy formation and evolution in the early Universe. One key remaining issue is the final fate of secondary protostars formed in the accretion disc, specifically whether they merge or survive. We perform a suite of hydrodynamic simulations of the complex interplay among fragmentation, protostellar accretion and merging inside dark matter minihaloes. Instead of the traditional sink particle method, we employ a stiff equation of state approach, so that we can more robustly ascertain the viscous transport inside the disc. The simulations show inside-out fragmentation because the gas collapses faster in the central region. Fragments migrate on the viscous time-scale, over which angular momentum is lost, enabling them to move towards the disc centre, where merging with the primary protostar can occur. This process depends on the fragmentation scale, such that there is a maximum scale of (1-5) × 104 au, inside which fragments can migrate to the primary protostar. Viscous transport is active until radiative feedback from the primary protostar destroys the accretion disc. The final mass spectrum and multiplicity thus crucially depends on the effect of viscosity in the disc. The entire disc is subjected to efficient viscous transport in the primordial case with viscous parameter α ≤ 1. An important aspect of this question is the survival probability of Pop III binary systems, possible gravitational wave sources to be probed with the Advanced LIGO detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radiom, Milad, E-mail: milad.radiom@unige.ch; Ducker, William, E-mail: wducker@vt.edu; Robbins, Brian
The hydrodynamic interaction of two closely spaced micron-scale spheres undergoing Brownian motion was measured as a function of their separation. Each sphere was attached to the distal end of a different atomic force microscopy cantilever, placing each sphere in a stiff one-dimensional potential (0.08 Nm{sup −1}) with a high frequency of thermal oscillations (resonance at 4 kHz). As a result, the sphere’s inertial and restoring forces were significant when compared to the force due to viscous drag. We explored interparticle gap regions where there was overlap between the two Stokes layers surrounding each sphere. Our experimental measurements are the firstmore » of their kind in this parameter regime. The high frequency of oscillation of the spheres means that an analysis of the fluid dynamics would include the effects of fluid inertia, as described by the unsteady Stokes equation. However, we find that, for interparticle separations less than twice the thickness of the wake of the unsteady viscous boundary layer (the Stokes layer), the hydrodynamic interaction between the Brownian particles is well-approximated by analytical expressions that neglect the inertia of the fluid. This is because elevated frictional forces at narrow gaps dominate fluid inertial effects. The significance is that interparticle collisions and concentrated suspensions at this condition can be modeled without the need to incorporate fluid inertia. We suggest a way to predict when fluid inertial effects can be ignored by including the gap-width dependence into the frequency number. We also show that low frequency number analysis can be used to determine the microrheology of mixtures at interfaces.« less
Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.
2003-01-01
Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.
A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows
NASA Astrophysics Data System (ADS)
Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.
2017-09-01
A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Ollitrault, Jean-Yves; Pal, Subrata
2018-03-01
We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within a multiphase transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider over a wide range of centrality: differential anisotropic flow vn(pT) (n =2 -6 ) , event-plane correlations, correlation between v2 and v3, and cumulant ratio v2{4 } /v2{2 } .
An experimental study of miscible viscous fingering of annular ring
NASA Astrophysics Data System (ADS)
Nagatsu, Yuichiro; Othman, Hamirul Bin; Mishra, Manoranjan
2017-11-01
Understanding the viscous fingering (VF) dynamics of finite width sample is important in the fields especially such as liquid chromatography and groundwater contamination and mixing in microfluidics. In this paper, we experimentally investigate such hydrodynamical morphology of VF using a Hele-Shaw flow system in which a miscible annular ring of fluid is displaced radially. Experiments are performed to investigate the effects of the sample volume, the effects of dispersion and log mobility ratio R on the dynamics of VF pattern and onset of such instability. Depending whether the finite width ring is more or less viscous than the carrier fluid, the log mobility ratio R becomes positive or negative respectively. The experiments are successfully conducted to obtain the VF patterns for R>0 and R<0, of the finite annular ring at the inner and outer radial interfaces, respectively. It is found that in the radial displacement, the inward finger moves slower than the outward finger. The experimental results are found to be qualitatively in good agreement with the corresponding linear stability analysis and non-linear simulations results available in the literature.
Microemulsions based transdermal drug delivery systems.
Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R
2014-01-01
Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.
Investigating the origin of acoustic attenuation in liquid foams.
Pierre, Juliette; Gaulon, Camille; Derec, Caroline; Elias, Florence; Leroy, Valentin
2017-08-01
Liquid foams are known to be highly efficient to absorb acoustic waves but the origin of the sound dissipation remains unknown. In this paper, we present low frequency (0.5-4kHz) experimental results measured with an impedance tube and we confront the recorded attenuations with a simple model that considers the foam as a concentrate bubbly liquid. In order to identify the influence of the different parameters constituting the foams we probe samples with different gases, and various liquid fractions and bubble size distributions. We demonstrate that the intrinsic acoustic attenuation in the liquid foam is due to both thermal and viscous losses. The physical mechanism of the viscous term is not elucidated but the microscopic effective viscosity evidenced here can be described by a phenomenological law scaling with the bubble size and the gas density. In our experimental configuration a third dissipation term occurs. It comes from the viscous friction on the wall of the impedance tube and it is well described by the Kirchhoff law considering the macroscopic effective viscosity classically measured in rheology experiments.
Viscous self interacting dark matter and cosmic acceleration
NASA Astrophysics Data System (ADS)
Atreya, Abhishek; Bhatt, Jitesh R.; Mishra, Arvind
2018-02-01
Self interacting dark matter (SIDM) provides us with a consistent solution to certain astrophysical observations in conflict with collision-less cold DM paradigm. In this work we estimate the shear viscosity (η) and bulk viscosity (ζ) of SIDM, within kinetic theory formalism, for galactic and cluster size SIDM halos. To that extent we make use of the recent constraints on SIDM cross-section for the dwarf galaxies, LSB galaxies and clusters. We also estimate the change in solution of Einstein's equation due to these viscous effects and find that σ/m constraints on SIDM from astrophysical data provide us with sufficient viscosity to account for the observed cosmic acceleration at present epoch, without the need of any additional dark energy component. Using the estimates of dark matter density for galactic and cluster size halo we find that the mean free path of dark matter ~ few Mpc. Thus the smallest scale at which the viscous effect start playing the role is cluster scale. Astrophysical data for dwarf, LSB galaxies and clusters also seems to suggest the same. The entire analysis is independent of any specific particle physics motivated model for SIDM.
Viscous Moment, Mechanism of Slow Slip, and Subduction Megathrust Viscosity
NASA Astrophysics Data System (ADS)
Fagereng, A.
2015-12-01
Slow slip events (SSEs) represent transient slip velocities slower than earthquakes but faster than steady, average plate motion. SSEs repeating at the same location have characteristic slip magnitude and duration. Contrary to earthquakes, however, average slip relates to neither duration nor area. Variations in duration, slip, and slip rate can instead be tied to variations in effective viscosity, calculated from a viscous definition of moment. In this paradigm, the observation that deep slow slip events are slower and longer, implies a higher effective viscosity than in shallower, colder SSEs. Observed variations in effective viscosity and slip rate can be interpreted in terms of differences in driving stress and shear zone width, and likely arise in anastomosing shear zones containing a heterogeneous mixture of materials.
Strong nonlinear rupture theory of thin free liquid films
NASA Astrophysics Data System (ADS)
Chi-Chuan, Hwang; Jun-Liang, Chen; Li-Fu, Shen; Cheng-I, Weng
1996-02-01
A simplified governing equation with high-order effects is formulated after a procedure of evaluating the order of magnitude. Furthermore, the nonlinear evolution equations are derived by the Kármán-Polhausen integral method with a specified velocity profile. Particularly, the effects of surface tension, van der Waals potential, inertia and high-order viscous dissipation are taken into consideration in these equation. The numerical results reveal that the rupture time of free film is much shorter than that of a film on a flat plate. It is shown that because of a more complete high-order viscous dissipation effect discussed in the present study, the rupture process of present model is slower than is predicted by the high-order long wave theory.
Transonic flow about a thick circular-arc airfoil
NASA Technical Reports Server (NTRS)
Mcdevitt, J. B.; Levy, L. L., Jr.; Deiwert, G. S.
1975-01-01
An experimental and theoretical study of transonic flow over a thick airfoil, prompted by a need for adequately documented experiments that could provide rigorous verification of viscous flow simulation computer codes, is reported. Special attention is given to the shock-induced separation phenomenon in the turbulent regime. Measurements presented include surface pressures, streamline and flow separation patterns, and shadowgraphs. For a limited range of free-stream Mach numbers the airfoil flow field is found to be unsteady. Dynamic pressure measurements and high-speed shadowgraph movies were taken to investigate this phenomenon. Comparisons of experimentally determined and numerically simulated steady flows using a new viscous-turbulent code are also included. The comparisons show the importance of including an accurate turbulence model. When the shock-boundary layer interaction is weak the turbulence model employed appears adequate, but when the interaction is strong, and extensive regions of separation are present, the model is inadequate and needs further development.
Dietary fiber and progression of atherosclerosis: the Los Angeles Atherosclerosis Study.
Wu, Huiyun; Dwyer, Kathleen M; Fan, Zhihong; Shircore, Anne; Fan, Jing; Dwyer, James H
2003-12-01
Several epidemiologic studies found weak protective relations between dietary fiber intake and the risk of cardiovascular disease events. However, few of the studies addressed possible mechanisms of the effect. In the present study, we estimated relations between the progression of atherosclerosis and the intake of selective dietary fiber fractions. Mediation of the relations by serum lipids was also investigated. Participants who were free of heart disease and aged 40-60 y were recruited into the cohort (n = 573; 47% women). The intima-media thickness (IMT) of the common carotid arteries was measured ultrasonographically at the baseline examination and at 2 follow-up examinations (n = 500), dietary intakes were assessed with six 24-h recalls (3 at baseline and 3 at the first follow-up examination), and blood samples were analyzed at baseline and at both follow-up examinations. A significant inverse association was observed between IMT progression and the intakes of viscous fiber (P = 0.05) and pectin (P = 0.01). Correction for measurement error increased the magnitude of these estimated effects. The ratio of total to HDL cholesterol was inversely related to the intakes of total fiber (P = 0.01), viscous fiber (P = 0.05), and pectin (P = 0.01). The magnitude of the association between IMT progression and the intakes of viscous fiber and pectin was attenuated by adjustment for serum lipids. The intake of viscous fiber, especially pectin, appears to protect against IMT progression. Serum lipids may act as a mediator between dietary fiber intake and IMT progression.
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.; Bova, Stephen W.; Bond, Ryan B.
2011-01-01
Presentation topics include background and motivation; physical modeling including governing equations and thermochemistry; finite element formulation; results of inviscid thermal nonequilibrium chemically reacting flow and viscous thermal equilibrium chemical reacting flow; and near-term effort.
Pore Fluid Extraction by Reactive Solitary Waves in 3-D
NASA Astrophysics Data System (ADS)
Omlin, Samuel; Malvoisin, Benjamin; Podladchikov, Yury Y.
2017-09-01
In the lower crust, viscous compaction is known to produce solitary porosity and fluid pressure waves. Metamorphic (de)volatilization reactions can also induce porosity changes in response to the propagating fluid pressure anomalies. Here we present results from high-resolution simulations using Graphic Processing Unit parallel processing with a model that includes both viscous (de)compaction and reaction-induced porosity changes. Reactive porosity waves propagate in a manner similar to viscous porosity waves, but through a different mechanism involving fluid release and trap in the solid by reaction. These waves self-generate from red noise or an ellipsoidal porosity anomaly with the same characteristic size and abandon their source region to propagate at constant velocity. Two waves traveling at different velocities pass through each other in a soliton-like fashion. Reactive porosity waves thus provide an additional mechanism for fluid extraction at shallow depths with implications for ore formation, diagenesis, metamorphic veins formation, and fluid extraction from subduction zones.
Dynamics of a spherical particle in an acoustic field: A multiscale approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques
2014-10-15
A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, andmore » viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.« less
NASA Astrophysics Data System (ADS)
Foucart, Francois; Chandra, Mani; Gammie, Charles F.; Quataert, Eliot; Tchekhovskoy, Alexander
2017-09-01
Black holes with accretion rates well below the Eddington rate are expected to be surrounded by low-density, hot, geometrically thick accretion discs. This includes the two black holes being imaged at subhorizon resolution by the Event Horizon Telescope. In these discs, the mean free path for Coulomb interactions between charged particles is large, and the accreting matter is a nearly collisionless plasma. Despite this, numerical simulations have so far modelled these accretion flows using ideal magnetohydrodynamics. Here, we present the first global, general relativistic, 3D simulations of accretion flows on to a Kerr black hole including the non-ideal effects most likely to affect the dynamics of the disc: the anisotropy between the pressure parallel and perpendicular to the magnetic field, and the heat flux along magnetic field lines. We show that for both standard and magnetically arrested discs, the pressure anisotropy is comparable to the magnetic pressure, while the heat flux remains dynamically unimportant. Despite this large pressure anisotropy, however, the time-averaged structure of the accretion flow is strikingly similar to that found in simulations treating the plasma as an ideal fluid. We argue that these similarities are largely due to the interchangeability of the viscous and magnetic shear stresses as long as the magnetic pressure is small compared to the gas pressure, and to the subdominant role of pressure/viscous effects in magnetically arrested discs. We conclude by highlighting outstanding questions in modelling the dynamics of low-collisionality accretion flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found thatmore » self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.« less
The effect of dietary fibre on reducing the glycaemic index of bread.
Scazzina, Francesca; Siebenhandl-Ehn, Susanne; Pellegrini, Nicoletta
2013-04-14
As bread is the most relevant source of available carbohydrates in the diet and as lowering dietary glycaemic index (GI) is considered favourable to health, many studies have been carried out in order to decrease the GI of bread. The most relevant strategy that has been applied so far is the addition of fibre-rich flours or pure dietary fibre. However, the effectiveness of dietary fibre in bread in reducing the GI is controversial. The purpose of the present review was to discuss critically the effects obtained by adding different kinds of fibre to bread in order to modulate its glycaemic response. The studies were selected because they analysed in vivo whether or not dietary fibre, naturally present or added during bread making, could improve the glucose response. The reviewed literature suggests that the presence of intact structures not accessible to human amylases, as well as a reduced pH that may delay gastric emptying or create a barrier to starch digestion, seems to be more effective than dietary fibre per se in improving glucose metabolism, irrespective of the type of cereal. Moreover, the incorporation of technologically extracted cereal fibre fractions, the addition of fractions from legumes or of specifically developed viscous or non-viscous fibres also constitute effective strategies. However, when fibres or wholemeal is included in bread making to affect the glycaemic response, the manufacturing protocol needs to reconsider several technological parameters in order to obtain high-quality and consumer-acceptable breads.
Steinert, Robert E; Raederstorff, Daniel; Wolever, Thomas M S
2016-08-26
Viscous dietary fibers including oat β-glucan are one of the most effective classes of functional food ingredients for reducing postprandial blood glucose. The mechanism of action is thought to be via an increase in viscosity of the stomach contents that delays gastric emptying and reduces mixing of food with digestive enzymes, which, in turn, retards glucose absorption. Previous studies suggest that taking viscous fibers separate from a meal may not be effective in reducing postprandial glycemia. We aimed to re-assess the effect of consuming a preload of a commercially available oat-bran (4.5, 13.6 or 27.3 g) containing 22% of high molecular weight oat β-glucan (O22 (OatWell(®)22)) mixed in water before a test-meal of white bread on glycemic responses in 10 healthy humans. We found a significant effect of dose on blood glucose area under the curve (AUC) (p = 0.006) with AUC after 27.3 g of O22 being significantly lower than white bread only. Linear regression analysis showed that each gram of oat β-glucan reduced glucose AUC by 4.35% ± 1.20% (r = 0.507, p = 0.0008, n = 40) and peak rise by 6.57% ± 1.49% (r = 0.582, p < 0.0001). These data suggest the use of oat bran as nutritional preload strategy in the management of postprandial glycemia.
