Sample records for include volatile organic

  1. Analysis of volatile organic compounds. [trace amounts of organic volatiles in gas samples

    NASA Technical Reports Server (NTRS)

    Zlatkis, A. (Inventor)

    1977-01-01

    An apparatus and method are described for reproducibly analyzing trace amounts of a large number of organic volatiles existing in a gas sample. Direct injection of the trapped volatiles into a cryogenic percolum provides a sharply defined plug. Applications of the method include: (1) analyzing the headspace gas of body fluids and comparing a profile of the organic volatiles with standard profiles for the detection and monitoring of disease; (2) analyzing the headspace gas of foods and beverages and comparing the profile with standard profiles to monitor and control flavor and aroma; and (3) analyses for determining the organic pollutants in air or water samples.

  2. Hydrogeologic and chemical data for the O-Field area, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Nemoff, P.R.; Vroblesky, D.A.

    1989-01-01

    O-Field, located at the Edgewood area of Aberdeen Proving Ground , Maryland, was periodically used for disposal of munitions, waste chemicals, and chemical-warfare agents from World War II through the 1950' s. This report includes various physical, geologic, chemical, and hydrologic data obtained from well-core, groundwater, surface water, and bottom-sediment sampling sites at and near the O-Field disposal area. The data are presented in tables and hydrographs. Three site-location maps are also included. Well-core data include lithologic logs for 11 well- cluster sites, grain-size distributions, various chemical characteristics, and confining unit characteristics. Groundwater data include groundwater chemistry, method blanks for volatile organic carbon, available data on volatile and base/neutral organics, and compilation of corresponding method blanks, chemical-warfare agents, explosive-related products, radionuclides, herbicides, and groundwater levels. Surface-water data include field-measured characteristics; concentrations of various inorganic constituents including arsenic; selected organic constituents with method blanks; detection limits of organics; and a compilation of information on corresponding acids, volatiles, and semivolatiles. Bottom- sediment data include inorganic properties and constituents; organic chemistry; detection limits for organic chemicals; a compilation of information on acids, volatiles, and semivolatiles; and method blanks corresponding to acids, volatiles, and semivolatiles. A set of 15 water- level hydrographs for the period March 1986 through September 1987 also is included in the report. (USGS)

  3. Water-quality assessment of south-central Texas: Occurrence and distribution of volatile organic compounds in surface water and ground water, 1983-94, and implications for future monitoring

    USGS Publications Warehouse

    Ging, P.B.; Judd, L.J.; Wynn, K.H.

    1997-01-01

    The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.

  4. User’s guide to the collection and analysis of tree cores to assess the distribution of subsurface volatile organic compounds

    USGS Publications Warehouse

    Vroblesky, Don A.

    2008-01-01

    Analysis of the volatile organic compound content of tree cores is an inexpensive, rapid, simple approach to examining the distribution of subsurface volatile organic compound contaminants. The method has been shown to detect several volatile petroleum hydrocarbons and chlorinated aliphatic compounds associated with vapor intrusion and ground-water contamination. Tree cores, which are approximately 3 inches long, are obtained by using an increment borer. The cores are placed in vials and sealed. After a period of equilibration, the cores can be analyzed by headspace analysis gas chromatography. Because the roots are exposed to volatile organic compound contamination in the unsaturated zone or shallow ground water, the volatile organic compound concentrations in the tree cores are an indication of the presence of subsurface volatile organic compound contamination. Thus, tree coring can be used to detect and map subsurface volatile organic compound contamination. For comparison of tree-core data at a particular site, it is important to maintain consistent methods for all aspects of tree-core collection, handling, and analysis. Factors affecting the volatile organic compound concentrations in tree cores include the type of volatile organic compound, the tree species, the rooting depth, ground-water chemistry, the depth to the contaminated horizon, concentration differences around the trunk related to variations in the distribution of subsurface volatile organic compounds, concentration differences with depth of coring related to volatilization loss through the bark and possibly other unknown factors, dilution by rain, seasonal influences, sorption, vapor-exchange rates, and within-tree volatile organic compound degradation.

  5. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  6. Volatility of source apportioned wintertime organic aerosol in the city of Athens

    NASA Astrophysics Data System (ADS)

    Louvaris, Evangelos E.; Florou, Kalliopi; Karnezi, Eleni; Papanastasiou, Dimitrios K.; Gkatzelis, Georgios I.; Pandis, Spyros N.

    2017-06-01

    The volatility distribution of ambient organic aerosol (OA) and its components was measured during the winter of 2013 in the city of Athens combining a thermodenuder (TD) and a High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). Positive Matrix Factorization (PMF) analysis of both the ambient and the thermodenuder AMS-spectra resulted in a four-factor solution for the OA, namely: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking OA (COA), and oxygenated OA (OOA). The thermograms of the four factors were analyzed and the corresponding volatility distributions were estimated using the volatility basis set (VBS). All four factors included compounds with a wide range of effective volatilities from 10 to less than 10-4 μg m-3 at 298 K. Almost 40% of the HOA consisted of low-volatility organic compounds (LVOCs) with the semi-volatile compounds (SVOCs) representing roughly 30%, while the remaining 30% consisted of extremely low volatility organic compounds (ELVOCs). BBOA was more volatile than the HOA factor on average, with 10% ELVOCs, 40% LVOCs, and 50% SVOCs. 10% of the COA consisted of ELVOCs, another 65% LVOCs, and 50% SVOCs. Finally, the OOA was the least volatile factor and included 40% ELVOCs, 25% LVOCs, and 35% SVOCs. Combining the volatility distributions and the O:C ratios of the various factors, we placed our results in the 2D-VBS analysis framework of Donahue et al. (2012). HOA and BBOA are in the expected region but also include an ELVOC component. COA is in similar range as HOA, but on average is half an order of magnitude more volatile. The OOA in these wintertime conditions had a moderate O:C ratio and included both semi-volatile and extremely low volatility components. The above results are sensitive to the assumed values of the effective vaporization enthalpy and the accommodation coefficient. A reduction of the accommodation coefficient by an order of magnitude or the reduction of the vaporization enthalpy by 20 kJ mol-1 results in the increase of the average volatility by half an order of magnitude.

  7. Architectural Coatings: National Volatile Organic Compounds Emission Standards

    EPA Pesticide Factsheets

    Read about the section 183(e) rule for volatile organic compounds for architectural coatings. Read the rule summary and history, find the code of federal regulations test, and additional documents, including compliance information.

  8. Studies of volatiles and organic materials in early terrestrial and present-day outer solar system environments

    NASA Technical Reports Server (NTRS)

    Sagan, Carl; Thompson, W. Reid; Chyba, Christopher F.; Khare, B. N.

    1991-01-01

    A review and partial summary of projects within several areas of research generally involving the origin, distribution, chemistry, and spectral/dielectric properties of volatiles and organic materials in the outer solar system and early terrestrial environments are presented. The major topics covered include: (1) impact delivery of volatiles and organic compounds to the early terrestrial planets; (2) optical constants measurements; (3) spectral classification, chemical processes, and distribution of materials; and (4) radar properties of ice, hydrocarbons, and organic heteropolymers.

  9. Estimates of the organic aerosol volatility in a boreal forest using two independent methods

    NASA Astrophysics Data System (ADS)

    Hong, Juan; Äijälä, Mikko; Häme, Silja A. K.; Hao, Liqing; Duplissy, Jonathan; Heikkinen, Liine M.; Nie, Wei; Mikkilä, Jyri; Kulmala, Markku; Prisle, Nønne L.; Virtanen, Annele; Ehn, Mikael; Paasonen, Pauli; Worsnop, Douglas R.; Riipinen, Ilona; Petäjä, Tuukka; Kerminen, Veli-Matti

    2017-03-01

    The volatility distribution of secondary organic aerosols that formed and had undergone aging - i.e., the particle mass fractions of semi-volatile, low-volatility and extremely low volatility organic compounds in the particle phase - was characterized in a boreal forest environment of Hyytiälä, southern Finland. This was done by interpreting field measurements using a volatility tandem differential mobility analyzer (VTDMA) with a kinetic evaporation model. The field measurements were performed during April and May 2014. On average, 40 % of the organics in particles were semi-volatile, 34 % were low-volatility organics and 26 % were extremely low volatility organics. The model was, however, very sensitive to the vaporization enthalpies assumed for the organics (ΔHVAP). The best agreement between the observed and modeled temperature dependence of the evaporation was obtained when effective vaporization enthalpy values of 80 kJ mol-1 were assumed. There are several potential reasons for the low effective enthalpy value, including molecular decomposition or dissociation that might occur in the particle phase upon heating, mixture effects and compound-dependent uncertainties in the mass accommodation coefficient. In addition to the VTDMA-based analysis, semi-volatile and low-volatility organic mass fractions were independently determined by applying positive matrix factorization (PMF) to high-resolution aerosol mass spectrometer (HR-AMS) data. The factor separation was based on the oxygenation levels of organics, specifically the relative abundance of mass ions at m/z 43 (f43) and m/z 44 (f44). The mass fractions of these two organic groups were compared against the VTDMA-based results. In general, the best agreement between the VTDMA results and the PMF-derived mass fractions of organics was obtained when ΔHVAP = 80 kJ mol-1 was set for all organic groups in the model, with a linear correlation coefficient of around 0.4. However, this still indicates that only about 16 % (R2) of the variation can be explained by the linear regression between the results from these two methods. The prospect of determining of extremely low volatility organic aerosols (ELVOAs) from AMS data using the PMF analysis should be assessed in future studies.

  10. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  11. A Monte-Carlo Analysis of Organic Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-04-01

    A newly developed box model, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under varied chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, all possible scenarios on Earth across the whole parameter space, including temperature, humidity, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model GISS ModelE as a module.

  12. 76 FR 27684 - Self-Regulatory Organizations; BATS Exchange, Inc.; Notice of Filing of a Proposed Rule Change To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Program Related to Trading Pauses Due to Extraordinary Market Volatility May 6, 2011. Pursuant to Section... Extraordinary Market Volatility,'' to include additional securities in the pilot by which such rule operates... Rule 11.18, entitled ``Trading Halts Due to Extraordinary Market Volatility,'' to include additional...

  13. HS-SPME analysis of volatile organic compounds of coniferous needle litter

    NASA Astrophysics Data System (ADS)

    Isidorov, V. A.; Vinogorova, V. T.; Rafałowski, K.

    The composition of volatile emission of Scots pine ( Pinus sylvestris) and spruce ( Picea exelsa) litter was studied by gas chromatography-mass spectrometry (GC-MS) and samples were collected by solid-phase microextraction (SPME) method. The list of identified compounds includes over 60 organic substances of different classes. It was established that volatile emission contain not only components of essential oils of pine and spruce needles but also a large number of organic compounds which are probably secondary metabolites of litter-decomposing fungi. They include lower carbonyl compounds and alcohols as well as products of terpene dehydration and oxidation. These data show that the processes of litter decomposition are an important source of reactive organic compounds under canopy of coniferous forests.

  14. FACTORS CONTROLLING THE EMISSIONS OF MONOTERPENES AND OTHER VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Plants contain a number of volatile organic compounds, including isoprene, mono- and sesquiterpenes, alcohols, aldehydes, ketones, and esters. ndividual plant species have unique combinations of these compounds; consequently, the emission pattern for each species is also specific...

  15. Development of a sparging technique for volatile emissions from potato (Solanum tuberosum)

    NASA Technical Reports Server (NTRS)

    Berdis, Elizabeth; Peterson, Barbara Vieux; Yorio, Neil C.; Batten, Jennifer; Wheeler, Raymond M.

    1993-01-01

    Accumulation of volatile emissions from plants grown in tightly closed growth chambers may have allelopathic or phytotoxic properties. Whole air analysis of a closed chamber includes both biotic and abiotic volatile emissions. A method for characterization and quantification of biogenic emissions solely from plantlets was developed to investigate this complex mixture of volatile organic compounds. Volatile organic compounds from potato (Solanum tuberosum L. cv. Norland) were isolated, separated and identified using an in-line configuration consisting of a purge and trap concentrator with sparging vessels coupled to a GC/MS system. Analyses identified plant volatile compounds: transcaryophyllene, alpha-humulene, thiobismethane, hexanal, cis-3-hexen-1-ol, and cis-3-hexenyl acetate.

  16. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  17. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John

    2013-07-01

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media,more » thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)« less

  18. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  19. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics.

    PubMed

    Ahearn, D G; Crow, S A; Simmons, R B; Price, D L; Mishra, S K; Pierson, D L

    1997-11-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  20. A Monte-Carlo Analysis of Organic Aerosol Volatility with Aerosol Microphysics

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S. E.

    2016-12-01

    A newly developed box model scheme, MATRIX-VBS, includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves aerosol mass and number concentrations and aerosol mixing state. The new scheme advanced the representation of organic aerosols in Earth system models by improving the traditional and simplistic treatment of organic aerosols as non-volatile and with a fixed size distribution. Further development includes adding the condensation of organics on coarse mode aerosols - dust and sea salt, thus making all organics in the system semi-volatile. To test and simplify the model, a Monte-Carlo analysis is performed to pin point which processes affect organics the most under which chemical and meteorological conditions. Since the model's parameterizations have the ability to capture a very wide range of conditions, from very clean to very polluted and for a wide range of meteorological conditions, all possible scenarios on Earth across the whole parameter space, including temperature, location, emissions and oxidant levels, are examined. The Monte-Carlo simulations provide quantitative information on the sensitivity of the newly developed model and help us understand how organics are affecting the size distribution, mixing state and volatility distribution at varying levels of meteorological conditions and pollution levels. In addition, these simulations give information on which parameters play a critical role in the aerosol distribution and evolution in the atmosphere and which do not, that will facilitate the simplification of the box model, an important step in its implementation in the global model.

  1. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  2. EXPOSURE TO VOLATILE ORGANIC COMPOUNDS MEASURED IN A SOURCE IMPACTED AIRSHED

    EPA Science Inventory

    A three-year exposure monitoring study is being conducted in a large city in the Midwestern U.S. The study is aimed at determining the factors influencing exposures to air pollutants of outdoor origin, including volatile organic compounds (VOCs) and particulate matter.

  3. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA

    EPA Science Inventory

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are repsonsible for a major portion of the compounds, including non-methane volatile organic compounds (N...

  4. A refined method for the calculation of the Non-Methane Volatile Organic Compound emission estimate from Domestic Solvent Usage in Ireland from 1992 to 2014 - A case study for Ireland

    NASA Astrophysics Data System (ADS)

    Barry, Stephen; O'Regan, Bernadette

    2016-08-01

    This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the Tier 1 approach currently used in the emission inventory, using activity data and emission factors unadjusted for volatility and adjusted for volatility. The unadjusted estimate is useful, because it demonstrates the failure to properly account for volatility can produce significantly over-estimated emissions from the Domestic Solvent Usage sector. Unadjusted emissions were found to be 30% lower than the EMEP/EEA (2013) Tier 1 period in 2014. Emissions were found to reduce a further 20.9% when the volatility of the organic compounds was included. This new method shows that member parties may be significantly overestimating emissions from Domestic Solvent Use including pesticides and further work should include refining organic compound content and the sectorial adjustment factor of products.

  5. 76 FR 74014 - Approval and Promulgation of Implementation Plans; Illinois; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-30

    ... Promulgation of Implementation Plans; Illinois; Volatile Organic Compound Emission Control Measures for Chicago... Act's (the Act) requirement that States revise their SIPs to include reasonably available control... rules are approvable because they are consistent with the Control Technique Guideline (CTG) documents...

  6. Polycyclic aromatic hydrocarbons and volatile organic compounds in biochar and biochar-amended soil: A review

    USDA-ARS?s Scientific Manuscript database

    Residual pollutants including polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and carbon(aceous) nanoparticles are inevitably generated during the pyrolysis of waste biomass, and remain on the solid co-product called biochar. Such pollutants could have adverse effects on ...

  7. On the link between hygroscopicity, volatility, and oxidation state of ambient and water-soluble aerosol in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Cerully, K. M.; Bougiatioti, A.; Hite, J. R., Jr.; Guo, H.; Xu, L.; Ng, N. L.; Weber, R.; Nenes, A.

    2014-12-01

    The formation of secondary organic aerosol (SOA) combined with the partitioning of semi-volatile organic components can impact numerous aerosol properties including cloud condensation nuclei (CCN) activity, hygroscopicity and volatility. During the summer 2013 Southern Oxidant and Aerosol Study (SOAS) field campaign in a rural site in the Southeastern United States, a suite of instruments including a CCN counter, a thermodenuder (TD) and a high resolution time-of-flight aerosol mass spectrometer (AMS) were used to measure CCN activity, aerosol volatility, composition and oxidation state. Particles were either sampled directly from ambient or through a Particle Into Liquid Sampler (PILS), allowing the investigation of the water-soluble aerosol component. Ambient aerosol exhibited size-dependent composition with larger particles being more hygroscopic. The hygroscopicity of thermally-denuded aerosol was similar between ambient and PILS-generated aerosol and showed limited dependence on volatilization. Results of AMS 3-factor Positive Matrix Factorization (PMF) analysis for the PILS-generated aerosol showed that the most hygroscopic components are most likely the most and the least volatile features of the aerosol. No clear relationship was found between organic hygroscopicity and oxygen-to-carbon ratio; in fact, Isoprene organic aerosol (Isoprene-OA) was found to be the most hygroscopic factor, while at the same time being the least oxidized and likely most volatile of all PMF factors. Considering the diurnal variation of each PMF factor and its associated hygroscopicity, Isoprene-OA and More Oxidized - Oxidized Oxygenated Organic Aerosol (MO-OOA) are the prime contributors to hygroscopicity and covary with Less Oxidized - Oxidized Oxygenated Organic Aerosol (LO-OOA) in a way that induces the observed diurnal invariance in total organic hygroscopicity. Biomass Burning Organic Aerosol (BBOA) contributed little to aerosol hygroscopicity, which is expected since there was little biomass burning activity during the sampling period examined.

  8. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...

  9. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...

  10. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...

  11. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...

  12. 40 CFR 60.112b - Standard for volatile organic compounds (VOC).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...

  13. MEASUREMENT OF VOLATILE ORGANIC COMPOUNDS BY THE US ENVIRONMENTAL PROTECTION AGENCY COMPENDIUM METHOD TO-17 - EVALUATION OF PERFORMANCE CRITERIA

    EPA Science Inventory

    An evaluation of performance criteria for US Environmental Protection Agency Compendium Method TO-17 for monitoring volatile organic compounds (VOCs) in air has been accomplished. The method is a solid adsorbent-based sampling and analytical procedure including performance crit...

  14. 76 FR 27622 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... SIP revision includes amendments to Maryland's regulation for Volatile Organic Compounds from Specific... amendments will reduce emissions of volatile organic compound (VOC) emissions from large appliance coating... second comment period. Any parties interested in commenting on this action should do so at this time...

  15. Novel collection method for volatile organic compounds (VOCs) from dogs

    USDA-ARS?s Scientific Manuscript database

    Host derived chemical cues are an important aspect of arthropod attraction to potential hosts. Host cues that act over longer distances include CO2, heat, and water vapor, while cues such as volatile organic compounds (VOCs) act over closer distances. Domestic dogs are important hosts for disease cy...

  16. The development of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Valentine, James R.; Trabanino, Rudy; Webb, Johanna V.; Sauer, Richard L.

    1991-01-01

    A breadboard concept of a volatile organics concentrator (VOC) is manufactured and tested for optimized water-quality analysis in a space environment. The VOC system is attached to a gas chromatograph/mass spectrometer to analyze the volatile chemicals relevant to the operation of Space Station Freedom. The preliminary tests include: (1) comparisons with analyses based on direct on-column injections of standards; (2) analyses of iodinated volatile organics; (3) comparisons of nitrogen vs helium as the chromatography carrier gas; and (4) measurements of collection efficiency. The VOC can analyze EPA method-624 analytes at comparable detection using flame-ionization detection and can analyze volatile iodinated compounds. The breadboard has good reproducibility and can use nitrogen as a carrier gas; good results are noted for the collection and concentration levels and for water removal.

  17. A volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Ehntholt, Daniel J.; Bodek, Itamar; Valentine, James R.; Trabanino, Rudy; Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    The process used to identify, select, and design an approach to the isolation and concentration of volatile organic compounds from a water sample prior to chemical analysis in a microgravity environment is discerned. The trade analysis leading to the recommended volatile organics concentrator (VOC) concept to be tested in a breadboard device is presented. The system covers the areas of gases, volatile separation from water, and water removal/gas chromatograph/mass spectrometer interface. Five options for potential use in the VOC and GC/MS system are identified and ranked, and also nine options are presented for separation of volatiles from the water phase. Seven options for use in the water removal/GC column and MS interface are also identified and included in the overall considerations. A final overall recommendation for breadboard VOC testing is given.

  18. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    PubMed

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  19. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water--A Review of Selected Literature

    USGS Publications Warehouse

    Lawrence, Stephen J.

    2006-01-01

    This report provides abridged information describing the most salient properties and biodegradation of 27 chlorinated volatile organic compounds detected during ground-water studies in the United States. This information is condensed from an extensive list of reports, papers, and literature published by the U.S. Government, various State governments, and peer-reviewed journals. The list includes literature reviews, compilations, and summaries describing volatile organic compounds in ground water. This report cross-references common names and synonyms associated with volatile organic compounds with the naming conventions supported by the International Union of Pure and Applied Chemistry. In addition, the report describes basic physical characteristics of those compounds such as Henry's Law constant, water solubility, density, octanol-water partition (log Kow), and organic carbon partition (log Koc) coefficients. Descriptions and illustrations are provided for natural and laboratory biodegradation rates, chemical by-products, and degradation pathways.

  20. Remarkable preservation of terpenoids and record of volatile signalling in plant-animal interactions from Miocene amber.

    PubMed

    Dutta, Suryendu; Mehrotra, Rakesh C; Paul, Swagata; Tiwari, R P; Bhattacharya, Sharmila; Srivastava, Gaurav; Ralte, V Z; Zoramthara, C

    2017-09-08

    Plants produce and release a large array of volatile organic compounds that play many ecological functions. These volatile plant metabolites serve as pollinator attractants, herbivore and pathogen repellents and protect plants from abiotic stresses. To date, the geological evolution of these organic compounds remains unknown. The preservation potential of these metabolites in the fossil record is very poor due to their low boiling points. Here we report a series of volatile sesquiterpenoids, including δ-elemene, α-copaene, β-elemene, β-caryophyllene, α-humulene, germacrene D, δ-cadiene and spathunenol, from early Miocene (~17 million year) amber from eastern India. The survival of these unaltered bioterpenoids can be attributed to the existence of extraordinary taphonomic conditions conducive to the preservation of volatile biomolecules through deep time. Furthermore, the occurrence of these volatiles in the early Miocene amber suggests that the plants from this period had evolved metabolic pathways to synthesize these organic molecules to play an active role in forest ecology, especially in plant-animal interactions.

  1. IN SITU MEASUREMENTS OF C2-C10 VOLATILE ORGANIC COMPOUNDS ABOVE A SIERRA NEVADA PONDEROSA PINE PLANTATION

    EPA Science Inventory

    A fully automated GC-FID system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, CA USA, 38 deg 53' ...

  2. A NONSTEADY-STATE ANALYTICAL MODEL TO PREDICT GASEOUS EMISSIONS OF VOLATILE ORGANIC COMPOUNDS FROM LANDFILLS. (R825689C072)

    EPA Science Inventory

    Abstract

    A general mathematical model is developed to predict emissions of volatile organic compounds (VOCs) from hazardous or sanitary landfills. The model is analytical in nature and includes important mechanisms occurring in unsaturated subsurface landfill environme...

  3. Infrared Spectroscopy of Wild 2 Particle Hypervelocity Tracks in Stardust Aerogel: Evidence for the presence of Volatile Organics in Comet Dust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajt, S; Sandford, S A; Flynn, G J

    2007-08-28

    Infrared spectroscopy maps of some tracks, made by cometary dust from 81P/Wild 2 impacting Stardust aerogel, reveal an interesting distribution of volatile organic material. Out of six examined tracks three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained excess volatile organic material, they were found to be -CH{sub 2}-rich. Off-normal particle tracks could indicate impacts by lower velocity particles that could have bounced off the Whipple shield, therefore carry off some contamination from it. However, this theory is not supported by data that show excess organic-rich material in normal andmore » off-normal particle tracks. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also include grains that contained little or none of this volatile organic component. This observation is consistent with the highly heterogeneous nature of the collected grains, as seen by a multitude of other analytical techniques. We propose that at least some of the volatile organic material might be of cometary origin based on supporting data shown in this paper. However, we also acknowledge the presence of carbon (primarily as -CH{sub 3}) in the original aerogel, which complicates interpretation of these results.« less

  4. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  5. MEASUREMENT OF FINE PARTICULATE MATTER (NONVOLATILE AND SEMIVOLATILE FRACTIONS) IN FRESNO, CA

    EPA Science Inventory

    Semi-volatile material, including ammonium nitrate and semi-volatile organic material, is often not measured by traditionally used sampling methods including the FRM and the R&P TEOM Monitor. An intensive sampling campaign was performed at the EPA Fresno, CA Supersite during D...

  6. 76 FR 27687 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... extraordinary market volatility (``Trading Pause'') in all stocks included in the S&P 500 Index (``S&P 500... mechanism to address extraordinary market volatility, if adopted, applies to the Circuit Breaker Stocks. See... a limit up-limit down mechanism to address extraordinary market volatility, if adopted, applies to...

  7. Volatile organic compound emmission rates from mixed deciduous and coniferous foest in Northern Wisconsin, USA

    Treesearch

    J. G. Isebrands; A. B. Guenther; P. Harley; D. Helmig; L. Klinger; L. Vierling; P. Zimmerman; C. Geron

    1999-01-01

    Biogenic emissions of volatile organic compounds {VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible...

  8. 75 FR 57823 - Self-Regulatory Organizations; NASDAQ OMX BX, Inc.; Notice of Filing and Immediate Effectiveness...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... the CBOE Volatility Index Futures to the Definition of a Futures Reference Asset in Chapter IV... products linked to CBOE Volatility Index Futures (``VIX Futures''). The text of the proposed rule change is... for the trading of options on Index-Linked Securities to include products linked to CBOE Volatility...

  9. 76 FR 27680 - Self-Regulatory Organizations; BATS Y-Exchange, Inc.; Notice of Filing of a Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-12

    ... Program Related to Trading Pauses Due to Extraordinary Market Volatility May 6, 2011. Pursuant to Section... Market Volatility,'' to include additional securities in the pilot by which such rule operates. The... Commission related to Rule 11.18, entitled ``Trading Halts Due to Extraordinary Market Volatility,'' to...

  10. Volatile organic compound hot-press emissions from southern pine furnish as a function of adhesive type

    Treesearch

    Wenlong Wang; Douglas J. Gardner; Melissa G. D. Baumann

    1999-01-01

    Three types of adhesives, urea-formaldehyde (UF) resin, phenol-formaldehyde (PF) resin, and polymeric methylene bis(phenyl isocyanate) (pMDI), were used for investigating the effect of pressing variables on volatile organic compound (VOC) emissions. The variables examined included press temperature and time, mat moisture content and resin content, and board density....

  11. GLOBAL INVENTORY OF VOLATILE COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    The report describes a global inventory anthropogenic volatile organic compound (VOC) emissions that includes a separate inventory for each of seven pollutant groups--paraffins, olefins, aromatics, formaldehyde, other aldehydes, other aromatics, and marginally reactive compounds....

  12. Volatile organic compounds detected in vapor-diffusion samplers placed in sediments along and near the shoreline at Allen Harbor Landfill and Calf Pasture Point, Davisville, Rhode Island, March-April 1998

    USGS Publications Warehouse

    Lyford, F.P.; Kliever, J.D.; Scott, Clifford

    1999-01-01

    Volatile organic compounds are present in ground water at the Allen Harbor Landfill and the Calf Pasture Point sites on the former Naval Construction Battalion Center in Davisville, R.I. Vapor-diffusion samplers were used at the two sites during March-April 1998 to identify possible discharge points for contaminants along the shore of Allen Harbor and in two wetland areas near the shore. Results from vapor-diffusion samplers will be used in conjunction with other site information to evaluate proposed ground-water monitoring programs. Volatile organic compounds were detected in 41 of 115 samplers placed along the shoreline at the Allen Harbor Landfill. Trichloroethylene was the principal volatile organic compound detected of eight target compounds. The highest vapor concentration measured exceeded 300,000 parts per billion by volume in an area where TCE was detected in groundwater from nearby monitoring wells. Other chemicals detected in vapor-diffusion samplers included tetrachloroethylene, toluene, and benzene. Concentrations of individual volatile organic compounds were less than 100 parts per billion by volume in most samplers. Volatile organic compounds, principally trichloroethylene, were detected in 7 of 30 samplers placed along the shoreline at Calf Pasture Point; the highest trichloroethylene concentration was 1,900 parts per billion by volume. A trace concentration of tetrachloroethylene was detected in one of the samplers. One of 24 samplers placed in two wetland areas near the shore (suspected discharge areas for ground-water containing volatile organic compounds) detected trichloroethylene at a vapor concentration of 14 parts per billion by volume.

  13. Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments: a box-model study based on the VBS scheme of the CAMx model (v5.40)

    NASA Astrophysics Data System (ADS)

    Ciarelli, Giancarlo; El Haddad, Imad; Bruns, Emily; Aksoyoglu, Sebnem; Möhler, Ottmar; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ˜ 7 m3 smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol-chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv), which is partitioned based on current published volatility distribution data. By comparing the NTVOC / OMsv ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ˜ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10-11 to 4. 0 × 10-11 cm3 molec-1 s-1. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol-1, which implies a yield increase of 0.03-0.06 % K-1 with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols.

  14. Biogenic volatile organic compounds in the Earth system.

    PubMed

    Laothawornkitkul, Jullada; Taylor, Jane E; Paul, Nigel D; Hewitt, C Nicholas

    2009-01-01

    Biogenic volatile organic compounds produced by plants are involved in plant growth, development, reproduction and defence. They also function as communication media within plant communities, between plants and between plants and insects. Because of the high chemical reactivity of many of these compounds, coupled with their large mass emission rates from vegetation into the atmosphere, they have significant effects on the chemical composition and physical characteristics of the atmosphere. Hence, biogenic volatile organic compounds mediate the relationship between the biosphere and the atmosphere. Alteration of this relationship by anthropogenically driven changes to the environment, including global climate change, may perturb these interactions and may lead to adverse and hard-to-predict consequences for the Earth system.

  15. Distribution of volatile organic chemicals in outdoor and indoor air

    NASA Technical Reports Server (NTRS)

    Shah, Jitendra J.; Singh, Hanwant B.

    1988-01-01

    The EPA volatile organic chemistry (VOC) national ambient data base (Shah, 1988) is discussed. The 320 chemicals included in the VOC data base are listed. The methods used to obtain the data are reviewed and the availability, accessibility, and operation of the data base are examined. Tables of the daily outdoor concentrations for 66 chemicals and the daily indoor concentrations for 35 chemicals are presented.

  16. Hyperparasitoids Use Herbivore-Induced Plant Volatiles to Locate Their Parasitoid Host

    PubMed Central

    Poelman, Erik H.; Bruinsma, Maaike; Zhu, Feng; Weldegergis, Berhane T.; Boursault, Aline E.; Jongema, Yde; van Loon, Joop J. A.; Vet, Louise E. M.; Harvey, Jeffrey A.; Dicke, Marcel

    2012-01-01

    Plants respond to herbivory with the emission of induced plant volatiles. These volatiles may attract parasitic wasps (parasitoids) that attack the herbivores. Although in this sense the emission of volatiles has been hypothesized to be beneficial to the plant, it is still debated whether this is also the case under natural conditions because other organisms such as herbivores also respond to the emitted volatiles. One important group of organisms, the enemies of parasitoids, hyperparasitoids, has not been included in this debate because little is known about their foraging behaviour. Here, we address whether hyperparasitoids use herbivore-induced plant volatiles to locate their host. We show that hyperparasitoids find their victims through herbivore-induced plant volatiles emitted in response to attack by caterpillars that in turn had been parasitized by primary parasitoids. Moreover, only one of two species of parasitoids affected herbivore-induced plant volatiles resulting in the attraction of more hyperparasitoids than volatiles from plants damaged by healthy caterpillars. This resulted in higher levels of hyperparasitism of the parasitoid that indirectly gave away its presence through its effect on plant odours induced by its caterpillar host. Here, we provide evidence for a role of compounds in the oral secretion of parasitized caterpillars that induce these changes in plant volatile emission. Our results demonstrate that the effects of herbivore-induced plant volatiles should be placed in a community-wide perspective that includes species in the fourth trophic level to improve our understanding of the ecological functions of volatile release by plants. Furthermore, these findings suggest that the impact of species in the fourth trophic level should also be considered when developing Integrated Pest Management strategies aimed at optimizing the control of insect pests using parasitoids. PMID:23209379

  17. Pollution data analysis and characteristics of volatile organic compounds in the environment

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Chěn; Hou, Lujian; Lv, Bo; WANG, Chén

    2018-06-01

    Volatile organic compounds (VOCs) have a wide range of sources and have a significant impact on the ecological environment and human health, which have attracted wide attention of many researchers. In this paper, the pollution characteristics of VOCs, the role of VOCs in atmospheric chemistry including OH reaction reactivity (LOH), Ozone Formation Potential (OFP) and SOA generation potential (SOAP), VOCs source apportionment were discussed and reviewed.

  18. Integrative Analyses of Nontargeted Volatile Profiling and Transcriptome Data Provide Molecular Insight into VOC Diversity in Cucumber Plants (Cucumis sativus)1[OPEN

    PubMed Central

    Wei, Guo; Tian, Peng; Zhang, Fengxia; Qin, Hao; Miao, Han; Chen, Qingwen; Hu, Zhongyi; Wang, Meijiao; Chen, Mingsheng

    2016-01-01

    Plant volatile organic compounds, which are generated in a tissue-specific manner, play important ecological roles in the interactions between plants and their environments, including the well-known functions of attracting pollinators and protecting plants from herbivores/fungi attacks. However, to date, there have not been reports of holistic volatile profiling of the various tissues of a single plant species, even for the model plant species. In this study, we qualitatively and quantitatively analyzed 85 volatile chemicals, including 36 volatile terpenes, in 23 different tissues of cucumber (Cucumis sativus) plants using solid-phase microextraction combined with gas chromatography-mass spectrometry. Most volatile chemicals were found to occur in a highly tissue-specific manner. The consensus transcriptomes for each of the 23 cucumber tissues were generated with RNA sequencing data and used in volatile organic compound-gene correlation analysis to screen for candidate genes likely to be involved in cucumber volatile biosynthetic pathways. In vitro biochemical characterization of the candidate enzymes demonstrated that TERPENE SYNTHASE11 (TPS11)/TPS14, TPS01, and TPS15 were responsible for volatile terpenoid production in the roots, flowers, and fruit tissues of cucumber plants, respectively. A functional heteromeric geranyl(geranyl) pyrophosphate synthase, composed of an inactive small subunit (type I) and an active large subunit, was demonstrated to play a key role in monoterpene production in cucumber. In addition to establishing a standard workflow for the elucidation of plant volatile biosynthetic pathways, the knowledge generated from this study lays a solid foundation for future investigations of both the physiological functions of cucumber volatiles and aspects of cucumber flavor improvement. PMID:27457123

  19. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice.

    PubMed

    Kelebek, Hasim; Selli, Serkan

    2011-08-15

    Orange flavour is the results of a natural combination of volatile compounds in a well-balanced system including sugars, acids and phenolic compounds. This paper reports the results of the first determination of aroma, organic acids, sugars, and phenolic components in Dortyol yerli orange juices. A total of 58 volatile components, including esters (nine), terpenes (19), terpenols (13), aldehydes (two), ketones (three), alcohols (four) and acids (eight) were identified and quantified in Dortyol yerli orange juice by GC-FID and GC-MS. Organic acids, sugars and phenolic compositions were also determined by HPLC methods. The major organic acid and sugar found were citric acid and sucrose, respectively. With regard to phenolics, 14 compounds were identified and quantified in the orange juice. Terpenes and terpenols were found as the main types of volatile components in Dortyol yerli orange juice. In terms of aroma contribution to orange juice, 12 compounds were prominent based on the odour activity values (OAVs). The highest OAV values were recorded for ethyl butanoate, nootkatone, linalool and DL-limonene. When we compare the obtained results of cv. Dortyol orange juice with the other orange juice varieties, the composition of Dortyol orange juice was similar to Valencia and Navel orange juices. Copyright © 2011 Society of Chemical Industry.

  20. Biological relevance of volatile organic compounds emitted during the pathogenic interactions between apple plants and Erwinia amylovora.

    PubMed

    Cellini, Antonio; Buriani, Giampaolo; Rocchi, Lorenzo; Rondelli, Elena; Savioli, Stefano; Rodriguez Estrada, Maria T; Cristescu, Simona M; Costa, Guglielmo; Spinelli, Francesco

    2018-01-01

    Volatile organic compounds emitted during the infection of apple (Malus pumila var. domestica) plants by Erwinia amylovora or Pseudomonas syringae pv. syringae were studied by gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry, and used to treat uninfected plants. Infected plants showed a disease-specific emission of volatile organic compounds, including several bio-active compounds, such as hexenal isomers and 2,3-butanediol. Leaf growth promotion and a higher resistance to the pathogen, expressed as a lower bacterial growth and migration in plant tissues, were detected in plants exposed to volatile compounds from E. amylovora-infected plants. Transcriptional analysis revealed the activation of salicylic acid synthesis and signal transduction in healthy plants exposed to volatiles produced by E. amylovora-infected neighbour plants. In contrast, in the same plants, salicylic acid-dependent responses were repressed after infection, whereas oxylipin metabolism was activated. These results clarify some metabolic and ecological aspects of the pathogenic adaptation of E. amylovora to its host. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  1. SEMI-VOLATILE SECONDARY AEROSOLS IN URBAN ATMOSPHERES: MEETING A MEASURED CHALLENGE

    EPA Science Inventory

    This presentation compares the results from various particle measurement methods as they relate to semi-volatile secondary aerosols in urban atmospheres. The methods include the PM2.5 Federal Reference Method; Particle Concentrator - BYU Organic Sampling System (PC-BOSS); the Re...

  2. Uncertainty in aerosol hygroscopicity resulting from semi-volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Goulden, Olivia; Crooks, Matthew; Connolly, Paul

    2018-01-01

    We present a novel method of exploring the effect of uncertainties in aerosol properties on cloud droplet number using existing cloud droplet activation parameterisations. Aerosol properties of a single involatile particle mode are randomly sampled within an uncertainty range and resulting maximum supersaturations and critical diameters calculated using the cloud droplet activation scheme. Hygroscopicity parameters are subsequently derived and the values of the mean and uncertainty are found to be comparable to experimental observations. A recently proposed cloud droplet activation scheme that includes the effects of co-condensation of semi-volatile organic compounds (SVOCs) onto a single lognormal mode of involatile particles is also considered. In addition to the uncertainties associated with the involatile particles, concentrations, volatility distributions and chemical composition of the SVOCs are randomly sampled and hygroscopicity parameters are derived using the cloud droplet activation scheme. The inclusion of SVOCs is found to have a significant effect on the hygroscopicity and contributes a large uncertainty. For non-volatile particles that are effective cloud condensation nuclei, the co-condensation of SVOCs reduces their actual hygroscopicity by approximately 25 %. A new concept of an effective hygroscopicity parameter is introduced that can computationally efficiently simulate the effect of SVOCs on cloud droplet number concentration without direct modelling of the organic compounds. These effective hygroscopicities can be as much as a factor of 2 higher than those of the non-volatile particles onto which the volatile organic compounds condense.

