Systems and methods for an integrated electrical sub-system powered by wind energy
Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY
2008-06-24
Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.
Integration of Wind Energy Systems into Power Engineering Education Program at UW-Madison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkataramanan, Giri; Lesieutre, Bernard; Jahns, Thomas
This project has developed an integrated curriculum focused on the power engineering aspects of wind energy systems that builds upon a well-established graduate educational program at UW- Madison. Five new courses have been developed and delivered to students. Some of the courses have been offered on multiple occasions. The courses include: Control of electric drives for Wind Power applications, Utility Applications of Power Electronics (Wind Power), Practicum in Small Wind Turbines, Utility Integration of Wind Power, and Wind and Weather for Scientists and Engineers. Utility Applications of Power Electronics (Wind Power) has been provided for distance education as well asmore » on-campus education. Several industrial internships for students have been organized. Numerous campus seminars that provide discussion on emerging issues related to wind power development have been delivered in conjunction with other campus events. Annual student conferences have been initiated, that extend beyond wind power to include sustainable energy topics to draw a large group of stakeholders. Energy policy electives for engineering students have been identified for students to participate through a certificate program. Wind turbines build by students have been installed at a UW-Madison facility, as a test-bed. A Master of Engineering program in Sustainable Systems Engineering has been initiated that incorporates specializations that include in wind energy curricula. The project has enabled UW-Madison to establish leadership at graduate level higher education in the field of wind power integration with the electric grid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahidehpour, Mohammad
Integrating 20% or more wind energy into the system and transmitting large sums of wind energy over long distances will require a decision making capability that can handle very large scale power systems with tens of thousands of buses and lines. There is a need to explore innovative analytical and implementation solutions for continuing reliable operations with the most economical integration of additional wind energy in power systems. A number of wind integration solution paths involve the adoption of new operating policies, dynamic scheduling of wind power across interties, pooling integration services, and adopting new transmission scheduling practices. Such practicesmore » can be examined by the decision tool developed by this project. This project developed a very efficient decision tool called Wind INtegration Simulator (WINS) and applied WINS to facilitate wind energy integration studies. WINS focused on augmenting the existing power utility capabilities to support collaborative planning, analysis, and wind integration project implementations. WINS also had the capability of simulating energy storage facilities so that feasibility studies of integrated wind energy system applications can be performed for systems with high wind energy penetrations. The development of WINS represents a major expansion of a very efficient decision tool called POwer Market Simulator (POMS), which was developed by IIT and has been used extensively for power system studies for decades. Specifically, WINS provides the following superiorities; (1) An integrated framework is included in WINS for the comprehensive modeling of DC transmission configurations, including mono-pole, bi-pole, tri-pole, back-to-back, and multi-terminal connection, as well as AC/DC converter models including current source converters (CSC) and voltage source converters (VSC); (2) An existing shortcoming of traditional decision tools for wind integration is the limited availability of user interface, i.e., decision results are often text-based demonstrations. WINS includes a powerful visualization tool and user interface capability for transmission analyses, planning, and assessment, which will be of great interest to power market participants, power system planners and operators, and state and federal regulatory entities; and (3) WINS can handle extended transmission models for wind integration studies. WINS models include limitations on transmission flow as well as bus voltage for analyzing power system states. The existing decision tools often consider transmission flow constraints (dc power flow) alone which could result in the over-utilization of existing resources when analyzing wind integration. WINS can be used to assist power market participants including transmission companies, independent system operators, power system operators in vertically integrated utilities, wind energy developers, and regulatory agencies to analyze economics, security, and reliability of various options for wind integration including transmission upgrades and the planning of new transmission facilities. WINS can also be used by industry for the offline training of reliability and operation personnel when analyzing wind integration uncertainties, identifying critical spots in power system operation, analyzing power system vulnerabilities, and providing credible decisions for examining operation and planning options for wind integration. Researches in this project on wind integration included (1) Development of WINS; (2) Transmission Congestion Analysis in the Eastern Interconnection; (3) Analysis of 2030 Large-Scale Wind Energy Integration in the Eastern Interconnection; (4) Large-scale Analysis of 2018 Wind Energy Integration in the Eastern U.S. Interconnection. The research resulted in 33 papers, 9 presentations, 9 PhD degrees, 4 MS degrees, and 7 awards. The education activities in this project on wind energy included (1) Wind Energy Training Facility Development; (2) Wind Energy Course Development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holttinen, Hannele; Kiviluoma, Juha; Forcione, Alain
2016-06-01
This report summarizes recent findings on wind integration from the 16 countries participating in the International Energy Agency (IEA) Wind collaboration research Task 25 in 2012-2014. Both real experience and studies are reported. The national case studies address several impacts of wind power on electric power systems. In this report, they are grouped under long-term planning issues and short-term operational impacts. Long-term planning issues include grid planning and capacity adequacy. Short-term operational impacts include reliability, stability, reserves, and maximizing the value in operational timescales (balancing related issues). The first section presents variability and uncertainty of power system-wide wind power, andmore » the last section presents recent wind integration studies for higher shares of wind power. Appendix 1 provides a summary of ongoing research in the national projects contributing to Task 25 in 2015-2017.« less
A summary of wind power prediction methods
NASA Astrophysics Data System (ADS)
Wang, Yuqi
2018-06-01
The deterministic prediction of wind power, the probability prediction and the prediction of wind power ramp events are introduced in this paper. Deterministic prediction includes the prediction of statistical learning based on histor ical data and the prediction of physical models based on NWP data. Due to the great impact of wind power ramp events on the power system, this paper also introduces the prediction of wind power ramp events. At last, the evaluation indicators of all kinds of prediction are given. The prediction of wind power can be a good solution to the adverse effects of wind power on the power system due to the abrupt, intermittent and undulation of wind power.
Security and Stability Analysis of Wind Farms Integration into Distribution Network
NASA Astrophysics Data System (ADS)
Guan-yang, Li; Hongzhao, Wang; Guanglei, Li; Yamei, Cheng; Hong-zheng, Liu; Yi, Sun
2017-05-01
With the increasing share of the wind power in the power system, wind power fluctuations will cause obvious negative impacts on weak local grid. This paper firstly establish electromechanical transient simulation model for doubly fed induction wind turbine, then use Matlab/Simulink to achieve power flow calculation and transient simulation of power system including wind farms, the local synchronous generator, load, etc, finally analyze wind power on the impact of the local power grid under typical circumstances. The actual calculated results indicate that wind mutation causes little effect on the power grid, but when the three-phase short circuit fault happens, active power of wind power decreases sharply and the voltage of location of wind power into the grid also drop sharply, finally wind farm split from power system. This situation is not conducive to security and stability of the local power grid. It is necessary to develop security and stability measures in the future.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-22
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1725-000] Hardscrabble Wind Power LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Hardscrabble Wind Power LLC's application for market-based rate authority, with an accompanying...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-15
... Wind Power, LLC's application for market-based rate authority, with an accompanying rate schedule... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-17-000] Niagara Wind Power, LLC; Supplemental Notice That Initial Market- Based Rate Filing Includes Request for Blanket...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-2201-000] Evergreen Wind Power III, LLC; Supplemental Notice that Initial Market-Based Rate Filing Includes Request for... proceeding of Evergreen Wind Power III, LLC's application for market-based rate authority, with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-27
...Power Wind Holdings, Inc.'s application for market-based rate authority, with an accompanying rate... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3405-000] EverPower Wind Holdings, Inc.; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for...
Wind for Schools: A Wind Powering America Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-12-01
This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.
Research on wind power grid-connected operation and dispatching strategies of Liaoning power grid
NASA Astrophysics Data System (ADS)
Han, Qiu; Qu, Zhi; Zhou, Zhi; He, Xiaoyang; Li, Tie; Jin, Xiaoming; Li, Jinze; Ling, Zhaowei
2018-02-01
As a kind of clean energy, wind power has gained rapid development in recent years. Liaoning Province has abundant wind resources and the total installed capacity of wind power is in the forefront. With the large-scale wind power grid-connected operation, the contradiction between wind power utilization and peak load regulation of power grid has been more prominent. To this point, starting with the power structure and power grid installation situation of Liaoning power grid, the distribution and the space-time output characteristics of wind farm, the prediction accuracy, the curtailment and the off-grid situation of wind power are analyzed. Based on the deep analysis of the seasonal characteristics of power network load, the composition and distribution of main load are presented. Aiming at the problem between the acceptance of wind power and power grid adjustment, the scheduling strategies are given, including unit maintenance scheduling, spinning reserve, energy storage equipment settings by the analysis of the operation characteristics and the response time of thermal power units and hydroelectric units, which can meet the demand of wind power acceptance and provide a solution to improve the level of power grid dispatching.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-25
... proceeding, of Dry Lake Wind Power II LLC application for market-based rate authority, with an accompanying... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-1720-000] Dry Lake Wind Power II LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket...
Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.
Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less
Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2010-02-01
This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.
Wind for Schools: A Wind Powering America Project (Brochure)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-08-01
This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.
NASA Astrophysics Data System (ADS)
Kennedy, Scott Warren
A steady decline in the cost of wind turbines and increased experience in their successful operation have brought this technology to the forefront of viable alternatives for large-scale power generation. Methodologies for understanding the costs and benefits of large-scale wind power development, however, are currently limited. In this thesis, a new and widely applicable technique for estimating the social benefit of large-scale wind power production is presented. The social benefit is based upon wind power's energy and capacity services and the avoidance of environmental damages. The approach uses probabilistic modeling techniques to account for the stochastic interaction between wind power availability, electricity demand, and conventional generator dispatch. A method for including the spatial smoothing effect of geographically dispersed wind farms is also introduced. The model has been used to analyze potential offshore wind power development to the south of Long Island, NY. If natural gas combined cycle (NGCC) and integrated gasifier combined cycle (IGCC) are the alternative generation sources, wind power exhibits a negative social benefit due to its high capacity cost and the relatively low emissions of these advanced fossil-fuel technologies. Environmental benefits increase significantly if charges for CO2 emissions are included. Results also reveal a diminishing social benefit as wind power penetration increases. The dependence of wind power benefits on natural gas and coal prices is also discussed. In power systems with a high penetration of wind generated electricity, the intermittent availability of wind power may influence hourly spot prices. A price responsive electricity demand model is introduced that shows a small increase in wind power value when consumers react to hourly spot prices. The effectiveness of this mechanism depends heavily on estimates of the own- and cross-price elasticities of aggregate electricity demand. This work makes a valuable contribution by synthesizing information from research in power market economics, power system reliability, and environmental impact assessment, to develop a comprehensive methodology for analyzing wind power in the context of long-term energy planning.
Gomez-Lazaro, Emilio; Bueso, Maria C.; Kessler, Mathieu; ...
2016-02-02
Here, the Weibull probability distribution has been widely applied to characterize wind speeds for wind energy resources. Wind power generation modeling is different, however, due in particular to power curve limitations, wind turbine control methods, and transmission system operation requirements. These differences are even greater for aggregated wind power generation in power systems with high wind penetration. Consequently, models based on one-Weibull component can provide poor characterizations for aggregated wind power generation. With this aim, the present paper focuses on discussing Weibull mixtures to characterize the probability density function (PDF) for aggregated wind power generation. PDFs of wind power datamore » are firstly classified attending to hourly and seasonal patterns. The selection of the number of components in the mixture is analyzed through two well-known different criteria: the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Finally, the optimal number of Weibull components for maximum likelihood is explored for the defined patterns, including the estimated weight, scale, and shape parameters. Results show that multi-Weibull models are more suitable to characterize aggregated wind power data due to the impact of distributed generation, variety of wind speed values and wind power curtailment.« less
Integration of permanent magnet synchronous generator wind turbines into power grid
NASA Astrophysics Data System (ADS)
Abedini, Asghar
The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less
Introducing Wind Power: Essentials for Bringing It into the Classroom
ERIC Educational Resources Information Center
Swapp, Andy; Schreuders, Paul; Reeve, Edward
2011-01-01
As a renewable source of energy, wind energy will play a significant role in the future. Public, commercial, and privately owned organizations are increasingly finding the value and profits in wind power. Including wind power in a technology and engineering education curriculum teaches students about an important technology that may effect their…
Energy 101: Wind Turbines - 2014 Update
None
2018-05-11
See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.
Wind energy applications guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
anon.
2001-01-01
The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-11
... megawatts of electricity from wind turbine generators (WTGs). The proposed project includes a wind energy... about the installation of red flashing lights on wind turbine generators per Federal Aviation... DEPARTMENT OF ENERGY Western Area Power Administration; Grapevine Canyon Wind Project Record of...
NASA Astrophysics Data System (ADS)
Shishido, Seiji; Takahashi, Rion; Murata, Toshiaki; Tamura, Junji; Sugimasa, Masatoshi; Komura, Akiyoshi; Futami, Motoo; Ichinose, Masaya; Ide, Kazumasa
The spread of wind power generation is progressed hugely in recent years from a viewpoint of environmental problems including global warming. Though wind power is considered as a very prospective energy source, wind power fluctuation due to the random fluctuation of wind speed has still created some problems. Therefore, research has been performed how to smooth the wind power fluctuation. This paper proposes Energy Capacitor System (ECS) for the smoothing of wind power which consists of Electric Double-Layer Capacitor (EDLC) and power electronics devices and works as an electric power storage system. Moreover, hydrogen has received much attention in recent years from a viewpoint of exhaustion problem of fossil fuel. Therefore it is also proposed that a hydrogen generator is installed at the wind farm to generate hydrogen. In this paper, the effectiveness of the proposed system is verified by the simulation analyses using PSCAD/EMTDC.
Bulk electric system reliability evaluation incorporating wind power and demand side management
NASA Astrophysics Data System (ADS)
Huang, Dange
Electric power systems are experiencing dramatic changes with respect to structure, operation and regulation and are facing increasing pressure due to environmental and societal constraints. Bulk electric system reliability is an important consideration in power system planning, design and operation particularly in the new competitive environment. A wide range of methods have been developed to perform bulk electric system reliability evaluation. Theoretically, sequential Monte Carlo simulation can include all aspects and contingencies in a power system and can be used to produce an informative set of reliability indices. It has become a practical and viable tool for large system reliability assessment technique due to the development of computing power and is used in the studies described in this thesis. The well-being approach used in this research provides the opportunity to integrate an accepted deterministic criterion into a probabilistic framework. This research work includes the investigation of important factors that impact bulk electric system adequacy evaluation and security constrained adequacy assessment using the well-being analysis framework. Load forecast uncertainty is an important consideration in an electrical power system. This research includes load forecast uncertainty considerations in bulk electric system reliability assessment and the effects on system, load point and well-being indices and reliability index probability distributions are examined. There has been increasing worldwide interest in the utilization of wind power as a renewable energy source over the last two decades due to enhanced public awareness of the environment. Increasing penetration of wind power has significant impacts on power system reliability, and security analyses become more uncertain due to the unpredictable nature of wind power. The effects of wind power additions in generating and bulk electric system reliability assessment considering site wind speed correlations and the interactive effects of wind power and load forecast uncertainty on system reliability are examined. The concept of the security cost associated with operating in the marginal state in the well-being framework is incorporated in the economic analyses associated with system expansion planning including wind power and load forecast uncertainty. Overall reliability cost/worth analyses including security cost concepts are applied to select an optimal wind power injection strategy in a bulk electric system. The effects of the various demand side management measures on system reliability are illustrated using the system, load point, and well-being indices, and the reliability index probability distributions. The reliability effects of demand side management procedures in a bulk electric system including wind power and load forecast uncertainty considerations are also investigated. The system reliability effects due to specific demand side management programs are quantified and examined in terms of their reliability benefits.
2013 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, R.; Bolinger, M.; Barbose, G.
2014-08-01
This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.
Variability in large-scale wind power generation: Variability in large-scale wind power generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiviluoma, Juha; Holttinen, Hannele; Weir, David
2015-10-25
The paper demonstrates the characteristics of wind power variability and net load variability in multiple power systems based on real data from multiple years. Demonstrated characteristics include probability distribution for different ramp durations, seasonal and diurnal variability and low net load events. The comparison shows regions with low variability (Sweden, Spain and Germany), medium variability (Portugal, Ireland, Finland and Denmark) and regions with higher variability (Quebec, Bonneville Power Administration and Electric Reliability Council of Texas in North America; Gansu, Jilin and Liaoning in China; and Norway and offshore wind power in Denmark). For regions with low variability, the maximum 1more » h wind ramps are below 10% of nominal capacity, and for regions with high variability, they may be close to 30%. Wind power variability is mainly explained by the extent of geographical spread, but also higher capacity factor causes higher variability. It was also shown how wind power ramps are autocorrelated and dependent on the operating output level. When wind power was concentrated in smaller area, there were outliers with high changes in wind output, which were not present in large areas with well-dispersed wind power.« less
Longrigg, Paul
1987-01-01
The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.
Investigation on wind energy-compressed air power system.
Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao
2004-03-01
Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.
Control of large wind turbine generators connected to utility networks
NASA Technical Reports Server (NTRS)
Hinrichsen, E. N.
1983-01-01
This is an investigation of the control requirements for variable pitch wind turbine generators connected to electric power systems. The requirements include operation in very small as well as very large power systems. Control systems are developed for wind turbines with synchronous, induction, and doubly fed generators. Simulation results are presented. It is shown how wind turbines and power system controls can be integrated. A clear distinction is made between fast control of turbine torque, which is a peculiarity of wind turbines, and slow control of electric power, which is a traditional power system requirement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, P.
The final performance report for the Wind Power Live! museum exhibit summarizes the goals and outcomes for the project. Project goals included: (1) help museum visitors understand why wind is being considered as a significant energy source; (2) enable visualization of the dynamics and power output of turbines; (3) exhibit a working wind turbine; (4) showcase wind as a technological success story; (5) consider the environmental costs and benefits of wind energy; (6) examine the economics of wind power, and (7) explain some of the limits to wind power as a commercial energy source. The methods of meeting the projectmore » goals through the museum exhibit are briefly outlined in the report. Goal number three, to introduce a working wind turbine, was dropped from the final project.« less
Analysis of chaos in high-dimensional wind power system.
Wang, Cong; Zhang, Hongli; Fan, Wenhui; Ma, Ping
2018-01-01
A comprehensive analysis on the chaos of a high-dimensional wind power system is performed in this study. A high-dimensional wind power system is more complex than most power systems. An 11-dimensional wind power system proposed by Huang, which has not been analyzed in previous studies, is investigated. When the systems are affected by external disturbances including single parameter and periodic disturbance, or its parameters changed, chaotic dynamics of the wind power system is analyzed and chaotic parameters ranges are obtained. Chaos existence is confirmed by calculation and analysis of all state variables' Lyapunov exponents and the state variable sequence diagram. Theoretical analysis and numerical simulations show that the wind power system chaos will occur when parameter variations and external disturbances change to a certain degree.
Wind power forecasting: IEA Wind Task 36 & future research issues
NASA Astrophysics Data System (ADS)
Giebel, G.; Cline, J.; Frank, H.; Shaw, W.; Pinson, P.; Hodge, B.-M.; Kariniotakis, G.; Madsen, J.; Möhrlen, C.
2016-09-01
This paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, T.L.; Gulman, P.J.; McKenna, E.
2000-12-11
The purpose of this report is to evaluate the wind power benefits and impacts to the San Clement Island wind power system, including energy savings, emissions reduction, system stability, and decreased naval dependence on fossil fuel at the island. The primary goal of the SCI wind power system has been to operate with the existing diesel power plant and provide equivalent or better power quality and system reliability than the existing diesel system. The wind system is intended to reduce, as far as possible, the use of diesel fuel and the inherent generation of nitrogen oxide emissions and other pollutants.
Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, A.; Hodge, B. M.; Milligan, M.
2012-08-01
The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites andmore » for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.« less
Plans and status of the NASA-Lewis Research Center wind energy project
NASA Technical Reports Server (NTRS)
Thomas, R.; Puthoff, R.; Savino, J.; Johnson, W.
1975-01-01
Wind energy is investigated as a source of energy. The wind energy program that is managed by the NASA-Lewis Research Center is described. The Lewis Research Center's Wind Power Office, its organization, plans, and status are discussed. Major elements of the wind power project included are: an experimental 100 kW wind-turbine generator; first generation industry-built and user-operated wind turbine generators; and supporting research and technology tasks.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER11-3959-000] Post Rock Wind Power Project, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for... Rock Wind Power Project, LLC's application for market-based rate authority, with an accompanying rate...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER10-975-000] Juniper Canyon Wind Power, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket... of Juniper Canyon Wind Power, LLC's application for market-based rate authority, with an accompanying...
Dynamic wake model with coordinated pitch and torque control of wind farms for power tracking
NASA Astrophysics Data System (ADS)
Shapiro, Carl; Meyers, Johan; Meneveau, Charles; Gayme, Dennice
2017-11-01
Control of wind farm power production, where wind turbines within a wind farm coordinate to follow a time-varying power set point, is vital for increasing renewable energy participation in the power grid. Previous work developed a one-dimensional convection-diffusion equation describing the advection of the velocity deficit behind each turbine (wake) as well the turbulent mixing of the wake with the surrounding fluid. Proof-of-concept simulations demonstrated that a receding horizon controller built around this time-dependent model can effectively provide power tracking services by modulating the thrust coefficients of individual wind turbines. In this work, we extend this model-based controller to include pitch angle and generator torque control and the first-order dynamics of the drive train. Including these dynamics allows us to investigate control strategies for providing kinetic energy reserves to the grid, i.e. storing kinetic energy from the wind in the rotating mass of the wind turbine rotor for later use. CS, CM, and DG are supported by NSF (ECCS-1230788, CMMI 1635430, and OISE-1243482, the WINDINSPIRE project). JM is supported by ERC (ActiveWindFarms, 306471). This research was conducted using computational resources at MARCC.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... wind farm development on adjacent private lands which would include up to 52 wind turbines and... Wind Power Right-of-Way, Crook and Deschutes Counties, OR AGENCY: Bureau of Land Management, Interior... Impact Statement (EIS) for the proposed West Butte Wind Power Right-of- Way (ROW) in Crook and Deschutes...
Ma, Mingyao; Hu, Haibing; Kutkut, Nasser; Batarseh, Issa; Shen, John; , Bkayrat, Raed
2017-08-01
A system connected to an AC power grid having an AC phase signal includes an inverter module including a first inverter coupled to a DC voltage, actuated based on the AC phase signal. The first inverter provides a first voltage signal having predetermined harmonic components. A second inverter includes second switch elements coupled to the DC voltage and actuated by a second set of control signals phase delayed with respect to the first control signals. A transformer module has first and second primary windings coupled to the first and second inverters. The transformer module further includes a secondary winding coupled to first primary winding, the second primary winding, and the AC power grid. The secondary winding is configured to provide a secondary output voltage to the AC power grid by combining the first voltage signal and the second voltage signal such that the predetermined harmonic components are substantially cancelled.
Wind energy utilization: A bibliography
NASA Technical Reports Server (NTRS)
1975-01-01
Bibliography cites documents published to and including 1974 with abstracts and references, and is indexed by topic, author, organization, title, and keywords. Topics include: Wind Energy Potential and Economic Feasibility, Utilization, Wind Power Plants and Generators, Wind Machines, Wind Data and Properties, Energy Storage, and related topics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, A.A.; Daniel, A.R.; Daniel, S.T.
1990-01-01
Parameters to evaluate the potential for using wind energy to generate electricity in Jamaica were obtained. These include the average wind power scaled to a height of 20 m at existing weather stations and temporary anemometer sites, the variation in annual and monthly wind power, and the frequency distribution of wind speed and wind energy available. Four small commercial turbines were assumed to be operating at some of the sites, and the estimated energy captured by them, the time they operated above their cut-in speed and their capacity factors were also determined. Diurnal variations of wind speed and prevailing windmore » directions are discussed and a map showing wind power at various sites was produced. Two stations with long-term averages, Manley and Morant Point, gave results which warranted further investigation. Results from some temporary stations are also encouraging. Mean wind speeds at two other sites in the Caribbean are given for comparison. A method for estimating the power exponent for scaling the wind speed from climatic data is described in Appendix 2.« less
The Future Impact of Wind on BPA Power System Ancillary Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system ancillary services including load following and regulation. Existing approaches for similar analysis include dispatch model simulation and standard deviation evaluation. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in BPA power system. Then capacity, ramp rate and ramp durationmore » characteristics are extracted from the simulation results, and load following and regulation requirements are calculated accordingly. It mimics the actual power system operations therefore the results can be more realistic yet the approach is convenient to perform. Further, the ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability and energy requirement, respectively, additional to the capacity requirement.« less
DOE/NASA Mod-0 100KW wind turbine test results
NASA Technical Reports Server (NTRS)
Glasgow, J. C.
1978-01-01
The Wind Turbine demonstrates the capability of automatic unattended operation, including startup, achieving synchronism, and shutdown as dictated by wind conditions. During the course of these operations, a wealth of engineering data was generated. Some of the data which is associated with rotor and machine dynamics problems encountered, and the machine modifications incorporated as a solution are presented. These include high blade loads due to tower shadow, excessive nacelle yawing motion, and power oscillations. The results of efforts to correlate measured wind velocity with power output and wind turbine loads are also discussed.
Benefit-cost methodology study with example application of the use of wind generators
NASA Technical Reports Server (NTRS)
Zimmer, R. P.; Justus, C. G.; Mason, R. M.; Robinette, S. L.; Sassone, P. G.; Schaffer, W. A.
1975-01-01
An example application for cost-benefit methodology is presented for the use of wind generators. The approach adopted for the example application consisted of the following activities: (1) surveying of the available wind data and wind power system information, (2) developing models which quantitatively described wind distributions, wind power systems, and cost-benefit differences between conventional systems and wind power systems, and (3) applying the cost-benefit methodology to compare a conventional electrical energy generation system with systems which included wind power generators. Wind speed distribution data were obtained from sites throughout the contiguous United States and were used to compute plant factor contours shown on an annual and seasonal basis. Plant factor values (ratio of average output power to rated power) are found to be as high as 0.6 (on an annual average basis) in portions of the central U. S. and in sections of the New England coastal area. Two types of wind power systems were selected for the application of the cost-benefit methodology. A cost-benefit model was designed and implemented on a computer to establish a practical tool for studying the relative costs and benefits of wind power systems under a variety of conditions and to efficiently and effectively perform associated sensitivity analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric J.; Mone, Christopher D.; DeMeo, Edgar
IIn March 2015, the U.S. Department of Energy (DOE) released Wind Vision: A New Era for Wind Power in the United States (DOE 2015), which explores a scenario in which wind provides 10 percent of U.S. electricity in 2020, 20 percent in 2030, and 35 percent in 2050. The Wind Vision report also includes a roadmap of recommended actions aimed at pursuit of the vision and its underlying wind-deployment scenario. The roadmap was compiled by the Wind Vision project team, which included representatives from the industrial, electric-power, government-laboratory, academic, environmental-stewardship, regulatory, and permitting stakeholder groups. The roadmap describes high-level activitiesmore » suitable for all sectors with a stake in wind power and energy development. It is intended to be a 'living document,' and DOE expects to engage the wind community from time to time to track progress.« less
Analysis and Countermeasures of Wind Power Accommodation by Aluminum Electrolysis Pot-Lines in China
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Ran, Ling; He, Guixiong; Wang, Zhenyu; Li, Jie
2017-10-01
The unit energy consumption and its price have become the main obstacles for the future development of the aluminum electrolysis industry in China. Meanwhile, wind power is widely being abandoned because of its instability. In this study, a novel idea for wind power accommodation is proposed to achieve a win-win situation: the idea is for nearby aluminum electrolysis plants to absorb the wind power. The features of the wind power distribution and aluminum electrolysis industry are first summarized, and the concept of wind power accommodation by the aluminum industry is introduced. Then, based on the characteristics of aluminum reduction cells, the key problems, including the bus-bar status, thermal balance, and magnetohydrodynamics instabilities, are analyzed. In addition, a whole accommodation implementation plan for wind power by aluminum reduction is introduced to explain the theoretical value of accommodation, evaluation of the reduction cells, and the industrial experiment scheme. A numerical simulation of a typical scenario proves that there is large accommodation potential for the aluminum reduction cells. Aluminum electrolysis can accommodate wind power and remain stable under the proper technique and accommodation scheme, which will provide promising benefits for the aluminum plant and the wind energy plant.
Optimization Scheduling Model for Wind-thermal Power System Considering the Dynamic penalty factor
NASA Astrophysics Data System (ADS)
PENG, Siyu; LUO, Jianchun; WANG, Yunyu; YANG, Jun; RAN, Hong; PENG, Xiaodong; HUANG, Ming; LIU, Wanyu
2018-03-01
In this paper, a new dynamic economic dispatch model for power system is presented.Objective function of the proposed model presents a major novelty in the dynamic economic dispatch including wind farm: introduced the “Dynamic penalty factor”, This factor could be computed by using fuzzy logic considering both the variable nature of active wind power and power demand, and it could change the wind curtailment cost according to the different state of the power system. Case studies were carried out on the IEEE30 system. Results show that the proposed optimization model could mitigate the wind curtailment and the total cost effectively, demonstrate the validity and effectiveness of the proposed model.
Wind power forecasting: IEA Wind Task 36 & future research issues
Giebel, G.; Cline, J.; Frank, H.; ...
2016-10-03
Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less
NASA Technical Reports Server (NTRS)
Heronemus, W.
1973-01-01
An offshore wind power system is described that consists of wind driven electrical dc generators mounted on floating towers in offshore waters. The output from the generators supplies underwater electrolyzer stations in which water is converted into hydrogen and oxygen. The hydrogen is piped to shore for conversion to electricity in fuel cell stations. It is estimated that this system can produce 159 x 10 to the ninth power kilowatt-hours per year. It is concluded that solar energy - and that includes wind energy - is the only way out of the US energy dilemma in the not too distant future.
Multiple output power supply circuit for an ion engine with shared upper inverter
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor); Phelps, Thomas K. (Inventor)
2001-01-01
A power supply circuit for an ion engine suitable for a spacecraft is coupled to a bus having a bus input and a bus return. The power supply circuit has a first primary winding of a first transformer. An upper inverter circuit is coupled to the bus input and the first primary winding. The power supply circuit further includes a first lower inverter circuit coupled to the bus return and the first primary winding. The second primary winding of a second transformer is coupled to the upper inverter circuit. A second lower inverter circuit is coupled to the bus return and the second primary winding.
Assessing Capacity Value of Wind Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frew, Bethany A.
This presentation provides a high-level overview of assessing capacity value of wind power, including Impacts of multiple-year data sets, impacts of transmission assumptions, and future research needs.
Program to determine space vehicle response to wind turbulence
NASA Technical Reports Server (NTRS)
Wilkening, H. D.
1972-01-01
Computer program was developed as prelaunch wind monitoring tool for Saturn 5 vehicle. Program accounts for characteristic wind changes including turbulence power spectral density, wind shear, peak wind velocity, altitude, and wind direction using stored variational statistics.
NASA Astrophysics Data System (ADS)
Mahoney, W. P.; Wiener, G.; Liu, Y.; Myers, W.; Johnson, D.
2010-12-01
Wind energy decision makers are required to make critical judgments on a daily basis with regard to energy generation, distribution, demand, storage, and integration. Accurate knowledge of the present and future state of the atmosphere is vital in making these decisions. As wind energy portfolios expand, this forecast problem is taking on new urgency because wind forecast inaccuracies frequently lead to substantial economic losses and constrain the national expansion of renewable energy. Improved weather prediction and precise spatial analysis of small-scale weather events are crucial for renewable energy management. In early 2009, the National Center for Atmospheric Research (NCAR) began a collaborative project with Xcel Energy Services, Inc. to perform research and develop technologies to improve Xcel Energy's ability to increase the amount of wind energy in their generation portfolio. The agreement and scope of work was designed to provide highly detailed, localized wind energy forecasts to enable Xcel Energy to more efficiently integrate electricity generated from wind into the power grid. The wind prediction technologies are designed to help Xcel Energy operators make critical decisions about powering down traditional coal and natural gas-powered plants when sufficient wind energy is predicted. The wind prediction technologies have been designed to cover Xcel Energy wind resources spanning a region from Wisconsin to New Mexico. The goal of the project is not only to improve Xcel Energy’s wind energy prediction capabilities, but also to make technological advancements in wind and wind energy prediction, expand our knowledge of boundary layer meteorology, and share the results across the renewable energy industry. To generate wind energy forecasts, NCAR is incorporating observations of current atmospheric conditions from a variety of sources including satellites, aircraft, weather radars, ground-based weather stations, wind profilers, and even wind sensors on individual wind turbines. The information is utilized by several technologies including: a) the Weather Research and Forecasting (WRF) model, which generates finely detailed simulations of future atmospheric conditions, b) the Real-Time Four-Dimensional Data Assimilation System (RTFDDA), which performs continuous data assimilation providing the WRF model with continuous updates of the initial atmospheric state, 3) the Dynamic Integrated Forecast System (DICast®), which statistically optimizes the forecasts using all predictors, and 4) a suite of wind-to-power algorithms that convert wind speed to power for a wide range of wind farms with varying real-time data availability capabilities. In addition to these core wind energy prediction capabilities, NCAR implemented a high-resolution (10 km grid increment) 30-member ensemble RTFDDA prediction system that provides information on the expected range of wind power over a 72-hour forecast period covering Xcel Energy’s service areas. This talk will include descriptions of these capabilities and report on several topics including initial results of next-day forecasts and nowcasts of wind energy ramp events, influence of local observations on forecast skill, and overall lessons learned to date.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... the potential from offshore wind power to other electric power sources, including fossil, nuclear and... for their proposed projects on the OCS. BOEMRE/New Jersey Renewable Energy Task Force BOEMRE formed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan; Koralewicz, Przemyslaw; Wallen, Robb
The rapid expansion of wind power has led many transmission system operators to demand modern wind power plants to comply with strict interconnection requirements. Such requirements involve various aspects of wind power plant operation, including fault ride-through and power quality performance as well as the provision of ancillary services to enhance grid reliability. During recent years, the National Renewable Energy Laboratory (NREL) of the U.S. Department of Energy has developed a new, groundbreaking testing apparatus and methodology to test and demonstrate many existing and future advanced controls for wind generation (and other renewable generation technologies) on the multimegawatt scale andmore » medium-voltage levels. This paper describes the capabilities and control features of NREL's 7-MVA power electronic grid simulator (also called a controllable grid interface, or CGI) that enables testing many active and reactive power control features of modern wind turbine generators -- including inertial response, primary and secondary frequency responses, and voltage regulation -- under a controlled, medium-voltage grid environment. In particular, this paper focuses on the specifics of testing the balanced and unbalanced fault ride-through characteristics of wind turbine generators under simulated strong and weak medium-voltage grid conditions. In addition, this paper provides insights on the power hardware-in-the-loop feature implemented in the CGI to emulate (in real time) the conditions that might exist in various types of electric power systems under normal operations and/or contingency scenarios. Using actual test examples and simulation results, this paper describes the value of CGI as an ultimate modeling validation tool for all types of 'grid-friendly' controls by wind generation.« less
Converter topologies and control
Rodriguez, Fernando; Qin, Hengsi; Chapman, Patrick
2018-05-01
An inverter includes a transformer that includes a first winding, a second winding, and a third winding, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adapted to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid.
Effects of sea state on offshore wind resourcing in Florida
NASA Astrophysics Data System (ADS)
Collier, Cristina
Offshore resource assessment relies on estimating wind speeds at turbine hub height using observations typically made at substantially lower height. The methods used to adjust from observed wind speeds to hub height can impact resource estimation. The importance of directional sea state is examined, both as seasonal averages and as a function of the diurnal cycle. A General Electric 3.6 MW offshore turbine is used as a model for a power production. Including sea state increases or decreases seasonally averaged power production by roughly 1%, which is found to be an economically significant change. These changes occur because the sea state modifies the wind shear (vector wind difference between the buoy height and the moving surface) and therefore the extrapolation from the observation to hub height is affected. These seemingly small differences in capacity can alter profits by millions of dollars depending upon the size of the farm and fluctuations in price per kWh throughout the year. A 2% change in capacity factor can lead to a 10 million dollar difference from total kWh produced from a wind farm of 100 3.6MW turbines. These economic impacts can be a deciding factor in determining whether a resource is viable for development. Modification of power output due to sea states are shown for seasonal and diurnal time scales. Three regions are examined herein: West Florida, East Florida, and Nantucket Sound. The average capacity after sea state is included suggests areas around Florida could provide substantial amounts of wind power throughout three-fourths of the calendar year. At certain times of day winter average produced capacity factors in West Florida can be up to 45% more than in summer when sea state is included. Nantucket Sound capacity factors are calculated for comparison to a region near a planned United States offshore wind farm. This study provides evidence to suggest including sea state in offshore wind resource assessment causes economically significant differences for offshore wind power siting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, M.; Holttinen, H.; Soder, L.
2012-09-01
Wind and solar power will give rise to challenges in electricity markets regarding flexibility, capacity adequacy, and the participation of wind and solar generators to markets. Large amounts of wind power will have impacts on bulk power system markets and electricity prices. If the markets respond to increased wind power by increasing investments in low-capital, high-cost or marginal-cost power, the average price may remain in the same range. However, experiences so far from Denmark, Germany, Spain, and Ireland are such that the average market prices have decreased because of wind power. This reduction may result in additional revenue insufficiency, whichmore » may be corrected with a capacity market, yet capacity markets are difficult to design. However, the flexibility attributes of the capacity also need to be considered. Markets facilitating wind and solar integration will include possibilities for trading close to delivery (either by shorter gate closure times or intraday markets). Time steps chosen for markets can enable more flexibility to be assessed. Experience from 5- and 10-minute markets has been encouraging.« less
Power supply circuit for an ion engine sequentially operated power inverters
NASA Technical Reports Server (NTRS)
Cardwell, Jr., Gilbert I. (Inventor)
2000-01-01
A power supply circuit for an ion engine suitable for a spacecraft has a voltage bus having input line and a return line. The power supply circuit includes a pulse width modulation circuit. A plurality of bridge inverter circuits is coupled to the bus and the pulse width modulation circuit. The pulse width modulation circuit generates operating signals having a variable duty cycle. Each bridge inverter has a primary winding and a secondary winding. Each secondary winding is coupled to a rectifier bridge. Each secondary winding is coupled in series with another of the plurality of rectifier bridges.
Optimizing Wind And Hydropower Generation Within Realistic Reservoir Operating Policy
NASA Astrophysics Data System (ADS)
Magee, T. M.; Clement, M. A.; Zagona, E. A.