Dispersion and viscous attenuation of capillary waves with finite amplitude
NASA Astrophysics Data System (ADS)
Denner, Fabian; Paré, Gounséti; Zaleski, Stéphane
2017-04-01
We present a comprehensive study of the dispersion of capillary waves with finite amplitude, based on direct numerical simulations. The presented results show an increase of viscous attenuation and, consequently, a smaller frequency of capillary waves with increasing initial wave amplitude. Interestingly, however, the critical wavenumber as well as the wavenumber at which the maximum frequency is observed remain the same for a given two-phase system, irrespective of the wave amplitude. By devising an empirical correlation that describes the effect of the wave amplitude on the viscous attenuation, the dispersion of capillary waves with finite initial amplitude is shown to be, in very good approximation, self-similar throughout the entire underdamped regime and independent of the fluid properties. The results also shown that analytical solutions for capillary waves with infinitesimal amplitude are applicable with reasonable accuracy for capillary waves with moderate amplitude.
Mixing high-viscosity fluids via acoustically driven bubbles
NASA Astrophysics Data System (ADS)
Orbay, Sinem; Ozcelik, Adem; Lata, James; Kaynak, Murat; Wu, Mengxi; Huang, Tony Jun
2017-01-01
We present an acoustofluidic micromixer which can perform rapid and homogeneous mixing of highly viscous fluids in the presence of an acoustic field. In this device, two high-viscosity polyethylene glycol (PEG) solutions were co-injected into a three-inlet PDMS microchannel with the center inlet containing a constant stream of nitrogen flow which forms bubbles in the device. When these bubbles were excited by an acoustic field generated via a piezoelectric transducer, the two solutions mixed homogenously due to the combination of acoustic streaming, droplet ejection, and bubble eruption effects. The mixing efficiency of this acoustofluidic device was evaluated using PEG-700 solutions which are ~106 times more viscous than deionized (DI) water. Our results indicate homogenous mixing of the PEG-700 solutions with a ~0.93 mixing index. The acoustofluidic micromixer is compact, inexpensive, easy to operate, and has the capacity to mix highly viscous fluids within 50 ms.
Bachok, Norfifah; Ishak, Anuar; Pop, Ioan
2013-01-01
The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.
High order accurate solutions of viscous problems
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli
1993-01-01
We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
On the applicability of lunar breccias for paleomagnetic interpretations.
NASA Technical Reports Server (NTRS)
Gose, W. A.; Pearce, G. W.; Strangway, D. W.; Larson, E. E.
1972-01-01
The weak but definite remanent magnetization of returned lunar samples is discussed. In general, the breccias have the possibility of carrying a significant viscous remanent magnetism (VRM) when exposed to magnetic fields. The two samples studied appear to exemplify two limiting cases which can be clearly related to the iron distribution present. The VRM measured in the laboratory must have been acquired by the samples since their return to earth because the time decay proceeds at such a rate that any viscous remanence will disappear in less than half a year. In spite of the viscous effects there seems to be little question that some breccias carry a recognizable stable remanent magnetism which is very much like that found in the igneous rocks, both in stability and intensity. It is concluded that it is possible to use some of the breccias to reconstruct the history of the lunar magnetic field.
Oceanic lithosphere and asthenosphere - Thermal and mechanical structure
NASA Technical Reports Server (NTRS)
Schubert, G.; Yuen, D. A.; Froidevaux, C.
1976-01-01
A coupled thermomechanical subsolidus model of the oceanic lithosphere and asthenosphere is developed which includes vertical heat conduction, a temperature-dependent thermal conductivity, heat advection by a horizontal and vertical mass flow that depends on depth and age, contributions of viscous dissipation or shear heating, a linear or nonlinear deformation law relating shear stress and strain rate, as well as a temperature- and pressure-dependent viscosity. The model requires a constant horizontal velocity and temperature at the surface, but zero horizontal velocity and constant temperature at great depths. The depth- and age-dependent temperature, horizontal and vertical velocities, and viscosity structure of the lithosphere and asthenosphere are determined along with the age-dependent shear stress in those two zones. The ocean-floor topography, oceanic heat flow, and lithosphere thickness are deduced as functions of ocean-floor age; seismic velocity profiles which exhibit a marked low-velocity zone are constructed from the age-dependent geotherms and assumed values of the elastic parameters. It is found that simple boundary-layer cooling determines the thermal structure at young ages, while effects of viscous dissipation become more important at older ages.
The influence of pressure relaxation on the structure of an axial vortex
NASA Astrophysics Data System (ADS)
Ash, Robert L.; Zardadkhan, Irfan; Zuckerwar, Allan J.
2011-07-01
Governing equations including the effects of pressure relaxation have been utilized to study an incompressible, steady-state viscous axial vortex with specified far-field circulation. When sound generation is attributed to a velocity gradient tensor-pressure gradient product, the modified conservation of momentum equations that result yield an exact solution for a steady, incompressible axial vortex. The vortex velocity profile has been shown to closely approximate experimental vortex measurements in air and water over a wide range of circulation-based Reynolds numbers. The influence of temperature and humidity on the pressure relaxation coefficient in air has been examined using theoretical and empirical approaches, and published axial vortex experiments have been employed to estimate the pressure relaxation coefficient in water. Non-equilibrium pressure gradient forces have been shown to balance the viscous stresses in the vortex core region, and the predicted pressure deficits that result from this non-equilibrium balance can be substantially larger than the pressure deficits predicted using a Bernoulli equation approach. Previously reported pressure deficit distributions for dust devils and tornados have been employed to validate the non-equilibrium pressure deficit predictions.
Fluid-driven cracks in an elastic matrix in the toughness-dominated limit
Lai, Ching-Yao; Zheng, Zhong; Dressaire, Emilie
2016-01-01
The dynamics of fluid-driven cracks in an elastic matrix is studied experimentally. We report the crack radius R(t) as a function of time, as well as the crack shapes w(r,t) as a function of space and time. A dimensionless parameter, the pressure ratio Δpf/Δpv, is identified to gauge the relative importance between the toughness (Δpf) and viscous (Δpv) effects. In our previous paper (Lai et al. 2015 Proc. R. Soc. A 471, 20150255. (doi:10.1098/rspa.2015.0255)), we investigated the viscous limit experimentally when the toughness-related stresses are negligible for the crack propagation. In this paper, the experimental parameters, i.e. Young’s modulus E of the gelatin, viscosity μ of the fracturing liquid and the injection flow rate Q, were chosen so that the viscous effects in the flow are negligible compared with the toughness effects, i.e. Δpf/Δpv≫1. In this limit, the crack dynamics can be described by the toughness-dominated scaling laws, which give the crack radius R(t)∝t2/5 and the half maximum crack thickness W(t)∝t1/5. The experimental results are in good agreement with the predictions of the toughness scaling laws: the experimental data for crack radius R(t) for a wide range of parameters (E,μ,Q) collapse after being rescaled by the toughness scaling laws, and the rescaled crack shapes w(r,t) also collapse to a dimensionless shape, which demonstrates the self-similarity of the crack shape. The appropriate choice of the viscous or toughness scaling laws is important to accurately describe the crack dynamics. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597782
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing
NASA Astrophysics Data System (ADS)
Burnishev, Yuri; Steinberg, Victor
2015-08-01
We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ (t ) and pressure p (t ) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Recturb=RecTDR≃(4.8 ±0.2 ) ×105 independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Recturb and RecTDR depending on polymer concentration ϕ . Both regimes differ by the values of Cf and Cp, by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998), 10.1063/1.869532; Phys. Rev. E 47, R28(R) (1993), 10.1103/PhysRevE.47.R28; and J. Phys.: Condens. Matter 17, S1195 (2005), 10.1088/0953-8984/17/14/008] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.
Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.
Burnishev, Yuri; Steinberg, Victor
2015-08-01
We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature.
Instability in Immiscible Fluids Displacement from Cracks and Porous Samples
NASA Astrophysics Data System (ADS)
Smirnov, N. N.; Nikitin, V. F.; Ivashnyov, O. E.
2002-01-01
problems of terrestrial engineering and technology. Surface tension affected flows in porous media could be much better understood in microgravity studies eliminating the masking effects of gravity. Saffman-Taylor instability of the interface could bring to formation and growth of "fingers" of gas penetrating the bulk fluid. The growth of fingers and their further coalescence could not be described by the linear analysis. Growth of fingers causes irregularity of the mixing zone. The tangential velocity difference on the interface separating fluids of different densities and viscousities could bring to a Kelvin-Helmholtz instability resulting in "diffusion of fingers" partial regularization of the displacement mixing zone. Thus combination of the two effects would govern the flow in the displacement process. fracture under a pressure differential displacing the high viscosity residual fracturing fluid. There are inherent instability and scalability problems associated with viscous fingering that play a key role in the cleanup procedure. Entrapment of residual fracturing fluid by the gas flow lowers down the quality of a fracture treatment leaving most of fluid in the hydraulic fracture thus decreasing the production rate. The gravity effects could play essential role in vertical hydraulic fractures as the problem is scale dependent. displacement of viscous fluid by a less viscous one in a two-dimensional channel with vertical breaks, and to determine characteristic size of entrapment zones. Extensive direct numerical simulations allow to investigate the sensitivity of the displacement process to variation of values of the main governing parameters. were found for the two limiting cases: infinitely wide cell, and narrow cell with an infinitely small gap between the finger and the side walls. governing parameters. The obtained solutions allowed to explain the physical meaning of the exiting empirical criteria for the beginning of viscous fingering and the growth of a number of fingers in the cell, and allowed us to make some additional suggestions for the cleanup procedure. depending on the resident fluid properties, for which the displacement still remains stable. viscous one were carried out. Validation of the code was performed by comparing the results of model problems simulations with the existing solutions published in literature. Being in a good agreement with the previously obtained results, nevertheless, the developed code is an advanced one. While the existing codes could operate with linear equations and regular geometry and initial disturbances only, the new code permits taking into account non-linear effects as well. characterizing the quality of displacement. The functional dependence of the dimensionless criteria on the values of governing parameters needs further investigations. Services, an international company in the oil and gas industry.
Viscous plugging can enhance and modulate explosivity of strombolian eruptions
NASA Astrophysics Data System (ADS)
Del Bello, E.; Lane, S. J.; James, M. R.; Llewellin, E. W.; Taddeucci, J.; Scarlato, P.; Capponi, A.
2015-08-01
Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a 'viscous plug', which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
Aerodynamic optimization of aircraft wings using a coupled VLM-2.5D RANS approach
NASA Astrophysics Data System (ADS)
Parenteau, Matthieu
The design process of transonic civil aircraft is complex and requires strong governance to manage the various program development phases. There is a need in the community to have numerical models in all disciplines that span the conceptual, preliminary and detail design phases in a seamless fashion so that choices made in each phase remain consistent with each other. The objective of this work is to develop an aerodynamic model suitable for conceptual multidisciplinary design optimization with low computational cost and sufficient fidelity to explore a large design space in the transonic and high-lift regimes. The physics-based reduce order model is based on the inviscid Vortex Lattice Method (VLM), selected for its low computation time. Viscous effects are modeled with two-dimensional high-fidelity RANS calculations at various sections along the span and incorporated as an angle of attack correction inside the VLM. The viscous sectional data are calculated with infinite swept wing conditions to allow viscous crossflow effects to be included for a more accurate maximum lift coefficient and spanload evaluations. These viscous corrections are coupled through a modified alpha coupling method for 2.5D RANS sectional data, stabilized in the post-stall region with artificial dissipation. The fidelity of the method is verified against 3D RANS flow solver solutions on the Bombardier Research Wing (BRW). Clean and high-lift configurations are investigated. The overall results show impressive precision of the VLM/2.5D RANS approach compared to 3D RANS solutions and in compute times in the order of seconds on a standard desktop computer. Finally, the aerodynamic solver is implemented in an optimization framework with a Covariant Matrix Adaptation Evolution Strategy (CMA-ES) optimizer to explore the design space of aerodynamic wing planform. Single-objective low-speed and high-speed optimizations are performed along with composite-objective functions for combined low-speed and high-speed optimizations with high-lift configurations as well. Moreover, the VLM/2.5D approach is capable of capturing stall cells phenomena and this characteristic is used to define a new spanwise stall criteria to be introduced as an optimization constraint. The work concludes on the limitations of the method and possible avenues for further research. None
Experimental Study of Large-Amplitude Faraday Waves in Rectangular Cylinders
NASA Technical Reports Server (NTRS)
Iek, Chanthy; Alexander, Iwan J.; Tin, Padetha; Adamovsky, Gregory
2005-01-01
Experiment on single-mode Faraday waves having two, thee, and four wavelengths across a rectangular cylinder of high aspect ratio is the subject of discussion. Previous experiments recently done by Henderson & Miles (1989) and by Lei Jiang et. a1 (1996) focused on Faraday waves with one and two wavelengths across rectangular cylinders. In this experimental study the waves steepness ranges from small at threshold levels to a large amplitude which according to Penny & Price theory (1952) approaches the maximum sustainable amplitude for a standing wave. The waves characteristics for small amplitudes are evaluated against an existing well known linear theory by Benjamin & Ursell (l954) and against a weakly nonlinear theory by J. Miles (1984) which includes the effect of viscous damping. The evaluation includes the wave neutral stability and damping rate. In addition, a wave amplitude differential equation of a linear theory including viscous effect by Cerda & Tirapegui (1998) is solved numerically to yield prediction of temporal profiles of both wave damping and wave formation at the threshold. An interesting finding from this exercise is that the fluid kinematic viscosity needs to increase ten times in order to obtain good agreement between the theoretical prediction and the experimental data for both wave damping and wave starting. For large amplitude waves, the experimental data are evaluated against the theory of Penny & Price which predicts wave characteristics of any amplitude up to the point at which the wave reaches its maximum amplitude attainable for a standing wave. The theory yields two criteria to show the maximum wave steepness, the vertical acceleration at the wave crest of half the earth gravity field acceleration and the including angle at the crest of 90 degrees. Comparison with experimental data shows close agreement for the wave crest acceleration but a large discrepancy for the including angle. Additional information is included in the original extended abstract.
Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle
NASA Technical Reports Server (NTRS)
Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.
2016-01-01
This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.
On Flowfield Periodicity in the NASA Transonic Flutter Cascade. Part 2; Numerical Study
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; McFarland, Eric R.; Wood, Jerry R.; Lepicovsky, Jan
2000-01-01
The transonic flutter cascade facility at NASA Glenn Research Center was redesigned based on a combined program of experimental measurements and numerical analyses. The objectives of the redesign were to improve the periodicity of the cascade in steady operation, and to better quantify the inlet and exit flow conditions needed for CFD predictions. Part I of this paper describes the experimental measurements, which included static pressure measurements on the blade and endwalls made using both static taps and pressure sensitive paints, cobra probe measurements of the endwall boundary layers and blade wakes, and shadowgraphs of the wave structure. Part II of this paper describes three CFD codes used to analyze the facility, including a multibody panel code, a quasi-three-dimensional viscous code, and a fully three-dimensional viscous code. The measurements and analyses both showed that the operation of the cascade was heavily dependent on the configuration of the sidewalls. Four configurations of the sidewalls were studied and the results are described. For the final configuration, the quasi-three-dimensional viscous code was used to predict the location of mid-passage streamlines for a perfectly periodic cascade. By arranging the tunnel sidewalls to approximate these streamlines, sidewall interference was minimized and excellent periodicity was obtained.