  3. 77 FR 52606 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... sets limits on the amount of volatile organic compounds (VOC) in architectural and industrial... Indiana SIP a new rule within Title 326, Article 8 ``Volatile Organic Compound Rules'' that limits the VOC...

  4. 40 CFR 63.4561 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... reduction by applying the volatile organic matter collection and recovery efficiency to the mass of organic... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. The device... volatile organic matter recovered. (2) For each solvent recovery system, determine the mass of volatile...

  5. Delineation of ground-water contamination using soil-gas analyses near Jackson, Tennessee

    USGS Publications Warehouse

    Lee, R.W.

    1991-01-01

    An investigation of the ground-water resources near Jackson, West Tennessee, was conducted during 1988-89. The study included determination of the occurrence of contaminants in the shallow aquifer using soil-gas analyses in the unsaturated zone. Between 1980 and 1988, an underground fuel-storage tank leaked about 3,000 gallons of unleaded fuel to the water table about 4 feet below land surface. A survey of soil gas using a gas chromatograph equipped with a photoionization detector showed concentrations of volatile organic compounds greater than IO, 000 parts per million near the leak These compounds were detected in an area about 240 feet long and 110 feet wide extending west from the point source. The chromatograms provided two distinct 'fingerprints' of volatile organic compounds. The first revealed the presence of benzene, toluene, andxylenes, which are constituents of unleaded fuel, in addition to other volatile compounds, in soil gas in the area near the leak The second did not reveal any detectable benzene, toluene, or xylenes in the soil-gas samples, but showed the presence of other unidentified volatile organic compounds in soil gas north of the storage tank. The distribution of total concentrations of volatile organic compounds in the unsaturated zone indicated that a second plume about 200 feet long and 90 feet wide was present about 100 feet north of the storage tank The second plume could have been the result of previous activities at this site during the 1950's or earlier. Activities at the site are believed to have included storage of solvents used at the nearby railyard and flushing of tanks containing tar onto a gravel-covered parking area. The delineation of these plumes has shown that soil-gas analyses can be a useful technique for identifying areas of contamination with volatile organic compounds in shallow water-table aquifers and may have broad applications in similar situations where the water table is relatively close to the surface.

  6. Volatile Metabolites

    PubMed Central

    Rowan, Daryl D.

    2011-01-01

    Volatile organic compounds (volatiles) comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals) both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites. PMID:24957243

  7. High Throughput Exposure Modeling of Semi-Volatile Chemicals in Articles of Commerce (SOT)

    EPA Science Inventory

    Chemical components of consumer products and articles of commerce such as carpet and clothing are key drivers of exposure in the near-field environment. These chemicals include semi-volatile organic compounds (SVOCs), some of which have been shown to alter endocrine functionality...

  8. METHOD OF LIQUID-LIQUID EXTRACTION OF BLOOD SURROGATES FOR ASSESSING HUMAN EXPOSURE TO JET FUEL

    EPA Science Inventory

    A baseline method of liquid?liquid extraction for assessing human exposure to JP-8 jet fuel was established by extracting several representative compounds ranging from very volatile to semi-volatile organic compounds, including benzene, toluene, nonane, decane, undecane, tridec...

  9. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  10. Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae

    NASA Astrophysics Data System (ADS)

    Gschwend, Philip M.; Macfarlane, John K.; Newman, Kathleen A.

    1985-03-01

    Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.

  11. Improved exposure estimation in soil screening and cleanup criteria for volatile organic chemicals.

    PubMed

    DeVaull, George E

    2017-09-01

    Soil cleanup criteria define acceptable concentrations of organic chemical constituents for exposed humans. These criteria sum the estimated soil exposure over multiple pathways. Assumptions for ingestion, dermal contact, and dust exposure generally presume a chemical persists in surface soils at a constant concentration level for the entire exposure duration. For volatile chemicals, this is an unrealistic assumption. A calculation method is presented for surficial soil criteria that include volatile depletion of chemical for these uptake pathways. The depletion estimates compare favorably with measured concentration profiles and with field measurements of soil concentration. Corresponding volatilization estimates compare favorably with measured data for a wide range of volatile and semivolatile chemicals, including instances with and without the presence of a mixed-chemical residual phase. Selected examples show application of the revised factors in estimating screening levels for benzene in surficial soils. Integr Environ Assess Manag 2017;13:861-869. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  12. Phytovolatilization of Organic Contaminants.

    PubMed

    Limmer, Matt; Burken, Joel

    2016-07-05

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale.

  13. US EPA's SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  14. NATURAL EMISSIONS OF NON-METHANE VOLATILE ORGANIC COMPOUNDS, CARBON MONOXIDE, AND OXIDES OF NITROGEN FROM NORTH AMERICA. (R825259)

    EPA Science Inventory

    Abstract

    The magnitudes, distributions, controlling processes and uncertainties associated with North American natural emissions of oxidant precursors are reviewed. Natural emissions are responsible for a major portion of the compounds, including non-methane volatile o...

  15. Measurements of particulate semi-volatile material

    NASA Astrophysics Data System (ADS)

    Pang, Yanbo

    2000-10-01

    A new innovative sampling system, PC-BOSS, was developed by the combination of particle concentrator and BOSS denuder techniques in response to the new EPA PM2.5 standard and to meet top research priorities for particulate matter that were identified by the National Research Council. The PC-BOSS (P_article C_oncentrator- B_righam Young University O_rganic S_ampling S_ystem) can accurately determine not only PM2.5 stable mass and species such as sulfate, but also particulate semi- volatile material. Several field comparison studies of the PC-BOSS with the EPA PM2.5 reference method and state-of-the-art fine particle measurement methods confirm the capability of the PC-BOSS to accurately determine particulate semi-volatile material, especially organic compounds. This is the first routine sampling system for the determination of both particulate semi-volatile inorganic and organic material. Two other denuder system samplers for the determination of PM2.5 total mass including semi-volatile material were also developed for PM2.5 research and exposure monitoring. Results of studies around the United States indicate that the EPA PM2.5 FRM (Federal Reference Method) under- measured PM2.5 mass by 20-30% compared to PC-BOSS results due to the loss of particulate nitrate and semi-volatile organic compounds during sampling. Organic material is mostly responsible for this under- measurement by the FRM. Using our new sampling system in epidemiological and exposure studies will be essential to providing answers to some top research priorities for particulate matter and promote a better PM2.5 standard for the protection of human health because some fractions of particulate semi-volatile organic compounds are toxic and are possibly responsible for health effects associated with exposure to particulate matter. The atmospheric chemistry of organic aerosols in the troposphere and stratosphere is still largely unknown because of the lack of detailed organic aerosol information. The importance of organic aerosols might also be underestimated because current data on organic aerosols in the troposphere and stratosphere were mostly obtained by traditional methods, like the FRM method. Using PC-BOSS to study organic aerosols in the troposphere and stratosphere will provide not only more but also more accurate information about organic aerosols, and significantly improve the understanding of the role of aerosols in global warming, ozone depletion, and atmospheric heterogenous chemistry.

  16. 75 FR 60013 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control of Volatile Organic Compounds Emissions... Maryland's Volatile Organic Compounds from Specific Processes Regulation. Maryland has adopted standards... (RACT) requirements for sources of volatile organic compounds (VOCs) covered by control techniques...

  17. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  18. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part I, Deployment, recovery, data interpretation, and quality control and assurance

    USGS Publications Warehouse

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  19. User's guide for polyethylene-based passive diffusion bag samplers to obtain volatile organic compound concentrations in wells. Part 2, Field tests

    USGS Publications Warehouse

    Vroblesky, Don A.

    2001-01-01

    Diffusion samplers installed in observation wells were found to be capable of yielding representative water samples for chlorinated volatile organic compounds. The samplers consisted of polyethylene bags containing deionized water and relied on diffusion of chlorinated volatile organic compounds through the polyethylene membrane. The known ability of polyethylene to transmit other volatile compounds, such as benzene and toluene, indicates that the samplers can be used for a variety of volatile organic compounds. In wells at the study area, the volatile organic compound concentrations in water samples obtained using the samplers without prior purging were similar to concentrations in water samples obtained from the respective wells using traditional purging and sampling approaches. The low cost associated with this approach makes it a viable option for monitoring large observation-well networks for volatile organic compounds.

  20. A Combined Kinetic and Volatility Basis Set Approach to Model Secondary Organic Aerosol from Toluene and Diesel Exhaust/Meat Cooking Mixtures

    NASA Astrophysics Data System (ADS)

    Parikh, H. M.; Carlton, A. G.; Zhang, H.; Kamens, R.; Vizuete, W.

    2011-12-01

    Secondary organic aerosol (SOA) is simulated for 6 outdoor smog chamber experiments using a SOA model based on a kinetic chemical mechanism in conjunction with a volatility basis set (VBS) approach. The experiments include toluene, a non-SOA-forming hydrocarbon mixture, diesel exhaust or meat cooking emissions and NOx, and are performed under varying conditions of relative humidity. SOA formation from toluene is modeled using a condensed kinetic aromatic mechanism that includes partitioning of lumped semi-volatile products in particle organic-phase and incorporates particle aqueous-phase chemistry to describe uptake of glyoxal and methylglyoxal. Modeling using the kinetic mechanism alone, along with primary organic aerosol (POA) from diesel exhaust (DE) /meat cooking (MC) fails to simulate the rapid SOA formation at the beginning hours of the experiments. Inclusion of a VBS approach with the kinetic mechanism to characterize the emissions and chemistry of complex mixture of intermediate volatility organic compounds (IVOCs) from DE/MC, substantially improves SOA predictions when compared with observed data. The VBS model includes photochemical aging of IVOCs and evaporation of POA after dilution. The relative contribution of SOA mass from DE/MC is as high as 95% in the morning, but substantially decreases after mid-afternoon. For high humidity experiments, aqueous-phase SOA fraction dominates the total SOA mass at the end of the day (approximately 50%). In summary, the combined kinetic and VBS approach provides a new and improved framework to semi-explicitly model SOA from VOC precursors in conjunction with a VBS approach that can be used on complex emission mixtures comprised with hundreds of individual chemical species.

  1. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation

    NASA Astrophysics Data System (ADS)

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P.; Moss, Joshua A.; Hunter, James F.; Nowak, John B.; Canagaratna, Manjula R.; Misztal, Pawel K.; Arata, Caleb; Roscioli, Joseph R.; Herndon, Scott T.; Onasch, Timothy B.; Lambe, Andrew T.; Jayne, John T.; Su, Luping; Knopf, Daniel A.; Goldstein, Allen H.; Worsnop, Douglas R.; Kroll, Jesse H.

    2018-02-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs—volatile oxidized gases and low-volatility particulate matter.

  2. Chemical evolution of atmospheric organic carbon over multiple generations of oxidation.

    PubMed

    Isaacman-VanWertz, Gabriel; Massoli, Paola; O'Brien, Rachel; Lim, Christopher; Franklin, Jonathan P; Moss, Joshua A; Hunter, James F; Nowak, John B; Canagaratna, Manjula R; Misztal, Pawel K; Arata, Caleb; Roscioli, Joseph R; Herndon, Scott T; Onasch, Timothy B; Lambe, Andrew T; Jayne, John T; Su, Luping; Knopf, Daniel A; Goldstein, Allen H; Worsnop, Douglas R; Kroll, Jesse H

    2018-04-01

    The evolution of atmospheric organic carbon as it undergoes oxidation has a controlling influence on concentrations of key atmospheric species, including particulate matter, ozone and oxidants. However, full characterization of organic carbon over hours to days of atmospheric processing has been stymied by its extreme chemical complexity. Here we study the multigenerational oxidation of α-pinene in the laboratory, characterizing products with several state-of-the-art analytical techniques. Although quantification of some early generation products remains elusive, full carbon closure is achieved (within measurement uncertainty) by the end of the experiments. These results provide new insights into the effects of oxidation on organic carbon properties (volatility, oxidation state and reactivity) and the atmospheric lifecycle of organic carbon. Following an initial period characterized by functionalization reactions and particle growth, fragmentation reactions dominate, forming smaller species. After approximately one day of atmospheric aging, most carbon is sequestered in two long-lived reservoirs-volatile oxidized gases and low-volatility particulate matter.

  3. Analysis of organic volatile flavor compounds in fermented stinky tofu using SPME with different fiber coatings.

    PubMed

    Liu, Yuping; Miao, Zhiwei; Guan, Wei; Sun, Baoguo

    2012-03-26

    The organic volatile flavor compounds in fermented stinky tofu (FST) were studied using SPME-GC/MS. A total of 39 volatile compounds were identified, including nine esters, seven alcohols, five alkenes, four sulfides, three heterocycles, three carboxylic acids, three ketones, two aldehydes, one phenol, one amine and one ether. These compounds were determined by MS, and conformed by comparison of the retention times of the separated constituents with those of authentic samples and by comparison of retention indexes (RIs) of separated constituents with the RIs reported in the literature. The predominant volatile compound in FST was indole, followed by dimethyl trisulfide, phenol, dimethyl disulfide and dimethyl tetrasulfide. In order to find a better extraction time, the extraction times was optimized for each type of SPME fiber; the results show that the best extraction time for Carboxen/PDMS is 60 min, for PDMS/DVB 30 min, for DVB/CAR/PDMS 60 min and for PDMS 75 min. Of the four fibers used in this work, Carboxen/PDMS is found to be the most suitable to extract the organic volatile flavor compounds in fermented stinky tofu.

  4. Increase in volatilization of organic compounds using air sparging through addition in alcohol in a soil-water system.

    PubMed

    Chao, Huan-Ping; Hsieh, Lin-Han Chiang; Tran, Hai Nguyen

    2018-02-15

    This study developed a novel method to promote the remediation efficiency of air sparging. According to the enhanced-volatilization theory presented in this study, selected alcohols added to groundwater can highly enhance the volatilization amounts of organic compounds with high Henry's law constants. In this study, the target organic compounds consisted of n-hexane, n-heptane, benzene, toluene, 1,1,2-trichloroethane, and tetrachloroethene. n-pentanol, n-hexanol, and n-heptanol were used to examine the changes in the volatilization amounts of organic compounds in the given period. Two types of soils with high and low organic matter were applied to evaluate the transport of organic compounds in the soil-water system. The volatilization amounts of the organic compounds increased with increasing alcohol concentrations. The volatilization amounts of the test organic compounds exhibited a decreasing order: n-heptanol>n-hexanol>n-pentanol. When 10mg/L n-heptanol was added to the system, the maximum volatilization enhancement rate was 18-fold higher than that in distilled water. Samples of soil with high organic matter might reduce the volatilization amounts by a factor of 5-10. In the present study, the optimal removal efficiency for aromatic compounds was approximately 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Volatile chemical products emerging as largest petrochemical source of urban organic emissions

    NASA Astrophysics Data System (ADS)

    McDonald, Brian C.; de Gouw, Joost A.; Gilman, Jessica B.; Jathar, Shantanu H.; Akherati, Ali; Cappa, Christopher D.; Jimenez, Jose L.; Lee-Taylor, Julia; Hayes, Patrick L.; McKeen, Stuart A.; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R.; Isaacman-VanWertz, Gabriel; Goldstein, Allen H.; Harley, Robert A.; Frost, Gregory J.; Roberts, James M.; Ryerson, Thomas B.; Trainer, Michael

    2018-02-01

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)—including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products—now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols.

  6. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  7. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  8. Comprehensive characterization of atmospheric organic carbon at a forested site

    NASA Astrophysics Data System (ADS)

    Hunter, James F.; Day, Douglas A.; Palm, Brett B.; Yatavelli, Reddy L. N.; Chan, Arthur W. H.; Kaser, Lisa; Cappellin, Luca; Hayes, Patrick L.; Cross, Eben S.; Carrasquillo, Anthony J.; Campuzano-Jost, Pedro; Stark, Harald; Zhao, Yunliang; Hohaus, Thorsten; Smith, James N.; Hansel, Armin; Karl, Thomas; Goldstein, Allen H.; Guenther, Alex; Worsnop, Douglas R.; Thornton, Joel A.; Heald, Colette L.; Jimenez, Jose L.; Kroll, Jesse H.

    2017-10-01

    Atmospheric organic compounds are central to key chemical processes that influence air quality, ecological health, and climate. However, longstanding difficulties in predicting important quantities such as organic aerosol formation and oxidant lifetimes indicate that our understanding of atmospheric organic chemistry is fundamentally incomplete, probably due in part to the presence of organic species that are unmeasured using standard analytical techniques. Here we present measurements of a wide range of atmospheric organic compounds--including previously unmeasured species--taken concurrently at a single site (a ponderosa pine forest during summertime) by five state-of-the-art mass spectrometric instruments. The combined data set provides a comprehensive characterization of atmospheric organic carbon, covering a wide range in chemical properties (volatility, oxidation state, and molecular size), and exhibiting no obvious measurement gaps. This enables the first construction of a measurement-based local organic budget, highlighting the high emission, deposition, and oxidation fluxes in this environment. Moreover, previously unmeasured species, including semivolatile and intermediate-volatility organic species (S/IVOCs), account for one-third of the total organic carbon, and (within error) provide closure on both OH reactivity and potential secondary organic aerosol formation.

  9. Biomimicry of volatile-based microbial control for managing emerging fungal pathogens.

    PubMed

    Gabriel, K T; Joseph Sexton, D; Cornelison, C T

    2018-05-01

    Volatile organic compounds (VOCs) are known to be produced by a wide range of micro-organisms and for a number of purposes. Volatile-based microbial inhibition in environments such as soil is well-founded, with numerous antimicrobial VOCs having been identified. Inhibitory VOCs are of interest as microbial control agents, as low concentrations of gaseous VOCs can elicit significant antimicrobial effects. Volatile organic compounds are organic chemicals typically characterized as having low molecular weight, low solubility in water, and high vapour pressure. Consequently, VOCs readily evaporate to the gaseous phase at standard temperature and pressure. This contact-independent antagonism presents unique advantages over traditional, contact-dependent microbial control methods, including increased surface exposure and reduced environmental persistence. This approach has been the focus of our recent research, with positive results suggesting it may be particularly promising for the management of emerging fungal pathogens, such as the causative agents of white-nose syndrome of bats and snake fungal disease, which are difficult or impossible to treat using traditional approaches. Here, we review the history of volatile-based microbial control, discuss recent progress in formulations that mimic naturally antagonistic VOCs, outline the development of a novel treatment device, and highlight areas where further work is needed to successfully deploy VOCs against existing and emerging fungal pathogens. © 2017 The Society for Applied Microbiology.

  10. Surface microlayer enrichment of volatile organic compounds and semi-volatile organic compounds in drinking water source.

    PubMed

    Huang, Zhi; Zhou, Wen; Yu, Ya-juan; Zhang, Ai-qian; Han, Shuo-kui; Wang, Lian-sheng

    2004-01-01

    Enrichment of volatile organic compounds(VOC) and semi-volatility organic compounds(SVOC) in surface microlayer(SM) of three drinking water sources were studied. The enrichment factor(EFs) were 0.67 to 13.37 and 0.16 to 136, respectively. The results showed some VOC and most SVOC could enrich in SM. Some EFs of SVOC was quite high. Suspension and temperature could affect EFs of SVOC, slim wind and water movement do not destroy enrichment of organic in SM.

  11. A large source of low-volatility secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.

    2014-02-01

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  12. A large source of low-volatility secondary organic aerosol.

    PubMed

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  13. Diffusivity measurements of volatile organics in levitated viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich K.; Luo, Beiping; Peter, Thomas

    2017-07-01

    Field measurements indicating that atmospheric secondary organic aerosol (SOA) particles can be present in a highly viscous, glassy state have spurred numerous studies addressing low diffusivities of water in glassy aerosols. The focus of these studies is on kinetic limitations of hygroscopic growth and the plasticizing effect of water. In contrast, much less is known about diffusion limitations of organic molecules and oxidants in viscous matrices. These may affect atmospheric chemistry and gas-particle partitioning of complex mixtures with constituents of different volatility. In this study, we quantify the diffusivity of a volatile organic in a viscous matrix. Evaporation of single particles generated from an aqueous solution of sucrose and small amounts of volatile tetraethylene glycol (PEG-4) is investigated in an electrodynamic balance at controlled relative humidity (RH) and temperature. The evaporative loss of PEG-4 as determined by Mie resonance spectroscopy is used in conjunction with a radially resolved diffusion model to retrieve translational diffusion coefficients of PEG-4. Comparison of the experimentally derived diffusivities with viscosity estimates for the ternary system reveals a breakdown of the Stokes-Einstein relationship, which has often been invoked to infer diffusivity from viscosity. The evaporation of PEG-4 shows pronounced RH and temperature dependencies and is severely depressed for RH ≲ 30 %, corresponding to diffusivities < 10-14 cm2 s-1 at temperatures < 15 °C. The temperature dependence is strong, suggesting a diffusion activation energy of about 300 kJ mol-1. We conclude that atmospheric volatile organic compounds can be subject to severe diffusion limitations in viscous organic aerosol particles. This may enable an important long-range transport mechanism for organic material, including pollutant molecules such as polycyclic aromatic hydrocarbons (PAHs).

  14. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE PAGES

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.; ...

    2016-02-02

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  15. Speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) in a pine forest during BEACHON-RoMBAS 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, A. W. H.; Kreisberg, N. M.; Hohaus, T.

    Understanding organic composition of gases and particles is essential to identifying sources and atmospheric processing leading to organic aerosols (OA), but atmospheric chemical complexity and the analytical techniques available often limit such analysis. Here we present speciated measurements of semivolatile and intermediate volatility organic compounds (S/IVOCs) using a novel dual-use instrument (SV-TAG-AMS) deployed at Manitou Forest, CO, during the Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H 2O, Organics & Nitrogen – Rocky Mountain Biogenic Aerosol Study (BEACHON-RoMBAS) 2011 campaign. This instrument provides on-line speciation of ambient organic compounds with 2 h time resolution. The species in this volatility range aremore » complex in composition, but their chemical identities reveal potential sources. Observed compounds of biogenic origin include sesquiterpenes with molecular formula C 15H 24 (e.g., β-caryophyllene and longifolene), which were most abundant at night. A variety of other biogenic compounds were observed, including sesquiterpenoids with molecular formula C 15H 22, abietatriene and other terpenoid compounds. Many of these compounds have been identified in essential oils and branch enclosure studies but were observed in ambient air for the first time in our study. Semivolatile polycyclic aromatic hydrocarbons (PAHs) and alkanes were observed with highest concentrations during the day and the dependence on temperature suggests the role of an evaporative source. Using statistical analysis by positive matrix factorization (PMF), we classify observed S/IVOCs by their likely sources and processes, and characterize them based on chemical composition. The total mass concentration of elutable S/IVOCs was estimated to be on the order of 0.7 µg m –3 and their volatility distributions are estimated for modeling aerosol formation chemistry.« less

  16. Generation of Volatile Organic Compounds from Dissolved Organic Matter in far North Atlantic Surface Ocean Waters.

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2005-12-01

    The photochemical degradation of dissolved organic matter (DOM) in surface ocean waters is thought to be a source of volatile organic compounds (VOC) (including non-methane hydrocarbons and low MW carbonyl compounds) to the remote marine troposphere. We report on the characterization of DOM sampled at over 30 sites in the far North Atlantic (Greenland and Norwegian seas, Fram strait) during the summer of 2004, and on experiments to identify factors responsible for the photochemical generation of VOCs in these samples. The results will be discussed in the context of VOC profiles of whole air samples taken to match the seawater samples in time and space.

  17. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  18. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  19. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake... or label product. Solvent applied in the coating means all organic solvent contained in the adhesive...

  20. 40 CFR 60.441 - Definitions and symbols.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... = the weight fraction of organics applied of each coating (i) applied during a calendar month as.... Fugitive volatile organic compounds means any volatile organic compounds which are emitted from the coating... capture fugitive volatile organic compounds. Oven means a chamber which uses heat or irradiation to bake...

  1. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  2. 40 CFR 63.3961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...

  3. 40 CFR 63.3961 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... balances, calculate the organic HAP emission reduction by applying the volatile organic matter collection... device that indicates the cumulative amount of volatile organic matter recovered by the solvent recovery....0 percent of the mass of volatile organic matter recovered. (2) For each solvent recovery system...

  4. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  5. 40 CFR 63.4351 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the organic HAP emissions reductions by applying the volatile organic matter collection and recovery... cumulative amount of volatile organic matter recovered by the solvent recovery system for the compliance... of the mass of volatile organic matter recovered. (ii) For each solvent recovery system, determine...

  6. Combined Volatolomics for Monitoring of Human Body Chemistry

    PubMed Central

    Broza, Yoav Y.; Zuri, Liat; Haick, Hossam

    2014-01-01

    Analysis of volatile organic compounds (VOCs) is a promising approach for non-invasive, fast and potentially inexpensive diagnostics. Here, we present a new methodology for profiling the body chemistry by using the volatile fraction of molecules in various body fluids. Using mass spectrometry and cross-reactive nanomaterial-based sensors array, we demonstrate that simultaneous VOC detection from breath and skin would provide complementary, non-correlated information of the body's volatile metabolites profile. Eventually with further wide population validation studies, such a methodology could provide more accurate monitoring of pathological changes compared to the information provided by a single body fluid. The qualitative and quantitative methods presented here offers a variety of options for novel mapping of the metabolic properties of complex organisms, including humans. PMID:24714440

  7. Combined volatolomics for monitoring of human body chemistry.

    PubMed

    Broza, Yoav Y; Zuri, Liat; Haick, Hossam

    2014-04-09

    Analysis of volatile organic compounds (VOCs) is a promising approach for non-invasive, fast and potentially inexpensive diagnostics. Here, we present a new methodology for profiling the body chemistry by using the volatile fraction of molecules in various body fluids. Using mass spectrometry and cross-reactive nanomaterial-based sensors array, we demonstrate that simultaneous VOC detection from breath and skin would provide complementary, non-correlated information of the body's volatile metabolites profile. Eventually with further wide population validation studies, such a methodology could provide more accurate monitoring of pathological changes compared to the information provided by a single body fluid. The qualitative and quantitative methods presented here offers a variety of options for novel mapping of the metabolic properties of complex organisms, including humans.

  8. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris

    NASA Astrophysics Data System (ADS)

    Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J. M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M.

    2018-05-01

    Exhaust particle emissions are mostly made of black carbon and/or organic compounds, with some of these organic compounds existing in both the gas and particle phases. Although emissions of volatile organic compounds (VOC) are usually measured at the exhaust, emissions in the gas phase of lower volatility compounds (POAvapor) are not. However, these gas-phase emissions may be oxidised after emission and enhance the formation of secondary organic aerosols (SOA). They are shown here to contribute to most of the SOA formation in Central Paris. POAvapor emissions are usually estimated from primary organic aerosol emissions in the particle phase (POA). However, they could also be estimated from VOC emissions for both gasoline and diesel vehicles using previously published measurements from chamber measurements. Estimating POAvapor from VOC emissions and ageing exhaust emissions with a simple model included in the Polyphemus air-quality platform compare well to measurements of SOA formation performed in chamber experiments. Over Greater Paris, POAvapor emissions estimated using POA and VOC emissions are compared using the HEAVEN bottom-up traffic emissions model. The impact on the simulated atmospheric concentrations is then assessed using the Polyphemus/Polair3D chemistry-transport model. Estimating POAvapor emissions from VOC emissions rather than POA emissions lead to lower emissions along motorway axes (between -50% and -70%) and larger emissions in urban areas (up to between +120% and +140% in Central Paris). The impact on total organic aerosol concentrations (gas plus particle) is lower than the impact on emissions: between -8% and 25% along motorway axes and in urban areas respectively. Particle-phase organic concentrations are lower when POAvapor emissions are estimated from VOC than POA emissions, even in Central Paris where the total organic aerosol concentration is higher, because of different assumptions on the emission volatility distribution, stressing the importance of characterizing not only the emission strength, but also the emission volatility distribution.

  9. Identification and characterization of terpene synthases potentially involved in the formation of volatile terpenes in carrot (Daucus carota L.) roots

    USDA-ARS?s Scientific Manuscript database

    Plants produce numerous volatile organic compounds, which are important in determining the quality and nutraceutical properties of fruit and root crops, including the taste and the aroma of carrots (Daucus carota L.). A combined chemical, biochemical and molecular study was conducted to evaluate the...

  10. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  11. Development of sampling method and chromatographic analysis of volatile organic compounds emitted from human skin.

    PubMed

    Grabowska-Polanowska, Beata; Miarka, Przemysław; Skowron, Monika; Sułowicz, Joanna; Wojtyna, Katarzyna; Moskal, Karolina; Śliwka, Ireneusz

    2017-10-01

    The studies on volatile organic compounds emitted from skin are an interest for chemists, biologists and physicians due to their role in development of different scientific areas, including medical diagnostics, forensic medicine and the perfume design. This paper presents a proposal of two sampling methods applied to skin odor collection: the first one uses a bag of cellulose film, the second one, using cellulose sachets filled with active carbon. Volatile organic compounds were adsorbed on carbon sorbent, removed via thermal desorption and analyzed using gas chromatograph with mass spectrometer. The first sampling method allowed identification of more compounds (52) comparing to the second one (30). Quantitative analyses for acetone, butanal, pentanal and hexanal were done. The skin odor sampling method using a bag of cellulose film, allowed the identification of many more compounds when compared with the method using a sachet filled with active carbon.

  12. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Donahue, N. M.; Adams, P. J.; Robinson, A. L.

    2012-10-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of unspeciated low-volatility organics (semi-volatile and intermediate volatile organic compounds) emitted by combustion systems. It is formulated using the volatility basis-set approach. Unspeciated low-volatility organics are classified by volatility and then allowed to react with the hydroxyl radical. The new methodology allows for larger reductions in volatility with each oxidation step than previous volatility basis set models, which is more consistent with the addition of common functional groups and similar to those used by traditional SOA models. The methodology is illustrated using data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. In those experiments, photo-oxidation formed a significant amount of SOA, much of which could not be explained based on the emissions of traditional speciated precursors; we refer to the unexplained SOA as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of unspeciated low-volatility organics measured using sorbents. We show that the parameterization proposed by Robinson et al. (2007) is unable to explain the timing of the NT-SOA formation in the aircraft experiments because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast the new method better reproduces the NT-SOA formation. The NT-SOA yields estimated for the unspeciated low-volatility organic emissions in aircraft exhaust are similar to literature data for large n-alkanes and other low-volatility organics. The estimated yields vary with fuel composition (Jet Propellent-8 versus Fischer-Tropsch) and engine load (ground idle versus non-ground idle). The framework developed here is suitable for modeling SOA formation from emissions from other combustion systems.

  13. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  14. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  15. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... volatile organic matter collection and recovery efficiency to the mass of organic HAP contained in the... indicates the cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for...

  16. Next Generation Offline Approaches to Trace Gas-Phase Organic Compound Speciation: Sample Collection and Analysis

    NASA Astrophysics Data System (ADS)

    Sheu, R.; Marcotte, A.; Khare, P.; Ditto, J.; Charan, S.; Gentner, D. R.

    2017-12-01

    Intermediate-volatility and semi-volatile organic compounds (I/SVOCs) are major precursors to secondary organic aerosol, and contribute to tropospheric ozone formation. Their wide volatility range, chemical complexity, behavior in analytical systems, and trace concentrations present numerous hurdles to characterization. We present an integrated sampling-to-analysis system for the collection and offline analysis of trace gas-phase organic compounds with the goal of preserving and recovering analytes throughout sample collection, transport, storage, and thermal desorption for accurate analysis. Custom multi-bed adsorbent tubes are used to collect samples for offline analysis by advanced analytical detectors. The analytical instrumentation comprises an automated thermal desorption system that introduces analytes from the adsorbent tubes into a gas chromatograph, which is coupled with an electron ionization mass spectrometer (GC-EIMS) and other detectors. In order to optimize the collection and recovery for a wide range of analyte volatility and functionalization, we evaluated a variety of commercially-available materials, including Res-Sil beads, quartz wool, glass beads, Tenax TA, and silica gel. Key properties for optimization include inertness, versatile chemical capture, minimal affinity for water, and minimal artifacts or degradation byproducts; these properties were assessed with a diverse mix of traditionally-measured and functionalized analytes. Along with a focus on material selection, we provide recommendations spanning the entire sampling-and-analysis process to improve the accuracy of future comprehensive I/SVOC measurements, including oxygenated and other functionalized I/SVOCs. We demonstrate the performance of our system by providing results on speciated VOCs-SVOCs from indoor, outdoor, and chamber studies that establish the utility of our protocols and pave the way for precise laboratory characterization via a mix of detection methods.

  17. TEMPORAL VARIABILITY MEASUREMENT OF SPECIFIC VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Methodology was developed to determine unambiguously trace levels of volatile organic compounds as they vary in concentration over a variety of time scales. his capability is important because volatile organic compounds (VOCs) are usually measure by time-integrative techniques th...

  18. Bioavailability of Volatile Organics and Other Hydrocarbons from Environmental Media: Ingestion in Drinking Water.

    DTIC Science & Technology

    1992-05-19

    NO. 61102F 23-12 A4 1 N/A I 1 . TITLE (Include Security Classification) Bioavailability of Volatile Organics and Other Hydrocarbons from Environmental...450 isozymes necessary for metabolic activation of CCI4 to cytotoxic metabolites. 92-15622 I 1 I1 1 111 I2II l i IIl 926 I BIOAVAILAEILITY OF...Research By 1 Bolling Air Force Base, DC 20332-6448 Dist ibutionl Dist I. OVERALL OBJECTIVE AND SPECIFIC AIMS The OVERALL OBJECTIVE of the project was to

  19. FDATMOS16 non-linear partitioning and organic volatility distributions in urban aerosols

    DOE PAGES

    Madronich, Sasha; Kleinman, Larry; Conley, Andrew; ...

    2015-12-17

    Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less

  20. Volatility of organic aerosol and its components in the Megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, A.; Karnezi, E.; Kostenidou, E.; Hildebrandt, L.; Psichoudaki, M.; Engelhart, G. J.; Lee, B.-H.; Crippa, M.; Prévôt, A. S. H.; Baltensperger, U.; Pandis, S. N.

    2015-08-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 μg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs and ELVOCs, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the O : C ratio and volatility distributions of the various factors, we incorporated our results into the two-dimensional volatility basis set (2D-VBS). Our results show that the factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components. Agreement between our findings and previous publications is encouraging for our understanding of the evolution of atmospheric OA.

  1. BIOCONCENTRATION FACTORS FOR VOLATILE ORGANIC COMPOUNDS IN VEGETATION

    EPA Science Inventory

    Samples of air and leaves were taken at the University of Nevada-Las Vegas campus and analyzed for volatile organic compounds using vacuum distillation coupled with gas chromatography/mass spectrometry. The data were used to estimate the bioconcentration of volatile organic compo...

  2. A Novel Inlet System for On-line Chemical Analysis of Semi-Volatile Submicron Particulate Matter

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Eichler, P.; Müller, M.

    2015-12-01

    Semi-volatile organic molecules bound to particles are difficult to measure, especially if they are reactive in nature. Any technique based on aerosol collection onto a substrate generates sampling artifacts due to surface reactions and ad- and desorption of semi-volatile analytes. On-line sampling without sample pre-collection, as for example implemented in the AMS, has greatly reduced many sampling artifacts. AMS measurements of organics do, however, suffer from the drawback that molecular-level information is, in most cases, lost during hard ionization events. As a consequence, only little speciated and thus mechanistically informative data on organic matter is obtained. PTR-ToF-MS is a well-established on-line measurement technique for gas-phase organics. Soft ionization via gas-phase hydronium ions preserves, to a large extent, molecular-level information and thus allows identifying organic compounds at an elemental composition level. We have recently developed a particle inlet system for PTR-ToF-MS instruments (doi:10.5194/amt-8-1353-2015). The CHARON ("Chemical Analysis of Aerosol On-line") inlet consists of a gas-phase denuder, an aerodynamic lens and a thermodesorption unit. In its latest version, it includes a heatable tube upstream of the denuder to form a thermodenuder. Over the last year, the CHARON PTR-ToF-MS system has been successfully used in a series of measurement campaigns to characterize i) POA emitted from a marine diesel engine, ii) SOA generated from the photo-oxidation of toluene, iii) SOA generated from the photo-oxidation of selected amines, iv) ambient aerosol in two major European cities and v) SOA generated from the photo-oxidation of biogenic VOCs. These measurements have demonstrated that the CHARON PTR-ToF-MS system i) generates on-line and real-time elemental composition information of semi-volatile organics in submicron particles (both POA and SOA), ii) detects 80-100 % of the organic mass as measured by the AMS and iii) generates volatility information of semi-volatile organics at an elemental composition level. Selected application examples will be shown.

  3. 40 CFR 52.2420 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enforceable, Implementation Plan, Potential to Emit, State Enforceable, Volatile Organic Compound 4/1/96 3/12..., Regulation of the Board, These regulations. Terms Revised—Good Engineering Practice, Person, Volatile organic... pressure, Vapor pressure, Volatile organic compounds. Terms Removed: Air Quality Maintenance Area. 5-10-20...

  4. 75 FR 2090 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... automobile refinishing rule for approval into its State Implementation Plan (SIP). These rule revisions extend the applicability of Indiana's approved volatile organic compound (VOC) automobile refinishing...

  5. Quantity and quality of stormwater collected from selected stormwater outfalls at industrial sites, Fort Gordon, Georgia, 2011

    USGS Publications Warehouse

    Nagle, Doug D.; Guimaraes, Wladmir B.

    2012-01-01

    An assessment of the quantity and quality of stormwater runoff associated with industrial activities at Fort Gordon was conducted from January through December 2011. The assessment was provided to satisfy the requirements from a general permit that authorizes the discharge of stormwater under the National Pollutant Discharge Elimination System from a site associated with industrial activities. The stormwater quantity refers to the runoff discharge at the point and time of the runoff sampling. The study was conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of the Army Environmental and Natural Resources Management Office of the U.S. Army Signal Center and Fort Gordon. The initial scope of this study was to sample stormwater runoff from five stations at four industrial sites (two landfills and two heating and cooling sites). As a consequence of inadequate hydrologic conditions during 2011, no samples were collected at the two landfills; however, three samples were collected from the heating and cooling sites. The assessment included the collection of physical properties, such as water temperature, specific conductance, dissolved oxygen, and pH; the detection of suspended materials (total suspended solids, total fixed solids, total volatile solids), nutrients and organic compounds, and major and trace inorganic compounds (metals); and the detection of volatile and semivolatile organic compounds. Nutrients and organic compounds, major and trace inorganic compounds, and volatile and semivolatile organic compounds were detected above the laboratory reporting levels in all samples collected from the three stations. The detection of volatile and semivolatile organic compounds included anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[ghi]perylene, cis,1, 2-dichloroethene, dimethyl phthalate, fluoranthene, naphthalene, pyrene, acenaphthylene (station SWR11-3), and di-n-butyl phthalate (station SWR11-4).