2012-12-01
Previous studies have evaluated the benefits of utilizing the flexibility of hydropower systems to balance the variability and uncertainty of wind generation. However, previous hydropower and wind coordination studies have simplified non-power constraints on reservoir systems. For example, some studies have only included hydropower constraints on minimum and maximum storage volumes and minimum and maximum plant discharges. The methodology presented here utilizes the pre-emptive linear goal programming optimization solver in RiverWare to model hydropower operations with a set of prioritized policy constraints and objectives based on realistic policies that govern the operation of actual hydropower systems, including licensing constraints, environmental constraints, water management and power objectives. This approach accounts for the fact that not all policy constraints are of equal importance. For example target environmental flow levels may not be satisfied if it would require violating license minimum or maximum storages (pool elevations), but environmental flow constraints will be satisfied before optimizing power generation. Additionally, this work not only models the economic value of energy from the combined hydropower and wind system, it also captures the economic value of ancillary services provided by the hydropower resources. It is recognized that the increased variability and uncertainty inherent with increased wind penetration levels requires an increase in ancillary services. In regions with liberalized markets for ancillary services, a significant portion of hydropower revenue can result from providing ancillary services. Thus, ancillary services should be accounted for when determining the total value of a hydropower system integrated with wind generation. This research shows that the end value of integrated hydropower and wind generation is dependent on a number of factors that can vary by location. Wind factors include wind penetration level, variability due to geographic distribution of wind resources, and forecast error. Electric power system factors include the mix of thermal generation resources, available transmission, demand patterns, and market structures. Hydropower factors include relative storage capacity, reservoir operating policies and hydrologic conditions. In addition, the wind, power system, and hydropower factors are often interrelated because stochastic weather patterns can simultaneously influence wind generation, power demand, and hydrologic inflows. One of the central findings is that the sensitivity of the model to changes cannot be performed one factor at a time because the impact of the factors is highly interdependent. For example, the net value of wind generation may be very sensitive to changes in transmission capacity under some hydrologic conditions, but not at all under others.
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
Application and verification of ECMWF seasonal forecast for wind energy
NASA Astrophysics Data System (ADS)
Žagar, Mark; Marić, Tomislav; Qvist, Martin; Gulstad, Line
2015-04-01
A good understanding of long-term annual energy production (AEP) is crucial when assessing the business case of investing in green energy like wind power. The art of wind-resource assessment has emerged into a scientific discipline on its own, which has advanced at high pace over the last decade. This has resulted in continuous improvement of the AEP accuracy and, therefore, increase in business case certainty. Harvesting the full potential output of a wind farm or a portfolio of wind farms depends heavily on optimizing operation and management strategy. The necessary information for short-term planning (up to 14 days) is provided by standard weather and power forecasting services, and the long-term plans are based on climatology. However, the wind-power industry is lacking quality information on intermediate scales of the expected variability in seasonal and intra-annual variations and their geographical distribution. The seasonal power forecast presented here is designed to bridge this gap. The seasonal power production forecast is based on the ECMWF seasonal weather forecast and the Vestas' high-resolution, mesoscale weather library. The seasonal weather forecast is enriched through a layer of statistical post-processing added to relate large-scale wind speed anomalies to mesoscale climatology. The resulting predicted energy production anomalies, thus, include mesoscale effects not captured by the global forecasting systems. The turbine power output is non-linearly related to the wind speed, which has important implications for the wind power forecast. In theory, the wind power is proportional to the cube of wind speed. However, due to the nature of turbine design, this exponent is close to 3 only at low wind speeds, becomes smaller as the wind speed increases, and above 11-13 m/s the power output remains constant, called the rated power. The non-linear relationship between wind speed and the power output generally increases sensitivity of the forecasted power to the wind speed anomalies. On the other hand, in some cases and areas where turbines operate close to, or above the rated power, the sensitivity of power forecast is reduced. Thus, the seasonal power forecasting system requires good knowledge of the changes in frequency of events with sufficient wind speeds to have acceptable skill. The scientific background for the Vestas seasonal power forecasting system is described and the relationship between predicted monthly wind speed anomalies and observed wind energy production are investigated for a number of operating wind farms in different climate zones. Current challenges will be discussed and some future research and development areas identified.
Wind energy in electric power production, preliminary study
NASA Astrophysics Data System (ADS)
Lento, R.; Peltola, E.
1984-01-01
The wind speed conditions in Finland have been studied with the aid of the existing statistics of the Finnish Meteorological Institute. With the aid of the statistics estimates on the available wind energy were also made. Eight hundred wind power plants, 1.5 MW each, on the windiest west coast would produce about 2 TWh energy per year. Far more information on the temporal, geographical and vertical distribution of the wind speed than the present statistics included is needed when the available wind energy is estimated, when wind power plants are dimensioned optimally, and when suitable locations are chosen for them. The investment costs of a wind power plant increase when the height of the tower or the diameter of the rotor is increased, but the energy production increases, too. Thus, overdimensioning the wind power plant in view of energy needs or the wind conditions caused extra costs. The cost of energy produced by wind power can not yet compete with conventional energy, but the situation changes to the advantage of wind energy, if the real price of the plants decreases (among other things due to large series production and increasing experience), or if the real price of fuels rises. The inconvinience on the environment caused by the wind power plants is considered insignificant. The noise caused by the plant attenuates rapidly with distance. No harmful effects to birds and other animals caused by the wind power plants have been observed in the studies made abroad. Parts of the plant getting loose during an accident, or ice forming on the blades are estimated to fly even from a large plant only a few hundred meters.
Task Force on Energy Systems for Forward/Remote Operating Bases
2016-08-01
military use While potentially beneficial, concerns with small wind turbines include reliability, visibility, and interference with...Power density is also sometimes used to refer to power per unit area (e.g., W/m2) of an antenna, solar panel, or cross-section of a wind turbine . A...GE Power & Water plans to implement additive manufacturing to create parts used in gas and wind turbines . Additive manufacturing techniques have
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew
Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount ofmore » uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST for a 1.5 MW turbine. The impact of lidar turbulence error on the predicted power from these different models is examined to determine the degree of turbulence measurement accuracy needed for accurate power prediction.« less
Characterizing wind power resource reliability in southern Africa
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
2015-08-29
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Characterizing wind power resource reliability in southern Africa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fant, Charles; Gunturu, Bhaskar; Schlosser, Adam
Producing electricity from wind is attractive because it provides a clean, low-maintenance power supply. However, wind resource is intermittent on various timescales, thus occasionally introducing large and sudden changes in power supply. A better understanding of this variability can greatly benefit power grid planning. In the following study, wind resource is characterized using metrics that highlight these intermittency issues; therefore identifying areas of high and low wind power reliability in southern Africa and Kenya at different time-scales. After developing a wind speed profile, these metrics are applied at various heights in order to assess the added benefit of raising themore » wind turbine hub. Furthermore, since the interconnection of wind farms can aid in reducing the overall intermittency, the value of interconnecting near-by sites is mapped using two distinct methods. Of the countries in this region, the Republic of South Africa has shown the most interest in wind power investment. For this reason, we focus parts of the study on wind reliability in the country. The study finds that, although mean Wind Power Density is high in South Africa compared to its neighboring countries, wind power resource tends to be less reliable than in other parts of southern Africa—namely central Tanzania. We also find that South Africa’s potential varies over different timescales, with higher reliability in the summer than winter, and higher reliability during the day than at night. This study is concluded by introducing two methods and measures to characterize the value of interconnection, including the use of principal component analysis to identify areas with a common signal.« less
Prospects for generating electricity by large onshore and offshore wind farms
NASA Astrophysics Data System (ADS)
Volker, Patrick J. H.; Hahmann, Andrea N.; Badger, Jake; Jørgensen, Hans E.
2017-03-01
The decarbonisation of energy sources requires additional investments in renewable technologies, including the installation of onshore and offshore wind farms. For wind energy to remain competitive, wind farms must continue to provide low-cost power even when covering larger areas. Inside very large wind farms, winds can decrease considerably from their free-stream values to a point where an equilibrium wind speed is reached. The magnitude of this equilibrium wind speed is primarily dependent on the balance between turbine drag force and the downward momentum influx from above the wind farm. We have simulated for neutral atmospheric conditions, the wind speed field inside different wind farms that range from small (25 km2) to very large (105 km2) in three regions with distinct wind speed and roughness conditions. Our results show that the power density of very large wind farms depends on the local free-stream wind speed, the surface characteristics, and the turbine density. In onshore regions with moderate winds the power density of very large wind farms reaches 1 W m-2, whereas in offshore regions with very strong winds it exceeds 3 W m-2. Despite a relatively low power density, onshore regions with moderate winds offer potential locations for very large wind farms. In offshore regions, clusters of smaller wind farms are generally preferable; under very strong winds also very large offshore wind farms become efficient.
Tornado and extreme wind design criteria for nuclear power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1973-12-01
Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less
Operation of Power Grids with High Penetration of Wind Power
NASA Astrophysics Data System (ADS)
Al-Awami, Ali Taleb
The integration of wind power into the power grid poses many challenges due to its highly uncertain nature. This dissertation involves two main components related to the operation of power grids with high penetration of wind energy: wind-thermal stochastic dispatch and wind-thermal coordinated bidding in short-term electricity markets. In the first part, a stochastic dispatch (SD) algorithm is proposed that takes into account the stochastic nature of the wind power output. The uncertainty associated with wind power output given the forecast is characterized using conditional probability density functions (CPDF). Several functions are examined to characterize wind uncertainty including Beta, Weibull, Extreme Value, Generalized Extreme Value, and Mixed Gaussian distributions. The unique characteristics of the Mixed Gaussian distribution are then utilized to facilitate the speed of convergence of the SD algorithm. A case study is carried out to evaluate the effectiveness of the proposed algorithm. Then, the SD algorithm is extended to simultaneously optimize the system operating costs and emissions. A modified multi-objective particle swarm optimization algorithm is suggested to identify the Pareto-optimal solutions defined by the two conflicting objectives. A sensitivity analysis is carried out to study the effect of changing load level and imbalance cost factors on the Pareto front. In the second part of this dissertation, coordinated trading of wind and thermal energy is proposed to mitigate risks due to those uncertainties. The problem of wind-thermal coordinated trading is formulated as a mixed-integer stochastic linear program. The objective is to obtain the optimal tradeoff bidding strategy that maximizes the total expected profits while controlling trading risks. For risk control, a weighted term of the conditional value at risk (CVaR) is included in the objective function. The CVaR aims to maximize the expected profits of the least profitable scenarios, thus improving trading risk control. A case study comparing coordinated with uncoordinated bidding strategies depending on the trader's risk attitude is included. Simulation results show that coordinated bidding can improve the expected profits while significantly improving the CVaR.
A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network
NASA Astrophysics Data System (ADS)
Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.
NASA Astrophysics Data System (ADS)
Habibi, Hamed; Rahimi Nohooji, Hamed; Howard, Ian
2017-09-01
Power maximization has always been a practical consideration in wind turbines. The question of how to address optimal power capture, especially when the system dynamics are nonlinear and the actuators are subject to unknown faults, is significant. This paper studies the control methodology for variable-speed variable-pitch wind turbines including the effects of uncertain nonlinear dynamics, system fault uncertainties, and unknown external disturbances. The nonlinear model of the wind turbine is presented, and the problem of maximizing extracted energy is formulated by designing the optimal desired states. With the known system, a model-based nonlinear controller is designed; then, to handle uncertainties, the unknown nonlinearities of the wind turbine are estimated by utilizing radial basis function neural networks. The adaptive neural fault tolerant control is designed passively to be robust on model uncertainties, disturbances including wind speed and model noises, and completely unknown actuator faults including generator torque and pitch actuator torque. The Lyapunov direct method is employed to prove that the closed-loop system is uniformly bounded. Simulation studies are performed to verify the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giebel, G.; Cline, J.; Frank, H.
Here, this paper presents the new International Energy Agency Wind Task 36 on Forecasting, and invites to collaborate within the group. Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Forecasting for Wind Energy tries to organise international collaboration, among national meteorological centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, MetOffice, met.no, DMI,...), operational forecaster and forecast users. The Taskmore » is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions. As first results, an overview of current issues for research in short-term forecasting of wind power is presented.« less
Wind farms production: Control and prediction
NASA Astrophysics Data System (ADS)
El-Fouly, Tarek Hussein Mostafa
Wind energy resources, unlike dispatchable central station generation, produce power dependable on external irregular source and that is the incident wind speed which does not always blow when electricity is needed. This results in the variability, unpredictability, and uncertainty of wind resources. Therefore, the integration of wind facilities to utility electrical grid presents a major challenge to power system operator. Such integration has significant impact on the optimum power flow, transmission congestion, power quality issues, system stability, load dispatch, and economic analysis. Due to the irregular nature of wind power production, accurate prediction represents the major challenge to power system operators. Therefore, in this thesis two novel models are proposed for wind speed and wind power prediction. One proposed model is dedicated to short-term prediction (one-hour ahead) and the other involves medium term prediction (one-day ahead). The accuracy of the proposed models is revealed by comparing their results with the corresponding values of a reference prediction model referred to as the persistent model. Utility grid operation is not only impacted by the uncertainty of the future production of wind farms, but also by the variability of their current production and how the active and reactive power exchange with the grid is controlled. To address this particular task, a control technique for wind turbines, driven by doubly-fed induction generators (DFIGs), is developed to regulate the terminal voltage by equally sharing the generated/absorbed reactive power between the rotor-side and the gridside converters. To highlight the impact of the new developed technique in reducing the power loss in the generator set, an economic analysis is carried out. Moreover, a new aggregated model for wind farms is proposed that accounts for the irregularity of the incident wind distribution throughout the farm layout. Specifically, this model includes the wake effect and the time delay of the incident wind speed of the different turbines on the farm, and to simulate the fluctuation in the generated power more accurately and more closer to real-time operation. Recently, wind farms with considerable output power ratings have been installed. Their integrating into the utility grid will substantially affect the electricity markets. This thesis investigates the possible impact of wind power variability, wind farm control strategy, wind energy penetration level, wind farm location, and wind power prediction accuracy on the total generation costs and close to real time electricity market prices. These issues are addressed by developing a single auction market model for determining the real-time electricity market prices.
Final Scientific Report - Wind Powering America State Outreach Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, Mark; Margolis, Anne
2012-02-01
The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America Statemore » Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-1346-000] Mesa Wind Power Corporation; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding of Mesa...
Ultra-Short-Term Wind Power Prediction Using a Hybrid Model
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.
ERIC Educational Resources Information Center
Duran, M. J.; Barrero, F.; Pozo-Ruz, A.; Guzman, F.; Fernandez, J.; Guzman, H.
2013-01-01
Wind energy conversion systems (WECS) nowadays offer an extremely wide range of topologies, including various different types of electrical generators and power converters. Wind energy is also an application of great interest to students and with a huge potential for engineering employment. Making WECS the main center of interest when teaching…
The 200-kilowatt wind turbine project
NASA Technical Reports Server (NTRS)
1978-01-01
The three 200 kilowatt wind turbines described, compose the first of three separate systems. Proposed wind turbines of the two other systems, although similar in design, are larger in both physical size and rated power generation. The overall objective of the project is to obtain early operation and performance data while gaining initial experience in the operation of large, horizontal-axis wind turbines in typical utility environments. Several of the key issues addressed include the following: (1) impact of the variable power output (due to varying wind speeds) on the utility grid (2) compatibility with utility requirements (voltage and frequency control of generated power) (3) demonstration of unattended, fail-safe operation (4) reliability of the wind turbine system (5) required maintenance and (6) initial public reaction and acceptance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huskey, A.; Bowen, A.; Jager, D.
This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers to wind energy expansion by providing independent testing results for small wind turbines (SWT). In total, five turbines were tested at the National Wind Technology Center (NWTC) as a part of this project. Safety and function testing is one of up to five tests performed on the turbines, including power performance, duration, noise, and power-quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certificationmore » requirements. The test equipment includes a Mariah Windspire wind turbine mounted on a monopole tower. L&E Machine manufactured the turbine in the United States. The inverter was manufactured separately by Technology Driven Products in the United States. The system was installed by the NWTC site operations group with guidance and assistance from Mariah Power.« less
Low current extended duration spark ignition system
Waters, Stephen Howard; Chan, Anthony Kok-Fai
2005-08-30
A system for firing a spark plug is disclosed. The system includes a timing controller configured to send a first timing signal and a second timing signal. The system also includes an ignition transformer having a primary winding and a secondary winding and a spark-plug that is operably associated with the secondary winding. A first switching element is disposed between the timing controller and the primary winding of the ignition transformer. The first switching element controls a supply of power to the primary winding based on the first timing signal. Also, a second switching element is disposed between the timing controller and the primary winding of the ignition transformer. The second switching element controls the supply of power to the primary winding based on the second timing signal. A method for firing a spark plug is also disclosed.
Dual power, constant speed electric motor system
Kirschbaum, H.S.
1984-07-31
A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level. 6 figs.
Dual power, constant speed electric motor system
Kirschbaum, Herbert S.
1984-01-01
A dual capacity permanent split capacitor electric motor system is provided with a stator having main and auxiliary windings. The main stator winding includes two winding sections which are connected in parallel with each other and across a pair of line terminals while the auxiliary winding is connected in series with a capacitor to form a circuit branch which is connected between the line terminals for operation at a first output power level. Switching means are provided to reconnect the main stator winding sections in series with each other and in series with a second capacitor to form a circuit branch which is connected between the line terminals while the stator auxiliary winding is connected directly between the line terminals for operation at a second output power level. Automatic rotation reversal occurs when the motor switches from the first to the second output power level.
NASA Astrophysics Data System (ADS)
Khayyat, Abdulkareem Hawta Abdullah Kak Ahmed
Scope and Method of Study: Most developing countries, including Iraq, have very poor wind data. Existing wind speed measurements of poor quality may therefore be a poor guide to where to look for the best wind resources. The main focus of this study is to examine how effectively a GIS spatial model estimates wind power potential in regions where high-quality wind data are very scarce, such as Iraq. The research used a mixture of monthly and hourly wind data from 39 meteorological stations. The study applied spatial analysis statistics and GIS techniques in modeling wind power potential. The model weighted important human, environmental and geographic factors that impact wind turbine siting, such as roughness length, land use⪉nd cover type, airport locations, road access, transmission lines, slope and aspect. Findings and Conclusions: The GIS model provided estimations for wind speed and wind power density and identified suitable areas for wind power projects. Using a high resolution (30*30m) digital elevation model DEM improved the GIS wind suitability model. The model identified areas suitable for wind farm development on different scales. The model showed that there are many locations available for large-scale wind turbines in the southern part of Iraq. Additionally, there are many places in central and northern parts (Kurdistan Region) for smaller scale wind turbine placement.
Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk.
Tonn, Gina L; Guikema, Seth D; Ferreira, Celso M; Quiring, Steven M
2016-10-01
In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive power outages in Louisiana. The storm brought high winds, storm surge, and flooding to Louisiana, and power outages were widespread and prolonged. Hourly power outage data for the state of Louisiana were collected during the storm and analyzed. This analysis included correlation of hourly power outage figures by zip code with storm conditions including wind, rainfall, and storm surge using a nonparametric ensemble data mining approach. Results were analyzed to understand how correlation of power outages with storm conditions differed geographically within the state. This analysis provided insight on how rainfall and storm surge, along with wind, contribute to power outages in hurricanes. By conducting a longitudinal study of outages at the zip code level, we were able to gain insight into the causal drivers of power outages during hurricanes. Our analysis showed that the statistical importance of storm characteristic covariates to power outages varies geographically. For Hurricane Isaac, wind speed, precipitation, and previous outages generally had high importance, whereas storm surge had lower importance, even in zip codes that experienced significant surge. The results of this analysis can inform the development of power outage forecasting models, which often focus strictly on wind-related covariates. Our study of Hurricane Isaac indicates that inclusion of other covariates, particularly precipitation, may improve model accuracy and robustness across a range of storm conditions and geography. © 2016 Society for Risk Analysis.
Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Kim, Chunghun; Chung, Chung Choo
This paper proposes a coordinated control of wind turbine and energy storage system (ESS). Because wind power (WP) is highly dependent on variable wind speed and could induce a severe stability problem to power system especially when the WP has high penetration level. To solve this problem, many power generation corporations or grid operators recently use the ESS. It has very quick response and good performance for reducing the impact of WP fluctuation but has high cost for its installation. Therefore, it is very important to design the control algorithm considering both ESS capacity and grid reliability. Thus, we proposemore » the control algorithm to mitigate the WP fluctuation by using the coordinated control between wind turbine and ESS considering ESS state of charge (SoC) and the WP fluctuation. From deloaded control according to WP fluctuation and ESS SoC management, we can expect the ESS lifespan expansion and improved grid reliability. The effectiveness of the proposed method is validated in MATLAB/Simulink considering power system including both wind turbine generator and conventional generators which react to system frequency deviation.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-27
... Power Blades (ND) Inc., Matrix Service Industrial Contract, Mistras Group, Onion ICS LLC, Power Climber Wind, Rope Partner, Inc., Run Energy LP, SERENA USA, Inc., Spherion ``The Mergis Group,'' System One Up... facility on Spain and ``increased blade outsourcing of 65%.'' The attachment to the request included a...
Wind Energy Modeling and Simulation | Wind | NREL
Wind Energy Modeling and Simulation Wind Turbine Modeling and Simulation Wind turbines are unique wind turbines. It enables the analysis of a range of wind turbine configurations, including: Two- or (SOWFA) employs computational fluid dynamics to allow users to investigate wind turbine and wind power
The Future Impact of Wind on BPA Power System Load Following and Regulation Requirements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Lu, Shuai; McManus, Bart
Wind power is growing in a very fast pace as an alternative generating resource. As the ratio of wind power over total system capacity increases, the impact of wind on various system aspects becomes significant. This paper presents a methodology to study the future impact of wind on BPA power system load following and regulation requirements. Existing methodologies for similar analysis include dispatch model simulation and standard deviation evaluation on load and wind data. The methodology proposed in this paper uses historical data and stochastic processes to simulate the load balancing processes in the BPA power system. It mimics themore » actual power system operations therefore the results are close to reality yet the study based on this methodology is convenient to perform. The capacity, ramp rate and ramp duration characteristics are extracted from the simulation results. System load following and regulation capacity requirements are calculated accordingly. The ramp rate and ramp duration data obtained from the analysis can be used to evaluate generator response or maneuverability requirement and regulating units’ energy requirement, respectively.« less
Wind Power Finance and Investment Workshop 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
anon.
2004-11-01
The workshop had 33 presentations by the leading industry experts in the wind finance and investment area. The workshop presented wind industry opportunities and advice to the financial community. The program also included two concurrent sessions, Wind 100, which offered wind energy novices a comprehensive introduction to wind energy fundamentals, and Transmission Policy and Regulations. Other workshop topics included: Bringing environmental and other issues into perspective; Policy impacts on wind financing; Technical/wind issues; Monetizing green attributes (Sale of green tags); Contractual issues; Debt issues; and Equity issues. There were approximately 230 attendees.
78 FR 28842 - Searchlight Wind Energy Project Record of Decision (DOE/EIS-0413)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-16
... wind turbine generators (WTGs). The proposed Project includes a wind energy facility and a 230-kV... DEPARTMENT OF ENERGY Western Area Power Administration Searchlight Wind Energy Project Record of...), received a request from Searchlight Wind Energy, LLC (Searchlight) to interconnect its proposed Searchlight...
Two-Stage Winch for Kites and Tethered Balloons or Blimps
NASA Technical Reports Server (NTRS)
Miles, Ted; Bland, Geoff
2011-01-01
A winch system provides a method for launch and recovery capabilities for kites and tethered blimps or balloons. Low power consumption is a key objective, as well as low weight for portability. This is accomplished by decoupling the tether-line storage and wind ing/ unwinding functions, and providing tailored and efficient mechanisms for each. The components of this system include rotational power input devices such as electric motors or other apparatus, line winding/unwinding reel(s), line storage reel(s), and independent drive trains. Power is applied to the wind/unwind reels to transport the tether line. Power is also applied to a line storage reel, from either the wind/unwind power source, the wind/unwind reel itself, or separate power source. The speeds of the two reels are synchronized, but not dependent on each other. This is accomplished via clutch mechanisms, variable transmissions, or independent motor controls. The speed of the storage reel is modulated as the effective diameter of the reel changes with line accumulation.
2015 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan; Bolinger, Mark; Barbose, Galen
Annual wind power capacity additions in the United States surged in 2015 and are projected to continue at a rapid clip in the coming five years. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—having been extended for several years (though with a phase-down schedule, described further on pages 68-69), as well as a myriad of state-level policies. Wind additions are also being driven by improvements in the cost and performance of wind power technologies, yielding low power sales prices for utility, corporate, and other purchasers. At the same time, the prospectsmore » for growth beyond the current PTC cycle remain uncertain: growth could be blunted by declining federal tax support, expectations for low natural gas prices, and modest electricity demand growth. This annual report—now in its tenth year—provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2015. The report begins with an overview of key installation-related trends: trends in U.S. wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development; and the quantity of proposed wind power capacity in various interconnection queues in the United States. Next, the report covers an array of wind power industry trends: developments in turbine manufacturer market share; manufacturing and supply-chain developments; wind turbine and component imports into and exports from the United States; project financing developments; and trends among wind power project owners and power purchasers. The report then turns to a summary of wind turbine technology trends: turbine size, hub height, rotor diameter, specific power, and IEC Class. After that, the report discusses wind power performance, cost, and pricing trends. In so doing, it describes trends in project performance, wind turbine transaction prices, installed project costs, and operations and maintenance (O&M) expenses. It also reviews the prices paid for wind power in the United States and how those prices compare to short-term wholesale electricity prices and forecasts of future natural gas prices. Next, the report examines policy and market factors impacting the domestic wind power market, including federal and state policy drivers as well as transmission and grid integration issues. The report concludes with a preview of possible near-term market developments. This edition of the annual report updates data presented in previous editions while highlighting key trends and important new developments from 2015. The report concentrates on larger, utility-scale wind turbines, defined here as individual turbines that exceed 100 kW in size.« less
Optimizing Wind Power Generation while Minimizing Wildlife Impacts in an Urban Area
Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L.; Curtis, Peter S.
2013-01-01
The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown. PMID:23409117
Optimizing wind power generation while minimizing wildlife impacts in an urban area.
Bohrer, Gil; Zhu, Kunpeng; Jones, Robert L; Curtis, Peter S
2013-01-01
The location of a wind turbine is critical to its power output, which is strongly affected by the local wind field. Turbine operators typically seek locations with the best wind at the lowest level above ground since turbine height affects installation costs. In many urban applications, such as small-scale turbines owned by local communities or organizations, turbine placement is challenging because of limited available space and because the turbine often must be added without removing existing infrastructure, including buildings and trees. The need to minimize turbine hazard to wildlife compounds the challenge. We used an exclusion zone approach for turbine-placement optimization that incorporates spatially detailed maps of wind distribution and wildlife densities with power output predictions for the Ohio State University campus. We processed public GIS records and airborne lidar point-cloud data to develop a 3D map of all campus buildings and trees. High resolution large-eddy simulations and long-term wind climatology were combined to provide land-surface-affected 3D wind fields and the corresponding wind-power generation potential. This power prediction map was then combined with bird survey data. Our assessment predicts that exclusion of areas where bird numbers are highest will have modest effects on the availability of locations for power generation. The exclusion zone approach allows the incorporation of wildlife hazard in wind turbine siting and power output considerations in complex urban environments even when the quantitative interaction between wildlife behavior and turbine activity is unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeni, Lorenzo; Hesselbæk, Bo; Bech, John
This article presents an example of application of a modern test facility conceived for experiments regarding the integration of renewable energy in the power system. The capabilities of the test facility are used to validate dynamic simulation models of wind power plants and their controllers. The models are based on standard and generic blocks. The successful validation of events related to the control of active power (control phenomena in <10 Hz range, including frequency control and power oscillation damping) is described, demonstrating the capabilities of the test facility and drawing the track for future work and improvements.
Wind Integration National Dataset Toolkit | Grid Modernization | NREL
information, share tips The WIND Toolkit includes meteorological conditions and turbine power for more than Integration National Dataset Toolkit Wind Integration National Dataset Toolkit The Wind Integration National Dataset (WIND) Toolkit is an update and expansion of the Eastern Wind Integration Data Set and
The Role of Atmospheric Measurements in Wind Power Statistical Models
NASA Astrophysics Data System (ADS)
Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.
2015-12-01
The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.
Research on unit commitment with large-scale wind power connected power system
NASA Astrophysics Data System (ADS)
Jiao, Ran; Zhang, Baoqun; Chi, Zhongjun; Gong, Cheng; Ma, Longfei; Yang, Bing
2017-01-01
Large-scale integration of wind power generators into power grid brings severe challenges to power system economic dispatch due to its stochastic volatility. Unit commitment including wind farm is analyzed from the two parts of modeling and solving methods. The structures and characteristics can be summarized after classification has been done according to different objective function and constraints. Finally, the issues to be solved and possible directions of research and development in the future are discussed, which can adapt to the requirements of the electricity market, energy-saving power generation dispatching and smart grid, even providing reference for research and practice of researchers and workers in this field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-09-01
As part of its Native American outreach, DOE?s Wind Powering America program produces a newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. This issue features an interview with Dave Danz, a tribal planner for the Grand Portage Band of Chippewa in northeastern Minnesota, and a feature on the new turbine that powers the KILI radio station on the Pine Ridge Reservation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu T; Lantz, Eric J; Mowers, Matthew
Improvements to wind technologies have, in part, led to substantial deployment of U.S. wind power in recent years. The degree to which technology innovation will continue is highly uncertain adding to uncertainties in future wind deployment. We apply electric sector modeling to estimate the potential wind deployment opportunities across a range of technology advancement projections. The suite of projections considered span a wide range of possible cost and technology innovation trajectories, including those from a recent expert elicitation of wind energy experts, a projection based on the broader literature, and one reflecting estimates based on a U.S. DOE research initiative.more » In addition, we explore how these deployment pathways may impact the electricity system, electricity consumers, the environment, and the wind-related workforce. Overall, our analysis finds that wind technology innovation can have consequential implications for future wind power development throughout the United States, impact the broader electricity system, lower electric system and consumer costs, provide potential environmental benefits, and grow the U.S. wind workforce.« less
NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Summer 2007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
DOE's Wind Powering America program has initiated a quarterly NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events.
Land Use, Land Conservation, and Wind Energy Development Outcomes in New England
NASA Astrophysics Data System (ADS)
Weimar, William Cameron
This dissertation provides three independent research inquiries. The first examines how inter-governmental policy, site-specific, and social factors lead to the success, prolonged delay, or failure of inland wind power projects in New England. The three case studies examined include the 48 megawatt Glebe Mountain Wind Farm proposal in southern Vermont, the 30 megawatt Hoosac Wind Farm in western Massachusetts, and the 24 megawatt Lempster Wind Farm in southern New Hampshire. To ascertain why the project outcomes varied, 45 semi-structured interviews were conducted with a range of stakeholders, including wind development firms, utility companies, state regulatory agencies, regional planning commissions, town officials, land conservation organizations, and opposition groups. The second study establishes a comprehensive set of thirty-seven explanatory variables to determine the amount of suitable land and the corresponding electricity generation potential within the prime wind resource areas of Western Massachusetts. The explanatory variables are incorporated into Boolean GIS suitability models which represent the two divergent positions towards wind power development in Massachusetts, and a third, balanced model. The third study determines that exurban residential development is not the only land use factor that reduces wind power development potential in Western Massachusetts. A set of Boolean GIS models for 1985 and 2009 find the onset of conservation easements on private lands having the largest impact. During this 25 year period a combination of land use conversion and land conservation has reduced the access to prime wind resource areas by 18% (11,601 hectares), an equivalent loss of 5,800--8,700 GWh/year of zero carbon electricity generation. The six main findings from this research are: (1) Visual aesthetics remain the main factor of opposition to specific projects; (2) The Not-in-my Backyard debate for wind power remains unsettled; (3) Widespread support exists for regional land use energy plans; (4) The wind resources of Western Massachusetts can significantly contribute to the state's current renewable portfolio standard while balancing conservation and renewable energy development objectives; However, (5) a combination of exurban residential development and conservation easements significantly reduces wind power development potential over time; and (6) a need exists to legally define wind as a publicly beneficial resource.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, Eduard
1998-01-01
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable Speed Wind Turbine Generator with Zero-sequence Filter
Muljadi, Eduard
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.
Variable speed wind turbine generator with zero-sequence filter
Muljadi, E.
1998-08-25
A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.
Maximum wind energy extraction strategies using power electronic converters
NASA Astrophysics Data System (ADS)
Wang, Quincy Qing
2003-10-01
This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)
Wind speed statistics for Goldstone, California, anemometer sites
NASA Technical Reports Server (NTRS)
Berg, M.; Levy, R.; Mcginness, H.; Strain, D.
1981-01-01
An exploratory wind survey at an antenna complex was summarized statistically for application to future windmill designs. Data were collected at six locations from a total of 10 anemometers. Statistics include means, standard deviations, cubes, pattern factors, correlation coefficients, and exponents for power law profile of wind speed. Curves presented include: mean monthly wind speeds, moving averages, and diurnal variation patterns. It is concluded that three of the locations have sufficiently strong winds to justify consideration for windmill sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garling, W.S.; Harper, M.R.; Merchant-Geuder, L.
1980-03-01
Potential applications of wind energy include not only large central turbines that can be utilized by utilities, but also dispersed systems for farms and other applications. The US Departments of Energy (DOE) and Agriculture (USDA) currently are establishing the feasibility of wind energy use in applications where the energy can be used as available, or stored in a simple form. These applications include production of hot water for rural sanitation, heating and cooling of rural structures and products, drying agricultural products, and irrigation. This study, funded by USDA, analyzed the economic feasibility of wind power in refrigeration cooling and watermore » heating systems in food processing plants. Types of plants included were meat and poultry, dairy, fruit and vegetable, and aquaculture.« less
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, Martin; Giebel, Gregor; Skov Nielsen, Torben; Hahmann, Andrea; Sørensen, Poul; Madsen, Henrik
2013-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the title "Integrated Wind Power Planning Tool". The goal is to integrate a mesoscale numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. Using the state-of-the-art mesoscale NWP model Weather Research & Forecasting model (WRF) the forecast error is sought quantified in dependence of the time scale involved. This task constitutes a preparative study for later implementation of features accounting for NWP forecast errors in the DTU Wind Energy maintained Corwind code - a long term wind power planning tool. Within the framework of PSO 10464 research related to operational short term wind power prediction will be carried out, including a comparison of forecast quality at different mesoscale NWP model resolutions and development of a statistical wind power prediction tool taking input from WRF. The short term prediction part of the project is carried out in collaboration with ENFOR A/S; a Danish company that specialises in forecasting and optimisation for the energy sector. The integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated short term prediction tool constitutes scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator. The need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2025 from the current 20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.
2011-10-10
The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conductmore » simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.« less
The Oregon State University wind studies. [economic feasibility of windpowered generators
NASA Technical Reports Server (NTRS)
Wilson, R. E.
1973-01-01
The economic feasibility of commercial use of wind generated power in selected areas of Oregon is assessed. A number of machines for generating power have been examined. These include the Savonius rotor, translators, conventional wind turbines, the circulation controlled rotor and the vertical axis winged turbine. Of these machines, the conventional wind turbine and the vertical axis winged turbine show the greatest promise on the basis of the power developed per unit of rotor blade area. Attention has been focused on the structural and fatigue analysis of rotors since the economics of rotary winged, wind generated power depends upon low cost, long lifetime rotors. Analysis of energy storage systems and tower design has also been undertaken. An economic means of energy storage has not been found to date. Tower design studies have produced cost estimates that are in general agreement with the cost of the updated Putnam 110-foot tower.
76 FR 76397 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-07
..., Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC..., Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath Energy LLC, Klamath Generation LLC, Klondike Wind Power LLC, Klondike Wind Power II...
Boston Community Energy Study - Zonal Analysis for Urban Microgrids
2016-03-01
ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV) panels [15] that power loads such as lights and...movers powered by internal combustion engines, diesel engines, microturbines, geothermal systems, hydro systems, or wind turbines ; they also could include...can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed
Control of wind turbine generators connected to power systems
NASA Technical Reports Server (NTRS)
Hwang, H. H.; Mozeico, H. V.; Gilbert, L. J.
1978-01-01
A unique simulation model based on a Mode-O wind turbine is developed for simulating both speed and power control. An analytical representation for a wind turbine that employs blade pitch angle feedback control is presented, and a mathematical model is formulated. For Mode-O serving as a practical case study, results of a computer simulation of the model as applied to the problems of synchronization and dynamic stability are provided. It is shown that the speed and output of a wind turbine can be satisfactorily controlled within reasonable limits by employing the existing blade pitch control system under specified conditions. For power control, an additional excitation control is required so that the terminal voltage, output power factor, and armature current can be held within narrow limits. As a result, the variation of torque angle is limited even if speed control is not implemented simultaneously with power control. Design features of the ERDA/NASA 100-kW Mode-O wind turbine are included.
Voltage dips at the terminals of wind power installations
NASA Astrophysics Data System (ADS)
Bollen, Math H. J.; Olguin, Gabriel; Martins, Marcia
2005-07-01
This article gives an overview of the kind of voltage dips that can be expected at the terminals of a wind power installation. The overview is based on the study of those dips at the terminals of industrial installations and provides a guideline for the testing of wind power installations against voltage dips. For voltage dips due to faults, a classification into different types is presented. Five types appear at the terminals of sensitive equipment and thus have to be included when testing the wind power installation against disturbances coming from the grid. A distinction is made between installations connected at transmission level and those connected at distribution level. For the latter the phase angle jump has to be considered. Dips due to other causes (motor, transformer and capacitor switching) are briefly discussed as well as the voltage recovery after a dip. Finally some thoughts are presented on the way in which voltage tolerance requirements should be part of the design process for wind power installations. Copyright
Worldwide wind/diesel hybrid power system study: Potential applications and technical issues
NASA Astrophysics Data System (ADS)
King, W. R.; Johnson, B. L., III
1991-04-01
The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finley, Cathy
2014-04-30
This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements inmore » wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.« less
Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric; Sigrin, Benjamin; Gleason, Michael
2016-11-01
Wind power is one of the fastest growing sources of new electricity generation in the United States. Cumulative installed capacity was more than 74,000 megawatts (MW) at year-end 2015 and wind power supplied 4.7% of total 2015 U.S. electricity generation. Despite the growth of the wind power industry, the distributed wind market has remained limited. Cumulative installations of distributed wind through 2015 totaled 934 MW. This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind, serving primarily rural or suburban homes, farms, and manufacturing facilities. This work focuses only on the grid-connected, behind-the-meter subset of the broader distributedmore » wind market. We estimate this segment to be approximately half of the 934 MW of total installed distributed wind capacity at year-end 2015. Potential from other distributed wind market segments including systems installed in front of the meter (e.g., community wind) and in remote, off-grid locations is not assessed in this analysis and therefore, would be additive to results presented here. These other distributed wind market segments are not considered in this initial effort because of their relatively unique economic and market attributes.« less
Quantifying the Economic and Grid Reliability Impacts of Improved Wind Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Martinez-Anido, Carlo Brancucci; Wu, Hongyu
Wind power forecasting is an important tool in power system operations to address variability and uncertainty. Accurately doing so is important to reducing the occurrence and length of curtailment, enhancing market efficiency, and improving the operational reliability of the bulk power system. This research quantifies the value of wind power forecasting improvements in the IEEE 118-bus test system as modified to emulate the generation mixes of Midcontinent, California, and New England independent system operator balancing authority areas. To measure the economic value, a commercially available production cost modeling tool was used to simulate the multi-timescale unit commitment (UC) and economicmore » dispatch process for calculating the cost savings and curtailment reductions. To measure the reliability improvements, an in-house tool, FESTIV, was used to calculate the system's area control error and the North American Electric Reliability Corporation Control Performance Standard 2. The approach allowed scientific reproducibility of results and cross-validation of the tools. A total of 270 scenarios were evaluated to accommodate the variation of three factors: generation mix, wind penetration level, and wind fore-casting improvements. The modified IEEE 118-bus systems utilized 1 year of data at multiple timescales, including the day-ahead UC, 4-hour-ahead UC, and 5-min real-time dispatch. The value of improved wind power forecasting was found to be strongly tied to the conventional generation mix, existence of energy storage devices, and the penetration level of wind energy. The simulation results demonstrate that wind power forecasting brings clear benefits to power system operations.« less
Workforce Development and Wind for Schools (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newcomb, C.; Baring-Gould, I.