Electromagnetic dampers for cryogenic applications
NASA Technical Reports Server (NTRS)
Brown, Gerald V.; Dirusso, Eliseo
1988-01-01
Cryogenic turbomachinery of the type used to pump high-pressure liquid hydrogen at -423 F and liquid oxygen at -297 F to the main engines of the Space Shuttle are subjected to lateral rotor vibrations from unbalance forces and transient loads. Conventional dampers which utilize viscous fluids such as lubricating oil cannot be used in turbopumps because the bearing components are filled with either liquid hydrogen or liquid oxygen, which have viscosity comparable to air and, therefore, are not effective in viscous dampers. Electromagentic dampers are currently being explored as a means of providing damping in cryogenic turbopumps because their damping effectiveness increases as temperature decreases and because they are compatible with the liquid hydrogen or liquid oxygen in the turbopumps.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Mullen, R. L.; Hendricks, R. C.
1984-01-01
The analysis presented herein deals with the evaluation of the pressure, velocity, and temperature profiles in a finite-length plane journal bearing. The geometry of the case under study consists of a spatially tilted shaft. The two-dimensional Reynolds equation accounts for the variation of the clearance gap h with x and z and is used to model the pressure field. The latter is solved for a variety of shaft tilt angles and then used to calculate the two-dimensional flow field. Finally, the flow field is used in the energy equation to solve for the film temperature profile, when the effect of viscous dissipation is taken into account.
NASA Astrophysics Data System (ADS)
Alsharif, Abdullah M.; Althubaiti, Shadiah A.
2018-03-01
The thermal modulation of Newtonian liquid jets at the orifice causes a variation in surface tension, which propagates downstream inducing Marangoni instability. Therefore, the linear temporal and spatial instability should be investigated to predict the same size of producing small spherical pellets. In this paper, we consider a viscous liquid jet emerging from a nozzle subject to thermo-capillary effects falling under gravity. Moreover, we use the asymptotic approach to reduce the governing equation into one-dimensional (1-D). The steady state solutions have been found using a modified Newton's method, and then the linear instability analysis has been investigated of the resulting set of equations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, Z.; Naveed, M., E-mail: rana.m.naveed@gmail.com; Sajid, M.
In this paper, effects of Hall currents and nonlinear radiative heat transfer in a viscous fluid passing through a semi-porous curved channel coiled in a circle of radius R are analyzed. A curvilinear coordinate system is used to develop the mathematical model of the considered problem in the form partial differential equations. Similarity solutions of the governing boundary value problems are obtained numerically using shooting method. The results are also validated with the well-known finite difference technique known as the Keller-Box method. The analysis of the involved pertinent parameters on the velocity and temperature distributions is presented through graphs andmore » tables.« less
NASA Astrophysics Data System (ADS)
Zamanov, A. D.; Ismailov, M. I.; Akbarov, S. D.
2018-03-01
A hydroviscoelastic system consisting of a viscoelastic plate and a half-plane filled with a viscous fluid is considered. The effect of viscosity of the fluid on the frequency response of the system and its dependence on the rheological parameters of plate material are estimated. The problem on forced vibrations of the system in the plane strain state is investigated using the exact equations of viscoelastodynamics for describing the motion of the plate and linearized Navier-Stokes equations for describing the flow of the fluid. The results found in the cases of nonviscous compressible and Newtonian compressible viscous fluids are compared.
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
Relativistic Shock Waves in Viscous Gluon Matter
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2009-07-01
We solve the relativistic Riemann problem in viscous gluon matter employing a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s from zero to infinity. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. Comparisons with viscous hydrodynamic calculations confirm our findings.
Viscous Fingering in Deformable Systems
NASA Astrophysics Data System (ADS)
Guan, Jian Hui; MacMinn, Chris
2017-11-01
Viscous fingering is a classical hydrodynamic instability that occurs when an invading fluid is injected into a porous medium or a Hele-Shaw cell that contains a more viscous defending fluid. Recent work has shown that viscous fingering in a Hele-Shaw cell is supressed when the flow cell is deformable. However, the mechanism of suppression relies on a net volumetric expansion of the flow area. Here, we study flow in a novel Hele-Shaw cell consisting of a rigid bottom plate and a flexible top plate that deforms in a way that is volume-conserving. In other words, fluid injection into the flow cell leads to a local expansion of the flow area (outward displacement of the flexible surface) that must be coupled to non-local contraction (inward displacement of the flexible surface). We explore the impact of this volumetric confinement on steady viscous flow and on viscous fingering. We would like to thank EPSRC for the funding for this work.
Analytical and experimental study of flow phenomena in noncavitating rocket pump inducers
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.
1981-01-01
The flow processes in rocket pump inducers are summarized. The experimental investigations were carried out with air as the test medium. The major characteristics features of the rocket pump inducers are low flow coefficient (0.05 to 0.2) large stagger angle (70 deg to 85 deg) and high solidity blades of little or no camber. The investigations are concerned with the effect of viscosity not the effects of cavitation. Flow visualization, conventional and hot wire probe measurement inside and at the exit of the blade passage, were the analytical methods used. The experiment was carried out using four three and two bladed inducers with cambered blades. Both the passage and the exit flow were measured. The basic research and boundary layer investigation was carried out using a helical flat plate (of some dimensions as the inducer blades tested), and flat plate helical inducer (four bladed). Detailed mean and turbulence flow field inside the passage as well as the exit of the rotor were derived from these measurement. The boundary layer, endwall, and other passage data reveal extremely complex nature of the flow, with major effects of viscosity present across the entire passage. Several analyses were carried out to predict the flow field in inducers. These included an approximate analysis, the shear pumping analysis, and a numerical solution of exact viscous equations with approximate modeling for the viscous terms.
Airfoil gust response and the sound produced by airifoil-vortex interaction
NASA Technical Reports Server (NTRS)
Amiet, R. K.
1986-01-01
This paper contributes to the understanding of the noise generation process of an airfoil encountering an unsteady upwash. By using a fast Fourier transform together with accurate airfoil response functions, the lift-time waveform for an airfoil encountering a delta function gust (the indicial function) is calculated for a flat plate airfoil in a compressible flow. This shows the interesting property that the lift is constant until the generated acoustic wave reaches the trailing edge. Expressions are given for the magnitude of this constant and for the pressure distribution on the airfoil during this time interval. The case of an airfoil cutting through a line vortex is also analyzed. The pressure-time waveform in the far field is closely related to the left-time waveform for the above problem of an airfoil entering a delta function gust. The effects of varying the relevant parameters in the problem are studied, including the observed position, the core diameter of the vortex, the vortex orientation and the airfoil span. The far field sound varies significantly with observer position, illustrating the importance of non-compactness effects. Increasing the viscous core diameter tends to smooth the pressure-time waveform. For small viscous core radius and infinite span, changing the vortex orientation changes only the amplitude of the pressure-time waveform, and not the shape.
Carabin, Ioana G; Lyon, Michael R; Wood, Simon; Pelletier, Xavier; Donazzolo, Yves; Burdock, George A
2009-02-05
The relationship of dietary fiber to overall health is of great importance, as beneficial effects have been demonstrated with the use of fiber from diverse sources, some traditional, other novel. PolyGlycopleX (PGX) is a unique proprietary product composed of three water-soluble polysaccharides, that when processed using novel technology give rise to a final product - a soluble, highly viscous functional fiber. Because of its potential use in food and dietary supplements, a randomized, double-blind, placebo controlled clinical study was conducted to evaluate the tolerance to PGX ingestion for 21 days, to a maximum dose level of 10 g per day, in healthy male and female volunteers. The main objective of the study was to evaluate the overall gastrointestinal (GI) tolerance, while secondary objectives were to evaluate possible changes in hematological, biochemical, urinary and fecal parameters. Results show that PGX is well tolerated as part of a regular diet with only mild to moderate adverse effects, similar to those seen with a moderate intake of dietary fiber in general, and fruits and vegetables. Because PGX is a highly viscous, functional fiber, it also demonstrates several physiological responses including, but not limited to maintaining healthy total and LDL cholesterol and uric acid levels.
Observation of Dispersive Shock Waves, Solitons, and Their Interactions in Viscous Fluid Conduits.
Maiden, Michelle D; Lowman, Nicholas K; Anderson, Dalton V; Schubert, Marika E; Hoefer, Mark A
2016-04-29
Dispersive shock waves and solitons are fundamental nonlinear excitations in dispersive media, but dispersive shock wave studies to date have been severely constrained. Here, we report on a novel dispersive hydrodynamic test bed: the effectively frictionless dynamics of interfacial waves between two high viscosity contrast, miscible, low Reynolds number Stokes fluids. This scenario is realized by injecting from below a lighter, viscous fluid into a column filled with high viscosity fluid. The injected fluid forms a deformable pipe whose diameter is proportional to the injection rate, enabling precise control over the generation of symmetric interfacial waves. Buoyancy drives nonlinear interfacial self-steepening, while normal stresses give rise to the dispersion of interfacial waves. Extremely slow mass diffusion and mass conservation imply that the interfacial waves are effectively dissipationless. This enables high fidelity observations of large amplitude dispersive shock waves in this spatially extended system, found to agree quantitatively with a nonlinear wave averaging theory. Furthermore, several highly coherent phenomena are investigated including dispersive shock wave backflow, the refraction or absorption of solitons by dispersive shock waves, and the multiphase merging of two dispersive shock waves. The complex, coherent, nonlinear mixing of dispersive shock waves and solitons observed here are universal features of dissipationless, dispersive hydrodynamic flows.
Electric field stabilization of viscous liquid layers coating the underside of a surface
NASA Astrophysics Data System (ADS)
Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.
2017-05-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
Ingestion of Laundry Detergent Packets in Children.
Shah, Lindsey Wilson
2016-08-01
Ingestion of laundry detergent packets is an important threat to young children. Because of their developmental stage, toddlers are prone to place these small, colorful packets in their mouths. The packets can easily burst, sending a large volume of viscous, alkaline liquid throughout the oropharynx. Ingestion causes major toxic effects, including depression of the central nervous system, metabolic acidosis, respiratory distress, and dysphagia. Critical care nurses should anticipate these clinical effects and facilitate prompt intervention. Increased understanding of the risks and clinical effects of ingestion of laundry detergent packets will better prepare critical care nurses to provide care for these children. (Critical Care Nurse 2016; 36[4]:70-75). ©2016 American Association of Critical-Care Nurses.
Simulation of swimming strings immersed in a viscous fluid flow
NASA Astrophysics Data System (ADS)
Huang, Wei-Xi; Sung, Hyung Jin
2006-11-01
In nature, many phenomena involve interactions between flexible bodies and their surrounding viscous fluid, such as a swimming fish or a flapping flag. The intrinsic dynamics is complicate and not well understood. A flexible string can be regarded as a one-dimensional flag model. Many similarities can be found between the flapping string and swimming fish, although different wake speed results in a drag force for the flapping string and a propulsion force for the swimming fish. In the present study, we propose a mathematical formulation for swimming strings immersed in a viscous fluid flow. Fluid motion is governed by the Navier-Stokes equations and a momentum forcing is added in order to bring the fluid to move at the same velocity with the immersed surface. A flexible inextensible string model is described by another set of equations with an additional momentum forcing which is a result of the fluid viscosity and the pressure difference across the string. The momentum forcing is calculated by a feedback loop. Simulations of several numerical examples are carried out, including a hanging string which starts moving under gravity without ambient fluid, a swinging string immersed in a quiescent viscous fluid, a string swimming within a uniform surrounding flow, and flow over two side-by-side strings. The numerical results agree well with the theoretical analysis and previous experimental observations. Further simulation of a swimming fish is under consideration.
Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers
NASA Technical Reports Server (NTRS)
Hough, G. R.
1980-01-01
The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.
Parallelization of Unsteady Adaptive Mesh Refinement for Unstructured Navier-Stokes Solvers
NASA Technical Reports Server (NTRS)
Schwing, Alan M.; Nompelis, Ioannis; Candler, Graham V.
2014-01-01
This paper explores the implementation of the MPI parallelization in a Navier-Stokes solver using adaptive mesh re nement. Viscous and inviscid test problems are considered for the purpose of benchmarking, as are implicit and explicit time advancement methods. The main test problem for comparison includes e ects from boundary layers and other viscous features and requires a large number of grid points for accurate computation. Ex- perimental validation against double cone experiments in hypersonic ow are shown. The adaptive mesh re nement shows promise for a staple test problem in the hypersonic com- munity. Extension to more advanced techniques for more complicated ows is described.
Field-aligned currents and ion convection at high altitudes
NASA Technical Reports Server (NTRS)
Burch, J. L.; Reiff, P. H.
1985-01-01
Hot plasma observations from Dynamics Explorer 1 have been used to investigate solar-wind ion injection, Birkeland currents, and plasma convection at altitudes above 2 earth-radii in the morning sector. The results of the study, along with the antiparallel merging hypothesis, have been used to construct a By-dependent global convection model. A significant element of the model is the coexistence of three types of convection cells (merging cells, viscous cells, and lobe cells). As the IMF direction varies, the model accounts for the changing roles of viscous and merging processes and makes testable predictions about several magnetospheric phenomena, including the newly-observed theta aurora in the polar cap.
Global Flowfield About the V-22 Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
This final report includes five publications that resulted from the studies of the global flowfield about the V-22 Tiltrotor Aircraft. The first of the five is 'The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow', as presented in 'Computational Fluid Dynamics Review 1995.' The remaining papers, all presented at AIAA conferences, are 'Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover', 'An Efficient Means of Adaptive Refinement Within Systems of Overset Grids', 'On the Spatial and Temporal Accuracy of Overset Grid Methods for MOving Body Problems', and 'Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations.'
Analysis of viscous transonic flow over airfoil sections
NASA Technical Reports Server (NTRS)
Huff, Dennis L.; Wu, Jiunn-Chi; Sankar, L. N.
1987-01-01
A full Navier-Stokes solver has been used to model transonic flow over three airfoil sections. The method uses a two-dimensional, implicit, conservative finite difference scheme for solving the compressible Navier-Stokes equations. Results are presented as prescribed for the Viscous Transonic Airfoil Workshop to be held at the AIAA 25th Aerospace Sciences Meeting. The NACA 0012, RAE 2822 and Jones airfoils have been investigated for both attached and separated transonic flows. Predictions for pressure distributions, loads, skin friction coefficients, boundary layer displacement thickness and velocity profiles are included and compared with experimental data when possible. Overall, the results are in good agreement with experimental data.