  6. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds. ?? 2007 American Chemical Society.

  7. Comprehensive characterization of atmospheric organic matter in Fresno, California fog water.

    PubMed

    Herckes, Pierre; Leenheer, Jerry A; Collett, Jeffrey L

    2007-01-15

    Fogwater collected during winter in Fresno (CA) was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the fogwater was recovered and characterized. The most abundant isolated fractions were those comprised of volatile acids (24% of isolated carbon) and hydrophilic acids plus neutrals (28%). Volatile acids, including formic and acetic acid, have been previously identified as among the most abundant individual species in fogwater. Recovered hydrophobic acids exhibited some properties similar to aquatic fulvic acids. An insoluble particulate organic matter fraction contained a substantial amount of biological material, while hydrophilic and transphilic fractions also contained material suggestive of biotic origin. Together, these fractions illustrate the important contribution biological sources make to organic matter in atmospheric fog droplets. The fogwater also was notable for containing a large amount of organic nitrogen present in a variety of species, including amines, nitrate esters, peptides, and nitroso compounds.

  8. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  9. Air monitoring for volatile organic compounds at the Pilot Plant Complex, Aberdeen Proving Ground, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J.F.; O`Neill, H.J.; Raphaelian, L.A.

    1995-03-01

    The US Army`s Aberdeen Proving Ground has been a test site for a variety of munitions, including chemical warfare agents (CWA). The Pilot Plant Complex (PPC) at Aberdeen was the site of development, manufacture, storage, and disposal of CWA. Deterioration of the buildings and violations of environmental laws led to closure of the complex in 1986. Since that time, all equipment, piping, and conduit in the buildings have been removed. The buildings have been declared free of surface CWA contamination as a result of air sampling using the military system. However, no air sampling has been done to determine ifmore » other hazardous volatile organic compounds are present in the PPC, although a wide range of toxic and/or hazardous materials other than CWA was used in the PPC. The assumption has been that the air in the PPC is not hazardous. The purpose of this air-monitoring study was to screen the indoor air in the PPC to confirm the assumption that the air does not contain volatile organic contaminants at levels that would endanger persons in the buildings. A secondary purpose was to identify any potential sources of volatile organic contaminants that need to be monitored in subsequent sampling efforts.« less

  10. SEMI-VOLATILE ORGANIC ACIDS AND OTHER POLAR COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 25 polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle sampler, after the initial destruction of the World Trade Center. The polar organic compounds in...

  11. Methods development for total organic carbon accountability

    NASA Technical Reports Server (NTRS)

    Benson, Brian L.; Kilgore, Melvin V., Jr.

    1991-01-01

    This report describes the efforts completed during the contract period beginning November 1, 1990 and ending April 30, 1991. Samples of product hygiene and potable water from WRT 3A were supplied by NASA/MSFC prior to contract award on July 24, 1990. Humidity condensate samples were supplied on August 3, 1990. During the course of this contract chemical analyses were performed on these samples to qualitatively determine specific components comprising, the measured organic carbon concentration. In addition, these samples and known standard solutions were used to identify and develop methodology useful to future comprehensive characterization of similar samples. Standard analyses including pH, conductivity, and total organic carbon (TOC) were conducted. Colorimetric and enzyme linked assays for total protein, bile acid, B-hydroxybutyric acid, methylene blue active substances (MBAS), urea nitrogen, ammonia, and glucose were also performed. Gas chromatographic procedures for non-volatile fatty acids and EPA priority pollutants were also performed. Liquid chromatography was used to screen for non-volatile, water soluble compounds not amenable to GC techniques. Methods development efforts were initiated to separate and quantitate certain chemical classes not classically analyzed in water and wastewater samples. These included carbohydrates, organic acids, and amino acids. Finally, efforts were initiated to identify useful concentration techniques to enhance detection limits and recovery of non-volatile, water soluble compounds.

  12. 78 FR 49563 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... futures on all of the volatility indexes that underlie volatility index options trading on CBOE. Currently, volatility index (security) futures expirations correspond to each volatility index options expiration months...-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Proposed Rule To Amend Rule...

  13. GLOBAL ORGANIC EMISSIONS FROM VEGETATION

    EPA Science Inventory

    The book chapter discusses several aspects of biogenic volatile organic compound (BVOC) emissions from vegetation. It begins with a section on emission measurements that includes a brief history of enclosure and above-canopy flux measurements as well as a discussion of existing d...

  14. Occurrence and distribution of pesticides and volatile organic compounds in ground water and surface water in Central Arizona Basins, 1996-98, and their relation to land use

    USGS Publications Warehouse

    Gellenbeck, Dorinda J.; Anning, David W.

    2002-01-01

    Samples of ground water and surface water from the Sierra Vista subbasin, the Upper Santa Cruz Basin, and the West Salt River Valley were collected and analyzed to determine the occurrence and distribution of pesticides and volatile organic compounds in central Arizona. The study was done during 1996-98 within the Central Arizona Basins study unit of the National Water-Quality Assessment program. This study included 121 wells and 4 surface-water sites in the 3 basins and the analyses of samples from 4 sites along the Santa Cruz River that were part of a separate study. Samples were collected from 121 wells and 3 surface-water sites for pesticide analyses, and samples were collected from 109 wells and 3 surface-water sites for volatile organic compound analyses. Certain pesticides detected in ground water and surface water can be related specifically to agricultural or urban uses; others can be related to multiple land uses. Effects from historical agriculture are made evident by detections of DDE in ground-water and surface-water samples collected in the West Salt River Valley and detections of atrazine and deethylatrazine in the ground water in the Upper Santa Cruz Basin. Effects from present agriculture are evident in the seasonal variability in concentrations of pre-emergent pesticides in surface-water samples from the West Salt River Valley. Several detections of DDE and dieldrin in surface water were higher than established water-quality limits. Effects of urban land use are made evident by detections of volatile organic compounds in ground water and surface water from the West Salt River Valley. Detections of volatile organic compounds in surface water from the Santa Cruz River near Nogales, Arizona, also are indications of the effects of urban land use. One detection of tetrachloroethene in ground water was higher than established water-quality limits. Water reuse is an important conservation technique in the Southwest; however, the reuse of water provides a transport mechanism for pesticides and volatile organic compounds to reach areas that are not normally affected by manmade compounds from specific land-use activities. The most complex mixture of pesticides and volatile organic compounds is in the West Salt River Valley and is the result of water-management practices and the combination of land uses in this basin throughout history.

  15. 78 FR 11618 - Approval and Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... Promulgation of Implementation Plans Tennessee: Revisions to Volatile Organic Compound Definition AGENCY..., SIP revision adds 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic Compound''. EPA is approving this SIP revision because the State has demonstrated that it is...

  16. 77 FR 52630 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Architectural and... rule that sets emissions limits on the amount of volatile organic compounds in architectural and... period. Any parties interested in commenting on this action should do so at this time. Please note that...

  17. 78 FR 22197 - Approval and Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... Promulgation of Implementation Plans for Tennessee: Revisions to Volatile Organic Compound Definition AGENCY... total of 17 compounds to the list of compounds excluded from the definition of ``Volatile Organic...: Sean Lakeman, Regulatory Development Section, Air Planning Branch, Air, Pesticides and Toxics...

  18. Anesthetic action of volatile anesthetics by using Paramecium as a model.

    PubMed

    Zhou, Miaomiao; Xia, Huimin; Xu, Younian; Xin, Naixing; Liu, Jiao; Zhang, Shihai

    2012-06-01

    Although empirically well understood in their clinical administration, volatile anesthetics are not yet well comprehended in their mechanism studies. A major conundrum emerging from these studies is that there is no validated model to assess the presumed candidate sites of the anesthetics. We undertook this study to test the hypothesis that the single-celled Paramecium could be anesthetized and served as a model organism in the study of anesthetics. We assessed the motion of Paramecium cells with Expert Vision system and the chemoresponse of Paramecium cells with T-maze assays in the presence of four different volatile anesthetics, including isoflurane, sevoflurane, enflurane and ether. Each of those volatiles was dissolved in buffers to give drug concentrations equal to 0.8, 1.0, and 1.2 EC50, respectively, in clinical practice. We could see that after application of volatile anesthetics, the swimming of the Paramecium cells was accelerated and then suppressed, or even stopped eventually, and the index of the chemoresponse of the Paramecium cells (denoted as I ( che )) was decreased. All of the above impacts were found in a concentration-dependent fashion. The biphasic effects of the clinical concentrations of volatile anesthetics on Paramecium simulated the situation of high species in anesthesia, and the inhibition of the chemoresponse also indicated anesthetized. In conclusion, the findings in our studies suggested that the single-celled Paramecium could be anesthetized with clinical concentrations of volatile anesthetics and therefore be utilized as a model organism to study the mechanisms of volatile anesthetics.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parthasarathy, Srinandini; McKone, Thomas E.; Apte, Michael G.

    This report summarizes the screening procedure and its results for selecting contaminants of concern (COC), whose concentrations are affected by ventilation in commercial buildings. Many pollutants comprising criteria pollutants, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and biological contaminants are found in commercial buildings. In this report, we focus primarily on identifying potential volatile organic COC, which are impacted by ventilation. In the future we plan to extend this effort to inorganic gases and particles. Our screening considers compounds detected frequently in indoor air and compares the concentrations to health-guidelines and thresholds. However, given the range of buildings undermore » consideration, the contaminant sources and their concentrations will vary depending on the activity and use of the buildings. We used a literature review to identify a large list of chemicals found in commercial-building indoor air. The VOCs selected were subject to a two stage screening process, and the compounds of greater interest are included in priority List A. Other VOCs that have been detected in commercial buildings are included in priority List B. The compounds in List B, were further classified into groups B1, B2, B3, B4 in order of decreasing interest.« less

  20. The contribution of evaporative emissions from gasoline vehicles to the volatile organic compound inventory in Mexico City.

    PubMed

    Schifter, I; Díaz, L; Rodríguez, R; González-Macías, C

    2014-06-01

    The strategy for decreasing volatile organic compound emissions in Mexico has been focused much more on tailpipe emissions than on evaporative emissions, so there is very little information on the contribution of evaporative emissions to the total volatile organic compound inventory. We examined the magnitudes of exhaust and evaporative volatile organic compound emissions, and the species emitted, in a representative fleet of light-duty gasoline vehicles in the Metropolitan Area of Mexico City. The US "FTP-75" test protocol was used to estimate volatile organic compound emissions associated with diurnal evaporative losses, and when the engine is started and a journey begins. The amount and nature of the volatile organic compounds emitted under these conditions have not previously been accounted in the official inventory of the area. Evaporative emissions from light-duty vehicles in the Metropolitan Area of Mexico City were estimated to be 39 % of the total annual amount of hydrocarbons emitted. Vehicles built before 1992 (16 % of the fleet) were found to be responsible for 43 % of the total hydrocarbon emissions from exhausts and 31 % of the evaporative emissions of organic compounds. The relatively high amounts of volatile organic compounds emitted from older vehicles found in this study show that strong emission controls need to be implemented in order to decrease the contribution of evaporative emissions of this fraction of the fleet.

  1. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions.

    PubMed

    Song, Geun Cheol; Ryu, Choong-Min

    2013-05-08

    Systemic acquired resistance (SAR) is a plant self-defense mechanism against a broad-range of pathogens and insect pests. Among chemical SAR triggers, plant and bacterial volatiles are promising candidates for use in pest management, as these volatiles are highly effective, inexpensive, and can be employed at relatively low concentrations compared with agrochemicals. However, such volatiles have some drawbacks, including the high evaporation rate of these compounds after application in the open field, their negative effects on plant growth, and their inconsistent levels of effectiveness. Here, we demonstrate the effectiveness of volatile organic compound (VOC)-mediated induced resistance against both the bacterial angular leaf spot pathogen, Pseudononas syringae pv. lachrymans, and the sucking insect aphid, Myzus persicae, in the open field. Using the VOCs 3-pentanol and 2-butanone where fruit yields increased gave unexpectedly, a significant increase in the number of ladybird beetles, Coccinella septempunctata, a natural enemy of aphids. The defense-related gene CsLOX was induced by VOC treatment, indicating that triggering the oxylipin pathway in response to the emission of green leaf volatiles can recruit the natural enemy of aphids. These results demonstrate that VOCs may help prevent plant disease and insect damage by eliciting induced resistance, even in open fields.

  2. Volatility of organic aerosol and its components in the megacity of Paris

    NASA Astrophysics Data System (ADS)

    Paciga, Andrea; Karnezi, Eleni; Kostenidou, Evangelia; Hildebrandt, Lea; Psichoudaki, Magda; Engelhart, Gabriella J.; Lee, Byong-Hyoek; Crippa, Monica; Prévôt, André S. H.; Baltensperger, Urs; Pandis, Spyros N.

    2016-02-01

    Using a mass transfer model and the volatility basis set, we estimate the volatility distribution for the organic aerosol (OA) components during summer and winter in Paris, France as part of the collaborative project MEGAPOLI. The concentrations of the OA components as a function of temperature were measured combining data from a thermodenuder and an aerosol mass spectrometer (AMS) with Positive Matrix Factorization (PMF) analysis. The hydrocarbon-like organic aerosol (HOA) had similar volatility distributions for the summer and winter campaigns with half of the material in the saturation concentration bin of 10 µg m-3 and another 35-40 % consisting of low and extremely low volatility organic compounds (LVOCs with effective saturation concentrations C* of 10-3-0.1 µg m-3 and ELVOCs C* less or equal than 10-4 µg m-3, respectively). The winter cooking OA (COA) was more than an order of magnitude less volatile than the summer COA. The low-volatility oxygenated OA (LV-OOA) factor detected in the summer had the lowest volatility of all the derived factors and consisted almost exclusively of ELVOCs. The volatility for the semi-volatile oxygenated OA (SV-OOA) was significantly higher than that of the LV-OOA, containing both semi-volatile organic components (SVOCs with C* in the 1-100 µg m-3 range) and LVOCs. The oxygenated OA (OOA) factor in winter consisted of SVOCs (45 %), LVOCs (25 %) and ELVOCs (30 %). The volatility of marine OA (MOA) was higher than that of the other factors containing around 60 % SVOCs. The biomass burning OA (BBOA) factor contained components with a wide range of volatilities with significant contributions from both SVOCs (50 %) and LVOCs (30 %). Finally, combining the bulk average O : C ratios and volatility distributions of the various factors, our results are placed into the two-dimensional volatility basis set (2D-VBS) framework. The OA factors cover a broad spectrum of volatilities with no direct link between the average volatility and average O : C of the OA components.

  3. Evaluation of the correlation between concentration of volatile organic compounds and temperature of the exhaust gases in motor vehicles

    NASA Astrophysics Data System (ADS)

    Skrętowicz, Maria; Wróbel, Radosław; Andrych-Zalewska, Monika

    2017-11-01

    Volatile organic compounds (VOCs) are the group of organic compounds which are one of the most important air pollutants. One of the main sources of VOCs are combustion processes including fuel combustion is internal combustion engines. Volatile organic compounds are very dangerous pollution, because even in very low concentrations they have significant harmful effect on human health. A lot of that compounds are mutagenic and carcinogenic, in addition they could cause asthma, intoxication or allergy. The measurements of VOCs are quite problematic, because it is required using the specialist analytical apparatus, ex. chromatograph. However, not always it is need to measure the content of that compounds in engine exhaust with high precision and sometimes it is enough only to estimate the level of the concentration. Emission of the VOCs mainly depends on the combustion process in the engine and this determines the temperature of the exhaust gases. In this paper authors tried to determine if the correlation between temperature of exhaust gases and VOCs' concentration exist and is able to determine.

  4. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds

    PubMed Central

    Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-01-01

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions. PMID:28657595

  5. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.

    PubMed

    Spinelle, Laurent; Gerboles, Michel; Kok, Gertjan; Persijn, Stefan; Sauerwald, Tilman

    2017-06-28

    This article presents a literature review of sensors for the monitoring of benzene in ambient air and other volatile organic compounds. Combined with information provided by stakeholders, manufacturers and literature, the review considers commercially available sensors, including PID-based sensors, semiconductor (resistive gas sensors) and portable on-line measuring devices as for example sensor arrays. The bibliographic collection includes the following topics: sensor description, field of application at fixed sites, indoor and ambient air monitoring, range of concentration levels and limit of detection in air, model descriptions of the phenomena involved in the sensor detection process, gaseous interference selectivity of sensors in complex VOC matrix, validation data in lab experiments and under field conditions.

  6. Rice emissions during field flooding and air pollution feedbacks across South Korea

    NASA Astrophysics Data System (ADS)

    So, C.; Diskin, G. S.; DiGangi, J. P.; Choi, Y.; Rana, M.; Hughes, S.; Blake, D. R.; Nault, B.; Schroeder, J.; Campuzano Jost, P.; Jimenez, J. L.; Kim, M. J.; Teng, A.; Crounse, J. D.; Wenneberg, P.; Kaser, L.; Mikoviny, T.; Müller, M.; Wisthaler, A.; Pusede, S. E.

    2017-12-01

    Nitrous oxide (N2O) and methane (CH4) are important long-lived greenhouse gases. Known anthropogenic sources of these gases include rice cultivation, which represents anywhere between 5% and 20% of methane emissions globally. Other volatile molecules are also produced by soil biogeochemistry when rice fields are flooded, including small organic oxygenates. Here, we use recent aircraft measurements from the KORUS-AQ experiment to describe controls over rice emissions of N2O and CH4 at regional-scales across the South Korean Peninsula. We also investigate potential emissions of molecular hydrogen and volatile alcohols and organic acids and consider the effect of aerosol nitrate and sulfate deposition on rice soil biogeochemistry on paddies downwind of polluted urban areas.

  7. Superfund record of decision (EPA Region 1): Peterson/Puritan Site, Operable Unit 1, Cumberland/Lincoln, RI, September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    This Decision Document presents the selected remedial action for the Peterson/Puritan, Inc. Superfund Site, Operable Unit 1, in Cumberland and Lincoln, Rhode Island. Operable Unit 1 contains two remediation areas. The CCL remediation area, a source of volatile organic contamination, includes the former Peterson/Puritan, Inc. facility, which is the Site's namesake (currently the CCL Custom Manufacturing facility, and referred to as CCL). The PAC remediation area includes the Pacific Anchor Chemical Corporation (PAC ) facility (formerly the Lonza and Universal Chemical Company facility), which is a source of arsenic and volatile organic contamination. Each remediation area is further split intomore » source and downgradient area components, respectively.« less

  8. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F [Laramie, WY; Rovani, Jr., Joseph F.; Bomstad, Theresa M [Laramie, WY; Sorini-Wong, Susan S [Laramie, WY

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  9. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  10. Guideline series: Control of volatile organic compound emissions from wood furniture manufacturing operations, April 1996. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-04-01

    This Control Techniques Guideline (CTG) provides the necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work practices to reduce waste and evaporation through pollution prevention methods; these represent available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.

  11. Guideline series: Control of volatile organic compound emissions from wood furniture manufacturing operations. Draft report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    This draft Control Techniques Guidelines (CTG) provides necessary guidance for development of regulations to limit emissions of volatile organic compounds (VOC`s) from wood furniture finishing and cleaning operations. This guidance includes emission limits for specific wood furniture finishing steps and work pratices to reduce waste and evaporation through pollution prevention methods; these represent reasonably available control technology for wood furniture finishing and cleaning operations. This document is intended to provide State and local air pollution authorities with an information base for proceeding with their own analyses of RACT to meet statutory requirements.

  12. RECEPTOR MODEL COMPARISONS AND WIND DIRECTION ANALYSES OF VOLATILE ORGANIC COMPOUNDS AND SUBMICROMETER PARTICLES IN AN ARID, BINATIONAL, URBAN AIRSHED

    EPA Science Inventory

    The relationship between continuous measurements of volatile organic compounds sources and particle number was evaluated at a Photochemical Assessment Monitoring Station Network (PAMS) site located near the U.S.-Mexico Border in central El Paso, TX. Sources of volatile organic...

  13. Isotopic analyses of nitrogenous compounds from the Murchison meteorite: ammonia, amines, amino acids, and polar hydrocarbons

    NASA Technical Reports Server (NTRS)

    Pizzarello, S.; Feng, X.; Epstein, S.; Cronin, J. R.

    1994-01-01

    The combined volatile bases (ammonia, aliphatic amines, and possibly other bases), ammonia, amino acids, and polar hydrocarbons were prepared from the Murchison meteorite for isotopic analyses. The volatile bases were obtained by cryogenic transfer after acid-hydrolysis of a hot-water extract and analyzed by combined gas chromatography-mass spectrometry of pentafluoropropionyl derivatives. The aliphatic amines present in this preparation comprise a mixture that includes both primary and secondary isomers through C5 at a total concentration of > or = 100 nmoles g-1. As commonly observed for meteoritic organic compounds, almost all isomers through C5 are present, and the concentrations within homologous series decrease with increasing chain length. Ammonia was chromatographically separated from the other volatile bases and found at a concentration of 1.1-1.3 micromoles g-1 meteorite. The ammonia analyzed includes contributions from ammonium salts and the hydrolysis of extractable organic compounds, e.g., carboxamides. Stable isotope analyses showed the volatile bases to be substantially enriched in the heavier isotopes, relative to comparable terrestrial compounds delta D < or = +1221%; delta 13C = +22%; delta 15N = +93%). Ammonia, per se, was found to have a somewhat lower delta 15N value (+69%) than the total volatile bases; consequently, a higher delta 15N (>93%) can be inferred for the other bases, which include the amines. Solvent-extractable polar hydrocarbons obtained separately were found to be enriched in 15N (delta 15N = +104%). Total amino acids, prepared from a hydrolyzed hot-water extract by cation exchange chromatography, gave a delta 15N of +94%, a value in good agreement with that obtained previously. Nitrogen isotopic data are also given for amino acid fractions separated chromatographically. The delta 15N values of the Murchison soluble organic compounds analyzed to date fall within a rather narrow range (delta 15N = +94 +/- 8%), an observation consistent with their formation, or formation of their precursors, by interstellar chemistry.

  14. Volatile Compound-Mediated Interactions between Barley and Pathogenic Fungi in the Soil

    PubMed Central

    Fiers, Marie; Lognay, Georges; Fauconnier, Marie-Laure; Jijakli, M. Haïssam

    2013-01-01

    Plants are able to interact with their environment by emitting volatile organic compounds. We investigated the volatile interactions that take place below ground between barley roots and two pathogenic fungi, Cochliobolus sativus and Fusarium culmorum. The volatile molecules emitted by each fungus, by non-infected barley roots and by barley roots infected with one of the fungi or the two of them were extracted by head-space solid phase micro extraction and analyzed by gas chromatography mass spectrometry. The effect of fungal volatiles on barley growth and the effect of barley root volatiles on fungal growth were assessed by cultivating both organisms in a shared atmosphere without any physical contact. The results show that volatile organic compounds, especially terpenes, are newly emitted during the interaction between fungi and barley roots. The volatile molecules released by non-infected barley roots did not significantly affect fungal growth, whereas the volatile molecules released by pathogenic fungi decreased the length of barley roots by 19 to 21.5% and the surface of aerial parts by 15%. The spectrum of the volatiles released by infected barley roots had no significant effect on F. culmorum growth, but decreased C. sativus growth by 13 to 17%. This paper identifies the volatile organic compounds emitted by two pathogenic fungi and shows that pathogenic fungi can modify volatile emission by infected plants. Our results open promising perspectives concerning the biological control of edaphic diseases. PMID:23818966

  15. Volatile chemical products emerging as largest petrochemical source of urban organic emissions.

    PubMed

    McDonald, Brian C; de Gouw, Joost A; Gilman, Jessica B; Jathar, Shantanu H; Akherati, Ali; Cappa, Christopher D; Jimenez, Jose L; Lee-Taylor, Julia; Hayes, Patrick L; McKeen, Stuart A; Cui, Yu Yan; Kim, Si-Wan; Gentner, Drew R; Isaacman-VanWertz, Gabriel; Goldstein, Allen H; Harley, Robert A; Frost, Gregory J; Roberts, James M; Ryerson, Thomas B; Trainer, Michael

    2018-02-16

    A gap in emission inventories of urban volatile organic compound (VOC) sources, which contribute to regional ozone and aerosol burdens, has increased as transportation emissions in the United States and Europe have declined rapidly. A detailed mass balance demonstrates that the use of volatile chemical products (VCPs)-including pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care products-now constitutes half of fossil fuel VOC emissions in industrialized cities. The high fraction of VCP emissions is consistent with observed urban outdoor and indoor air measurements. We show that human exposure to carbonaceous aerosols of fossil origin is transitioning away from transportation-related sources and toward VCPs. Existing U.S. regulations on VCPs emphasize mitigating ozone and air toxics, but they currently exempt many chemicals that lead to secondary organic aerosols. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Modeling the formation and properties of traditional and non-traditional secondary organic aerosol: problem formulation and application to aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Jathar, S. H.; Miracolo, M. A.; Presto, A. A.; Adams, P. J.; Robinson, A. L.

    2012-04-01

    We present a methodology to model secondary organic aerosol (SOA) formation from the photo-oxidation of low-volatility organics (semi-volatile and intermediate volatility organic compounds). The model is parameterized and tested using SOA data collected during two field campaigns that characterized the atmospheric evolution of dilute gas-turbine engine emissions using a smog chamber. Photo-oxidation formed a significant amount of SOA, much of which cannot be explained based on the emissions of traditional, speciated precursors; we refer to this as non-traditional SOA (NT-SOA). The NT-SOA can be explained by emissions of low-volatility organic vapors measured using sorbents. Since these vapors could not be speciated, we employ a volatility-based approach to model NT-SOA formation. We show that the method proposed by Robinson et al. (2007) is unable to explain the timing of NT-SOA formation because it assumes a very modest reduction in volatility of the precursors with every oxidation reaction. In contrast, a Hybrid method, similar to models of traditional SOA formation, assumes a larger reduction in volatility with each oxidation step and results in a better reproduction of NT-SOA formation. The NT-SOA yields estimated for the low-volatility organic vapor emissions are similar to literature data for large n-alkanes and other low-volatility organics. The yields vary with fuel composition (JP8 versus Fischer-Tropsch) and engine load (idle versus non-idle). These differences are consistent with the expected contribution of high (aromatics and n-alkanes) and low (branched alkanes and oxygenated species) SOA forming species to the exhaust.

  17. A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions

    NASA Astrophysics Data System (ADS)

    Cain, Kerrigan P.; Pandis, Spyros N.

    2017-12-01

    Hygroscopicity, oxidation level, and volatility are three crucial properties of organic pollutants. This study assesses the feasibility of a novel measurement and analysis technique to determine these properties and establish their relationship. The proposed experimental setup utilizes a cloud condensation nuclei (CCN) counter to quantify hygroscopic activity, an aerosol mass spectrometer to measure the oxidation level, and a thermodenuder to evaluate the volatility. The setup was first tested with secondary organic aerosol (SOA) formed from the ozonolysis of α-pinene. The results of the first experiments indicated that, for this system, the less volatile SOA contained species that had on average lower O : C ratios and hygroscopicities. In this SOA system, both low- and high-volatility components can have comparable oxidation levels and hygroscopicities. The method developed here can be used to provide valuable insights about the relationships among organic aerosol hygroscopicity, oxidation level, and volatility.

  18. 40 CFR 59.607 - Submission of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS... to this subpart F, including information not required during certification. You are required to...

  19. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures... include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  20. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures... include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  1. 40 CFR 63.5758 - How do I determine the organic HAP content of materials?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... part 63). You may use Method 311 for determining the mass fraction of organic HAP. Use the procedures... include it in the organic HAP total. Express the mass fraction of each organic HAP you measure as a value...). You may use Method 24 to determine the mass fraction of non-aqueous volatile matter of aluminum...

  2. Analysis of volatile organic compounds in pleural effusions by headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry.

    PubMed

    Huang, Zhongping; Zhang, Jie; Zhang, Peipei; Wang, Hong; Pan, Zaifa; Wang, Lili

    2016-07-01

    Headspace solid-phase microextraction coupled with cryotrap gas chromatography and mass spectrometry was applied to the analysis of volatile organic compounds in pleural effusions. The highly volatile organic compounds were separated successfully with high sensitivity by the employment of a cryotrap device, with the construction of a cold column head by freezing a segment of metal capillary with liquid nitrogen. A total of 76 volatile organic compounds were identified in 50 pleural effusion samples (20 malignant effusions and 30 benign effusions). Among them, 34 more volatile organic compounds were detected with the retention time less than 8 min, by comparing with the normal headspace solid-phase microextraction coupled with gas chromatography and mass spectrometry method. Furthermore, 24 volatile organic compounds with high occurrence frequency in pleural effusion samples, 18 of which with the retention time less than 8 min, were selected for the comparative analysis. The results of average peak area comparison and box-plot analysis showed that except for cyclohexanone, 2-ethyl-1-hexanol, and tetramethylbenzene, which have been reported as potential cancer biomarkers, cyclohexanol, dichloromethane, ethyl acetate, n-heptane, ethylbenzene, and xylene also had differential expression between malignant and benign effusions. Therefore, the proposed approach was valuable for the comprehensive characterization of volatile organic compounds in pleural effusions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Can Condensing Organic Aerosols Lead to Less Cloud Particles?

    NASA Astrophysics Data System (ADS)

    Gao, C. Y.; Tsigaridis, K.; Bauer, S.

    2017-12-01

    We examined the impact of condensing organic aerosols on activated cloud number concentration in a new aerosol microphysics box model, MATRIX-VBS. The model includes the volatility-basis set (VBS) framework in an aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state) that resolves aerosol mass and number concentrations and aerosol mixing state. Preliminary results show that by including the condensation of organic aerosols, the new model (MATRIX-VBS) has less activated particles compared to the original model (MATRIX), which treats organic aerosols as non-volatile. Parameters such as aerosol chemical composition, mass and number concentrations, and particle sizes which affect activated cloud number concentration are thoroughly evaluated via a suite of Monte-Carlo simulations. The Monte-Carlo simulations also provide information on which climate-relevant parameters play a critical role in the aerosol evolution in the atmosphere. This study also helps simplifying the newly developed box model which will soon be implemented in the global model GISS ModelE as a module.

  4. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that th...

  5. POLYCYLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas an Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that t...

  6. POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) AND OTHER SEMI-VOLATILE ORGANIC COMPOUNDS COLLECTED IN NEW YORK CITY IN RESPONSE TO THE EVENTS OF 9/11

    EPA Science Inventory

    Concentrations of over 60 non-polar semi-volatile and non-volatile organic compounds were measured in Lower Manhattan, New York using a high capacity Integrated Organic Gas and Particle Sampler, after the initial destruction of the World Trade Center. The results indicate that ...

  7. 78 FR 53029 - Air Quality: Revision to Definition of Volatile Organic Compounds-Exclusion of trans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... Air Quality: Revision to Definition of Volatile Organic Compounds--Exclusion of trans 1-chloro-3,3,3.... SUMMARY: The EPA is taking final action to revise the regulatory definition of volatile organic compounds..., June 16, 2010), and as a solvent for metals, electronics, and precision cleaning and in adhesives...

  8. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  9. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  10. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  11. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  12. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  13. 40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 25A if: an exhaust gas volatile organic matter concentration of 50 ppmv or less is required in order to comply with the emission limit; the volatile organic matter concentration at the inlet to the control device and the required level of control are such as to result in exhaust volatile organic matter...

  14. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  15. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the... limit, only the outlet volatile organic matter concentration must be determined. The outlet volatile organic matter concentration is determined as the average of the three test runs. (1) Use Method 25 if the...

  16. Micro-organisms growing on rapeseed during storage affect the profile of volatile compounds of virgin rapeseed oil.

    PubMed

    Wagner, Claudia; Bonte, Anja; Brühl, Ludger; Niehaus, Karsten; Bednarz, Hanna; Matthäus, Bertrand

    2018-04-01

    Micro-organisms populate on rapeseed after harvest during storage depending on the growing conditions. The composition of the bacterial colonization is unknown, although its contribution to the profile of volatile aroma-active compounds determines the sensory quality of virgin cold-pressed rapeseed oil. From four rapeseed samples, 46 bacterial strains were isolated. By DNA-sequencing, the identification of four bacteria species and 17 bacteria genera was possible. In total, 22 strains were selected, based on their typical off-flavors resembling those of virgin sensory bad cold-pressed rapeseed oils. The cultivation of these strains on rapeseed meal agar and examination of volatile compounds by solid phase microextraction-gas chromatography-mass spectrometry allowed the identification of 29 different compounds, mainly degradation products of fatty acids such as alkanes, alkenes, aldehydes, ketones and alcohols and, in addition, sulfur-containing compounds, including one terpene and three pyrazines. From these compounds, 19 are described as aroma-active in the literature. Micro-organisms populating on rapeseed during storage may strongly influence the sensory quality of virgin rapeseed oil as a result of the development of volatile aroma-active metabolic products. It can be assumed that occurrence of off-flavor of virgin rapeseed oils on the market are the result of metabolic degradation products produced by micro-organisms populating on rapeseed during storage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Measurement of the temperature dependent partitioning of semi-volatile organics onto aerosol near roadways

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Brook, J.; Staebler, R. M.; Evans, G. J.; Jeong, C.; Sheppard, A.; Lu, G.; Gordon, M.; Mihele, C.

    2010-12-01

    The volatility of the organic aerosol fraction has received a great deal of attention recently in light of new volatility-based modelling approaches and due to the inability of current models to fully account for secondary organic aerosol (SOA). In this regard, evaporation of primary organic aerosol species and their subsequent oxidation may contribute significantly to SOA downwind of sources. This implies that moderate ambient temperature fluctuations can significantly increase or decrease the aerosol bound fraction of semi-volatile and intermediate volatility (SVOC + IVOC) compounds. In order to examine the importance of these more volatile organic components, a temperature controlled inlet was developed with the ability to heat and cool the aerosol in 2 C increments to 15 C above or below ambient temperature. The inlet was coupled to an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and deployed on a mobile platform upwind and downwind of a major Southern Ontario highway as part of the Fast Evolution of Vehicle Emissions near Roadways (FEVER 2010) campaign. Preliminary results suggest that changes in temperature of 5-10 C can alter the partitioning of volatile organic aerosol components by up to 30%. Although the largest affect was observed 10-13 meters downwind of the vehicle emissions, a measurable affect was observed beyond 500 m and in aerosol upwind of the highway. These results suggest that a significant pool of semi-volatile organics exist, which can condense onto particles at slightly lower temperatures or evaporate to the gas phase and be further oxidized. The nature of these organic species at locations upwind and downwind of vehicle emissions will be discussed.

  18. Unraveling the chemical complexity of biomass burning VOC emissions via H3O+ ToF-CIMS (PTR-ToF): emissions characterization

    NASA Astrophysics Data System (ADS)

    Koss, A.; Sekimoto, K.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Jimenez, J. L.; Krechmer, J. E.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.

    2017-12-01

    Gas-phase biomass burning emissions can include hundreds, if not thousands, of unique volatile and intermediate-volatility organic compounds. It is crucial to know the composition of these emissions to understand secondary organic aerosol formation, ozone formation, and human health effects resulting from fires. However, the composition can vary greatly with fuel type and fire combustion process. During the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana, high-resolution H3O+-CIMS (PTR-ToF) was deployed to characterize VOC emissions. More than 500 ion masses were consistently enhanced in each of 58 fires, which included a wide variety of fuel types representative of the western United States. Using a combination of extensive literature review, H3O+ and NO+ CIMS with GC preseparation, comparison to other instruments, and mass spectral context, we were able to identify the VOC contributors to 90% of the instrument signal. This provides unprecedented chemical detail in high time resolution. We present chemical characteristics of emissions, including OH reactivity and volatility, and highlight areas where better identification is needed.

  19. Edible Oil Barriers for Treatment of Chlorinated Solvent Contaminated Groundwater

    DTIC Science & Technology

    2009-07-01

    CF Chloroform Cl# Chlorine Number CO Carbon Monoxide CT Carbon Tetrachloride CVOC Chlorinated Volatile Organic Compound 1,2-DCA 1,2...As Safe HCl Hydrochloric Acid HRC® Hydrogen Release Compound IDW Investigation-Derived Waste ISCO In Situ Chemical Oxidation LEL Lower...Total Organic Carbon VC Vinyl Chloride VFA Volatile Fatty Acid VOC Volatile Organic Compound ZVI Zero Valent Iron viii ACKNOWLEDGEMENTS

  20. The micro-environmental impact of volatile organic compound emissions from large-scale assemblies of people in a confined space

    USDA-ARS?s Scientific Manuscript database

    Large-scale assemblies of people in a con'ned space can exert signi'cant impacts on the local air chemistry due to human emissions of volatile organics. Variations of air-quality in such small scale can be studied by quantifying 'ngerprint volatile organic compounds (VOCs) such as acetone, toluene, ...

  1. Field guide for collecting samples for analysis of volatile organic compounds in stream water for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1997-01-01

    For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.

  2. Performance and fouling mechanism of direct contact membrane distillation (DCMD) treating fermentation wastewater with high organic concentrations.

    PubMed

    Wu, Yan; Kang, Yun; Zhang, Liqiu; Qu, Dan; Cheng, Xiang; Feng, Li

    2018-03-01

    In this study, direct contact membrane distillation (DCMD) was used for treating fermentation wastewater with high organic concentrations. DCMD performance characteristics including permeate flux, permeate water quality as well as membrane fouling were investigated systematically. Experimental results showed that, after 12hr DCMD, the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis, with the permeate flux decreasing from the initial 8.7L/m 2 /hr to the final 4.3L/m 2 /hr due to membrane fouling; the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178mg/L, which is suitable for reutilization. Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater, organic rejection of over 95% was achieved in wastewater. GC-MS results suggested that the fermentation wastewater contained 128 kinds of organics, in which 14 organics dominated. After 12hr DCMD, not only volatile organics including trimethyl pyrazine, 2-acetyl pyrrole, phenethyl alcohol and phenylacetic acid, but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting. FT-IR and SEM-EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca, Mg, and amine, carboxylic acid and aromatic groups. The fouled membrane could be recovered, as most of the deposits could be removed using a HCl/NaOH chemical cleaning method. Copyright © 2017. Published by Elsevier B.V.

  3. Organic compounds in indoor air—their relevance for perceived indoor air quality?

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder; Nielsen, Gunnar D.