2012-06-01
As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew
Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the bulk Richardson number ( Rmore » B). We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power curves for different R B regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.« less
St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; ...
2016-11-01
Using detailed upwind and nacelle-based measurements from a General Electric (GE) 1.5sle model with a 77 m rotor diameter, we calculate power curves and annual energy production (AEP) and explore their sensitivity to different atmospheric parameters to provide guidelines for the use of stability and turbulence filters in segregating power curves. The wind measurements upwind of the turbine include anemometers mounted on a 135 m meteorological tower as well as profiles from a lidar. We calculate power curves for different regimes based on turbulence parameters such as turbulence intensity (TI) as well as atmospheric stability parameters such as the bulk Richardson number ( Rmore » B). We also calculate AEP with and without these atmospheric filters and highlight differences between the results of these calculations. The power curves for different TI regimes reveal that increased TI undermines power production at wind speeds near rated, but TI increases power production at lower wind speeds at this site, the US Department of Energy (DOE) National Wind Technology Center (NWTC). Similarly, power curves for different R B regimes reveal that periods of stable conditions produce more power at wind speeds near rated and periods of unstable conditions produce more power at lower wind speeds. AEP results suggest that calculations without filtering for these atmospheric regimes may overestimate the AEP. Because of statistically significant differences between power curves and AEP calculated with these turbulence and stability filters for this turbine at this site, we suggest implementing an additional step in analyzing power performance data to incorporate effects of atmospheric stability and turbulence across the rotor disk.« less
Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Baohua; Hu, Weihao; Hou, Peng
This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less
Review of Reactive Power Dispatch Strategies for Loss Minimization in a DFIG-based Wind Farm
Zhang, Baohua; Hu, Weihao; Hou, Peng; ...
2017-06-27
This study reviews and compares the performance of reactive power dispatch strategies for the loss minimization of Doubly Fed Induction Generator (DFIG)-based Wind Farms (WFs). Twelve possible combinations of three WF level reactive power dispatch strategies and four Wind Turbine (WT) level reactive power control strategies are investigated. All of the combined strategies are formulated based on the comprehensive loss models of WFs, including the loss models of DFIGs, converters, filters, transformers, and cables of the collection system. Optimization problems are solved by a Modified Particle Swarm Optimization (MPSO) algorithm. The effectiveness of these strategies is evaluated by simulations onmore » a carefully designed WF under a series of cases with different wind speeds and reactive power requirements of the WF. The wind speed at each WT inside the WF is calculated using the Jensen wake model. The results show that the best reactive power dispatch strategy for loss minimization comes when the WF level strategy and WT level control are coordinated and the losses from each device in the WF are considered in the objective.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-11
... invasive woody plants; wind energy development; petroleum production; and presence of roads and manmade vertical structures including towers, utility lines, fences, turbines, wells, and buildings. The Act does.... Disturbance Practices. Crop Production. Wind Power, Cell and Radio Towers, and Power Line Activities...
2012 Market Report on Wind Technologies in Distributed Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orrell, Alice C.
2013-08-01
An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.
The Current State of Additive Manufacturing in Wind Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, Margaret; Palmer, Sierra; Lee, Dominic
Wind power is an inexhaustible form of energy that is being captured throughout the U.S. to power the engine of our economy. A robust, domestic wind industry promises to increase U.S. industry growth and competitiveness, strengthen U.S. energy security independence, and promote domestic manufacturing nationwide. As of 2016, ~82GW of wind capacity had been installed, and wind power now provides more than 5.5% of the nation’s electricity and supports more than 100,000 domestic jobs, including 500 manufacturing facilities in 43 States. To reach the U.S. Department of Energy’s (DOE’s) 2015 Wind Vision study scenario of wind power serving 35% ofmore » the nation's end-use demand by 2050, significant advances are necessary in all areas of wind technologies and market. An area that can greatly impact the cost and rate of innovation in wind technologies is the use of advanced manufacturing, with one of the most promising areas being additive manufacturing (AM). Considering the tremendous promise offered by advanced manufacturing, it is the purpose of this report to identify the use of AM in the production and operation of wind energy systems. The report has been produced as a collaborative effort for the DOE Wind Energy Technology Office (WETO), between Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebraad, Pieter; Thomas, Jared J.; Ning, Andrew
This paper presents a wind plant modeling and optimization tool that enables the maximization of wind plant annual energy production (AEP) using yaw-based wake steering control and layout changes. The tool is an extension of a wake engineering model describing the steady-state effects of yaw on wake velocity profiles and power productions of wind turbines in a wind plant. To make predictions of a wind plant's AEP, necessary extensions of the original wake model include coupling it with a detailed rotor model and a control policy for turbine blade pitch and rotor speed. This enables the prediction of power productionmore » with wake effects throughout a range of wind speeds. We use the tool to perform an example optimization study on a wind plant based on the Princess Amalia Wind Park. In this case study, combined optimization of layout and wake steering control increases AEP by 5%. The power gains from wake steering control are highest for region 1.5 inflow wind speeds, and they continue to be present to some extent for the above-rated inflow wind speeds. The results show that layout optimization and wake steering are complementary because significant AEP improvements can be achieved with wake steering in a wind plant layout that is already optimized to reduce wake losses.« less
Keeping the Future Bright: Department of Defense (DOD) Sustainable Energy Strategy for Installations
2016-04-04
sustainable energy included renewable energy sources, such as hydroelectricity, solar energy, wind energy, wave power, geothermal energy, bioenergy, tidal...energy, including bioftiel and other alternative sources (wind. solar, and geothermal ).27 The SECNAV made security and independence the two energy...Navy’s China Lake geothermal power plant in California is DOD’s largest renewable energy project supplying nearly half of DOD’s renewable energy
NASA Astrophysics Data System (ADS)
Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.
2013-03-01
With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.; ...
2017-07-11
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Staid, Andrea; Watson, Jean -Paul; Wets, Roger J. -B.
Forecasts of available wind power are critical in key electric power systems operations planning problems, including economic dispatch and unit commitment. Such forecasts are necessarily uncertain, limiting the reliability and cost effectiveness of operations planning models based on a single deterministic or “point” forecast. A common approach to address this limitation involves the use of a number of probabilistic scenarios, each specifying a possible trajectory of wind power production, with associated probability. We present and analyze a novel method for generating probabilistic wind power scenarios, leveraging available historical information in the form of forecasted and corresponding observed wind power timemore » series. We estimate non-parametric forecast error densities, specifically using epi-spline basis functions, allowing us to capture the skewed and non-parametric nature of error densities observed in real-world data. We then describe a method to generate probabilistic scenarios from these basis functions that allows users to control for the degree to which extreme errors are captured.We compare the performance of our approach to the current state-of-the-art considering publicly available data associated with the Bonneville Power Administration, analyzing aggregate production of a number of wind farms over a large geographic region. Finally, we discuss the advantages of our approach in the context of specific power systems operations planning problems: stochastic unit commitment and economic dispatch. Here, our methodology is embodied in the joint Sandia – University of California Davis Prescient software package for assessing and analyzing stochastic operations strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-08-04
This code is an enhancement to the existing FLORIS code, SWR 14-20. In particular, this enhancement computes overall thrust and turbulence intensity throughout a wind plant. This information is used to form a description of the fatigue loads experienced throughtout the wind plant. FLORIS has been updated to include an optimization routine that optimizes FLORIS to minimize thrust and turbulence intensity (and therefore loads) across the wind plant. Previously, FLORIS had been designed to optimize power out of a wind plant. However, as turbines age, more wind plant owner/operators are looking for ways to reduce their fatigue loads without sacrificingmore » too much power.« less
Wind power as an electrical energy source in Illinois
NASA Astrophysics Data System (ADS)
Wendland, W. M.
1982-03-01
A preliminary estimate of the total wind power available in Illinois was made using available historical data, and projections of cost savings due to the presence of wind-generated electricity were attempted. Wind data at 10 m height were considered from nine different sites in the state, with three years data nominally being included. Wind-speed frequency histograms were developed for day and night periods, using a power law function to extrapolate the 10 m readings to 20 m. Wind speeds over the whole state were found to average over 8 mph, the cut-in point for most wind turbines, for from 40-63% of the time. A maximum of 75% run-time was determined for daylight hours in April-May. A reference 1.8 kW windpowered generator was used in annual demand projections for a reference one family home, using the frequency histograms. The small generator was projected to fulfill from 25-53% of the annual load, and, based on various cost assumptions, exhibited paybacks taking from 14-27 yr.
76 FR 46284 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-02
... Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm... Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath Energy LLC, Klamath Generation LLC, Klondike Wind Power...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
... to encourage and incentivize offshore wind energy development. While a state may promote such development through activities such as the creation of financial incentives, an offshore wind project cannot... information resource for the state on Virginia's coastal energy resources, including offshore wind. For more...
A thermal storage capacity market for non dispatchable renewable energies
NASA Astrophysics Data System (ADS)
Bennouna, El Ghali; Mouaky, Ammar; Arrad, Mouad; Ghennioui, Abdellatif; Mimet, Abdelaziz
2017-06-01
Due to the increasingly high capacity of wind power and solar PV in Germany and some other European countries and the high share of variable renewable energy resources in comparison to fossil and nuclear capacity, a power reserve market structured by auction systems was created to facilitate the exchange of balance power capacities between systems and even grid operators. Morocco has a large potential for both wind and solar energy and is engaged in a program to deploy 2000MW of wind capacity by 2020 and 3000 MW of solar capacity by 2030. Although the competitiveness of wind energy is very strong, it appears clearly that the wind program could be even more ambitious than what it is, especially when compared to the large exploitable potential. On the other hand, heavy investments on concentrated solar power plants equipped with thermal energy storage have triggered a few years ago including the launching of the first part of the Nour Ouarzazate complex, the goal being to reach stable, dispatchable and affordable electricity especially during evening peak hours. This paper aims to demonstrate the potential of shared thermal storage capacity between dispatchable and non dispatchable renewable energies and particularly CSP and wind power. Thus highlighting the importance of a storage capacity market in parallel to the power reserve market and the and how it could enhance the development of both wind and CSP market penetration.
Wind Energy Workforce Development & Jobs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tegen, Suzanne
The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.
Emissions and temperature benefits: The role of wind power in China.
Duan, Hongbo
2017-01-01
As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. Copyright © 2016 Elsevier Inc. All rights reserved.
Microgrid optimal scheduling considering impact of high penetration wind generation
NASA Astrophysics Data System (ADS)
Alanazi, Abdulaziz
The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.
The impact of wind power on electricity prices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brancucci Martinez-Anido, Carlo; Brinkman, Greg; Hodge, Bri-Mathias
This paper investigates the impact of wind power on electricity prices using a production cost model of the Independent System Operator - New England power system. Different scenarios in terms of wind penetration, wind forecasts, and wind curtailment are modeled in order to analyze the impact of wind power on electricity prices for different wind penetration levels and for different levels of wind power visibility and controllability. The analysis concludes that electricity price volatility increases even as electricity prices decrease with increasing wind penetration levels. The impact of wind power on price volatility is larger in the shorter term (5-minmore » compared to hour-to-hour). The results presented show that over-forecasting wind power increases electricity prices while under-forecasting wind power reduces them. The modeling results also show that controlling wind power by allowing curtailment increases electricity prices, and for higher wind penetrations it also reduces their volatility.« less
NREL and Alstom Celebrate Wind Turbine Installation | News | NREL
. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL), along with officials from technology areas including controls and offshore wind energy. About Alstom Alstom is a global leader in the world of power generation, power transmission and rail infrastructure, and sets the benchmark for
2014-09-01
Marshall “ Wind Turbines and Energy” • Eugene Whatley 12th Grade T. Marshall “Acceleration of Battery-Powered cars on Different Surfaces” • Jhaelynn...There were several mini-demos including: making a model for wind tunnel, egg carton gliders, and ring wing gliders. C3.3 Robotics Team The...115 F3.6 WHAT ARE WIND TUNNELS
Wang, Jiyu; Ding, Wenbo; Pan, Lun; Wu, Changsheng; Yu, Hua; Yang, Lijun; Liao, Ruijin; Wang, Zhong Lin
2018-04-24
The development of the Internet of Things has brought new challenges to the corresponding distributed sensor systems. Self-powered sensors that can perceive and respond to environmental stimuli without an external power supply are highly desirable. In this paper, a self-powered wind sensor system based on an anemometer triboelectric nanogenerator (a-TENG, free-standing mode) and a wind vane triboelectric nanogenerator (v-TENG, single-electrode mode) is proposed for simultaneously detecting wind speed and direction. A soft friction mode is adopted instead of a typical rigid friction for largely enhancing the output performance of the TENG. The design parameters including size, unit central angle, and applied materials are optimized to enhance sensitivity, resolution, and wide measurement scale. The optimized a-TENG could deliver an open-circuit voltage of 88 V and short-circuit current of 6.3 μA, corresponding to a maximum power output of 0.47 mW (wind speed of 6.0 m/s), which is capable of driving electronics for data transmission and storage. The current peak value of the a-TENG signal is used for analyzing wind speed for less energy consumption. Moreover, the output characteristics of a v-TENG are further explored, with six actual operation situations, and the v-TENG delivers fast response to the incoming wind and accurately outputs the wind direction data. As a wind sensor system, wind speed ranging from 2.7 to 8.0 m/s can be well detected (consistent with a commercial sensor) and eight regular directions can be monitored. Therefore, the fabricated wind sensor system has great potential in wireless environmental monitoring applications.
Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert
The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar andmore » wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.« less
GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, M.; Min, L.
The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.
NASA Technical Reports Server (NTRS)
Donlan, C. J.
1976-01-01
Some problems relating to longitudinal stability in power-on flight are considered. A derivation is included which shows that, under certain conditions, the rate of change of the pitching moment coefficient with lift coefficient as obtained in wind tunnel tests simulating constant power operation is directly proportional to one of the indices of stability commonly associated with flight analysis, (the slope of the curve relating the elevator angle for trim and lift coefficient). The necessity of analyzing power-on wind tunnel data for trim conditions is emphasized, and a method is provided for converting data obtained from constant thrust tests to simulated constant throttle flight conditions.
78 FR 8121 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
... Green Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River..., Flat Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Groton Wind, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath [[Page 8122
75 FR 75335 - Integration of Variable Energy Resources
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-02
... the facility owner or operator. This includes, for example, wind, solar thermal and photovoltaic, and... Commission recognized that intermittent resources, such as wind power, have a limited ability to control...\\ The Commission therefore exempted wind resources from certain sections of the LGIA and added Appendix...
Monitoring Wind Turbine Loading Using Power Converter Signals
NASA Astrophysics Data System (ADS)
Rieg, C. A.; Smith, C. J.; Crabtree, C. J.
2016-09-01
The ability to detect faults and predict loads on a wind turbine drivetrain's mechanical components cost-effectively is critical to making the cost of wind energy competitive. In order to investigate whether this is possible using the readily available power converter current signals, an existing permanent magnet synchronous generator based wind energy conversion system computer model was modified to include a grid-side converter (GSC) for an improved converter model and a gearbox. The GSC maintains a constant DC link voltage via vector control. The gearbox was modelled as a 3-mass model to allow faults to be included. Gusts and gearbox faults were introduced to investigate the ability of the machine side converter (MSC) current (I q) to detect and quantify loads on the mechanical components. In this model, gearbox faults were not detectable in the I q signal due to shaft stiffness and damping interaction. However, a model that predicts the load change on mechanical wind turbine components using I q was developed and verified using synthetic and real wind data.
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
NASA Astrophysics Data System (ADS)
Ozbay, Ahmet
A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV measurement results. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the power generation performance, dynamic wind loads and wake interferences of the wind turbines for higher total power yield and better durability of the wind turbines sited in atmospheric boundary layer (ABL) winds.
77 FR 9914 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-21
... Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC, Elm Creek Wind II LLC, Farmers City Wind, LLC, Flat Rock Windpower LLC, Flat Rock Windpower II LLC, Flying Cloud Power Partners, LLC, Hardscrabble Wind Power LLC, Hay Canyon Wind LLC, Juniper Canyon Wind Power LLC, Klamath...
Estimating the impacts of wind power on power systems—summary of IEA Wind collaboration
NASA Astrophysics Data System (ADS)
Holttinen, Hannele
2008-04-01
Adding wind power to power systems will have beneficial impacts by reducing the emissions of electricity production and reducing the operational costs of the power system as less fuel is consumed in conventional power plants. Wind power will also have a capacity value to a power system. However, possible negative impacts will have to be assessed to make sure that they will only offset a small part of the benefits and also to ensure the security of the power system operation. An international forum for the exchange of knowledge of power system impacts of wind power has been formed under the IEA Implementing Agreement on Wind Energy. The Task 'Design and Operation of Power Systems with Large Amounts of Wind Power' is analyzing existing case studies from different power systems. There are a multitude of studies completed and ongoing related to the cost of wind integration. However, the results are not easy to compare. This paper describes the general issues of wind power impacts on power systems and presents a comparison of results from ten case studies on increased balancing needs due to wind power.
Emissions and temperature benefits: The role of wind power in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Hongbo, E-mail: hbduan@ucas.ac.cn
Background: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. Methods: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiativemore » forcing and warming. Results: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Conclusions: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. - Highlights: • We assess the warming benefits associated with substitution of wind power for coal. • The effect of emission space limits on climate responses is deeply examined. • China is responsible for at most 21.76% of global warming given the 2-degree target. • Wind power alone may not be sufficient to face the challenge of climate change. • A fertile policy soil and an aggressive plan are necessary to boost renewables.« less
NASA Astrophysics Data System (ADS)
Utomo, Ilham Satrio; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul
2018-02-01
The use of renewable energy in Indonesia is still low. Especially the use of wind energy. Wind turbine Savonius is one turbine that can work with low wind speed. However, Savonius wind turbines still have low efficiency. Therefore it is necessary to modify. Modifications by using the fin are expected to increase the positive drag force by creating a flow that can enter the overlap ratio of the gap. This research was conducted using experimental approach scheme. Parameters generated from the experiment include: power generator, power coefficient, torque coefficient. The experimental data will be collected by variation of fin area, horizontal finning, at wind speed 3 m/s - 4,85 m/s. Experimental results show that with the addition of fin can improve the performance of wind turbine Savonius 11%, and by using the diameter of 115 mm fin is able to provide maximum performance in wind turbine Savonius.
Wind Power Ramping Product for Increasing Power System Flexibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing penetrations of wind power, system operators are concerned about a potential lack of system flexibility and ramping capacity in real-time dispatch stages. In this paper, a modified dispatch formulation is proposed considering the wind power ramping product (WPRP). A swinging door algorithm (SDA) and dynamic programming are combined and used to detect WPRPs in the next scheduling periods. The detected WPRPs are included in the unit commitment (UC) formulation considering ramping capacity limits, active power limits, and flexible ramping requirements. The modified formulation is solved by mixed integer linear programming. Numerical simulations on a modified PJM 5-bus Systemmore » show the effectiveness of the model considering WPRP, which not only reduces the production cost but also does not affect the generation schedules of thermal units.« less
Alternative power supply systems for remote industrial customers
NASA Astrophysics Data System (ADS)
Kharlamova, N. V.; Khalyasmaa, A. I.; Eroshenko, S. A.
2017-06-01
The paper addresses the problem of alternative power supply of remote industrial clusters with renewable electric energy generation. As a result of different technologies comparison, consideration is given to wind energy application. The authors present a methodology of mean expected wind generation output calculation, based on Weibull distribution, which provides an effective express-tool for preliminary assessment of required installed generation capacity. The case study is based on real data including database of meteorological information, relief characteristics, power system topology etc. Wind generation feasibility estimation for a specific territory is followed by power flow calculations using Monte Carlo methodology. Finally, the paper provides a set of recommendations to ensure safe and reliable power supply for the final customers and, subsequently, to provide sustainable development of the regions, located far from megalopolises and industrial centres.
NASA presentation. [wind energy conversion systems planning
NASA Technical Reports Server (NTRS)
Thomas, R. L.
1973-01-01
The development of a wind energy system is outlined that supplies reliable energy at a cost competitive with other energy systems. A government directed industry program with strong university support is recommended that includes meteorological studies to estimate wind energy potentials and determines favorable regions and sites for wind power installations. Key phases of the overall program are wind energy conversion systems, meteorological wind studies, energy storage systems, and environmental impact studies. Performance testing with a prototype wind energy conversion and storage system is projected for Fiscal 1977.
Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, K.
AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs.more » The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palchak, David; Cochran, Jaquelin; Deshmukh, Ranjit
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established an installed capacity target of 175 gigawatts (GW) RE by 2022 that includes 60 GW of wind and 100 GW of solar, up from current capacities of 29 GW wind and 9 GW solar. India’s contribution to global efforts on climate mitigation extends this ambition to 40% non-fossil-based generation capacity by 2030. Global experience demonstrates that power systems can integrate wind and solar at this scale; however, evidence-based planning is important tomore » achieve wind and solar integration at least cost. The purpose of this analysis is to evaluate the operation of India’s power grid with 175 GW of RE in order to identify potential cost and operational concerns and actions needed to efficiently integrate this level of wind and solar generation.« less
Wind energy: Resources, systems, and regional strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grubb, M.J.; Meyer, N.I.
1993-12-31
Wind power is already cost competitive with conventional modes of electricity generation under certain conditions and could, if widely exploited, meet 20 percent or more of the world`s electricity needs within the next four to five decades. The greatest wind potential exists in North America, the former Soviet Union, Africa, and (to a lesser extent), South America, Australia, southern Asia, and parts of Europe. In all these areas, wind can make a significant contribution to the energy supply. In regions of the developing world and in island communities, wind can operate with storage and displace diesel fuel. In more developedmore » areas, wind-generated electricity can be channeled directly into the grid, providing an environmentally benign alternative to fossil fuels. Indeed, wind power can contribute as much as 25 to 45 percent of a grid`s energy supply before economic penalties become prohibitive; the presence of storage facilities or hydroelectric power would increase wind`s share still further. Despite a promising future, opportunities for wind power development are probably being missed because too little is known about either the resource or the technology. International efforts are badly needed to obtain better data and to disseminate technological information around the world. Even then, the extent to which wind is exploited will depend on public reaction and on the willingness of governments to embrace the technology. Action that governments might take to promote wind include providing strategic incentives to further its deployment, funding research on wind resources, taxing fossil fuels to reflect their social costs, and allowing independent wind generators adequate access to electricity systems. 74 refs., 15 figs., 10 tabs.« less
Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo
This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less
Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation
Kim, Chunghun; Muljadi, Eduard; Chung, Chung Choo
2017-12-27
This paper proposes a method for the coordinated control of a wind turbine and an energy storage system (ESS). Because wind power (WP) is highly dependent on wind speed, which is variable, severe stability problems can be caused in power systems, especially when the WP has a high penetration level. To solve this problem, many power generation corporations or grid operators have begun using ESSs. An ESS has very quick response and good performance for reducing the impact of WP fluctuation; however, its installation cost is high. Therefore, it is important to design the control algorithm by considering both themore » ESS capacity and WP fluctuation. Thus, we propose a control algorithm to mitigate the WP fluctuation by using the coordinated control between the wind turbine and the ESS by considering the ESS capacity and the WP fluctuation. Using de-loaded control, according to the WP fluctuation and ESS capacity, we can expand the ESS lifespan and improve grid reliability by avoiding the extreme value of state of charge (SoC) (i.e., 0 or 1 pu). The effectiveness of the proposed method was validated via MATLAB/Simulink by considering a small power system that includes both a wind turbine generator and conventional generators that react to system frequency deviation. We found that the proposed method has better performance in SoC management, thereby improving the frequency regulation by mitigating the impact of the WP fluctuation on the small power system.« less
Electromechanical battery design suitable for back-up power applications
Post, Richard F.
2002-01-01
The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.
Strategies for Voltage Control and Transient Stability Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiskens, Ian A.
As wind generation grows, its influence on power system performance will becoming increasingly noticeable. Wind generation di ffers from traditional forms of generation in numerous ways though, motivating the need to reconsider the usual approaches to power system assessment and performance enhancement. The project has investigated the impact of wind generation on transient stability and voltage control, identifying and addressing issues at three distinct levels of the power system: 1) at the device level, the physical characteristics of wind turbine generators (WTGs) are quite unlike those of synchronous machines, 2) at the wind-farm level, the provision of reactive support ismore » achieved through coordination of numerous dissimilar devices, rather than straightforward generator control, and 3) from a systems perspective, the location of wind-farms on the sub-transmission network, coupled with the variability inherent in their power output, can cause complex voltage control issues. The project has sought to develop a thorough understanding of the dynamic behaviour of type-3 WTGs, and in particular the WECC generic model. The behaviour of such models is governed by interactions between the continuous dynamics of state variables and discrete events associated with limits. It was shown that these interactions can be quite complex, and may lead to switching deadlock that prevents continuation of the trajectory. Switching hysteresis was proposed for eliminating deadlock situations. Various type-3 WTG models include control blocks that duplicate integrators. It was shown that this leads to non-uniqueness in the conditions governing steady-state, and may result in pre- and post-disturbance equilibria not coinciding. It also gives rise to a zero eigenvalue in the linearized WTG model. In order to eliminate the anomalous behaviour revealed through this investigation, WECC has now released a new generic model for type-3 WTGs. Wind-farms typically incorporate a variety of voltage control equipment including tapchanging transformers, switched capacitors, SVCs, STATCOMs and the WTGs themselves. The project has considered the coordinated control of this equipment, and has addressed a range of issues that arise in wind-farm operation. The first concerns the ability of WTGs to meet reactive power requirements when voltage saturation in the collector network restricts the reactive power availability of individual generators. Secondly, dynamic interactions between voltage regulating devices have been investigated. It was found that under certain realistic conditions, tap-changing transformers may exhibit instability. In order to meet cost, maintenance, fault tolerance and other requirements, it is desirable for voltage control equipment to be treated as an integrated system rather than as independent devices. The resulting high-level scheduling of wind-farm reactive support has been investigated. In addressing this control problem, several forms of future information were considered, including exact future knowledge and stochastic predictions. Deterministic and Stochastic Dynamic Programming techniques were used in the development of control algorithms. The results demonstrated that while exact future knowledge is very useful, simple prediction methods yield little bene fit. The integration of inherently variable wind generation into weak grids, particularly subtransmission networks that are characterized by low X=R ratios, aff ects bus voltages, regulating devices and line flows. The meshed structure of these networks adds to the complexity, especially when wind generation is distributed across multiple nodes. A range of techniques have been considered for analyzing the impact of wind variability on weak grids. Sensitivity analysis, based on the power-flow Jacobian, was used to highlight sections of a system that are most severely a ffected by wind-power variations. A continuation power flow was used to determine parameter changes that reduce the impact of wind-power variability. It was also used to explore interactions between multiple wind-farms. Furthermore, these tools have been used to examine the impact of wind injection on transformer tap operation in subtransmission networks. The results of a tap operation simulation study show that voltage regulation at wind injection nodes increases tap change operations. The tradeo ff between local voltage regulation and tap change frequency is fundamentally important in optimizing the size of reactive compensation used for voltage regulation at wind injection nodes. Line congestion arising as a consequence of variable patterns of wind-power production has also been investigated. Two optimization problems have been formulated, based respectively on the DC and AC power flow models, for identifying vulnerable line segments. The DC optimization is computationally more e fficient, whereas the AC sensitivity-based optimization provides greater accuracy.« less
Improved control strategy for wind-powered refrigerated storage of apples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, J.D.C.; Vaughan, D.H.
1981-01-01
A refrigerated apple storage facility was constructed at the VPI and SU Horticultural Research Farm in Blacksburg, Virginia and began operation in March 1978. The system included a 10-kW electric wind generator, electrical battery storage, thermal (ice) storage, and auxiliary power. The need for an improved control system for the VPI and SU system was determined from tests on the individual components and in situ performance tests. The results of these tests formed the basis for an improved control strategy to improve the utilization of available wind energy and reduce the need for auxiliary power while maintaining an adequate applemore » storage environment.« less
75 FR 82130 - WTO Dispute Settlement Proceeding Regarding China-Subsidies on Wind Power Equipment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-29
...--Subsidies on Wind Power Equipment AGENCY: Office of the United States Trade Representative. ACTION: Notice... certain subsidies provided by the People's Republic of China (China) on wind power equipment. The... Special Fund for Industrialization of Wind Power Equipment'' (``Wind Power Equipment Fund''). The Wind...
DOE/NREL supported wind energy activities in Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouilhet, S.
1997-12-01
This paper describes three wind energy projects implemented in Alaska. The first, a sustainable technology energy partnerships (STEP) wind energy deployment project in Kotzebue will install 6 AOC 15/50 wind turbines and connect to the existing village diesel grid, consisting of approximately 1 MW average load. It seeks to develop solutions to the problems of arctic wind energy installations (transport, foundations, erection, operation, and maintenance), to establish a wind turbine test site, and to establish the Kotzebue Electric Association as a training and deployment center for wind/diesel technology in rural Alaska. The second project, a large village medium-penetration wind/diesel system,more » also in Kotzebue, will install a 1-2 MW windfarm, which will supplement the AOC turbines of the STEP project. The program will investigate the impact of medium penetration wind energy on power quality and system stability. The third project, the Alaska high-penetration wind/diesel village power pilot project in Wales will install a high penetration (80-100%) wind/diesel system in a remote Alaskan village. The system will include about 180 kW installed wind capacity, meeting an average village load of about 60 kW. This program will provide a model for high penetration wind retrofits to village diesel power systems and build the capability in Alaska to operate, maintain, and replicate wind/diesel technology. The program will also address problems of: effective use of excess wind energy; reliable diesel-off operation; and the role of energy storage.« less
NASA Astrophysics Data System (ADS)
Shi, Wenhui; Feng, Changyou; Qu, Jixian; Zha, Hao; Ke, Dan
2018-02-01
Most of the existing studies on wind power output focus on the fluctuation of wind farms and the spatial self-complementary of wind power output time series was ignored. Therefore the existing probability models can’t reflect the features of power system incorporating wind farms. This paper analyzed the spatial self-complementary of wind power and proposed a probability model which can reflect temporal characteristics of wind power on seasonal and diurnal timescales based on sufficient measured data and improved clustering method. This model could provide important reference for power system simulation incorporating wind farms.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-09
...- megawatt (MW), 21-turbine Kaheawa Wind Power I (KWP I) project. Like KWP II, KWP I is owned by First Wind... wind turbine structures. The Hawaiian petrel and Newell's shearwater breed on Maui and feed in the open... the permit include the construction and operation of a new 21-megawatt, 14-turbine wind energy...
Power Spectra, Power Law Exponents, and Anisotropy of Solar Wind Turbulence at Small Scales
NASA Technical Reports Server (NTRS)
Podesta, J. J.; Roberts, D. A.; Goldstein, M. L.
2006-01-01
The Wind spacecraft provides simultaneous solar wind velocity and magnetic field measurements with 3- second time resolution, roughly an order of magnitude faster than previous measurements, enabling the small scale features of solar wind turbulence to be studied in unprecedented detail. Almost the entire inertial range can now be explored (the inertial range extends from approximately 1 to 10(exp 3) seconds in the spacecraft frame) although the dissipation range of the velocity fluctuations is still out of reach. Improved measurements of solar wind turbulence spectra at 1 AU in the ecliptic plane are presented including spectra of the energy and cross-helicity, the magnetic and kinetic energies, the Alfven ratio, the normalized cross-helicity, and the Elsasser ratio. Some recent observations and theoretical challenges are discussed including the observation that the velocity and magnetic field spectra often show different power law exponents with values close to 3/2 and 5/3, respectively; the energy (kinetic plus magnetic) and cross-helicity often have approximately equal power law exponents with values intermediate between 3/2 and 5/3; and the Alfven ratio, the ratio of the kinetic to magnetic energy spectra, is often a slowly increasing function of frequency increasing from around 0.4 to 1 for frequencies in the inertial range. Differences between high- and low-speed wind are also discussed. Comparisons with phenomenological turbulence theories show that important aspects of the physics are yet unexplained.
Kuo, Yu-Ming; Fukushima, Yasuhiro
2009-03-01
To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be taken into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study.
NASA Astrophysics Data System (ADS)
Kai, Takaaki; Tanaka, Yuji; Kaneda, Hirotoshi; Kobayashi, Daichi; Tanaka, Akio
Recently, doubly fed induction generator (DFIG) and synchronous generator are mostly applied for wind power generation, and variable speed control and power factor control are executed for high efficiently for wind energy capture and high quality for power system voltage. In variable speed control, a wind speed or a generator speed is used for maximum power point tracking. However, performances of a wind generation power fluctuation due to wind speed variation have not yet investigated for those controls. The authors discuss power smoothing by those controls for the DFIG inter-connected to 6.6kV distribution line. The performances are verified using power system simulation software PSCAD/EMTDC for actual wind speed data and are examined from an approximate equation of wind generation power fluctuation for wind speed variation.
Offshore Wind Power Integration in severely fluctuating Wind Conditions
NASA Astrophysics Data System (ADS)
von Bremen, L.
2010-09-01
Strong power fluctuations from offshore wind farms that are induced by wind speed fluctuations pose a severe problem to the save integration of offshore wind power into the power supply system. Experience at the first large-scale offshore wind farm Horns Rev showed that spatial smoothing of power fluctuations within a single wind farm is significantly smaller than onshore results suggest when distributed wind farms of 160 MW altogether are connected to a single point of common-coupling. Wind power gradients larger than 10% of the rated capacity within 5 minutes require large amount of regulation power that is very expensive for the grid operator. It must be noted that a wind speed change of only 0.5m/s result in a wind power change of 10% (within the range of 9-11 m/s where the wind power curve is steepest). Hence, it is very important for the grid operator to know if strong fluctuations are likely or not. Observed weather conditions at the German wind energy research platform FINO1 in the German bight are used to quantify wind fluctuations. With a standard power curve these wind fluctuations are transfered to wind power. The aim is to predict the probability of exceedence of certain wind power gradients that occur in a time interval of e.g. 12 hours. During 2006 and 2009 the distribution of wind power fluctuations looks very similar giving hope that distinct atmospheric processes can be determined that act as a trigger. Most often high wind power fluctuations occur in a range of wind speeds between 9-12 m/s as can be expected from the shape of the wind power curve. A cluster analysis of the 500 hPa geopotential height to detect predominant weather regimes shows that high fluctuations are more likely in north-western flow. It is shown that most often high fluctuations occur in non-stable atmospheric stratification. The description of stratification by means of the vertical gradient of the virtual potential temperature is chosen to be indicative for convection, i.e. it can be assumed that a negative gradient indicates convection which leads to strong wind fluctuations in the updraft and downdraft of the cloud. Neural Networks are used to determine the probability of exceedence of wind power gradients from a set of atmospheric parameters that are taken from Numerical Weather Prediction Models. Parameters describing atmospheric stability, that are related to convection (e.g. rain rate) and that forecast wind gusts tend to carry most information to estimate expected wind power fluctuations.
Wind power error estimation in resource assessments.
Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.
Wind Power Error Estimation in Resource Assessments
Rodríguez, Osvaldo; del Río, Jesús A.; Jaramillo, Oscar A.; Martínez, Manuel
2015-01-01
Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies. PMID:26000444
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Richards, T. R.
1977-01-01
The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.
Wind wheel electric power generator
NASA Technical Reports Server (NTRS)
Kaufman, J. W. (Inventor)
1980-01-01
Wind wheel electric power generator apparatus includes a housing rotatably mounted upon a vertical support column. Primary and auxiliary funnel-type, venturi ducts are fixed onto the housing for capturing wind currents and conducting to a bladed wheel adapted to be operatively connected with the generator apparatus. Additional air flows are also conducted onto the bladed wheel; all of the air flows positively effecting rotation of the wheel in a cumulative manner. The auxiliary ducts are disposed at an acute angle with respect to the longitudinal axis of the housing, and this feature, together with the rotatability of the housing and the ducts, permits capture of wind currents within a variable directional range.
Numerical and Experimental Methods for Wake Flow Analysis in Complex Terrain
NASA Astrophysics Data System (ADS)
Castellani, Francesco; Astolfi, Davide; Piccioni, Emanuele; Terzi, Ludovico
2015-06-01
Assessment and interpretation of the quality of wind farms power output is a non-trivial task, which poses at least three main challenges: reliable comprehension of free wind flow, which is stretched to the limit on very complex terrains, realistic model of how wake interactions resemble on the wind flow, awareness of the consequences on turbine control systems, including alignment patterns to the wind and, consequently, power output. The present work deals with an onshore wind farm in southern Italy, which has been a test case of IEA- Task 31 Wakebench project: 17 turbines, with 2.3 MW of rated power each, are sited on a very complex terrain. A cluster of machines is investigated through numerical and experimental methods: CFD is employed for simulating wind fields and power extraction, as well as wakes, are estimated through the Actuator Disc model. SCADA data mining techniques are employed for comparison between models and actual performances. The simulations are performed both on the real terrain and on flat terrain, in order to disentangle the effects of complex flow and wake effects. Attention is devoted to comparison between actual alignment patterns of the cluster of turbines and predicted flow deviation.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)
Power control and management of the grid containing largescale wind power systems
NASA Astrophysics Data System (ADS)
Aula, Fadhil Toufick
The ever increasing demand for electricity has driven many countries toward the installation of new generation facilities. However, concerns such as environmental pollution and global warming issues, clean energy sources, high costs associated with installation of new conventional power plants, and fossil fuels depletion have created many interests in finding alternatives to conventional fossil fuels for generating electricity. Wind energy is one of the most rapidly growing renewable power sources and wind power generations have been increasingly demanded as an alternative to the conventional fossil fuels. However, wind power fluctuates due to variation of wind speed. Therefore, large-scale integration of wind energy conversion systems is a threat to the stability and reliability of utility grids containing these systems. They disturb the balance between power generation and consumption, affect the quality of the electricity, and complicate load sharing and load distribution managing and planning. Overall, wind power systems do not help in providing any services such as operating and regulating reserves to the power grid. In order to resolve these issues, research has been conducted in utilizing weather forecasting data to improve the performance of the wind power system, reduce the influence of the fluctuations, and plan power management of the grid containing large-scale wind power systems which consist of doubly-fed induction generator based energy conversion system. The aims of this research, my dissertation, are to provide new methods for: smoothing the output power of the wind power systems and reducing the influence of their fluctuations, power managing and planning of a grid containing these systems and other conventional power plants, and providing a new structure of implementing of latest microprocessor technology for controlling and managing the operation of the wind power system. In this research, in order to reduce and smooth the fluctuations, two methods are presented. The first method is based on a de-loaded technique while the other method is based on utilizing multiple storage facilities. The de-loaded technique is based on characteristics of the power of a wind turbine and estimation of the generated power according to weather forecasting data. The technique provides a reference power by which the wind power system will operate and generate a smooth power. In contrast, utilizing storage facilities will allow the wind power system to operate at its maximum tracking power points' strategy. Two types of energy storages are considered in this research, battery energy storage system (BESS) and pumped-hydropower storage system (PHSS), to suppress the output fluctuations and to support the wind power system to follow the system load demands. Furthermore, this method provides the ability to store energy when there is a surplus of the generated power and to reuse it when there is a shortage of power generation from wind power systems. Both methods are new in terms of utilizing of the techniques and wind speed data. A microprocessor embedded system using an IntelRTM Atom(TM) processor is presented for controlling the wind power system and for providing the remote communication for enhancing the operation of the individual wind power system in a wind farm. The embedded system helps the wind power system to respond and to follow the commands of the central control of the power system. Moreover, it enhances the performance of the wind power system through self-managing, self-functioning, and self-correcting. Finally, a method of system power management and planning is modeled and studied for a grid containing large-scale wind power systems. The method is based on a new technique through constructing a new load demand curve (NLDC) from merging the estimation of generated power from wind power systems and forecasting of the load. To summarize, the methods and their results presented in this dissertation, enhance the operation of the large-scale wind power systems and reduce their drawbacks on the operation of the power grid.