Fibrous filter efficiency and pressure drop in the viscous-inertial transition flow regime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Andres L.; Brockmann, John E.; Dellinger, Jennifer Gwynne
2011-10-01
Fibrous filter pressure drop and aerosol collection efficiency were measured at low air pressures (0.2 to 0.8 atm) and high face velocities (5 to 20 meters per second) to give fiber Reynolds numbers in the viscous-inertial transition flow regime (1 to 16). In this regime, contemporary filtration theory based on Kuwabara's viscous flow through an ensemble of fibers under-predicts single fiber impaction by several orders of magnitude. Streamline curvature increases substantially as inertial forces become dominant. Dimensionless pressure drop measurements followed the viscous-inertial theory of Robinson and Franklin rather than Darcy's linear pressure-velocity relationship (1972). Sodium chloride and iron nano-agglomeratemore » test aerosols were used to evaluate the effects of particle density and shape factor. Total filter efficiency collapsed when plotted against the particle Stokes and fiber Reynolds numbers. Efficiencies were then fitted with an impactor type equation where the cutpoint Stokes number and a steepness parameter described data well in the sharply increasing portion of the curve (20% to 80% efficiency). The cutpoint Stokes number was a linearly decreasing function of fiber Reynolds number. Single fiber efficiencies were calculated from total filter efficiencies and compared to contemporary viscous flow impaction theory (Stechkina et al. 1969), and numerical simulations from the literature. Existing theories under-predicted measured single fiber efficiencies although the assumption of uniform flow conditions for each successive layer of fibers is questionable; the common exponential relationship between single fiber efficiency and total filter efficiency may not be appropriate in this regime.« less
Solah, Vicky A.; Meng, Xingqiong; Wood, Simon; Gahler, Roland J.; Kerr, Deborah A.; James, Anthony P.; Pal, Sebely; Fenton, Haelee K.; Johnson, Stuart K.
2015-01-01
Background The assessment of satiety effects on foods is commonly performed by untrained volunteers marking their perceived hunger or fullness on line scales, marked with pre-set descriptors. The lack of reproducibility of satiety measurement using this approach however results in the tool being unable to distinguish between foods that have small, but possibly important, differences in their satiety effects. An alternate approach is used in sensory evaluation; panellists can be trained in the correct use of the assessment line-scale and brought to consensus on the meanings of descriptors used for food quality attributes to improve the panel reliability. The effect of training on the reliability of a satiety panel has not previously been reported. Method In a randomised controlled parallel intervention, the effect of training in the correct use of a satiety labelled magnitude scale (LMS) was assessed versus no-training. The test-retest precision and reliability of two hour postprandial satiety evaluation after consumption of a standard breakfast was compared. The trained panel then compared the satiety effect of two breakfast meals containing either a viscous or a non-viscous dietary fibre in a crossover trial. Results A subgroup of the 23 panellists (n = 5) improved their test re-test precision after training. Panel satiety area under the curve, “after the training” intervention was significantly different to “before training” (p < 0.001). Reliability of the panel determined by intraclass correlation (ICC) of test and retest showed improved strength of the correlation from 0.70 pre-intervention to 0.95 post intervention. The trained “satiety expert panel” determined that a standard breakfast with 5g of viscous fibre gave significantly higher satiety than with 5g non-viscous fibre (area under curve (AUC) of 478.2, 334.4 respectively) (p ≤ 0.002). Conclusion Training reduced between panellist variability. The improved strength of test-retest ICC as a result of the training intervention suggests that training satiety panellists can improve the discriminating power of satiety evaluation. PMID:25978321
Solah, Vicky A; Meng, Xingqiong; Wood, Simon; Gahler, Roland J; Kerr, Deborah A; James, Anthony P; Pal, Sebely; Fenton, Haelee K; Johnson, Stuart K
2015-01-01
The assessment of satiety effects on foods is commonly performed by untrained volunteers marking their perceived hunger or fullness on line scales, marked with pre-set descriptors. The lack of reproducibility of satiety measurement using this approach however results in the tool being unable to distinguish between foods that have small, but possibly important, differences in their satiety effects. An alternate approach is used in sensory evaluation; panellists can be trained in the correct use of the assessment line-scale and brought to consensus on the meanings of descriptors used for food quality attributes to improve the panel reliability. The effect of training on the reliability of a satiety panel has not previously been reported. In a randomised controlled parallel intervention, the effect of training in the correct use of a satiety labelled magnitude scale (LMS) was assessed versus no-training. The test-retest precision and reliability of two hour postprandial satiety evaluation after consumption of a standard breakfast was compared. The trained panel then compared the satiety effect of two breakfast meals containing either a viscous or a non-viscous dietary fibre in a crossover trial. A subgroup of the 23 panellists (n = 5) improved their test re-test precision after training. Panel satiety area under the curve, "after the training" intervention was significantly different to "before training" (p < 0.001). Reliability of the panel determined by intraclass correlation (ICC) of test and retest showed improved strength of the correlation from 0.70 pre-intervention to 0.95 post intervention. The trained "satiety expert panel" determined that a standard breakfast with 5g of viscous fibre gave significantly higher satiety than with 5g non-viscous fibre (area under curve (AUC) of 478.2, 334.4 respectively) (p ≤ 0.002). Training reduced between panellist variability. The improved strength of test-retest ICC as a result of the training intervention suggests that training satiety panellists can improve the discriminating power of satiety evaluation.
Analytical modeling of circuit aerodynamics in the new NASA Lewis wind tunnel
NASA Technical Reports Server (NTRS)
Towne, C. E.; Povinelli, L. A.; Kunik, W. G.; Muramoto, K. K.; Hughes, C. E.; Levy, R.
1985-01-01
Rehabilitation and extention of the capability of the altitude wind tunnel (AWT) was analyzed. The analytical modeling program involves the use of advanced axisymmetric and three dimensional viscous analyses to compute the flow through the various AWT components. Results for the analytical modeling of the high speed leg aerodynamics are presented; these include: an evaluation of the flow quality at the entrance to the test section, an investigation of the effects of test section bleed for different model blockages, and an examination of three dimensional effects in the diffuser due to reentry flow and due to the change in cross sectional shape of the exhaust scoop.
NASA Astrophysics Data System (ADS)
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
Computational fluid dynamics study of viscous fingering in supercritical fluid chromatography.
Subraveti, Sai Gokul; Nikrityuk, Petr; Rajendran, Arvind
2018-01-26
Axi-symmetric numerical simulations are carried out to study the dynamics of a plug introduced through a mixed-stream injection in supercritical fluid chromatographic columns. The computational fluid dynamics model developed in this work takes into account both the hydrodynamics and adsorption equilibria to describe the phenomena of viscous fingering and plug effect that contribute to peak distortions in mixed-stream injections. The model was implemented into commercial computational fluid dynamics software using user-defined functions. The simulations describe the propagation of both the solute and modifier highlighting the interplay between the hydrodynamics and plug effect. The simulated peaks showed good agreement with experimental data published in the literature involving different injection volumes (5 μL, 50 μL, 1 mL and 2 mL) of flurbiprofen on Chiralpak AD-H column using a mobile phase of CO 2 and methanol. The study demonstrates that while viscous fingering is the main source of peak distortions for large-volume injections (1 mL and 2 mL) it has negligible impact on small-volume injections (5 μL and 50 μL). Band broadening in small-volume injections arise mainly due to the plug effect. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Semin, Adrien; Schmidt, Kersten
2018-02-01
The direct numerical simulation of the acoustic wave propagation in multiperforated absorbers with hundreds or thousands of tiny openings would result in a huge number of basis functions to resolve the microstructure. One is, however, primarily interested in effective and so homogenized transmission and absorption properties and how they are influenced by microstructure and its endpoints. For this, we introduce the surface homogenization that asymptotically decomposes the solution in a macroscopic part, a boundary layer corrector close to the interface and a near-field part close to its ends. The effective transmission and absorption properties are expressed by transmission conditions for the macroscopic solution on an infinitely thin interface and corner conditions at its endpoints to ensure the correct singular behaviour, which are intrinsic to the microstructure. We study and give details on the computation of the effective parameters for an inviscid and a viscous model and show their dependence on geometrical properties of the microstructure for the example of Helmholtz equation. Numerical experiments indicate that with the obtained macroscopic solution representation one can achieve an high accuracy for low and high porosities as well as for viscous boundary conditions while using only a small number of basis functions.
Radiative and convective heating during Venus entry.
NASA Technical Reports Server (NTRS)
Page, W. A.; Woodward, H. T.
1972-01-01
Determination of the stagnation region heating of probes entering the Venusian atmosphere. Both convective and radiative heat-transfer rates are predicted, and account is taken of the important effects of radiative transport in the vehicle shock layer. A nongray radiative transport model is utilized which parallels a four-band treatment previously developed for air (Page et al., 1969), but includes two additional bands to account for the important CO(4+) molecular band system. Some comparisons are made between results for Venus entry and results for earth entry obtained using a viscous earth entry program.
Bunton, Patrick H; Tullier, Michael P; Meiburg, Eckart; Pojman, John A
2017-10-01
Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.
NASA Astrophysics Data System (ADS)
Bunton, Patrick H.; Tullier, Michael P.; Meiburg, Eckart; Pojman, John A.
2017-10-01
Viscous fingering can occur in fluid motion whenever a high mobility fluid displaces a low mobility fluid in a Darcy type flow. When the mobility difference is primarily attributable to viscosity (e.g., flow between the two horizontal plates of a Hele-Shaw cell), viscous fingering (VF) occurs, which is sometimes termed the Saffman-Taylor instability. Alternatively, in the presence of differences in density in a gravity field, buoyancy-driven convection can occur. These instabilities have been studied for decades, in part because of their many applications in pollutant dispersal, ocean currents, enhanced petroleum recovery, and so on. More recent interest has emerged regarding the effects of chemical reactions on fingering instabilities. As chemical reactions change the key flow parameters (densities, viscosities, and concentrations), they may have either a destabilizing or stabilizing effect on the flow. Hence, new flow patterns can emerge; moreover, one can then hope to gain some control over flow instabilities through reaction rates, flow rates, and reaction products. We report effects of chemical reactions on VF in a Hele-Shaw cell for a reactive step-growth cross-linking polymerization system. The cross-linked reaction product results in a non-monotonic viscosity profile at the interface, which affects flow stability. Furthermore, three-dimensional internal flows influence the long-term pattern that results.
An integrated Navier-Stokes - full potential - free wake method for rotor flows
NASA Astrophysics Data System (ADS)
Berkman, Mert Enis
1998-12-01
The strong wake shed from rotary wings interacts with almost all components of the aircraft, and alters the flow field thus causing performance and noise problems. Understanding and modeling the behavior of this wake, and its effect on the aerodynamics and acoustics of helicopters have remained as challenges. This vortex wake and its effect should be accurately accounted for in any technique that aims to predict rotor flow field and performance. In this study, an advanced and efficient computational technique for predicting three-dimensional unsteady viscous flows over isolated helicopter rotors in hover and in forward flight is developed. In this hybrid technique, the advantages of various existing methods have been combined to accurately and efficiently study rotor flows with a single numerical method. The flow field is viewed in three parts: (i) an inner zone surrounding each blade where the wake and viscous effects are numerically captured, (ii) an outer zone away from the blades where wake is modeled, and (iii) a Lagrangean wake which induces wake effects in the outer zone. This technique was coded in a flow solver and compared with experimental data for hovering and advancing rotors including a two-bladed rotor, the UH-60A rotor and a tapered tip rotor. Detailed surface pressure, integrated thrust and torque, sectional thrust, and tip vortex position predictions compared favorably against experimental data. Results indicated that the hybrid solver provided accurate flow details and performance information typically in one-half to one-eighth cost of complete Navier-Stokes methods.
An Integrated Method for Airfoil Optimization
NASA Astrophysics Data System (ADS)
Okrent, Joshua B.
Design exploration and optimization is a large part of the initial engineering and design process. To evaluate the aerodynamic performance of a design, viscous Navier-Stokes solvers can be used. However this method can prove to be overwhelmingly time consuming when performing an initial design sweep. Therefore, another evaluation method is needed to provide accurate results at a faster pace. To accomplish this goal, a coupled viscous-inviscid method is used. This thesis proposes an integrated method for analyzing, evaluating, and optimizing an airfoil using a coupled viscous-inviscid solver along with a genetic algorithm to find the optimal candidate. The method proposed is different from prior optimization efforts in that it greatly broadens the design space, while allowing the optimization to search for the best candidate that will meet multiple objectives over a characteristic mission profile rather than over a single condition and single optimization parameter. The increased design space is due to the use of multiple parametric airfoil families, namely the NACA 4 series, CST family, and the PARSEC family. Almost all possible airfoil shapes can be created with these three families allowing for all possible configurations to be included. This inclusion of multiple airfoil families addresses a possible criticism of prior optimization attempts since by only focusing on one airfoil family, they were inherently limiting the number of possible airfoil configurations. By using multiple parametric airfoils, it can be assumed that all reasonable airfoil configurations are included in the analysis and optimization and that a global and not local maximum is found. Additionally, the method used is amenable to customization to suit any specific needs as well as including the effects of other physical phenomena or design criteria and/or constraints. This thesis found that an airfoil configuration that met multiple objectives could be found for a given set of nominal operational conditions from a broad design space with the use of minimal computational resources on both an absolute and relative scale to traditional analysis techniques. Aerodynamicists, program managers, aircraft configuration specialist, and anyone else in charge of aircraft configuration, design studies, and program level decisions might find the evaluation and optimization method proposed of interest.
NASA Astrophysics Data System (ADS)
Bartholomay, Sirko; Ramos-García, Néstor; Mikkelsen, Robert Flemming; Technical University of Denmark (DTU)-WInd Energy Team
2014-11-01
The viscous-inviscid flow solver Q3UIC for 2D aerodynamics has recently been developed at the Technical University of Denmark. The Q3UIC solver takes viscous and unsteady effects into account by coupling an unsteady inviscid panel method with the integral boundary layer equations by means of a strong coupling between the viscous and inviscid parts, and in this respect differs from other classic panel codes e.g. Xfoil. In the current work a Runge-Kutta-Nyström scheme was employed to couple inertial, elastic and aerodynamical forces and moments calculated by Q3UIC for a two-dimensional blade section in the time-domain. Numerical simulations are validated by a three step experimental verification process carried out in the low-turbulence wind tunnel at DTU. First, a comparison against steady experiments for a NACA 64418 profile and a flexible trailing edge flap is presented for different fixed flap angles, and second, the measured aerodynamic characteristics considering prescribed motion of the airfoil with a moving flap are compared to the Q3UIC predictions. Finally, an aeroelastic experiment for one degree of freedom-airfoil pitching- is used to evaluate the accuracy of aeroelastic coupling.
A critical assessment of viscous models of trench topography and corner flow
NASA Technical Reports Server (NTRS)
Zhang, J.; Hager, B. H.; Raefsky, A.
1984-01-01
Stresses for Newtonian viscous flow in a simple geometry (e.g., corner flow, bending flow) are obtained in order to study the effect of imposed velocity boundary conditions. Stress for a delta function velocity boundary condition decays as 1/R(2); for a step function velocity, stress goes as 1/R; for a discontinuity in curvature, the stress singularity is logarithmic. For corner flow, which has a discontinuity of velocity at a certain point, the corresponding stress has a 1/R singularity. However, for a more realistic circular-slab model, the stress singularity becomes logarithmic. Thus the stress distribution is very sensitive to the boundary conditions, and in evaluating the applicability of viscous models of trench topography it is essential to use realistic geometries. Topography and seismicity data from northern Hoshu, Japan, were used to construct a finite element model, with flow assumed tangent to the top of the grid, for both Newtonian and non-Newtonian flow (power law 3 rheology). Normal stresses at the top of the grid are compared to the observed trench topography and gravity anomalies. There is poor agreement. Purely viscous models of subducting slables with specified velocity boundary conditions do not predict normal stress patterns compatible with observed topography and gravity. Elasticity and plasticity appear to be important for the subduction process.