    It is generally believed that indoor air pollution, one way or another may cause indoor air complaints. However, any association between volatile organic compounds (VOCs) concentrations and increase of indoor climate complaints, like the sick-building syndrome symptoms, is not straightforward. The reported symptom rates of, in particular, eye and upper airway irritation cannot generally be explained by our present knowledge of common chemically non-reactive VOCs measured indoors. Recently, experimental evidence has shown those chemical reactions between ozone (either with or without nitrogen dioxide) and unsaturated organic compounds (e.g. from citrus and pine oils) produce strong eye and airway irritating species. These have not yet been well characterised by conventional sampling and analytical techniques. The chemical reactions can occur indoors, and there is indirect evidence that they are associated with eye and airway irritation. However, many other volatile and non-volatile organic compounds have not generally been measured which could equally well have potent biological effects and cause an increase of complaint rates, and posses a health/comfort risk. As a consequence, it is recommended to use a broader analytical window of organic compounds than the classic VOC window as defined by the World Health Organisation. It may include hitherto not yet sampled or identified intermediary species (e.g., radicals, hydroperoxides and ionic compounds like detergents) as well as species deposited onto particles. Additionally, sampling strategies including emission testing of building products should carefully be linked to the measurement of organic compounds that are expected, based on the best available toxicological knowledge, to have biological effects at indoor concentrations.

  4. Synthetic Fiber Production Facilities: New Source Performance Standards (NSPS)

    EPA Pesticide Factsheets

    These standards limits emissions of volatile organic compounds (VOC) from new and reconstructed synthetic fiber production facilities that use solvent-spinning processes. Includes rule history and summary.

  5. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  6. Elevated O3 increases volatile organic compounds via jasmonic acid pathway that promote the preference of parasitoid Encarsia formosa for tomato plants.

    PubMed

    Cui, Hongying; Wei, Jianing; Su, Jianwei; Li, Chuanyou; Ge, Feng

    2016-12-01

    The elevated atmospheric O 3 level may change the interactions of plants and insects, which potentially affects direct and indirect plant defences. However, the underlying mechanism of the impact of elevated O 3 on indirect plant defence, namely the efficacy of natural enemies, is unclear. Here we tested a hypothesis that linked the effects of elevated O 3 and whitefly herbivory on tomato volatile releases mediated by the jasmonic acid (JA) pathway with the preferences of parasitoid Encarsia formosa for two different tomato genotypes (wild-type (Wt) and JA-deficient genotype (spr2)). The O 3 and whitefly herbivory significantly increased the production of volatile organic compounds (VOCs), including monoterpenes and green leaf volatiles (GLVs). The Wt plants released higher volatile levels, particularly monoterpenes, than did the spr2 plants. In Y-tube tests, limonene and Z-3-hexanol played key roles in the attraction of E. formosa. Moreover, regardless of plant genotype, the two plant genotypes were preferred by adult E. formosa under the O 3 and O 3 + herbivory treatments. Our results suggest that under elevated O 3 , the activation of the JA pathway significantly up-regulates the emission rates of volatiles, through which the efficacy of natural enemy might be promoted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. 75 FR 40760 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-14

    ... recordkeeping procedures in Katherine Hodge's April 23, 2008 email to EPA, including both the body of the email... recordkeeping requirements reflected in Katherine Hodge's April 23, 2008 email, including both the body of the e...

  8. Separation process using pervaporation and dephlegmation

    DOEpatents

    Vane, Leland M.; Mairal, Anurag P.; Ng, Alvin; Alvarez, Franklin R.; Baker, Richard W.

    2004-06-29

    A process for treating liquids containing organic compounds and water. The process includes a pervaporation step in conjunction with a dephlegmation step to treat at least a portion of the permeate vapor from the pervaporation step. The process yields a membrane residue stream, a stream enriched in the more volatile component (usually the organic) as the overhead stream from the dephlegmator and a condensate stream enriched in the less volatile component (usually the water) as a bottoms stream from the dephlegmator. Any of these may be the principal product of the process. The membrane separation step may also be performed in the vapor phase, or by membrane distillation.

  9. Volatile organic compound (VOC) emissions during malting and beer manufacture

    NASA Astrophysics Data System (ADS)

    Gibson, Nigel B.; Costigan, Gavin T.; Swannell, Richard P. J.; Woodfield, Michael J.

    Estimates have been made of the amounts of volatile organic compounds (VOCs) released during different stages of beer manufacture. The estimates are based on recent measurements and plant specification data supplied by manufacturers. Data were obtained for three main manufacturing processes (malting, wort processing and fermentation) for three commercial beer types. Some data on the speciation of emitted compounds have been obtained. Based on these measurements, an estimate of the total unabated VOC emission. from the U.K. brewing industry was calculated as 3.5 kta -1, over 95% of which was generated during barley malting. This value does not include any correction for air pollution control.

  10. Semi-continuous mass closure of the major components of fine particulate matter in Riverside, CA

    NASA Astrophysics Data System (ADS)

    Grover, Brett D.; Eatough, Norman L.; Woolwine, Woods R.; Cannon, Justin P.; Eatough, Delbert J.; Long, Russell W.

    The application of newly developed semi-continuous aerosol monitors allows for the measurement of all the major species of PM 2.5 on a 1-h time basis. Temporal resolution of both non-volatile and semi-volatile species is possible. A suite of instruments to measure the major chemical species of PM 2.5 allows for semi-continuous mass closure. A newly developed dual-oven Sunset carbon monitor is used to measure non-volatile organic carbon, semi-volatile organic carbon and elemental carbon. Inorganic species, including sulfate and nitrate, can be measured with an ion chromatograph based sampler. Comparison of the sum of the major chemical species in an urban aerosol with mass measured by an FDMS resulted in excellent agreement. Linear regression analysis resulted in a zero-intercept slope of 0.98±0.01 with an R2=0.86. One-hour temporal resolution of the major species of PM 2.5 may reduce the uncertainty in receptor based source apportionment modeling, will allow for better forecasting of PM 2.5 episodes, and may lead to increased understanding of related health effects.

  11. Toxic remediation

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1994-01-01

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  12. Volatility-resolved Measurements of the Chemical Composition of Arctic Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Ehn, M.; Kroll, J.; Coffman, D.; Quinn, P.; Bates, T.; Williams, E.; Kulmala, M.; Worsnop, D.

    2008-12-01

    Here we describe measurements of the chemical composition of submicron particles in the Arctic marine boundary layer, taken on board the R/V Knorr during the IPY-ICEALOT mission (March-April 2008). Measurements were made with an Aerodyne high-resolution aerosol mass spectrometer (HR-AMS) for the measurement of the non-refractory fraction of the aerosol, in particular allowing for the determination of the oxygen/carbon (O/C) ratio of the particulate organics and the unambiguous identification of trace inorganic species. Sampling alternated between ambient air and air sent through a thermodenuder (TD), continually scanned between 50 and 250C in order to remove aerosol components by volatility. The mass spectra of particulate matter in the Arctic (including Arctic haze) were dominated by sulfur-containing peaks and the CO2+ ion (at m/z 44), indicating the main non-refractory components of the aerosol are acidic sulfate and highly oxygenated organics. Thermodenuder measurements allow for the clear speciation of sulfate compounds by volatility, as well as the comparison of the degree of atmospheric aging of the organics to measurements taken elsewhere (including at terrestrial sites). AMS measurements will be compared to results from a hygroscopicity tandem differential mobility analyzer (HTDMA), also downstream of the thermodenuder, as well as from semicontinuous (PILS) and offline (filter) measurements of particle composition.

  13. Modeling long-term uptake and re-volatilization of semi-volatile organic compounds (SVOCs) across the soil-atmosphere interface.

    PubMed

    Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter

    2015-12-15

    Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.

  14. Reactive trace gas emissions from stressed plants: a poorly characterized major source of atmospheric volatiles

    NASA Astrophysics Data System (ADS)

    Niinemets, Ülo

    2017-04-01

    Vegetation constitutes the greatest source of reactive volatile organic compounds in the atmosphere. The current emission estimates primarily rely on constitutive emissions that are present only in some plant species. However, all plant species can be induced to emit reactive volatiles by different abiotic and biotic stresses, but the stress-dependent emissions have been largely neglected in emission measurements and models. This presentation provides an overview of systematic screening of stress-dependent volatile emissions from a broad range of structurally and physiologically divergent plant species from temperate to tropical ecosystems. Ozone, heat, drought and wounding stress were the abiotic stresses considered in the screening, while biotic stress included herbivory, chemical elicitors simulating herbivory and fungal infections. The data suggest that any moderate to severe stress leads to significant emissions of a rich blend of volatiles, including methanol, green leaf volatiles (the lipoxygenase pathway volatiles, dominated by C6 aldehydes, alcohols and derivatives), different mono- and sesquiterpenes and benzenoids. The release of volatiles occurs in stress severity-dependent manner, although the emission responses are often non-linear with more severe stresses resulting in disproportionately greater emissions. Stress volatile release is induced in both non-constitutive and constitutive volatile emitters, whereas the rate of constitutive volatile emissions in constitutive emitters is often reduced under environmental and biotic stresses. Given that plants in natural conditions often experience stress, this analysis suggests that global volatile emissions have been significantly underestimated. Furthermore, in globally changing hotter climates, the frequency and severity of both abiotic and biotic stresses is expected to increase. Thus, the stress-induced volatile emissions are predicted to play a dominant role in plant-atmosphere interactions in near future. Quantitative models that link stress severity, plant volatile emissions and climatic feedbacks are currently being developed, and this presentation argues that incorporating stress-dependent feedbacks in Earth system models in inevitable to simulate future climates.

  15. Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit.

    PubMed

    Yu, Qibin; Plotto, Anne; Baldwin, Elizabeth A; Bai, Jinhe; Huang, Ming; Yu, Yuan; Dhaliwal, Harvinder S; Gmitter, Frederick G

    2015-03-06

    Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit.

  16. 40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...

  17. Photochemical Aging of Organic Aerosols: A Laboratory Study

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitrios K.; Kostenidou, Evangelia; Gkatzelis, Georgios I.; Psichoudaki, Magdalini; Louvaris, Evangelos; Pandis, Spyros N.

    2014-05-01

    Organic aerosols (OA) are either emitted directly (primary OA) or formed (secondary OA) in the atmosphere and consist of an extremely complex mixture of thousands of organic compounds. Although the scientific community has put significant effort, in the past few decades, to understand organic aerosol (OA) formation, evolution and fate in the atmosphere, traditional models often fail to reproduce the ambient OA levels. Secondary organic aerosol (SOA) formed, in traditional laboratory chamber experiments, from the gas phase oxidation of known precursors, such as α-pinene, is semi-volatile and with an O:C ratio of around 0.4. In contrast, OA found in the atmosphere is significantly less volatile, while the O:C ratio often ranges from 0.5 to 1. In conclusion, there is a significant gap of knowledge in our understanding of OA formation and photochemical transformation in the atmosphere. There is increased evidence that homogeneous gas phase aging by OH radicals might be able to explain, at least in part, the significantly higher OA mass loadings observed and also the oxidation state and volatility of OA in the atmosphere. In this study, laboratory chamber experiments were performed to study the role of the continued oxidation of first generation volatile and semi-volatile species by OH radicals in the evolution of the SOA characteristics (mass concentration, volatility, and oxidation state). Ambient air mixtures or freshly formed SOA from α-pinene ozonolysis were used as the source of organic aerosols and semi-volatile species. The initial mixture of organic aerosols and gas phase species (volatile and semi-volatile) was then exposed to atmospheric concentrations of OH radicals to study the aging of aerosols. Experiments were performed with various OH radical sources (H2O2 or HONO) and under various NOx conditions. A suite of instruments was employed to characterize both the gas and the aerosol phase. A Scanning Mobility Particle Sizer (SMPS) and a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) were used to measure the organic aerosol mass production and oxidation degree (O:C ratio) following OH aging. A thermodenuder system was used to measure the volatility distribution change as organic aerosol aged upon continuous oxidation. Organic gas phase species were characterized with a Proton Transfer Reaction - Mass Spectrometer (PTR-MS) while NOx and O3 were measured with the use of corresponding analyzers. Results from this study show that organic mass production occurs upon exposure to OH radicals indicating that continuous OH aging of semi-volatile is probably responsible for at least some of the gap between observed and modeled OA levels in the atmosphere. Additionally, this chemical aging process leads to a decrease in volatility and an increase in O:C ratio while the level of change in both properties depends on OH exposure. The atmospheric implications of this study are discussed.

  18. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    EPA Science Inventory

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...

  19. Mixing of secondary organic aerosols versus relative humidity

    PubMed Central

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin

    2016-01-01

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions. PMID:27791066

  20. Mixing of secondary organic aerosols versus relative humidity.

    PubMed

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin; Sullivan, Ryan C; Donahue, Neil M

    2016-10-24

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

  1. Volatile organic compound emissions from engineered wood products

    Treesearch

    Steve Zylkowski; Charles Frihart

    2017-01-01

    Thirteen bonded engineered wood products representing those commonly used in building construction were evaluated for volatile organic chemicals using methods developed for interior bonded wood products. Although formaldehyde and acetaldehyde were emitted from all samples, they were not the dominant volatiles, which greatly depended on wood species and bonding...

  2. Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition

    NASA Technical Reports Server (NTRS)

    Zlatkis, A.

    1982-01-01

    The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.

  3. Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco

    PubMed Central

    Naznin, Hushna Ara; Kimura, Minako; Miyazawa, Mitsuo; Hyakumachi, Mitsuro

    2013-01-01

    We extracted volatile organic compounds (VOCs) emitted by a plant growth-promoting fungus (PGPF) Phoma sp. GS8-3 by gas chromatography and identified them by mass spectrometry. All of the identified compounds belonged to C4-C8 hydrocarbons. Volatiles varied in number and quantity by the culture period of the fungus (in days). 2-Methyl-propanol and 3-methyl-butanol formed the main components of the volatile blends for all the culture periods of fungus. Growth-promoting effects of the identified synthetic compounds were analyzed individually and in blends using tobacco plants. We found that the mixture of volatiles extracted from 3-day-old culture showed significant growth promotion in tobacco in vitro. The volatile blend showed better growth promotion at lower than higher concentrations. Our results confirm the potential role of volatile organic compounds in the mechanism of growth enhancement by GS8-3. PMID:23080408

  4. Volatile and semivolatile organic compounds in laboratory ...

    EPA Pesticide Factsheets

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p

  5. Determination of volatile organic acids in oriental tobacco by needle-based derivatization headspace liquid-phase microextraction coupled to gas chromatography/mass spectrometry.

    PubMed

    Sun, Shi-Hao; Xie, Jian-Ping; Xie, Fu-Wei; Zong, Yong-Li

    2008-02-01

    A method coupling needle-based derivatization headspace liquid-phase microextraction with gas chromatography-mass spectrometry (HS-LPME/GC-MS) was developed to determine volatile organic acids in tobacco. The mixture of N,O-bis(trimethylsilyl)trifluoroacetamide and decane was utilized as the solvent for HS-LPME, resulting that extraction and derivatization were simultaneously completed in one step. The solvent served two purposes. First, it pre-concentrated volatile organic acids in the headspace of tobacco sample. Second, the volatile organic acids extracted were derivatized to form silyl derivatives in the drop. The main parameters affecting needle-based derivatization HS-LPME procedure such as extraction and derivatization reagent, microdrop volume, extraction and derivatization time, and preheating temperature and preheating time were optimized. The standard addition approach was essential to obtain accurate measurements by minimizing matrix effects. Good linearity (R(2)> or =0.9804) and good repeatability (RSDs< or =15.3%, n=5) for 16 analytes in spiked standard analytes sample were achieved. The method has the additional advantages that at the same time it is simple, fast, effective, sensitive, selective, and provides an overall profile of volatile organic acids in the oriental tobacco. This paper does offer an alternative approach to determine volatile organic acids in tobacco.

  6. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds

    PubMed Central

    Chan, Daniel K; Leggett, Cadman L; Wang, Kenneth K

    2016-01-01

    Volatile organic compounds (VOCs) emitted from stool are the components of the smell of stool representing the end products of microbial activity and metabolism that can be used to diagnose disease. Despite the abundance of hydrogen, carbon dioxide, and methane that have already been identified in human flatus, the small portion of trace gases making up the VOCs emitted from stool include organic acids, alcohols, esters, heterocyclic compounds, aldehydes, ketones, and alkanes, among others. These are the gases that vary among individuals in sickness and in health, in dietary changes, and in gut microbial activity. Electronic nose devices are analytical and pattern recognition platforms that can utilize mass spectrometry or electrochemical sensors to detect these VOCs in gas samples. When paired with machine-learning and pattern recognition algorithms, this can identify patterns of VOCs, and thus patterns of smell, that can be used to identify disease states. In this review, we provide a clinical background of VOC identification, electronic nose development, and review gastroenterology applications toward diagnosing disease by the volatile headspace analysis of stool. PMID:26819529

  7. Paleogene stratigraphy of the Solomons Island, Maryland corehole

    USGS Publications Warehouse

    Gibson, Thomas G.; Bybell, Laurel M.

    1994-01-01

    Purge and trap capillary gas chromatography/mass spectrometry is a rapid, precise, accurate method for determining volatile organic compounds in samples of surface water and ground water. The method can be used to determine 59 selected compounds, including chlorofluorohydrocarbons, aromatic hydrocarbons, and halogenated hydrocarbons. The volatile organic compounds are removed from the sample matrix by actively purging the sample with helium. The volatile organic compounds are collected onto a sorbant trap, thermally desorbed, separated by a Megabore gas chromatographic capillary column, ionized by electron impact, and determined by a full-scan quadrupole mass spectrometer. Compound identification is confirmed by the gas chromatographic retention time and by the resultant mass spectrum. Unknown compounds detected in a sample can be tentatively identified by comparing the unknown mass spectrum to reference spectra in the mass-spectra computer-data system library compiled by the National Institute of Standards and Technology. Method detection limits for the selected compounds range from 0.05 to 0.2 microgram per liter. Recoveries for the majority of the selected compounds ranged from 80 to 120 percent, with relative standard deviations of less than 10 percent.

  8. Ground-water quality in the southeastern Sacramento Valley aquifer, California, 1996

    USGS Publications Warehouse

    Milby Dawson, Barbara J.

    2001-01-01

    In 1996, the U.S. Geological Survey sampled 29 domestic wells and 2 monitoring wells in the southeastern Sacramento Valley as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This area, designated as the NAWQA Sacramento subunit study area, was chosen because it had the largest amount of ground-water use in the Sacramento River Basin. The Sacramento subunit study area is about 4,400 square kilometers and includes intense agricultural and urban development. The wells sampled ranged from 14.9 to 79.2 meters deep. Ground-water samples from 31 wells were analyzed for 6 field measurements, 14 inorganic constituents, 6 nutrient constituents, organic carbon, 86 pesticides, 87 volatile organic compounds, tritium (hydrogen-3), radon-222, deuterium (hydrogen-2), and oxygen-18. Nitrate levels were lower than the 2000 drinking-water standards in all but one well, but many detections were in the range that indicated an effect by human activities on ground-water quality. Radon was detected in all wells, and was measured at levels above the proposed Federal 2000 maximum contaminant level in 90 percent of the wells. Five pesticides and one pesticide degradation product were detected in ground-water samples and concentrations were below 2000 drinking-water standards. All pesticides detected during this study have been used in the Sacramento Valley. Thirteen volatile organic compounds were detected in ground water. One detection of trichloroethene was above Federal 2000 drinking-water standards, and another, tetrachloromethane, was above California 1997 drinking-water standards; both occurred in a well that had eight volatile organic compound detections and is near a known source of ground-water contamination. Pesticides and volatile organic compounds were detected in agricultural and urban areas; both pesticides and volatile organic compounds were detected at a higher frequency in urban wells. Ground-water chemistry indicates that natural processes and human activities are affecting ground-water quality in the upper part of the southeastern Sacramento Valley aquifer. The factors identified as having an influence on ground-water quality were redox condition in the aquifer, depth within the aquifer, and land use overlying the aquifer. Nitrate concentra-tions showed a statistical correlation with each of these factors. Detections of pesticides and volatile organic compounds were too few to compare concentrations with the various factors, but the types of synthetic compounds detected were consistent with the sur-rounding land use. Sixty-one percent of the wells sampled in this study showed the effect of human activities on ground-water quality in the form of a nitrate concentration over 3 milligrams per liter or a detection of a pesticide or volatile organic compound. In general, the water quality in the southeastern Sacramento Valley aquifer was found suitable for most uses.

  9. Needle Trap Device as a New Sampling and Preconcentration Approach for Volatile Organic Compounds of Herbal Medicines and its Application to the Analysis of Volatile Components in Viola tianschanica.

    PubMed

    Qin, Yan; Pang, Yingming; Cheng, Zhihong

    2016-11-01

    The needle trap device (NTD) technique is a new microextraction method for sampling and preconcentration of volatile organic compounds (VOCs). Previous NTD studies predominantly focused on analysis of environmental volatile compounds in the gaseous and liquid phases. Little work has been done on its potential application in biological samples and no work has been reported on analysis of bioactive compounds in essential oils from herbal medicines. The main purpose of the present study is to develop a NTD sampling method for profiling VOCs in biological samples using herbal medicines as a case study. A combined method of NTD sample preparation and gas chromatography-mass spectrometry was developed for qualitative analysis of VOCs in Viola tianschanica. A 22-gauge stainless steel, triple-bed needle packed with Tenax, Carbopack X and Carboxen 1000 sorbents was used for analysis of VOCs in the herb. Furthermore, different parameters affecting the extraction efficiency and capacity were studied. The peak capacity obtained by NTDs was 104, more efficient than those of the static headspace (46) and hydrodistillation (93). This NTD method shows potential to trap a wide range of VOCs including the lower and higher volatile components, while the static headspace and hydrodistillation only detects lower volatile components, and semi-volatile and higher volatile components, respectively. The developed NTD sample preparation method is a more rapid, simpler, convenient, and sensitive extraction/desorption technique for analysis of VOCs in herbal medicines than the conventional methods such as static headspace and hydrodistillation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madronich, Sasha; Kleinman, Larry; Conley, Andrew

    Gas-to-particle partitioning of organic aerosols (OA) is represented in most models by Raoult’s law, and depends on the existing mass of particles into which organic gases can dissolve. This raises the possibility of non-linear response of particle-phase OA to the emissions of precursor volatile organic compounds (VOCs) that contribute to this partitioning mass. Implications for air quality management are evident: A strong non-linear dependence would suggest that reductions in VOC emission would have a more-than-proportionate benefit in lowering ambient OA concentrations. Chamber measurements on simple VOC mixtures generally confirm the non-linear scaling between OA and VOCs, usually stated as amore » mass-dependence of the measured OA yields. However, for realistic ambient conditions including urban settings, no single component dominates the composition of the organic particles, and deviations from linearity are presumed to be small. Here we re-examine the linearity question using volatility spectra from several sources: (1) chamber studies of selected aerosols, (2) volatility inferred for aerosols sampled in two megacities, Mexico City and Paris, and (3) an explicit chemistry model (GECKO-A). These few available volatility distributions suggest that urban OA may be only slightly super-linear, with most values of the sensitivity exponent in the range 1.1-1.3, also substantially lower than seen in chambers for some specific aerosols. Furthermore, the rather low values suggest that OA concentrations in megacities are not an inevitable convergence of non-linear effects, but can be addressed (much like in smaller urban areas) by proportionate reductions in emissions.« less

  11. Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity

    NASA Astrophysics Data System (ADS)

    Kostenidou, Evangelia; Karnezi, Eleni; Hite, James R., Jr.; Bougiatioti, Aikaterini; Cerully, Kate; Xu, Lu; Ng, Nga L.; Nenes, Athanasios; Pandis, Spyros N.

    2018-04-01

    The volatility distribution of the organic aerosol (OA) and its sources during the Southern Oxidant and Aerosol Study (SOAS; Centreville, Alabama) was constrained using measurements from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a thermodenuder (TD). Positive matrix factorization (PMF) analysis was applied on both the ambient and thermodenuded high-resolution mass spectra, leading to four factors: more oxidized oxygenated OA (MO-OOA), less oxidized oxygenated OA (LO-OOA), an isoprene epoxydiol (IEPOX)-related factor (isoprene-OA) and biomass burning OA (BBOA). BBOA had the highest mass fraction remaining (MFR) at 100 °C, followed by the isoprene-OA, and the LO-OOA. Surprisingly the MO-OOA evaporated the most in the TD. The estimated effective vaporization enthalpies assuming an evaporation coefficient equal to unity were 58 ± 13 kJ mol-1 for the LO-OOA, 89 ± 10 kJ mol-1 for the MO-OOA, 55 ± 11 kJ mol-1 for the BBOA, and 63 ± 15 kJ mol-1 for the isoprene-OA. The estimated volatility distribution of all factors covered a wide range including both semi-volatile and low-volatility components. BBOA had the lowest average volatility of all factors, even though it had the lowest O : C ratio among all factors. LO-OOA was the more volatile factor and its high MFR was due to its low enthalpy of vaporization according to the model. The isoprene-OA factor had intermediate volatility, quite higher than suggested by a few other studies. The analysis suggests that deducing the volatility of a factor only from its MFR could lead to erroneous conclusions. The oxygen content of the factors can be combined with their estimated volatility and hygroscopicity to provide a better view of their physical properties.

  12. Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto

    2015-06-09

    Extremely low volatility organic compounds (ELVOC) are suggested to promote aerosol particle formation and cloud condensation nuclei (CCN) production in the atmosphere. We show that the capability of biogenic VOC (BVOC) to produce ELVOC depends strongly on their chemical structure and relative oxidant levels. BVOC with an endocyclic double bond, representative emissions from, e.g., boreal forests, efficiently produce ELVOC from ozonolysis. Compounds with exocyclic double bonds or acyclic compounds including isoprene, emission representative of the tropics, produce minor quantities of ELVOC, and the role of OH radical oxidation is relatively larger. Implementing these findings into a global modeling framework showsmore » that detailed assessment of ELVOC production pathways is crucial for understanding biogenic secondary organic aerosol and atmospheric CCN formation.« less

  13. Extraterrestrial organic matter: a review

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.

    1998-01-01

    We review the nature of the widespread organic material present in the Milky Way Galaxy and in the Solar System. Attention is given to the links between these environments and between primitive Solar System objects and the early Earth, indicating the preservation of organic material as an interstellar cloud collapsed to form the Solar System and as the Earth accreted such material from asteroids, comets and interplanetary dust particles. In the interstellar medium of the Milky Way Galaxy more than 100 molecular species, the bulk of them organic, have been securely identified, primarily through spectroscopy at the highest radio frequencies. There is considerable evidence for significantly heavier organic molecules, particularly polycyclic aromatics, although precise identification of individual species has not yet been obtained. The so-called diffuse interstellar bands are probably important in this context. The low temperature kinetics in interstellar clouds leads to very large isotopic fractionation, particularly for hydrogen, and this signature is present in organic components preserved in carbonaceous chondritic meteorites. Outer belt asteroids are the probable parent bodies of the carbonaceous chondrites, which may contain as much as 5% organic material, including a rich variety of amino acids, purines, pyrimidines, and other species of potential prebiotic interest. Richer in volatiles and hence less thermally processed are the comets, whose organic matter is abundant and poorly characterized. Cometary volatiles, observed after sublimation into the coma, include many species also present in the interstellar medium. There is evidence that most of the Earth's volatiles may have been supplied by a 'late' bombardment of comets and carbonaceous meteorites, scattered into the inner Solar System following the formation of the giant planets. How much in the way of intact organic molecules of potential prebiotic interest survived delivery to the Earth has become an increasingly debated topic over the last several years. The principal source for such intact organics was probably accretion of interplanetary dust particles of cometary origin.

  14. Real-Time and Delayed Analysis of Tree and Shrub Cores as Indicators of Subsurface Volatile Organic Compound Contamination, Durham Meadows Superfund Site, Durham, Connecticut, August 29, 2006

    USGS Publications Warehouse

    Vroblesky, Don A.; Willey, Richard E.; Clifford, Scott; Murphy, James J.

    2008-01-01

    This study examined volatile organic compound concentrations in cores from trees and shrubs for use as indicators of vadose-zone contamination or potential vapor intrusion by volatile organic compounds into buildings at the Durham Meadows Superfund Site, Durham, Connecticut. The study used both (1) real-time tree- and shrub-core analysis, which involved field heating the core samples for 5 to 10 minutes prior to field analysis, and (2) delayed analysis, which involved allowing the gases in the cores to equilibrate with the headspace gas in the sample vials unheated for 1 to 2 days prior to analysis. General correspondence was found between the two approaches, indicating that preheating and field analysis of vegetation cores is a viable approach to real-time monitoring of subsurface volatile organic compounds. In most cases, volatile organic compounds in cores from trees and shrubs at the Merriam Manufacturing Company property showed a general correspondence to the distribution of volatile organic compounds detected in a soil-gas survey, despite the fact that most of the soil-gas survey data in close proximity to the relevant trees were collected about 3 years prior to the tree-core collection. Most of the trees cored at the Durham Meadows Superfund Site, outside of the Merriam Manufacturing Company property, contained no volatile organic compounds and were in areas where indoor air sampling and soil-gas sampling showed little or no volatile organic compound concentrations. An exception was tree DM11, which contained barely detectable concentrations of trichloroethene near a house where previous investigations found low concentrations of trichloroethene (0.13 to 1.2 parts per billion by volume) in indoor air and 7.7 micrograms per liter of trichloroethene in the ground water. The barely detectable concentration of trichloroethene in tree DM11 and the lack of volatile organic compound detection in nearby tree DM10 (adjacent to the well having 7.7 micrograms of trichloroethene) may be attributable to the relatively large depth to water (17.6 feet), the relatively low soil-vapor trichloroethene concentration, and the large amount of rainfall during and preceding the tree-coring event. The data indicate that real-time and delayed analyses of tree cores are viable approaches to examining subsurface volatile organic compound soil-gas or vadose-zone contamination at the Durham Meadows Superfund Site and other similar sites. Thus, the methods may have application for determining the potential for vapor intrusion into buildings.

  15. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  16. Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2017-12-01

    Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.

  17. The Role of Internal Standards and their Interaction with Soils Impact Accuracy of Volatile Organics Determinations

    EPA Science Inventory

    Both US Environmental Protection Agency (EPA) SW-846 Methods 8260C/5035 and 8261A include mixing soil with water and addition of internal standards prior to analyses but the equilibration of internal standards with the soil is not required. With increasing total organic carbon (...

  18. Toxic Remediation System And Method

    DOEpatents

    Matthews, Stephen M.; Schonberg, Russell G.; Fadness, David R.

    1996-07-23

    What is disclosed is a novel toxic waste remediation system designed to provide on-site destruction of a wide variety of hazardous organic volatile hydrocarbons, including but not limited to halogenated and aromatic hydrocarbons in the vapor phase. This invention utilizes a detoxification plenum and radiation treatment which transforms hazardous organic compounds into non-hazardous substances.

  19. Comparison of methods for determination of volatile organic compounds in drinking water.

    PubMed

    Golfinopoulos, S K; Lekkas, T D; Nikolaou, A D

    2001-10-01

    Comparison of four methods including liquid-liquid extraction (LLE), direct aqueous injection (DAI), purge and trap (PAT) and head space (HS) were carried out in this work for determination of volatile organic compounds (VOCs) including trihalomethanes (THMs) in drinking water. This comparison is made especially to show the advantages and disadvantages and specifically the different detection limits (DL) that can be obtained for a given type of analysis. LLE is applicable only for determination of the THMs concentrations, while DAI, PAT, HS methods with different DL each of them are applicable for all VOCs, with PAT to be the most sensitive. Sampling apparatus and procedure for all these methods except of PAT are very simple and easy, but possible disadvantages for LLE and DAI are the low sensitivity and especially the detection only of THMs with LLE.

  20. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    PubMed Central

    Griffith, Robert T.; Jayachandran, Krishnaswamy; Shetty, Kateel G.; Whitstine, William; Furton, Kenneth G.

    2007-01-01

    Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs). Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  1. 77 FR 9275 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-16

    ... ETF Volatility Index, the CBOE Brazil ETF Volatility Index and CBOE Oil ETF Volatility Index February... Schedule to establish fees for transactions in options on the CBOE Emerging Market ETF Volatility Index (``VXEEM''), the CBOE Brazil ETF Volatility Index (``VXEWZ'') and the CBOE Crude Oil ETF Volatility Index...

  2. Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins

    NASA Astrophysics Data System (ADS)

    Zhang, Jo Ann; Paige, David A.

    2009-08-01

    We have calculated evaporation rates for a range of organic compounds that may be cold-trapped at the poles of the Moon and Mercury. Organics vary widely in their volatilities and thus can be stable to evaporation at higher and lower temperatures than water. The detection of cold-trapped organics would point to volatile delivery by impacts, as comets and asteroids are the only plausible sources for organic molecules. The characterization of cold-trapped organics on both bodies may provide constraints on the thermal evolution of cold traps over time and the history of volatiles in the inner solar system.

  3. Search for Chemical Biomarkers on Mars Using the Sample Analysis at Mars Instrument Suite on the Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.

    2011-01-01

    One key goal for the future exploration of Mars is the search for chemical biomarkers including complex organic compounds important in life on Earth. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) will provide the most sensitive measurements of the organic composition of rocks and regolith samples ever carried out in situ on Mars. SAM consists of a gas chromatograph (GC), quadrupole mass spectrometer (QMS), and tunable laser spectrometer to measure volatiles in the atmosphere and released from rock powders heated up to 1000 C. The measurement of organics in solid samples will be accomplished by three experiments: (1) pyrolysis QMS to identify alkane fragments and simple aromatic compounds; pyrolysis GCMS to separate and identify complex mixtures of larger hydrocarbons; and (3) chemical derivatization and GCMS extract less volatile compounds including amino and carboxylic acids that are not detectable by the other two experiments.

  4. The comet-like composition of a protoplanetary disk as revealed by complex cyanides.

    PubMed

    Öberg, Karin I; Guzmán, Viviana V; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M; Loomis, Ryan; Wilner, David J

    2015-04-09

    Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.

  5. The comet-like composition of a protoplanetary disk as revealed by complex cyanides

    NASA Astrophysics Data System (ADS)

    Öberg, Karin I.; Guzmán, Viviana V.; Furuya, Kenji; Qi, Chunhua; Aikawa, Yuri; Andrews, Sean M.; Loomis, Ryan; Wilner, David J.

    2015-04-01

    Observations of comets and asteroids show that the solar nebula that spawned our planetary system was rich in water and organic molecules. Bombardment brought these organics to the young Earth's surface. Unlike asteroids, comets preserve a nearly pristine record of the solar nebula composition. The presence of cyanides in comets, including 0.01 per cent of methyl cyanide (CH3CN) with respect to water, is of special interest because of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like compositions of simple and complex volatiles are found in protostars, and can readily be explained by a combination of gas-phase chemistry (to form, for example, HCN) and an active ice-phase chemistry on grain surfaces that advances complexity. Simple volatiles, including water and HCN, have been detected previously in solar nebula analogues, indicating that they survive disk formation or are re-formed in situ. It has hitherto been unclear whether the same holds for more complex organic molecules outside the solar nebula, given that recent observations show a marked change in the chemistry at the boundary between nascent envelopes and young disks due to accretion shocks. Here we report the detection of the complex cyanides CH3CN and HC3N (and HCN) in the protoplanetary disk around the young star MWC 480. We find that the abundance ratios of these nitrogen-bearing organics in the gas phase are similar to those in comets, which suggests an even higher relative abundance of complex cyanides in the disk ice. This implies that complex organics accompany simpler volatiles in protoplanetary disks, and that the rich organic chemistry of our solar nebula was not unique.

  6. Corrosion Finishing/Coating Systems for DoD Metallic Substrates Based on Non-Chromate Inhibitors and UV Curable, Zero VOC Materials

    DTIC Science & Technology

    2010-08-01

    Corrosion resistant coatings containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications...Transmission Electron Microscopy TRI – Toxic Release Inventory UV – Ultraviolet UVAs – Ultraviolet Absorbers VOCs – Volatile Organic Compounds XPS – X...containing non-chromate inhibitors and no volatile organic compounds were developed and evaluated for DoD applications. The technical effort

  7. Use of integrated indoor concentrations of tracer gases and volatile organic compounds to distinguish soil sources from above-ground sources

    EPA Science Inventory

    Vapor intrusion refers to the situation in which harmful chemicals [such as halogenated or chlorinated volatile organic compounds (VOC) or petroleum products] in the groundwater or soil volatilize in the vadose zone and migrate into the indoor environment. These chemicals typical...

  8. 76 FR 61450 - Self-Regulatory Organizations; National Stock Exchange, Inc.; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Methodology for Determining When To Halt Trading in All Stocks Due to Extraordinary Market Volatility... all stocks due to extraordinary market volatility. II. Self-Regulatory Organization's Statement of the... determining when to halt trading in all stocks due to extraordinary market volatility. The Exchange is...

  9. Remedial Investigation/Feasibility Study/Interim Response Actions

    DTIC Science & Technology

    1988-03-25

    organosulfur compounds (CC/FP), organophosphorus compounds (CC/FPD), hydrocarbons (CC/FID), volatile aromatic compounds (GC/ PID ), volatile halogenated...ICP metals, mercury and arsenic (AA). Water samples are being analyzed for volatile halogenated organics (GC/CON), volatile aromatic organics (GC/ PID ...Feb Mar Apr May Jun Jul Aug SepSI - I I I I I • .. I I I ----+----- 685 27-90 so ONSITE DISPOSAL FACILITY .i * 686 27-01 Prep FLUE Plan Fz=m8u> 6e7

  10. Chemical transport model simulations of organic aerosol in ...

    EPA Pesticide Factsheets

    Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA–SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data

  11. Identification of Campylobacter infection in chickens from volatile faecal emissions.

    PubMed

    Garner, Catherine E; Smith, Stephen; Elviss, Nicola C; Humphrey, Tom J; White, Paul; Ratcliffe, Norman M; Probert, Christopher S

    2008-06-01

    Volatile organic compounds from chicken faeces were investigated as biomarkers for Campylobacter infection. Campylobacter are major poultry-borne zoonotic pathogens, colonizing the avian intestinal tract. Chicken faeces are the principal source of contamination of carcasses. Fresh faeces were collected on farm sites, and Campylobacter status established microbiologically. Volatile organic compounds were pre-concentrated from the headspace above 71 separate faecal samples using solid-phase microextraction and separated and identified by gas chromatography/mass spectrometry. A Campylobacter-specific profile was identified using six of the extracted volatile organic compounds. The model developed reliably identified the presence or absence of Campylobacter in >95% of chickens. The volatile biomarker identification approach for assessing avian infection is a novel approach to enhancing biosecurity in the poultry industry and should reduce the risk of disease transmission to humans.

  12. Henry`s law constant for selected volatile organic compounds in high-boiling oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poddar, T.K.; Sirkar, K.K.

    Absorption systems are often used to remove and recover organic vapors from process air/gas streams. A high boiling and inert liquid like silicone oil is an excellent absorbent for volatile organic compounds in air. Henry`s law constants of four different volatile organic compounds, namely, acetone, methanol, methylene chloride, and toluene between air and high-boiling oils were determined experimentally by the headspace-GC technique over a temperature range. The Henry`s law constants were fitted as a function of temperature to an equation.

  13. Volatile organic compounds in a residential and commercial urban area with a diesel, compressed natural gas and oxygenated gasoline vehicular fleet.