Power Performance Verification of a Wind Farm Using the Friedman's Test.
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L
2016-06-03
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman's test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable.
Power Performance Verification of a Wind Farm Using the Friedman’s Test
Hernandez, Wilmar; López-Presa, José Luis; Maldonado-Correa, Jorge L.
2016-01-01
In this paper, a method of verification of the power performance of a wind farm is presented. This method is based on the Friedman’s test, which is a nonparametric statistical inference technique, and it uses the information that is collected by the SCADA system from the sensors embedded in the wind turbines in order to carry out the power performance verification of a wind farm. Here, the guaranteed power curve of the wind turbines is used as one more wind turbine of the wind farm under assessment, and a multiple comparison method is used to investigate differences between pairs of wind turbines with respect to their power performance. The proposed method says whether the power performance of the specific wind farm under assessment differs significantly from what would be expected, and it also allows wind farm owners to know whether their wind farm has either a perfect power performance or an acceptable power performance. Finally, the power performance verification of an actual wind farm is carried out. The results of the application of the proposed method showed that the power performance of the specific wind farm under assessment was acceptable. PMID:27271628
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2013-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.
Quantifying array losses due to spacing and staggering in offshore wind farms (Invited)
NASA Astrophysics Data System (ADS)
Archer, C. L.; Mirzaeisefat, S.; Lee, S.; Xie, S.
2011-12-01
The layout of wind turbines can have an impact on the power production of a wind farm. Design variables that define the layout of wind turbines within a wind farm include: orientation of the rows with respect to the prevailing wind direction, size and shape of the wind farm, spacing between turbines, and alignment of the turbines (i.e., whether in-line or staggered with one another). There are no universal layout recommendations for offshore wind farms, partly because isolating the contribution of each individual design variable is impossible at existing offshore wind farms, where multiple effects overlap non-linearly on one another, and partly because analyzing the sensitivity to design variables requires sophisticated and computer-intensive numerical codes, such as large-eddy simulations (LES), that can simulate the small-scale turbulent features of turbine wakes. The National Renewable Energy Laboratory (NREL) developed the only publicly available and open-source LES code that is capable of resolving wind turbine blades as rotating actuator lines (not fixed disks), includes both neutral and unstable atmospheric conditions (stable case is currently under development), and does not rely on periodic boundary conditions. This code, named Simulator for Offshore/Onshore Wind Farm Applications (SOWFA), is based on OpenFOAM and has been used successfully in the past for turbulent wake simulations. Here we address the issue of quantifying two design variables: turbine spacing (both along and across the prevailing wind direction) and alignment (in-line or staggered for consecutive rows). SOWFA is used to simulate an existing offshore wind farm in Lillgrund (Sweden), consisting of 48 Siemens 2.3 MW turbines with spacing of 3.2D across and 4.3D along the prevailing wind direction and without staggering, where D is the turbine diameter (93 m). This spacing is exceptionally tight, to our knowledge the tightest of all modern wind farms. While keeping the area and the shape of the farm constant, we design several new Lillgrund farm layouts with and without staggering, with increased spacing in each direction individually and in both directions together, and with various wind directions and atmospheric stabilities. We found that the average wind power generated per turbine is increased by ~32% (from 696 kW to 922 kW) if both staggering and doubling of the across-spacing are implemented simultaneously in a neutral stability case. Wake losses are quantified in terms of average power in the first (upwind) row of wind turbines in the control case, representative of the power that could be generated if there were no wakes, over the average power of all the wind turbines in the farm. Wake losses at Lillgrund are relatively high due to the tight packing, of the order of 35%, but smart combinations of staggering and doubling of turbine spacing can reduce them to 15%-26%. In summary, we provide estimates of the losses/gains associated with individual and combined changes in two design variables, spacing and staggering, under various atmospheric stabilities, wind directions, and wind speeds. These estimates will be useful to the wind industry to optimize a wind project because the effects of alternative layouts can be quantified quickly with respect to total power, capacity factor, and number of wind turbines, all of which can ultimately be converted to actual costs or savings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rana Zucchi, Global Energy Concepts, LLC; Brad Reeve, Kotzebue Electric Association; DOE Project Officer - Doug Hooker
The Kotzebue Wind Power Project is a joint undertaking of the U.S. Department of Energy (DOE); Kotzebue Electric Association (KEA); and the Alaska Energy Authority (AEA). The goal of the project is to develop, construct, and operate a wind power plant interconnected to a small isolated utility grid in an arctic climate in Northwest Alaska. The primary objective of KEA’s wind energy program is to bring more affordable electricity and jobs to remote Alaskan communities. DOE funding has allowed KEA to develop a multi-faceted approach to meet these objectives that includes wind project planning and development, technology transfer, and communitymore » outreach. The first wind turbines were installed in the summer of 1997 and the newest turbines were installed in the spring of 2007. The total installed capacity of the KEA wind power project is 1.16 MW with a total of 17 turbines rated between 65 kW and 100 kW. The operation of the wind power plant has resulted in a wind penetration on the utility system in excess of 35% during periods of low loads. This document and referenced attachments are presented as the final technical report for the U.S. Department of Energy (DOE) grant agreement DE-FG36-97GO10199. Interim deliverables previously submitted are also referenced within this document and where reasonable to do so, specific sections are incorporated in the report or attached as appendices.« less
Evaluation of Wind Energy Production in Texas using Geographic Information Systems (GIS)
NASA Astrophysics Data System (ADS)
Ferrer, L. M.
2017-12-01
Texas has the highest installed wind capacity in the United States. The purpose of this research was to estimate the theoretical wind turbine energy production and the utilization ratio of wind turbines in Texas. Windfarm data was combined applying Geographic Information System (GIS) methodology to create an updated GIS wind turbine database, including location and technical specifications. Applying GIS diverse tools, the windfarm data was spatially joined with National Renewable Energy Laboratory (NREL) wind data to calculate the wind speed at each turbine hub. The power output for each turbine at the hub wind speed was evaluated by the GIS system according the respective turbine model power curve. In total over 11,700 turbines are installed in Texas with an estimated energy output of 60 GWh per year and an average utilization ratio of 0.32. This research indicates that applying GIS methodologies will be crucial in the growth of wind energy and efficiency in Texas.
Hydrogen Generation Through Renewable Energy Sources at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Colozza, Anthony; Prokopius, Kevin
2007-01-01
An evaluation of the potential for generating high pressure, high purity hydrogen at the NASA Glenn Research Center (GRC) was performed. This evaluation was based on producing hydrogen utilizing a prototype Hamilton Standard electrolyzer that is capable of producing hydrogen at 3000 psi. The present state of the electrolyzer system was determined to identify the refurbishment requirements. The power for operating the electrolyzer would be produced through renewable power sources. Both wind and solar were considered in the analysis. The solar power production capability was based on the existing solar array field located at NASA GRC. The refurbishment and upgrade potential of the array field was determined and the array output was analyzed with various levels of upgrades throughout the year. The total available monthly and yearly energy from the array was determined. A wind turbine was also sized for operation. This sizing evaluated the wind potential at the site and produced an operational design point for the wind turbine. Commercially available wind turbines were evaluated to determine their applicability to this site. The system installation and power integration were also addressed. This included items such as housing the electrolyzer, power management, water supply, gas storage, cooling and hydrogen dispensing.
Lessons learned from hybrid wind/PV village power system installations in Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergey, M.
1995-09-01
In the last three years eight decentralized village power systems utilizing small wind turbines as the primary energy source have been installed in rural Mexico. Hybrid wind/PV systems have been installed in five States and by three vendors. Seven out of the eight systems, which range i size from 9.3--71.2kW in combined wind and PV capacity, utilize one or more 10 kW wind turbines. All of these installations have battery banks and use static inverters to provide AC power for distribution to homes, businesses, and community facilities. On all but one of the systems a diesel generator is used tomore » provide back-up power. This paper attempts to summarize the range of costs and economics, performance, and operational experiences for all eight installations. Several of the systems are monitored for performance, including one that is extensively monitored under a cooperative program between the Instituto de Investigaciones Electricas and Sandia National Laboratory. Lessons learned from these systems provide insights that may allow future village power systems of this architecture to be installed at lower costs, to be operated more effectively and efficiently, and to be better able to satisfy customer requirements.« less
Coordinated control strategy for improving the two drops of the wind storage combined system
NASA Astrophysics Data System (ADS)
Qian, Zhou; Chenggen, Wang; Jing, Bu
2018-05-01
In the power system with high permeability wind power, due to wind power fluctuation, the operation of large-scale wind power grid connected to the system brings challenges to the frequency stability of the system. When the doubly fed wind power generation unit does not reserve spare capacity to participate in the system frequency regulation, the system frequency will produce two drops in different degrees when the wind power exits frequency modulation and enters the speed recovery stage. To solve this problem, based on the complementary advantages of wind turbines and energy storage systems in power transmission and frequency modulation, a wind storage combined frequency modulation strategy based on sectional control is proposed in this paper. Based on the TOP wind power frequency modulation strategy, the wind power output reference value is determined according to the linear relationship between the output and the speed of the wind turbine, and the auxiliary wind power load reduction is controlled when the wind power exits frequency modulation into the speed recovery stage, so that the wind turbine is recovered to run at the optimal speed. Then, according to the system frequency and the wind turbine operation state, set the energy storage system frequency modulation output. Energy storage output active support is triggered during wind speed recovery. And then when the system frequency to return to the normal operating frequency range, reduce energy storage output or to exit frequency modulation. The simulation results verify the effectiveness of the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilczak, James M.; Finley, Cathy; Freedman, Jeff
The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collectionmore » of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.« less
Discussion on mass concrete construction of wind turbine generator foundation
NASA Astrophysics Data System (ADS)
Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong
2018-04-01
Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.
Reactive power planning under high penetration of wind energy using Benders decomposition
Xu, Yan; Wei, Yanli; Fang, Xin; ...
2015-11-05
This study addresses the optimal allocation of reactive power volt-ampere reactive (VAR) sources under the paradigm of high penetration of wind energy. Reactive power planning (RPP) in this particular condition involves a high level of uncertainty because of wind power characteristic. To properly model wind generation uncertainty, a multi-scenario framework optimal power flow that considers the voltage stability constraint under the worst wind scenario and transmission N 1 contingency is developed. The objective of RPP in this study is to minimise the total cost including the VAR investment cost and the expected generation cost. Therefore RPP under this condition ismore » modelled as a two-stage stochastic programming problem to optimise the VAR location and size in one stage, then to minimise the fuel cost in the other stage, and eventually, to find the global optimal RPP results iteratively. Benders decomposition is used to solve this model with an upper level problem (master problem) for VAR allocation optimisation and a lower problem (sub-problem) for generation cost minimisation. Impact of the potential reactive power support from doubly-fed induction generator (DFIG) is also analysed. Lastly, case studies on the IEEE 14-bus and 118-bus systems are provided to verify the proposed method.« less
Saptio-temporal complementarity of wind and solar power in India
NASA Astrophysics Data System (ADS)
Lolla, Savita; Baidya Roy, Somnath; Chowdhury, Sourangshu
2015-04-01
Wind and solar power are likely to be a part of the solution to the climate change problem. That is why they feature prominently in the energy policies of all industrial economies including India. One of the major hindrances that is preventing an explosive growth of wind and solar energy is the issue of intermittency. This is a major problem because in a rapidly moving economy, energy production must match the patterns of energy demand. Moreover, sudden increase and decrease in energy supply may destabilize the power grids leading to disruptions in power supply. In this work we explore if the patterns of variability in wind and solar energy availability can offset each other so that a constant supply can be guaranteed. As a first step, this work focuses on seasonal-scale variability for each of the 5 regional power transmission grids in India. Communication within each grid is better than communication between grids. Hence, it is assumed that the grids can switch sources relatively easily. Wind and solar resources are estimated using the MERRA Reanalysis data for the 1979-2013 period. Solar resources are calculated with a 20% conversion efficiency. Wind resources are estimated using a 2 MW turbine power curve. Total resources are obtained by optimizing location and number of wind/solar energy farms. Preliminary results show that the southern and western grids are more appropriate for cogeneration than the other grids. Many studies on wind-solar cogeneration have focused on temporal complementarity at local scale. However, this is one of the first studies to explore spatial complementarity over regional scales. This project may help accelerate renewable energy penetration in India by identifying regional grid(s) where the renewable energy intermittency problem can be minimized.
The wind power prediction research based on mind evolutionary algorithm
NASA Astrophysics Data System (ADS)
Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina
2018-04-01
When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.
76 FR 23198 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... could be used to carry the power generated from a specific wind or solar energy ROW project, and the... included in a pending or future wind or solar energy generation right- of-way (ROW) application, or public lands identified by the BLM for a potential future wind or solar energy generation ROW authorization...
76 FR 23230 - Segregation of Lands-Renewable Energy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... within the wind energy right-of- way application areas in FY 2009 and 2010, we estimate the total cost of... transmission facilities that could be used to carry the power generated from a specific wind or solar energy..., public lands included in a pending or future wind or solar energy generation right-of-way (ROW...
77 FR 37395 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-21
... Wind Power Partners, LLC, High Prairie Wind Farm II, LLC, Cloud County Wind Farm, LLC, Pioneer Prairie Wind Farm I, LLC, Sagebrush Power Partners, LLC, Arlington Wind Power Project LLC, Marble River, LLC... Power Project LLC, Blue Canyon Windpower II, LLC, Lost Lakes Wind Farm LLC, Blue Canyon Windpower V LLC...
Retrospective and prospective analysis of policy incentives for wind power in Portugal
NASA Astrophysics Data System (ADS)
Pena Cabra, Ivonne A.
Concerns over climate change impacts, goals to increase environmental sustainability, and questions about the reliability of fuel supply have led several countries to pursue the goal of increasing the share of renewable energy sources in their electricity grid. Portugal is one of the leading countries for wind electricity generation. Wind diffusion in Portugal started in the early 2000's and in 2013 wind electricity generation accounted for more than 24% (REN 2013b). The large share of wind in Portuguese electricity production is a consequence of European Union (E.U.) mandates and national policies, mainly feed-in tariffs. Discussions on the appropriate policy design and level of incentive to promote renewable energy adoption and meet further renewable capacity goals are ongoing in Portugal, namely in what concerns the level and duration of feed-in tariffs that should be provided to independent power producers. This, in turn, raises the question of whether the past feed-in tariff levels were well designed to achieve the goals of a larger penetration of renewables in the Portuguese grid. The policies to induce wind adoption have led to a growth in wind installed capacity and share of electricity generated by wind in Portugal from less than 1% in 2000 to approximately 24% in 2013, but questions arise on their cost-effectiveness and whether alternative policy designs would have led to the same goal. The Portuguese wind feed-in tariffs are a guaranteed incentive which has varied between 85- 180/MWh over the last 20 years (ERSE 2011), and remained approximately constant since 2001 at $101/MWh. They are currently guaranteed for 20 years of production or 44GWh of electricity generation per MW installed (Diario da Republica 2013) - the longest period among countries with high wind electricity share. They do not incorporate any digression rate besides inflation, and are guaranteed for every unit of electricity fed to the grid. There are no power plants that have already been decommissioned despite being in operation for more than 20 years, favoring from new, detailed and hard-to-follow agreements in the legislation. All wind parks that are currently in operation have received feed-in tariffs since they connected to the grid, and are expected to keep receiving them at least until December 2019, and up to December 2036 - depending on year of connection and agreement under the most recent legislation (Diario da Republica 2013). The 2020 renewable energy goals in Portugal include having 6.8 GW of installed wind capacity, which implies the connection of 2 GW in the next years. If no further grid investments are made and wind capacity increases up to 100 MW to the connection point that we analyze, total annual electricity spill is likely to range the 20% to 40%. If the connection grid policy is designed to allow for wind spill, already 'occupied' connection points will be available to new entrants, lowering the total investment costs for new wind parks and increasing their profitability. This thesis is divided in three main parts: a first introductory section, a retrospective study of wind power in Portugal and a prospective analysis of the Portuguese wind power sector. The introductory section is a brief overview of the global renewable status, described in Chapter 1. Chapter 2 and Chapter 3 compile a retrospective study of wind power and the policies that have incentivized wind diffusion. We include in the discussion some references to the future wind power goals, but the results and policy recommendations are directed towards the existing connected wind power capacity. (Abstract shortened by UMI.).
Security region-based small signal stability analysis of power systems with FSIG based wind farm
NASA Astrophysics Data System (ADS)
Qin, Chao; Zeng, Yuan; Yang, Yang; Cui, Xiaodan; Xu, Xialing; Li, Yong
2018-02-01
Based on the Security Region approach, the impact of fixed-speed induction generator based wind farm on the small signal stability of power systems is analyzed. Firstly, the key factors of wind farm on the small signal stability of power systems are analyzed and the parameter space for small signal stability region is formed. Secondly, the small signal stability region of power systems with wind power is established. Thirdly, the corresponding relation between the boundary of SSSR and the dominant oscillation mode is further studied. Results show that the integration of fixed-speed induction generator based wind farm will cause the low frequency oscillation stability of the power system deteriorate. When the output of wind power is high, the oscillation stability of the power system is mainly concerned with the inter-area oscillation mode caused by the integration of the wind farm. Both the active power output and the capacity of reactive power compensation of the wind farm have a significant influence on the SSSR. To improve the oscillation stability of power systems with wind power, it is suggested to reasonably set the reactive power compensation capacity for the wind farm through SSSR.
Energy Storage Applications in Power Systems with Renewable Energy Generation
NASA Astrophysics Data System (ADS)
Ghofrani, Mahmoud
In this dissertation, we propose new operational and planning methodologies for power systems with renewable energy sources. A probabilistic optimal power flow (POPF) is developed to model wind power variations and evaluate the power system operation with intermittent renewable energy generation. The methodology is used to calculate the operating and ramping reserves that are required to compensate for power system uncertainties. Distributed wind generation is introduced as an operational scheme to take advantage of the spatial diversity of renewable energy resources and reduce wind power fluctuations using low or uncorrelated wind farms. The POPF is demonstrated using the IEEE 24-bus system where the proposed operational scheme reduces the operating and ramping reserve requirements and operation and congestion cost of the system as compared to operational practices available in the literature. A stochastic operational-planning framework is also proposed to adequately size, optimally place and schedule storage units within power systems with high wind penetrations. The method is used for different applications of energy storage systems for renewable energy integration. These applications include market-based opportunities such as renewable energy time-shift, renewable capacity firming, and transmission and distribution upgrade deferral in the form of revenue or reduced cost and storage-related societal benefits such as integration of more renewables, reduced emissions and improved utilization of grid assets. A power-pool model which incorporates the one-sided auction market into POPF is developed. The model considers storage units as market participants submitting hourly price bids in the form of marginal costs. This provides an accurate market-clearing process as compared to the 'price-taker' analysis available in the literature where the effects of large-scale storage units on the market-clearing prices are neglected. Different case studies are provided to demonstrate our operational-planning framework and economic justification for different storage applications. A new reliability model is proposed for security and adequacy assessment of power networks containing renewable resources and energy storage systems. The proposed model is used in combination with the operational-planning framework to enhance the reliability and operability of wind integration. The proposed framework optimally utilizes the storage capacity for reliability applications of wind integration. This is essential for justification of storage deployment within regulated utilities where the absence of market opportunities limits the economic advantage of storage technologies over gas-fired generators. A control strategy is also proposed to achieve the maximum reliability using energy storage systems. A cost-benefit analysis compares storage technologies and conventional alternatives to reliably and efficiently integrate different wind penetrations and determines the most economical design. Our simulation results demonstrate the necessity of optimal storage placement for different wind applications. This dissertation also proposes a new stochastic framework to optimally charge and discharge electric vehicles (EVs) to mitigate the effects of wind power uncertainties. Vehicle-to-grid (V2G) service for hedging against wind power imbalances is introduced as a novel application for EVs. This application enhances the predictability of wind power and reduces the power imbalances between the scheduled output and actual power. An Auto Regressive Moving Average (ARMA) wind speed model is developed to forecast the wind power output. Driving patterns of EVs are stochastically modeled and the EVs are clustered in the fleets of similar daily driving patterns. Monte Carlo Simulation (MCS) simulates the system behavior by generating samples of system states using the wind ARMA model and EVs driving patterns. A Genetic Algorithm (GA) is used in combination with MCS to optimally coordinate the EV fleets for their V2G services and minimize the penalty cost associated with wind power imbalances. The economic characteristics of automotive battery technologies and costs of V2G service are incorporated into a cost-benefit analysis which evaluates the economic justification of the proposed V2G application. Simulation results demonstrate that the developed algorithm enhances wind power utilization and reduces the penalty cost for wind power under-/over-production. This offers potential revenues for the wind producer. Our cost-benefit analysis also demonstrates that the proposed algorithm will provide the EV owners with economic incentives to participate in V2G services. The proposed smart scheduling strategy develops a sustainable integrated electricity and transportation infrastructure.
Energy Storage Opportunities and Capabilities in a Type 3 Wind Turbine Generator: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Gevorgian, Vahan; Hoke, Andy
Wind power plants and other renewable power plants with power electronic interfaces are capable of delivering frequency response (both governor and/or inertial response) to the grid by a control action; thus, the reduction of available online inertia as conventional power plants are retired can be compensated by designing renewable power plant controls to include frequency response. The source of energy to be delivered as inertial response is determined by the type of generation and control strategy chosen. The cost of energy storage is expected to drop over time, and global research activities on energy storage are very active, funded bothmore » by the private industry and governments. Different industry sectors (e.g., transportation, energy) are the major drivers of the recent storage research and development. This work investigates the opportunities and capabilities of deploying energy storage in renewable power plants. In particular, we focus on wind power plants with doubly-fed induction generators, or Type 3 wind turbine generator (WTGs). We find that the total output power of a system with Type 3 WTGs with energy storage can deliver a power boost during inertial response that is up to 45% higher than one without energy storage without affecting the torque limit, thus enabling an effective delivery of ancillary services to the grid.« less
Increasing power generation in horizontal axis wind turbines using optimized flow control
NASA Astrophysics Data System (ADS)
Cooney, John A., Jr.
In order to effectively realize future goals for wind energy, the efficiency of wind turbines must increase beyond existing technology. One direct method for achieving increased efficiency is by improving the individual power generation characteristics of horizontal axis wind turbines. The potential for additional improvement by traditional approaches is diminishing rapidly however. As a result, a research program was undertaken to assess the potential of using distributed flow control to increase power generation. The overall objective was the development of validated aerodynamic simulations and flow control approaches to improve wind turbine power generation characteristics. BEM analysis was conducted for a general set of wind turbine models encompassing last, current, and next generation designs. This analysis indicated that rotor lift control applied in Region II of the turbine power curve would produce a notable increase in annual power generated. This was achieved by optimizing induction factors along the rotor blade for maximum power generation. In order to demonstrate this approach and other advanced concepts, the University of Notre Dame established the Laboratory for Enhanced Wind Energy Design (eWiND). This initiative includes a fully instrumented meteorological tower and two pitch-controlled wind turbines. The wind turbines are representative in their design and operation to larger multi-megawatt turbines, but of a scale that allows rotors to be easily instrumented and replaced to explore new design concepts. Baseline data detailing typical site conditions and turbine operation is presented. To realize optimized performance, lift control systems were designed and evaluated in CFD simulations coupled with shape optimization tools. These were integrated into a systematic design methodology involving BEM simulations, CFD simulations and shape optimization, and selected experimental validation. To refine and illustrate the proposed design methodology, a complete design cycle was performed for the turbine model incorporated in the wind energy lab. Enhanced power generation was obtained through passive trailing edge shaping aimed at reaching lift and lift-to-drag goals predicted to optimize performance. These targets were determined by BEM analysis to improve power generation characteristics and annual energy production (AEP) for the wind turbine. A preliminary design was validated in wind tunnel experiments on a 2D rotor section in preparation for testing in the full atmospheric environment of the eWiND Laboratory. These tests were performed for the full-scale geometry and atmospheric conditions. Upon making additional improvements to the shape optimization tools, a series of trailing edge additions were designed to optimize power generation. The trailing edge additions were predicted to increase the AEP by up to 4.2% at the White Field site. The pieces were rapid-prototyped and installed on the wind turbine in March, 2014. Field tests are ongoing.
Could Wind or Solar Energy Replace Diesel Generators for Aviation Ground Maintenance Operations?
2013-04-17
power. Both of these systems depend on the sun to produce energy. Wind turbines depend on wind which results from the uneven heating of the earth...inefficient. In addition to these limitations, both systems are costly and their installation brings a number of challenges. For the wind turbines ...these challenges include: the obstruction created by the height of the turbines near airfields, the amount of land necessary for a 7 turbines wind farm
Research on the effects of wind power grid to the distribution network of Henan province
NASA Astrophysics Data System (ADS)
Liu, Yunfeng; Zhang, Jian
2018-04-01
With the draining of traditional energy, all parts of nation implement policies to develop new energy to generate electricity under the favorable national policy. The wind has no pollution, Renewable and other advantages. It has become the most popular energy among the new energy power generation. The development of wind power in Henan province started relatively late, but the speed of the development is fast. The wind power of Henan province has broad development prospects. Wind power has the characteristics of volatility and randomness. The wind power access to power grids will cause much influence on the power stability and the power quality of distribution network, and some areas have appeared abandon the wind phenomenon. So the study of wind power access to power grids and find out improvement measures is very urgent. Energy storage has the properties of the space transfer energy can stabilize the operation of power grid and improve the power quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu-Ming Kuo; Yasuhiro Fukushima
2009-03-15
To achieve higher energy security and lower emission of greenhouse gases (GHGs) and pollutants, the development of renewable energy has attracted much attention in Taiwan. In addition to its contribution to the enhancement of reliable indigenous resources, the introduction of renewable energy such as photovoltaic (PV) and wind power systems reduces the emission of GHGs and air pollutants by substituting a part of the carbon- and pollutant-intensive power with power generated by methods that are cleaner and less carbon-intensive. To evaluate the reduction potentials, consequential changes in the operation of different types of existing power plants have to be takenmore » into account. In this study, a linear mathematical programming model is constructed to simulate a power mix for a given power demand in a power market sharing a cost-minimization objective. By applying the model, the emission reduction potentials of capacity extension case studies, including the enhancement of PV and wind power introduction at different scales, were assessed. In particular, the consequences of power mix changes in carbon dioxide, nitrogen oxides, sulfur oxides, and particulates were discussed. Seasonally varying power demand levels, solar irradiation, and wind strength were taken into account. In this study, we have found that the synergetic reduction of carbon dioxide emission induced by PV and wind power introduction occurs under a certain level of additional installed capacity. Investigation of a greater variety of case studies on scenario development with emerging power sources becomes possible by applying the model developed in this study. 15 refs., 8 figs., 11 tabs.« less
Thermal wind from hot accretion flows at large radii
NASA Astrophysics Data System (ADS)
Bu, De-Fu; Yang, Xiao-Hong
2018-06-01
We study slowly rotating accretion flow at parsec and subparsec scales irradiated by low-luminosity active galactic nuclei. We take into account the Compton heating, photoionization heating by the central X-rays. The bremsstrahlung cooling, recombination, and line cooling are also included. We find that due to the Compton heating, wind can be thermally driven. The power of wind is in the range (10-6-10-3) LEdd, with LEdd being the Eddington luminosity. The mass flux of wind is in the range (0.01-1) \\dot{M}_Edd (\\dot{M}_Edd= L_Edd/0.1c^2 is the Eddington accretion rate, c is speed of light). We define the wind generation efficiency as ɛ = P_W/\\dot{M}_BHc^2, with PW being wind power, \\dot{M}_BH being the mass accretion rate on to the black hole. ɛ lies in the range 10-4-1.18. Wind production efficiency decreases with increasing mass accretion rate. The possible role of the thermally driven wind in the active galactic feedback is briefly discussed.
Kaman 40 kW wind turbine generator - control system dynamics
NASA Technical Reports Server (NTRS)
Perley, R.
1981-01-01
The generator design incorporates an induction generator for application where a utility line is present and a synchronous generator for standalone applications. A combination of feed forward and feedback control is used to achieve synchronous speed prior to connecting the generator to the load, and to control the power level once the generator is connected. The dynamics of the drive train affect several aspects of the system operation. These were analyzed to arrive at the required shaft stiffness. The rotor parameters that affect the stability of the feedback control loop vary considerably over the wind speed range encountered. Therefore, the controller gain was made a function of wind speed in order to maintain consistent operation over the whole wind speed range. The velocity requirement for the pitch control mechanism is related to the nature of the wind gusts to be encountered, the dynamics of the system, and the acceptable power fluctuations and generator dropout rate. A model was developed that allows the probable dropout rate to be determined from a statistical model of wind gusts and the various system parameters, including the acceptable power fluctuation.
Control circuit maintains unity power factor of reactive load
NASA Technical Reports Server (NTRS)
Kramer, M.; Martinage, L. H.
1966-01-01
Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.
Measuring wind turbine wakes and unsteady loading in a micro wind farm model
NASA Astrophysics Data System (ADS)
Bossuyt, Juliaan; Meneveau, Charles; Meyers, Johan
2014-11-01
Very large wind farms, approximating the ``infinite'' asymptotic limit, are often studied with LES using periodic boundary conditions. In order to create an experimental realization of such large wind-turbine arrays in a wind tunnel experiment including over 100 turbines, a very small-scale turbine model based on a 3 cm diameter porous disk is designed. The porous disc matches a realistic thrust coefficient between 0.75--0.85, and the far wake flow characteristics of a rotating wind turbine. As a first step, we characterize the properties of a single model turbine. Hot-wire measurements are performed for uniform inflow conditions with different background turbulence intensity levels. Strain gage measurements are used to measure the mean value and power spectra of the thrust force, power output and wind velocity in front of the turbine. The dynamics of the wind turbine are modeled making it possible to measure force spectra at least up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow and the vortex shedding signatures of an upstream obstruction. An array with a large number of these instrumented model turbines is placed in JHU's Corrsin wind tunnel, to study effects of farm layout on total power output and turbine loading. Work supported by ERC (ActiveWindFarms, Grant No: 306471), and by NSF (CBET-113380 and IIA-1243482).
Integrated Wind Power Planning Tool
NASA Astrophysics Data System (ADS)
Rosgaard, M. H.; Giebel, G.; Nielsen, T. S.; Hahmann, A.; Sørensen, P.; Madsen, H.
2012-04-01
This poster presents the current state of the public service obligation (PSO) funded project PSO 10464, with the working title "Integrated Wind Power Planning Tool". The project commenced October 1, 2011, and the goal is to integrate a numerical weather prediction (NWP) model with purely statistical tools in order to assess wind power fluctuations, with focus on long term power system planning for future wind farms as well as short term forecasting for existing wind farms. Currently, wind power fluctuation models are either purely statistical or integrated with NWP models of limited resolution. With regard to the latter, one such simulation tool has been developed at the Wind Energy Division, Risø DTU, intended for long term power system planning. As part of the PSO project the inferior NWP model used at present will be replaced by the state-of-the-art Weather Research & Forecasting (WRF) model. Furthermore, the integrated simulation tool will be improved so it can handle simultaneously 10-50 times more turbines than the present ~ 300, as well as additional atmospheric parameters will be included in the model. The WRF data will also be input for a statistical short term prediction model to be developed in collaboration with ENFOR A/S; a danish company that specialises in forecasting and optimisation for the energy sector. This integrated prediction model will allow for the description of the expected variability in wind power production in the coming hours to days, accounting for its spatio-temporal dependencies, and depending on the prevailing weather conditions defined by the WRF output. The output from the integrated prediction tool constitute scenario forecasts for the coming period, which can then be fed into any type of system model or decision making problem to be solved. The high resolution of the WRF results loaded into the integrated prediction model will ensure a high accuracy data basis is available for use in the decision making process of the Danish transmission system operator, and the need for high accuracy predictions will only increase over the next decade as Denmark approaches the goal of 50% wind power based electricity in 2020, from the current 20%.
A study on the required performance of a 2G HTS wire for HTS wind power generators
NASA Astrophysics Data System (ADS)
Sung, Hae-Jin; Park, Minwon; Go, Byeong-Soo; Yu, In-Keun
2016-05-01
YBCO or REBCO coated conductor (2G) materials are developed for their superior performance at high magnetic field and temperature. Power system applications based on high temperature superconducting (HTS) 2G wire technology are attracting attention, including large-scale wind power generators. In particular, to solve problems associated with the foundations and mechanical structure of offshore wind turbines, due to the large diameter and heavy weight of the generator, an HTS generator is suggested as one of the key technologies. Many researchers have tried to develop feasible large-scale HTS wind power generator technologies. In this paper, a study on the required performance of a 2G HTS wire for large-scale wind power generators is discussed. A 12 MW class large-scale wind turbine and an HTS generator are designed using 2G HTS wire. The total length of the 2G HTS wire for the 12 MW HTS generator is estimated, and the essential prerequisites of the 2G HTS wire based generator are described. The magnetic field distributions of a pole module are illustrated, and the mechanical stress and strain of the pole module are analysed. Finally, a reasonable price for 2G HTS wire for commercialization of the HTS generator is suggested, reflecting the results of electromagnetic and mechanical analyses of the generator.
Where is the ideal location for a US East Coast offshore grid?
NASA Astrophysics Data System (ADS)
Dvorak, Michael J.; Stoutenburg, Eric D.; Archer, Cristina L.; Kempton, Willett; Jacobson, Mark Z.
2012-03-01
This paper identifies the location of an “ideal” offshore wind energy (OWE) grid on the U.S. East Coast that would (1) provide the highest overall and peak-time summer capacity factor, (2) use bottom-mounted turbine foundations (depth ≤50 m), (3) connect regional transmissions grids from New England to the Mid-Atlantic, and (4) have a smoothed power output, reduced hourly ramp rates and hours of zero power. Hourly, high-resolution mesoscale weather model data from 2006-2010 were used to approximate wind farm output. The offshore grid was located in the waters from Long Island, New York to the Georges Bank, ≈450 km east. Twelve candidate 500 MW wind farms were located randomly throughout that region. Four wind farms (2000 MW total capacity) were selected for their synergistic meteorological characteristics that reduced offshore grid variability. Sites likely to have sea breezes helped increase the grid capacity factor during peak time in the spring and summer months. Sites far offshore, dominated by powerful synoptic-scale storms, were included for their generally higher but more variable power output. By interconnecting all 4 farms via an offshore grid versus 4 individual interconnections, power was smoothed, the no-power events were reduced from 9% to 4%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms ≈450 km apart, in regions with offshore wind energy resources driven by both synoptic-scale storms and mesoscale sea breezes, substantial reductions in low/no-power hours and hourly ramp rates can be made.
Study on development system of increasing gearbox for high-performance wind-power generator
NASA Astrophysics Data System (ADS)
Xu, Hongbin; Yan, Kejun; Zhao, Junyu
2005-12-01
Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.
Wind turbine wake visualization and characteristics analysis by Doppler lidar.
Wu, Songhua; Liu, Bingyi; Liu, Jintao; Zhai, Xiaochun; Feng, Changzhong; Wang, Guining; Zhang, Hongwei; Yin, Jiaping; Wang, Xitao; Li, Rongzhong; Gallacher, Daniel
2016-05-16
Wind power generation is growing fast as one of the most promising renewable energy sources that can serve as an alternative to fossil fuel-generated electricity. When the wind turbine generator (WTG) extracts power from the wind, the wake evolves and leads to a considerable reduction in the efficiency of the actual power generation. Furthermore, the wake effect can lead to the increase of turbulence induced fatigue loads that reduce the life time of WTGs. In this work, a pulsed coherent Doppler lidar (PCDL) has been developed and deployed to visualize wind turbine wakes and to characterize the geometry and dynamics of wakes. As compared with the commercial off-the-shelf coherent lidars, the PCDL in this work has higher updating rate of 4 Hz and variable physical spatial resolution from 15 to 60 m, which improves its capability to observation the instantaneous turbulent wind field. The wind speed estimation method from the arc scan technique was evaluated in comparison with wind mast measurements. Field experiments were performed to study the turbulent wind field in the vicinity of operating WTGs in the onshore and offshore wind parks from 2013 to 2015. Techniques based on a single and a dual Doppler lidar were employed for elucidating main features of turbine wakes, including wind velocity deficit, wake dimension, velocity profile, 2D wind vector with resolution of 10 m, turbulence dissipation rate and turbulence intensity under different conditions of surface roughness. The paper shows that the PCDL is a practical tool for wind energy research and will provide a significant basis for wind farm site selection, design and optimization.
NASA Astrophysics Data System (ADS)
Kosovic, B.; Bryan, G. H.; Haupt, S. E.
2012-12-01
Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine would encounter under hurricane strength winds. These flow fields can be used to estimate wind turbine loads and responses with AeroDyn (http://wind.nrel.gov/designcodes/simulators/aerodyn/) and FAST (http://wind.nrel.gov/designcodes/simulators/fast/) codes also developed by NREL.
Doubly fed induction generator wind turbines with fuzzy controller: a survey.
Sathiyanarayanan, J S; Kumar, A Senthil
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine.
Very-short-term wind power prediction by a hybrid model with single- and multi-step approaches
NASA Astrophysics Data System (ADS)
Mohammed, E.; Wang, S.; Yu, J.