Numerical study of the effects of icing on viscous flow over wings
NASA Technical Reports Server (NTRS)
Sankar, L. N.
1994-01-01
An improved hybrid method for computing unsteady compressible viscous flows is presented. This method divides the computational domain into two zones. In the outer zone, the unsteady full-potential equation (FPE) is solved. In the inner zone, the Navier-Stokes equations are solved using a diagonal form of an alternating-direction implicit (ADI) approximate factorization procedure. The two zones are tightly coupled so that steady and unsteady flows may be efficiently solved. Characteristic-based viscous/inviscid interface boundary conditions are employed to avoid spurious reflections at that interface. The resulting CPU times are less than 60 percent of that required for a full-blown Navier-Stokes analysis for steady flow applications and about 60 percent of the Navier-Stokes CPU times for unsteady flows in non-vector processing machines. Applications of the method are presented for a rectangular NACA 0012 wing in low subsonic steady flow at moderate and high angles of attack, and for an F-5 wing in steady and unsteady subsonic and transonic flows. Steady surface pressures are in very good agreement with experimental data and are essentially identical to Navier-Stokes predictions. Density contours show that shocks cross the viscous/inviscid interface smoothly, so that the accuracy of full Navier-Stokes equations can be retained with a significant savings in computational time.
Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa.
Chan, R W; Titze, I R
1999-07-01
To measure the viscoelastic shear properties of hyaluronic acid, with and without fibronectin, and to compare them with those of the human vocal fold mucosa and other phonosurgical biomaterials. Viscoelastic shear properties of various implantable biomaterials (Teflon, gelatin, collagen, fat, hyaluronic acid, and hyaluronic acid with fibronectin) were measured with a parallel-plate rotational rheometer. Elastic and viscous shear properties were quantified as a function of oscillation frequency (0.01-15 Hz) at 37 degrees C. The shear properties of hyaluronic acid were relatively close to those of human vocal fold mucosal tissues reported previously. Hyaluronic acid at specific concentrations (0.5%-1%), with or without fibronectin, was found to exhibit viscous shear properties (viscous shear modulus and dynamic viscosity) similar to those of the average male and female vocal fold mucosa. According to a theory that establishes the effects of tissue shear properties on vocal fold oscillation, phonation threshold pressure (a measure of the ease of phonation) is directly related to the viscous shear modulus of the vibrating vocal fold mucosa. Therefore, our findings suggest that hyaluronic acid, either by itself or mixed with fibronectin, may be a potentially optimal bioimplant for the surgical management of vocal fold mucosal defects and lamina propria deficiencies (e.g., scarring) from a biomechanical standpoint.
Aeroacoustic and aerodynamic applications of the theory of nonequilibrium thermodynamics
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Smith, Charles A.; Karamcheti, Krishnamurty
1991-01-01
Recent developments in the field of nonequilibrium thermodynamics associated with viscous flows are examined and related to developments to the understanding of specific phenomena in aerodynamics and aeroacoustics. A key element of the nonequilibrium theory is the principle of minimum entropy production rate for steady dissipative processes near equilibrium, and variational calculus is used to apply this principle to several examples of viscous flow. A review of nonequilibrium thermodynamics and its role in fluid motion are presented. Several formulations are presented of the local entropy production rate and the local energy dissipation rate, two quantities that are of central importance to the theory. These expressions and the principle of minimum entropy production rate for steady viscous flows are used to identify parallel-wall channel flow and irrotational flow as having minimally dissipative velocity distributions. Features of irrotational, steady, viscous flow near an airfoil, such as the effect of trailing-edge radius on circulation, are also found to be compatible with the minimum principle. Finally, the minimum principle is used to interpret the stability of infinitesimal and finite amplitude disturbances in an initially laminar, parallel shear flow, with results that are consistent with experiment and linearized hydrodynamic stability theory. These results suggest that a thermodynamic approach may be useful in unifying the understanding of many diverse phenomena in aerodynamics and aeroacoustics.
Linear flow dynamics near a T/NT interface
NASA Astrophysics Data System (ADS)
Teixeira, Miguel; Silva, Carlos
2011-11-01
The characteristics of a suddenly-inserted T/NT interface separating a homogeneous and isotropic shear-free turbulence region from a non-turbulent flow region are investigated using rapid distortion theory (RDT), taking full account of viscous effects. Profiles of the velocity variances, TKE, viscous dissipation rate, turbulence length scales, and pressure statistics are derived, showing very good agreement with DNS. The normalized inviscid flow statistics at the T/NT interface do not depend on the form of the assumed TKE spectrum. In the non-turbulent region, where the flow is irrotational (except within a thin viscous boundary layer), the dissipation rate decays as z-6, where z is distance from the T/NT interface. The mean pressure exhibits a decrease towards the turbulence due to the associated velocity fluctuations, consistent with the generation of a mean entrainment velocity. The vorticity variance and dissipation rate display large maxima at the T/NT interface due to the existing inviscid discontinuities of the tangential velocity, and these maxima are quantitatively related to the thickness of the viscous boundary layer (VBL). At equilibrium, RDT suggests that the thickness of the T/NT interface scales on the Kolmogorov microscale. We acknowledge the financial support of FCT under Project PTDC/EME-MFE/099636/2008.
A zonal method for modeling powered-lift aircraft flow fields
NASA Technical Reports Server (NTRS)
Roberts, D. W.
1989-01-01
A zonal method for modeling powered-lift aircraft flow fields is based on the coupling of a three-dimensional Navier-Stokes code to a potential flow code. By minimizing the extent of the viscous Navier-Stokes zones the zonal method can be a cost effective flow analysis tool. The successful coupling of the zonal solutions provides the viscous/inviscid interations that are necessary to achieve convergent and unique overall solutions. The feasibility of coupling the two vastly different codes is demonstrated. The interzone boundaries were overlapped to facilitate the passing of boundary condition information between the codes. Routines were developed to extract the normal velocity boundary conditions for the potential flow zone from the viscous zone solution. Similarly, the velocity vector direction along with the total conditions were obtained from the potential flow solution to provide boundary conditions for the Navier-Stokes solution. Studies were conducted to determine the influence of the overlap of the interzone boundaries and the convergence of the zonal solutions on the convergence of the overall solution. The zonal method was applied to a jet impingement problem to model the suckdown effect that results from the entrainment of the inviscid zone flow by the viscous zone jet. The resultant potential flow solution created a lower pressure on the base of the vehicle which produces the suckdown load. The feasibility of the zonal method was demonstrated. By enhancing the Navier-Stokes code for powered-lift flow fields and optimizing the convergence of the coupled analysis a practical flow analysis tool will result.
Dynamic Analyses Including Joints Of Truss Structures
NASA Technical Reports Server (NTRS)
Belvin, W. Keith
1991-01-01
Method for mathematically modeling joints to assess influences of joints on dynamic response of truss structures developed in study. Only structures with low-frequency oscillations considered; only Coulomb friction and viscous damping included in analysis. Focus of effort to obtain finite-element mathematical models of joints exhibiting load-vs.-deflection behavior similar to measured load-vs.-deflection behavior of real joints. Experiments performed to determine stiffness and damping nonlinearities typical of joint hardware. Algorithm for computing coefficients of analytical joint models based on test data developed to enable study of linear and nonlinear effects of joints on global structural response. Besides intended application to large space structures, applications in nonaerospace community include ground-based antennas and earthquake-resistant steel-framed buildings.
Viscous-pendulum damper suppresses structural vibrations
NASA Technical Reports Server (NTRS)
Reed, W. H., III
1964-01-01
The viscous pendulum damper consists of a cylinder containing round trays on which round lead slugs rest. When assembled, the container is filled with a viscous liquid and attached, with axis vertical, to the structure. The device permits varying the damping of structural vibrations.
Development of relativistic shock waves in viscous gluon matter
NASA Astrophysics Data System (ADS)
Bouras, I.; Molnár, E.; Niemi, H.; Xu, Z.; El, A.; Fochler, O.; Greiner, C.; Rischke, D. H.
2009-11-01
To investigate the formation and the propagation of relativistic shock waves in viscous gluon matter we solve the relativistic Riemann problem using a microscopic parton cascade. We demonstrate the transition from ideal to viscous shock waves by varying the shear viscosity to entropy density ratio η/s. We show that an η/s ratio larger than 0.2 prevents the development of well-defined shock waves on time scales typical for ultrarelativistic heavy-ion collisions. These findings are confirmed by viscous hydrodynamic calculations.
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-09
Here, we construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We also split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. Furthemore, we check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken’s flow and the Israel–Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin–Helmholtz instability inmore » high-energy heavy-ion collisions.« less
Spermatozoa scattering by a microchannel feature: an elastohydrodynamic model
Montenegro-Johnson, T. D.; Gadêlha, H.; Smith, D. J.
2015-01-01
Sperm traverse their microenvironment through viscous fluid by propagating flagellar waves; the waveform emerges as a consequence of elastic structure, internal active moments and low Reynolds number fluid dynamics. Engineered microchannels have recently been proposed as a method of sorting and manipulating motile cells; the interaction of cells with these artificial environments therefore warrants investigation. A numerical method is presented for large-amplitude elastohydrodynamic interaction of active swimmers with domain features. This method is employed to examine hydrodynamic scattering by a model microchannel backstep feature. Scattering is shown to depend on backstep height and the relative strength of viscous and elastic forces in the flagellum. In a ‘high viscosity’ parameter regime corresponding to human sperm in cervical mucus analogue, this hydrodynamic contribution to scattering is comparable in magnitude to recent data on contact effects, being of the order of 5°–10°. Scattering can be positive or negative depending on the relative strength of viscous and elastic effects, emphasizing the importance of viscosity on the interaction of sperm with their microenvironment. The modulation of scattering angle by viscosity is associated with variations in flagellar asymmetry induced by the elastohydrodynamic interaction with the boundary feature. PMID:26064617
Zhou, X; Hu, D; Liu, L; Wu, Z; Qin, J; Cai, S
2001-12-01
We have studied the effect of hypertonic saline solution on the viscoelasticities of erythrocyte membrane in hemorrhage-shocked rats using micropippette aspiration technique. Wistar rats were randomly divided into three groups of 0.9% NaCl(NS), 7.5% NaCl (HS) and 5% NaCl-3.5% NaAc (HSA), respectively. The animals were bled to reach a mean arterial pressure of 5.3 kPa in 10 minutes and maintained in shock for 90 minutes. 4 ml/kg NS, HS and HSA was given intravenously and respectively in 5 minutes following hemorrhagic shock. The blood was collected to determine the viscoelasticities of erythrocyte membrane at baseline, shock and after treatment. The results showed that the elastic moduli and viscous coefficients of erythrocyte membrane were increased obviously following hemorrhagic shock. HS raised elastic moduli and reduced viscous coefficients significantly compared with NS after treatment. The elastic moduli and viscous coefficients of erythrocyte membrane were decreased remarkably in HSA group than in NS and HS group. These data suggested that HSA could improve the viscoelasticities of erythrocyte membrane significantly in rats subjected to hemorrhagic shock.
Effect of a viscous fiber-containing nutrition bar on satiety of patients with type 2 diabetes.
Chow, Jomay; Choe, Yong S; Noss, Michael J; Robinson, Kay J; Dugle, Janis E; Acosta, Sonja H; Garleb, Keith A
2007-06-01
To assess the satiety-promoting effect of a novel viscous fiber-containing nutrition bar, overweight and obese adult subjects with type 2 diabetes (n=99) were randomized into a double blind, crossover study. They were fed a 300kcal lunch consisting of viscous fiber-containing nutrition bars (VF) or commercial nutrition control bars designed for people with diabetes (CH). VF resulted in a 27.1% increase in fullness (p<0.05), a 15.8% decrease in prospective consumption (p<0.001), and a 14.2% decrease in hunger (p<0.001) in the 120-240min post-lunch areas under the curve (AUC) compared to CH, but no differences were observed for nausea or thirst (p>0.05). Similar results were noted for 0-300min AUC values. VF were associated with greater frequencies and intensities of abdominal distention (p<0.001) and flatulence (p<0.001), and greater frequency of stools (p<0.001) compared to CH, but there were no differences in mean or maximum (loosest) stool consistency (p>0.05). Overall, these results suggest that VF could be a useful tool in weight management of type 2 diabetes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.
2013-10-15
In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
The Versatile Elastohydrodynamics of a Free Particle near a Thin Soft Wall
NASA Astrophysics Data System (ADS)
Salez, Thomas; Saintyves, Baudouin; Mahadevan, L.
2015-03-01
We address the free motion of a buoyant particle inside a viscous fluid, in the vicinity of a thin compressible elastic wall. After discussing the main scalings, we obtain analytically the dominant drag forces within the soft lubrication approximation. By including those into the equations of motion of the particle, we establish a general governing system of three coupled nonlinear and singular differential equations, that describe the three essential motions: sedimentation, hydroplaning, and hydrospinning, through four dimensionless control parameters. Numerical integration allows us to predict a wide zoology of exotic solutions - despite the low-Reynolds feature of the flow - including: spontaneous oscillation, Magnus-like effect, enhanced sedimentation, and boomerang-like effect. We compare these predictions to experiments. The presented elementary approach could be of interest in the description of a broad variety of elastohydrodynamical phenomena, including: landslides, ageing of cartilaginous joints, and motion of a cell in a microfluidic channel or in a blood vessel.
NASA Astrophysics Data System (ADS)
Webber, S.; Ellis, S. M.; Fagereng, A.
2015-12-01
We investigate the influence of melange rheology in a subduction thrust interface on stress and slip cycling constrained by observations from an exhumed subduction complex at Chrystalls Beach, New Zealand. A two-phase mélange dominated by large, competent brittle-viscous blocks surrounded by a weak non-linear viscous matrix is numerically modeled, and the evolution of bulk stress are analysed as the domain deforms. The models produce stress cycling behaviour under constant shear strain rate boundary conditions for a wide range of physical conditions that roughly corresponds to depths and strain rates calculated for instrumentally observed episodic tremor and slip (ETS) in presently-deforming subduction thrust interfaces. Stress cycling is accompanied by mixed brittle plastic-viscous deformation, and occurs as a consequence of geometric reorganisation and the progressive development and breakdown of stress bridges as blocks mutually obstruct one another. We argue that periods of low differential stress correspond to periods of rapid mixed-mode deformation and ETS. Stress cycling episodicities are a function of shear strain rate and pressure/temperature conditions at depth. The time period of stress cycling is principally controlled by the geometry (block distribution and density through time) and stress cycling amplitudes are controlled by effective stress. The duration of stress cycling events in the models (months-years) and rapid strain rates are comparable to instrumentally observed ETS. Shear strain rates are 1 - 2 orders of magnitude slower between stress cycling events, suggesting episodic return times within a single model domain are long duration (> centennial timescales), assuming constant flow stress. Finally, we derive a bulk viscous flow law for block dominated subduction mélanges for conditions 300 - 500°C and elevated pore fluid pressures. Bulk flow laws calculated for block-dominated subduction mélanges are non-linear, owing to a combination of non-linear matrix viscosity and development of tensile fractures at rapid shear strain rates. Model behaviour, including the generation of mixed-mode deformation, is highly comparable to the exhumed block-dominated melange found within the Chrystalls Beach Complex.
Phase retrapping in a pointlike φ Josephson junction: the butterfly effect.