    PubMed

    Martins, Eduardo Monteiro; Arbilla, Graciela; Gatti, Luciana Vanni

    2010-02-01

    Air samples were collected in a typical residential and commercial area in Rio de Janeiro, Brazil, where buses and trucks use diesel and light duty vehicles use compressed natural gas, ethanol, and gasohol (gasoline blended with ethanol) as fuel. A total of 66 C3-C12 volatile organic compounds (VOCs) were identified. The most abundant compounds, on a mass concentration basis, included propane, isobutane, i-pentane, m,p-xylene, 1,3,5-trimethylbenzene, toluene, styrene, ethylbenzene, isopropylbenzene, o-xylene and 1,2,4-trimethylbenzene. Two VOCs photochemical reactivity rankings are presented: one involves reaction with OH and the other involves production of ozone.

  14. Apparatus for sensing volatile organic chemicals in fluids

    DOEpatents

    Hughes, Robert C.; Manginell, Ronald P.; Jenkins, Mark W.; Kottenstette, Richard; Patel, Sanjay V.

    2005-06-07

    A chemical-sensing apparatus is formed from the combination of a chemical preconcentrator which sorbs and concentrates particular volatile organic chemicals (VOCs) and one or more chemiresistors that sense the VOCs after the preconcentrator has been triggered to release them in concentrated form. Use of the preconcentrator and chemiresistor(s) in combination allows the VOCs to be detected at lower concentration than would be possible using the chemiresistor(s) alone and further allows measurements to be made in a variety of fluids, including liquids (e.g. groundwater). Additionally, the apparatus provides a new mode of operation for sensing VOCs based on the measurement of decay time constants, and a method for background correction to improve measurement precision.

  15. Darren J. Peterson | NREL

    Science.gov Websites

    volatile organic compounds at sub-parts-per-million concentration levels," Sensors and Actuators B : Chemical (2006) "The Volatile Organic Compound (VOC) Removal Performance of Desiccant-Based

  16. Quantitative organic vapor-particle sampler

    DOEpatents

    Gundel, Lara; Daisey, Joan M.; Stevens, Robert K.

    1998-01-01

    A quantitative organic vapor-particle sampler for sampling semi-volatile organic gases and particulate components. A semi-volatile organic reversible gas sorbent macroreticular resin agglomerates of randomly packed microspheres with the continuous porous structure of particles ranging in size between 0.05-10 .mu.m for use in an integrated diffusion vapor-particle sampler.

  17. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.

  18. [Study of volatile organic compounds of fresh allium species using headspace combined with surface-enhanced Raman scattering].

    PubMed

    Si, Min-Zhen; Zhang, De-Qing; Liu, Ren-Ming

    2014-09-01

    In order to identify volatile organic compounds of fresh plants at room temperature and avoid sample pretreatment and extractions which can be labor intensive, garlic, Chinese chives and scallion were chopped into pieces. Then some of them were placed in the headspace vial and sealed. The gases were drawn from the vial with a syringe and were injected very slowly into Ag colloids for test using R-3000 portable Raman spectrometer. The spectra of volatile organic compounds of allium species, fresh garlic, Chinese chive and shallot plants were successfully.recorded for the first time. For garlic high intensity bands are present at 307, 399, 569, 711, 1,182, 1,287, 1,397 and 1,622 cm(-1). For Chinese chives the high intensity band is present at 672 cm(-1). Low intensity bands are present at 274, 412, 575, 1,185, 1,289, 1,396, 1,618 cm(-1). For shallot high intensity bands are present at 693 cm(-1). Lower intensity bands are present at 372, 888, 1,023 cm(-1). Low intensity bands are present at 1,088, 1,211 and 1,322 cm(-1). The SERS of diallyl disulfide, allyl methyl sulfide and 1-propanethiol in liquid state and gas state were also obtained. The main volatile organic compound of fresh garlic, Chinese chive and shallot are diallyl disulfide, allyl methyl sulfide and 1-propanethiol respectively, and the volatile organic compound of fresh onion, scallion, shallot and chive are all 1-propanethiol. The presented results illustrate that combining headspace and SERS is a powerful tool for volatile organic compound analysis in fresh plants. The volatile organic compound can be detected in fresh plant samples directly and quickly without extraction.

  19. Sensory irritating potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs.

    PubMed

    Korpi, A; Kasanen, J P; Alarie, Y; Kosma, V M; Pasanen, A L

    1999-01-01

    The authors investigated the ability/potencies of 3 microbial volatile organic compounds and a mixture of 5 microbial volatile organic compounds to cause eye and upper respiratory tract irritation (i.e., sensory irritation), with an animal bioassay. The authors estimated potencies by determining the concentration capable of decreasing the respiratory frequency of mice by 50% (i.e., the RD50 value). The RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 182 mg/m3 (35 ppm), 1359 mg/m3 (256 ppm), and 17586 mg/m3 (3360 ppm), respectively. Recommended indoor air levels calculated from the individual RD50 values for 1-octen-3-ol, 3-octanol, and 3-octanone were 100, 1000, and 13000 microg/m3, respectively-values considerably higher than the reported measured indoor air levels for these compounds. The RD50 value for a mixture of 5 microbial volatile organic compounds was also determined and found to be 3.6 times lower than estimated from the fractional concentrations and the respective RD50s of the individual components. The data support the conclusion that a variety of microbial volatile organic compounds may have some synergistic effects for the sensory irritation response, which constrains the interpretation and application of recommended indoor air levels of individual microbial volatile organic compounds. The results also showed that if a particular component of a mixture was much more potent than the other components, it may dominate the sensory irritation effect. With respect to irritation symptoms reported in moldy houses, the results of this study indicate that the contribution of microbial volatile organic compounds to these symptoms seems less than previously supposed.

  20. 40 CFR 60.16 - Priority list.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Categories Priority Number 1 Source Category 1. Synthetic Organic Chemical Manufacturing Industry (SOCMI) and Volatile Organic Liquid Storage Vessels and Handling Equipment (a) SOCMI unit processes (b) Volatile organic liquid (VOL) storage vessels and handling equipment (c) SOCMI fugitive sources (d) SOCMI secondary...

  1. COMBUSTION AREA SOURCES: DATA SOURCES

    EPA Science Inventory

    The report identifies, documents, and evaluates data sources for stationary area source emissions, including solid waste and agricultural burning. Area source emissions of particulate matter, sulfur dioxide, oxides of nitrogen, reactive volatile organic compounds, and carbon mon...

  2. 76 FR 20779 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... Change To Provide Legal Certainty for the Trading of Futures on the CBOE Gold ETF Volatility Index April... CBOE Gold ETF Volatility Index (``GVZ Index''). II. Self-Regulatory Organization's Statement of the..., LLC (``CFE'') as an up-to-the-minute market estimate of the expected volatility of SPDR Gold Shares...

  3. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  4. Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan.

    PubMed

    Hai, Dao M; Qiu, Xuchun; Xu, Hai; Honda, Masato; Yabe, Mitsuyasu; Kadokami, Kiwao; Shimasaki, Yohei; Oshima, Yuji

    2017-07-01

    To provide an overview of anthropogenic contaminants in liquid organic fertilizers (LOFs), products from four biogas plants in Kyushu, Japan, were analyzed for a wide range of contaminants, including copper, cadmium, tributyltin (TBT), dibutyltin (DBT), perfluorooctane sulfonate, 952 semi-volatile organic compounds, and 89 antibiotics. The highest concentrations of copper (31.1 mg/L) and cadmium (0.08 mg/L) were found in LOFs from the Hita biogas plant. Only ofloxacin and sulfapyridine were detected in total 89 antibiotics screened. TBT, DBT, and perfluorooctane sulfonate were present at low concentrations in the LOFs from all four locations. Among the 952 semi-volatile organic compounds, 78 compounds were detected in at least one sample and were present at concentrations between 1.2 and 139.6 mg/L. On the basis of comparisons with previous studies and quality standards for the use of organic fertilizers, the concentrations of contaminants in the studied LOFs indicate that they might be safe for agricultural purposes.

  5. Ground-water contamination at an inactive coal and oil gasification plant site, Gas Works Park, Seattle, Washington

    USGS Publications Warehouse

    Turney, G.L.; Goerlitz, D.F.

    1989-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on site. The park soil is presently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the groundwater. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in groundwater samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where groundwater was in contact with a nonaqueous phase liquid in the soil. Concentrations in groundwater were much smaller where no nonaqueous phase liquid was present, even if the groundwater was in contact with contaminated soils. This condition is attributed to weathering processes at the site, such as dissolution, volatilization, and biodegradation. Soluble, volatile, low-molecular-weight organic compounds are preferentially dissolved from the nonaqueous phase liquid into the groundwater. Where no nonaqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain; therefore, contaminant concentrations in the groundwater are much smaller. Concentrations of organic contaminants in the soils may still remain large. Values of specific conductance were as large as 5,280 microsiemens/cm, well above a background of 242 microsiemens/cm, suggesting large concentrations of minerals in the groundwater. Trace metal concentrations, however , were generally < 0.010 mg/L, and below limits of US EPA drinking water standards. Cyanide was present in groundwater samples from throughout the park, ranging in concentration from 0.01 to 8.6 mg/L. (Author 's abstract)

  6. Global transformation and fate of SOA: Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, ManishKumar B.; Easter, Richard C.; Liu, Xiaohong

    2015-05-16

    Secondary organic aerosols (SOA) are large contributors to fine particle loadings and radiative forcing, but are often represented crudely in global models. We have implemented three new detailed SOA treatments within the Community Atmosphere Model version 5 (CAM5) that allow us to compare the semi-volatile versus non-volatile SOA treatments (based on some of the latest experimental findings) and also investigate the effects of gas-phase fragmentation reactions. For semi-volatile SOA treatments, fragmentation reactions decrease simulated SOA burden from 7.5 Tg to 1.8 Tg. For the non-volatile SOA treatment with fragmentation, the burden is 3.1 Tg. Larger differences between non-volatile and semi-volatilemore » SOA (upto a factor of 5) correspond to continental outflow over the oceans. Compared to a global dataset of surface Aerosol Mass Spectrometer measurements and the US IMPROVE network measurements, the non-volatile SOA with fragmentation treatment (FragNVSOA) agrees best at rural locations. Urban SOA is under-predicted but this may be due to the coarse model resolution. All our three revised treatments show much better agreement with aircraft measurements of organic aerosols (OA) over the N. American Arctic and sub-Arctic in spring and summer, compared to the standard CAM5 formulation. This is due to treating SOA precursor gases from biomass burning, and long-range transport of biomass burning OA at elevated levels. The revised model configuration that include fragmentation (both semi-volatile and non-volatile SOA) show much better agreement with MODIS AOD data over regions dominated by biomass burning during the summer, and predict biomass burning as the largest global source of OA followed by biogenic and anthropogenic sources. The non-volatile and semi-volatile configuration predict the direct radiative forcing of SOA as -0.5 W m-2 and -0.26 W m-2 respectively, at top of the atmosphere, which are higher than previously estimated by most models, but in reasonable agreement with a recent constrained modeling study. This study highlights the importance of improving process-level representation of SOA in global models.« less

  7. The development and testing of a volatile organics concentrator for use in monitoring Space Station water quality

    NASA Technical Reports Server (NTRS)

    Bodek, Itamar; Ehntholt, Daniel J.; Stolki, Thomas J.; Trabanino, Rudy; Hinsdale, Lloyd; Webb, Johanna; Sauer, Richard L.

    1992-01-01

    The Volatile Organics Concentrator (VOC) system, designed to attach to a gas chromatograph/mass spectrometer (GC/MS) for the analyses of volatile organic compounds in water on Space Station Freedom, is described. Organic volatiles are collected and concentrated in the VOC by means of two primary solid sorbent tubes and desorbed into the GC/MS system. The paper describes the results of testing the VOC breadboard using a GC/MS system. Evaluations performed on 39 organic compounds recovered from water samples were compared with data for these compounds using direct injection/GC/MS and purge and trap/GC/MS procedures. The results demonstrate that the VOC/GC/MS system's detection limits for the 39 compounds analyzed are comparable to those of the EPA Method 524.2, and for many compounds reaching a factor of 5 lower.

  8. Thermal alteration experiments on organic matter from recent marine sediments in relation to petroleum genesis

    NASA Technical Reports Server (NTRS)

    Ishiwatari, R.; Ishiwatari, M.; Rohrback, B. G.; Kaplan, I. R.

    1977-01-01

    Three fractions of organic matter: lipid (benzene:methanol-extractable), humic acid (alkali-extractable) and kerogen (residue) were extracted from a young marine sediment (Tanner Basin, offshore southern California) and heated for different times (5-116 hr) and temperatures (150-410 C). The volatile (gases) and liquid products, as well as residual material, were then analyzed. On a weight basis, the lipid fraction produced 58% of the total identified n-alkanes, the kerogen fraction 41%, and the humic acid less than 1%. The volatiles produced by heating the lipid and humic acid fractions were largely CO2 and water, whereas those produced from heated kerogen also included methane, hydrogen gas and small amounts of C2-C4 hydrocarbons. A mechanism for hydrocarbon production due to the thermal alteration of organic constituents of marine sediment is discussed.

  9. Current understandings and perspectives on non-cancer health effects of benzene: A global concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadar, Haji; Pharmaceutical Sciences Research Center and Faculty of Pharmacy, Tehran University of Medical Sciences; Mostafalou, Sara

    Objective: Benzene, as a volatile organic compound, is known as one of the main air pollutants in the environment. The aim of this review is to summarize all available evidences on non-cancerous health effects of benzene providing an overview of possible association of exposure to benzene with human chronic diseases, specially, in those regions of the world where benzene concentration is being poorly monitored. Methodology: A bibliographic search of scientific databases including PubMed, Google Scholar, and Scirus was conducted with key words of “benzene toxic health effects”, “environmental volatile organic compounds”, “diabetes mellitus and environmental pollutants”, “breast cancer and environmentalmore » pollution”, “prevalence of lung cancer”, and “diabetes prevalence”. More than 300 peer reviewed papers were examined. Experimental and epidemiologic studies reporting health effects of benzene and volatile organic compounds were included in the study. Results: Epidemiologic and experimental studies suggest that benzene exposure can lead to numerous non-cancerous health effects associated with functional aberration of vital systems in the body like reproductive, immune, nervous, endocrine, cardiovascular, and respiratory. Conclusion: Chronic diseases have become a health burden of global dimension with special emphasis in regions with poor monitoring over contents of benzene in petrochemicals. Benzene is a well known carcinogen of blood and its components, but the concern of benzene exposure is more than carcinogenicity of blood components and should be evaluated in both epidemiologic and experimental studies. Aspect of interactions and mechanism of toxicity in relation to human general health problems especially endocrine disturbances with particular reference to diabetes, breast and lung cancers should be followed up. - Highlights: • Benzene is a volatile organic compound and established blood carcinogen. • Exposure to benzene needs to be evaluated in related chronic diseases. • Cigarette smoke is the main source for indoor benzene exposure. • Health outcomes associated with air pollutants are poorly characterized due to lack of comprehensive monitoring system.« less

  10. Possible role of plant volatiles in tolerance against huanglongbing in citrus

    PubMed Central

    Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil

    2016-01-01

    abstract Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas. PMID:26829496

  11. Possible role of plant volatiles in tolerance against huanglongbing in citrus.

    PubMed

    Hijaz, Faraj; Nehela, Yasser; Killiny, Nabil

    2016-01-01

    Volatile organic compounds (VOC) play an important role in protecting plants from insect and pathogen attack. In this study, we investigated the leaf volatile profiles of 14 citrus varieties. The VOC in citrus leaves were extracted with n-hexane and analyzed using gas chromatography-mass spectrometry (GC-MS). Overall, 4six volatile compounds were identified in the n-hexane extract from citrus leaves. Most of the detected compounds belonged to 3 main groups (monoterpenes, sesquiterpenes, and aliphatic aldehydes). Principle component analysis was used to examine the relative distribution of the studied varieties to each other. Interestingly, volatile profiles of varieties that are tolerant to Candidatus Liberibacter asiaticus (CLas) were different from those of the susceptible ones. Tolerant and moderately-tolerant cultivars contained relatively higher amounts of volatiles than susceptible varieties. In addition, tolerant varieties were also higher in specific compounds which are known for their antimicrobial activities. These compounds include Aldehydes (undecanal, neral, geranial, and citronellal) and some monoterpenes such as linalool, d-limonene, myrcene, α- and β- phellandrene. In addition, some sesquiterpene compounds including t-caryophellene, γ-elemene, β-elemene, germacrene D, and geranyl acetate were higher in tolerant and moderately tolerant cultivars. Severinia buxifolia which is known for its tolerance to CLas and many other pathogens contained higher levels of santalenes and coumarins. Our results indicated that citrus leaf volatiles might play a role in citrus tolerance to CLas. The results of this study may help in understanding of the mechanism of citrus tolerance against CLas.

  12. Sensitivity of Aerosol Mass and Microphysics to Treatments of Condensational Growth of Secondary Organic Compounds in a Regional Model

    NASA Astrophysics Data System (ADS)

    Topping, D. O.; Lowe, D.; McFiggans, G.; Zaveri, R. A.

    2016-12-01

    Gas to particle partitioning of atmospheric compounds occurs through disequilibrium mass transfer rather than through instantaneous equilibrium. However, it is common to treat only the inorganic compounds as partitioning dynamically whilst organic compounds, represented by the Volatility Basis Set (VBS), are partitioned instantaneously. In this study we implement a more realistic dynamic partitioning of organic compounds in a regional framework and assess impact on aerosol mass and microphysics. It is also common to assume condensed phase water is only associated with inorganic components. We thus also assess sensitivity to assuming all organics are hygroscopic according to their prescribed molecular weight.For this study we use WRF-Chem v3.4.1, focusing on anthropogenic dominated North-Western Europe. Gas-phase chemistry is represented using CBM-Z whilst aerosol dynamics are simulated using the 8-section MOSAIC scheme, including a 9-bin volatility basis set (VBS) treatment of organic aerosol. Results indicate that predicted mass loadings can vary significantly. Without gas phase ageing of higher volatility compounds, dynamic partitioning always results in lower mass loadings downwind of emission sources. The inclusion of condensed phase water in both partitioning models increases the predicted PM mass, resulting from a larger contribution from higher volatility organics, if present. If gas phase ageing of VBS compounds is allowed to occur in a dynamic model, this can often lead to higher predicted mass loadings, contrary to expected behaviour from a simple non-reactive gas phase box model. As descriptions of aerosol phase processes improve within regional models, the baseline descriptions of partitioning should retain the ability to treat dynamic partitioning of organic compounds. Using our simulations, we discuss whether derived sensitivities to aerosol processes in existing models may be inherently biased.This work was supported by the Nature Environment Research Council within the RONOCO (NE/F004656/1) and CCN-Vol (NE/L007827/1) projects.

  13. Things fall apart: Fragmentation reactions in the oxidative aging of organic species

    NASA Astrophysics Data System (ADS)

    Kroll, J. H.; Isaacman-VanWertz, G. A.; Wilson, K. R.; Daumit, K. E.; Kessler, S. H.; Lim, C. Y.; Worsnop, D. R.

    2016-12-01

    The atmospheric oxidation of organic compounds involves a wide array of chemical transformations, including functionalization reactions (addition of polar functional groups to the carbon skeleton), fragmentation reactions (formation of lower carbon-number products via C-C bond scission), and accretion reactions (increases in molecular weight by the combination of two chemical species). Each of these reaction classes can lead to large changes in volatility, and hence can have major implications for atmospheric organic aerosol (OA). For example, the formation of OA is predominantly driven by functionalization and accretion reactions, which generally lead to decreases in volatility. Here we describe a series of laboratory studies of the subsequent organic "aging", the multiday oxidation processes that occur after the initial OA formation and growth. In these studies, the multigenerational oxidation of organic compounds in various phases (the gas phase, the condensed OA phase, and the aqueous phase) is carried out within either an environmental chamber or a flow reactor, and monitored using various high-resolution mass spectrometric techniques. In all cases it is found that fragmentation reactions play a major role in the observed aging chemistry, dominated by the formation of small, volatile oxidation products. These results suggest that multi-day oxidative aging processes do not lead to sustained aerosol growth, but rather may serve as a chemical sink for atmospheric OA.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, F.; Luo, G.; Pryor, S. C.

    Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less

  15. Volatile organic compounds in the unsaturated zone from radioactive wastes

    USGS Publications Warehouse

    Baker, Ronald J.; Andraski, Brian J.; Stonestrom, David A.; Luo, Wentai

    2012-01-01

    Volatile organic compounds (VOCs) are often comingled with low-level radioactive wastes (LLRW), but little is known about subsurface VOC emanations from LLRW landfills. The current study systematically quantified VOCs associated with LLRW over an 11-yr period at the USGS Amargosa Desert Research Site (ADRS) in southwestern Nevada. Unsaturated-zone gas samples of VOCs were collected by adsorption on resin cartridges and analyzed by thermal desorption and GC/MS. Sixty of 87 VOC method analytes were detected in the 110-m-thick unsaturated zone surrounding a LLRW disposal facility. Chlorofluorocarbons (CFCs) were detected in 100% of samples collected. Chlorofluorocarbons are powerful greenhouse gases, deplete stratospheric ozone, and are likely released from LLRW facilities worldwide. Soil-gas samples collected from a depth of 24 m and a horizontal distance 100 m south of the nearest waste-disposal trench contained >60,000 ppbv total VOCs, including >37,000 ppbv CFCs. Extensive sampling in the shallow unsaturated zone (0–2 m deep) identified areas where total VOC concentrations exceeded 5000 ppbv at the 1.5-m depth. Volatile organic compound concentrations exceeded background levels up to 300 m from the facility. Maximum vertical diffusive fluxes of total VOCs were estimated to be 1 g m-2 yr-1. Volatile organic compound distributions were similar but not identical to those previously determined for tritium and elemental mercury. To our knowledge, this study is the first to characterize the unsaturated zone distribution of VOCs emanating from a LLRW landfill. Our results may help explain anomalous transport of radionuclides at the ADRS and elsewhere.

  16. Generation of sub-part-per-billion gaseous volatile organic compounds at ambient temperature by headspace diffusion of aqueous standards through decoupling between ideal and nonideal Henry's law behavior.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2013-05-21

    In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.

  17. EMERGING TECHNOLOGY BULLETIN - METHANOTROPHIC BIOREACTOR SYSTEM - BIOTROL, INC.

    EPA Science Inventory

    BioTrol's Methanotrophic Bioreactor is an above-ground remedial system for water contaminated with halogenated volatile organic compounds, including trichloroethylene (ICE) and related chemicals. Its design features circumvent problems peculiar to treatment of this unique class o...

  18. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  19. Nitrate radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol

    EPA Science Inventory

    Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 d...

  20. Volatility dependence of Henry's law constants of condensable organics: Application to estimate depositional loss of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Aumont, B.; Knote, C.; Lee-Taylor, J.; Madronich, S.; Tyndall, G.

    2014-07-01

    The water solubility of oxidation intermediates of volatile organic compounds that can condense to form secondary organic aerosol (SOA) is largely unconstrained in current chemistry-climate models. We apply the Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere to calculate Henry's law constants for these intermediate species. Results show a strong negative correlation between Henry's law constants and saturation vapor pressures. Details depend on precursor species, extent of photochemical processing, and NOx levels. Henry's law constants as a function of volatility are made available over a wide range of vapor pressures for use in 3-D models. In an application using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) over the U.S. in summer, we find that dry (and wet) deposition of condensable organic vapors leads to major reductions in SOA, decreasing surface concentrations by ~50% (10%) for biogenic and ~40% (6%) for short chain anthropogenic precursors under the considered volatility conditions.

  1. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds.

    PubMed

    Schantz, Michele M; Benner, Bruce A; Heckert, N Alan; Sander, Lane C; Sharpless, Katherine E; Vander Pol, Stacy S; Vasquez, Y; Villegas, M; Wise, Stephen A; Alwis, K Udeni; Blount, Benjamin C; Calafat, Antonia M; Li, Zheng; Silva, Manori J; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G; Sjödin, Andreas

    2015-04-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers' Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers' Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants.

  2. Development of urine standard reference materials for metabolites of organic chemicals including polycyclic aromatic hydrocarbons, phthalates, phenols, parabens, and volatile organic compounds

    PubMed Central

    Schantz, Michele M.; Benner, Bruce A.; Heckert, N. Alan; Sander, Lane C.; Sharpless, Katherine E.; Vander Pol, Stacy S.; Vasquez, Y.; Villegas, M.; Wise, Stephen A.; Alwis, K. Udeni; Blount, Benjamin C.; Calafat, Antonia M.; Li, Zheng; Silva, Manori J.; Ye, Xiaoyun; Gaudreau, Éric; Patterson, Donald G.; Sjödin, Andreas

    2016-01-01

    Two new Standard Reference Materials (SRMs), SRM 3672 Organic Contaminants in Smokers’ Urine (Frozen) and SRM 3673 Organic Contaminants in Non-Smokers’ Urine (Frozen), have been developed in support of studies for assessment of human exposure to select organic environmental contaminants. Collaborations among three organizations resulted in certified values for 11 hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and reference values for 11 phthalate metabolites, 8 environmental phenols and parabens, and 24 volatile organic compound (VOC) metabolites. Reference values are also available for creatinine and the free forms of caffeine, theobromine, ibuprofen, nicotine, cotinine, and 3-hydroxycotinine. These are the first urine Certified Reference Materials characterized for metabolites of organic environmental contaminants. Noteworthy, the mass fractions of the environmental organic contaminants in the two SRMs are within the ranges reported in population survey studies such as the National Health and Nutrition Examination Survey (NHANES) and the Canadian Health Measures Survey (CHMS). These SRMs will be useful as quality control samples for ensuring compatibility of results among population survey studies and will fill a void to assess the accuracy of analytical methods used in studies monitoring human exposure to these organic environmental contaminants. PMID:25651899

  3. Waterborne Diseases & Illnesses

    MedlinePlus

    ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...

  4. A Computer Model for Analyzing Volatile Removal Assembly

    NASA Technical Reports Server (NTRS)

    Guo, Boyun

    2010-01-01

    A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.

  5. Groundwater geochemical and selected volatile organic compound data, Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington, June 2011

    USGS Publications Warehouse

    Huffman, Raegan L.; Frans, L.M.

    2012-01-01

    Previous investigations indicate that concentrations of chlorinated volatile organic compounds are substantial in groundwater beneath the 9-acre former landfill at Operable Unit 1, Naval Undersea Warfare Center, Division Keyport, Washington. Phytoremediation combined with ongoing natural attenuation processes was the preferred remedy selected by the U.S. Navy, as specified in the Record of Decision for the site. The U.S. Navy planted two hybrid poplar plantations on the landfill in spring 1999 to remove and to control the migration of chlorinated volatile organic compounds in shallow groundwater. The U.S. Geological Survey has continued to monitor groundwater geochemistry to ensure that conditions remain favorable for contaminant biodegradation as specified in the Record of Decision. This report presents groundwater geochemical and selected volatile organic compound data collected at Operable Unit 1 by the U.S. Geological Survey during June 20-22, 2011, in support of long-term monitoring for natural attenuation. In 2011, groundwater samples were collected from 13 wells and 9 piezometers. Samples from all wells and piezometers were analyzed for redox sensitive constituents and dissolved gases, and samples from 5 of 13 wells and all piezometers also were analyzed for chlorinated volatile organic compounds. Concentrations of redox sensitive constituents measured in 2011 were consistent with previous years, with dissolved oxygen concentrations all at 0.4 milligram per liter or less; little to no detectable nitrate; abundant dissolved manganese, iron, and methane; and commonly detected sulfide. The reductive declorination byproducts - methane, ethane, and ethene - were either not detected in samples collected from the upgradient wells in the landfill and the upper aquifer beneath the northern phytoremediation plantation or were detected at concentrations less than those measured in 2010. Chlorinated volatile organic compound concentrations in 2011 at most piezometers were similar to or slightly less than chlorinated volatile organic compound concentrations measured in previous years. For the upper aquifer beneath the southern phytoremediation plantation, chlorinated volatile organic compound concentrations in 2011 in groundwater from the piezometers were extremely high and continued to vary considerably over space and between years. At piezometer P1-9, the total chlorinated volatile organic compound concentrations increased from 9,500 micrograms per liter in 2010 to more than 44,000 micrograms per liter in 2011. Total chlorinated volatile organic compound concentrations decreased at piezometers P1-6, P1-7, and P1-10 compared to the concentrations measured in 2010. One or both of the reductive dechlorination byproducts ethane and ethene were detected at all piezometers and three of the four wells in the southern plantation. For the intermediate aquifer, concentrations of redox sensitive constituents and chlorinated volatile organic compounds in 2011 were consistent with concentrations measured in previous years, with the exception of notable decreases in sulfate and chloride concentrations at well MW1-28. Concentrations of the reductive dechlorination byproducts ethane and ethene decreased at wells MW1-25 and MW1-28 compared to previously measured concentrations.

  6. Elucidating the Chemical Complexity of Organic Aerosol Constituents Measured During the Southeastern Oxidant and Aerosol Study (SOAS)

    NASA Astrophysics Data System (ADS)

    Yee, L.; Isaacman, G. A.; Spielman, S. R.; Worton, D. R.; Zhang, H.; Kreisberg, N. M.; Wilson, K. R.; Hering, S. V.; Goldstein, A. H.

    2013-12-01

    Thousands of volatile organic compounds are uniquely created in the atmosphere, many of which undergo chemical transformations that result in more highly-oxidized and often lower vapor pressure species. These species can contribute to secondary organic aerosol, a complex mixture of organic compounds that is still not chemically well-resolved. Organic aerosol collected on filters taken during the Southeastern Oxidant and Aerosol Study (SOAS) constitute hundreds of unique chemical compounds. Some of these include known anthropogenic and biogenic tracers characterized using standardized analytical techniques (e.g. GC-MS, UPLC, LC-MS), but the majority of the chemical diversity has yet to be explored. By employing analytical techniques involving sample derivatization and comprehensive two-dimensional gas chromatography (GC x GC) with high-resolution-time-of-flight mass spectrometry (HR-ToF-MS), we elucidate the chemical complexity of the organic aerosol matrix along the volatility and polarity grids. Further, by utilizing both electron impact (EI) and novel soft vacuum ultraviolet (VUV) ionization mass spectrometry, a greater fraction of the organic mass is fully speciated. The GC x GC-HR-ToF-MS with EI/VUV technique efficiently provides an unprecedented level of speciation for complex ambient samples. We present an extensive chemical characterization and quantification of organic species that goes beyond typical atmospheric tracers in the SOAS samples. We further demonstrate that complex organic mixtures can be chemically deconvoluted by elucidation of chemical formulae, volatility, functionality, and polarity. These parameters provide insight into the sources (anthropogenic vs. biogenic), chemical processes (oxidation pathways), and environmental factors (temperature, humidity), controlling organic aerosol growth in the Southeastern United States.

  7. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  8. Indoor Semi-volatile Organic Compounds (i-SVOC) Version 1.0

    EPA Pesticide Factsheets

    i-SVOC Version 1.0 is a general-purpose software application for dynamic modeling of the emission, transport, sorption, and distribution of semi-volatile organic compounds (SVOCs) in indoor environments.

  9. Arsenic (Environmental Health Student Portal)

    MedlinePlus

    ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ... Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate Change Home What is Climate Change Greenhouse Gases ...

  10. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... (other than a condenser) on a magnetic tape coating operation shall control emissions from the coating...

  11. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or operator... (other than a condenser) on a magnetic tape coating operation shall control emissions from the coating...

  12. Occurrence and abatement of volatile sulfur compounds during biogas production.

    PubMed

    Andersson, Fräs Annika T; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2004-07-01

    Volatile sulfur compounds (VSCs) in biogas originating from a biogas production plant and from a municipal sewage water treatment plant were identified. Samples were taken at various stages of the biogas-producing process, including upgrading the gas to vehicle-fuel quality. Solid-phase microextraction was used for preconcentration of the VSCs, which were subsequently analyzed using gas chromatography in combination with mass spectrometry. Other volatile organic compounds present also were identified. The most commonly occurring VSCs in the biogas were hydrogen sulfide, carbonyl sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide, and hydrogen sulfide was not always the most abundant sulfur (S) compound. Besides VSCs, oxygenated organic compounds were commonly present (e.g., ketones, alcohols, and esters). The effect of adding iron chloride to the biogas reactor on the occurrence of VSCs also was investigated. It was found that additions of 500-g/m3 substrate gave an optimal removal of VSCs. Also, the use of a prefermentation step could reduce the amount of VSCs formed in the biogas process. Moreover, in the carbon dioxide scrubber used for upgrading the gas, VSCs were removed efficiently, leaving traces (ppbv levels). The scrubber also removed other organic compounds.

  13. A Comparison Study of Sampling and Analyzing Volatile Organic Compounds in Air in Kuwait by Using Tedlar Bags/Canisters and GC-MS with a Cryogenic Trap

    PubMed Central

    Tang, Hongmao; Beg, Khaliq R.; Al-Otaiba, Yousef

    2006-01-01

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results. PMID:16699723

  14. A comparison study of sampling and analyzing volatile organic compounds in air in Kuwait by using Tedlar bags/canisters and GC-MS with a cryogenic trap.

    PubMed

    Tang, Hongmao; Beg, Khaliq R; Al-Otaiba, Yousef

    2006-05-12

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results.

  15. Evaluation Influence: The Evaluation Event and Capital Flow in International Development.

    PubMed

    Bell, David A

    2017-12-01

    Assessing program effectiveness in human development is central to informing foreign aid policy-making and organizational learning. Foreign aid effectiveness discussions have increasingly given attention to the devaluing effects of aid flow volatility. This study reveals that the external evaluation event influences actor behavior, serving as a volatility-constraining tool. A case study of a multidonor aid development mechanism served examining the influence of an evaluation event when considering anticipatory effects. The qualitative component used text and focus group data combined with individual interview data (organizations n = 10, including 26 individuals). Quantitative data included financial information on all 75 capital investments. The integrated theory of influence and model of alternative mechanisms used these components to identify the linkage between the evaluation event and capital flow volatility. Aid approved in the year of the midterm evaluation was disbursed by the mechanism with low capital volatility. Anticipating the evaluation event influenced behavior resulting in an empirical record that program outcomes were enhanced and the mechanism was an improved organization. Formative evaluations in a development program can trigger activity as an interim process. That activity provides for a more robust assessment of ultimate consequence of interest. Anticipating an evaluation can stimulate donor reality testing. The findings inform and strengthen future research on the influence of anticipating an evaluation. Closely examining activities before, during, and shortly after the evaluation event can aid development of other systematic methods to improve understanding this phenomenon, as well as improve donor effectiveness strategies.

  16. Metal organic frameworks as sorption media for volatile and semi-volatile organic compounds at ambient conditions

    PubMed Central

    Vellingiri, Kowsalya; Szulejko, Jan E.; Kumar, Pawan; Kwon, Eilhann E.; Kim, Ki-Hyun; Deep, Akash; Boukhvalov, Danil W.; Brown, Richard J. C.

    2016-01-01

    In this research, we investigated the sorptive behavior of a mixture of 14 volatile and semi-volatile organic compounds (four aromatic hydrocarbons (benzene, toluene, p-xylene, and styrene), six C2-C5 volatile fatty acids (VFAs), two phenols, and two indoles) against three metal-organic frameworks (MOFs), i.e., MOF-5, Eu-MOF, and MOF-199 at 5 to 10 mPa VOC partial pressures (25 °C). The selected MOFs exhibited the strongest affinity for semi-volatile (polar) VOC molecules (skatole), whereas the weakest affinity toward was volatile (non-polar) VOC molecules (i.e., benzene). Our experimental results were also supported through simulation analysis in which polar molecules were bound most strongly to MOF-199, reflecting the presence of strong interactions of Cu2+ with polar VOCs. In addition, the performance of selected MOFs was compared to three well-known commercial sorbents (Tenax TA, Carbopack X, and Carboxen 1000) under the same conditions. The estimated equilibrium adsorption capacity (mg.g−1) for the all target VOCs was in the order of; MOF-199 (71.7) >Carboxen-1000 (68.4) >Eu-MOF (27.9) >Carbopack X (24.3) >MOF-5 (12.7) >Tenax TA (10.6). Hopefully, outcome of this study are expected to open a new corridor to expand the practical application of MOFs for the treatment diverse VOC mixtures. PMID:27324522

  17. Volatiles (H, C, N, O, noble gases) in comets as tracers of early solar system events (Invited)

    NASA Astrophysics Data System (ADS)

    Marty, B.

    2013-12-01

    Volatiles (H, C, N, O, noble gases) present the largest variations in their relative abundances and, importantly, in their isotopic ratios, among solar system elements. The original composition of the protosolar nebula has been investigated through the measurements of primitive meteorites and of in-situ (e.g. Galileo probe analysis of the Jupiter's atmosphere) and sample-return (Genesis, recovery and analysis of solar wind) missions. The protosolar gas was poor in deuterium, in 15N and in 17,18O. Variations among solar system reservoir reach several hundreds of percents for the D/H and 15N/14N ratios. These variations are possibly : (i) due to interactions between XUV photons of the proto-Sun and the-dust, (ii) result from low temperature ion-molecule reactions, or (iii) constitute an heritage on interstellar volatiles trapped in dust (e.g., organics). Likewise, noble gases are elementally and isotopically (1% per amu for xenon) fractionated with respect to the composition of the solar wind (our best proxy for the protosolar nebula composition). Cometary matter directly measured on coma, or in Stardust material, or in IDPs, seems to present among the largest heterogeneities in their stable isotope compositions but knowledge on their precise compositions of the different phases and species is partial and mosty lacking. Among the several important issues requiring a better knowledge of cometary volatiles are the origin(s) of volatile elements on Earth and Moon, on Mars and on Venus, understanding large scale circulation of matter between hot and frozen zones, and the possibility of interstellar heritage for organics. Critical measurements to be made by the next cometary missions include the value of the D/H ratio in water ice, in NH3 and organics. Nitrogen is particularly interesting as cometary HCN and CN are rich in 15N, but an isotoppe mass balance will require to measure the main host species (N2 ?). Noble gases are excellent tracers of physical processes, including the delivery of volatile elements onto planets and atmospheric escape processes, but their cometary inventory is almost not known. The only noble gas (helium and neon) measurement in cometary matter from Stardust suggests that they may be genetically linked to organic matter found in primitive meteorites rather than to the proto-solar gas. Trapping of noble gases in comets is an important issue not only for the physical conditions of cometary formation and evolution, but also for better understanding the possible contribution of cometary matter to Earth and Moon.

  18. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  19. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds.