2017-05-01
Very-short-term wind power prediction (VSTWPP) has played an essential role for the operation of electric power systems. This paper aims at improving and applying a hybrid method of VSTWPP based on historical data. The hybrid method is combined by multiple linear regressions and least square (MLR&LS), which is intended for reducing prediction errors. The predicted values are obtained through two sub-processes:1) transform the time-series data of actual wind power into the power ratio, and then predict the power ratio;2) use the predicted power ratio to predict the wind power. Besides, the proposed method can include two prediction approaches: single-step prediction (SSP) and multi-step prediction (MSP). WPP is tested comparatively by auto-regressive moving average (ARMA) model from the predicted values and errors. The validity of the proposed hybrid method is confirmed in terms of error analysis by using probability density function (PDF), mean absolute percent error (MAPE) and means square error (MSE). Meanwhile, comparison of the correlation coefficients between the actual values and the predicted values for different prediction times and window has confirmed that MSP approach by using the hybrid model is the most accurate while comparing to SSP approach and ARMA. The MLR&LS is accurate and promising for solving problems in WPP.
77 FR 31839 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology development and market acceleration and deployment projects from the Program's research and development...
The relationship between wind power, electricity demand and winter weather patterns in Great Britain
NASA Astrophysics Data System (ADS)
Thornton, Hazel E.; Scaife, Adam A.; Hoskins, Brian J.; Brayshaw, David J.
2017-06-01
Wind power generation in Great Britain has increased markedly in recent years. However due to its intermittency its ability to provide power during periods of high electricity demand has been questioned. Here we characterise the winter relationship between electricity demand and the availability of wind power. Although a wide range of wind power capacity factors is seen for a given demand, the average capacity factor reduces by a third between low and high demand. However, during the highest demand average wind power increases again, due to strengthening easterly winds. The nature of the weather patterns affecting Great Britain are responsible for this relationship. High demand is driven by a range of high pressure weather types, each giving cold conditions, but variable wind power availability. Offshore wind power is sustained at higher levels and offers a more secure supply compared to that onshore. However, during high demand periods in Great Britain neighbouring countries may struggle to provide additional capacity due to concurrent low temperatures and low wind power availability.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
... Energy Carolinas, LLC, to construct up to three (3) power generating wind turbines within the Pamlico... turbines in NC's coastal waters, entitled Coastal Wind, Energy for North Carolina's Future, dated June 2009... reasonable number of alternatives, including the no action alternative and constructing the wind turbines and...
Converter topologies for common mode voltage reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Fernando
An inverter includes a three-winding transformer, a DC-AC inverter electrically coupled to the first winding of the transformer, a cycloconverter electrically coupled to the second winding of the transformer, and an active filter electrically coupled to the third winding of the transformer. The DC-AC inverter is adapted to convert the input DC waveform to an AC waveform delivered to the transformer at the first winding. The cycloconverter is adapted to convert an AC waveform received at the second winding of the transformer to the output AC waveform having a grid frequency of the AC grid. The active filter is adaptedmore » to sink and source power with one or more energy storage devices based on a mismatch in power between the DC source and the AC grid. At least two of the DC-AC inverter, the cycloconverter, or the active filter are electrically coupled via a common reference electrical interconnect.« less
Stator for a rotating electrical machine having multiple control windings
Shah, Manoj R.; Lewandowski, Chad R.
2001-07-17
A rotating electric machine is provided which includes multiple independent control windings for compensating for rotor imbalances and for levitating/centering the rotor. The multiple independent control windings are placed at different axial locations along the rotor to oppose forces created by imbalances at different axial locations along the rotor. The multiple control windings can also be used to levitate/center the rotor with a relatively small magnetic field per unit area since the rotor and/or the main power winding provides the bias field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian
The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPPs) is crucial to ensuring the reliable and stable operation of the electric power grid. This report compares the standards for grid-connected WPPs in China to those in the United States to facilitate further improvements in wind power standards and enhance the development of wind power equipment. Detailed analyses of power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhancemore » the understanding of grid codes in the two largest markets of wind power. This study compares WPP interconnection standards and technical requirements in China to those in the United States.« less
NASA Astrophysics Data System (ADS)
Gonzalez, T.; Ruvalcaba, A.; Oliver, L.
2016-12-01
The electricity generation from renewable resources has acquired a leading role. Mexico particularrly it has great interest in renewable natural resources for power generation, especially wind energy. Therefore, the country is rapidly entering in the development of wind power generators sites. The development of a wind places as an energy project, does not have a standardized methodology. Techniques vary according to the developer to select the best place to install a wind turbine system. Generally to install the system the developers consider three key factors: 1) the characteristics of the wind, 2) the potential distribution of electricity and 3) transport access to the site. This paper presents a study with a different methodology which is carried out in two stages: the first at regional scale uses "space" and "natural" criteria in order to select a region based on its cartographic features such as politics and physiographic division, location of conservation natural areas, water bodies, urban criteria; and natural criteria such as the amount and direction of the wind, the type and land use, vegetation, topography and biodiversity of the site. The result of the application of these criteria, gives a first optimal selection area. The second part of the methodology includes criteria and variables on detail scale. The analysis of all data information collected will provide new parameters (decision variables) for the site. The overall analysis of the information, based in these criteria, indicates that the best location that the best location of the field would be the southern Coahuila and the central part of Nuevo Leon. The wind power site will contribute to the economy grow of important cities including Monterrey. Finally, computational model of genetic algorithm will be used as a tool to determine the best site selection depending on the parameters considered.
1981-09-01
The expres- sions for the rotor torque for a Darrieus machine can be found in Reference 4.16. The Darrieus wind turbine offers the following... turbine generators, wind -driven turbines , power conditioning, wind power, energy conservation, windmills, economic ana \\sis. 20 ABS 1"ACT (Conti,on... turbines , power conditioning requirements, siting requirements, and the economics of wind power under different conditions. Three examples are given to
Study on optimized decision-making model of offshore wind power projects investment
NASA Astrophysics Data System (ADS)
Zhao, Tian; Yang, Shangdong; Gao, Guowei; Ma, Li
2018-02-01
China’s offshore wind energy is of great potential and plays an important role in promoting China’s energy structure adjustment. However, the current development of offshore wind power in China is inadequate, and is much less developed than that of onshore wind power. On the basis of considering all kinds of risks faced by offshore wind power development, an optimized model of offshore wind power investment decision is established in this paper by proposing the risk-benefit assessment method. To prove the practicability of this method in improving the selection of wind power projects, python programming is used to simulate the investment analysis of a large number of projects. Therefore, the paper is dedicated to provide decision-making support for the sound development of offshore wind power industry.
Doubly Fed Induction Generator Wind Turbines with Fuzzy Controller: A Survey
Sathiyanarayanan, J. S.; Senthil Kumar, A.
2014-01-01
Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With the increasing wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. This paper presents fuzzy logic control of doubly fed induction generator (DFIG) wind turbine in a sample power system. Fuzzy logic controller is applied to rotor side converter for active power control and voltage regulation of wind turbine. PMID:25028677
Using a micromachined magnetostatic relay in commutating a DC motor
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Wright, John A. (Inventor); Lilienthal, Gerald (Inventor)
2004-01-01
A DC motor is commutated by rotating a magnetic rotor to induce a magnetic field in at least one magnetostatic relay in the motor. Each relay is activated in response to the magnetic field to deliver power to at least one corresponding winding connected to the relay. In some cases, each relay delivers power first through a corresponding primary winding and then through a corresponding secondary winding to a common node. Specific examples include a four-pole, three-phase motor in which each relay is activated four times during one rotation of the magnetic rotor.
India RE Grid Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin M
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India's RE targets and identify actions that may be favorable for integration.
Research on grid connection control technology of double fed wind generator
NASA Astrophysics Data System (ADS)
Ling, Li
2017-01-01
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
75 FR 6652 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-10
...-004. Applicants: Bendwind, LLC; Big Sky Wind, LLC; DeGreeff DP, LLC; DeGreeffpa, LLC; CL Power Sales... Wind, LLC; EME Homer City Generation, L.P.; Forward WindPower, LLC; Groen Wind, LLC; High Lonesome Mesa, LLC; Hillcrest Wind, LLC; Jeffers Wind 20, LLC; Larswind, LLC; Lookout WindPower, LLC; Midway-Sunset...
76 FR 69252 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-08
..., Butler Ridge Wind Energy Center, LLC, Calhoun Power Company I, LLC, Crystal Lake Wind, LLC, Crystal Lake... Partnership, Elk City Wind, LLC, Elk City II Wind, LLC, ESI Vansycle Partners, L.P., Florida Power & Light Co... Cowboy Wind, LLC, FPL Energy Green Power Wind, LLC, FPL Energy Hancock County Wind, LLC, FPL Energy...
LIDAR wind speed measurements at a Taiwan onshore wind park
NASA Astrophysics Data System (ADS)
Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng
2016-04-01
Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman
2015-01-01
The mean climatology, seasonal and interannual variability and trend of wind speeds at the hub height (80 m) of modern wind turbines over China and its surrounding regions are revisited using 33-year (1979â2011) wind data from the Climate Forecast System Reanalysis (CFSR) that has many improvements including higher spatial resolution over previous global reanalysis...
Methods and apparatus for twist bend coupled (TCB) wind turbine blades
Moroz, Emilian Mieczyslaw; LeMieux, David Lawrence; Pierce, Kirk Gee
2006-10-10
A method for controlling a wind turbine having twist bend coupled rotor blades on a rotor mechanically coupled to a generator includes determining a speed of a rotor blade tip of the wind turbine, measuring a current twist distribution and current blade loading, and adjusting a torque of a generator to change the speed of the rotor blade tip to thereby increase an energy capture power coefficient of the wind turbine.
Think global, act local—a power generation case study
NASA Astrophysics Data System (ADS)
Dugdale, Pam
2012-01-01
This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fripp, Matthias; Wiser, Ryan
2006-08-04
Wind power production varies on a diurnal and seasonal basis. In this paper, we use wind speed data from three different sources to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwestern United States. By ''value'', we refer to either the contribution of wind power to meeting the electric system's peak loads, or the financial value of wind power in electricity markets. Sites for wind power projects are often screened or compared based on the annual average power production that would be expected from wind turbines atmore » each site (Baban and Parry 2001; Brower et al. 2004; Jangamshetti and Rau 2001; Nielsen et al. 2002; Roy 2002; Schwartz 1999). However, at many locations, variations in wind speeds during the day and year are correlated with variations in the electric power system's load and wholesale market prices (Burton et al. 2001; Carlin 1983; Kennedy and Rogers 2003; Man Bae and Devine 1978; Sezgen et al. 1998); this correlation may raise or lower the value of wind power generated at each location. A number of previous reports address this issue somewhat indirectly by studying the contribution of individual wind power sites to the reliability or economic operation of the electric grid, using hourly wind speed data (Fleten et al.; Kahn 1991; Kirby et al. 2003; Milligan 2002; van Wijk et al. 1992). However, we have not identified any previous study that examines the effect of variations in wind timing across a broad geographical area on wholesale market value or capacity contribution of those different wind power sites. We have done so, to determine whether it is important to consider wind-timing when planning wind power development, and to try to identify locations where timing would have a more positive or negative effect. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in California and the Northwest (Washington, Oregon, Idaho, Montana and Wyoming) with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. We also assess whether modeled wind data from TrueWind Solutions, LLC, can help answer such questions, by comparing results found using the TrueWind data to those found using anemometers or wind farm power production data. This paper summarizes results that are presented in more detail in a recent report from Lawrence Berkeley National Laboratory (Fripp and Wiser 2006). The full report is available at http://eetd.lbl.gov/EA/EMP/re-pubs.html.« less
ERIC Educational Resources Information Center
Inglis, David Rittenhouse
1975-01-01
The government promotes and heavily subsidizes research in nuclear power plants. Federal development of wind power is slow in comparison even though much research with large wind-electric machines has already been conducted. Unless wind power programs are accelerated it will not become a major energy alternative to nuclear power. (MR)
System frequency support of permanent magnet synchronous generator-based wind power plant
NASA Astrophysics Data System (ADS)
Wu, Ziping
With ever-increasing penetration of wind power into modern electric grids all over the world, a trending replacement of conventional synchronous generators by large wind power plants will likely result in the poor overall frequency regulation performance. On the other hand, permanent magnet synchronous generator wind Turbine System (PMSG-WTG) with full power back to back converters tends to become one of the most promising wind turbine technologies thanks to various advantages. It possesses a significant amount of kinetic energy stored in the rotating mass of turbine blades, which can be utilized to enhance the total inertia of power system. Additionally, the deloaded operation and decoupled control of active and reactive power make it possible for PMSG-WTG to provide a fast frequency regulation through full-power converter. First of all, a comprehensive and in-depth survey is conducted to analyze the motivations for incorporating the inertial response and frequency regulation of VSWT into the system frequency regulation. Besides, control classifications, fundamental control concepts and advanced control schemes implemented for auxiliary frequency support of individual WT or wind power plant are elaborated along with a comparison of the potential frequency regulation capabilities of four major types of WTs. Secondly, a Controls Advanced Research Turbine2-Permanent Magnet Synchronous Generator wind turbine (CART2-PMSG) integrated model representing the typical configuration and operation characteristics of PMSG-WT is established in Matlab/Simulink,. Meanwhile, two different rotor-side converter control schemes, including rotor speed-based control and active power-based control, are integrated into this CART2-PMSG integrated model to perform Maximum Power Point Tracking (MPPT) operation over a wide range of wind speeds, respectively. Thirdly, a novel comprehensive frequency regulation (CFR) control scheme is developed and implemented into the CART2-PMSG model based on rotor speed control. The proposed control scheme is achieved through the coordinated control between rotor speed and modified pitch angle in accordance with different specified wind speed modes. Fourth, an improved inertial control method based on the maximum power point tracking operation curve is introduced to boost the overall frequency support capability of PMSG-WTGs based on rotor speed control. Fifth, a novel control method based on the torque limit (TLC) is proposed for the purpose of maximizing the wind turbine (WT)'s inertial response. To avoid the SFD caused by the deloaded operation of WT, a small-scale battery energy storage system (BESS) model is established and implemented to eliminate this impact and meanwhile assist the restoration of wind turbine to MPPT mode by means of coordinated control strategy between BESS and PMSG-WTG. Last but not the least, all three types of control strategies are implemented in the CART2-PMSG integrated model based on rotor speed control or active power control respectively to evaluate their impacts on the wind turbine's structural loads during the frequency regulation process. Simulation results demonstrate that all the proposed methods can enhance the overall frequency regulation performance while imposing very slight negative impact on the major mechanical components of the wind turbine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Jacob; Fleming, Paul; Pao, Lucy Y.
As wind energy generation becomes more prevalent in some regions, there is increased demand for wind power plants to provide ancillary services, which are essential for grid reliability. This paper compares two different wind turbine control methodologies to provide active power control (APC) ancillary services, which include derating or curtailing power generation, providing automatic generation control (AGC), and providing primary frequency control (PFC). The torque APC controller provides all power control through the power electronics whereas the pitch APC controller uses the blade pitch actuators as the primary means of power control. These controllers are simulated under various wind conditionsmore » with different derating set points and AGC participation levels. The metrics used to compare their performance are the damage equivalent loads (DELs) induced on the structural components and AGC performance metrics, which are used to determine the payments for AGC services by system operators in the United States. The simulation results show that derating the turbine reduces structural loads for both control methods, with the APC pitch control providing larger reductions in DELs, lower AGC performance scores, and higher root-mean-square pitch rates. Providing AGC increases the structural loads when compared to only derating the turbine, but even the AGC DELs are generally lower than those of the baseline control system. The torque APC control methodology also allows for more sustained PFC responses under certain derating conditions.« less
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2012-01-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
Study on DFIG wind turbines control strategy for improving frequency response characteristics
NASA Astrophysics Data System (ADS)
Zhao, Dongmei; Wu, Di; Liu, Yanhua; Zhou, Zhiyu
2011-12-01
The active and reactive power decoupling control for the double-fed induction generator wind turbines(DFIG) does not play a positive role to the frequency response ability of power grid because it performs as the hidden inertia for the power grid. If we want to improve the transient frequency stability of the wind turbine when it is integrated with the system, we must ameliorate its frequency response characteristics. The inability of frequency control due to DFIG decoupling control could be overcome through releasing (or absorbing) a part of the kinetic energy stored in the rotor, so as to increase (or decrease) active power injected to the power system when the deviation of power system frequency appears. This paper discusses the mathematical model of the variable speed DFIG, including the aerodynamic model, pitch control system model, shaft model, generator model and inverter control model, and other key components, focusing on the mathematical model of the converters in rotor side and grid side. Based on the existing model of wind generator, the paper attaches the frequency control model on the platform of the simulation software DIgSILENT/PowerFactory. The simulation results show that the proposed control strategy can response quickly to transient frequency deviation and prove that wind farms can participate in the system frequency regulation to a certain extent. Finally, the result verifies the accuracy and plausibility of the inverter control model which attaches the frequency control module.
78 FR 40735 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-08
...: Iberdrola Renewables, LLC, Atlantic Renewable Projects II LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Manzana Wind LLC, Mountain View Power Partners III, LLC, Shiloh I Wind... Market Power Analysis in the Northwest Region of Puget Sound Energy, Inc., et. al. Filed Date: 6/28/13...
Wind Energy Conference, Boulder, Colo., April 9-11, 1980, Technical Papers
NASA Astrophysics Data System (ADS)
1980-03-01
Papers are presented concerning the technology, and economics of wind energy conversion systems. Specific topics include the aerodynamic analysis of the Darrieus rotor, the numerical calculation of the flow near horizontal-axis wind turbine rotors, the calculation of dynamic wind turbine rotor loads, markets for wind energy systems, an oscillating-wing windmill, wind tunnel tests of wind rotors, wind turbine generator wakes, the application of a multi-speed electrical generator to wind turbines, the feasibility of wind-powered systems for dairy farms, and wind characteristics over uniform and complex terrain. Attention is also given to performance tests of the DOE/NASA MOD-1 2000-kW wind turbine generator, the assessment of utility-related test data, offshore wind energy conversion systems, and the optimization of wind energy utilization economics through load management.
Jet spoiler arrangement for wind turbine
Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.
1983-09-15
An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.
Jet spoiler arrangement for wind turbine
NASA Astrophysics Data System (ADS)
Cyrus, J. D.; Kablec, E. G.; Klimas, P. C.
1983-09-01
An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stal conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.
Gas tube-switched high voltage DC power converter
She, Xu; Bray, James William; Sommerer, Timothy John; Chokhawala, Rahul
2018-05-15
A direct current (DC)-DC converter includes a transformer and a gas tube-switched inverter circuit. The transformer includes a primary winding and a secondary winding. The gas tube-switched inverter circuit includes first and second inverter load terminals and first and second inverter input terminals. The first and second inverter load terminals are coupled to the primary winding. The first and second inverter input terminals are couplable to a DC node. The gas tube-switched inverter circuit further includes a plurality of gas tube switches respectively coupled between the first and second inverter load terminals and the first and second inverter input terminals. The plurality of gas tube switches is configured to operate to generate an alternating current (AC) voltage at the primary winding.
Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems
NASA Astrophysics Data System (ADS)
Lu, Haiyang; Tang, Xisheng
2017-05-01
Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.
NASA Astrophysics Data System (ADS)
Sato, Daiki; Saitoh, Hiroumi
This paper proposes a new control method for reducing fluctuation of power system frequency through smoothing active power output of wind farm. The proposal is based on the modulation of rotaional kinetic energy of variable speed wind power generators through power converters between permanent magnet synchronous generators (PMSG) and transmission lines. In this paper, the proposed control is called Fluctuation Absorption by Flywheel Characteristics control (FAFC). The FAFC can be easily implemented by adding wind farm output signal to Maximum Power Point Tracking control signal through a feedback control loop. In order to verify the effectiveness of the FAFC control, a simulation study was carried out. In the study, it was assumed that the wind farm consisting of PMSG type wind power generator and induction machine type wind power generaotors is connected with a power sysem. The results of the study show that the FAFC control is a useful method for reducing the impacts of wind farm output fluctuation on system frequency without additional devices such as secondary battery.
Power oscillation suppression by robust SMES in power system with large wind power penetration
NASA Astrophysics Data System (ADS)
Ngamroo, Issarachai; Cuk Supriyadi, A. N.; Dechanupaprittha, Sanchai; Mitani, Yasunori
2009-01-01
The large penetration of wind farm into interconnected power systems may cause the severe problem of tie-line power oscillations. To suppress power oscillations, the superconducting magnetic energy storage (SMES) which is able to control active and reactive powers simultaneously, can be applied. On the other hand, several generating and loading conditions, variation of system parameters, etc., cause uncertainties in the system. The SMES controller designed without considering system uncertainties may fail to suppress power oscillations. To enhance the robustness of SMES controller against system uncertainties, this paper proposes a robust control design of SMES by taking system uncertainties into account. The inverse additive perturbation is applied to represent the unstructured system uncertainties and included in power system modeling. The configuration of active and reactive power controllers is the first-order lead-lag compensator with single input feedback. To tune the controller parameters, the optimization problem is formulated based on the enhancement of robust stability margin. The particle swarm optimization is used to solve the problem and achieve the controller parameters. Simulation studies in the six-area interconnected power system with wind farms confirm the robustness of the proposed SMES under various operating conditions.
Grid-wide subdaily hydrologic alteration under massive wind power penetration in Chile.
Haas, J; Olivares, M A; Palma-Behnke, R
2015-05-01
Hydropeaking operations can severely degrade ecosystems. As variable renewable sources (e.g. wind power) are integrated into a power grid, fluctuations in the generation-demand balance are expected to increase. In this context, compensating technologies, notably hydropower reservoir plants, could operate in a stronger peaking scheme. This issue calls for an integrated modeling of the entire power system, including not only hydropower reservoirs, but also all other plants. A novel methodology to study the link between the short-term variability of renewable energies and the subdaily hydrologic alteration, due to hydropower reservoir operations is presented. Grid operations under selected wind power portfolios are simulated using a short-term hydro-thermal coordination tool. The resulting turbined flows by relevant reservoir plants are then compared in terms of the Richard-Baker flashiness index to both the baseline and the natural flow regime. Those are then analyzed in order to: i) detect if there is a significant change in the degree of subdaily hydrologic alteration (SDHA) due to a larger wind penetration, and ii) identify which rivers are most affected. The proposed scheme is applied to Chile's Central Interconnect System (SIC) for scenarios up to 15% of wind energy penetration. Results show a major degree of SDHA under the baseline as compared to the natural regime. As wind power increases, so does the SDHA in two important rivers. This suggests a need for further ecological studies in those rivers, along with an analysis of operational constraints to limit the SDHA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Capacity expansion model of wind power generation based on ELCC
NASA Astrophysics Data System (ADS)
Yuan, Bo; Zong, Jin; Wu, Shengyu
2018-02-01
Capacity expansion is an indispensable prerequisite for power system planning and construction. A reasonable, efficient and accurate capacity expansion model (CEM) is crucial to power system planning. In most current CEMs, the capacity of wind power generation is considered as boundary conditions instead of decision variables, which may lead to curtailment or over construction of flexible resource, especially at a high renewable energy penetration scenario. This paper proposed a wind power generation capacity value(CV) calculation method based on effective load-carrying capability, and a CEM that co-optimizes wind power generation and conventional power sources. Wind power generation is considered as decision variable in this model, and the model can accurately reflect the uncertainty nature of wind power.
Assessment of Wind Resource in the Palk Strait using Different Methods
NASA Astrophysics Data System (ADS)
Gupta, T.; Khan, F.; Baidya Roy, S.; Miller, L.
2017-12-01
The Government of India has proposed a target of 60 GW in grid power from the wind by the year 2022. The Palk Strait is one of the potential offshore wind power generation sites in India. It is a 65-135 km wide and 135 km long channel lying between the south eastern tip of India and northern Sri Lanka. The complex terrain bounding the two sides of the strait leads to enhanced wind speed and reduced variability in the wind direction. Here, we compare 3 distinct methodologies for estimating the generation rates for a hypothetical offshore wind farm array located in the strait. The methodologies include: 1) traditional wind power density model that ignores the effect of turbine interactions on generation rates; 2) the PARK wake model; and 3) a high resolution weather model (WRF) with a wind turbine parameterization. Using the WRF model as our baseline, we find that the simple model overestimates generation by an order-of-magnitude, while the wake model underestimates generation rates by about 5%. The reason for these differences relates to the influence of wind turbines on the atmospheric flow, wherein, the WRF model is able to capture the effect of both the complex terrain and wind turbine atmospheric boundary layer interactions. Lastly, a model evaluation is conducted which shows that 10m wind speeds and directions from WRF are comparable with the satellite data. Hence, we conclude from the study that each of these methodologies may have merit, but should a wind farm is deployed in such a complex terrain, we expect the WRF method to give better estimates of wind resource assessment capturing the physical processes emerging due to the interactions between offshore wind farm and the surrounding terrain.
Grumman WS33 wind system: prototype construction and testing, Phase II technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, F.M.; Henton, P.; King, P.W.
1980-11-01
The prototype fabrication and testing of the 8 kW small wind energy conversion system are reported. The turbine is a three-bladed, down-wind machine designed to interface directly with an electrical utility network. The machine as finally fabricated is rated at 15 kW at 24 mpH and peak power of 18 kW at 35 mph. Utility compatible electrical power is generated in winds between a cut-in speed of 9 mph and a cut-out speed of 35 mph by using the torque characteristics of the unit's induction generator combined with the rotor aerodynamics to maintain essentially constant speed. Inspection procedures, pre-delivery testing,more » and a cost analysis are included.« less
Safety and Function Test Report for the Viryd CS8 Wind Turbine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roadman, J.; Murphy, M.; van Dam, J.
2013-10-01
This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Several turbines were selected for testing at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) as a part of the Small Wind Turbine Independent Testing project. Safety and function testing is one of up to five tests that may be performed on the turbines. Other tests include duration, power performance, acoustic noise, and power quality. Viryd Technologies, Inc.more » of Austin, Texas, was the recipient of the DOE grant and provided the turbine for testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huertas-Hernando, Daniel; Farahmand, Hossein; Holttinen, Hannele
2016-06-20
Hydro power is one of the most flexible sources of electricity production. Power systems with considerable amounts of flexible hydro power potentially offer easier integration of variable generation, e.g., wind and solar. However, there exist operational constraints to ensure mid-/long-term security of supply while keeping river flows and reservoirs levels within permitted limits. In order to properly assess the effective available hydro power flexibility and its value for storage, a detailed assessment of hydro power is essential. Due to the inherent uncertainty of the weather-dependent hydrological cycle, regulation constraints on the hydro system, and uncertainty of internal load as wellmore » as variable generation (wind and solar), this assessment is complex. Hence, it requires proper modeling of all the underlying interactions between hydro power and the power system, with a large share of other variable renewables. A summary of existing experience of wind integration in hydro-dominated power systems clearly points to strict simulation methodologies. Recommendations include requirements for techno-economic models to correctly assess strategies for hydro power and pumped storage dispatch. These models are based not only on seasonal water inflow variations but also on variable generation, and all these are in time horizons from very short term up to multiple years, depending on the studied system. Another important recommendation is to include a geographically detailed description of hydro power systems, rivers' flows, and reservoirs as well as grid topology and congestion.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-29
... project would include installation of up to 100 wind turbines and associated collection lines, access... areas and concrete batch plants. The wind turbine hub height would be approximately 100 meters (m), and... conservation plan (HCP) and incidental take permit (ITP) for the Indiana bat (Myotis sodalis) at a wind power...
An investigation of the effect of wind cooling on photovoltaic arrays
NASA Technical Reports Server (NTRS)
Wen, L.
1982-01-01
Convective cooling of photovoltaic modules for different wind conditions, including steady state controlled testing in a solar simulator and natural test environments in a field was investigated. Analytical thermal models of different module designs were used to correlate experimental data. The applicability of existing heat transfer correlations is confirmed. Reasonable agreement is obtained by applying a power law wind profile.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-15
... proposed project would include 34 wind turbines, access roads, and a 34.5 kV energy collection line on 1... Tylerhorse Wind Project, Kern County, CA, and Possible Land Use Plan Amendment; CACA 51561 AGENCY: Bureau of...'s (Applicant or Power Partners) right-of-way (ROW) authorization request for the Tylerhorse Wind...
Vehicle to wireless power transfer coupling coil alignment sensor
Miller, John M.; Chambon, Paul H.; Jones, Perry T.; White, Clifford P.
2016-02-16
A non-contacting position sensing apparatus includes at least one vehicle-mounted receiver coil that is configured to detect a net flux null when the vehicle is optimally aligned relative to the primary coil in the charging device. Each of the at least one vehicle-mounted receiver coil includes a clockwise winding loop and a counterclockwise winding loop that are substantially symmetrically configured and serially connected to each other. When the non-contacting position sensing apparatus is located directly above the primary coil of the charging device, the electromotive forces from the clockwise winding loop and the counterclockwise region cancel out to provide a zero electromotive force, i.e., a zero voltage reading across the coil that includes the clockwise winding loop and the counterclockwise winding loop.
Analysis of Unit-Level Changes in Operations with Increased SPP Wind from EPRI/LCG Balancing Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadley, Stanton W
2012-01-01
Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The Departmentmore » of Energy funded the project 'Integrating Midwest Wind Energy into Southeast Electricity Markets' to be led by EPRI in coordination with the main authorities for the regions: SPP, Entergy, TVA, Southern Company and OPC. EPRI utilized several subcontractors for the project including LCG, the developers of the model UPLAN. The study aims to evaluate the operating cost benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of regional cooperation for integrating mid-western wind energy into southeast electricity markets. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. DOE funded Oak Ridge National Laboratory to provide additional support to the project, including a review of results and any side analysis that may provide additional insight. This report is a unit-by-unit analysis of changes in operations due to the different scenarios used in the overall study. It focuses on the change in capacity factors and the number of start-ups required for each unit since those criteria summarize key aspects of plant operations, how often are they called upon and how much do they operate. The primary analysis of the overall project is based on security-constrained unit commitment (SCUC) and economic dispatch (SCED) simulations of the SPP-SERC regions as modeled for the year 2022. The SCUC/SCED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as best as possible in the model. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DuPont, Bryony; Cagan, Jonathan; Moriarty, Patrick
This paper presents a system of modeling advances that can be applied in the computational optimization of wind plants. These modeling advances include accurate cost and power modeling, partial wake interaction, and the effects of varying atmospheric stability. To validate the use of this advanced modeling system, it is employed within an Extended Pattern Search (EPS)-Multi-Agent System (MAS) optimization approach for multiple wind scenarios. The wind farm layout optimization problem involves optimizing the position and size of wind turbines such that the aerodynamic effects of upstream turbines are reduced, which increases the effective wind speed and resultant power at eachmore » turbine. The EPS-MAS optimization algorithm employs a profit objective, and an overarching search determines individual turbine positions, with a concurrent EPS-MAS determining the optimal hub height and rotor diameter for each turbine. Two wind cases are considered: (1) constant, unidirectional wind, and (2) three discrete wind speeds and varying wind directions, each of which have a probability of occurrence. Results show the advantages of applying the series of advanced models compared to previous application of an EPS with less advanced models to wind farm layout optimization, and imply best practices for computational optimization of wind farms with improved accuracy.« less
Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin
2015-01-01
Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested. PMID:25879063
Okeniyi, Joshua Olusegun; Ohunakin, Olayinka Soledayo; Okeniyi, Elizabeth Toyin
2015-01-01
Electricity generation in rural communities is an acute problem militating against socioeconomic well-being of the populace in these communities in developing countries, including Nigeria. In this paper, assessments of wind-energy potential in selected sites from three major geopolitical zones of Nigeria were investigated. For this, daily wind-speed data from Katsina in northern, Warri in southwestern and Calabar in southeastern Nigeria were analysed using the Gumbel and the Weibull probability distributions for assessing wind-energy potential as a renewable/sustainable solution for the country's rural-electrification problems. Results showed that the wind-speed models identified Katsina with higher wind-speed class than both Warri and Calabar that were otherwise identified as low wind-speed sites. However, econometrics of electricity power simulation at different hub heights of low wind-speed turbine systems showed that the cost of electric-power generation in the three study sites was converging to affordable cost per kWh of electric energy from the wind resource at each site. These power simulations identified cost/kWh of electricity generation at Kaduna as €0.0507, at Warri as €0.0774, and at Calabar as €0.0819. These bare positive implications on renewable/sustainable rural electrification in the study sites even as requisite options for promoting utilization of this viable wind-resource energy in the remote communities in the environs of the study sites were suggested.
Comparative Study of Standards for Grid-Connected Wind Power Plant in China and the U.S.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenzhong; Tian, Tian; Muljadi, Eduard
2015-10-06
The rapid deployment of wind power has made grid integration and operational issues focal points in industry discussions and research. Compliance with grid connection standards for wind power plants (WPP) is crucial to ensuring the safe and stable operation of the electric power grid. The standards for grid-connected WPPs in China and the United States are compared in this paper to facilitate further improvements to the standards and enhance the development of wind power equipment. Detailed analyses in power quality, low-voltage ride-through capability, active power control, reactive power control, voltage control, and wind power forecasting are provided to enhance themore » understanding of grid codes in the two largest markets of wind power.« less
Evaluation of Proposed Solutions to Global Warming, Air Pollution, and Energy Security
NASA Astrophysics Data System (ADS)
Jacobson, M. Z.
2008-12-01
This study reviews and ranks major proposed solutions to global warming, air pollution mortality, and energy security while considering other impacts of the proposed solutions, such as on water supply, land use, wildlife, resource availability, thermal pollution, water chemical pollution, nuclear proliferation, and undernutrition. Nine electric power sources and two liquid fuel options are considered. The electricity sources include solar-photovoltaics (PV), concentrated solar power (CSP), wind, geothermal, hydroelectric, wave, tidal, nuclear, and coal with carbon capture and storage (CCS) technology. The liquid fuel options include corn-E85 and cellulosic E85. To place the electric and liquid fuel sources on an equal footing, we examine their comparative abilities to address the problems mentioned by powering new-technology vehicles, including battery-electric vehicles (BEVs), hydrogen fuel cell vehicles (HFCVs), and flex-fuel vehicles run on E85. Twelve combinations of energy source-vehicle type are considered. Upon ranking and weighting each combination with respect to each of 11 impact categories, four clear divisions of ranking, or tiers, emerge. Tier 1 (highest-ranked) includes wind-BEVs and wind-HFCVs. Tier 2 includes CSP-BEVs, geothermal-BEVs, PV-BEVs, tidal-BEVs, and wave-BEVs. Tier 3 includes hydro-BEVs, nuclear-BEVs, and CCS-BEVs. Tier 4 includes corn- and cellulosic-E85. Wind-BEVs ranked first in six out of 11 categories, including the two most important, mortality and climate damage reduction. Although HFCVs are less efficient than BEVs, wind- HFCVs ranked second among all combinations. Tier 2 options provide significant benefits and are recommended. Tier 3 options are less desirable. However, hydroelectricity, which was ranked ahead of coal- CCS and nuclear with respect to climate and health, is an excellent load balancer, thus strongly recommended. The Tier-4 combinations (cellulosic- and corn-E85) were ranked lowest overall and with respect to climate, air pollution, land use, wildlife damage, and chemical waste. Cellulosic-E85 ranked lower than corn-E85 overall, primarily due to its potentially larger land footprint based on recent data and its higher upstream air pollution emissions than corn-E85. Whereas cellulosic-E85 may cause the greatest average human mortality, nuclear-BEVs cause the greatest upper-limit mortality risk due to the expansion of plutonium separation and uranium enrichment in nuclear energy facilities worldwide. Wind-BEVs and CSP-BEVs cause the least mortality. The footprint area of wind-BEVs is 2-6 orders of magnitude less than that of any other option. Because of their low footprint and pollution, wind-BEVs cause the least wildlife loss. The largest consumer of water is corn-E85. The smallest are wind-, tidal-, and wave-BEVs. In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to power electricity for BEVs and HFCVs and for general use in the residential, industrial, and commercial sectors will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit, and the biofuel options provide little or no benefit and greater negative impacts.
System-wide emissions implications of increased wind power penetration.
Valentino, Lauren; Valenzuela, Viviana; Botterud, Audun; Zhou, Zhi; Conzelmann, Guenter
2012-04-03
This paper discusses the environmental effects of incorporating wind energy into the electric power system. We present a detailed emissions analysis based on comprehensive modeling of power system operations with unit commitment and economic dispatch for different wind penetration levels. First, by minimizing cost, the unit commitment model decides which thermal power plants will be utilized based on a wind power forecast, and then, the economic dispatch model dictates the level of production for each unit as a function of the realized wind power generation. Finally, knowing the power production from each power plant, the emissions are calculated. The emissions model incorporates the effects of both cycling and start-ups of thermal power plants in analyzing emissions from an electric power system with increasing levels of wind power. Our results for the power system in the state of Illinois show significant emissions effects from increased cycling and particularly start-ups of thermal power plants. However, we conclude that as the wind power penetration increases, pollutant emissions decrease overall due to the replacement of fossil fuels.
Wind power generation and dispatch in competitive power markets
NASA Astrophysics Data System (ADS)
Abreu, Lisias
Wind energy is currently the fastest growing type of renewable energy. The main motivation is led by more strict emission constraints and higher fuel prices. In addition, recent developments in wind turbine technology and financial incentives have made wind energy technically and economically viable almost anywhere. In restructured power systems, reliable and economical operation of power systems are the two main objectives for the ISO. The ability to control the output of wind turbines is limited and the capacity of a wind farm changes according to wind speeds. Since this type of generation has no production costs, all production is taken by the system. Although, insufficient operational planning of power systems considering wind generation could result in higher system operation costs and off-peak transmission congestions. In addition, a GENCO can participate in short-term power markets in restructured power systems. The goal of a GENCO is to sell energy in such a way that would maximize its profitability. However, due to market price fluctuations and wind forecasting errors, it is essential for the wind GENCO to keep its financial risk at an acceptable level when constituting market bidding strategies. This dissertation discusses assumptions, functions, and methodologies that optimize short-term operations of power systems considering wind energy, and that optimize bidding strategies for wind producers in short-term markets. This dissertation also discusses uncertainties associated with electricity market environment and wind power forecasting that can expose market participants to a significant risk level when managing the tradeoff between profitability and risk.
Reliability and cost/worth evaluation of generating systems utilizing wind and solar energy
NASA Astrophysics Data System (ADS)
Bagen
The utilization of renewable energy resources such as wind and solar energy for electric power supply has received considerable attention in recent years due to adverse environmental impacts and fuel cost escalation associated with conventional generation. At the present time, wind and/or solar energy sources are utilized to generate electric power in many applications. Wind and solar energy will become important sources for power generation in the future because of their environmental, social and economic benefits, together with public support and government incentives. The wind and sunlight are, however, unstable and variable energy sources, and behave far differently than conventional sources. Energy storage systems are, therefore, often required to smooth the fluctuating nature of the energy conversion system especially in small isolated applications. The research work presented in this thesis is focused on the development and application of reliability and economic benefits assessment associated with incorporating wind energy, solar energy and energy storage in power generating systems. A probabilistic approach using sequential Monte Carlo simulation was employed in this research and a number of analyses were conducted with regards to the adequacy and economic assessment of generation systems containing wind energy, solar energy and energy storage. The evaluation models and techniques incorporate risk index distributions and different operating strategies associated with diesel generation in small isolated systems. Deterministic and probabilistic techniques are combined in this thesis using a system well-being approach to provide useful adequacy indices for small isolated systems that include renewable energy and energy storage. The concepts presented and examples illustrated in this thesis will help power system planners and utility managers to assess the reliability and economic benefits of utilizing wind energy conversion systems, solar energy conversion systems and energy storage in electric power systems and provide useful input to the managerial decision process.