Goldobin, E; Kleiner, R; Koelle, D; Mints, R G
2013-08-02
We consider a φ Josephson junction, which has a bistable zero-voltage state with the stationary phases ψ = ±φ. In the nonzero voltage state the phase "moves" viscously along a tilted periodic double-well potential. When the tilting is reduced quasistatically, the phase is retrapped in one of the potential wells. We study the viscous phase dynamics to determine in which well (-φ or +φ) the phase is retrapped for a given damping, when the junction returns from the finite-voltage state back to the zero-voltage state. In the limit of low damping, the φ Josephson junction exhibits a butterfly effect-extreme sensitivity of the destination well on damping. This leads to an impossibility to predict the destination well.
Wavelength selection in injection-driven Hele-Shaw flows: A maximum amplitude criterion
NASA Astrophysics Data System (ADS)
Dias, Eduardo; Miranda, Jose
2013-11-01
As in most interfacial flow problems, the standard theoretical procedure to establish wavelength selection in the viscous fingering instability is to maximize the linear growth rate. However, there are important discrepancies between previous theoretical predictions and existing experimental data. In this work we perform a linear stability analysis of the radial Hele-Shaw flow system that takes into account the combined action of viscous normal stresses and wetting effects. Most importantly, we introduce an alternative selection criterion for which the selected wavelength is determined by the maximum of the interfacial perturbation amplitude. The effectiveness of such a criterion is substantiated by the significantly improved agreement between theory and experiments. We thank CNPq (Brazilian Sponsor) for financial support.
An analysis for high Reynolds number inviscid/viscid interactions in cascades
NASA Technical Reports Server (NTRS)
Barnett, Mark; Verdon, Joseph M.; Ayer, Timothy C.
1993-01-01
An efficient steady analysis for predicting strong inviscid/viscid interaction phenomena such as viscous-layer separation, shock/boundary-layer interaction, and trailing-edge/near-wake interaction in turbomachinery blade passages is needed as part of a comprehensive analytical blade design prediction system. Such an analysis is described. It uses an inviscid/viscid interaction approach, in which the flow in the outer inviscid region is assumed to be potential, and that in the inner or viscous-layer region is governed by Prandtl's equations. The inviscid solution is determined using an implicit, least-squares, finite-difference approximation, the viscous-layer solution using an inverse, finite-difference, space-marching method which is applied along the blade surfaces and wake streamlines. The inviscid and viscid solutions are coupled using a semi-inverse global iteration procedure, which permits the prediction of boundary-layer separation and other strong-interaction phenomena. Results are presented for three cascades, with a range of inlet flow conditions considered for one of them, including conditions leading to large-scale flow separations. Comparisons with Navier-Stokes solutions and experimental data are also given.
Analytical study of the acoustic field in a spherical resonator for single bubble sonoluminescence.
Dellavale, Damián; Urteaga, Raúl; Bonetto, Fabián J
2010-01-01
The acoustic field in the liquid within a spherical solid shell is calculated. The proposed model takes into account Stoke's wave equation in the viscous fluid, the membrane theory to describe the solid shell motion and the energy loss through the external couplings of the system. A point source at the resonator center is included to reproduce the acoustic emission of a sonoluminescence bubble. Particular calculations of the resulting acoustic field are performed for viscous liquids of interest in single bubble sonoluminescence. The model reveals that in case of radially symmetric modes of low frequency, the quality factor is mainly determined by the acoustic energy flowing through the mechanical coupling of the resonator. Alternatively, for high frequency modes the quality factor is mainly determined by the viscous dissipation in the liquid. Furthermore, the interaction between the bubble acoustic emission and the resonator modes is analyzed. It was found that the bubble acoustic emission produces local maxima in the resonator response. The calculated amplitudes and relative phases of the harmonics constituting the bubble acoustic environment can be used to improve multi-frequency driving in sonoluminescence.
Description, Usage, and Validation of the MVL-15 Modified Vortex Lattice Analysis Capability
NASA Technical Reports Server (NTRS)
Ozoroski, Thomas A.
2015-01-01
MVL-15 is the most recent version of the Modified Vortex-Lattice (MVL) code developed within the Aerodynamics Systems Analysis Branch (ASAB) at NASA LaRC. The term "modified" refers to the primary modification of the core vortex-lattice methodology: inclusion of viscous aerodynamics tables that are linked to the linear solution via iterative processes. The inclusion of the viscous aerodynamics inherently converts the MVL-15 from a purely analytic linearized method to a semi-empirical blend which retains the rapid execution speed of the linearized method while empirically characterizing the section aerodynamics at all spanwise lattice points. The modification provides a means to assess non-linear effects on lift that occur at angles of attack near stall, and provides a means to determine the drag associated with the application of design strategies for lift augmentation such as the use of flaps or blowing. The MVL-15 code is applicable to the analyses of aircraft aerodynamics during cruise, but it is most advantageously applied to the analysis of aircraft operating in various high-lift configurations. The MVL methodology has been previously conceived and implemented; the initial concept version was delivered to the ASAB in 2001 (van Dam, C.), subsequently revised (Gelhausen, P. and Ozoroski, T. 2002 / AVID Inc., Gelhausen, P., and Roberts, M. 2004), and then overhauled (Ozoroski, T., Hahn, A. 2008). The latest version, MVL-15 has been refined to provide analysis transparency and enhanced to meet the analysis requirements of the Environmentally Responsible Aviation (ERA) Project. Each revision has been implemented with reasonable success. Separate applications of the methodology are in use, including a similar in-house capability, developed by Olson, E. that is tailored for structural and acoustics analyses. A central premise of the methodology is that viscous aerodynamic data can be associated with analytic inviscid aerodynamic results at each spanwise wing section, thereby providing a pathway to map viscous data to the inviscid results. However, a number of factors can sidetrack the analysis consistency during various stages of this process. For example, it should be expected that the final airplane lift curve and drag polar results depend strongly on the geometry and aerodynamics of the airfoil section; however, flap deflections and flap chord extensions change the local reference geometry of the input airfoil, the airplane wing, the tabulated non-dimensional viscous aerodynamics, and the spanwise links between the linear and the viscous aerodynamics. These changes also affect the bound circulation and therefore, calculation and integration of the induced angle of attack and induced drag. MVL-15 is configured to ensure these types of challenges are properly addressed. This report is a comprehensive manual describing the theory, use, and validation of the MVL-15 analysis tool. Section 3 summarizes theoretical, procedural, and characteristic features of MVL-15, and includes a list of the files required to setup, execute, and summarize an analysis. Section 4, Section 5, Section 6, and Section 7 combine to comprise the User's Guide portions of this report. The MVL-15 input and output files are described in Section 4 and Section 5, respectively; the descriptions are supplemented with example files and information about the file formats, parameter definitions, and typical parameter values. Section 6 describes the Wing Geometry Setup Utility and the 2d-Variants Utility files that simplify and assist setting up a consistent set of MVL-15 geometry and aerodynamics input parameters and input files. Section 7 describes the use of the 3d-Results Presentation Utility file that can be used to automatically create summary tables and charts from the MVL-15 output files. Section 8 documents the Validation Results of an extensive and varied validation test matrix, including results of an airplane analysis representative of the ERA Program. A start-to-finish example of the airplane analysis procedure is described in Section 7.
Tidal disruption of dissipative planetesimals
NASA Technical Reports Server (NTRS)
Mizuno, H.; Boss, A. P.
1985-01-01
A self-consistent numerical model is developed for the tidal disruption of a solid planetesimal. The planetesimal is treated as a highly viscous, slightly compressible fluid whose disturbed parts are an inviscid, pressureless fluid undergoing distortion and disruption. The distortions were constrained to being symmetrical above and below the equatorial plane. The tidal potential is expanded in terms of Legendre polynomials, which eliminates the center of mass acceleration effects, permitting definition of equations of motion in a noninertial frame. Consideration is given to viscous dissipation and to characteristics of the solid-atmosphere boundary. The model is applied to sample cases in one, two and three dimensions.
Decay of the 3D viscous liquid-gas two-phase flow model with damping
NASA Astrophysics Data System (ADS)
Zhang, Yinghui
2016-08-01
We establish the optimal Lp - L2(1 ≤ p < 6/5) time decay rates of the solution to the Cauchy problem for the 3D viscous liquid-gas two-phase flow model with damping and analyse the influences of the damping on the qualitative behaviors of solution. It is observed that the fraction effect of the damping affects the dispersion of fluids and enhances the time decay rate of solution. Our method of proof consists of Hodge decomposition technique, Lp - L2 estimates for the linearized equations, and delicate energy estimates.
Delannoy, Joachim; de Maleprade, Hélène; Clanet, Christophe; Quéré, David
2018-05-31
A superhydrophobic capillary tube immersed in water and brought in contact with the bath surface will be invaded by air, owing to its aerophilicity. We discuss this phenomenon where the ingredients of classical capillary rise are inverted, which leads to noticeable dynamical features. (1) The main regime of air invasion is linear in time, due to the viscous resistance of water. (2) Menisci in tubes with millimetre-size radii strongly oscillate before reaching their equilibrium depth, a consequence of inertia. On the whole, capillary descent provides a broad variety of dynamics where capillary effects, viscous friction and liquid inertia all play a role.
Contact line friction of electrowetting actuated viscous droplets
NASA Astrophysics Data System (ADS)
Vo, Quoc; Tran, Tuan
2018-06-01
We examine the contact line friction coefficient of viscous droplets spreading and retracting on solid surfaces immersed in ambient oil. By using the electrowetting effect, we generate a surface tension imbalance to drive the spreading and the retracting motion of the three-phase contact line (TCL). We show that neither the driving force intensity nor TCL direction significantly influences the friction coefficient. Instead, the friction coefficient depends equivalently on the viscosity of liquid droplets and the surrounding oil. We derive and experimentally verify a transient timescale that can be used to characterize both the spreading and retracting dynamics.
Damping behavior of nano-fibrous composites with viscous interface in anti-plane shear
NASA Astrophysics Data System (ADS)
Wang, Xu
2017-06-01
By using the composite cylinder assemblage model, we derive an explicit expression of the specific damping capacity of nano-fibrous composite with viscous interface when subjected to time-harmonic anti-plane shear loads. The fiber and the matrix are first endowed with separate and distinct Gurtin-Murdoch surface elasticities, and rate-dependent sliding occurs on the fiber-matrix interface. Our analysis indicates that the effective damping of the composite depends on five dimensionless parameters: the fiber volume fraction, the stiffness ratio, two parameters arising from surface elasticity and one parameter due to interface sliding.
A Biophysical Basis for Mucus Solids Concentration as a Candidate Biomarker for Airways Disease
Hill, David B.; Vasquez, Paula A.; Mellnik, John; McKinley, Scott A.; Vose, Aaron; Mu, Frank; Henderson, Ashley G.; Donaldson, Scott H.; Alexis, Neil E.; Boucher, Richard C.; Forest, M. Gregory
2014-01-01
In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5–2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions. PMID:24558372
Dynamic structure of confined shocks undergoing sudden expansion
NASA Astrophysics Data System (ADS)
Abate, G.; Shyy, W.
2002-01-01
The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.
Numerical Viscous Flow Analysis of an Advanced Semispan Diamond-Wing Model at High-Life Conditions
NASA Technical Reports Server (NTRS)
Ghaffari, F.; Biedron, R. T.; Luckring, J. M.
2002-01-01
Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility (NTF) at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant width standoff. The analyses include: (1) the numerical simulation of the NTF empty, tunnel flow characteristics; (2) semispan high-lift model with the standoff in the tunnel environment; (3) semispan high-lift model with the standoff and viscous sidewall in free air; and (4) semispan high-lift model without the standoff in free air. The computations were performed at conditions that correspond to a nominal approach and landing configuration. The wing surface pressure distributions computed for the model in both the tunnel and in free air agreed well with the corresponding experimental data and they both indicated small increments due to the wall interference effects. However, the wall interference effects were found to be more pronounced in the total measured and the computed lift, drag and pitching moment due to standard induced up-flow effects. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted well. The numerical predictions are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage fore-body pressure distributions and the resulting impact on the overall configuration longitudinal aerodynamic characteristics.
Pioche, Mathieu; Lépilliez, Vincent; Déprez, Pierre; Giovannini, Marc; Caillol, Fabrice; Piessevaux, Hubert; Rivory, Jérôme; Guillaud, Olivier; Ciocîrlan, Mihai; Salmon, Damien; Lienhart, Isabelle; Lafon, Cyril; Saurin, Jean-Christophe; Ponchon, Thierry
2015-08-01
Long lasting elevation is a key factor during endoscopic submucosal dissection (ESD) and can be obtained by water jet injection of saline solution or by viscous macromolecular solutions. In a previous animal study, we assessed the Nestis Enki II system to combine jet injection and viscous solutions. In the present work, we used this combination in humans in different sites of the digestive tract. We retrospectively report all of the consecutive ESD procedures performed with jet injection of viscous solutions in four centers. Information was collected about the lesion, the procedure, the histological result, and the outcomes for the patient. In total, 45 resections were completed by six operators: five experts and one beginner with only one previous experience in human ESD. Lesions were located in the esophagus (10), the stomach (11), the duodenum (1), the colon (1) and the rectum (22). Average maximal lesion diameter was 4.8 cm (SD 2.4, range 2 - 11 cm), average lesion surface area was 19.8 cm(2) (SD 17.7, range 2.2 - 72 cm(2)), and average duration of procedure was 79.9 min (SD 50.3 min, range 19 - 225 min). ESD could be conducted while the endoscope was retroflexed at its maximum in 26 cases. Four adverse events were observed: two diminutive perforations and two delayed bleeding occurrences treated conservatively. The R0 resection rate was 91.1 %. The catheter was obstructed in six occurrences of bleeding. Endoscopic submucosal dissection using high pressure injection of viscous macromolecular solutions is safe and effective in different parts of the digestive tract. It does not impede working with the endoscope in the maximal retroflexed position.
Flow harmonics from self-consistent particlization of a viscous fluid
NASA Astrophysics Data System (ADS)
Wolff, Zack; Molnar, Denes
2017-10-01
The quantitative extraction of quark-gluon plasma (QGP) properties from heavy-ion data, such as its specific shear viscosity η /s , typically requires comparison to viscous hydrodynamic or "hybrid" hydrodynamics + transport simulations. In either case, one has to convert the fluid to hadrons, yet without additional theory input the conversion is ambiguous for dissipative fluids. Here, shear viscous phase-space corrections calculated using linearized transport theory are applied in Cooper-Frye freeze-out to quantify the effects on anisotropic flow coefficients vn(pT) at the energies available at both the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider. Expanding upon our previous flow harmonics studies [D. Molnar and Z. Wolff, Phys. Rev. C 95, 024903 (2017), 10.1103/PhysRevC.95.024903; Z. Wolff and D. Molnar, J. Phys.: Conf. Ser. 535, 012020 (2014), 10.1088/1742-6596/535/1/012020], we calculate pion and proton v2(pT) , v4(pT) , and v6(pT) , but here we incorporate a hadron gas that is chemically frozen below a temperature of 175 MeV and use hypersurfaces from realistic viscous hydrodynamic simulations. For additive quark model cross sections and relative phase-space corrections with p3 /2 momentum dependence rather than the quadratic Grad form, we find at moderately high transverse momentum noticeably higher v4(pT) and v6(pT) for protons than for pions. In addition, the value of η /s deduced from elliptic flow data differs by nearly 50% from the value extracted using the naive "democratic Grad" form of freeze-out distributions. To facilitate the use of the self-consistent viscous corrections calculated here in hydrodynamic and hybrid calculations, we also present convenient parametrizations of the corrections for the various hadron species.