    PubMed

    Cheng, Yan; He, Huijun; Yang, Chunping; Zeng, Guangming; Li, Xiang; Chen, Hong; Yu, Guanlong

    2016-11-01

    Volatile organic compounds (VOCs) emitted to the environment highly probably result in ecological and health risks. Many biotechnologies for waste gases containing hydrophobic VOCs have been developed in recent years. However, these biological processes usually exhibit poor removal performances for hydrophobic VOCs due to the low bioavailability. This review presents an overview of enhanced removal of hydrophobic VOCs in biofilters. Mechanisms and problems relevant to the biological removal of hydrophobic VOCs are reviewed, and then solutions including the addition of surfactants, application of fungal biocatalysts, biofiltration with pretreatment, innovative bioreactors and utilization of hydrophilic compounds are discussed in detail. Future research needs are also proposed. This review provides new insights into hydrophobic VOC removal by biofiltration. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Implications of Low Volatility SOA and Gas-Phase Fragmentation Reactions on SOA Loadings and their Spatial and Temporal Evolution in the Atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, ManishKumar B.; Zelenyuk, Alla; Imre, Dan

    2013-04-27

    Recent laboratory and field measurements by a number of groups show that secondary organic aerosol (SOA) evaporates orders of magnitude slower than traditional models assume. In addition, chemical transport models using volatility basis set (VBS) SOA schemes neglect gas-phase fragmentation reactions, which are known to be extremely important. In this work, we present modeling studies to investigate the implications of non-evaporating SOA and gas-phase fragmentation reactions. Using the 3-D chemical transport model, WRF-Chem, we show that previous parameterizations, which neglect fragmentation during multi-generational gas-phase chemistry of semi-volatile/inter-mediate volatility organics ("aging SIVOC"), significantly over-predict SOA as compared to aircraft measurements downwindmore » of Mexico City. In sharp contrast, the revised models, which include gas-phase fragmentation, show much better agreement with measurements downwind of Mexico City. We also demonstrate complex differences in spatial SOA distributions when we transform SOA to non-volatile secondary organic aerosol (NVSOA) to account for experimental observations. Using a simple box model, we show that for same amount of SOA precursors, earlier models that do not employ multi-generation gas-phase chemistry of precursors ("non-aging SIVOC"), produce orders of magnitude lower SOA than "aging SIVOC" parameterizations both with and without fragmentation. In addition, traditional absorptive partitioning models predict almost complete SOA evaporation at farther downwind locations for both "non-aging SIVOC" and "aging SIVOC" with fragmentation. In contrast, in our revised approach, SOA transformed to NVSOA implies significantly higher background concentrations as it remains in particle phase even under highly dilute conditions. This work has significant implications on understanding the role of multi-generational chemistry and NVSOA formation on SOA evolution in the atmosphere.« less

  1. Volatile Organic Compounds Emissions from Luculia pinceana Flower and Its Changes at Different Stages of Flower Development.

    PubMed

    Li, Yuying; Ma, Hong; Wan, Youming; Li, Taiqiang; Liu, Xiuxian; Sun, Zhenghai; Li, Zhenghong

    2016-04-22

    Luculia plants are famed ornamental plants with sweetly fragrant flowers, of which L. pinceana Hooker, found primarily in Yunnan Province, China, has the widest distribution. Solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) was employed to identify the volatile organic compounds (VOCs) emitted from different flower development stages of L. pinceana for the evaluation of floral volatile polymorphism. Peak areas were normalized as percentages and used to determine the relative amounts of the volatiles. The results showed that a total of 39 compounds were identified at four different stages of L. pinceana flower development, including 26 at the bud stage, 26 at the initial-flowering stage, 32 at the full-flowering stage, and 32 at the end-flowering stage. The most abundant compound was paeonol (51%-83%) followed by (E,E)-α-farnesene, cyclosativene, and δ-cadinene. All these volatile compounds create the unique fragrance of L. pinceana flower. Floral scent emission offered tendency of ascending first and descending in succession, meeting its peak level at the initial-flowering stage. The richest diversity of floral volatile was detected at the third and later periods of flower development. Principal component analysis (PCA) indicated that the composition and its relative content of floral scent differed throughout the whole flower development. The result has important implications for future floral fragrance breeding of Luculia. L. pinceana would be adequate for a beneficial houseplant and has a promising prospect for development as essential oil besides for a fragrant ornamental owing to the main compounds of floral scent with many medicinal properties.

  2. SPECIATED VOC EMISSIONS FROM MODERN GDI LIGHT DUTY VEHICLES

    EPA Science Inventory

    Chassis dynamometer emissions testing was conducted to characterize speciated volatile organic compounds (VOCs), including mobile source air toxics (MSATs) and ozone precursors, in exhaust emissions from three modern gasoline direct injection (GDI) light-duty vehicles. Each GDI v...

  3. VISUAL FUNCTION CHANGES AFTER SUBCHRONIC TOLUENE INHALATION IN LONG-EVANS RATS.

    EPA Science Inventory

    Chronic exposure to volatile organic compounds, including toluene, has been associated with visual deficits such as reduced visual contrast sensitivity or impaired color discrimination in studies of occupational or residential exposure. These reports remain controversial, howeve...

  4. 40 CFR 60.697 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specifications shall be kept. (i) Detailed schematics, and piping and instrumentation diagrams. (ii) The dates..., including flow and volatile organic compound content under varying liquid level conditions (dynamic and... vent stream composition, constituent concentrations, flow rate, relative humidity, and temperature. The...

  5. ASSESSMENT OF VOC EMISSIONS FROM FIBERGLASS BOAT MANUFACTURING

    EPA Science Inventory

    The report presents an assessment of volatile organic compound (VOC) emissions from fiberglass boat manufacturing. Description of the industry structure is presented, including estimates of the number of facilities, their size, and geographic distribution. The fiberglass boat m...

  6. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of organic molecules that may cause changes in the physical structure or the surface characteristic of the material.

  7. Using black soldier fly larvae for processing organic leachates.

    PubMed

    Popa, Radu; Green, Terrence R

    2012-04-01

    A large number of biodegradable byproducts including alcohols, soluble saccharides, volatile organic acids, and amines accumulate in the liquid fraction (leachate) produced as vegetal and food scrap waste decomposes. Untreated leachate, because it is rich in nutrients and organic byproducts, has a high chemical oxygen demand and is normally cleared of soluble organic byproducts by mineralization before its discharge into waterways. Mineralizing leachates using chemical and microbial biotechnologies is, however, a lengthy and costly process. We report here that the larvae of the black soldier fly Hermetia illucens (L.) (Diptera: Stratiomyidae), an insect rich in protein and lipids, and having significant commercial value, while feeding and growing off of compost leachate, lowers its chemical oxygen demand relative to that of leachate unexposed to larvae, neutralizes its acidity, and clears it of volatile organic acids, amines, and alcohols. These observations demonstrate that black soldier fly larvae could be used to help offset the cost and clean up of organic solutes in leachate waste streams while recycling carbon, nitrogen, and phosphate into usable and commercially valuable biomass.

  8. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, Cyril V.

    1991-01-01

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allow an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds.

  9. Soil sampling kit and a method of sampling therewith

    DOEpatents

    Thompson, C.V.

    1991-02-05

    A soil sampling device and a sample containment device for containing a soil sample is disclosed. In addition, a method for taking a soil sample using the soil sampling device and soil sample containment device to minimize the loss of any volatile organic compounds contained in the soil sample prior to analysis is disclosed. The soil sampling device comprises two close fitting, longitudinal tubular members of suitable length, the inner tube having the outward end closed. With the inner closed tube withdrawn a selected distance, the outer tube can be inserted into the ground or other similar soft material to withdraw a sample of material for examination. The inner closed end tube controls the volume of the sample taken and also serves to eject the sample. The soil sample containment device has a sealing member which is adapted to attach to an analytical apparatus which analyzes the volatile organic compounds contained in the sample. The soil sampling device in combination with the soil sample containment device allows an operator to obtain a soil sample containing volatile organic compounds and minimizing the loss of the volatile organic compounds prior to analysis of the soil sample for the volatile organic compounds. 11 figures.

  10. Analysis of selected volatile organic compounds at background level in South Africa.

    NASA Astrophysics Data System (ADS)

    Ntsasa, Napo; Tshilongo, James; Lekoto, Goitsemang

    2017-04-01

    Volatile organic compounds (VOC) are measured globally at urban air pollution monitoring and background level at specific locations such as the Cape Point station. The urban pollution monitoring is legislated at government level; however, the background levels are scientific outputs of the World Meteorological Organisation Global Atmospheric Watch program (WMO/GAW). The Cape Point is a key station in the Southern Hemisphere which monitors greenhouse gases and halocarbons, with reported for over the past decade. The Cape Point station does not have the measurement capability VOC's currently. A joint research between the Cape Point station and the National Metrology Institute of South Africa (NMISA) objective is to perform qualitative and quantitative analysis of volatile organic compounds listed in the GAW program. NMISA is responsible for development, maintain and disseminate primary reference gas mixtures which are directly traceable to the International System of Units (SI) The results of some volatile organic compounds which where sampled in high pressure gas cylinders will be presented. The analysis of samples was performed on the gas chromatography with flame ionisation detector and mass selective detector (GC-FID/MSD) with a dedicate cryogenic pre-concentrator system. Keywords: volatile organic compounds, gas chromatography, pre-concentrator

  11. 77 FR 1417 - Partial Approval and Partial Disapproval of Air Quality Implementation Plans; California; San...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... following three rules identified under group 4: 1. Rule 4566--Organic Material Composting Operations... Volatile Organic Compound Regulations--California Department of Pesticide Regulation--submitted August 2... from VOC control requirements, while the CTG for this source category (``Control of Volatile Organic...

  12. 40 CFR 52.1783 - Original identification of plan section.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Residual Oil Burners 15 NCAC 2D.0902, Applicability (Volatile Organic Compounds) 15 NCAC 2H.0603... or Residual Oil Burners 15 NCAC 2D.0939, Determination of Volatile Organic Compound Emissions (B) The... 2D.0943, Synthetic Organic Chemical and Polymer Manufacturing 15 NCAC 2D.0944, Manufacturing of...

  13. 40 CFR 63.827 - Performance test methods.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... means of a monthly liquid-liquid material balance. (b) Determination of the weight fraction organic HAP... organic volatile matter concentration of 50 parts per million by volume (ppmv) or less as carbon is... gas organic volatile matter concentrations of 50 ppmv or less as carbon, or (C) Because of the high...

  14. 40 CFR 63.827 - Performance test methods.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means of a monthly liquid-liquid material balance. (b) Determination of the weight fraction organic HAP... organic volatile matter concentration of 50 parts per million by volume (ppmv) or less as carbon is... gas organic volatile matter concentrations of 50 ppmv or less as carbon, or (C) Because of the high...

  15. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... matter collection and recovery efficiency to the mass of organic HAP contained in the coatings and... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, kg...

  16. 40 CFR 63.3541 - How do I demonstrate initial compliance?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... matter collection and recovery efficiency to the mass of organic HAP contained in the coatings and... cumulative amount of volatile organic matter recovered by the solvent recovery system each month. (2) For each solvent recovery system, determine the mass of volatile organic matter recovered for the month, kg...

  17. EPA Air Method, Toxic Organics - 15 (TO-15): Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS)

    EPA Pesticide Factsheets

    Method T)-15 describes procedures for for preparation and analysis of air samples containing volatile organic compounds collected in specially-prepared canisters, using gas chromatography-mass spectrometry.

  18. 77 FR 38761 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compounds; Consumer Products AGENCY... organic compound (VOC) emissions limits and other restrictions on consumer products that are sold... this proposed rule. EPA will not institute a second comment period. Any parties interested in...

  19. EMERGING TECHNOLOGY BULLETIN: VOLATILE ORGANIC COMPOUND REMOVAL FROM AIR STREAMS BY MEMBRANES SEPARATION MEMBRANE TECHNOLOGY AND RESEARCH, INC.

    EPA Science Inventory

    This membrane separation technology developed by Membrane Technology and Research (MTR), Incorporated, is designed to remove volatile organic compounds (VOCs) from contaminated air streams. In the process, organic vapor-laden air contacts one side of a membrane that is permeable ...

  20. TOXIC ORGANIC VOLATILIZATION FROM LAND TREATMENT SYSTEMS

    EPA Science Inventory

    Methodology was evaluated for estimating volatilization of toxic organic chemicals from unsaturated soils. Projections were compared with laboratory data for simulated rapid infiltration wastewater treatment systems receiving primary municipal wastewater spiked with a suite of 18...

  1. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  2. Comparison of characteristic flavor and aroma volatiles in melons and standards using solid phase microextraction (SPME) and Stir Bar Sorptive Extraction (SBSE) with GC-MS.

    USDA-ARS?s Scientific Manuscript database

    Stir bar sorptive extraction (SBSE) is a technique for extraction and analysis of organic compounds in aqueous matrices, similar in theory to solid phase microextraction (SPME). SBSE has been successfully used to analyze several organic compounds, including food matrices. When compared with SPME, ...

  3. Molecular Composition and Volatility of Organic Aerosol in the Southeastern U.S.: Implications for IEPOX Derived SOA.

    PubMed

    Lopez-Hilfiker, F D; Mohr, C; D'Ambro, E L; Lutz, A; Riedel, T P; Gaston, C J; Iyer, S; Zhang, Z; Gold, A; Surratt, J D; Lee, B H; Kurten, T; Hu, W W; Jimenez, J; Hallquist, M; Thornton, J A

    2016-03-01

    We present measurements as part of the Southern Oxidant and Aerosol Study (SOAS) during which atmospheric aerosol particles were comprehensively characterized. We present results utilizing a Filter Inlet for Gases and AEROsol coupled to a chemical ionization mass spectrometer (CIMS). We focus on the volatility and composition of isoprene derived organic aerosol tracers and of the bulk organic aerosol. By utilizing the online volatility and molecular composition information provided by the FIGAERO-CIMS, we show that the vast majority of commonly reported molecular tracers of isoprene epoxydiol (IEPOX) derived secondary organic aerosol (SOA) is derived from thermal decomposition of accretion products or other low volatility organics having effective saturation vapor concentrations <10(-3) μg m(-3). In addition, while accounting for up to 30% of total submicrometer organic aerosol mass, the IEPOX-derived SOA has a higher volatility than the remaining bulk. That IEPOX-SOA, and more generally bulk organic aerosol in the Southeastern U.S. is comprised of effectively nonvolatile material has important implications for modeling SOA derived from isoprene, and for mechanistic interpretations of molecular tracer measurements. Our results show that partitioning theory performs well for 2-methyltetrols, once accretion product decomposition is taken into account. No significant partitioning delays due to aerosol phase or viscosity are observed, and no partitioning to particle-phase water or other unexplained mechanisms are needed to explain our results.

  4. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    NASA Technical Reports Server (NTRS)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  5. The Origin of Organic Matter in the Solar System: Evidence from Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.; Jacobsen, C.; Wirick, S.

    2001-01-01

    The origin of the organic matter in interplanetary materials has not been established. A variety of mechanisms have been proposed, with two extreme cases being a Fisher-Tropsch type process operating in the gas phase of the solar nebula or a Miller-Urey type process, which requires interaction with an aqueous fluid, presumably occurring on an asteroid. In the Fisher-Tropsch case, we might expect similar organic matter in hydrated and anhydrous interplanetary materials. However, aqueous alteration is required in the case of the Miller-Urey process, and we would expect to see organic matter preferentially in interplanetary materials that exhibit evidence of aqueous activity, such as the presence of hydrated silicates. The types and abundance of organic matter in meteorites have been used as an indicator of the origin of organic matter in the Solar System. Indigenous complex organic matter, including amino acids, has been found in hydrated carbonaceous chondrite meteorites, such as Murchison. Much lower amounts of complex organic matter, possibly only terrestrial contamination, have been found in anhydrous carbonaceous chondrite meteorites, such as Allende, that contain most of their carbon in elemental form. These results seem to favor production of the bulk of the organic matter in the Solar System by aqueous processing on parent bodies such as asteroids, a Miller-Urey process. However, the hydrated carbonaceous chondrite meteorites have approximately solar abundances of the moderately volatile elements, while all anhydrous carbonaceous chondrite meteorites have significantly lower contents of these moderately volatile elements. Two mechanisms, incomplete condensation or evaporation, both of which involve processing at approx. 1200 C, have been suggested to explain the lower content of the moderately volatile elements in all anhydrous meteorites. Additional information is contained in the original extended abstract.

  6. Chemistry and photochemistry of low-volatility organic chemicals on environmental surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, G.C.; Hebert, V.R.; Zepp, R.G.

    Hydrophobic organic xenobiotics such as polychlorinated dibenzodioxins and polycyclic aromatic hydrocarbons have strong tendencies to sorb on environmental surfaces. This paper summarizes a workshop in which scientists and modelers assembled to discuss nonbiological processes that affect sorption to soil or sediment surfaces and on atmospheric particles. The 20 scientists discussed a variety of topics with a major emphasis on the fate of chlorinated dioxins. The topics include transformation processes, mobility of organic pollutants, fate of organics, and evaluative fate models.

  7. Volatile organic compounds in Gulf of Mexico sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, T.J.

    1988-01-01

    Volatile organic compounds (VOC), concentrations and compositions were documented for estuarine, coastal, shelf, slope, and deep water sediments from the Gulf of Mexico. VOC were measured (detection limit >0.01 ppb) using a closed-loop stripping apparatus with gas chromatography (GC) and flame ionization, flame photometric, and mass spectrometric detectors. The five primary sources of Gulf of Mexico sediment VOC are: (1) planktonic and benthic fauna and flora; (2) terrestrial material from riverine and atmospheric deposition; (3) anthropogenic inputs: (4) upward migration of hydrocarbons; and (5) transport by bottom currents or slumping. Detected organo-sulfur compounds include alkylated sulfides, thiophene, alkylated thiophenes, andmore » benzothiophenes. Benzothiophenes are petroleum related. Low molecular weight organo-sulfur compounds result from the biological oxidation of organic matter. A lack of organosulfur compounds in the reducing environment of the Orca Basin may result from a lack of free sulfides which are necessary for their production.« less

  8. Transformation of soil microbial community structure in response to anaerobic soil disinfestation for soil-borne disease control in strawberry

    USDA-ARS?s Scientific Manuscript database

    Anaerobic soil disinfestation (ASD) has been used to control soil-borne pathogens and nematodes in various plant production systems including strawberries. Disease control is commonly attributed to the depletion of oxygen and the generation of toxic compounds, including organic acids and volatiles....

  9. Effects of NOx on the volatility of secondary organic aerosol from isoprene photooxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lu; Kollman, Matthew S.; Song, Chen

    2014-01-28

    The effects of NOx on the volatility of the secondary organic aerosol (SOA) formed from isoprene photooxidation are investigated in environmental chamber experiments. Two types of experiments are performed. In HO2-dominant experiments, organic peroxy radicals (RO2) primarily react with HO2. In mixed experiments, RO2 reacts through multiple pathways. The volatility and oxidation state of isoprene SOA is sensitive to and displays a non-linear dependence on NOx levels. When initial NO/isoprene ratio is approximately 3 (ppbv:ppbv), SOA are shown to be most oxidized and least volatile, associated with the highest SOA yield. A High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) is appliedmore » to characterize the key chemical properties of aerosols. While the composition of SOA in mixed experiments does not change substantially over time, SOA become less volatile and more oxidized as oxidation progresses in HO2-dominant experiments. Analysis of the SOA composition suggests that the further reactions of organic peroxides and alcohols may produce carboxylic acids, which might play a strong role in SOA aging.« less

  10. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  11. Measurement of toxic volatile organic compounds in indoor air of semiconductor foundries using multisorbent adsorption/thermal desorption coupled with gas chromatography-mass spectrometry.

    PubMed

    Wu, Chien-Hou; Lin, Ming-Nan; Feng, Chien-Tai; Yang, Kuang-Ling; Lo, Yu-Shiu; Lo, Jiunn-Guang

    2003-05-09

    A method for the qualitative and quantitative analysis of volatile organic compounds (VOCs) in the air of class-100 clean rooms at semiconductor fabrication facilities was developed. Air samples from two semiconductor factories were collected each hour on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve SIII) with a 24-h automatic active sampling system and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry. Experimental parameters, including thermal desorption temperature, desorption time, and cryofocusing temperature, were optimized. The average recoveries and the method detection limits for the target compounds were in the range 94-101% and 0.31-0.89 ppb, respectively, under the conditions of a 1 L sampling volume and 80% relative humidity. VOCs such as acetone, isopropyl alcohol, 2-heptanone, and toluene, which are commonly used in the semiconductor and electronics industries, were detected and accurately quantified with the established method. Temporal variations of the analyte concentrations observed were attributed to the improper use of organic solvents during operation.

  12. Fact Sheets for the Architectural Coating Rule for Volatile Organic Compounds

    EPA Pesticide Factsheets

    This page contains an August 1998 fact sheet with information regarding the National Volatile Organic Compounds Emission Standards for Architectural Coatings Rule. This page also contains information on applicability and compliance for this rule.

  13. Diel rhythms in the volatile emission of apple and grape foliage.

    PubMed

    Giacomuzzi, Valentino; Cappellin, Luca; Nones, Stefano; Khomenko, Iuliia; Biasioli, Franco; Knight, Alan L; Angeli, Sergio

    2017-06-01

    This study investigated the diel emission of volatile organic compounds (VOCs) from intact apple (Malus x domestica Borkh., cv. Golden Delicious) and grape (Vitis vinifera L., cv. Pinot Noir) foliage. Volatiles were monitored continuously for 48 h by proton transfer reaction - time of flight - mass spectrometry (PTR-ToF-MS). In addition, volatiles were collected by closed-loop-stripping-analysis (CLSA) and characterized by gas chromatography-mass spectrometry (GC-MS) after 1 h and again 24 and 48 h later. Fourteen and ten volatiles were characterized by GC-MS in apple and grape, respectively. The majority of these were terpenes, followed by green leaf volatiles, and aromatic compounds. The PTR-ToF-MS identified 10 additional compounds and established their diel emission rhythms. The most abundant volatiles displaying a diel rhythm included methanol and dimethyl sulfide in both plants, acetone in grape, and mono-, homo- and sesquiterpenes in apple. The majority of volatiles were released from both plants during the photophase; whereas methanol, CO 2 , methyl-butenol and benzeneacetaldehyde were released at significantly higher levels during the scotophase. Acetaldehyde, ethanol, and some green leaf volatiles showed distinct emission bursts in both plants following the daily light switch-off. These new results obtained with a combined analytical approach broaden our understanding of the rhythms of constitutive volatile release from two important horticultural crops. In particular, diel emission of sulfur and nitrogen-containing volatiles are reported here for the first time in these two crops. Copyright © 2017. Published by Elsevier Ltd.

  14. Volatiles in Inter-Specific Bacterial Interactions

    PubMed Central

    Tyc, Olaf; Zweers, Hans; de Boer, Wietse; Garbeva, Paolina

    2015-01-01

    The importance of volatile organic compounds for functioning of microbes is receiving increased research attention. However, to date very little is known on how inter-specific bacterial interactions effect volatiles production as most studies have been focused on volatiles produced by monocultures of well-described bacterial genera. In this study we aimed to understand how inter-specific bacterial interactions affect the composition, production and activity of volatiles. Four phylogenetically different bacterial species namely: Chryseobacterium, Dyella, Janthinobacterium, and Tsukamurella were selected. Earlier results had shown that pairwise combinations of these bacteria induced antimicrobial activity in agar media whereas this was not the case for monocultures. In the current study, we examined if these observations were also reflected by the production of antimicrobial volatiles. Thus, the identity and antimicrobial activity of volatiles produced by the bacteria were determined in monoculture as well in pairwise combinations. Antimicrobial activity of the volatiles was assessed against fungal, oomycetal, and bacterial model organisms. Our results revealed that inter-specific bacterial interactions affected volatiles blend composition. Fungi and oomycetes showed high sensitivity to bacterial volatiles whereas the effect of volatiles on bacteria varied between no effects, growth inhibition to growth promotion depending on the volatile blend composition. In total 35 volatile compounds were detected most of which were sulfur-containing compounds. Two commonly produced sulfur-containing volatile compounds (dimethyl disulfide and dimethyl trisulfide) were tested for their effect on three target bacteria. Here, we display the importance of inter-specific interactions on bacterial volatiles production and their antimicrobial activities. PMID:26733959

  15. Analysis of volatile organic compounds of ‘Fuji’ apples following electron beam irradiation and storage

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Shim, Sung-Lye; Lee, Sun-Im; Kim, Dong-Ho; Kwon, Joong-Ho; Kim, Kyong-Su

    2012-08-01

    The volatile organic compounds of non-irradiated and electron-beam irradiated 'Fuji' apples (Malus domestica Borkh.) at 0, 0.5, and 1 kGy were isolated through simultaneous distillation extractions and analyzed using gas chromatograph-mass spectrometry. A total of 53 volatile organic compounds were characterized in 0 and 1 kGy irradiated samples, whereas two more compounds related to ketone and terpenoid group were identified in 0.5 kGy irradiated samples. The contents of volatile compounds were 24.33, 36.49, and 35.28 mg/kg in 0, 0.5, and 1 kGy irradiated samples, respectively. The major compounds identified were butanol, hexanal, [E]-2-hexenal, and hexanol in all samples. The relative content of alcohol increased after 30 days of storage in all samples, whereas that of aldehyde decreased. Although the contents of some volatile compounds were changed by electron-beam irradiation, the total yield and major flavor compounds of irradiated 'Fuji' apples were similar to, or even greater than, those of the control. Therefore, the application of e-beam irradiation if required for microbial decontamination of 'Fuji' apples is an acceptable method as it does not bring about any major quantitative changes of volatile organic compounds.

  16. Secondary organic aerosol production from pinanediol, a semi-volatile surrogate for first-generation oxidation products of monoterpenes

    NASA Astrophysics Data System (ADS)

    Ye, Penglin; Zhao, Yunliang; Chuang, Wayne K.; Robinson, Allen L.; Donahue, Neil M.

    2018-05-01

    We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m-3, these mass yields are 2-3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around -0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.

  17. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  18. Modeling impacts of cold climates on vehicle emissions : final report.

    DOT National Transportation Integrated Search

    2017-01-20

    Vehicle emissions include carbon monoxide (CO), nitrogen oxides (NOx = NO + NO2), volatile organic compounds (VOCs), and air toxics such as benzene. Each of these pollutants is linked to adverse human health effects. To evaluate the contributions of ...

  19. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... period. The water used includes only that water contained in the waterborne raw inks and related coatings and the water added for dilution with waterborne ink systems. ...

  20. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... period. The water used includes only that water contained in the waterborne raw inks and related coatings and the water added for dilution with waterborne ink systems. ...

  1. NHEXAS PHASE I REGION 5 STUDY--VOCS IN BLOOD ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of VOCs (volatile organic compounds) in 145 blood samples. These samples were collected to examine the relationships between personal exposure measurements, environmental measurements, and body burden. Venous blood sample...

  2. Toluene Inhalation Exposure for 13 Weeks Causes Persistent Changes in Electroretinograms of Long-Evans Rats

    EPA Science Inventory

    Studies of humans chronically exposed to volatile organic solvents have reported impaired visual functions, including low contrast sensitivity and reduced color discrimination. These reports, however, lacked confirmation from controlled laboratory experiments. To addre...

  3. 7 CFR 1466.4 - National priorities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...

  4. 7 CFR 1466.4 - National priorities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...

  5. 7 CFR 1466.4 - National priorities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...

  6. 7 CFR 1466.4 - National priorities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...

  7. 7 CFR 1466.4 - National priorities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... statutory resource concerns that include soil, water, wildlife, air quality, and related resource concerns..., nitrogen oxides, volatile organic compounds, and ozone precursors and depleters that contribute to air quality impairment violations of National Ambient Air Quality Standards; (4) Reduction in soil erosion and...

  8. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2016-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  9. Advanced Characterization of Semivolatile Organic Compounds Emitted from Biomass Burning

    NASA Astrophysics Data System (ADS)

    Hatch, L. E.; Liu, Y.; Rivas-Ubach, A.; Shaw, J. B.; Lipton, M. S.; Barsanti, K. C.

    2017-12-01

    Biomass burning (BB) emits large amounts of non-methane organic gases (NMOGs) and primary (directly emitted) particulate matter (PM). NMOGs also react in plume to form secondary PM (i.e., SOA) and ozone. BB-PM has been difficult to represent accurately in models used for chemistry and climate predictions, including for air quality and fire management purposes. Much recent research supports that many previously unconsidered SOA precursors exist, including oxidation of semivolatile compounds (SVOCs). Although many recent studies have characterized relatively volatile BB-derived NMOGs and relatively non-volatile particle-phase organic species, comparatively few studies have performed detailed characterization of SVOCs emitted from BB. Here we present efforts to expand the volatility and compositional ranges of compounds measured in BB smoke. In this work, samples of SVOCs in gas and particle phases were collected from 18 fires representing a range of fuel types during the 2016 FIREX fire laboratory campaign; samples were analyzed by two-dimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-TOFMS) and Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS). Hundreds of compounds were detectable in both gas and particle phases by GCxGC-TOFMS whereas thousands of peaks were present in the FTICR mass spectra. Data from both approaches highlight that chemical fingerprints of smoke are fuel/burn-dependent. These efforts support our continued research in building the understanding and model representation of BB emissions and BB-derived SOA.

  10. 77 FR 71129 - Revisions to the California State Implementation Plan, San Joaquin Valley United Air Pollution...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-29

    ... Register on June 21, 2012 and concerns volatile organic compound (VOC) emissions from chipping and grinding... Organic Material 8/18/11 11/18/11 Composting Operations. We proposed to approve these rules because we... ozone forming volatile organic compound (VOC) emissions from greenwaste composting that contains food...

  11. 77 FR 64445 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Greif Packaging, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... applies to emissions of volatile organic matter (VOM) from Greif's fiber drum container manufacturing facility. VOM, as defined by the State of Illinois, is identical to volatile organic compound, as defined... Environmental Protection Agency submitted to EPA for approval an adjustment to the general rule, Organic...

  12. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  13. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  14. Heating-Induced Evaporation of Nine Different Secondary Organic Aerosol Types

    DOE PAGES

    Kolesar, Katheryn R.; Li, Ziyue; Wilson, Kevin R.; ...

    2015-09-22

    The volatility of the compounds comprising organic aerosol (OA) determines their distribution between the gas and particle phases. However, there is a disconnect between volatility distributions as typically derived from secondary OA (SOA) growth experiments and the effective particle volatility as probed in evaporation experiments. Specifically, the evaporation experiments indicate an overall much less volatile SOA. This raises questions regarding the use of traditional volatility distributions in the simulation and prediction of atmospheric SOA concentrations. Here, we present results from measurements of thermally induced evaporation of SOA for nine different SOA types (i.e., distinct volatile organic compound and oxidant pairs)more » encompassing both anthropogenic and biogenic compounds and O 3 and OH to examine the extent to which the low effective volatility of SOA is a general phenomenon or specific to a subset of SOA types. The observed extents of evaporation with temperature were similar for all the SOA types and indicative of a low effective volatility. Furthermore, minimal variations in the composition of all the SOA types upon heating-induced evaporation were observed. These results suggest that oligomer decomposition likely plays a major role in controlling SOA evaporation, and since the SOA formation time scale in these measurements was less than a minute, the oligomer-forming reactions must be similarly rapid. Overall, these results emphasize the importance of accounting for the role of condensed phase reactions in altering the composition of SOA when assessing particle volatility.« less

  15. Surface-water-quality assessment of the Upper Illinois River basin in Illinois, Indiana, and Wisconsin : data on manmade nonagricultural volatile and semivolatile organic chemicals in water, May 1988 through March 1990

    USGS Publications Warehouse

    Fitzpatrick, F.A.; Colman, J.A.

    1993-01-01

    This report contains data from the survey of manmade nonagricultural volatile and semivolatile organic chemicals in surface water in the upper Illinois River basin from May 1988 through March l990. In addition to the data, sampling methods and quality-assurance procedures are described. The survey was part of the upper Illinois River basin pilot project of the National Water-Quality Assessment program conducted by the U.S. Geological Survey. The organic chemicals analyzed from the water samples were those expected to be associated primarily with effluent from point sources in urban areas. A low-flow synoptic investigation of 52 volatile and 54 semivolatile organic chemicals was conducted at 31 sites in July 1988. Additional samples were collected monthly at two sites to continue to test for the presence of 43 volatile organic chemicals from December 1988 through March l990, and of all semivolatile organic chemicals at two sites from August through September 1988.

  16. Water-quality assessment of part of the upper Mississippi River basin, Minnesota and Wisconsin: Design and implementation of water-quality studies, 1995-98

    USGS Publications Warehouse

    Stark, James R.; Fallon, J.D.; Fong, A.L.; Goldstein, R.M.; Hanson, P.E.; Kroening, S.E.; Lee, K.E.

    1999-01-01

    This report describes the design, site-selection, and implementation of the study. Methods used to collect, process, and analyze samples; characterize sites; and assess habitat are described. A comprehensive list of sample sites is provided. Sample analyses for water-quality studies included chlorophyll a, major inorganic constituents, nutrients, trace elements, tritium, radon, environmental isotopes, organic carbon, pesticides, volatile organic compounds, and other synthetic and naturallyoccurring organic compounds. Aquatic-biological samples included fish, benthic macroinvertebrates, and algal enumeration and identification, as well as synthetic-organic compounds and trace elements in fish tissue.

  17. Long-term ground-water monitoring program and performance-evaluation plan for the extraction system at the former Nike Missile Battery Site, Aberdeen Proving Ground, Maryland

    USGS Publications Warehouse

    Senus, Michael P.; Tenbus, Frederick J.

    2000-01-01

    This report presents lithologic and ground-water-quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and ground-water sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  18. Characteristics of major volatile organic hazardous air pollutants in the urban air of Kaohsiung city.

    PubMed

    Huang, Mei-Chuan; Lin, Jim Juimin

    2007-10-01

    The concentrations and characteristics of volatile organic hazardous air pollutants (HAPs) in the urban city of Kaohsiung from motor vehicles and dense pollutant sources has become a national concern. To continuously monitor volatile organic HAPs, sampling sites were selected near the four air-quality monitoring stations established by Ethe nvironmental Protection Administration of Taiwan ROC, namely Nan-tz, Tso-ying, San-min and Hsiao-kang, from north to south. An on-site automated online monitor of volatile organic compounds (VOCs) was used for continuous monitoring. This study performed two consecutive days of 24-h monitoring of five volatile organic HAPs form August to October 2005 at the four monitoring sites, which cover the northern, central, and southern areas of Kaohsiung city. The average monitored concentration was 2.78-4.84 ppb for benzene, 5.90-9.66 ppb for toluene, 3.62-5.90 ppb for ethylbenzene, 3.73-5.34 ppb for m,p-xylene, 3.38-4.22 ppb for o-xylene, and 4.48-7.00 ppb for styrene. The average monitored concentrations of the major volatile organic HAPs tended to follow the pattern San-min > Nan-tz > Hsiao-kang > Tso-ying. Among all the species monitored in this study, toluene had the highest ambient concentration, followed by styrene, m,p-xylene, ethylbenzene, o-xylene, and benzene. The results showed that the concentration at night was higher than that in the day for toluene at Nan-tz, San-min, Hsiao-kang, and for benzene at Nan-tz and Hsiao-kang.

  19. Lithologic and ground-water-quality data collected using Hoverprobe drilling techniques at the West Branch Canal Creek wetland, Aberdeen Proving Ground, Maryland, April-May 2000

    USGS Publications Warehouse

    Phelan, Daniel J.; Senus, Michael P.; Olsen, Lisa D.

    2001-01-01

    This report presents lithologic and groundwater- quality data collected during April and May 2000 in the remote areas of the tidal wetland of West Branch Canal Creek, Aberdeen Proving Ground, Maryland. Contamination of the Canal Creek aquifer with volatile organic compounds has been documented in previous investigations of the area. This study was conducted to investigate areas that were previously inaccessible because of deep mud and shallow water, and to support ongoing investigations of the fate and transport of volatile organic compounds in the Canal Creek aquifer. A unique vibracore drill rig mounted on a hovercraft was used for drilling and groundwater sampling. Continuous cores of the wetland sediment and of the Canal Creek aquifer were collected at five sites. Attempts to sample ground water were made by use of a continuous profiler at 12 sites, without well installation, at a total of 81 depths within the aquifer. Of those 81 attempts, only 34 sampling depths produced enough water to collect samples. Ground-water samples from two sites had the highest concentrations of volatile organic compounds?with total volatile organic compound concentrations in the upper part of the aquifer ranging from about 15,000 to 50,000 micrograms per liter. Ground-water samples from five sites had much lower total volatile organic compound concentrations (95 to 2,100 micrograms per liter), whereas two sites were essentially not contaminated, with total volatile organic compound concentrations less than or equal to 5 micrograms per liter.

  20. Modeling effects of moisture content and advection on odor causing VOCs volatilization from stored swine manure.

    PubMed

    Liao, C M; Liang, H M

    2000-05-01

    Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.

  1. Fine particle and organic vapor emissions from staged tests of an in-use aircraft engine

    NASA Astrophysics Data System (ADS)

    Presto, Albert A.; Nguyen, Ngoc T.; Ranjan, Manish; Reeder, Aaron J.; Lipsky, Eric M.; Hennigan, Christopher J.; Miracolo, Marissa A.; Riemer, Daniel D.; Robinson, Allen L.

    2011-07-01

    Staged tests were conducted to measure the particle and vapor emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135T Stratotanker airframe at different engine loads. Exhaust was sampled using a rake inlet installed 1-m downstream of the engine exit plane of a parked and chocked aircraft and a dilution sampler and portable smog chamber were used to investigate the particulate matter (PM) emissions. Total fine PM mass emissions were highest at low (4%) and high (85%) load and lower at intermediate loads (7% and 30%). PM mass emissions at 4% load are dominated by organics, while at 85% load elemental carbon is dominant. Quantifying the primary organic aerosol (POA) emissions is complicated by substantial filter sampling artifacts. Partitioning experiments reveal that the majority of the POA is semivolatile; for example, the POA emission factor changed by a factor of two when the background organic aerosol concentration was increased from 0.7 to 4 μg m -3. Therefore, one cannot define a single non-volatile PM emission factor for aircraft exhaust. The gas- and particle-phase organic emissions were comprehensively characterized by analyzing canister, sorbent and filter samples with gas-chromatography/mass-spectrometry. Vapor-phase organic emissions are highest at 4% load and decrease with increasing load. Low-volatility organics (less volatile than a C 12n-alkane) contributed 10-20% of the total organic emissions. The low-volatility organic emissions contain signatures of unburned fuel and aircraft lubricating oil but are dominated by an unresolved complex mixture (UCM) of presumably branched and cyclic alkanes. Emissions at all loads contain more low-volatility organic vapors than POA; thus secondary organic aerosol formation in the aging plume will likely exceed POA emissions.

  2. Analysis of volatile organic compounds from illicit cocaine samples

    NASA Astrophysics Data System (ADS)

    Robins, W. H.; Wright, Bob W.

    1994-10-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds which may be residues of processing solvents were observed in some samples. The equilibrium emissivity of cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  3. Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China.

    PubMed

    Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua

    2015-01-01

    This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water.

  4. 77 FR 74115 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... ), volatile organic compounds (VOCs), ammonia (NH 3 ), and sulfur dioxide (SO 2 ). EPA has reviewed the... , coarse particles (PM 10 ), nitrogen oxides (NO X ), volatile organic compounds (VOCs), ammonia (NH 3...