Wind power: The new energy policy 1
NASA Astrophysics Data System (ADS)
1991-10-01
Increasing use of renewable energy sources is an important aspect of the new energy policy of the State government of Schleswig-Holstein. Technical and industrial innovation are involved. By expanding and developing these regionally available inexhaustible energy sources to generate electricity and heat, we are contributing to environmental protection and helping to reduce adverse affects on the climate. We are also taking our limited resources into account and expanding energy generation in a logical manner. Wind energy is the most attractive renewable energy source for Schleswig-Holstein because our State is well known for its strong winds and constant fresh breeze. For this reason the State government has made expansion of wind energy one of its primary areas of emphasis. The goals of our promotion measures includes ongoing technical and engineering development of wind energy facilities, increasing the level of use of the wind, and increasing the percentage of wind energy used for power generation. This brochure is intended to demonstrate the significance and possibilities of wind energy for our State, to outline the legal requirements for erecting wind energy facilities, and to explain the many promotion measures. It represents a favorable breeze for wind.
Reactive Power Pricing Model Considering the Randomness of Wind Power Output
NASA Astrophysics Data System (ADS)
Dai, Zhong; Wu, Zhou
2018-01-01
With the increase of wind power capacity integrated into grid, the influence of the randomness of wind power output on the reactive power distribution of grid is gradually highlighted. Meanwhile, the power market reform puts forward higher requirements for reasonable pricing of reactive power service. Based on it, the article combined the optimal power flow model considering wind power randomness with integrated cost allocation method to price reactive power. Meanwhile, considering the advantages and disadvantages of the present cost allocation method and marginal cost pricing, an integrated cost allocation method based on optimal power flow tracing is proposed. The model realized the optimal power flow distribution of reactive power with the minimal integrated cost and wind power integration, under the premise of guaranteeing the balance of reactive power pricing. Finally, through the analysis of multi-scenario calculation examples and the stochastic simulation of wind power outputs, the article compared the results of the model pricing and the marginal cost pricing, which proved that the model is accurate and effective.
77 FR 27223 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
..., LLC, ESI Vansycle Partners, L.P., Florida Power & Light Co., FPL Energy Burleigh County Wind, LLC, FPL Energy Cabazon Wind, LLC, FPL Energy Cape, LLC, FPL Energy Cowboy Wind, LLC, FPL Energy Green Power Wind..., Garden Wind, LLC, Gray County Wind Energy, LLC, Hatch Solar Energy Center I, LLC, Hawkeye Power Partners...
77 FR 66457 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-05
..., Casselman Windpower LLC, Colorado Green Holdings LLC, Dillon Wind LLC, Dry Lake Wind Power, LLC, Dry Lake Wind Power II LLC, Elk River Windfarm, LLC, Elm Creek Wind, LLC, Elm Creek Wind II LLC, Farmers City Wind, LLC, Flat Rock Windpower LLC, Flat Rock Windpower II LLC, Flying Cloud Power Partners, LLC...
Market protocols in ERCOT and their effect on wind generation
Sioshansi, Ramteen; Hurlbut, David
2009-08-22
Integrating wind generation into power systems and wholesale electricity markets presents unique challenges due to the characteristics of wind power, including its limited dispatchability, variability in generation, difficulty in forecasting resource availability, and the geographic location of wind resources. Texas has had to deal with many of these issues beginning in 2002 when it restructured its electricity industry and introduced aggressive renewable portfolio standards that helped spur major investments in wind generation. In this paper we discuss the issues that have arisen in designing market protocols that take account of these special characteristics of wind generation and survey the regulatorymore » and market rules that have been developed in Texas. We discuss the perverse incentives some of the rules gave wind generators to overschedule generation in order to receive balancing energy payments, and steps that have been taken to mitigate those incentive effects. Lastly, we discuss more recent steps taken by the market operator and regulators to ensure transmission capacity is available for new wind generators that are expected to come online in the future.« less
Should future wind speed changes be taken into account in wind farm development?
NASA Astrophysics Data System (ADS)
Devis, Annemarie; Van Lipzig, Nicole P. M.; Demuzere, Matthias
2018-06-01
Accurate wind resource assessments are crucial in the development of wind farm projects. However, it is common practice to estimate the wind yield over the next 20 years from short-term measurements and reanalysis data of the past 20 years, even though wind climatology is expected to change under the future climate. The present work examines future changes in wind power output over Europe using an ensemble of ESMs. The power output is calculated using the entire wind speed PDF and a non-constant power conversion coefficient. Based on this method, the ESM ensemble projects changes in near-future power outputs with a spatially varying magnitude between ‑12% and 8%. The most extreme changes occur over the Mediterranean region. For the first time, the sensitivity of these future change in power output to the type of wind turbine is also investigated. The analysis reveals that the projected wind power changes may vary in up to half of their magnitude, depending on the type of turbine and region of interest. As such, we recommend that wind industries fully account for projected near-future changes in wind power output by taking them into account as a well-defined loss/gain and uncertainty when estimating the yield of a future wind farm.
Controllable Grid Interface | Grid Modernization | NREL
groundbreaking apparatus for testing and demonstrating advanced controls for wind and solar power generation at requirements. These requirements involve various aspects of renewable power plant operation, including fault respond directly to grid conditions measured on plant terminals, including: "Nasty" and "
A peaking-regulation-balance-based method for wind & PV power integrated accommodation
NASA Astrophysics Data System (ADS)
Zhang, Jinfang; Li, Nan; Liu, Jun
2018-02-01
Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.
Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J.; Chowdhury, S.; Hodge, B. M.
2014-01-01
In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine powermore » generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less
Equilibrium pricing in electricity markets with wind power
NASA Astrophysics Data System (ADS)
Rubin, Ofir David
Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 to 2009. Moreover, according to their predictions, by the end of 2010 global wind power capacity will reach 190 GW. Since electricity is a unique commodity, this remarkable expansion brings forward several key economic questions regarding the integration of significant amount of wind power capacity into deregulated electricity markets. The overall dissertation objective is to develop a comprehensive theoretical framework that enables the modeling of the performance and outcome of wind-integrated electricity markets. This is relevant because the state of knowledge of modeling electricity markets is insufficient for the purpose of wind power considerations. First, there is a need to decide about a consistent representation of deregulated electricity markets. Surprisingly, the related body of literature does not agree on the very economic basics of modeling electricity markets. That is important since we need to capture the fundamentals of electricity markets before we introduce wind power to our study. For example, the structure of the electric industry is a key. If market power is present, the integration of wind power has large consequences on welfare distribution. Since wind power uncertainty changes the dynamics of information it also impacts the ability to manipulate market prices. This is because the quantity supplied by wind energy is not a decision variable. Second, the intermittent spatial nature of wind over a geographical region is important because the market value of wind power capacity is derived from its statistical properties. Once integrated into the market, the distribution of wind will impact the price of electricity produced from conventional sources of energy. Third, although wind power forecasting has improved in recent years, at the time of trading short-term electricity forwards, forecasting precision is still low. Therefore, it is crucial that the uncertainty in forecasting wind power is considered when modeling trading behavior. Our theoretical framework is based on finding a symmetric Cournot-Nash equilibrium in double-sided auctions in both forwards and spot electricity markets. The theoretical framework allows for the first time, to the best of our knowledge, a model of electricity markets that explain two main empirical findings; the existence of forwards premium and spot market mark-ups. That is a significant contribution since so far forward premiums have been explained exclusively by the assumption of risk-averse behavior while spot mark-ups are the outcome of the body of literature assuming oligopolistic competition. In the next step, we extend the theoretical framework to account for deregulated electricity markets with wind power. Modeling a wind-integrated electricity market allows us to analyze market outcomes with respect to three main factors; the introduction of uncertainty from the supply side, ownership of wind power capacity and the geographical diversification of wind power capacity. For the purpose of modeling trade in electricity forwards one should simulate the information agents have regarding future availability of aggregate wind power. This is particularly important for modeling accurately traders' ability to predict the spot price distribution. We develop a novel numerical methodology for the simulation of the conditional distribution of regional wind power at the time of trading short-term electricity forwards. Finally, we put the theoretical framework and the numerical methodology developed in this study to work by providing a detailed computational experiment examining electricity market outcomes for a particular expansion path of wind power capacity.
NASA Astrophysics Data System (ADS)
1982-03-01
Performance data are given for the month of February, 1982 for a photovoltaic power supply at a Massachusetts high school. Data given include: monthly and daily electrical energy yield; monthly and daily insolation; monthly and daily array efficiency; energy production as a function of power level, voltage, cell temperature, and hour of day; insolation as a function of hour of the day; input, output and efficiency for each of two power conditioning units and for the total power conditioning system; energy supplied to the load by the photovoltaic system and by the grid; photovoltaic system efficiency; dollar value of the energy supplied by the photovoltaic system; capacity factor; daily photovoltaic energy to load; daily system availability and hours of daylight; heating and cooling degree days; hourly cell temperature, ambient temperature, wind speed, and insolation; average monthly wind speed; wind direction distribution; and daily data acquisition mode and recording interval plot.
76 FR 30699 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 1 Take notice.... Applicants: Evergreen Wind Power, LLC, Canandaigua Power Partners, LLC, Evergreen Wind Power V, LLC, Canandaigua Power Partners II, LLC, Stetson Wind II, LLC, Evergreen Gen Lead, LLC, Vermont Wind, LLC, Niagara...
76 FR 2898 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
...-002. Applicants: Fenton Power Partners I, LLC, Wapsipinicon Wind Project, LLC, Shiloh Wind Project 2, LLC, Hoosier Wind Project, LLC, Oasis Power Partners, LLC, Chanarambie Power Partners, LLC, Lakefield Wind Project, LLC. Description: Notice of Non-Material Change in Status of Chanarambie Power, et al...
The Spectrum of Wind Power Fluctuations
NASA Astrophysics Data System (ADS)
Bandi, Mahesh
2016-11-01
Wind is a variable energy source whose fluctuations threaten electrical grid stability and complicate dynamical load balancing. The power generated by a wind turbine fluctuates due to the variable wind speed that blows past the turbine. Indeed, the spectrum of wind power fluctuations is widely believed to reflect the Kolmogorov spectrum; both vary with frequency f as f - 5 / 3. This variability decreases when aggregate power fluctuations from geographically distributed wind farms are averaged at the grid via a mechanism known as geographic smoothing. Neither the f - 5 / 3 wind power fluctuation spectrum nor the mechanism of geographic smoothing are understood. In this work, we explain the wind power fluctuation spectrum from the turbine through grid scales. The f - 5 / 3 wind power fluctuation spectrum results from the largest length scales of atmospheric turbulence of order 200 km influencing the small scales where individual turbines operate. This long-range influence spatially couples geographically distributed wind farms and synchronizes farm outputs over a range of frequencies and decreases with increasing inter-farm distance. Consequently, aggregate grid-scale power fluctuations remain correlated, and are smoothed until they reach a limiting f - 7 / 3 spectrum. This work was funded by the Collective Interactions Unit, OIST Graduate University, Japan.
WindPACT Reference Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, Katherine L; Rinker, Jennifer
To fully understand how loads and turbine cost scale with turbine size, it is necessary to have identical turbine models that have been scaled to different rated powers. The report presents the WindPACT baseline models, which are a series of four baseline models that were designed to facilitate investigations into the scalings of loads and turbine cost with size. The models have four different rated powers (750 kW, 1.5 MW, 3.0 MW, and 5.0 MW), and each model was designed to its specified rated power using the same design methodology. The models were originally implemented in FAST_AD, the predecessor tomore » NREL's open-source wind turbine simulator FAST, but have yet to be implemented in FAST. This report contains the specifications for all four WindPACT baseline models - including structural, aerodynamic, and control specifications - along with the inherent assumptions and equations that were used to calculate the model parameters. It is hoped that these baseline models will serve as extremely useful resources for investigations into the scalings of costs, loads, or optimization routines.« less
NREL to Lead Novel Field Demonstration of Wind Turbine Control at the Wind
Power Plant Level | News | NREL to Lead Novel Field Demonstration of Wind Turbine Control at the Wind Power Plant Level NREL to Lead Novel Field Demonstration of Wind Turbine Control at the Wind to test wind turbine technology controls at the overall wind power plant level. This is a significant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honrubia-Escribano, A.; Gomez Lazaro, E.; Jimenez-Buendia, F.
The International Electrotechnical Commission Standard 61400-27-1 was published in February 2015. This standard deals with the development of generic terms and parameters to specify the electrical characteristics of wind turbines. Generic models of very complex technological systems, such as wind turbines, are thus defined based on the four common configurations available in the market. Due to its recent publication, the comparison of the response of generic models with specific vendor models plays a key role in ensuring the widespread use of this standard. This paper compares the response of a specific Gamesa dynamic wind turbine model to the corresponding genericmore » IEC Type III wind turbine model response when the wind turbine is subjected to a three-phase voltage dip. This Type III model represents the doubly-fed induction generator wind turbine, which is not only one of the most commonly sold and installed technologies in the current market but also a complex variable-speed operation implementation. In fact, active and reactive power transients are observed due to the voltage reduction. Special attention is given to the reactive power injection provided by the wind turbine models because it is a requirement of current grid codes. Further, the boundaries of the generic models associated with transient events that cannot be represented exactly are included in the paper.« less
NASA Astrophysics Data System (ADS)
Zou, Chenlu; Cui, Xue; Wang, Heng; Zhou, Bin; Liu, Yang
2018-01-01
In the case of rapid development of wind power and heavy wind curtailment, the study of wind power accommodation of combined heat and power system has become the focus of attention. A two-stage scheduling model contains of wind power, thermal energy storage, CHP unit and flexible load were constructed. This model with the objective function of minimizing wind curtailment and the operation cost of units while taking into account of the total coal consumption of units, constraint of thermal energy storage and electricity-heat characteristic of CHP. This paper uses MICA to solve the problem of too many constraints and make the solution more feasible. A numerical example showed that the two stage decision scheduling model can consume more wind power, and it could provide a reference for combined heat and power system short-term operation
The changing sensitivity of power systems to meteorological drivers: a case study of Great Britain
NASA Astrophysics Data System (ADS)
Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.
2018-05-01
The increasing use of intermittent renewable generation (such as wind) is increasing the exposure of national power systems to meteorological variability. This study identifies how the integration of wind power in one particular country (Great Britain, GB) is affecting the overall sensitivity of the power system to weather using three key metrics: total annual energy requirement, peak residual load (from sources other than wind) and wind power curtailment. The present-day level of wind power capacity (approximately 15 GW) is shown to have already changed the power system’s overall sensitivity to weather in terms of the total annual energy requirement, from a temperature- to a wind-dominated regime (which occurred with 6GW of installed wind power capacity). Peak residual load from sources other than wind also shows a similar shift. The associated changes in the synoptic- and large-scale meteorological drivers associated with each metric are identified and discussed. In a period where power systems are changing rapidly, it is therefore argued that past experience of the weather impacts on the GB power system may not be a good guide for the impact on the present or near-future power system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Cui, Mingjian; Hodge, Bri-Mathias
The large variability and uncertainty in wind power generation present a concern to power system operators, especially given the increasing amounts of wind power being integrated into the electric power system. Large ramps, one of the biggest concerns, can significantly influence system economics and reliability. The Wind Forecast Improvement Project (WFIP) was to improve the accuracy of forecasts and to evaluate the economic benefits of these improvements to grid operators. This paper evaluates the ramp forecasting accuracy gained by improving the performance of short-term wind power forecasting. This study focuses on the WFIP southern study region, which encompasses most ofmore » the Electric Reliability Council of Texas (ERCOT) territory, to compare the experimental WFIP forecasts to the existing short-term wind power forecasts (used at ERCOT) at multiple spatial and temporal scales. The study employs four significant wind power ramping definitions according to the power change magnitude, direction, and duration. The optimized swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental WFIP forecasts improve the accuracy of the wind power ramp forecasting. This improvement can result in substantial costs savings and power system reliability enhancements.« less
Response of Rocky Mountain elk (Cervus elaphus) to wind-power development
Walter, W. David; Leslie, David M.; Jenks, J.A.
2006-01-01
Wind-power development is occurring throughout North America, but its effects on mammals are largely unexplored. Our objective was to determine response (i.e., home-range, diet quality) of Rocky Mountain elk (Cervus elaphus) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power development on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction was initiated on 1 June 2003 and was completed by December 2003 with 45 active turbines. The largest composite home range sizes (>80 km2) occurred April-June and September, regardless of the status of wind-power facility development. The smallest home range sizes (<50 km2) typically occurred in October-February when elk aggregated to forage on winter wheat. No elk left the study site during the study and elk freely crossed the gravel roads used to access the wind-power facility. Carbon and nitrogen isotopes and percent nitrogen in feces suggested that wind-power development did not affect nutrition of elk during construction. Although disturbance and loss of some grassland habitat was apparent, elk were not adversely affected by wind-power development as determined by home range and dietary quality.
Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang
Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).
Applications of the Renewable Energy Network Optimization Tool
NASA Astrophysics Data System (ADS)
Alliss, R.; Link, R.; Apling, D.; Kiley, H.; Mason, M.; Darmenova, K.
2010-12-01
As the renewable energy industry continues to grow so does the requirement for atmospheric modeling and analysis tools to maximize both wind and solar power. Renewable energy generation is variable however; presenting challenges for electrical grid operation and requires a variety of measures to adequately firm power. These measures include the production of non-renewable generation during times when renewables are not available. One strategy for minimizing the variability of renewable energy production is site diversity. Assuming that a network of renewable energy systems feed a common electrical grid, site diversity ensures that when one system on the network has a reduction in generation others on the same grid make up the difference. The site-diversity strategy can be used to mitigate the intermittency in alternative energy production systems while still maximizing saleable energy. The Renewable Energy Network Optimization Tool (ReNOT) has recently been developed to study the merits of site optimization for wind farms. The modeling system has a plug-in architecture that allows us to accommodate a wide variety of renewable energy system designs and performance metrics. The Weather Research and Forecasting (WRF) mesoscale model is applied to generate high-resolution wind databases to support the site selection of wind farms. These databases are generated on High Performance Computing systems such as the Rocky Mountain Supercomputing Center (RMSC). The databases are then accessed by ReNOT and an optimized site selection is developed. We can accommodate numerous constraints (e.g., number of sites, the geographic extent of the optimization, proximity to high-voltage transport lines, etc.). As part of our collaboration with RMSC and the State of Montana a study was performed to estimate the optimal locations of a network of wind farms. Comparisons were made to four existing wind farm locations in Montana including Glacier with a 210 MW name plate capacity, Horseshoe Bend with a total capacity of 9 MW, Diamond Willow with a capacity of 20MW and Judith Gap with a total capacity of 135 MW. The goal of this study was to see if ReNOT could find a four site network that made more effective use of the existing four site network of wind farms' 374 MW nameplate capacity. We developed three different metrics in which to pick sites. Metric 3 (M3) picks sites based on the previous day's mean power, and accounts for short-term variability (i.e., 1 hour). M3 attempts to approximate usable power by minimizing ramping events which are so important to industry. In addition we investigated several performance metrics including Mean Power, Usable Power, and ramping event frequency. A ramping event is defined as an increase or decrease in power production over the course of one hour. Of interest was the frequency of ramping events that exceeded 10% of total capacity for the network. Networks with few ramping events are markedly superior to networks producing otherwise identical aggregate power. The optimization was run over the 15-year period of hub-height wind data (40 meters AGL). The ReNOT derived network produces 58% more usable power than the four existing and operating wind farms. In addition, the optimized four site network produces three times fewer significant ramping events.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Wind One (ATLW1) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia... Notice for Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore Virginia. SUMMARY... (FONSI) for commercial wind lease issuance and site assessment activities on the Atlantic OCS offshore...
Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel
2006-09-19
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel
2006-10-10
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel
2006-07-11
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel
2007-02-27
A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.
Chen, Quan; Li, Yaoyu; Seem, John E
2015-09-01
This paper presents a self-optimizing robust control scheme that can maximize the power generation for a variable speed wind turbine with Doubly-Fed Induction Generator (DFIG) operated in Region 2. A dual-loop control structure is proposed to synergize the conversion from aerodynamic power to rotor power and the conversion from rotor power to the electrical power. The outer loop is an Extremum Seeking Control (ESC) based generator torque regulation via the electric power feedback. The ESC can search for the optimal generator torque constant to maximize the rotor power without wind measurement or accurate knowledge of power map. The inner loop is a vector-control based scheme that can both regulate the generator torque requested by the ESC and also maximize the conversion from the rotor power to grid power. An ℋ(∞) controller is synthesized for maximizing, with performance specifications defined based upon the spectrum of the rotor power obtained by the ESC. Also, the controller is designed to be robust against the variations of some generator parameters. The proposed control strategy is validated via simulation study based on the synergy of several software packages including the TurbSim and FAST developed by NREL, Simulink and SimPowerSystems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
75 FR 61736 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Combined Notice of Filings 2 September... Wind Power LLC. Description: Klondike Wind Power LLC submits tariff filing per 35.12: Baseline Filing.... Applicants: Klondike Wind Power II LLC. Description: Klondike Wind Power II LLC submits tariff filing per 35...
Comprehensive Renewable Energy Feasibility Study for Sealaska Corporation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Lynette; John Wade: Larry Coupe
2006-06-30
The purposes of this project were: (1) to conduct a comprehensive feasibility study to determine the potential sustainability of wind and/or small hydroelectric power plants on Southeast Alaska native village lands, and (2) to provide the villages with an understanding of the requirements, costs, and benefits of developing and operating wind or small hydroelectric power plants. The program was sponsored by the Tribal Energy program, Office of Energy Efficiency and Renewable Energy, US Department of Energy. The Contractor was Sealaska Corporation, the Regional Native Corporation for Southeast Alaska that includes 12 village/urban corporations. Most villages are isolated from any centralmore » electric transmission and use diesel-electric systems for power generation, making them prime candidates for deploying renewable energy sources. Wind Energy - A database was assembled for all of the candidate sites in SE Alaska, including location, demographics, electricity supply and demand, existing and planned transmission interties with central generation, topographical maps, macro wind data, and contact personnel. Field trips were conducted at the five candidate villages that were deemed most likely to have viable wind resources. Meetings were held with local village and utility leaders and the requirements, costs, and benefits of having local renewable energy facilities were discussed. Two sites were selected for anemometry based on their needs and the probability of having viable wind resources – Yakutat and Hoonah. Anemometry was installed at both sites and at least one year of wind resource data was collected from the sites. This data was compared to long-term data from the closest weather stations. Reports were prepared by meteorologist John Wade that contains the details of the measured wind resources and energy production projections. Preliminary financial analysis of hypothetical wind power stations were prepared to gauge the economic viability of installing such facilities at each site. The average wind resources measured at Yakutat at three sites were very marginal, with an annual average of 4.0 mps (9 mph) at 60 meters above ground level. At Hoonah, the average wind resources measured on the 1,417 ft elevation ridge above the village were very low, with a six-month average of 3.9 mps (8.7 mph) at 60 meters above ground level. The wind resources at both sites were not sufficient to justify installation of wind turbines. In summary, although there are several known windy spots in SE Alaska (e.g., Skagway), we were not able to identify any isolated Native American villages that utilize diesel-electric power generation that have commercially viable wind resources. Small Hydroelectric - The study focused on the communities associated with Sealaska Corporation that use diesel-electric for electricity and have a potential for hydroelectric power generation. Most of them have had at least an assessment of hydroelectric potential, and a few have had feasibility studies of potential hydroelectric projects. Although none of the sites examined are financially viable without substantial grant funding, Hoonah, Kake, and Yakutat appear to have the best potential for new hydro facilities.« less
A large-eddy simulation based power estimation capability for wind farms over complex terrain
NASA Astrophysics Data System (ADS)
Senocak, I.; Sandusky, M.; Deleon, R.
2017-12-01
There has been an increasing interest in predicting wind fields over complex terrain at the micro-scale for resource assessment, turbine siting, and power forecasting. These capabilities are made possible by advancements in computational speed from a new generation of computing hardware, numerical methods and physics modelling. The micro-scale wind prediction model presented in this work is based on the large-eddy simulation paradigm with surface-stress parameterization. The complex terrain is represented using an immersed-boundary method that takes into account the parameterization of the surface stresses. Governing equations of incompressible fluid flow are solved using a projection method with second-order accurate schemes in space and time. We use actuator disk models with rotation to simulate the influence of turbines on the wind field. Data regarding power production from individual turbines are mostly restricted because of proprietary nature of the wind energy business. Most studies report percentage drop of power relative to power from the first row. There have been different approaches to predict power production. Some studies simply report available wind power in the upstream, some studies estimate power production using power curves available from turbine manufacturers, and some studies estimate power as torque multiplied by rotational speed. In the present work, we propose a black-box approach that considers a control volume around a turbine and estimate the power extracted from the turbine based on the conservation of energy principle. We applied our wind power prediction capability to wind farms over flat terrain such as the wind farm over Mower County, Minnesota and the Horns Rev offshore wind farm in Denmark. The results from these simulations are in good agreement with published data. We also estimate power production from a hypothetical wind farm in complex terrain region and identify potential zones suitable for wind power production.
Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Lantz, Eric; Ho, Jonathan
Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less
Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems
NASA Astrophysics Data System (ADS)
Zhou, Wei
Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.
NASA Astrophysics Data System (ADS)
Giebel, Gregor; Cline, Joel; Frank, Helmut; Shaw, Will; Pinson, Pierre; Hodge, Bri-Mathias; Kariniotakis, Georges; Sempreviva, Anna Maria; Draxl, Caroline
2017-04-01
Wind power forecasts have been used operatively for over 20 years. Despite this fact, there are still several possibilities to improve the forecasts, both from the weather prediction side and from the usage of the forecasts. The new International Energy Agency (IEA) Task on Wind Power Forecasting tries to organise international collaboration, among national weather centres with an interest and/or large projects on wind forecast improvements (NOAA, DWD, UK MetOffice, …) and operational forecaster and forecast users. The Task is divided in three work packages: Firstly, a collaboration on the improvement of the scientific basis for the wind predictions themselves. This includes numerical weather prediction model physics, but also widely distributed information on accessible datasets for verification. Secondly, we will be aiming at an international pre-standard (an IEA Recommended Practice) on benchmarking and comparing wind power forecasts, including probabilistic forecasts aiming at industry and forecasters alike. This WP will also organise benchmarks, in cooperation with the IEA Task WakeBench. Thirdly, we will be engaging end users aiming at dissemination of the best practice in the usage of wind power predictions, especially probabilistic ones. The Operating Agent is Gregor Giebel of DTU, Co-Operating Agent is Joel Cline of the US Department of Energy. Collaboration in the task is solicited from everyone interested in the forecasting business. We will collaborate with IEA Task 31 Wakebench, which developed the Windbench benchmarking platform, which this task will use for forecasting benchmarks. The task runs for three years, 2016-2018. Main deliverables are an up-to-date list of current projects and main project results, including datasets which can be used by researchers around the world to improve their own models, an IEA Recommended Practice on performance evaluation of probabilistic forecasts, a position paper regarding the use of probabilistic forecasts, and one or more benchmark studies implemented on the Windbench platform hosted at CENER. Additionally, spreading of relevant information in both the forecasters and the users community is paramount. The poster also shows the work done in the first half of the Task, e.g. the collection of available datasets and the learnings from a public workshop on 9 June in Barcelona on Experiences with the Use of Forecasts and Gaps in Research. Participation is open for all interested parties in member states of the IEA Annex on Wind Power, see ieawind.org for the up-to-date list. For collaboration, please contact the author grgi@dtu.dk).
7 CFR 4290.720 - Enterprises that may be ineligible for Financing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... wells, wind farms, or power facilities (including solar, geothermal, hydroelectric, or biomass power... the majority of the activities of the Enterprise. Examples include motion pictures. (e) Farm land... ineligible for Farm Credit System Assistance. If one or more Farm Credit System Institutions or their...
Indicator of reliability of power grids and networks for environmental monitoring
NASA Astrophysics Data System (ADS)
Shaptsev, V. A.
2017-10-01
The energy supply of the mining enterprises includes power networks in particular. Environmental monitoring relies on the data network between the observers and the facilitators. Weather and conditions of their work change over time randomly. Temperature, humidity, wind strength and other stochastic processes are interconnecting in different segments of the power grid. The article presents analytical expressions for the probability of failure of the power grid as a whole or its particular segment. These expressions can contain one or more parameters of the operating conditions, simulated by Monte Carlo. In some cases, one can get the ultimate mathematical formula for calculation on the computer. In conclusion, the expression, including the probability characteristic function of one random parameter, for example, wind, temperature or humidity, is given. The parameters of this characteristic function can be given by retrospective or special observations (measurements).
Characterization of wind power resource and its intermittency
NASA Astrophysics Data System (ADS)
Gunturu, U. B.; Schlosser, C. A.
2011-12-01
Wind resource in the continental and offshore United States has been calculated and characterized using metrics that describe - apart from abundance - its availability, persistence and intermittency. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) boundary layer flux data has been used to construct wind power density profiles at 50, 80, 100 and 120 m turbine hub heights. The wind power density estimates at 50 m are qualitatively similar to those in the US wind atlas developed by the National Renewable Energy Laboratory (NREL), but quantitatively a class less in some regions, but are within the limits of uncertainty. We also show that for long tailed distributions like those of the wind power density, the mean is an overestimation and median is a more robust metric for summary representation of wind power resource.Generally speaking, the largest and most available wind power density resources are found in off-shore regions of the Atlantic and Pacific coastline, and the largest on-shore resource potential lies in the central United States. However, the intermittency and widespread synchronicity of on-shore wind power density are substantial, and highlights areas where considerable back-up generation technologies will be required. Generation-duration curves are also presented for the independent systems operator (ISO) zones of the U.S. to highlight the regions with the largest capacity factor (MISO, ERCOT, and SWPP) as well as the periods and extent to which all ISOs contain no wind power and the potential benefits of aggregation on wind power intermittency in each region. The impact of raising the wind turbine hub height on metrics of abundance, persistence, variability and intermittency is analyzed. There is a general increase in availability and abundance of wind resource but there is also an increase in intermittency with respect to a 'usable wind power' crossing level in low resource regions. A similar perspective of wind resource for other regions of the world such as, Europe, India and China is also summarized and notable features highlighted.
ERIC Educational Resources Information Center
Pelka, David G.; And Others
1978-01-01
The large-scale generation of electrical power by wind turbine fields is discussed. It is shown that the maximum power that can be extracted by a wind turbine is 16/27 of the power available in the wind. (BB)
NASA Astrophysics Data System (ADS)
1992-02-01
This overview emphasizes the amount of electric power that could be provided by wind power rather than traditional fossil fuels. New wind power markets, advances in technology, technology transfer, and wind resources are some topics covered in this publication.
Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt
2012-02-28
Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Windmore » Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking of distributed wind state policy and economic environments summarized in the attached report, based on the Policy Tool's default COE results, highlights favorable market opportunities for distributed wind growth as well as market conditions ripe for improvement. Best practices for distributed wind state policies are identified through an evaluation of their effect on improving the bottom line of project investments. The case studies and state rankings were based on incentives, power curves, and turbine pricing as of 2010, and may not match the current results from the Policy Tool. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets. In providing a simple and easy-to-use policy comparison tool that estimates financial performance, the Policy Tool and guidebook are expected to enhance market expansion by the small wind industry by increasing and refining the understanding of distributed wind costs, policy best practices, and key market opportunities in all 50 states. This comprehensive overview and customized software to quickly calculate and compare policy scenarios represent a fundamental step in allowing policymakers to see how their decisions impact the bottom line for distributed wind consumers, while estimating the relative advantages of different options available in their policy toolboxes. Interested stakeholders have suggested numerous ways to enhance and expand the initial effort to develop an even more user-friendly Policy Tool and guidebook, including the enhancement and expansion of the current tool, and conducting further analysis. The report and the project's Guidebook include further details on possible next steps. NREL Report No. BK-5500-53127; DOE/GO-102011-3453.« less
75 FR 76721 - Combined Notice of Filings No. 1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-09
.... Docket Numbers: ER11-2201-000. Applicants: Evergreen Wind Power III, LLC. Description: Evergreen Wind Power III, LLC submits tariff filing per 35.12: MBR Application of Evergreen Wind Power III, LLC to be... Tuesday, December 21, 2010. Docket Numbers: ER11-2212-000. Applicants: Oak Creek Wind Power, LLC...
77 FR 59599 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
.... Applicants: Dry Lake Wind Power II LLC, Central Maine Power Company, Flat Rock Windpower II LLC, Flat Rock Windpower LLC, Elk River Windfarm, LLC, Iberdrola Renewables, LLC, Dillion Wind LLC, Dry Lake Wind Power, LLC, Shiloh I Wind Project, LLC, Mountain View Power Partners III, LLC, Blue [[Page 59600
76 FR 358 - Combined Notice of Filings # 1
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
..., 2011. Docket Numbers: ER11-2466-000. Applicants: Juniper Canyon Wind Power LLC. Description: Juniper Canyon Wind Power LLC submits tariff filing per 35.37: Revisions to Market-Based Rate Tariff to be... Wind Power LLC. Description: Klondike Wind Power LLC submits tariff filing per 35.37: Revisions to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Hodge, B. M.; Orwig, K.
2013-10-01
Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather predictionmore » model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.« less
77 FR 41777 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-16
...., Commonwealth Edison Company, PECO Energy Company, Wind Capital Holdings, LLC, Constellation Power Source... Generation II, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Tuana Springs Energy, LLC, Harvest Windfarm, LLC, CR Clearing, LLC, Exelon Wind 4, LLC, Cow Branch Wind Power, L...
78 FR 91 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-02
... Cabazon Wind, LLC, FPL Energy Green Power Wind, LLC, FPL Energy Montezuma Wind, LLC, FPL Energy New Mexico... Interconnect, LLC, Peetz Table Wind Energy, LLC, NextEra Energy Power Marketing, LLC. Description: NextEra.... Docket Numbers: ER11-3959-003. Applicants: Post Rock Wind Power Project, LLC. Description: Notice of Non...
NASA Astrophysics Data System (ADS)
Nhu Y, Do
2018-03-01
Vietnam has many advantages of wind power resources. Time by time there are more and more capacity as well as number of wind power project in Vietnam. Corresponding to the increase of wind power emitted into national grid, It is necessary to research and analyze in order to ensure the safety and reliability of win power connection. In national distribution grid, voltage sag occurs regularly, it can strongly influence on the operation of wind power. The most serious consequence is the disconnection. The paper presents the analysis of distribution grid's transient process when voltage is sagged. Base on the analysis, the solutions will be recommended to improve the reliability and effective operation of wind power resources.
NASA Astrophysics Data System (ADS)
Masaud, Tarek
Double Fed Induction Generators (DFIG) has been widely used for the past two decades in large wind farms. However, there are many open-ended problems yet to be solved before they can be implemented in some specific applications. This dissertation deals with the general analysis, modeling, control and applications of the DFIG for large wind farm applications. A detailed "d-q" model of DFIG along with other applications is simulated using the MATLAB/Simulink platform. The simulation results have been discussed in detail in both sub-synchronous and super-synchronous mode of operation. An improved vector control strategy based on the rotor flux oriented vector control has been proposed to control the active power output of the DFIG. The new vector control strategy is compared with the stator flux oriented vector control which is commonly used. It is observed that the new improved vector control method provides a better active power tracking accuracy compare with the stator flux oriented vector control. The behavior of the DFIG -based wind farm under the various grid disturbances is also studied in this dissertation. The implementation of the Flexible AC Transmission System devices (FACTS) to overcome the voltage stability issue for such applications is investigated. The study includes the implementation of both a static synchronous compensator (STATCOM), and the static VAR compensator (SVC) as dynamic reactive power compensators at the point of common coupling to support DFIG-based wind farm during disturbances. Integrating FACTS protect the grid connected DFIG-based wind farm from going offline during and after the disturbances. It is found that the both devices improve the transient performance and therefore helps the wind turbine generator system to remain in service during grid faults. A comparison between the performance of the two devices in terms of the amount of reactive power injected, time response and the application cost has been discussed in this dissertation. Finally, the integration of the battery energy storage system (BESS) into a grid connected DFIG- based wind turbine as a proposed solution to smooth out the output power during wind speed variations is also addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Jain, Rishabh; Hodge, Bri-Mathias
A data-driven methodology is developed to analyze how ambient and wake turbulence affect the power generation of wind turbine(s). Using supervisory control and data acquisition (SCADA) data from a wind plant, we select two sets of wind velocity and power data for turbines on the edge of the plant that resemble (i) an out-of-wake scenario and (ii) an in-wake scenario. For each set of data, two surrogate models are developed to represent the turbine(s) power generation as a function of (i) the wind speed and (ii) the wind speed and turbulence intensity. Three types of uncertainties in turbine(s) power generationmore » are investigated: (i) the uncertainty in power generation with respect to the reported power curve; (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) the turbine(s) generally produce more power under the in-wake scenario than under the out-of-wake scenario with the same wind speed; and (ii) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.« less
Analysis of economic benefit of wind power based on system dynamics
NASA Astrophysics Data System (ADS)
Zhao, Weibo; Han, Yaru; Niu, Dongxiao
2018-04-01
The scale of renewable power generation, such as wind power, has increased gradually in recent years. Considering that the economic benefits of wind farms are affected by many dynamic factors. The dynamic simulation model of wind power economic benefit system is established based on the system dynamics method. By comparing the economic benefits of wind farms under different setting scenarios through this model, the impact of different factors on the economic benefits of wind farms can be reflected.
NASA Technical Reports Server (NTRS)
Koenig, D. G.
1984-01-01
Factors influencing effective program planning for V/STOL wind-tunnel testing are discussed. The planning sequence itself, which includes a short checklist of considerations that could enhance the value of the tests, is also described. Each of the considerations, choice of wind tunnel, type of model installation, model development and test operations, is discussed, and examples of appropriate past and current V/STOL test programs are provided. A short survey of the moderate to large subsonic wind tunnels is followed by a review of several model installations, from two-dimensional to large-scale models of complete aircraft configurations. Model sizing, power simulation, and planning are treated, including three areas is test operations: data-acquisition systems, acoustic measurements in wind tunnels, and flow surveying.
Benefits of Colocating Concentrating Solar Power and Wind
Sioshansi, Ramteen; Denholm, Paul
2013-09-16
Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally,more » we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-03
... Wind Lease Sale 2 (ATLW2) Commercial Leasing for Wind Power on the Outer Continental Shelf Offshore...), Interior. ACTION: Proposed Sale Notice for commercial leasing for wind power on the Outer Continental Shelf... sale of commercial wind energy leases on the Outer Continental Shelf (OCS) offshore Rhode Island and...