NASA Astrophysics Data System (ADS)
Yang, Yong; Chai, Xueguang
2018-05-01
When a bulk superconductor endures the magnetization process, enormous mechanical stresses are imposed on the bulk, which often leads to cracking. In the present work, we aim to resolve the viscous flux flow velocity υ 0/w, i.e. υ 0 (because w is a constant) and the stress distribution in a long rectangular slab superconductor for the decreasing external magnetic field (B a ) after zero-field cooling (ZFC) and field cooling (FC) using the Kim model and viscous flux flow equation simultaneously. The viscous flux flow velocity υ 0/w and the magnetic field B* at which the body forces point away in all of the slab volumes during B a reduction, are determined by both B a and the decreasing rate (db a /dt) of the external magnetic field normalized by the full penetration field B p . In previous studies, υ 0/w obtained by the Bean model with viscous flux flow is only determined by db a /dt, and the field B* that is derived only from the Kim model is a positive constant when the maximum external magnetic field is chosen. This means that the findings in this paper have more physical contents than the previous results. The field B* < 0 can be kept for any value of B a when the rate db a /dt is greater than a certain value. There is an extreme value for any curve of maximum stress changing with decreasing field B a after ZFC if B* ≤ 0. The effect of db a /dt on the stress is significant in the cases of both ZFC and FC.
Stability of miscible core?annular flows with viscosity stratification
NASA Astrophysics Data System (ADS)
Selvam, B.; Merk, S.; Govindarajan, Rama; Meiburg, E.
The linear stability of variable viscosity, miscible core-annular flows is investigated. Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number when the magnitude of the viscosity ratio is less than a critical value. This is in contrast to the immiscible case without interfacial tension, which is unstable at any viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable even when the more viscous fluid is in the core. This is in contrast to plane channel flows with finite interface thickness, which are always stabilized relative to single fluid flow when the less viscous fluid is in contact with the wall. If the more viscous fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at high Schmidt numbers. For the parameters under consideration, the switchover occurs at an intermediate Schmidt number of about 500. The occurrence of inviscid instability for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe flows. In some parameter ranges, the miscible flow is seen to be more unstable than its immiscible counterpart, and the physical reasons for this behaviour are discussed.A detailed parametric study shows that increasing the interface thickness has a uniformly stabilizing effect. The flow is least stable when the interface between the two fluids is located at approximately 0.6 times the tube radius. Unlike for channel flow, there is no sudden change in the stability with radial location of the interface. The instability originates mainly in the less viscous fluid, close to the interface.
Hooda, Seema; Metzler-Zebeli, Barbara U; Vasanthan, Thavaratnam; Zijlstra, Ruurd T
2011-09-01
Relative contributions of two functional properties, viscosity and fermentability of dietary fibre, on apparent ileal digestibility (AID), apparent total tract digestibility (ATTD), digesta passage rate, N retention and SCFA concentration have not been established. Thus, eight ileal-cannulated pigs randomised in a double 4 × 4 Latin square were fed four diets based on maize starch and casein supplemented with 5 % of actual fibre in a 2 × 2 factorial arrangement: low-fermentable, low-viscous cellulose (CEL); low-fermentable, high-viscous carboxymethylcellulose (CMC); high-fermentable, low-viscous oat β-glucan (LBG); high-fermentable, high-viscous oat β-glucan (HBG). Viscosity and fermentability interacted to affect (P < 0·001) digesta viscosity and AID and ATTD of nutrients. These properties tended to interact to affect (P < 0·10) digesta passage rate and butyrate. Pigs fed the CMC diet had the lowest (P < 0·05) digesta passage rate and the highest (P < 0·001) AID of energy, crude protein and DM, and ATTD of energy and DM. Post-ileal DM digestibility was highest (P < 0·001) for pigs fed the CEL and HBG diets. Post-ileal DM digestibility had a negative, curvilinear relationship with the AID of energy and crude protein (R2 0·85 and 0·72, respectively; P < 0·001). Digesta viscosity had a less strong relationship with the AID of energy and crude protein (R2 0·45 and 0·36, respectively; P < 0·001). In conclusion, high-viscous, low-fermentable dietary fibre increases the proportion of a diet that is digested in the small intestine by reducing digesta passage rate.
Global existence of the three-dimensional viscous quantum magnetohydrodynamic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jianwei, E-mail: yangjianwei@ncwu.edu.cn; Ju, Qiangchang, E-mail: qiangchang-ju@yahoo.com
2014-08-15
The global-in-time existence of weak solutions to the viscous quantum Magnetohydrodynamic equations in a three-dimensional torus with large data is proved. The global existence of weak solutions to the viscous quantum Magnetohydrodynamic equations is shown by using the Faedo-Galerkin method and weak compactness techniques.
A new numerical approach for compressible viscous flows
NASA Technical Reports Server (NTRS)
Wu, J. C.; Lekoudis, S. G.
1982-01-01
A numerical approach for computing unsteady compressible viscous flows was developed. This approach offers the capability of confining the region of computation to the viscous region of the flow. The viscous region is defined as the region where the vorticity is nonnegligible and the difference in dilatation between the potential flow and the real flow around the same geometry is also nonnegligible. The method was developed and tested. Also, an application of the procedure to the solution of the steady Navier-Stokes equations for incompressible internal flows is presented.
Method for formation of subsurface barriers using viscous colloids
Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.
1998-11-17
A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.
An experimental investigation of the subcritical and supercritical flow about a swept semispan wing
NASA Technical Reports Server (NTRS)
Lockman, W. K.; Seegmiller, H. L.
1983-01-01
An experimental investigation of the turbulent, subcritical and supercritical flow over a swept, semispan wing in a solid wall wind tunnel is described. The program was conducted over a range of Mach numbers, Reynolds numbers, and angles of attack to provide a variety of test cases for assessment of wing computer codes and tunnel wall interference effects. Wing flows both without and with three dimensional flow separation are included. Data include mean surface pressures for both the wing and tunnel walls; surface oil flow patterns on the wing; and mean velocity, flow field surveys. The results are given in tabular form and presented graphically to illustrate some of the effects of the test parameters. Comparisons of the wing pressure data with the results from two inviscid wing codes are also shown to assess the importance of viscous flow and tunnel wall effects.
Marangoni-induced symmetry-breaking pattern selection on viscous fluids
NASA Astrophysics Data System (ADS)
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2016-11-01
Symmetry breaking transitions on curved surfaces are found in a wide range of dissipative systems, ranging from asymmetric cell divisions to structure formation in thin films. Inherent within the nonlinearities are the associated curvilinear geometry, the elastic stretching, bending and the various fluid dynamical processes. We present a generalised Swift-Hohenberg pattern selection theory on a thin, curved and viscous films in the presence of non-trivial Marangoni effect. Testing the theory with experiments on soap bubbles, we observe the film pattern selection to mimic that of the elastic wrinkling morphology on a curved elastic bilayer in regions of slow viscous flow. By examining the local state of damping of surface capillary waves we attempt to establish an equivalence between the Marangoni fluid dynamics and the nonlinear elastic shell theory above the critical wavenumber of the instabilities and propose a possible explanation for the perceived elastic-fluidic duality. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
A study of the viscous and nonadiabatic flow in radial turbines
NASA Technical Reports Server (NTRS)
Khalil, I.; Tabakoff, W.
1981-01-01
A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.
On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Compton, William Bernard
1985-01-01
The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.
Pulsating gliding transition in the dynamics of levitating liquid nitrogen droplets
NASA Astrophysics Data System (ADS)
Snezhko, Alexey; Ben Jacob, Eshel; Aranson, Igor S.
2008-04-01
Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 °C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.
Effect of external viscous load on head movement
NASA Technical Reports Server (NTRS)
Nam, M.-H.; Lakshminarayanan, V.; Stark, L. W.
1984-01-01
Quantitative measurements of horizontal head rotation were obtained from normal human subjects intending to make 'time optimal' trajectories between targets. By mounting large, lightweight vanes on the head, viscous damping B, up to 15 times normal could be added to the usual mechanical load of the head. With the added viscosity, the head trajectory was slowed and of larger duration (as expected) since fixed and maximal (for that amplitude) muscle forces had to accelerate the added viscous load. This decreased acceleration and velocity and longer duration movement still ensued in spite of adaptive compensation; this provided evidence that quasi-'time optimal' movements do indeed employ maximal muscle forces. The adaptation to this added load was rapid. Then the 'adapted state' subjects produced changed trajectories. The adaptation depended in part on the differing detailed instructions given to the subjects. This differential adaptation provided evidence for the existence of preprogrammed controller signals, sensitive to intended criterion, and neurologically ballistic or open loop rather than modified by feedback from proprioceptors or vision.
Viscous compressible flow direct and inverse computation and illustrations
NASA Technical Reports Server (NTRS)
Yang, T. T.; Ntone, F.
1986-01-01
An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.
Rate-Dependent Behavior of the Amorphous Phase of Spider Dragline Silk
Patil, Sandeep P.; Markert, Bernd; Gräter, Frauke
2014-01-01
The time-dependent stress-strain behavior of spider dragline silk was already observed decades ago, and has been attributed to the disordered sequences in silk proteins, which compose the soft amorphous matrix. However, the actual molecular origin and magnitude of internal friction within the amorphous matrix has remained inaccessible, because experimentally decomposing the mechanical response of the amorphous matrix from the embedded crystalline units is challenging. Here, we used atomistic molecular dynamics simulations to obtain friction forces for the relative sliding of peptide chains of Araneus diadematus spider silk within bundles of these chains as a representative unit of the amorphous matrix in silk fibers. We computed the friction coefficient and coefficient of viscosity of the amorphous phase to be in the order of 10−6 Ns/m and 104 Ns/m2, respectively, by extrapolating our simulation data to the viscous limit. Finally, we used a finite element method for the amorphous phase, solely based on parameters derived from molecular dynamics simulations including the newly determined coefficient of viscosity. With this model the time scales of stress relaxation, creep, and hysteresis were assessed, and found to be in line with the macroscopic time-dependent response of silk fibers. Our results suggest the amorphous phase to be the primary source of viscosity in silk and open up the avenue for finite element method studies of silk fiber mechanics including viscous effects. PMID:24896131
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
Verification of a Viscous Computational Aeroacoustics Code using External Verification Analysis
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Hixon, Ray
2015-01-01
The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.
Verification of a Viscous Computational Aeroacoustics Code Using External Verification Analysis
NASA Technical Reports Server (NTRS)
Ingraham, Daniel; Hixon, Ray
2015-01-01
The External Verification Analysis approach to code verification is extended to solve the three-dimensional Navier-Stokes equations with constant properties, and is used to verify a high-order computational aeroacoustics (CAA) code. After a brief review of the relevant literature, the details of the EVA approach are presented and compared to the similar Method of Manufactured Solutions (MMS). Pseudocode representations of EVA's algorithms are included, along with the recurrence relations needed to construct the EVA solution. The code verification results show that EVA was able to convincingly verify a high-order, viscous CAA code without the addition of MMS-style source terms, or any other modifications to the code.
NASA Technical Reports Server (NTRS)
Vadyak, J.; Hoffman, J. D.
1978-01-01
The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.
Aerodynamic Analyses Requiring Advanced Computers, Part 1
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.
NASA Technical Reports Server (NTRS)
Thompson, E.
1979-01-01
A finite element computer code for the analysis of mantle convection is described. The coupled equations for creeping viscous flow and heat transfer can be solved for either a transient analysis or steady-state analysis. For transient analyses, either a control volume or a control mass approach can be used. Non-Newtonian fluids with viscosities which have thermal and spacial dependencies can be easily incorporated. All material parameters may be written as function statements by the user or simply specified as constants. A wide range of boundary conditions, both for the thermal analysis and the viscous flow analysis can be specified. For steady-state analyses, elastic strain rates can be included. Although this manual was specifically written for users interested in mantle convection, the code is equally well suited for analysis in a number of other areas including metal forming, glacial flows, and creep of rock and soil.
Microcantilever-based gas sensor employing two simultaneous physical sensing modes
Loui, Albert; Sirbuly, Donald J; Elhadj, Selim; McCall, Scott K; Hart, Bradley R; Ratto, Timothy V
2014-06-24
According to one embodiment, a system for detecting and identifying gases includes a piezoresistive microcantilever transducer, wherein dissipation of heat from the piezoresistive microcantilever into one or more gases is measured by changes in an electrical resistance of the piezoresistor, a vibrating microcantilever transducer, wherein shifts are measured in resonant frequency of the vibrating microcantilever due to viscous damping thereof by the one or more gases, and a subsystem for correlating the measured resistance changes and the resonant frequency shifts to the one or more gases. In another embodiment, a method for detecting and identifying one or more gases includes determining dissipation of heat from a microcantilever into one or more gases, and determining shifts in resonant frequency of the microcantilever due to viscous damping thereof by the one or more gases. Other systems, methods, and computer program products are also described according to more embodiments.
Crossover from capillary fingering to viscous fingering in a rough fracture
NASA Astrophysics Data System (ADS)
Hu, R.; Chen, Y.; Wu, D. S.
2017-12-01
Controlled by the competition between capillary and viscous forces, the displacement patterns of one fluid displacing another more viscous one exhibit capillary fingering, viscous fingering, and the crossover between the two. Although extensive studies have investigated viscous and capillary fingerings in porous and fractured media, a few studies focused on the crossover in rough fractures, and how viscous and capillary forces affect the crossover remains unclear. Using a transparent fracture visualization system, we studied how the competition impacts the crossover in a horizontal rough fracture. Drainage experiments of water displacing oil were conducted at seven flow rates (capillary number log10Ca ranging from -7.07 to -3.07) and four viscosity ratios (M = 1/1000, 1/500, 1/100 and 1/50). We consistently observed lower invading fluid saturations in the crossover zone. In addition, we proposed a phase diagram for the displacement patterns in a rough fracture that is consistent with similar studies in porous media. Based on real-time imaging and statistical analysis of the invasion morphology, we showed that the competition between the capillary and viscous forces is responsible for the saturation reduction in the crossover zone. In this zone, finger propagation toward the outlet (characteristic of viscous fingering) as well as void-filling in the transverse and backward directions (characteristic of capillary fingering), are both suppressed. Therefore, the invading fluid tends to occupy larger apertures with higher characteristic front velocity, promoting void-filling toward the outlet with thinner finger growth and resulting in a larger volume of defending fluid left behind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Peter A.; Das, Santabrata; Le, Truong, E-mail: pbecker@gmu.edu, E-mail: sbdas@iitg.ernet.in, E-mail: truong.le@nhrec.org
2011-12-10
The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classicalmore » method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.« less
Diffusion on Viscous Fluids, Existence and Asymptotic Properties of Solutions,
1983-09-01
Matematica - Politecuico di Milano (1982). 11.* P. Secchi "On the Initial Value ProbleM for the Nquations of Notion of Viscous Incompressible Fluids In...of two viscous Incompressible Fluids’, preprint DepartLmento dl matematica - Politecuico di Milano (1982). -15- 11. P. Secchi 00n the XnitiaI Value
Sudden Viscous Dissipation of Compressing Turbulence
Davidovits, Seth; Fisch, Nathaniel J.