  5. PERTURBATION OF VOLTAGE-SENSITIVE CALCIUM FUNCTION IN PHEOCHROMOCYTOMA CELLS BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    Volatile organic solvents such as toluene (TOL) and trichloroethylene perturb nervous system function and share characteristic effects with other central nervous system depressants such as anesthetic gasses, ethanol, benzodiazepines and barbiturates. Recently, mechanistic studies...

  6. Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole)

    NASA Astrophysics Data System (ADS)

    Pereira, K. L.; Hamilton, J. F.; Rickard, A. R.; Bloss, W. J.; Alam, M. S.; Camredon, M.; Muñoz, A.; Vásquez, M.; Borrás, E.; Ródenas, M.

    2013-12-01

    The increasing demand for palm oil for uses in biofuel and food products is leading to rapid expansion of oil palm agriculture. Methyl chavicol (also known as estragole and 1-allyl-4-methoxybenzene) is an oxygenated biogenic volatile organic compound that was recently identified as the main floral emission from an oil palm plantation in Malaysian Borneo. The emissions of methyl chavicol observed may impact regional atmospheric chemistry, but little is known of its ability to form secondary organic aerosol (SOA). The photo-oxidation of methyl chavicol was investigated at the European Photoreactor chamber as a part of the atmospheric chemistry of methyl chavicol (ATMECH) project. Aerosol samples were collected using a particle into liquid sampler (PILS) and analysed offline using an extensive range of instruments including; high performance liquid chromatography mass spectrometry (HPLC-ITMS), high performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOFMS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). The SOA yield was determined as 18-29% depending on initial precursor (VOC : NOx) mixing ratios. In total, 59 SOA compounds were observed and the structures of 10 compounds have been identified using high resolution tandem mass spectrometry. The addition of hydroxyl and/or nitro functional groups to the aromatic ring appears to be an important mechanistic pathway for aerosol formation. This results in the formation of compounds with both low volatility and high O : C ratios, where functionalisation rather than fragmentation is mainly observed as a~result of the stability of the ring. The SOA species observed can be characterized as semi-volatile to low volatile oxygenated organic aerosol (SVOOA and LVOOA) components and therefore may be important in aerosol formation and growth.

  7. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia.

    PubMed

    Huang, R; Li, G Q; Zhang, J; Yang, L; Che, H J; Jiang, D H; Huang, H C

    2011-07-01

    A study was conducted to identify volatile organic compounds or volatiles produced by Candida intermedia strain C410 using gas chromatography-mass spectrometry, and to determine efficacy of the volatiles of C. intermedia in suppression of conidial germination and mycelial growth of Botrytis cinerea and control of Botrytis fruit rot of strawberry. Results showed that, among 49 volatiles (esters, alcohols, alkenes, alkanes, alkynes, organic acids, ketones, and aldehydes) identified from C. intermedia cultures on yeast extract peptone dextrose agar, two compounds, 1,3,5,7-cyclooctatetraene and 3-methyl-1-butanol, were the most abundant. Synthetic chemicals of 1,3,5,7-cyclooctatetraene; 3-methyl-1-butanol; 2-nonanone; pentanoic acid, 4-methyl-, ethyl ester; 3-methyl-1-butanol, acetate; acetic acid, pentyl ester; and hexanoic acid, ethyl ester were highly inhibitory to conidial germination and mycelial growth of B. cinerea. Inhibition of conidial germination and mycelial growth of B. cinerea by volatiles of C. intermedia was also observed. Meanwhile, results showed that incidence and severity of Botrytis fruit rot of strawberry was significantly (P < 0.01) reduced by exposure of the strawberry fruit to the volatiles from C. intermedia cultures or C. intermedia-infested strawberry fruit. These results suggest that the volatiles of C. intermedia C410 are promising biofumigants for control of Botrytis fruit rot of strawberry.

  8. Potential hazard of volatile organic compounds contained in household spray products

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mahmudur; Kim, Ki-Hyun

    2014-03-01

    To assess the exposure levels of hazardous volatile pollutants released from common household spray products, a total of 10 spray products consisting of six body spray and four air spray products have been investigated. The body spray products included insect repellents (two different products), medicated patch, deodorant, hair spray, and humectant, whereas the air spray products included two different insecticides (mosquito and/or cockroach), antibacterial spray, and air freshener. The main objective of this study was to measure concentrations of 15 model volatile organic compounds (VOCs) using GC/MS coupled with a thermal desorber. In addition, up to 34 ‘compounds lacking authentic standards or surrogates (CLASS)' were also quantified based on the effective carbon number (ECN) theory. According to our analysis, the most common indoor pollutants like benzene, toluene, styrene, methyl ethyl ketone, and butyl acetate have been detected frequently in the majority of spray products with the concentration range of 5.3-125 mg L-1. If one assumes that the amount of spray products released into air reaches the 0.3 mL level for a given space size of 5 m3, the risk factor is expected to exceed the carcinogenic risk level set for benzene (10-5) by the U.S. EPA.

  9. Formation and evolution of molecular products in α-pinene secondary organic aerosol.

    PubMed

    Zhang, Xuan; McVay, Renee C; Huang, Dan D; Dalleska, Nathan F; Aumont, Bernard; Flagan, Richard C; Seinfeld, John H

    2015-11-17

    Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58-72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.

  10. Spring and summer contrast in new particle formation over nine forest areas in North America

    DOE PAGES

    Yu, F.; Luo, G.; Pryor, S. C.; ...

    2015-12-18

    Recent laboratory chamber studies indicate a significant role for highly oxidized low-volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low-volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions (PSDs) measured in nine forest areas in North America are used to characterize the occurrence and intensity of NPF and to evaluate model simulations using an empirical formulation in which formation rate is a function of the concentrations of sulfuric acid and low-volatility organics from alpha-pinene oxidation (Nucl-Org), and using an ion-mediated nucleation mechanism (excluding organics) (Nucl-IMN). On average, NPF occurred on ~more » 70 % of days during March for the four forest sites with springtime PSD measurements, while NPF occurred on only ~ 10 % of days in July for all nine forest sites. Both Nucl-Org and Nucl-IMN schemes capture the observed high frequency of NPF in spring, but the Nucl-Org scheme significantly overpredicts while the Nucl-IMN scheme slightly underpredicts NPF and particle number concentrations in summer. Statistical analyses of observed and simulated ultrafine particle number concentrations and frequency of NPF events indicate that the scheme without organics agrees better overall with observations. The two schemes predict quite different nucleation rates (including their spatial patterns), concentrations of cloud condensation nuclei, and aerosol first indirect radiative forcing in North America, highlighting the need to reduce NPF uncertainties in regional and global earth system models.« less

  11. Development and validation of a portable gas phase standard generation and calibration system for volatile organic compounds

    Treesearch

    P. Veres; J. B. Gilman; J. M. Roberts; W. C. Kuster; C. Warneke; I. R. Burling; J. de Gouw

    2010-01-01

    We report on the development of an accurate, portable, dynamic calibration system for volatile organic compounds (VOCs). The Mobile Organic Carbon Calibration System (MOCCS) combines the production of gas-phase VOC standards using permeation or diffusion sources with quantitative total organic carbon (TOC) conversion on a palladium surface to CO2 in the presence of...

  12. Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) to more..

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 21 Subchap J, 2147--Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 1998-02-02 (LAc74) more...

  13. Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

    EPA Pesticide Factsheets

    Louisiana SIP: LAC 33:III Ch 2147. Limiting Volatile Organic Compound (VOC) Emissions from Reactor Processes and Distillation Operations in Synthetic Organic Chemical manufacturing Industry (SOCMI); SIP effective 2011-08-04 (LAd34) to 2017-09-27

  14. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    PubMed

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  15. Detection of semi-volatile organic compounds (SVOCs) in surface water, soil, and groundwater in a chemical industrial park in Eastern China.

    PubMed

    Liu, Benhua; Li, Yuehua; Ma, Jianfeng; Huang, Linxian; Chen, Liang

    2016-01-01

    China is suffering from serious water and soil pollution, especially in the North China Plain. This work investigated semi-volatile organic compounds (SVOCs) in surface water, groundwater and soil within a chemical industrial park in Eastern China, for which the volatile organic compound (VOC) results have been previously reported. A total of 20 samples were collected from the field, and analyzed in the laboratory. A 100% detection frequency of SVOCs in samples from this chemical industrial park was observed (same as VOCs). Moreover, the detection frequency of 113 SVOCs in each sample reached 15.93, 12.39 and 20.35% for surface water, groundwater and soil, respectively. The most detected SVOCs in the park included N-containing SVOCs, polycyclic aromatic hydrocarbons, phthalates, organic pesticides and polychlorodiphenyls. The elevated detecting frequencies and concentration levels of SVOCs identified in the groundwater were attributed to the intensive chemical production activities in the park. In addition, the agricultural activities in the area might also have contributed to the SVOCs to the groundwater. The results of VOCs and SVOCs from this and previous studies suggest that the groundwater in this industrial park has been severely contaminated, and the contamination likely spreads beyond the park. Imminent hydrogeological assessments and remedial actions are warranted to eliminate the source and mitigate the potential plume expansion beyond the park boundary.

  16. Method and apparatus for detection of chemical vapors

    DOEpatents

    Mahurin, Shannon Mark [Knoxville, TN; Dai, Sheng [Knoxville, TN; Caja, Josip [Knoxville, TN

    2007-05-15

    The present invention is a gas detector and method for using the gas detector for detecting and identifying volatile organic and/or volatile inorganic substances present in unknown vapors in an environment. The gas detector comprises a sensing means and a detecting means for detecting electrical capacitance variance of the sensing means and for further identifying the volatile organic and volatile inorganic substances. The sensing means comprises at least one sensing unit and a sensing material allocated therein the sensing unit. The sensing material is an ionic liquid which is exposed to the environment and is capable of dissolving a quantity of said volatile substance upon exposure thereto. The sensing means constitutes an electrochemical capacitor and the detecting means is in electrical communication with the sensing means.

  17. Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

    PubMed

    Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin

    2017-11-13

    Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.

  18. Regulatory off-gas analysis from the evaporation of Hanford simulated waste spiked with organic compounds.

    PubMed

    Saito, Hiroshi H; Calloway, T Bond; Ferrara, Daro M; Choi, Alexander S; White, Thomas L; Gibson, Luther V; Burdette, Mark A

    2004-10-01

    After strontium/transuranics removal by precipitation followed by cesium/technetium removal by ion exchange, the remaining low-activity waste in the Hanford River Protection Project Waste Treatment Plant is to be concentrated by evaporation before being mixed with glass formers and vitrified. To provide a technical basis to permit the waste treatment facility, a relatively organic-rich Hanford Tank 241-AN-107 waste simulant was spiked with 14 target volatile, semi-volatile, and pesticide compounds and evaporated under vacuum in a bench-scale natural circulation evaporator fitted with an industrial stack off-gas sampler at the Savannah River National Laboratory. An evaporator material balance for the target organics was calculated by combining liquid stream mass and analytical data with off-gas emissions estimates obtained using U.S. Environmental Protection Agency (EPA) SW-846 Methods. Volatile and light semi-volatile organic compounds (<220 degrees C BP, >1 mm Hg vapor pressure) in the waste simulant were found to largely exit through the condenser vent, while heavier semi-volatiles and pesticides generally remain in the evaporator concentrate. An OLI Environmental Simulation Program (licensed by OLI Systems, Inc.) evaporator model successfully predicted operating conditions and the experimental distribution of the fed target organics exiting in the concentrate, condensate, and off-gas streams, with the exception of a few semi-volatile and pesticide compounds. Comparison with Henry's Law predictions suggests the OLI Environmental Simulation Program model is constrained by available literature data.

  19. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    NASA Astrophysics Data System (ADS)

    Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan

    2018-02-01

    Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O / C ratios. The high volatility of HOA implied that it had a high potential to be oxidized to secondary species in the gas phase. The aerosol volatility measurement results in this study provide useful parameters for the modeling work of aerosol evolution in China and are also helpful in understanding the formation mechanisms of secondary aerosols.

  20. COMPACT, CONTINUOUS MONITORING FOR VOLATILE ORGANIC COMPOUNDS - PHASE I

    EPA Science Inventory

    Improved methods for onsite measurement of multiple volatile organic compounds are needed for process control, monitoring, and remediation. This Phase I SBIR project sets forth an optical measurement method that meets these needs. The proposed approach provides an instantaneous m...

  1. 77 FR 60626 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and...

  2. 77 FR 61513 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3 ), and... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...

  3. 78 FR 46141 - Approval and Disapproval of Air Quality State Implementation Plans; Arizona; Regional Haze and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... volatile organic compounds. (42) The initials WRAP mean or refer to the Western Regional Air Partnership... sources of NO X, SO 2 or volatile organic compounds (VOCs) or on point sources [[Page 46144

  4. 78 FR 38648 - Approval and Promulgation of Air Quality Implementation Plans; State of New Jersey; Redesignation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... ) and Volatile Organic Compounds (VOC) that were submitted as part of the supplement, in conjunction...] that volatile organic compounds and NH 3 are not PM 2.5 precursors, as subpart 4 expressly governs...

  5. 78 FR 37973 - Change of Address for Region 7; Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... recordkeeping requirements, Sulfur oxides, Volatile organic compounds. 40 CFR Part 59 Environmental protection... requirements, Volatile organic compounds. 40 CFR Part 60 Environmental protection, Administrative practice and..., Cement industry, Chemicals, Coal, Copper, Dry cleaners, Electric power plants, Fertilizers, Fluoride...

  6. 40 CFR 59.106 - Variance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Automobile Refinish Coatings § 59.106 Variance. (a) Any regulated entity... confidential information in reaching a decision on a variance application. Interested members of the public...

  7. HENRY'S LAW CONSTANTS AND MICELLAR PARTITIONING OF VOLATILE ORGANIC COMPOUNDS IN SURFACTANT SOLUTIONS

    EPA Science Inventory

    Partitioning of volatile organic compounds (VOCs) into surfactant micelles affects the apparent vapor-liquid equilibrium of VOCs in surfactant solutions. This partitioning will complicate removal of VOCs from surfactant solutions by standard separation processes. Headspace expe...

  8. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  9. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  10. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  11. 40 CFR 59.512 - Addresses of EPA regional offices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.512 Addresses of EPA..., Air Pesticides and Toxics, Management Division, Atlanta Federal Center, 61 Forsyth Street, SW...

  12. IMPROVEMENT IN AIR TOXICS METHODS FOR VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    Innovative and customized monitoring methods for air toxic volatile organic compounds (VOCs) are being developed for applications in exposure and trends monitoring. This task addresses the following applications of specific interest:

    o Contributions to EPA Regional Monit...

  13. DETERMINATION OF SORPTION PARAMETERS FOR 36 VOC/MATERIAL COMBINATIONS

    EPA Science Inventory

    EPA's Air Pollution Prevention and Control Division is currently investigating sorptive interactions (sink effects) of volatile organic compounds and semi-volatile organic compounds when exposed to common indoor surface materials. The objective is to recommend the best sink mode...

  14. 40 CFR 59.412 - Incorporations by reference.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...

  15. 40 CFR 59.412 - Incorporations by reference.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Architectural Coatings § 59.412 Incorporations by... 19428-2959. (1) ASTM Method C 1315-95, Standard Specification for Liquid Membrane-Forming Compounds...

  16. INHIBITORY EFFECTS OF PERCHLOROETHYLENE ON HUMAN NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    Perchloroethylene (PERC) is a volatile organic solvent with a variety of industrial uses. PERC exposure has been shown to cause adverse neurological effects including deficits in vision and memory in exposed individuals. Despite knowledge of these effects, the mechanisms by whi...

  17. ANALYTICAL METHOD CHECKLIST FOR VOLATILE ORGANIC COMPOUNDS BY GC/MS (HANDOUT)

    EPA Science Inventory

    The Land Remediation and Pollution Control Division (LRPCD) QA Manager strives to assist LRPCD researchers in developing functional planning documents for their research projects. As part of the planning process, several pieces of information are needed, including information re...

  18. Region 4: South Carolina Adequate Letter and Response to Comments (6/21/2012)

    EPA Pesticide Factsheets

    This May 25, 2012 letter from EPA approves South Carolina's reasonable further progress (RFP) plan including the motor vehicle emission budget (MVEB) for volatile organic compounds (VOC) and EPA's response to comments received on the adequacy notification

  19. Remote and Onsite Direct Measurements of Emissions from Oil and Natural Gas Production

    EPA Science Inventory

    Environmentally responsible oil and gas production requires accurate knowledge of emissions from long-term production operations1, which can include methane, volatile organic compounds, and hazardous air pollutants. Well pad emissions vary based on the geologically-determined com...

  20. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  1. 78 FR 63267 - Self-Regulatory Organizations; The Options Clearing Corporation; Notice of No Objection to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... the set of risk factors whose behavior is included in the econometric models underlying STANS, time series of proportional changes in implied volatilities for a range of tenors and in-the-money and out-of...

  2. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  3. NASAL EFFECTS OF A MIXTURE OF VOLATILE ORGANIC COMPOUNDS AND THEIR OZONE OXIDATION PRODUCTS.

    EPA Science Inventory

    "Nonspecific-building related illness (NSBRI)," or "sick building syndrome," refers to symptomatic complaints associated with occupancy of non-industrial buildings. The diverse symptoms of NSBRI include mucous membrane (eye, nose, throat) irritation, headaches, fatigue, nausea, s...

  4. Modeling study of secondary organic aerosol in winter in China using NAQPMS

    NASA Astrophysics Data System (ADS)

    Yang, W.; Li, J.

    2017-12-01

    The concentration of organic aerosol (OA) in the central and eastern China is much higher than that in Europe and America. Compared with the observation, the current numerical modeling studies largely underestimated the concentration of OA, especially the secondary component. Based on the volatility basis set framework, a secondary organic aerosol (SOA) module was developed, which considering the multi-generation oxidation of volatile organic compounds (VOCs), semi-volatile POA and intermediate volatility organic compounds (IVOCs). The newly developed SOA module was coupled into the NAQPMS, and the performance of the simulation was validated by the observation with high temporal resolution. In wintertime, the OA concentration in the central and eastern China was maintained above 15-20 μg·m-3, and SOA accounted for 50-65% of OA concentration. The OA concentration even reached 40 μg·m-3 in the provinces emitting most pollutants (such as Hunan, Hubei, Henan, Anhui, Jiangsu, Shandong and Hubei province). IVOCs were important precursors of SOA in China, and could reduce the great discrepancy between simulation and observation. In wintertime, the contribution from IVOCs accounted for 60-80% of SOA formation. The aging of semi-volatile POA had less impact on the SOA formation, which maintained only 2-8% over central and eastern China.

  5. Distribution of volatile organic compounds over a semiconductor Industrial Park in Taiwan.

    PubMed

    Chiu, Kong-Hwa; Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Lo, Jiunn-Guang

    2005-02-15

    This study examined volatile organic compounds (VOC) concentration in ambient air collected during the years 2000--2003 at several different locations of Hsinchu Science-based Industrial Park (HSIP) in Taiwan. A canister automated GC-MS system analyzed the volatile organics in ambient air grasp samples according to T0-15 method. Oxygenated volatiles were the most abundant VOC detected in HSIP followed by aromatics that are commonly used as solvents in the semiconductor industries. The major components measured in the ambient air are 2-propanol (29-135 ppbv), acetone (12-164 ppbv), benzene (0.7-1.7 ppbv), and toluene (13-20 ppbv). At some of the sampling locations, odorous compounds such as carbon disulfide and dimethyl sulfide levels exceed threshold values. The estimated toluene/benzene ratio is very high at most of the sites. However, the total amount of VOC is reduced over the years from 2000 to 2003 due to strict implementation on use and discharge of solvents in industries. There exists no definite seasonal pattern for sporadic occurrence of high levels of some of the volatile organics. Stagnant weather conditions with low wind speeds aid accumulation of toxic species at ground level. The results entail that hi-tech semiconductor industries are still a potential source for harmful organic substances to surrounding microenvironment.

  6. A chemometrics as a powerful tool in the elucidation of the role of metals in the biosynthesis of volatile organic compounds in Hungarian thyme samples.

    PubMed

    Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica

    2013-10-01

    The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  7. Ecology of plant volatiles: taking a plant community perspective.

    PubMed

    Pierik, Ronald; Ballaré, Carlos L; Dicke, Marcel

    2014-08-01

    Although plants are sessile organisms, they can modulate their phenotype so as to cope with environmental stresses such as herbivore attack and competition with neighbouring plants. Plant-produced volatile compounds mediate various aspects of plant defence. The emission of volatiles has costs and benefits. Research on the role of plant volatiles in defence has focused primarily on the responses of individual plants. However, in nature, plants rarely occur as isolated individuals but are members of plant communities where they compete for resources and exchange information with other plants. In this review, we address the effects of neighbouring plants on plant volatile-mediated defences. We will outline the various roles of volatile compounds in the interactions between plants and other organisms, address the mechanisms of plant neighbour perception in plant communities, and discuss how neighbour detection and volatile signalling are interconnected. Finally, we will outline the most urgent questions to be addressed in the future. © 2014 John Wiley & Sons Ltd.

  8. 40 CFR 52.970 - Identification of plan.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FR 54308 Ref 52.999(c)(66) Chapter 21—Control of Emissions of Organic Compounds Subchapter A General... Storage of Volatile Organic Compounds (Large Tanks) Dec. 1995, LR21:1333 10/22/96, 61 FR 54737 Ref 52.999(c)(71)(E)(F)(G) Section 2105 Storage of Volatile Organic Components (Small Tanks) NOT IN SIP Section...

  9. Cost Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-05-01

    feasibility studies. ................... 30  Table 5. Compounds screened in the laboratory for IS2 sampling...tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental Protection Agency UST...underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material contained in this report has

  10. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF VOLATILE ORGANIC COMPOUNDS COLLECTED WITH A PASSIVE SAMPLER (BCO-L-17.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the methodology used for the analysis of the 3M OVM 3500 Organic Vapor Monitors for volatile organic compounds (VOCs), using solvent extraction and standard gas chromatography/mass spectrometry (GC/MS) analysis procedures. This procedure was...

  11. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleyboecker, A.; Liebrich, M.; Kasina, M.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Correspondingmore » to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.« less

  12. Microextraction techniques for the determination of volatile and semivolatile organic compounds from plants: a review.

    PubMed

    Yang, Cui; Wang, Juan; Li, Donghao

    2013-10-17

    Vegetables and fruits are necessary for human health, and traditional Chinese medicine that uses plant materials can cure diseases. Thus, understanding the composition of plant matrix has gained increased attention in recent years. Since plant matrix is very complex, the extraction, separation and quantitation of these chemicals are challenging. In this review we focus on the microextraction techniques used in the determination of volatile and semivolatile organic compounds (such as esters, alcohols, aldehydes, hydrocarbons, ketones, terpenes, sesquiterpene, phenols, acids, plant secondary metabolites and pesticides) from plants (e.g., fruits, vegetables, medicinal plants, tree leaves, etc.). These microextraction techniques include: solid phase microextraction (SPME), stir-bar sorptive extraction (SBSE), single drop microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), dispersive liquid liquid microextraction (DLLME), and gas purge microsyringe extraction (GP-MSE). We have taken into consideration papers published from 2008 to the end of January 2013, and provided critical and interpretative review on these techniques, and formulated future trends in microextraction for the determination of volatile and semivolatile compounds from plants. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-07-16

    We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  14. Phase partitioning and volatility of secondary organic aerosol components formed from α-pinene ozonolysis and OH oxidation: the importance of accretion products and other low volatility compounds

    DOE PAGES

    Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...

    2015-02-18

    We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less

  15. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM SURFACTANT SOLUTIONS BY PERVAPORATION

    EPA Science Inventory

    Pervaporation is gradually becoming an accepted and practical method for the recovery of volatile organic compounds (VOCs) from aqueous process and waste streams. As the technolog has matured, new applications for pervaporation have emerged. One such application is the separati...

  16. 77 FR 73544 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; The 2002 Base Year...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... nitrogen oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH... oxides (NO X ), volatile organic compounds (VOCs), PM 2.5 , coarse particles (PM 10 ), ammonia (NH 3...

  17. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  18. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  19. REGIONAL METHODS INITIATIVE RESEARCH PROJECTS AT HEASD

    EPA Science Inventory

    EPA Regional Laboratories are currently using high volume samplers with a combination of filter and sorbent vapor trap to collect large volume samples (250 liter/min for 24 hours) of semi-volatile organic compounds (SVOCs) and non-volatile organic compounds (NVOCs). These are su...

  20. PERTURBATION OF VOLTAGE-SENSITIVE Ca2+ CHANNEL FUNCTION BY VOLATILE ORGANIC SOLVENTS.

    EPA Science Inventory

    The mechanisms underlying the acute neurophysiological and behavioral effects of volatile organic compounds (VOCs) remain to be elucidated. However, the function of neuronal ion channels is perturbed by VOCs. The present study examined effects of toluene (TOL), trichloroethylene ...

  1. MODELING OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    A resistance-in-series model was used to study the pervaporation of multiple volatile organic compounds (VOCs)-water mixtures. Permeation experiments were carried out for four membranes: poly(dimethylsiloxane) (PDMS), polyether-block-polyamides (PEBA), polyurethane (PUR) and sil...

  2. 40 CFR 59.206 - Variances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Consumer Products § 59.206 Variances. (a) Any regulated entity who cannot... reaching a decision on a variance application. Interested members of the public will be allowed a...

  3. Volatile Organic Sulfur Compounds of Environmental Interest: Dimethyl Sulfide and Methanethiol

    ERIC Educational Resources Information Center

    Chasteen, Thomas G.; Bentley, Ronald

    2004-01-01

    Volatile organic sulfur compounds (VOSCs) have been assigned environmental roles in global warming, acid precipitation, and cloud formation where two important members dimethyl sulfide (CH3)2 S, DMS, and methanethiol, CH3SH, MT, of VOSC group are involved.

  4. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  5. 40 CFR 59.102 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic... § 59.106 of this subpart, any coating resulting from the mixing instructions of a regulated entity must... § 59.104(a). (b) Different combinations or mixing ratios of coating components constitute different...

  6. SUPERCRITICAL FLUID EXTRACTION OF SEMI-VOLATILE ORGANIC COMPOUNDS FROM PARTICLES

    EPA Science Inventory

    A nitrogen oxide flux chamber was modified to measure the flux of semi-volatile organic compounds (SVOCs). Part of the modification involved the development of methods to extract SVOCs from polyurethane foam (PUF), sand, and soil. Breakthroughs and extraction efficiencies were ...

  7. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  8. Hayabusa2 Sample Catcher and Container: Metal-Seal System for Vacuum Encapsulation of Returned Samples with Volatiles and Organic Compounds Recovered from C-Type Asteroid Ryugu

    NASA Astrophysics Data System (ADS)

    Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke

    2017-07-01

    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.

  9. Design and laboratory testing of a chamber device to measure total flux of volatile organic compounds from the unsaturated zone under natural conditions.

    PubMed

    Tillman, Fred D; Smith, James A

    2004-11-01

    To determine if an aquifer contaminated with volatile organic compounds (VOCs) has potential for natural remediation, all natural processes affecting the fate and transport of VOCs in the subsurface must be identified and quantified. This research addresses the quantification of air-phase volatile organic compounds (VOCs) leaving the unsaturated zone soil gas and entering the atmosphere-including the additional flux provided by advective soil-gas movement induced by barometric pumping. A simple and easy-to-use device for measuring VOC flux under natural conditions is presented. The vertical flux chamber (VFC) was designed using numerical simulations and evaluated in the laboratory. Mass-balance numerical simulations based on continuously stirred tank reactor equations (CSTR) provided information on flux measurement performance of several sampling configurations with the final chamber configuration measuring greater than 96% of model-simulated fluxes. A laboratory device was constructed to evaluate the flux chamber under both diffusion-only and advection-plus-diffusion transport conditions. The flux chamber measured an average of 82% of 15 diffusion-only fluxes and an average of 95% of 15 additional advection-plus-diffusion flux experiments. The vertical flux chamber has the capability of providing reliable measurement of VOC flux from the unsaturated zone under both diffusion and advection transport conditions.

  10. The Venus flytrap attracts insects by the release of volatile organic compounds.

    PubMed

    Kreuzwieser, Jürgen; Scheerer, Ursel; Kruse, Jörg; Burzlaff, Tim; Honsel, Anne; Alfarraj, Saleh; Georgiev, Plamen; Schnitzler, Jörg-Peter; Ghirardo, Andrea; Kreuzer, Ines; Hedrich, Rainer; Rennenberg, Heinz

    2014-02-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap.

  11. Identification and quantification of volatile organic compounds using systematic single-ion chromatograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Yoshio; Kanabus-Kaminska, J.M.

    1996-12-31

    In order to determine the background level of volatile organic compounds (VOCs) in Canadian indoor air, a method of identification and quantification at a level of 0.3 {micro}g/m{sup 3} using systematic single-ion chromatograms (SICs) has been developed. The compounds selected for measurement included several halogenated compounds, oxygen compounds, terpenes, and C8 to C16 n-alkanes. Air samples were taken in 3-layered sorbent tubes and trapped compounds were thermally desorbed into the helium stream of a gas chromatograph/mass spectrometer (GC/MS) analytical system. Total quantities of volatile organic compounds (TVOCs) were measured using a flame ionization detector (FID). Individual compounds were analyzed bymore » a GC/MS. For the identification of compounds in the main stream GC effluent, both the specific GC retention and mass spectra were used. About 50 selected SICs were routinely extracted from a total ion chromatogram (TIC) to detect and quantify compounds. For each compound, a single representative ion was selected. The specific retention was calculated from the elution time on the SIC. For quantification, ion counts under a peak in the SIC were measured. The single-ion MS response factor for some of the compounds was experimentally determined using a dynamic reference procedure.« less

  12. The Venus flytrap attracts insects by the release of volatile organic compounds

    PubMed Central

    Kreuzwieser, Jürgen; Honsel, Anne

    2014-01-01

    Does Dionaea muscipula, the Venus flytrap, use a particular mechanism to attract animal prey? This question was raised by Charles Darwin 140 years ago, but it remains unanswered. This study tested the hypothesis that Dionaea releases volatile organic compounds (VOCs) to allure prey insects. For this purpose, olfactory choice bioassays were performed to elucidate if Dionaea attracts Drosophila melanogaster. The VOCs emitted by the plant were further analysed by GC-MS and proton transfer reaction-mass spectrometry (PTR-MS). The bioassays documented that Drosophila was strongly attracted by the carnivorous plant. Over 60 VOCs, including terpenes, benzenoids, and aliphatics, were emitted by Dionaea, predominantly in the light. This work further tested whether attraction of animal prey is affected by the nutritional status of the plant. For this purpose, Dionaea plants were fed with insect biomass to improve plant N status. However, although such feeding altered the VOC emission pattern by reducing terpene release, the attraction of Drosophila was not affected. From these results it is concluded that Dionaea attracts insects on the basis of food smell mimicry because the scent released has strong similarity to the bouquet of fruits and plant flowers. Such a volatile blend is emitted to attract insects searching for food to visit the deadly capture organ of the Venus flytrap. PMID:24420576

  13. Language of plants: Where is the word?

    PubMed

    Šimpraga, Maja; Takabayashi, Junji; Holopainen, Jarmo K

    2016-04-01

    Plants emit biogenic volatile organic compounds (BVOCs) causing transcriptomic, metabolomic and behavioral responses in receiver organisms. Volatiles involved in such responses are often called "plant language". Arthropods having sensitive chemoreceptors can recognize language released by plants. Insect herbivores, pollinators and natural enemies respond to composition of volatiles from plants with specialized receptors responding to different types of compounds. In contrast, the mechanism of how plants "hear" volatiles has remained obscured. In a plant-plant communication, several individually emitted compounds are known to prime defense response in receiver plants with a specific manner according to the chemical structure of each volatile compound. Further, composition and ratio of volatile compounds in the plant-released plume is important in plant-insect and plant-plant interactions mediated by plant volatiles. Studies on volatile-mediated plant-plant signaling indicate that the signaling distances are rather short, usually not longer than one meter. Volatile communication from plants to insects such as pollinators could be across distances of hundreds of meters. As many of the herbivore induced VOCs have rather short atmospheric life times, we suggest that in long-distant communications with plant volatiles, reaction products in the original emitted compounds may have additional information value of the distance to emission source together with the original plant-emitted compounds. © 2015 Institute of Botany, Chinese Academy of Sciences.

  14. Differential Profiling of Volatile Organic Compound Biomarker Signatures Utilizing a Logical Statistical Filter-Set and Novel Hybrid Evolutionary Classifiers

    DTIC Science & Technology

    2012-04-01

    for automated SPME headspace sampling and in-line with a Thermo DSQII single quadrupole mass spectrometer. Collection of organic volatiles from the...urine was accomplished using a 2cm CAR/DVB/PDMS solid phase micro extraction fiber ( SPME ), Supelco supplier, inserted by the Triplus autosampler into...automated direct injection. Volatiles gathered by the SPME fiber were analyzed through desorption of the fiber by heating to elevated temperature and

  15. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed during spring and autumn 2008. Results from the aerosol mass spectrometry indicate that the non-volatile residual consists of nitrate and organic compounds, especially during autumn. These compounds may be low-volatile organic nitrates or salts. During winter and spring the non-volatile core (black carbon removed) correlated markedly with carbon monoxide, which is a tracer of anthropogenic emissions. Due to this, the non-volatile residual may also contain other pollutants in addition to black carbon. Thus, it seems that the amount of different compounds in submicron aerosol particles varies with season and as a result the chemical composition of the non-volatile residual changes within a year. This work was supported by University of Helsinki three-year research grant No 490082 and Maj and Tor Nessling Foundation grant No 2010143. Aalto et al., (2001). Physical characterization of aerosol particles during nucleation events. Tellus B, 53, 344-358. Jayne, et al., (2000). Development of an aerosol mass spectrometer for size and composition analysis of submicron particles. Aerosol Sci. Technol., 33(1-2), 49-70. Kalberer et al., (2004). Identification of Polymers as Major Components of Atmospheric Organic Aerosols. Science, 303, 1659-1662. Smith et al., (2010). Observations of aminium salts in atmospheric nanoparticles and possible climatic implications. P. Natl. Acad. Sci., 107(15). Vesala et al., (1998). Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mom. Trans., 4, 17-35. Wehner et al., (2002). Design and calibration of a thermodenuder with an improved heating unit to measure the size-dependent volatile fraction of aerosol particles. J. Aerosol Sci., 33, 1087-1093.

  16. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  17. Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements

    NASA Astrophysics Data System (ADS)

    Louvaris, Evangelos E.; Karnezi, Eleni; Kostenidou, Evangelia; Kaltsonoudis, Christos; Pandis, Spyros N.

    2017-10-01

    A method is developed following the work of Grieshop et al. (2009) for the determination of the organic aerosol (OA) volatility distribution combining thermodenuder (TD) and isothermal dilution measurements. The approach was tested in experiments that were conducted in a smog chamber using organic aerosol (OA) produced during meat charbroiling. A TD was operated at temperatures ranging from 25 to 250 °C with a 14 s centerline residence time coupled to a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a scanning mobility particle sizer (SMPS). In parallel, a dilution chamber filled with clean air was used to dilute isothermally the aerosol of the larger chamber by approximately a factor of 10. The OA mass fraction remaining was measured as a function of temperature in the TD and as a function of time in the isothermal dilution chamber. These two sets of measurements were used together to estimate the volatility distribution of the OA and its effective vaporization enthalpy and accommodation coefficient. In the isothermal dilution experiments approximately 20 % of the OA evaporated within 15 min. Almost all the OA evaporated in the TD at approximately 200 °C. The resulting volatility distributions suggested that around 60-75 % of the cooking OA (COA) at concentrations around 500 µg m-3 consisted of low-volatility organic compounds (LVOCs), 20-30 % of semivolatile organic compounds (SVOCs), and around 10 % of intermediate-volatility organic compounds (IVOCs). The estimated effective vaporization enthalpy of COA was 100 ± 20 kJ mol-1 and the effective accommodation coefficient was 0.06-0.07. Addition of the dilution measurements to the TD data results in a lower uncertainty of the estimated vaporization enthalpy as well as the SVOC content of the OA.

  18. A Comparison of Parameterizations of Secondary Organic Aerosol Production: Global Budget and Spatiotemporal Variability

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, Z.; Horowitz, L. W.; Carlton, A. M. G.; Fan, S.; Cheng, Y.; Ervens, B.; Fu, T. M.; He, C.; Tao, S.

    2014-12-01

    Secondary organic aerosols (SOA) have a profound influence on air quality and climate, but large uncertainties exist in modeling SOA on the global scale. In this study, five SOA parameterization schemes, including a two-product model (TPM), volatility basis-set (VBS) and three cloud SOA schemes (Ervens et al. (2008, 2014), Fu et al. (2008) , and He et al. (2013)), are implemented into the global chemical transport model (MOZART-4). For each scheme, model simulations are conducted with identical boundary and initial conditions. The VBS scheme produces the highest global annual SOA production (close to 35 Tg·y-1), followed by three cloud schemes (26-30 Tg·y-1) and TPM (23 Tg·y-1). Though sharing a similar partitioning theory to the TPM scheme, the VBS approach simulates the chemical aging of multiple generations of VOCs oxidation products, resulting in a much larger SOA source, particularly from aromatic species, over Europe, the Middle East and Eastern America. The formation of SOA in VBS, which represents the net partitioning of semi-volatile organic compounds from vapor to condensed phase, is highly sensitivity to the aging and wet removal processes of vapor-phase organic compounds. The production of SOA from cloud processes (SOAcld) is constrained by the coincidence of liquid cloud water and water-soluble organic compounds. Therefore, all cloud schemes resolve a fairly similar spatial pattern over the tropical and the mid-latitude continents. The spatiotemporal diversity among SOA parameterizations is largely driven by differences in precursor inputs. Therefore, a deeper understanding of the evolution, wet removal, and phase partitioning of semi-volatile organic compounds, particularly above remote land and oceanic areas, is critical to better constrain the global-scale distribution and related climate forcing of secondary organic aerosols.

  19. Polycyclic aromatic hydrocarbons - fate and long-range atmospheric transport studied using a global model, EMAC-SVOC

    NASA Astrophysics Data System (ADS)

    Octaviani, Mega; Tost, Holger; Lammel, Gerhard

    2017-04-01

    Polycyclic aromatic hydrocarbons (PAHs) are emitted by incomplete combustion from fossil fuel, vehicles, and biomass burning. They may persist in environmental compartments, pose a health hazard and may bio accumulate along food chains. The ECHAM/MESSy Atmospheric Chemistry (EMAC) model had been used to simulate global tropospheric, stratospheric chemistry and climate. In this study, we improve the model to include simulations of the transport and fate of semi-volatile organic compounds (SVOC). The EMAC-SVOC model takes into account essential environmental processes including gas-particle partitioning, dry and wet deposition, chemical and bio-degradation, and volatilization from sea surface, soils, vegetation, and snow. The model was evaluated against observational data in the Arctic, mid-latitudes, and tropics, and further applied to study total environmental lifetime and long-range transport potential (LRTP) of PAHs. We selected four compounds for study, spanning a wide range of volatility, i.e., phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene. Several LRTP indicators were investigated, including the Arctic contamination potential, meridional spreading, and zonal and meridional fluxes to remote regions.