Wind Powering America Podcasts, Wind Powering America (WPA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2012-04-01
Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource formore » podcast episodes.« less
Renewables cannot be stored economically on a well-run power system
NASA Astrophysics Data System (ADS)
Swift-Hook, Donald
2017-11-01
Economic storage on a power system must rely on arbitrage, buying electrical power when it is cheap and selling when it is dear. In practice, this means a store must buy power at night and sell it during the day. There is no solar power at night [by definition], so solar power cannot be stored economically on a well-run power system. Also renewables [and nuclear] are installed commercially to save fuel but fuel costs the same at night as it does during the day, so there is no arbitrage on fuel-saving to justify storage. Pumped water storage has always been widely used on power systems and is still the only method that is economic today, although many others have been tried, including fuels cells, compressed air and batteries. Devices for power correction and balancing [e.g. capacitor banks and batteries] may physically involve the storage of energy [just as a mobile phone does] but it is misleading to describe them as methods of power system storage, [just as it would be misleading to call a School bus a fuel transportation system, even though it does transport fuel]. When a power system has different sorts of plant generating - coal, gas, nuclear, wind etc - any power being put into storage is from the plant that would need to be switched off [because less power was needed] if storage ceased [e.g. because the store became full or failed]. On a well-run power system, that always has the highest fuel/running cost, but the wind blows free and has zero fuel/running cost, so wind is never [normally] stored unless there is no other plant on line i.e. wind power is the last to be stored.
Electric power from offshore wind via synoptic-scale interconnection
Kempton, Willett; Pimenta, Felipe M.; Veron, Dana E.; Colle, Brian A.
2010-01-01
World wind power resources are abundant, but their utilization could be limited because wind fluctuates rather than providing steady power. We hypothesize that wind power output could be stabilized if wind generators were located in a meteorologically designed configuration and electrically connected. Based on 5 yr of wind data from 11 meteorological stations, distributed over a 2,500 km extent along the U.S. East Coast, power output for each hour at each site is calculated. Each individual wind power generation site exhibits the expected power ups and downs. But when we simulate a power line connecting them, called here the Atlantic Transmission Grid, the output from the entire set of generators rarely reaches either low or full power, and power changes slowly. Notably, during the 5-yr study period, the amount of power shifted up and down but never stopped. This finding is explained by examining in detail the high and low output periods, using reanalysis data to show the weather phenomena responsible for steady production and for the occasional periods of low power. We conclude with suggested institutions appropriate to create and manage the power system analyzed here. PMID:20368464
The influence of large-scale wind power on global climate.
Keith, David W; Decarolis, Joseph F; Denkenberger, David C; Lenschow, Donald H; Malyshev, Sergey L; Pacala, Stephen; Rasch, Philip J
2004-11-16
Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer. We find that very large amounts of wind power can produce nonnegligible climatic change at continental scales. Although large-scale effects are observed, wind power has a negligible effect on global-mean surface temperature, and it would deliver enormous global benefits by reducing emissions of CO(2) and air pollutants. Our results may enable a comparison between the climate impacts due to wind power and the reduction in climatic impacts achieved by the substitution of wind for fossil fuels.
VisibleWind: wind profile measurements at low altitude
NASA Astrophysics Data System (ADS)
Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell
2009-09-01
VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.
Quantifying Uncertainty of Wind Power Production Through an Analog Ensemble
NASA Astrophysics Data System (ADS)
Shahriari, M.; Cervone, G.
2016-12-01
The Analog Ensemble (AnEn) method is used to generate probabilistic weather forecasts that quantify the uncertainty in power estimates at hypothetical wind farm locations. The data are from the NREL Eastern Wind Dataset that includes more than 1,300 modeled wind farms. The AnEn model uses a two-dimensional grid to estimate the probability distribution of wind speed (the predictand) given the values of predictor variables such as temperature, pressure, geopotential height, U-component and V-component of wind. The meteorological data is taken from the NCEP GFS which is available on a 0.25 degree grid resolution. The methodology first divides the data into two classes: training period and verification period. The AnEn selects a point in the verification period and searches for the best matching estimates (analogs) in the training period. The predictand value at those analogs are the ensemble prediction for the point in the verification period. The model provides a grid of wind speed values and the uncertainty (probability index) associated with each estimate. Each wind farm is associated with a probability index which quantifies the degree of difficulty to estimate wind power. Further, the uncertainty in estimation is related to other factors such as topography, land cover and wind resources. This is achieved by using a GIS system to compute the correlation between the probability index and geographical characteristics. This study has significant applications for investors in renewable energy sector especially wind farm developers. Lower level of uncertainty facilitates the process of submitting bids into day ahead and real time electricity markets. Thus, building wind farms in regions with lower levels of uncertainty will reduce the real-time operational risks and create a hedge against volatile real-time prices. Further, the links between wind estimate uncertainty and factors such as topography and wind resources, provide wind farm developers with valuable information regarding wind farm siting.
Lessons from wind policy in Portugal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peña, Ivonne; L. Azevedo, Inês; Marcelino Ferreira, Luís António Fialho
Wind capacity and generation grew rapidly in several European countries, such as Portugal. Wind power adoption in Portugal began in the early 2000s, incentivized by a continuous feed-in tariff policy mechanism, coupled with public tenders for connection licenses in 2001, 2002, and 2005. These policies led to an enormous success in terms of having a large share of renewables providing electricity services: wind alone accounts today for ~23.5% of electricity demand in Portugal. We explain the reasons wind power became a key part of Portugal's strategy to comply with European Commission climate and energy goals, and provide a detailed reviewmore » of the wind feed-in tariff mechanism. We describe the actors involved in wind power production growth. We estimate the environmental and energy dependency gains achieved through wind power generation, and highlight the correlation between wind electricity generation and electricity exports. Finally, we compare the Portuguese wind policies with others countries' policy designs and discuss the relevance of a feed-in tariff reform for subsequent wind power additions.« less
Advanced dc-Traction-Motor Control System
NASA Technical Reports Server (NTRS)
Vittone, O.
1985-01-01
Motor-control concept for battery-powered vehicles includes stateof-the-art power-transistor switching and separate excitation of motor windings in traction and regenerative braking. Switching transistors and other components of power-conditioning subsystem operate under control of computer that coordinates traction, braking, and protective functions.
NASA Astrophysics Data System (ADS)
Reed, P. M.; Fernandez, A. R.; Blumsack, S.
2011-12-01
Hydropower can provide inexpensive, flexible fill-in power to compensate for intermittent renewable generation. Policies for hydropower dams maintain multiple services beyond electric generation, including environmental protection, flood control and recreation. We model the decision of a hydroelectric generator to shift some of its power production capacity away from the day-ahead energy market into a "wind-following" service that smoothes the intermittent production of wind turbines. Offering such a service imposes both private and social opportunity costs. Since fluctuations in wind energy output are not perfectly correlated with day-ahead energy prices, a wind-following service will necessarily affect generator revenues. Seasonal wind patterns produce conflicts with the goal of managing rivers for "ecosystem services" - the maintenance or enhancement of downstream ecosystems. We illustrate our decision model using the Kerr Dam in PJM's territory in North Carolina. We simulate the operation of Kerr Dam over a three-year period that features hydrologic variability from normal water years to extreme drought conditions. We use an optimization framework to estimate reservation prices for Kerr Dam offering wind-following services in the PJM market. Wind-following may be profitable for Kerr Dam at low capacity levels during some time periods if ecosystems services are neglected and if side payments, or reserves-type payments, are provided. Wind-following with ecosystem services yields revenue losses that typically cannot be recovered with reserves market payments. Water release patterns are inconsistent with ecosystem-services goals when Kerr Dam dedicates significant capacity to wind-following, particularly in drought years.
Effect of accuracy of wind power prediction on power system operator
NASA Technical Reports Server (NTRS)
Schlueter, R. A.; Sigari, G.; Costi, T.
1985-01-01
This research project proposed a modified unit commitment that schedules connection and disconnection of generating units in response to load. A modified generation control is also proposed that controls steam units under automatic generation control, fast responding diesels, gas turbines and hydro units under a feedforward control, and wind turbine array output under a closed loop array control. This modified generation control and unit commitment require prediction of trend wind power variation one hour ahead and the prediction of error in this trend wind power prediction one half hour ahead. An improved meter for predicting trend wind speed variation is developed. Methods for accurately simulating the wind array power from a limited number of wind speed prediction records was developed. Finally, two methods for predicting the error in the trend wind power prediction were developed. This research provides a foundation for testing and evaluating the modified unit commitment and generation control that was developed to maintain operating reliability at a greatly reduced overall production cost for utilities with wind generation capacity.
NASA Astrophysics Data System (ADS)
Valldecabres, L.; Friedrichs, W.; von Bremen, L.; Kühn, M.
2016-09-01
An analysis of the spatial and temporal power fluctuations of a simplified wind farm model is conducted on four offshore wind fields data sets, two from lidar measurements and two from LES under unstable and neutral atmospheric conditions. The integral length scales of the horizontal wind speed computed in the streamwise and the cross-stream direction revealed the elongation of the structures in the direction of the mean flow. To analyse the effect of the structures on the power output of a wind turbine, the aggregated equivalent power of two wind turbines with different turbine spacing in the streamwise and cross-stream direction is analysed at different time scales under 10 minutes. The fact of considering the summation of the power of two wind turbines smooths out the fluctuations of the power output of a single wind turbine. This effect, which is stronger with increasing spacing between turbines, can be seen in the aggregation of the power of two wind turbines in the streamwise direction. Due to the anti-correlation of the coherent structures in the cross-stream direction, this smoothing effect is stronger when the aggregated power is computed with two wind turbines aligned orthogonally to the mean flow direction.
Engineering innovation to reduce wind power COE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ammerman, Curtt Nelson
There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.
Optimizing Lidar Scanning Strategies for Wind Energy Measurements (Invited)
NASA Astrophysics Data System (ADS)
Newman, J. F.; Bonin, T. A.; Klein, P.; Wharton, S.; Chilson, P. B.
2013-12-01
Environmental concerns and rising fossil fuel prices have prompted rapid development in the renewable energy sector. Wind energy, in particular, has become increasingly popular in the United States. However, the intermittency of available wind energy makes it difficult to integrate wind energy into the power grid. Thus, the expansion and successful implementation of wind energy requires accurate wind resource assessments and wind power forecasts. The actual power produced by a turbine is affected by the wind speeds and turbulence levels experienced across the turbine rotor disk. Because of the range of measurement heights required for wind power estimation, remote sensing devices (e.g., lidar) are ideally suited for these purposes. However, the volume averaging inherent in remote sensing technology produces turbulence estimates that are different from those estimated by a sonic anemometer mounted on a standard meteorological tower. In addition, most lidars intended for wind energy purposes utilize a standard Doppler beam-swinging or Velocity-Azimuth Display technique to estimate the three-dimensional wind vector. These scanning strategies are ideal for measuring mean wind speeds but are likely inadequate for measuring turbulence. In order to examine the impact of different lidar scanning strategies on turbulence measurements, a WindCube lidar, a scanning Halo lidar, and a scanning Galion lidar were deployed at the Southern Great Plains Atmospheric Radiation Measurement (ARM) site in Summer 2013. Existing instrumentation at the ARM site, including a 60-m meteorological tower and an additional scanning Halo lidar, were used in conjunction with the deployed lidars to evaluate several user-defined scanning strategies. For part of the experiment, all three scanning lidars were pointed at approximately the same point in space and a tri-Doppler analysis was completed to calculate the three-dimensional wind vector every 1 second. In another part of the experiment, one of the scanning lidars ran a Doppler beam-swinging technique identical to that used by the WindCube lidar while another scanning lidar used a novel six-beam technique that has been presented in the literature as a better alternative for measuring turbulence. In this presentation, turbulence measurements from these techniques are compared to turbulence measured by the WindCube lidar and sonic anemometers on the 60-m meteorological tower. In addition, recommendations are made for lidar measurement campaigns for wind energy applications.
NASA Astrophysics Data System (ADS)
Zeng, Ming; Yang, Lijun; Qiu, Hongji; Li, Yuanfei; Peng, Lilin
2017-01-01
The wind power and PV are the key fields of clean energy development in China in recent years. However, there are still many aspects of problems in wind power and PV industries at present, such as the insufficient consumptive ability and the limitation of market competition capability. The effective leading and support of government in the aspect of policies is especially needed in order to solve these problems. Based on the analysis of main policies system of wind power and PV in our country, Spain, the United Kingdom and Germany are chosen as typical countries because of their wind power and PV industries are relatively developed. Their policies of wind power and PV industries are studied respectively from five aspects, namely macroscopic laws, development planning, administrative policies, fiscal and tax policies and price policies. Then the comparison among typical countries and China is made and the exiting problems in China's policies of wind power and PV industries are summed up. Finally, the suggestions to promote China's wind power and PV industries development are presented.
Benefits of an ultra large and multiresolution ensemble for estimating available wind power
NASA Astrophysics Data System (ADS)
Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik
2016-04-01
In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.
Reference Manual for the System Advisor Model's Wind Power Performance Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.; Jorgenson, J.; Gilman, P.
2014-08-01
This manual describes the National Renewable Energy Laboratory's System Advisor Model (SAM) wind power performance model. The model calculates the hourly electrical output of a single wind turbine or of a wind farm. The wind power performance model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs. In SAM, the performance model can be coupled to one of the financial models to calculate economic metrics for residential, commercial, or utility-scale wind projects. This manual describes the algorithms used by the wind power performance model, which is available in the SAM user interface andmore » as part of the SAM Simulation Core (SSC) library, and is intended to supplement the user documentation that comes with the software.« less
Wind and Water Power Fact Sheets | Wind | NREL
Advanced Control Turbine Systems to Increase Performance, Decrease Structural Loading of Wind Turbines and and Water Power Fact Sheets Wind and Water Power Fact Sheets The capabilities for research at the National Wind Technology Center (NWTC) are numerous. Below you will find fact sheets about the many
ERIC Educational Resources Information Center
Journal of College Science Teaching, 2005
2005-01-01
This brief article describes a new global wind-power map that has quantified global wind power and may help planners place turbines in locations that can maximize power from the winds and provide widely available low-cost energy. The researchers report that their study can assist in locating wind farms in regions known for strong and consistent…
Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind power resource estimates were produced by AWS TrueWind using their MesoMap system and historical weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy
A summary of impacts of wind power integration on power system small-signal stability
NASA Astrophysics Data System (ADS)
Yan, Lei; Wang, Kewen
2017-05-01
Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.
Think Global, Act Local--A Power Generation Case Study
ERIC Educational Resources Information Center
Dugdale, Pam
2012-01-01
This paper describes an exercise completed by sixth form college students to compare the power output from a local coal fired power station with the potential power output from renewable sources including wind farms, solar farms, and the proposed Mersey Tidal Barrage scheme. (Contains 1 figure, 1 table, and 3 photos.)
The Environment Friendly Power Source for Power Supply of Mobile Communication Base Stations
NASA Astrophysics Data System (ADS)
Rudenko, N. V.; Ershov, V. V.; Evstafiev, V. V.
2017-05-01
The article describes the technical proposals to improve environmental and resource characteristics of the autonomous power supply systems of mobile communication base stations based on renewable energy sources, while ensuring the required reliability and security of power supply. These include: the replacement of diesel-generator with clean energy source - an electrochemical generator based on hydrogen fuel cells; the use of wind turbines with a vertical axis; use of specialized batteries. Based on the analysis of the know technical solutions, the structural circuit diagram of the hybrid solar-wind-hydrogen power plant and the basic principles of the algorithm of its work were proposed. The implementation of these proposals will improve the environmental and resource characteristics.
DOE/NREL supported wind energy activities in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouilhet, S.
1997-12-01
This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in villagemore » settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-18
... Delta LLC; Mountain View Solar, LLC; Pheasant Run Wind, LLC; Pheasant Run Wind II, LLC; Tuscola Wind II, LLC; Mountain Wind Power, LLC; Mountain Wind Power II, LLC; Summerhaven Wind, LP; Notice of...
Datasets on hub-height wind speed comparisons for wind farms in California.
Wang, Meina; Ullrich, Paul; Millstein, Dev
2018-08-01
This article includes the description of data information related to the research article entitled "The future of wind energy in California: Future projections with the Variable-Resolution CESM"[1], with reference number RENE_RENE-D-17-03392. Datasets from the Variable-Resolution CESM, Det Norske Veritas Germanischer Lloyd Virtual Met, MERRA-2, CFSR, NARR, ISD surface observations, and upper air sounding observations were used for calculating and comparing hub-height wind speed at multiple major wind farms across California. Information on hub-height wind speed interpolation and power curves at each wind farm sites are also presented. All datasets, except Det Norske Veritas Germanischer Lloyd Virtual Met, are publicly available for future analysis.
75 FR 8687 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-25
... Partners LLC, Fenton Power Partners I, LLC, Hoosier Wind Project, LLC, Northwest Wind Partners, LLC, Oasis Power Partners, LLC, Shiloh Wind Project 2, LLC, Wapsipinicon Wind Project, LLC. Description... Service Company of Colorado; Southwestern Public Service Company. Description: Northern States Power...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, Vahan
The National Renewable Energy Laboratory (NREL) and DONG Energy are interested in collaborating for the development of control algorithms, modeling, and grid simulator testing of wind turbine generator systems involving NWTC's advanced Controllable Grid Interface (CGI). NREL and DONG Energy will work together to develop control algorithms, models, test methods, and protocols involving NREL's CGI, as well as appropriate data acquisition systems for grid simulation testing. The CRADA also includes work on joint publication of results achieved from modeling and testing efforts. Further, DONG Energy will send staff to NREL on a long-term basis for collaborative work including modeling andmore » testing. NREL will send staff to DONG Energy on a short-term basis to visit wind power sites and participate in meetings relevant to this collaborative effort. DOE has provided NREL with over 10 years of support in developing custom facilities and capabilities to enable testing of full-scale integrated wind turbine drivetrain systems in accordance with the needs of the US wind industry. NREL currently operates a 2.5MW dynamometer and is in the processes of commissioning a 5MW dynamometer and a grid simulator (referred to as a 'Controllable Grid Interface' or CGI). DONG Energy is the market leader in offshore wind power development, with currently over 1 GW of on- and offshore wind power in operation, and 1.3 GW under construction. DONG Energy has on-going R&D projects involving high voltage DC (HVDC) transmission.« less
Jha, Kamal N.
1999-01-01
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2010-02-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled substantial interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1 °C over land installations. In contrast, surface cooling exceeding 1 °C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Potential climatic impacts and reliability of very large-scale wind farms
NASA Astrophysics Data System (ADS)
Wang, C.; Prinn, R. G.
2009-09-01
Meeting future world energy needs while addressing climate change requires large-scale deployment of low or zero greenhouse gas (GHG) emission technologies such as wind energy. The widespread availability of wind power has fueled legitimate interest in this renewable energy source as one of the needed technologies. For very large-scale utilization of this resource, there are however potential environmental impacts, and also problems arising from its inherent intermittency, in addition to the present need to lower unit costs. To explore some of these issues, we use a three-dimensional climate model to simulate the potential climate effects associated with installation of wind-powered generators over vast areas of land or coastal ocean. Using wind turbines to meet 10% or more of global energy demand in 2100, could cause surface warming exceeding 1°C over land installations. In contrast, surface cooling exceeding 1°C is computed over ocean installations, but the validity of simulating the impacts of wind turbines by simply increasing the ocean surface drag needs further study. Significant warming or cooling remote from both the land and ocean installations, and alterations of the global distributions of rainfall and clouds also occur. These results are influenced by the competing effects of increases in roughness and decreases in wind speed on near-surface turbulent heat fluxes, the differing nature of land and ocean surface friction, and the dimensions of the installations parallel and perpendicular to the prevailing winds. These results are also dependent on the accuracy of the model used, and the realism of the methods applied to simulate wind turbines. Additional theory and new field observations will be required for their ultimate validation. Intermittency of wind power on daily, monthly and longer time scales as computed in these simulations and inferred from meteorological observations, poses a demand for one or more options to ensure reliability, including backup generation capacity, very long distance power transmission lines, and onsite energy storage, each with specific economic and/or technological challenges.
Hurricane Resilient Wind Plant Concept Study Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dibra, Besart; Finucane, Zachary; Foley, Benjamin
Hurricanes occur over much of the U.S. Atlantic and Gulf coasts, from Long Island to the U.S.-Mexico border, encompassing much of the nation's primary offshore wind resource. Category 5 hurricanes have made landfall as far north as North Carolina, with Category 3 hurricanes reaching New York with some frequency. Along the US West coast, typhoons strike with similar frequency and severity. At present, offshore wind turbine design practices do not fully consider the severe operating conditions imposed by hurricanes. Although universally applied to most turbine designs, International Electrotechnical Commission (IEC) standards do not sufficiently address the duration, directionality, magnitude, ormore » character of hurricanes. To assess advanced design features that could mitigate hurricane loading in various ways, this Hurricane-Resilient Wind Plant Concept Study considered a concept design study of a 500-megawatt (MW) wind power plant consisting of 10-MW wind turbines deployed in 25-meter (m) water depths in the Western Gulf of Mexico. This location was selected because hurricane frequency and severity provided a unique set of design challenges that would enable assessment of hurricane risk and projection of cost of energy (COE) changes, all in response to specific U.S. Department of Energy (DOE) objectives. Notably, the concept study pursued a holistic approach that incorporated multiple advanced system elements at the wind turbine and wind power plant levels to meet objectives for system performance and reduced COE. Principal turbine system elements included a 10-MW rotor with structurally efficient, low-solidity blades; a lightweight, permanent-magnet, direct-drive generator, and an innovative fixed substructure. At the wind power plant level, turbines were arrayed in a large-scale wind power plant in a manner aimed at balancing energy production against capital, installation, and operation and maintenance (O&M) costs to achieve significant overall reductions in COE.« less
Compact high-power shipborne doppler lidar based on high spectral resolution techniques
NASA Astrophysics Data System (ADS)
Wu, Songhua; Liu, Bingyi; Dai, Guangyao; Qin, Shenguang; Liu, Jintao; Zhang, Kailin; Feng, Changzhong; Zhai, Xiaochun; Song, Xiaoquan
2018-04-01
The Compact High-Power Shipborne Doppler Wind Lidar (CHiPSDWiL) based on highspectral-resolution technique has been built up at the Ocean University of China for the measurement of the wind field and the properties of the aerosol and clouds in the troposphere. The design of the CHiPSDWiL including the transceiver, the injection seeding, the locking and the frequency measurement will be presented. Preliminary results measured by the CHiPSDWiL are provided.
Wind Power Potential at Abandoned Mines in Korea
NASA Astrophysics Data System (ADS)
jang, M.; Choi, Y.; Park, H.; Go, W.
2013-12-01
This study performed an assessment of wind power potential at abandoned mines in the Kangwon province by analyzing gross energy production, greenhouse gas emission reduction and economic effects estimated from a 600 kW wind turbine. Wind resources maps collected from the renewable energy data center in Korea Institute of Energy Research(KIER) were used to determine the average wind speed, temperature and atmospheric pressure at hub height(50 m) for each abandoned mine. RETScreen software developed by Natural Resources Canada(NRC) was utilized for the energy, emission and financial analyses of wind power systems. Based on the results from 5 representative mining sites, we could know that the average wind speed at hub height is the most critical factor for assessing the wind power potential. Finally, 47 abandoned mines that have the average wind speed faster than 6.5 m/s were analyzed, and top 10 mines were suggested as relatively favorable sites with high wind power potential in the Kangwon province.
12 CFR 650.20 - Powers and duties of the receiver.
Code of Federal Regulations, 2013 CFR
2013-01-01
... appointment as receiver, the receiver shall take possession of the Corporation in order to wind up the... during the process of liquidating its assets and winding up its affairs. (3) Borrow funds in accordance..., compensation, and expenses, including litigation costs. (9) Hire any agents or employees necessary for proper...
12 CFR 650.20 - Powers and duties of the receiver.
Code of Federal Regulations, 2014 CFR
2014-01-01
... appointment as receiver, the receiver shall take possession of the Corporation in order to wind up the... during the process of liquidating its assets and winding up its affairs. (3) Borrow funds in accordance..., compensation, and expenses, including litigation costs. (9) Hire any agents or employees necessary for proper...
12 CFR 650.20 - Powers and duties of the receiver.
Code of Federal Regulations, 2012 CFR
2012-01-01
... appointment as receiver, the receiver shall take possession of the Corporation in order to wind up the... during the process of liquidating its assets and winding up its affairs. (3) Borrow funds in accordance..., compensation, and expenses, including litigation costs. (9) Hire any agents or employees necessary for proper...
Executive summary: Mod-1 wind turbine generator analysis and design report
NASA Technical Reports Server (NTRS)
1979-01-01
Activities leading to the detail design of a wind turbine generator having a nominal rating of 1.8 megawatts are reported. Topics covered include (1) system description; (2) structural dynamics; (3) stability analysis; (4) mechanical subassemblies design; (5) power generation subsystem; and (6) control and instrumentation subsystem.
Increasing the percentage of renewable energy in the Southwestern United States
USDA-ARS?s Scientific Manuscript database
Combining the output of wind farms with that of Concentrating Solar Power (CSP) plants (including a heat storage system) resulted in a substantial percentage (40%) of the total utility electrical generation in the Southwestern United States being met by renewable energy. Using wind and solar resourc...
2016 Wind Technologies Market Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiser, Ryan H.; Bolinger, Mark
The U.S. Department of Energy (DOE)’s Wind Technologies Market Report provides an annual overview of trends in the U.S. wind power market. You can find the report, a presentation, and a data file on the Files tab, below. Additionally, several data visualizations are available in the Data Visualizations tab. Highlights of this year’s report include: -Wind power additions continued at a rapid clip in 2016: $13 billion was invested in new wind power plants in 2016. In 2016, wind energy contributed 5.6% of the nation’s electricity supply, more than 10% of total electricity generation in fourteen states, and 29% tomore » 37% in three of those states—Iowa, South Dakota, and Kansas. -Bigger turbines are enhancing wind project performance: Increased blade lengths, in particular, have dramatically increased wind project capacity factors, one measure of project performance. For example, the average 2016 capacity factor among projects built in 2014 and 2015 was 42.6%, compared to an average of 32.1% among projects built from 2004 to 2011 and 25.4% among projects built from 1998 to 2001. -Low wind turbine pricing continues to push down installed project costs: Wind turbine prices have fallen from their highs in 2008, to $800–$1,100/kW. Overall, the average installed cost of wind projects in 2016 was $1,590/kW, down $780/kW from the peak in 2009 and 2010. -Wind energy prices remain low: After topping out at nearly 7¢/kWh for power purchase agreements (PPAs) executed in 2009, the national average price of wind PPAs has dropped to around 2¢/kWh—though this nationwide average is dominated by projects that hail from the lowest-priced Interior region of the country (such as Texas, Iowa, Oklahoma). These prices, which are possible in part due to federal tax support, compare favorably to the projected future fuel costs of gas-fired generation. -The supply chain continued to adjust to swings in domestic demand for wind equipment: Wind sector employment reached a new high of more than 101,000 full-time workers at the end of 2016. For wind projects recently installed in the U.S., domestically manufactured content is highest for nacelle assembly (>90%), towers (65-80%), and blades and hubs (50-70%), but is much lower (<20%) for most components internal to the turbine. -Continued strong growth in wind capacity is anticipated in the near term: With federal tax incentives still available, though declining, various forecasts for the domestic market show expected wind power capacity additions averaging more than 9,000 MW/year from 2017 to 2020.« less
Wind and Solar on the Power Grid: Myths and Misperceptions, Greening the Grid (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors: Denholm, Paul; Cochran, Jaquelin; Brancucci Martinez-Anido, Carlo
This is the Spanish version of the 'Greening the Grid - Wind and Solar on the Power Grid: Myths and Misperceptions'. Wind and solar are inherently more variable and uncertain than the traditional dispatchable thermal and hydro generators that have historically provided a majority of grid-supplied electricity. The unique characteristics of variable renewable energy (VRE) resources have resulted in many misperceptions regarding their contribution to a low-cost and reliable power grid. Common areas of concern include: 1) The potential need for increased operating reserves, 2) The impact of variability and uncertainty on operating costs and pollutant emissions of thermal plants,more » and 3) The technical limits of VRE penetration rates to maintain grid stability and reliability. This fact sheet corrects misperceptions in these areas.« less
A short-term ensemble wind speed forecasting system for wind power applications
NASA Astrophysics Data System (ADS)
Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.
2011-12-01
This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.
75 FR 70234 - Notice of Effectiveness of Exempt Wholesale Generator Status
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Lakefield Wind Project, LLC, EG10-57-000; Constellation Mystic Power, LLC, EG10-58-000; Pattern Gulf Wind, LLC, EG10-59-000; New Harvest Wind Project, LLC, EG10-60-000; Dry Lake Wind Power, II LLC, EG10-61-000; Learning Jupiter Wind Power...
The Wind Integration National Dataset (WIND) toolkit (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caroline Draxl: NREL
2014-01-01
Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.
Near real time wind energy forecasting incorporating wind tunnel modeling
NASA Astrophysics Data System (ADS)
Lubitz, William David
A series of experiments and investigations were carried out to inform the development of a day-ahead wind power forecasting system. An experimental near-real time wind power forecasting system was designed and constructed that operates on a desktop PC and forecasts 12--48 hours in advance. The system uses model output of the Eta regional scale forecast (RSF) to forecast the power production of a wind farm in the Altamont Pass, California, USA from 12 to 48 hours in advance. It is of modular construction and designed to also allow diagnostic forecasting using archived RSF data, thereby allowing different methods of completing each forecasting step to be tested and compared using the same input data. Wind-tunnel investigations of the effect of wind direction and hill geometry on wind speed-up above a hill were conducted. Field data from an Altamont Pass, California site was used to evaluate several speed-up prediction algorithms, both with and without wind direction adjustment. These algorithms were found to be of limited usefulness for the complex terrain case evaluated. Wind-tunnel and numerical simulation-based methods were developed for determining a wind farm power curve (the relation between meteorological conditions at a point in the wind farm and the power production of the wind farm). Both methods, as well as two methods based on fits to historical data, ultimately showed similar levels of accuracy: mean absolute errors predicting power production of 5 to 7 percent of the wind farm power capacity. The downscaling of RSF forecast data to the wind farm was found to be complicated by the presence of complex terrain. Poor results using the geostrophic drag law and regression methods motivated the development of a database search method that is capable of forecasting not only wind speeds but also power production with accuracy better than persistence.
A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani
2017-03-01
A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.
Solar power. [comparison of costs to wind, nuclear, coal, oil and gas
NASA Technical Reports Server (NTRS)
Walton, A. L.; Hall, Darwin C.
1990-01-01
This paper describes categories of solar technologies and identifies those that are economic. It compares the private costs of power from solar, wind, nuclear, coal, oil, and gas generators. In the southern United States, the private costs of building and generating electricity from new solar and wind power plants are less than the private cost of electricity from a new nuclear power plant. Solar power is more valuable than nuclear power since all solar power is available during peak and midpeak periods. Half of the power from nuclear generators is off-peak power and therefore is less valuable. Reliability is important in determining the value of wind and nuclear power. Damage from air pollution, when factored into the cost of power from fossil fuels, alters the cost comparison in favor of solar and wind power. Some policies are more effective at encouraging alternative energy technologies that pollute less and improve national security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin
The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India's RE targets and identify actions that may be favorable for integration.
Sullivan, W.N.
An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.
Sullivan, William N.
1985-01-01
An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.
Tail Shape Design of Boat Wind Turbines
NASA Astrophysics Data System (ADS)
Singamsitty, Venkatesh
Wind energy is a standout among the most generally utilized sustainable power source assets. A great deal of research and improvements have been happening in the wind energy field. Wind turbines are mechanical devices that convert kinetic energy into electrical power. Boat wind turbines are for the small-scale generation of electric power. In order to catch wind energy effectively, boat wind turbines need to face wind direction. Tails are used in boat wind turbines to alter the wind turbine direction and receive the variation of the incoming direction of wind. Tails are used to change the performance of boat wind turbines in an effective way. They are required to generate a quick and steady response as per change in wind direction. Tails can have various shapes, and their effects on boat wind turbines are different. However, the effects of tail shapes on the performance of boat wind turbines are not thoroughly studied yet. In this thesis, five tail shapes were studied. Their effects on boat wind turbines were investigated. The power extracted by the turbines from the air and the force acting on the boat wind turbine tail were analyzed. The results of this thesis provide a guideline of tail shape design for boat wind turbines.
Effects of turbine technology and land use on wind power resource potential
NASA Astrophysics Data System (ADS)
Rinne, Erkka; Holttinen, Hannele; Kiviluoma, Juha; Rissanen, Simo
2018-06-01
Estimates of wind power potential are relevant for decision-making in energy policy and business. Such estimates are affected by several uncertain assumptions, most significantly related to wind turbine technology and land use. Here, we calculate the technical and economic onshore wind power potentials with the aim to evaluate the impact of such assumptions using the case-study area of Finland as an example. We show that the assumptions regarding turbine technology and land use policy are highly significant for the potential estimate. Modern turbines with lower specific ratings and greater hub heights improve the wind power potential considerably, even though it was assumed that the larger rotors decrease the installation density and increase the turbine investment costs. New technology also decreases the impact of strict land use policies. Uncertainty in estimating the cost of wind power technology limits the accuracy of assessing economic wind power potential.
High Voltage Power Transmission for Wind Energy
NASA Astrophysics Data System (ADS)
Kim, Young il
The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.
Grid Integration Research | Wind | NREL
-generated simulation of a wind turbine. Wind Power Plant Modeling and Simulation Engineers at the National computer-aided engineering tool, FAST, as well as their wind power plant simulation tool, Wind-Plant
Renewable Energy Zones for the Africa Clean Energy Corridor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Grace C.; Deshmukh, Ranjit; Ndhlukula, Kudakwashe
Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East andmore » Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-26
.... 1. In this order, the Commission accepts an updated market power analysis filed by Vantage Wind.... Background 3. On December 20, 2010, Vantage Wind filed an updated market power analysis in compliance with... power analysis filed by Puget Sound Energy, Inc. (Puget).\\4\\ \\3\\ See Vantage Wind Energy LLC, Docket No...
Design and Study of a Low-Cost Laboratory Model Digital Wind Power Meter
ERIC Educational Resources Information Center
Radhakrishnan, Rugmini; Karthika, S.
2010-01-01
A vane-type low-cost laboratory model anemometer cum power meter is designed and constructed for measuring low wind energy created from accelerating fluids. The constructed anemometer is a device which records the electrical power obtained by the conversion of wind power using a wind sensor coupled to a DC motor. It is designed for its…
Economic Impacts of Wind Turbine Development in U.S. Counties
DOE Office of Scientific and Technical Information (OSTI.GOV)
J., Brown; B., Hoen; E., Lantz
2011-07-25
The objective is to address the research question using post-project construction, county-level data, and econometric evaluation methods. Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show that penetrations of at least 20 percentmore » are feasible. Several studies have used input-output models to predict direct, indirect, and induced economic development impacts. These analyses have often been completed prior to project construction. Available studies have not yet investigated the economic development impacts of wind development at the county level using post-construction econometric evaluation methods. Analysis of county-level impacts is limited. However, previous county-level analyses have estimated operation-period employment at 0.2 to 0.6 jobs per megawatt (MW) of power installed and earnings at $9,000/MW to $50,000/MW. We find statistically significant evidence of positive impacts of wind development on county-level per capita income from the OLS and spatial lag models when they are applied to the full set of wind and non-wind counties. The total impact on annual per capita income of wind turbine development (measured in MW per capita) in the spatial lag model was $21,604 per MW. This estimate is within the range of values estimated in the literature using input-output models. OLS results for the wind-only counties and matched samples are similar in magnitude, but are not statistically significant at the 10-percent level. We find a statistically significant impact of wind development on employment in the OLS analysis for wind counties only, but not in the other models. Our estimates of employment impacts are not precise enough to assess the validity of employment impacts from input-output models applied in advance of wind energy project construction. The analysis provides empirical evidence of positive income effects at the county level from cumulative wind turbine development, consistent with the range of impacts estimated using input-output models. Employment impacts are less clear.« less
Power quality improvement of a stand-alone power system subjected to various disturbances
NASA Astrophysics Data System (ADS)
Lone, Shameem Ahmad; Mufti, Mairaj Ud-Din
In wind-diesel stand-alone power systems, the disturbances like random nature of wind power, turbulent wind, sudden changes in load demand and the wind park disconnection effect continuously the system voltage and frequency. The satisfactory operation of such a system is not an easy task and the control design has to take in to account all these subtleties. For maintaining the power quality, generally, a short-term energy storage device is used. In this paper, the performance of a wind-diesel system associated with a superconducting magnetic energy storage (SMES) system is studied. The effect of installing SMES at wind park bus/load bus, on the system performance is investigated. To control the exchange of real and reactive powers between the SMES unit and the wind-diesel system, a control strategy based on fuzzy logic is proposed. The dynamic models of the hybrid power system for most common scenarios are developed and the results presented.
A Global Look at Future Trends in the Renewable Energy Resource
NASA Astrophysics Data System (ADS)
Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.
2017-12-01
With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the standard deviation (as determined from the slopes of the trend lines for individual CMIP5 members), means, medians (e.g. P50 values) and percent change, trends analysis on time series for each variable, and creation of global maps of trends (% change per year) and changes in capacity factors for both estimated solar and wind power production.
Performance of an off-grid solar home in northwestern Vermont
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawlings, L.K.
1997-12-31
In 1995 an off-grid integrated solar home was built in Middlesex, VT for Peter Clark and Gloria DeSousa. This home was included as a pilot home in the US DOE PV:BONUS program to develop factory-built integrated solar homes. The home incorporates a 1.44 KW PV system, 0.6 KW of wind turbine capacity, and very high-efficiency electrical loads. The home also features passive solar design, high-efficiency heating systems, and a greenhouse-based septic treatment system. The performance of the PV system and the wind system, and the total power usage of the household, are measured and recorded by a data acquisition system.more » The home`s electrical loads have operated very efficiently, using on average about one tenth the power used by the average American residence. The PV system has operated reliably and efficiently, providing about 97% of the power needs of the home. The wind turbines have operated efficiently, but the wind regime at the site has not been sufficient to generate more than 1% of the total power needs. The other 2% has been provided by a gasoline backup generator.« less
77 FR 5002 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... with offshore wind turbine support structures, will not be accepted. DOE may fund specific technical... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program...-solicitation public meeting, request for comment. SUMMARY: The Wind and Water Power Program (WWPP) within the U...
77 FR 58120 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
.... Applicants: Constellation Energy Commodities Group, Inc., R.E. Ginna Nuclear Power Plant, LLC, PECO Energy... Point Nuclear Station, LLC, Constellation Mystic Power, LLC, Cassia Gulch Wind Park, LLC, Michigan Wind 1, LLC, Harvest Windfarm, LLC, Exelon Wind 4, LLC, Criterion Power Partners, LLC, Cow Branch Wind...
Power Class Geospatial_Data_Presentation_Form: vector digital data Other_Citation_Details: The wind weather data under contract to Wind Powering America/NREL. This map has been validated with available surface data by NREL and wind energy meteorological consultants. Description: Abstract: Annual average
Wind Fins: Novel Lower-Cost Wind Power System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David C. Morris; Dr. Will D. Swearingen
This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic designmore » improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.« less
76 FR 66284 - Wind and Water Power Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... projects and the overall Water Power Program research portfolio, a report will be compiled by DOE, which... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2011 Wind and Water Power Program, Water Power Peer Review Meeting will review the Program's...