2016-03-11
Here we report compression of turbulent plasma can amplify the turbulent kinetic energy, if the compression is fast compared to the viscous dissipation time of the turbulent eddies. A sudden viscous dissipation mechanism is demonstrated, whereby this amplified turbulent kinetic energy is rapidly converted into thermal energy, suggesting a new paradigm for fast ignition inertial fusion.
Viscous dipping, application to the capture of fluids in living organisms
NASA Astrophysics Data System (ADS)
Lechantre, Amandine; Michez, Denis; Damman, Pascal
Some insects, birds and mammals use flower nectar as their energy resources. For this purpose, they developed specific skills to ingest viscous fluids. Depending on the sugar content, i.e., the viscosity, different strategies are observed in vivo. Indeed, butterflies use simple suction for low viscosity nectars; hummingbirds have a tongue made from two thin flexible sheets that bend to form a tube when immersed in a fluid; other animals exhibit in contrast complex papillary structures. We focus on this last method generally used for very viscous nectars. More specifically, bees and bats possess a tongue decorated with microstructures that, according to biologists, would be optimized for fluid capture by viscous dipping. In this talk, we will discuss this assumption by comparing physical models of viscous dipping to in vivo measurements. To mimic the tongue morphology, we used various rod shapes obtained by 3D printing. The influence of the type and size of lateral microstructures was then investigated and used to build a global framework describing viscous dipping for structured rods/tongues.
Wada, Yuji; Kundu, Tribikram; Nakamura, Kentaro
2014-08-01
The distributed point source method (DPSM) is extended to model wave propagation in viscous fluids. Appropriate estimation on attenuation and boundary layer formation due to fluid viscosity is necessary for the ultrasonic devices used for acoustic streaming or ultrasonic levitation. The equations for DPSM modeling in viscous fluids are derived in this paper by decomposing the linearized viscous fluid equations into two components-dilatational and rotational components. By considering complex P- and S-wave numbers, the acoustic fields in viscous fluids can be calculated following similar calculation steps that are used for wave propagation modeling in solids. From the calculations reported the precision of DPSM is found comparable to that of the finite element method (FEM) for a fundamental ultrasonic field problem. The particle velocity parallel to the two bounding surfaces of the viscous fluid layer between two rigid plates (one in motion and one stationary) is calculated. The finite element results agree well with the DPSM results that were generated faster than the transient FEM results.
Effects of aperture variability and wettability on immiscible displacement in fractures
NASA Astrophysics Data System (ADS)
Yang, Zhibing; Méheust, Yves; Neuweiler, Insa
2017-04-01
Fluid-fluid displacement in porous and fractured media is an important process. Understanding and controlling this process is key to many practical applications, such as hydrocarbon recovery, geological storage of CO2, groundwater remediation, etc. Here, we numerically study fluid-fluid displacement in rough-walled fractures. We focus on the combined effect of wettability and fracture surface topography on displacement patterns and interface growth. We develop a novel numerical model to simulate dynamic fluid invasion under the influence of capillary and viscous forces. The capillary force is calculated using the two principal curvatures (aperture-induced curvature and in-plane curvature) at the fluid-fluid interface, and the viscous force is taken into account by solving the fluid pressure distribution. The aperture field of a fracture is represented by a spatially correlated random field, which is described by a power spectrum for the fracture wall topography and a cutoff wave-length. We numerically produce displacement patterns ranging from stable displacement, capillary fingering, and viscous fingering, as well as the transitions between them. We show that both reducing the aperture variability and increasing the contact angle (from drainage to weak imbibition) stabilize the displacement due to the influence of the in-plane curvature, an effect analogous to that of the cooperative pore filling in porous media. Implications of these results will be discussed.
Oscillations in solar jets observed with the SOT of Hinode: viscous effects during reconnection
NASA Astrophysics Data System (ADS)
Tavabi, E.; Koutchmy, S.
2014-07-01
Transverse oscillatory motions and recurrence behavior in the chromospheric jets observed by Hinode/SOT are studied. A comparison is considered with the behavior that was noticed in coronal X-ray jets observed by Hinode/XRT. A jet like bundle observed at the limb in Ca II H line appears to show a magnetic topology that is similar to X-ray jets (i.e., the Eiffel tower shape). The appearance of such magnetic topology is usually assumed to be caused by magnetic reconnection near a null point. Transverse motions of the jet axis are recorded but no clear evidence of twist is appearing from the highly processed movie. The aim is to investigate the dynamical behavior of an incompressible magnetic X-point occurring during the magnetic reconnection in the jet formation region. The viscous effect is specially considered in the closed line-tied magnetic X-shape nulls. We perform the MHD numerical simulation in 2-D by solving the visco-resistive MHD equations with the tracing of velocity and magnetic field. A qualitative agreement with Hinode observations is found for the oscillatory and non-oscillatory behaviors of the observed solar jets in both the chromosphere and the corona. Our results suggest that the viscous effect contributes to the excitation of the magnetic reconnection by generating oscillations that we observed at least inside this Ca II H line cool solar jet bundle.
NASA Astrophysics Data System (ADS)
Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François
2017-07-01
The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.
James Webb Space Telescope Deployment Brushless DC Motor Characteristics Analysis
NASA Technical Reports Server (NTRS)
Tran, Ahn N.
2016-01-01
A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.
Sedimentation of athermal particles in clay suspensions
NASA Astrophysics Data System (ADS)
Clotet, Xavier; Kudrolli, Arshad
2015-03-01
We discuss sedimentation of athermal particles in dense clay suspensions which appear liquid-like to glass-like. These studies are motivated by the physics important to a diverse range of problems including remediation of oil sands after the extraction of hydrocarbons, and formation of filter cakes in bore wells. We approach this problem by first considering collective sedimentation of athermal spherical particles in a viscous liquid in quasi-two dimensional and three dimensional containers. We examine the system using optical and x-ray tomography techniques which gives particle level information besides global information on the evolution of the volume fraction. Unlike sediments in the dilute limit - which can be modeled as isolated particles that sediment with a constant velocity and slow down exponentially as they approach the bottom of the container - we find interaction between the particles through the viscous fluids leads to qualitatively differences. We find significant avalanching behavior and cooperative motion as the grains collectively settle, and non-exponential increase in settling time. We discuss the effect of stirring caused by the sedimenting particles on their viscosity and consequently the sedimentation rates as a function of particle concentration. Supported by Petroleum Research Fund Grant PRF # 54045-ND9.
NASA Technical Reports Server (NTRS)
Hafez, M.; Soliman, M.; White, S.
1992-01-01
A new formulation (including the choice of variables, their non-dimensionalization, and the form of the artificial viscosity) is proposed for the numerical solution of the full Navier-Stokes equations for compressible and incompressible flows with heat transfer. With the present approach, the same code can be used for constant as well as variable density flows. The changes of the density due to pressure and temperature variations are identified and it is shown that the low Mach number approximation is a special case. At zero Mach number, the density changes due to the temperature variation are accounted for, mainly through a body force term in the momentum equation. It is also shown that the Boussinesq approximation of the buoyancy effects in an incompressible flow is a special case. To demonstrate the new capability, three examples are tested. Flows in driven cavities with adiabatic and isothermal walls are simulated with the same code as well as incompressible and supersonic flows over a wall with and without a groove. Finally, viscous flow simulations of an oblique shock reflection from a flat plate are shown to be in good agreement with the solutions available in literature.
NASA Astrophysics Data System (ADS)
Sayar, Ersin
2017-07-01
The objective of this paper is to investigate the heat transfer to oscillating annular flow of a viscous fluid. The flow media includes stationary stainless steel wool porous domain and glycerol as the working fluid. The effects of actuation frequency and wall heat flux on the temperature field and resultant heat convection coefficient are studied. The temperature values at radial direction are close each other as porous media mixes the glycerol successfully. A correlation with a functional dependence to kinetic Reynolds number is recommended that can be used to acquire the averaged heat transfer for oscillating flows. Present experimental results with glycerol in a porous media are compared to the published experimental works with water. For the limited case of the two working fluids, Nusselt number is normalized well using the Prandtl number (Pr0.67). Results are also compared to non-porous media study and heat transfer is found to increase up to a factor of five in porous media. The recommended correlation is claimed to have a significant role for anticipating heat transfer of oscillating viscous fluid not only at low frequencies but also at low heat fluxes in a porous and permeable solid media.
Linear stability of an active fluid interface
NASA Astrophysics Data System (ADS)
Nagilla, Amarender; Prabhakar, Ranganathan; Jadhav, Sameer
2018-02-01
Motivated by studies suggesting that the patterns exhibited by the collectively expanding fronts of thin cells during the closing of a wound [S. Mark et al., "Physical model of the dynamic instability in an expanding cell culture," Biophys. J. 98(3), 361-370 (2010)] and the shapes of single cells crawling on surfaces [A. C. Callan-Jones et al., "Viscous-fingering-like instability of cell fragments," Phys. Rev. Lett. 100(25), 258106 (2008)] are due to fingering instabilities, we investigate the stability of actively driven interfaces under the Hele-Shaw confinement. An initially radial interface between a pair of viscous fluids is driven by active agents. Surface tension and bending rigidity resist the deformation of the interface. A point source at the origin and a distributed source are also included to model the effects of injection or suction and growth or depletion, respectively. Linear stability analysis reveals that for any given initial radius of the interface, there are two key dimensionless driving rates that determine interfacial stability. We discuss stability regimes in a state space of these parameters and their implications for biological systems. An interesting finding is that an actively mobile interface is susceptible to the fingering instability irrespective of viscosity contrast.
Low-frequency fluid waves in fractures and pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korneev, Valeri
2010-09-01
Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importancemore » of including these wave effects into poroelastic theories.« less
Thermocapillary effect on the dynamics of viscous beads on vertical fiber
NASA Astrophysics Data System (ADS)
Liu, Rong; Liu, Qiu Sheng
2014-09-01
The gravity-driven flow of a thin liquid film down a uniformly heated vertical fiber is considered. This is an unstable open flow that exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the variation of surface tension induced by temperature disturbance at the interface. A linear stability analysis and a nonlinear simulation are performed to investigate the dynamic of axisymmetric disturbances. The results showed that the Marangoni instability and the Rayleigh-Plateau instability reinforce each other. With the increase of the thermocapillary effect, the fiber flow has a tendency to break up into smaller droplets.
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
Batta, Yacoub A
2016-01-01
The present article describes the technique used for preparing the invert emulsion (water-in-oil type) then, selecting the most proper formulation of invert emulsion for being used as a carrier formulation of entomopathogenic fungi. It also describes the method used for testing the efficacy of the formulated fungi as biocontrol agents of targeted insects. Detailed examples demonstrating the efficacy of formulated strains of entomopathogenic fungi against certain species of insect pests were included in the present article. The techniques and methods described in this article are reproducible and helpful in enhancing the effectiveness of formulated fungi against wide range of targeted insects in comparison with the unformulated form of these fungi. Also, these techniques and methods can be used effectively in crop protection and in the integrated pest management programs. Finally, it is important to indicate that the ingredients used for preparation of the invert emulsion have no environmental side-effects or health risks since these ingredients are safe to use and can be used in manufacturing of cosmetics or as food additives.•Description of method used for preparation of invert emulsion (water-in-oil type) and selecting the most stable and non-viscous emulsion.•Description of technique used for introducing the entomopathogenic fungi into the selected stable and non-viscous invert emulsion.•Description of method for testing the efficacy of introduced entomopathogenic fungus into the selected invert emulsion against targeted insects with detailed examples on the efficacy testing.
Self-Consistent Conversion of a Viscous Fluid to Particles and Heavy-Ion Physics Applications
NASA Astrophysics Data System (ADS)
Wolff, Zack J.
The most widely used theoretical framework to model the early stages of a heavy-ion collision is viscous hydrodynamics. Comparing hydrodynamic simulations to heavy-ion data inevitably requires the conversion of the fluid to particles. This conversion, typically done in the Cooper-Frye formalism, is ambiguous for viscous fluids. In this thesis work, self-consistent phase space corrections are calculated by solving the linearized Boltzmann equation. These species-dependent solutions are contrasted with those obtained using the ad-hoc ''democratic Grad'' ansatz typically employed in the literature in which coefficients are independent of particle dynamics. Solutions are calculated analytically for a massless gas and numerically for the general case of a hadron resonance gas. For example, it is found that for a gas of massless particles interacting via isotropic, energy-independent 2 → 2 scatterings, the shear viscous corrections variationally prefer a momentum dependence close to p3/2 rather than the quadratic dependence assumed in the Grad ansatz. The self-consistent phase space distributions are then used to calculate transverse momentum spectra and differential flow coefficients, v n(pT), to study the effects on heavy-ion identified particle observables. Using additive quark model cross sections, it is found that proton flow coefficients are higher than those for pions at moderately high pT in Pb + Pb collisions at LHC, especially for the coefficients v 4 and v6.
Theoretical and Numerical Studies of a Vortex - Interaction Problem
NASA Astrophysics Data System (ADS)
Hsu, To-Ming
The problem of vortex-airfoil interaction has received considerable interest in the helicopter industry. This phenomenon has been shown to be a major source of noise, vibration, and structural fatigue in helicopter flight. Since unsteady flow is always associated with vortex shedding and movement of free vortices, the problem of vortex-airfoil interaction also serves as a basic building block in unsteady aerodynamics. A careful study of the vortex-airfoil interaction reveals the major effects of the vortices on the generation of unsteady aerodynamic forces, especially the lift. The present work establishes three different flow models to study the vortex-airfoil interaction problem: a theoretical model, an inviscid flow model, and a viscous flow model. In the first two models, a newly developed aerodynamic force theorem has been successfully applied to identify the contributions to unsteady forces from various vortical systems in the flow field. Through viscous flow analysis, different features of laminar interaction, turbulent attached interaction, and turbulent separated interaction are examined. Along with the study of the vortex-airfoil interaction problem, several new schemes are developed for inviscid and viscous flow solutions. New formulas are derived to determine the trailing edge flow conditions, such as flow velocity and direction, in unsteady inviscid flow. A new iteration scheme that is faster for higher Reynolds number is developed for solving the viscous flow problem.
NASA Astrophysics Data System (ADS)
Takei, Yasuko; Holtzman, Benjamin K.
2009-06-01
Viscous constitutive relations of partially molten rocks deforming in the regime of grain boundary (GB) diffusion creep are derived theoretically on the basis of microstructural processes at the grain scale. The viscous constitutive relation developed in this study is based on contiguity as an internal state variable, which enables us to take into account the detailed effects of grain-scale melt distribution observed in experiments. Compared to the elasticities derived previously for the same microstructural model, the viscosities are much more sensitive to the presence of melt and variations in contiguity. As explored in this series of three companion papers, this "contiguity" model predicts that a very small amount of melt (ϕ < 0.01) significantly reduces the bulk and shear viscosities. Furthermore, a large anisotropy in viscosity is produced by anisotropy in contiguity, which occurs in deforming partially molten rocks. These results have important implications for deformation and melt extraction at small melt fractions, as well as for shear-induced melt segregation. The viscous and elastic constitutive relations derived in terms of contiguity bridge microscopic grain-scale and macroscopic continuum properties. These constitutive relations are essential for investigating melt migration dynamics in a forward sense on the basis of the basic equations of two-phase dynamics and in an inverse sense on the basis of seismological observations.
Bubbling at high flow rates in inviscid and viscous liquids (slags)
NASA Astrophysics Data System (ADS)
Engh, T. Abel; Nilmani, M.
1988-02-01
The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of the bubble.