  20. Temporary vs. Permanent Sub-slab Ports: A Comparative Performance Study

    EPA Science Inventory

    Vapor intrusion (VI) is the migration of subsurface vapors, including radon and volatile organic compounds (VOCs), from the subsurface to indoor air. The VI exposure pathway extends from the contaminant source, which can be impacted soil, non-aqueous phase liquid, or contaminated...

  1. Is School Making Your Students Sick?

    ERIC Educational Resources Information Center

    Comnes, Leslie

    2002-01-01

    Reviews environmental hazards within schools. Identifies indoor air pollution, asbestos, lead poisoning, and pesticides as the leading hazards. Forms of indoor air pollution include radon carbon dioxide, carbon monoxide, volatile organic compounds, and various allergens such as mold and animal dander. Presents some guiding principles for the…

  2. 78 FR 24990 - Approval and Promulgation of Implementation Plans; Ohio; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ... that you telephone Steven Rosenthal, Environmental Engineer, at (312) 886-6052 before visiting the Region 5 office. FOR FURTHER INFORMATION CONTACT: Steven Rosenthal, Environmental Engineer, Attainment... Administrative Code (OAC). These include new fiberglass boat manufacturing, miscellaneous industrial adhesives...

  3. A REVIEW OF THE RODENT CARCINOGENICTY AND MUTAGENICITY OF AMBIENT AIR

    EPA Science Inventory

    This is a review of the information known about the carcinogenicity and mutagenicity of urban outdoor air including volatile pollutants and particulate organic material. The editors of Mutation Research decided to create a second special review volume on what is known about ...

  4. PREDICTION OF FINE PARTICULATE LEVELS AT UNMONITORED LOCATIONS

    EPA Science Inventory

    In November and December of 1999, air concentrations of ultrafine, fine, and coarse particulate matter were measured at two intensive sites in El Paso, Texas. The intensive sites included collocated measurements of NO2 and volatile organic compounds (VOCs) in the air from both...

  5. RELEVANCE OF VISUAL EFFECTS OF VOLATILE ORGANIC COMPOUNDS TO HUMAN HEALTH RISK ASSESSMENT

    EPA Science Inventory

    Traditional measures of neurotoxicity have included assessment of sensory, cognitive, and motor function. Visual system function and the neurobiological substrates are well characterized across species. Dysfunction in the visual system may be specific or may be surrogate for mor...

  6. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  7. Formation and aging of secondary organic aerosol from toluene: Changes in chemical composition, volatility, and hygroscopicity

    DOE PAGES

    Hildebrandt Ruiz, L.; Paciga, A. L.; Cerully, K. M.; ...

    2015-07-24

    Secondary organic aerosol (SOA) is transformed after its initial formation, but this chemical aging of SOA is poorly understood. Experiments were conducted in the Carnegie Mellon environmental chamber to form secondary organic aerosol (SOA) from the photo-oxidation of toluene and other small aromatic volatile organic compounds (VOCs) in the presence of NO x under different oxidizing conditions. The effects of the oxidizing condition on organic aerosol (OA) composition, mass yield, volatility, and hygroscopicity were explored. Higher exposure to the hydroxyl radical resulted in different OA composition, average carbon oxidation state (OS c), and mass yield. The OA oxidation state generallymore » increased during photo-oxidation, and the final OA OS c ranged from –0.29 to 0.16 in the performed experiments. The volatility of OA formed in these different experiments varied by as much as a factor of 30, demonstrating that the OA formed under different oxidizing conditions can have a significantly different saturation concentration. In conclusion, there was no clear correlation between hygroscopicity and oxidation state for this relatively hygroscopic SOA.« less

  8. Constraining the Volatility Distributions and Possible Diffusion Limitations of Secondary Organic Aerosols Using Laboratory Dilution Experiments

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Robinson, E. S.; Mahfouz, N.; Sullivan, R. C.; Donahue, N. M.

    2016-12-01

    Secondary organic aerosols (SOA) dominate the mass of fine particles in the atmosphere. Their formation involves both oxidation of volatile organics from various sources that produce products with uncertain volatilities, and diffusion of these products into the condensed phase. Therefore, constraining volatility distribution and diffusion timescales of the constituents in SOA are important in predicting size, concentration and composition of SOA, as well as how these properties of SOA evolve in the atmosphere. In this work, we demonstrate how carefully designed laboratory isothermal dilution experiments in smog chambers can shed light into the volatility distribution and any diffusion barriers of common types of SOA over time scales relevant to atmospheric transport and diurnal cycling. We choose SOA made from mono-terpenes (alpha-pinene and limonene) and toluene to represent biogenic and anthropogenic SOA. We look into how moisture content can alter any evaporation behaviors of SOA by varying relative humidity during SOA generation and during dilution process. This provides insight into whether diffusion in the condensed phase is rate limiting in reaching gas/particle equilibrium of semi-volatile organic compounds. Our preliminary results show that SOA from alpha-pinene evaporates continuously over several hours of experiments, and there is no substantial discernible differences over wide ranges of the chamber humidity. SOA from toluene oxidation shows slower evaporation. We fit these experimental data using absorptive partitioning theory and a particle dynamic model to obtain volatility distributions and to predict particle size evolution. This in the end will help us to improve representation of SOA in large scale chemical transport models.

  9. Preliminary hydrogeologic assessment of a ground-water contamination area in Wolcott, Connecticut

    USGS Publications Warehouse

    Stone, J.R.; Casey, G.D.; Mondazzi, R.A.; Frick, T.W.

    1997-01-01

    Contamination of ground water by volatile organic compounds and inorganic constituents has been identified at a number of industrial sites in the Town of Wolcott, Connecticut. Contamination is also present at a municipal landfill in the City of Waterbury that is upgradient from the industrial sites in the local ground-water-flow system. The study area, which lies in the Western Highlands of Connecticut, is in the Mad River Valley, a tributary to the Naugatuck River. Geohydrologic units (aquifer materials) include unconsolidated glacial sediments (surficial materials) and fractured crystalline (metamorphic) bedrock. Surficial materials include glacial till, coarse-grained andfine-grained glacial stratified deposits, and postglacial floodplain alluvium and swamp deposits. The ground-water-flow system in the surficial aquifer is complex because the hydraulic properties of the surficial materials are highly variable. In the bedrock aquifer, ground water moves exclusively through fractures. Hydrologic characteristics of the crystalline bedrock-degree of confinement, hydraulic conductivity, storativity, and porosity-are poorly defined in the study area. Further study is needed to adequately assess ground-water flow and contaminant migration under current or past hydrologic conditions. All known water-supply wells in the study area obtain water from the bedrock aquifer. Twenty households in a hillside residential area on Tosun Road currently obtain drinking water from private wells tapping the bedrock aquifer. The extent of contamination in the bedrock aquifer and the potential for future contamination from known sources of contamination in the surficial aquifer is of concern to regulatory agencies. Previous investigations have identified ground-water contamination by volatile organic compounds at the Nutmeg Valley Road site area. Contamination has been associated with on-site disposal of heavy metals, chlorinated and non-chlorinated volatile organic compounds, and cyanide. Concentrations of volatile organic compounds detected in water samples collected from bedrock wells during 1981-95 at the Nutmeg Valley Road site area show a general downward trend through time. Water samples collected from wells completed in surficial materials were not collected systematically, and a trend in concentration cannot be identified.

  10. 76 FR 20742 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... price movements between 9:30 a.m. and 4 p.m. Eastern Standard Time (``EST''). Volatility Guard is... March 11, 2011, the Commission approved Rule 4753(c) (the ``Volatility Guard''), a volatility-based... six month pilot applied to the NASDAQ 100 Index securities.\\3\\ The Volatility Guard automatically...

  11. A GLOBAL INVENTORY OF VOLATILE ORGANIC COMPOUND EMISSIONS FROM ANTHROPOGENIC SOURCES

    EPA Science Inventory

    As part of an effort to assess the potential impacts associated with global climate change, the U.S. Environmental Protection Agency's Office of Research and Development is supporting global atmospheric chemistry research by developing global scale estimates of volatile organic c...

  12. 78 FR 55234 - Approval and Promulgation of Implementation Plans; Indiana; Volatile Organic Compound Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ... Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY: Environmental Protection Agency (EPA...) submitted revisions to its volatile organic compound (VOC) industrial solvent cleaning rule for...). These revisions are approvable because they are consistent with EPA's Industrial Solvent Cleaning...

  13. RELATIONSHIPS BETWEEN LEVELS OF VOLATILE ORGANIC COMPOUNDS IN AIR AND BLOOD FROM THE GENERAL POPULATION

    EPA Science Inventory

    Background: The relationships between levels of volatile organic compounds (VOCs) in blood and air have not been well characterized in the general population where exposure concentrations are generally at ppb levels. Objectives: This study investigates relationships between ...

  14. Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers

    EPA Science Inventory

    Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites...

  15. Predicting Age-Appropriate Pharmacokinetics of Six Volatile Organic Compounds in the Rat Utilizing Physiologically Based Pharmacokinetic Modeling

    EPA Science Inventory

    The capability of physiologically based pharmacokinetic models to incorporate age-appropriate physiological and chemical-specific parameters was utilized to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages of rats.

  16. ECOS E-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parisien, Lia

    2016-01-31

    This final scientific/technical report on the ECOS e-MATRIX Methane and Volatile Organic Carbon (VOC) Emissions Best Practices Database provides a disclaimer and acknowledgement, table of contents, executive summary, description of project activities, and briefing/technical presentation link.

  17. VOLATILE ORGANIC COMPOUNDS AS BREATH BIOMARKERS FOR ACTIVE AND PASSIVE SMOKING

    EPA Science Inventory

    Real-time breath measurement technology was used to investigate the suitability of some volatile organic compounds (VOCs) to serve as breath biomarkers for active and passive smoking and to measure actual exposures and resulting breath concentrations for persons exposed to toba...

  18. Spatial Gradients and Source Apportionment of Volatile Organic Compounds Near Roadways

    EPA Science Inventory

    Concentrations of 55 volatile organic compounds (VOCs) are reported near a highway in Raleigh, NC (traffic volume of approximately 125,000 vehicles/day). Levels of VOCs generally decreased exponentially with perpendicular distance from the roadway 10-100m). The EPA Chemical Mass ...

  19. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  20. EVALUATION OF CONTROL STRATEGIES FOR VOLATILE ORGANIC COMPOUND IN INDOOR AIR

    EPA Science Inventory

    The Air and Energy Engineering Research Laboratory of the U.S. Environmental Protection Agency (U.S. EPA) conducts and sponsors research on technology to reduce or eliminate emissions of potentially toxic volatile organic compounds (VOCs) from industrial/commercial sources. The r...

  1. EVALUATION OF SOLID ADSORBENTS FOR THE COLLECTION AND ANALYSES OF AMBIENT BIOGENIC VOLATILE ORGANICS

    EPA Science Inventory

    Micrometeorological flux measurements of biogenic volatile organic compounds (BVOCs) usually require that large volumes of air be collected (whole air samples) or focused during the sampling process (cryogenic trapping or gas-solid partitioning on adsorbents) in order to achiev...

  2. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  3. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    PubMed

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  4. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba.

    PubMed

    Li, Dewen; Chen, Ying; Shi, Yi; He, Xingyuan; Chen, Xin

    2009-04-01

    In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (p<0.05) and September (p<0.05), while the total monoterpenes emission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.

  5. Cost-Effective, Ultra-Sensitive Groundwater Monitoring for Site Remediation and Management

    DTIC Science & Technology

    2015-05-01

    Example anion concentrations in groundwater used for feasibility studies. ................... 30 Table 5. Compounds screened in the laboratory for IS2...phase extraction ST storage tank SVOC semivolatile organic compound TCE trichloroethene TPH total petroleum hydrocarbon USEPA U.S. Environmental...Protection Agency UST underground storage tank V volt VOA volatile organic analysis VOC volatile organic compound Technical material

  6. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    EPA Science Inventory

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  7. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  8. Gas-liquid chromatography in lunar organic analysis.

    NASA Technical Reports Server (NTRS)

    Gehrke, C. W.

    1972-01-01

    Gas-liquid chromatography (GLC) is a powerful and sensitive method for the separation and detection of organic compounds at nanogram levels. The primary requirement for successful analyses is that the compounds of interest must be volatile under the chromatographic conditions employed. Nonvolatile organic compounds must be converted to volatile derivatives prior to analysis. The derivatives of choice must be both amenable to chromatographic separation and be relatively stable. The condition of volatility necessitates the development of efficient derivatization reactions for important groups of compounds as amino acids, carbohydrates, nucleosides, etc. Trimethylsilylation and trifluoroacetylation represent specific areas of recent prominence. Some relevant practical aspects of GLC are discussed.

  9. Health assessment for Colbert Landfill NPL (National Priorities List) Site, Spokane, Washington, Region 10. CERCLIS No. WAD980514541. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-07-25

    The Colbert Landfill NPL site is located about fifteen miles north of Spokane, Washington. Area ground water is contaminated with several volatile organic chemicals. The medium of most concern regarding potential health effects is the ground water. Potential exposure pathways include ingestion and inhalation of volatiles from contaminated ground water and dermal exposure to contaminated ground water. The susceptible populations are remedial workers performing well water sampling on-site and populations off-site utilizing contaminated wells at levels that are of a potential health concern, for drinking, bathing, and irrigation purposes.

  10. Efficacy of indigenous soil microbes in arsenic mitigation from contaminated alluvial soil of India.

    PubMed

    Majumder, Aparajita; Bhattacharyya, Kallol; Kole, S C; Ghosh, Sagarmoy

    2013-08-01

    Selected arsenic-volatilizing indigenous soil bacteria were isolated and their ability to form volatile arsenicals from toxic inorganic arsenic was assessed. Approximately 37 % of AsIII (under aerobic conditions) and 30 % AsV (under anaerobic conditions) were volatilized by new bacterial isolates in 3 days. In contrast to genetically modified organism, indigenous soil bacteria was capable of removing 16 % of arsenic from contaminated soil during 60 days incubation period while applied with a low-cost organic nutrient supplement (farm yard manure).

  11. 40 CFR 59.510 - What records am I required to maintain?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.510 What records... providing the written certification to the Administrator in accordance with § 59.511(g), the certifying...

  12. REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)

    EPA Science Inventory

    The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...

  13. INHIBITION OF HUMAN A7 NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS BY THE VOLATILE ORGANIC SOLVENT TRICHLOROETHYLENE.

    EPA Science Inventory

    Volatile organic compounds such as toleune, trichloroethylene and perchloroethylene are potent and reversible blockers of voltage-gated calcium current in nerve growth factor (NGF)-differentiated pheochromocytoma (PC12) cells. It is hypothesized that effects of VOCs on ICa contri...

  14. EVALUATION OF INNOVATIVE VOLATILE ORGANIC COMPOUND AND HAZARDOUS AIR POLLUTANT CONTROL TECHNOLOGIES FOR U.S. AIR FORCE PAINT SPRAY BOOTHS

    EPA Science Inventory

    This report gives results of an evaluation of carbon paper adsorption catalytic incineration (CPACI) and fluidized-bed catalytic incineration (FBCI) as control technologies to reduce volatile organic compound (VOC) emissions from paint spray booths.

  15. TREATMENT OF CHLORINATED VOLATILE ORGANIC COMPOUNDS IN UPFLOW WETLAND MESOCOSMS. (R828773C003)

    EPA Science Inventory

    Sorption, biodegradation and hydraulic parameters were determined in the laboratory for two candidate soil substrate mixtures for construction of an upflow treatment wetland for volatile organic compounds (VOCs) at a Superfund site. The major parent contaminants in the groundw...

  16. SEPARATION AND ISOLATION OF VOLATILE ORGANIC COMPOUNDS USING VACUUM DISTILLATION WITH GC/MS DETERMINATION

    EPA Science Inventory

    Vacuum distillation of water, soil, oil, and fish samples is presented as an alternative technique for determining volatile organic compounds (VOCs). Analyses of samples containing VOCs and non-VOCs at 50ppb concentrations were performed to evaluate method limitations. Analyte re...

  17. 76 FR 4835 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Promulgation of Air Quality Implementation Plans; Ohio; Volatile Organic Compound Reinforced Plastics...) emissions from reinforced plastic composites production operations to Ohio's State Implementation plan (SIP). This rule applies to any facility that has reinforced plastic composites production operations. This...

  18. 75 FR 24404 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ... Promulgation of Air Quality Implementation Plans; Indiana; Volatile Organic Compound Automobile Refinishing... approving into the Indiana State Implementation Plan (SIP) amendments to Indiana's automobile refinishing... (VOC) automobile refinishing rules to all persons in Indiana who sell or manufacture automobile...

  19. Analysis of breath volatile organic compounds as a screening tool for detection of Tuberculosis in cattle

    USDA-ARS?s Scientific Manuscript database

    • Keywords: bovine tuberculosis; Mycobacterium bovis; breath analysis; volatile organic compound; gas chromatography; mass spectrometry; NaNose • Introduction: This presentation describes two studies exploring the use of breath VOCs to identify Mycobacterium bovis infection in cattle. • Methods: ...

  20. Modeling emissions of volatile organic compounds from silage storages and feed lanes

    USDA-ARS?s Scientific Manuscript database

    An initial volatile organic compound (VOC) emission model for silage sources, developed using experimental data from previous studies, was incorporated into the Integrated Farm System Model (IFSM), a whole-farm simulation model used to assess the performance, environmental impacts, and economics of ...

  1. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air using Multisorbent Samplers

    EPA Pesticide Factsheets

    The objective of this procedure is to collect representative samples of volatile organic compound (VOC) contaminants present in indoor and outdoor environments using multisorbent samplers, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  2. NATURAL VOLATILE ORGANIC COMPOUND EMISSION RATE ESTIMATES FOR U.S. WOODLAND LANDSCAPES

    EPA Science Inventory

    Volatile organic compound (VOC) emission rate factors are estimated for 49 tree genera based on a review of foliar emission rate measurements. oliar VOC emissions are grouped into three categories: isoprene, monoterpenes and other VOC'S. ypical emission rates at a leaf temperatur...

  3. IDENTIFICATION OF POLAR VOLATILE ORGANIC COMPOUNDS IN CONSUMER PRODUCTS AND COMMON MICROENVIRONMENTS

    EPA Science Inventory

    Polar volatile organic compounds were identified in the headspace of 31 fragrance products such as perfumes, colognes and soaps. About 150 different chemicals were identified in a semiquantitative fashion, using two methods to analyze the headspace: direct injection into a gas ch...

  4. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  5. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    EPA Science Inventory

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  6. SOIL SORPTION OF VOLATILE AND SEMIVOLATILE ORGANIC COMPOUNDS IN A MIXTURE

    EPA Science Inventory

    Studies were conducted to evaluate lipophilicity as a predictor sorption for a mixture of organic compounds with high vapor pressures commonly present at hazardous waste sites. Sorption partition coefficients (Kp) for the mixture of 16 volatile and semivolatile ...

  7. Predicting Age-appropriate Pharmacokinetics of Six Volatile Organic Compounds in the Rat Utilizing Physiologically-based Pharmacokinetic Modeling (T)

    EPA Science Inventory

    The capability of physiologically-based pharmacokinetic (PBPK) models to incorporate ageappropriate physiological and chemical-specific parameters was utilized in this study to predict changes in internal dosimetry for six volatile organic compounds (VOCs) across different ages o...

  8. Spring and summer contrast in new particle formation over nine forest areas in North America

    EPA Science Inventory

    Recent laboratory chamber studies indicate a significant role for highly oxidized low volatility organics in new particle formation (NPF), but the actual role of these highly oxidized low volatility organics in atmospheric NPF remains uncertain. Here, particle size distributions ...

  9. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...

  10. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...

  11. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected petroleum solvent dry cleaning dryer that is installed at a petroleum dry cleaning plant after December 14, 1982...

  12. Observing BVOC Emissions, Oxidation, Deposition, and Interactions with Anthropogenic Pollutants to Form SOA in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Goldstein, A. H.; Isaacman, G. A.; Misztal, P. K.; Yee, L.; Olson, K. F.; Moss, J.; Kreisberg, N. M.; Hering, S. V.; Park, J. H.; Kaser, L.; Seco, R.; Guenther, A. B.; Su, L.; Mak, J. E.; Holzinger, R.; Hu, W.; Campuzano Jost, P.; Palm, B. B.; Day, D. A.; Jimenez, J. L.; Koss, A.; De Gouw, J. A.

    2014-12-01

    Our overarching goals in the SOAS 2013 campaign were to 1) quantify biogenic VOC emission and VOC deposition to understand the processes controlling these bi-directional exchanges, 2) observe a broad suite of primary VOC and their oxidation products in the field and in controlled laboratory experiments, and 3) investigate their fate to understand how anthropogenic pollution alters oxidation pathways and secondary organic aerosol (SOA) formation. We pursued these goals through measurement of atmospheric organics ranging from very volatile (using in-situ GC-MS and proton transfer reaction time-of-flight MS, PTR-ToF-MS) to semi-volatile gas and particle phase compounds (using the Semi-Volatile Thermal desorption Aerosol Gas chromatograph, SV-TAG). Measured concentrations and fluxes of VOCs at the top of the SEARCH tower were coordinated with concentration gradients and fluxes at the AABC flux tower site, and vertical profiles using the Long-EZ aircraft to provide equivalent observations across sites. These results are informed through measurements using the same instrument during the FIXIT controlled laboratory oxidation study at CalTech that investigated oxidation pathways of BVOC with varying levels of anthropogenic pollutants. Measurements by SV-TAG of particle-phase and total gas-plus-particle-phase compounds at the SEARCH tower provide hourly quantification of semi-volatile compounds, including the oxidation products of measured VOCs. Derivatization of hydroxyl groups prior to GC analysis allows analysis of highly oxidized chemicals, including most known tracers. Methyl tetrols, an oxidation product of isoprene, had a significant day-time gas-phase component, and their abundance was strongly correlated with particle-phase sulfate, indicative of anthropogenic influence on the formation or partitioning processes. Similar observations of pinic acid (monterpene oxidation product) and many other BVOC oxidation products were made in both the gas and particle phases. Through measurements of specific chemical tracers across a wide range of volatilities, we explore the chemical lifecycle of BVOCs to understand anthropogenic-biogenic interactions in aerosol formation.

  13. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  14. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  15. GAS- AND SOLID-PHASE PARTITIONING OF PCDDS/FS ON MSWI FLY ASH AND THE EFFECTS OF SAMPLING

    EPA Science Inventory

    Semi-volatile organic compounds (SOCs), including polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDDs/Fs), are partitioned as gas-phase and particle-bound products of many industrial combustion processes. This gas/particle partitioning of SOCs has severe implications on both ...

  16. Evaluation of Weapons’ Combustion Products in Armored Vehicles

    DTIC Science & Technology

    1989-01-01

    H.S, SO HC ) Particulates Filter Gravimetry This program also addressed other pollutants including volatile organic compounds, aldehydes and nitro...the number of samples collected due to failure of pumps as a result of vibrational stress, precipitation , restriction of sample flow tube in vests, or

  17. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    ERIC Educational Resources Information Center

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  18. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity.

    PubMed

    Zhang, Zhuo-Min; Wu, Wen-Wei; Li, Gong-Ke

    2008-09-01

    Mushrooms are very popular in the market for their nutritional and medicinal use. Mushroom volatiles are not only an important factor in the flavor, but also contain many antioxidant compounds. Antioxidant activity is a very important property for disease prevention. The volatile compositional characteristics of straw mushrooms (Volvariella volvacea [Bull. ex Fr.] Sing.) and oyster mushrooms (Pleurotus ostreatus [Jacq. ex Fr.] Kummer) during maturity and the mushroom antioxidant activity related to the non-volatiles and volatiles are studied by a chromatographic method in combination with a spectrophotometric method. The volatile compounds of straw and oyster mushrooms are sampled and identified by a combination sampling method, including headspace solid phase microextraction and steam distillation, followed by gas chromatography-mass spectrometry detection. Among all the volatile compounds identified, 1-octen-3-ol and 3-octanone are the two main compounds with the highest amounts in the volatile compositions of straw and oyster mushrooms. During maturity time of the straw mushrooms, the unsaturated 1-octen-3-ol peak area is reduced, whereas the saturated 3-octanone peak area is increased. However, during normal maturity time of oyster mushrooms, the peak areas of 1-octen-3-ol and 3-octanone remain at the same level. 1-Octen-3-ol has a different antioxidant activity from 3-octanone. Combining the results of antioxidant experiments of water extract and main volatile components by the use of a phosphomolybdenum spectrophotometric method, the conclusion is drawn that oyster mushrooms might possess stronger antioxidant activities than straw mushrooms.

  19. VOLATILE POLAR METABOLITES IN EXHALED BREATH CONDENSATE (EBC): COLLECTION AND ANALYSIS

    EPA Science Inventory

    Environmental exposures, individual activities, and disease states can perturb normal metabolic processes and be expressed as a change in the patterns of polar volatile organic compounds (PVOCs) present in biological fluids. We explore the measurement of volatile endogenous bioma...

  20. Emission pattern of semi-volatile organic compounds from recycled styrenic polymers using headspace solid-phase microextraction gas chromatography-mass spectrometry.

    PubMed

    Vilaplana, Francisco; Martínez-Sanz, Marta; Ribes-Greus, Amparo; Karlsson, Sigbritt

    2010-01-15

    The emission of low molecular weight compounds from recycled high-impact polystyrene (HIPS) has been investigated using headspace solid-phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). Four released target analytes (styrene, benzaldehyde, acetophenone, and 2-phenylpropanal) were selected for the optimisation of the HS-SPME sampling procedure, by analysing operating parameters such as type of SPME fibre (polarity and operating mechanism), particle size, extraction temperature and time. 26 different compounds were identified to be released at different temperatures from recycled HIPS, including residues of polymerisation, oxidated derivates of styrene, and additives. The type of SPME fibre employed in the sampling procedure affected the detection of emitted components. An adsorptive fibre such as carbowax/polydimethylsiloxane (CAR/PDMS fibre) offered good selectivity for both non-polar and polar volatile compounds at lower temperatures; higher temperatures result in interferences from less-volatile released compounds. An absorptive fibre as polydimethylsiloxane (PDMS) fibre is suitable for the detection of less-volatile non-polar molecules at higher temperatures. The nature and relative amount of the emitted compounds increased with higher exposure temperature and smaller polymeric particle size. HS-SPME proves to be a suitable technique for screening the emission of semi-volatile organic compounds (SVOCs) from polymeric materials; reliable quantification of the content of target analytes in recycled HIPS is however difficult due to the complex mass-transfer processes involved, matrix effects, and the difficulties in equilibrating the analytical system. 2009 Elsevier B.V. All rights reserved.

  1. 77 FR 32153 - Self-Regulatory Organizations; Fixed Income Clearing Corporation; Notice of Filing of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-31

    ... have maturity dates in the future as part of the volatility model in its Clearing Fund formula. \\16\\ 15... the Volatility Model in Its Clearing Fund Formula May 24, 2012. Pursuant to Section 19(b)(1) of the... ability of FICC GSD to use implied volatility indicators as part of the volatility model in its clearing...

  2. Inbreeding in horsenettle (Solanum carolinense) alters night-time volatile emissions that guide oviposition by Manduca sexta moths.

    PubMed

    Kariyat, Rupesh R; Mauck, Kerry E; Balogh, Christopher M; Stephenson, Andrew G; Mescher, Mark C; De Moraes, Consuelo M

    2013-04-22

    Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.

  3. Volatility Properties of Internally- and Externally-Mixed Ambient Aerosols at an Anthropogenically-influenced Forest Site in Southeastern USA

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Subramanian, R.

    2015-12-01

    Secondary organic aerosol (SOA) from biogenic sources has a significant contribution to ambient aerosol loadings in Southeastern USA and thus contributes to adverse health effects of air pollution and influences regional and global climate. Volatility properties of biogenic SOA determine its concentration, reactivity, and lifetime, but are still largely unknown. As part of a larger study to assess the effect of biogenic SOA on aerosol optical properties, a set of instruments, including scanning mobility sizers (SMPS), single particle soot photometer (SP2), and a thermodenuder, was deployed during June 2015 at a Duke Forest site near Chapel Hill, NC. The site is characterized by a significant contribution of both biogenic and urban (mostly traffic) sources. Measurements of changes in aerosol volume and optical size upon heating in the thermodenuder at different temperatures are used to derive volatility properties of the ambient aerosol. A limited set of experiments was carried out using the tandem differential mobility analysis (TDMA) approach to investigate whether the ambient aerosol at the Duke Forest site is internally mixed with respect to its volatility properties. In this presentation we will discuss equilibrium and kinetic aspects of aerosol volatility observed during this study and implications of external vs. internal mixing for derivation of bulk volatility properties of ambient aerosol.

  4. Final expanded site inspection, ammunition storage area, Anniston Army Depot, Anniston, Alabama. Final report, September 1992-November 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suomela, K.D.; Highsmith, R.L.; Rapuano, K.F.

    1994-11-15

    An Expanded Site Inspection (ESI) was conducted at the Anniston Army Depot (ANAD) Ammunition Storage Area (ASA). The objective of this ESI was to gather the information and data necessary to determine whether there is sufficient evidence of any release of contamination that would require additional investigation. The ASA contains 1,300 ammunition storage magazines and an ammunition maintenance workshop complex which includes buildings for maintenance, demilitarization, and inspection of all types of ammunition and their components. Fifteen Solid Waste Management Units (SWMUs) were the focus of the ESI, of which 11 were recommend for further investigation. The work included amore » review of historical records, field investigations, laboratory analyses, data interpretation, and report preparation. Contamination from volatile organic compounds and semi volatile organic compounds is not a major problem at the ASA. Arsenic, beryllium, cadmium, chromium, lead, mercury, nickel, silver, vanadium, zinc, explosives, and total petroleum hydrocarbons were detected above control screening values levels in one or more of the media sampled. Nitrate/nitrite and total organic carbon were also detected above control screening values in samples of groundwater, soil, and sediment from a number of SWMUs.« less

  5. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC/MS. Especially the acidic lakes are sources for trihalomethanes in agreement with laboratory studies on model compounds like catechol [3]. Other compounds that are formed are chloromethane, -butane, -hexane and heptane as well as monocyclic terpenes and furan derivatives. Additionally, there are different sulphur compounds such as thiophene derivatives, carbon disulfide and dimethyl sulfide. Western Australia offers a variety of hypersaline environments with various hydrogeochemical parameters that will help to understand the abiotic formation of different volatile organic compounds. The field of research includes the complex relationships between agriculture, secondary salinisation and particle formation from volatile organic compounds emitted from the salt lakes. [1] Williams, 2001, Hydrobiologia, 466, 329-337. [2] Junkermann et al., 2009, Atmos. Chem. Phys., 9, 6531-6539. [3] Huber et al., 2009, Environ. Sci. Technol., 43 (13), 4934-4939.

  6. Measurement of volatile organic chemicals at selected sites in California

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Viezee, W.; Sitton, B.; Ferek, R.

    1992-01-01

    Urban air concentrations of 24 selected volatile organic chemicals that may be potentially hazardous to human health and environment were measured during field experiments conducted at two California locations, at Houston, and at Denver. Chemicals measured included chlorofluorocarbons, halomethanes, haloethanes, halopropanes, chloroethylenes, and aromatic hydrocarbons. With emphasis on California sites, data from these studies are analyzed and interpreted with respect to variabilities in ambient air concentrations, diurnal changes, relation to prevailing meteorology, sources and trends. Except in a few instances, mean concentrations are typically between 0 and 5 ppb. Significant variabilities in atmospheric concentrations associated with intense sources and adverse meteorological conditions are shown to exist. In addition to short-term variability, there is evidence of systematic diurnal and seasonal trends. In some instances it is possible to detect declining trends resulting from the effectiveness of control strategies.

  7. Biofiltration of Volatile Pollutants: Engineering Mechanisms for Improved Design, Long-term Operation, Prediction and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian H.

    1999-06-01

    Biofiltration systems can be used for treatment of volatile organic compounds (VOCs); however, the systems are poorly understood and are currently operated as ''black boxes''. Common operational problems associated with biofilters include fouling, deactivation, and overgrowth, all of which make them ineffective for continuous, long-term use. The objective of this investigation is to develop generic methods for longterm stable operation, in particular by using selective limitation of supplemental nutrients while maintaining high activity. As part of this effort, we will provide deeper fundamental understanding of the important biological and transport mechanisms in biodestruction of sparingly soluble VOCs and extend thismore » approach and mathematical models to additional systems of high priority EM relevance--direct degradation and cometabolic degradation of priority pollutants such as BTEX and chlorinated organics.« less

  8. BIOFILTRATION OF VOLATILE POLLUTANTS: Fundamental Mechanisms for Improved Design, Long-term Operation, Prediction, and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davison, Brian H.; Klasson, K. Thomas; Barton, John W.

    2000-06-01

    Biofiltration systems can be used for treatment of volatile organic compounds (VOCs); however, the systems are poorly understood and are currently operated as ''black boxes''. Common operational problems associated with biofilters include fouling, deactivation, and overgrowth, all of which make them ineffective for continuous, long-term use. The objective of this investigation is to develop generic methods for long-term stable operation, in particular by using selective limitation of supplemental nutrients while maintaining high activity. As part of this effort, we will provide deeper fundamental understanding of the important biological and transport mechanisms in biodestruction of sparingly soluble VOCs and extend thismore » approach and mathematical models to additional systems of high priority EM relevance--direct degradation and cometabolic degradation of priority pollutants such as BTEX and chlorinated organics.« less

  9. Summary of water- and sediment-quality data for Anacostia River well sites sampled in July-August 2002

    USGS Publications Warehouse

    Miller, Cherie V.; Klohe, Cheryl A.

    2003-01-01

    This data report is a summary of chemical analyses conducted by the U.S. Geological Survey on ground water and sediment in the tidal Anacostia River watershed, Washington, D.C. during July-August 2002. Cores were drilled and wells were established at three shoreline sites: two wells at the New York Avenue overpass, two wells at the Kenilworth Aquatic Gardens, and one well at Anacostia Park. Additionally, two cores were collected by hoverprobe in mudflats on the river: one by Benning Road and one in the mouth of Beaverdam Creek. Chemical analyses included volatile organic compounds, semi-volatile organic compounds or polyaromatic hydrocarbons, organochlorine pesticides, aroclors and total polychlorinated biphenyls, metals, nutrients, biochemical and chemical oxygen demands, total phenols, total cyanide, oil and grease, and total suspended and dissolved solids in aqueous phases.

  10. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    PubMed Central

    Petigny, Loïc; Périno, Sandrine; Minuti, Matteo; Visinoni, Francesco; Wajsman, Joël; Chemat, Farid

    2014-01-01

    Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC) from non-Volatile Organic Compounds (NVOC) of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant. PMID:24776762

  11. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    PubMed

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  12. Water-quality data of stormwater runoff from Davenport, Iowa, 1992 and 1994

    USGS Publications Warehouse

    Schaap, B.D.; Einhellig, R.F.

    1996-01-01

    During 1992 and 1994, stormwater runoff in Davenport, Iowa, was sampled from the following land use types: agricultural and vacant, residential, commercial, parks and wooded areas, and industrial. Grab samples collected within the first hour of the runoff event were analyzed for many constituents including volatile organic compounds. Flow-weighted composite samples, composed from discrete samples collected at 15-minute intervals during the first three hours of the event or until discharge returned to pre-event levels, also were analyzed for many constituents including major ions, nitrogen, phosphorus, metals, total organic carbon, acid/base-neutral organics, organochlorine pesticides, and polycyclic aromatic hydrocarbons.

  13. DEVELOPMENT OF A SAMPLER FOR PARTICULATE-ASSOCIATED AND LOW VOLATILITY ORGANIC POLLUTANTS IN RESIDENTIAL AIR

    EPA Science Inventory

    The report describes the development of a sampler for particulate-associated and low volatility organic pollutants in residential air. The performance of the sampler inlet, which is compatible with the proposed PM-10 regulations for particulate sampling, is documented under a var...

  14. BIOGENIC VOLATILE ORGANIC COMPOUND EMISSIONS FROM A LOWLAND TROPICAL WET FOREST IN COSTA RICA

    EPA Science Inventory

    Twenty common plant species were screened for emissions of biogenic volatile organic compounds (BVOCS) at a lowland tropical wet forest site in Costa Rica. Ten of the species. examined emitted substantial quantities of isoprene. These species accounted for 35-50% of the total bas...

  15. SOURCE APPORTIONMENT OF EXPOSURES TO VOLATILE ORGANIC COMPOUNDS: I. EVALUATION OF RECEPTOR MODELS USING SIMULATED EXPOSURE DATA. (R826788)

    EPA Science Inventory

    Four receptor-oriented source apportionment models were evaluated by applying them to simulated personal exposure data for select volatile organic compounds (VOCs) that were generated by Monte Carlo sampling from known source contributions and profiles. The exposure sources mo...

  16. 78 FR 38587 - Approval and Promulgation of Air Quality Implementation Plans; Connecticut; Reasonably Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... reasonably available control technology (RACT) for oxides of nitrogen (NO X ) and volatile organic compounds.... I. Background and Purpose II. Connecticut's Reasonably Available Control Technology Certification... controlling volatile organic compound emissions that Connecticut submitted to EPA on July 20, 2007. \\1\\ The...

  17. PERSONAL COMPUTER MONITORS: A SCREENING EVALUATION OF VOLATILE ORGANIC EMISSIONS FROM EXISTING PRINTED CIRCUIT BOARD LAMINATES AND POTENTIAL POLLUTION PREVENTION ALTERNATIVES

    EPA Science Inventory

    The report gives results of a screening evaluation of volatile organic emissions from printed circuit board laminates and potential pollution prevention alternatives. In the evaluation, printed circuit board laminates, without circuitry, commonly found in personal computer (PC) m...

  18. 78 FR 46552 - Approval and Promulgation of Air Quality Implementation Plans; Massachusetts; Regulations...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-01

    ... Volatile Organic Compounds and Nitrogen Oxides AGENCY: Environmental Protection Agency (EPA). ACTION... requirements for stationary sources of volatile organic compounds (VOCs) and nitrogen oxides (NO X ). This... to 310 CMR 7.19, Reasonably Available Control Technology (RACT) for Sources of Oxides of Nitrogen (NO...

  19. MEASUREMENTS OF VOLATILE ORGANIC COMPOUNDS AND PARTICLES DURING APPLICATION OF LATEX PAINT WITH AN AIRLESS SPRAYER

    EPA Science Inventory

    The paper discusses experiments, conducted at EPA's Indoor Air Quality Research House, to measure airborne concentrations of volatile organic compounds (VOCs) and particles during and following the spray-application of latex wall paint. (NOTE: Paint may be applied indoors by a v...

  20. Field Comparison of Passive Air Samplers with Reference Monitors for Ambient Volatile Organic Compounds and Nitrogen Dioxide Under Week-Long Integrals

    EPA Science Inventory

    This study evaluates performance of nitrogen dioxide NO2 and volatile organic compounds (VOC) passive samplers with corresponding reference monitors at two sites in the Detroit, Michigan area during the summer of 2005.

Top