NASA Astrophysics Data System (ADS)
Iungo, G.; Said, E. A.; Santhanagopalan, V.; Zhan, L.
2016-12-01
Power production of a wind farm and durability of wind turbines are strongly dependent on non-linear wake interactions occurring within a turbine array. Wake dynamics are highly affected by the specific site conditions, such as topography and local atmospheric conditions. Furthermore, contingencies through the life of a wind farm, such as turbine ageing and off-design operations, make prediction of wake interactions and power performance a great challenge in wind energy. In this work, operations of an onshore wind turbine array were monitored through lidar measurements, SCADA and met-tower data. The atmospheric wind field investing the wind farm was estimated by using synergistically the available data through five different methods, which are characterized by different confidence levels. By combining SCADA data and the lidar measurements, it was possible to estimate power losses connected with wake interactions. For this specific array, power losses were estimated to be 4% and 2% of the total power production for stable and convective atmospheric regimes, respectively. The entire dataset was then leveraged for the calibration of a data-driven RANS (DDRANS) solver for prediction of wind turbine wakes and power production. The DDRANS is based on a parabolic formulation of the Navier-Stokes equations with axisymmetry and boundary layer approximations, which allow achieving very low computational costs. Accuracy in prediction of wind turbine wakes and power production is achieved through an optimal tuning of the turbulence closure model. The latter is based on a mixing length model, which was developed based on previous wind turbine wake studies carried out through large eddy simulations and wind tunnel experiments. Several operative conditions of the wind farm under examination were reproduced through DDRANS for different stability regimes, wind directions and wind velocity. The results show that DDRANS is capable of achieving a good level of accuracy in prediction of power production and wake velocity field associated with the turbine array.
2013-01-01
by at least 25% by 2025. To achieve this ambitious goal, DoD is considering a diverse energy portfolio that includes wind , solar, geothermal...generated power (bioenergy). wind , solar, and bioenergy sources each have significant land-management implications, so this third land-use re- quirement...production, the adverse impacts of conflicting requirements can be minimized. The regional differences in wind , solar, and bioenergy potential
2016-09-14
angular Flame Measurements and Analysis in a Supersonic Wind Tunnel Using Fiber-Based Endoscopes This paper reports new measurements and analysis made in...the Research Cell 19 super- sonic wind -tunnel facility housed at the Air Force Research Laboratory. The measure- ments include planar chemiluminescence...ASME for publication in the JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER. Manuscript received July 14, 2015; final manuscript received July 30
2013-04-01
products for energy generation, including solar, wind , and gas turbines , energy storage, power conversion, grid integration, and software for...potential security advantages over centralized systems • DER promote fuel diversity (e.g., biomass, landfill gas, flare gas, wind , solar) and...therefore reduce overall energy price volatility • Renewable DER such as wind and solar photovoltaics provide emissions-free energy • DER offer a quicker
NASA Astrophysics Data System (ADS)
Jayalakshmi, N. S.; Gaonkar, D. N.
2016-08-01
The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.
Quantifying the hurricane catastrophe risk to offshore wind power.
Rose, Stephen; Jaramillo, Paulina; Small, Mitchell J; Apt, Jay
2013-12-01
The U.S. Department of Energy has estimated that over 50 GW of offshore wind power will be required for the United States to generate 20% of its electricity from wind. Developers are actively planning offshore wind farms along the U.S. Atlantic and Gulf coasts and several leases have been signed for offshore sites. These planned projects are in areas that are sometimes struck by hurricanes. We present a method to estimate the catastrophe risk to offshore wind power using simulated hurricanes. Using this method, we estimate the fraction of offshore wind power simultaneously offline and the cumulative damage in a region. In Texas, the most vulnerable region we studied, 10% of offshore wind power could be offline simultaneously because of hurricane damage with a 100-year return period and 6% could be destroyed in any 10-year period. We also estimate the risks to single wind farms in four representative locations; we find the risks are significant but lower than those estimated in previously published results. Much of the hurricane risk to offshore wind turbines can be mitigated by designing turbines for higher maximum wind speeds, ensuring that turbine nacelles can turn quickly to track the wind direction even when grid power is lost, and building in areas with lower risk. © 2013 Society for Risk Analysis.
NREL`s variable speed test bed: Preliminary results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P.W.; Fingersh, L.J.; Fuchs, E.F.
1996-10-01
Under an NREL subcontract, the Electrical and Computer Engineering Department of the University of Colorado (CU) designed a 20-kilowatt, 12-pole, permanent-magnet, electric generator and associated custom power electronics modules. This system can supply power over a generator speed range from 60 to 120 RPM. The generator was fabricated and assembled by the Denver electric-motor manufacturer, Unique Mobility, and the power electronics modules were designed and fabricated at the University. The generator was installed on a 56-foot tower in the modified nacelle of a Grumman Windstream 33 wind turbine in early October 1995. For checkout it was immediately loaded directly intomore » a three-phase resistive load in which it produced 3.5 kilowatts of power. Abstract only included. The ten-meter Grumman host wind machine is equipped with untwisted, untapered, NREL series S809 blades. The machine was instrumented to record both mechanical hub power and electrical power delivered to the utility. Initial tests are focusing on validating the calculated power surface. This mathematical surface shows the wind machine power as a function of both wind speed and turbine rotor speed. Upon the completion of this task, maximum effort will be directed toward filling a test matrix in which variable-speed operation will be contrasted with constant-speed mode by switching the variable speed control algorithm with the baseline constant speed control algorithm at 10 minutes time intervals. Other quantities in the test matrix will be analyzed to detect variable speed-effects on structural loads and power quality.« less
GPP Webinar: Market Outlook and Innovations in Wind and Solar Power
Green Power Partnership webinar reviewing the state of the renewable energy industry as a whole, with a focus on wind and solar power and exploring recent marketplace innovations in wind and solar power and renewable energy purchases.
Operation and Equivalent Loads of Wind Turbines in Large Wind Farms
NASA Astrophysics Data System (ADS)
Andersen, Soren Juhl; Sorensen, Jens Norkaer; Mikkelsen, Robert Flemming
2017-11-01
Wind farms continue to grow in size and as the technology matures, the design of wind farms move towards including dynamic effects besides merely annual power production estimates. The unsteady operation of wind turbines in large wind farms has been modelled with EllipSys3D(Michelsen, 1992, and Sørensen, 1995) for a number of different scenarios using a fully coupled large eddy simulations(LES) and aero-elastic framework. The turbines are represented in the flow fields using the actuator line method(Sørensen and Shen, 2002), where the aerodynamic forces and deflections are derived from an aero-elastic code, Flex5(Øye, 1996). The simulations constitute a database of full turbine operation in terms of both production and loads for various wind speeds, turbulence intensities, and turbine spacings. The operating conditions are examined in terms of averaged power production and thrust force, as well as 10min equivalent flapwise bending, yaw, and tilt moment loads. The analyses focus on how the performance and loads change throughout a given farm as well as comparing how various input parameters affect the operation and loads of the wind turbines during different scenarios. COMWIND(Grant 2104-09- 067216/DSF), Nordic Consortium on Optimization and Control of Wind Farms, Eurotech Greentech Wind project, Winds2Loads, and CCA LES. Ressources Granted on SNIC and JESS. The Vestas NM80 turbine has been used.
Current and Future Opportunities for Wind Power in the Southeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinnesand, Heidi; Roberts, Owen; Lantz, Eric
This presentation discusses future wind opportunities in the Southeast including factors such as changes in wind turbine technology, historical innovation trends, and forecast demand growth among regions. The presentation covers the current status of wind in the United States at 80-m hub height and the near-future outlook with a hub height at 110 to 140 meters. Future cost reductions in 2030 and beyond are also explored. Heidi Tinnesand presented this information to a utility advisory group meeting in Charlotte, North Carolina, on October 5, 2016.
Wind Turbines Adaptation to the Variability of the Wind Field
NASA Astrophysics Data System (ADS)
Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia
2010-05-01
WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar including combined RF-acoustic antenna installed coaxially with the gondola of the wind power turbine. The work of the technique is synchronized with rotation of blades to eliminate their shielding action. Dangerous in terms of dynamic strength is the wind load pulse, the rise time which is comparable with the period of the natural frequency of the wind turbine elements (blade, tower, rotor, etc.). The amplitude decay of resonant vibrations at critical values of the speed of rotation can be realized through the use of mechanical elastic supports with nonlinear artificial dampers. They have a high coefficient of resistance, but may cause self-excited oscillations. We propose the way to deal with raised vibration of wind turbine elements at the expense of short-term increase of damping in the range of critical rotary axis speeds or during impulsive effects of wind loadings (wind gusts). This is possible through the use of non-linear electromagnetic dampers or active magnetic bearings. Their feature is the possibility of varying the mechanical stiffness and damping properties by changing the electrical parameters of electromagnets. The controlling of these parameters is carried out by the control system (CS) with the information feedback on the spatial-temporal structure of the wind field obtained from IRASS. In the composition of the CS can also be included the rotational speed sensor of the WPT rotor. This approach to the adaptation of wind turbines will allow to reduce vibration and to perform early compensation of the load on their components, which arise under the wind gusts. In addition, corrections about the wind field obtained with IRASS, would increase the mean power of WPT.
Code of Federal Regulations, 2011 CFR
2011-01-01
... controlled or selected environments. Brownout means a disruption of electrical or other similar power source..., hail, freeze, tornado, hurricane, typhoon, excessive wind, excessive heat, weather-related saltwater..., such as disease and insect infestation. It does not include brownouts or power failures. Disaster...
Jiang, Qiang; Chen, Bo; Zhang, Kewei; Yang, Ya
2017-12-20
Li-ion batteries are a green energy storage technology with advantages of high energy density, long lifetime, and sustainability, but they cannot generate electric energy by themselves. As a novel energy-harvesting technology, triboelectric nanogenerators (TENGs) are a promising power source for supplying electronic devices, however it is difficult to directly use their high output voltage and low output current. Here, we designed a Ag nanoparticle-based TENG for scavenging wind energy. After including a transformer and a power management circuit into the system, constant output voltages such as 3.6 V and a pulsed current of about 100 mA can be obtained, which can be used to directly light up a light-emitting diode. Furthermore, the produced electric energy can be effectively stored in a WO 3 /LiMn 2 O 4 electrode based Li-ion battery. Our present work provides a new approach to effectively scavenge wind energy and store the obtained electric energy, which is significant for exploring self-charging power units.
Variable Frequency Operations of an Offshore Wind Power Plant with HVDC-VSC: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gevorgian, V.; Singh, M.; Muljadi, E.
2011-12-01
In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated. Based on DOE study, wind power generation may reach 330 GW by 2030 at the level of penetration of 20% of the total energy production. From this amount of wind power, 54 GW of wind power will be generated at offshore wind power plants. The deployment of offshore wind power plants requires power transmission from the plant to the load center inland. Since this power transmissionmore » requires submarine cable, there is a need to use High-Voltage Direct Current (HVDC) transmission. Otherwise, if the power is transmitted via alternating current, the reactive power generated by the cable capacitance may cause an excessive over voltage in the middle of the transmission distance which requires unnecessary oversized cable voltage breakdown capability. The use of HVDC is usually required for transmission distance longer than 50 kilometers of submarine cables to be economical. The use of HVDC brings another advantage; it is capable of operating at variable frequency. The inland substation will be operated to 60 Hz synched with the grid, the offshore substation can be operated at variable frequency, thus allowing the wind power plant to be operated at constant Volt/Hz. In this paper, a constant Volt/Hz operation applied to the Type 1 wind turbine generator. Various control aspects of Type 1 generators at the plant level and at the turbine level will be investigated.« less
Wind energy utilization: A bibliography with abstracts - Cumulative volume 1944/1974
NASA Technical Reports Server (NTRS)
1975-01-01
Bibliography, up to 1974 inclusive, of articles and books on utilization of wind power in energy generation. Worldwide literature is surveyed, and short abstracts are provided in many cases. The citations are grouped by subject: (1) general; (2) utilization; (3) wind power plants; (4) wind power generators (rural, synchronous, remote station); (5) wind machines (motors, pumps, turbines, windmills, home-built); (6) wind data and properties; (7) energy storage; and (8) related topics (control and regulation devices, wind measuring devices, blade design and rotors, wind tunnel simulation, aerodynamics). Gross-referencing is aided by indexes of authors, corporate sources, titles, and keywords.
Oahu wind power survey, first report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramage, C.S.; Daniels, P.A.; Schroeder, T.A.
1977-05-01
A wind power survey has been conducted on Oahu since summer 1975. At seventeen potentially windy sites, calibrated anemometers and wind vanes were installed and recordings made on computer-processable magnetic tape cassettes. From monthly mean wind speeds--normalized by comparing with Honolulu Airport means winds--it was concluded that about 23 mi/hr represented the highest average annual wind speed likely to be attained on Oahu and that the Koko Head and Kahuku areas gave the most promise for wind energy generation. Diurnal variation of the wind in these areas roughly parallels diurnal variation of electric power demand.
75 FR 63457 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... Company, Wind Capital Holdings, LLC, CR Clearing, LLC, Cow Branch Wind Power LLC, JD WIND 4, LLC, Harvest... Power Marketing, LP, Exelon Energy Company, Cassia Gulch Wind Park, Michigan Wind 1, LLC, Tuana Springs...-000. Applicants: Ashtabula Wind III, LLC. Description: Notice of Self-Certification of Exempt...
Research on Chinese life cycle-based wind power plant environmental influence prevention measures.
Wang, Hanxi; Xu, Jianling; Liu, Yuanyuan; Zhang, Tian
2014-08-19
The environmental impact of wind power plants over their life cycle is divided into three stages: construction period, operation period and retired period. The impact is mainly reflected in ecological destruction, noise pollution, water pollution and the effect on bird migration. In response to these environmental effects, suggesting reasonable locations, reducing plant footprint, optimizing construction programs, shielding noise, preventing pollution of terrestrial ecosystems, implementing combined optical and acoustical early warning signals, making synthesized use of power generation equipment in the post-retired period and using other specific measures, including methods involving governance and protection efforts to reduce environmental pollution, can be performed to achieve sustainable development.
Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering
NASA Astrophysics Data System (ADS)
Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.
2016-12-01
Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.
2010-01-01
The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the loadmore » and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.« less
Ko, Hee-Sang; Lee, Kwang Y; Kang, Min-Jae; Kim, Ho-Chan
2008-12-01
Wind power generation is gaining popularity as the power industry in the world is moving toward more liberalized trade of energy along with public concerns of more environmentally friendly mode of electricity generation. The weakness of wind power generation is its dependence on nature-the power output varies in quite a wide range due to the change of wind speed, which is difficult to model and predict. The excess fluctuation of power output and voltages can influence negatively the quality of electricity in the distribution system connected to the wind power generation plant. In this paper, the authors propose an intelligent adaptive system to control the output of a wind power generation plant to maintain the quality of electricity in the distribution system. The target wind generator is a cost-effective induction generator, while the plant is equipped with a small capacity energy storage based on conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering a wide range of energy/voltage compensation. A neural network inverse model is designed to provide compensating control amount for a system. The system can be optimized to cope with the fluctuating market-based electricity price conditions to lower the cost of electricity consumption or to maximize the power sales opportunities from the wind generation plant.
NASA Astrophysics Data System (ADS)
Mann, Jakob; Nørkær Sørensen, Jens; Morthorst, Poul-Erik
2008-01-01
Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of power curves for wind turbines Julia Gottschall and Joachim Peinke
Wind for Schools Project Power System Brief, Wind Powering America Fact Sheet Series
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, I.
2009-05-01
Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. This document provides a detailed description of each system component.
Onshore Wind Farms: Value Creation for Stakeholders in Lithuania
NASA Astrophysics Data System (ADS)
Burinskienė, Marija; Rudzkis, Paulius; Kanopka, Adomas
With the costs of fossil fuel consistently rising worldwide over the last decade, the development of green technologies has become a major goal in many countries. Therefore the evaluation of wind power projects becomes a very important task. To estimate the value of the technologies based on renewable resources also means taking into consideration social, economic, environmental, and scientific value of such projects. This article deals with economic evaluation of electricity generation costs of onshore wind farms in Lithuania and the key factors that have influence on wind power projects and offer a better understanding of social-economic context behind wind power projects. To achieve these goals, this article makes use of empirical data of Lithuania's wind power farms as well as data about the investment environment of the country.Based on empirical data of wind power parks, the research investigates the average wind farm generation efficiency in Lithuania. Employing statistical methods the return on investments of wind farms in Lithuania is calculated. The value created for every party involved and the total value of the wind farm is estimated according to Stakeholder theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE's) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers, businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects. This fact sheet outlines the primary federal incentives for developing and investing in wind power, resources for funding wind power, and opportunities to partner with DOE and other federal agencies on efforts to move the U.S. wind industry forward.
Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, E. I.
The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. Thismore » conference poster outlines the elements of the new Wind Vision.« less
Efficient Scavenging of Solar and Wind Energies in a Smart City.
Wang, Shuhua; Wang, Xue; Wang, Zhong Lin; Yang, Ya
2016-06-28
To realize the sustainable energy supply in a smart city, it is essential to maximize energy scavenging from the city environments for achieving the self-powered functions of some intelligent devices and sensors. Although the solar energy can be well harvested by using existing technologies, the large amounts of wasted wind energy in the city cannot be effectively utilized since conventional wind turbine generators can only be installed in remote areas due to their large volumes and safety issues. Here, we rationally design a hybridized nanogenerator, including a solar cell (SC) and a triboelectric nanogenerator (TENG), that can individually/simultaneously scavenge solar and wind energies, which can be extensively installed on the roofs of the city buildings. Under the same device area of about 120 mm × 22 mm, the SC can deliver a largest output power of about 8 mW, while the output power of the TENG can be up to 26 mW. Impedance matching between the SC and TENG has been achieved by using a transformer to decrease the impedance of the TENG. The hybridized nanogenerator has a larger output current and a better charging performance than that of the individual SC or TENG. This research presents a feasible approach to maximize solar and wind energies scavenging from the city environments with the aim to realize some self-powered functions in smart city.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; Veda, Santosh
Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less
Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; Veda, Santosh
Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen; Veda, Santosh
2017-04-11
Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less
NASA Astrophysics Data System (ADS)
Bossuyt, Juliaan; Howland, Michael; Meneveau, Charles; Meyers, Johan
2015-11-01
To optimize wind farm layouts for a maximum power output and wind turbine lifetime, mean power output measurements in wind tunnel studies are not sufficient. Instead, detailed temporal information about the power output and unsteady loading from every single wind turbine in the wind farm is needed. A very small porous disc model with a realistic thrust coefficient of 0.75 - 0.85, was designed. The model is instrumented with a strain gage, allowing measurements of the thrust force, incoming velocity and power output with a frequency response up to the natural frequency of the model. This is shown by reproducing the -5/3 spectrum from the incoming flow. Thanks to its small size and compact instrumentation, the model allows wind tunnel studies of large wind turbine arrays with detailed temporal information from every wind turbine. Translating to field conditions with a length-scale ratio of 1:3,000 the frequencies studied from the data reach from 10-4 Hz up to about 6 .10-2 Hz. The model's capabilities are demonstrated with a large wind farm measurement consisting of close to 100 instrumented models. A high correlation is found between the power outputs of stream wise aligned wind turbines, which is in good agreement with results from prior LES simulations. Work supported by ERC (ActiveWindFarms, grant no. 306471) and by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project).
Wind for Schools: A Wind Powering America Project
ERIC Educational Resources Information Center
US Department of Energy, 2007
2007-01-01
The U.S. Department of Energy's (DOE's) Wind Powering America program (based at the National Renewable Energy Laboratory) sponsors the Wind for Schools Project to raise awareness in rural America about the benefits of wind energy while simultaneously educating college seniors regarding wind energy applications. The three primary project goals of…
ERIC Educational Resources Information Center
Liming, Drew; Hamilton, James
2011-01-01
As a common form of renewable energy, wind power is generating more than just electricity. It is increasingly generating jobs for workers in many different occupations. Many workers are employed on wind farms: areas where groups of wind turbines produce electricity from wind power. Wind farms are frequently located in the midwestern, western, and…
Wind Integration Data Sets | Grid Modernization | NREL
Wind Integration Data Sets Wind Integration Data Sets NREL's wind integration data sets provide the Integration Data Sets Ten-minute time-series wind data for 2004, 2005, and 2006 to help energy professionals perform wind integration studies and estimate power production from hypothetical wind power plants. Access
Determination of the number of Vertical Axis Wind Turbine blades based on power spectrum
NASA Astrophysics Data System (ADS)
Fedak, Waldemar; Anweiler, Stanisław; Gancarski, Wojciech; Ulbrich, Roman
2017-10-01
Technology of wind exploitation has been applied widely all over the world and has already reached the level in which manufacturers want to maximize the yield with the minimum investment outlays. The main objective of this paper is the determination of the optimal number of blades in the Cup-Bladed Vertical Axis Wind Turbine. Optimizing the size of the Vertical Axis Wind Turbine allows the reduction of costs. The maximum power of the rotor is selected as the performance target. The optimum number of Vertical Axis Wind Turbine blades evaluation is based on analysis of a single blade simulation and its superposition for the whole rotor. The simulation of working blade was done in MatLab environment. Power spectrum graphs were prepared and compared throughout superposition of individual blades in the Vertical Axis Wind Turbine rotor. The major result of this research is the Vertical Axis Wind Turbine power characteristic. On the basis of the analysis of the power spectra, optimum number of the blades was specified for the analysed rotor. Power spectrum analysis of wind turbine enabled the specification of the optimal number of blades, and can be used regarding investment outlays and power output of the Vertical Axis Wind Turbine.
The Potential Wind Power Resource in Australia: A New Perspective
Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam
2014-01-01
Australia’s wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia’s electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia’s energy mix, this study sets out to analyze and interpret the nature of Australia’s wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast’s electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it’s intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale. PMID:24988222
The potential wind power resource in Australia: a new perspective.
Hallgren, Willow; Gunturu, Udaya Bhaskar; Schlosser, Adam
2014-01-01
Australia's wind resource is considered to be very good, and the utilization of this renewable energy resource is increasing rapidly: wind power installed capacity increased by 35% from 2006 to 2011 and is predicted to account for over 12% of Australia's electricity generation in 2030. Due to this growth in the utilization of the wind resource and the increasing importance of wind power in Australia's energy mix, this study sets out to analyze and interpret the nature of Australia's wind resources using robust metrics of the abundance, variability and intermittency of wind power density, and analyzes the variation of these characteristics with current and potential wind turbine hub heights. We also assess the extent to which wind intermittency, on hourly or greater timescales, can potentially be mitigated by the aggregation of geographically dispersed wind farms, and in so doing, lessen the severe impact on wind power economic viability of long lulls in wind and power generated. Our results suggest that over much of Australia, areas that have high wind intermittency coincide with large expanses in which the aggregation of turbine output does not mitigate variability. These areas are also geographically remote, some are disconnected from the east coast's electricity grid and large population centers, which are factors that could decrease the potential economic viability of wind farms in these locations. However, on the eastern seaboard, even though the wind resource is weaker, it is less variable, much closer to large population centers, and there exists more potential to mitigate it's intermittency through aggregation. This study forms a necessary precursor to the analysis of the impact of large-scale circulations and oscillations on the wind resource at the mesoscale.
Short pulse radar used to measure sea surface wind speed and SWH. [Significant Wave Height
NASA Technical Reports Server (NTRS)
Hammond, D. L.; Mennella, R. A.; Walsh, E. J.
1977-01-01
A joint airborne measurement program is being pursued by NRL and NASA Wallops Flight Center to determine the extent to which wind speed and sea surface significant wave height (SWH) can be measured quantitatively and remotely with a short pulse (2 ns), wide-beam (60 deg), nadir-looking 3-cm radar. The concept involves relative power measurements only and does not need a scanning antenna, Doppler filters, or absolute power calibration. The slopes of the leading and trailing edges of the averaged received power for the pulse limited altimeter are used to infer SWH and surface wind speed. The interpretation is based on theoretical models of the effects of SWH on the leading edge shape and rms sea-surface slope on the trailing-edge shape. The models include the radar system parameters of antenna beam width and pulsewidth.
Sandia SWiFT Wind Turbine Manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Jonathan; LeBlanc, Bruce Philip; Berg, Jonathan Charles
The Scaled Wind Farm Technology (SWiFT) facility, operated by Sandia National Laboratories for the U.S. Department of Energy's Wind and Water Power Program, is a wind energy research site with multiple wind turbines scaled for the experimental study of wake dynamics, advanced rotor development, turbine control, and advanced sensing for production-scale wind farms. The SWiFT site currently includes three variable-speed, pitch-regulated, three-bladed wind turbines. The six volumes of this manual provide a detailed description of the SWiFT wind turbines, including their operation and user interfaces, electrical and mechanical systems, assembly and commissioning procedures, and safety systems. Further dissemination only asmore » authorized to U.S. Government agencies and their contractors; other requests shall be approved by the originating facility or higher DOE programmatic authority. 111 UNCLASSIFIED UNLIMITED RELEASE Sandia SWiFT Wind Turbine Manual (SAND2016-0746 ) approved by: Department Manager SWiFT Site Lead Dave Minster (6121) Date Jonathan White (6121) Date SWiFT Site Supervisor Dave Mitchell (6121) Date Note: Document revision logs are found after the title page of each volume of this manual. iv« less
Direct mechanical torque sensor for model wind turbines
NASA Astrophysics Data System (ADS)
Kang, Hyung Suk; Meneveau, Charles
2010-10-01
A torque sensor is developed to measure the mechanical power extracted by model wind turbines. The torque is measured by mounting the model generator (a small dc motor) through ball bearings to the hub and by preventing its rotation by the deflection of a strain-gauge-instrumented plate. By multiplying the measured torque and rotor angular velocity, a direct measurement of the fluid mechanical power extracted from the flow is obtained. Such a measurement is more advantageous compared to measuring the electrical power generated by the model generator (dc motor), since the electrical power is largely affected by internal frictional, electric and magnetic losses. Calibration experiments are performed, and during testing, the torque sensor is mounted on a model wind turbine in a 3 rows × 3 columns array of wind turbines in a wind tunnel experiment. The resulting electrical and mechanical powers are quantified and compared over a range of applied loads, for three different incoming wind velocities. Also, the power coefficients are obtained as a function of the tip speed ratio. Significant differences between the electrical and mechanical powers are observed, which highlights the importance of using the direct mechanical power measurement for fluid dynamically meaningful results. A direct calibration with the measured current is also explored. The new torque sensor is expected to contribute to more accurate model wind tunnel tests which should provide added flexibility in model studies of the power that can be harvested from wind turbines and wind-turbine farms.
75 FR 2531 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-15
... Power, LLC, Terra-Gen VG Wind, LLC, Terra-Gen 251 Wind, LLC, Chandler Wind Partners, LLC. Description... Power Source Generation, Inc., Calvert Cliffs Nuclear Power Plant LLC, Constellation Energy Commodities..., Inc., Constellation Energy Commodities Group Maine, LLC, R.E. Ginna Nuclear Power Plant, Raven One...
NASA Astrophysics Data System (ADS)
Thiesen, J.; Gulstad, L.; Ristic, I.; Maric, T.
2010-09-01
Summit: The wind power predictability is often a forgotten decision and planning factor for most major wind parks, both onshore and offshore. The results of the predictability are presented after having examined a number of European offshore and offshore parks power predictability by using three(3) mesoscale model IRIE_GFS and IRIE_EC and WRF. Full description: It is well known that the potential wind production is changing with latitude and complexity in terrain, but how big are the changes in the predictability and the economic impacts on a project? The concept of meteorological predictability has hitherto to some degree been neglected as a risk factor in the design, construction and operation of wind power plants. Wind power plants are generally built in places where the wind resources are high, but these are often also sites where the predictability of the wind and other weather parameters is comparatively low. This presentation addresses the question of whether higher predictability can outweigh lower average wind speeds with regard to the overall economy of a wind power project. Low predictability also tends to reduce the value of the energy produced. If it is difficult to forecast the wind on a site, it will also be difficult to predict the power production. This, in turn, leads to increased balance costs and a less reduced carbon emission from the renewable source. By investigating the output from three(3) mesoscale models IRIE and WRF, using ECMWF and GFS as boundary data over a forecasting period of 3 months for 25 offshore and onshore wind parks in Europe, the predictability are mapped. Three operational mesoscale models with two different boundary data have been chosen in order to eliminate the uncertainty with one mesoscale model. All mesoscale models are running in a 10 km horizontal resolution. The model output are converted into "day a head" wind turbine generation forecasts by using a well proven advanced physical wind power model. The power models are using a number of weather parameters like wind speed in different heights, friction velocity and DTHV. The 25 wind sites are scattered around in Europe and contains 4 offshore parks and 21 onshore parks in various terrain complexity. The "day a head" forecasts are compared with production data and predictability for the period February 2010-April 2010 are given in Mean Absolute Errors (MAE) and Root Mean Squared Errors (RMSE). The power predictability results are mapped for each turbine giving a clear picture of the predictability in Europe. . Finally a economic analysis are shown for each wind parks in different regimes of predictability will be compared with regard to the balance costs that result from errors in the wind power prediction. Analysis shows that it may very well be profitable to place wind parks in regions of lower, but more predictable wind ressource. Authors: Ivan Ristic, CTO Weather2Umberlla D.O.O Tomislav Maric, Meteorologist at Global Flow Solutions Vestas Wind Technology R&D Line Gulstad, Manager Global Flow Solutions Vestas Wind Technology R&D Jesper Thiesen, CEO ConWx ApS
Wind for Schools Project Power System Brief
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2007-08-01
This fact sheet provides an overview of the system components of a Wind Powering America Wind for Schools project. Wind Powering America's (WPA's) Wind for Schools project uses a basic system configuration for each school project. The system incorporates a single SkyStream(TM) wind turbine, a 70-ft guyed tower, disconnect boxes at the base of the turbine and at the school, and an interconnection to the school's electrical system. A detailed description of each system component is provided in this document.
Jha, K.N.
1999-05-18
An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.
An optimal design of coreless direct-drive axial flux permanent magnet generator for wind turbine
NASA Astrophysics Data System (ADS)
Ahmed, D.; Ahmad, A.
2013-06-01
Different types of generators are currently being used in wind power technology. The commonly used are induction generator (IG), doubly-fed induction generator (DFIG), electrically excited synchronous generator (EESG) and permanent magnet synchronous generator (PMSG). However, the use of PMSG is rapidly increasing because of advantages such as higher power density, better controllability and higher reliability. This paper presents an innovative design of a low-speed modular, direct-drive axial flux permanent magnet (AFPM) generator with coreless stator and rotor for a wind turbine power generation system that is developed using mathematical and analytical methods. This innovative design is implemented in MATLAB / Simulink environment using dynamic modelling techniques. The main focus of this research is to improve efficiency of the wind power generation system by investigating electromagnetic and structural features of AFPM generator during its operation in wind turbine. The design is validated by comparing its performance with standard models of existing wind power generators. The comparison results demonstrate that the proposed model for the wind power generator exhibits number of advantages such as improved efficiency with variable speed operation, higher energy yield, lighter weight and better wind power utilization.
Use of meteorological information in the risk analysis of a mixed wind farm and solar
NASA Astrophysics Data System (ADS)
Mengelkamp, H.-T.; Bendel, D.
2010-09-01
Use of meteorological information in the risk analysis of a mixed wind farm and solar power plant portfolio H.-T. Mengelkamp*,** , D. Bendel** *GKSS Research Center Geesthacht GmbH **anemos Gesellschaft für Umweltmeteorologie mbH The renewable energy industry has rapidly developed during the last two decades and so have the needs for high quality comprehensive meteorological services. It is, however, only recently that international financial institutions bundle wind farms and solar power plants and offer shares in these aggregate portfolios. The monetary value of a mixed wind farm and solar power plant portfolio is determined by legal and technical aspects, the expected annual energy production of each wind farm and solar power plant and the associated uncertainty of the energy yield estimation or the investment risk. Building an aggregate portfolio will reduce the overall uncertainty through diversification in contrast to the single wind farm/solar power plant energy yield uncertainty. This is similar to equity funds based on a variety of companies or products. Meteorological aspects contribute to the diversification in various ways. There is the uncertainty in the estimation of the expected long-term mean energy production of the wind and solar power plants. Different components of uncertainty have to be considered depending on whether the power plant is already in operation or in the planning phase. The uncertainty related to a wind farm in the planning phase comprises the methodology of the wind potential estimation and the uncertainty of the site specific wind turbine power curve as well as the uncertainty of the wind farm effect calculation. The uncertainty related to a solar power plant in the pre-operational phase comprises the uncertainty of the radiation data base and that of the performance curve. The long-term mean annual energy yield of operational wind farms and solar power plants is estimated on the basis of the actual energy production and it's relation to a climatologically stable long-term reference period. These components of uncertainty are of technical nature and based on subjective estimations rather than on a statistically sound data analysis. And then there is the temporal and spatial variability of the wind speed and radiation. Their influence on the overall risk is determined by the regional distribution of the power plants. These uncertainty components are calculated on the basis of wind speed observations and simulations and satellite derived radiation data. The respective volatility (temporal variability) is calculated from the site specific time series and the influence on the portfolio through regional correlation. For an exemplary portfolio comprising fourteen wind farms and eight solar power plants the annual mean energy production to be expected is calculated, the different components of uncertainty are estimated for each single wind farm and solar power plant and for the portfolio as a whole. The reduction in uncertainty (or risk) through bundling the wind farms and the solar power plants (the portfolio effect) is calculated by Markowitz' Modern Portfolio Theory. This theory is applied separately for the wind farm and the solar power plant bundle and for the combination of both. The combination of wind and photovoltaic assets clearly shows potential for a risk reduction. Even assets with a comparably low expected return can lead to a significant risk reduction depending on their individual characteristics.
Code of Federal Regulations, 2011 CFR
2011-07-01
... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant roadways, yard areas, and outdoor material storage and transfer operations. Furnace power input means the resistive electrical power consumption of a submerged arc furnace, expressed as megawatts (MW). Malfunction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... due to wind or mechanical inducement such as vehicle traffic. Fugitive dust sources include plant roadways, yard areas, and outdoor material storage and transfer operations. Furnace power input means the resistive electrical power consumption of a submerged arc furnace, expressed as megawatts (MW). Malfunction...
NASA Astrophysics Data System (ADS)
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-01
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. This paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustrate with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind-downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.
Lee, Joseph C. Y.; Lundquist, Julie K.
2017-11-23
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Joseph C. Y.; Lundquist, Julie K.
Forecasts of wind-power production are necessary to facilitate the integration of wind energy into power grids, and these forecasts should incorporate the impact of wind-turbine wakes. Our paper focuses on a case study of four diurnal cycles with significant power production, and assesses the skill of the wind farm parameterization (WFP) distributed with the Weather Research and Forecasting (WRF) model version 3.8.1, as well as its sensitivity to model configuration. After validating the simulated ambient flow with observations, we quantify the value of the WFP as it accounts for wake impacts on power production of downwind turbines. We also illustratemore » with statistical significance that a vertical grid with approximately 12 m vertical resolution is necessary for reproducing the observed power production. Further, the WFP overestimates wake effects and hence underestimates downwind power production during high wind speed, highly stable, and low turbulence conditions. We also find the WFP performance is independent of the number of wind turbines per model grid cell and the upwind–downwind position of turbines. Rather, the ability of the WFP to predict power production is most dependent on the skill of the WRF model in simulating the ambient wind speed.« less
Wind Power: A Turning Point. Worldwatch Paper 45.
ERIC Educational Resources Information Center
Flavin, Christopher
Recent studies have shown wind power to be an eminently practical and potentially substantial source of electricity and direct mechanical power. Wind machines range from simple water-pumping devices made of wood and cloth to large electricity producing turbines with fiberglass blades nearly 300 feet long. Wind is in effect a form of solar…
77 FR 274 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-04
... Capital Holdings, LLC, Cow Branch Wind Power, L.L.C. Description: Updated Market Power Analysis of Exelon..., LLC, AES Alamitos, LLC, AES Redondo Beach, L.L.C., Condon Wind Power, LLC, AES Huntington Beach, L.L.C...-000. Applicants: Erie Wind, LLC. Description: Self-Certification of EWG Status of Erie Wind, LLC...
77 FR 5007 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
...; ER11-2488-002; ER10-3032-002; ER11-2475-002. Applicants: Klondike Wind Power III LLC, Northern Iowa... Windpower LLC, Flying Cloud Power Partners, LLC, Klamath Energy LLC, Klamath Generation LLC, Moraine Wind LLC, Mountain View Power Partners III, LLC, Shiloh I Wind Project, LLC, Trimont Wind I LLC, Locust...
Wind Resource Assessment of Gujarat (India)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draxl, C.; Purkayastha, A.; Parker, Z.
India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes.more » While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandercock, Brett K.
Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our fieldmore » studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site selection of female prairie chickens during the breeding season. 5. We tested the effects of wind power development on five components of female fecundity: timing of clutch initiation, clutch size of first nests and renests, nest survival, and hatchability of eggs. Average date of clutch initiation was 26 April, clutch size was 12.7 and 10.6 eggs for first nests and renests, probability of nest survival was low at 0.18, but egg hatchability was high at 0.79. Wind power development had no impact on reproductive effort or nesting success, and all five components of fecundity were not related to treatment period or distance to turbine. Nest survival was the main factor limiting reproductive output of female prairie chickens and most losses were due to predation. Daily nest survival was strongly related to vegetative cover at the nest. Changes to rangeland management practices that would double nesting cover from 2.5 to 5 dm would triple the probability of nest survival from 0.17 to 0.52. Grass and forb cover had weak positive effects on daily nest survival whereas shrub cover, proximity to woodlands, and recent rainfall had negative effects. Reproductive performance of prairie chickens is low in managed rangelands in northcentral Kansas and efforts to improve range conditions and reduce predator activity would aid recovery of prairie chicken populations. 6. We used molecular methods to investigate patterns of natal dispersal in prairie chickens. High rates of nest failure limited the number of young that we could sample. Direct detections of natal dispersal were limited because survival of newly hatched chicks to become adults were low and because we were unable to detect dispersal distances outside of our study area. Direct observations of natal movements were limited and were inadequate to make conclusions about the potential impacts of wind energy development on natal dispersal. Spatial correlograms of genetic distance among males at leks were a more sensitive measure of population structure, and indicated a weak effect of wind energy development on the spatial genetic structure of prairie chickens. 7. We tested the effects of wind power development on female survival with time-to-event models, and on residual body mass of males with analyses of covariance. Distance to turbine and the interaction of distance and treatment period had no effect on female survival. Contrary to predictions of negative impacts of wind power development, the probability of female was lowest during the preconstruction period (0.274) and increased significantly during the postconstruction period (0.543). Inspection of hazard functions indicated that the difference in annual survival could be attributed to a higher risk of mortality during the lekking season in the preconstruction period. We suggest that wind power development may have improved ecological conditions for prairie chickens by disrupting the foraging behavior of diurnal raptors that kill prairie chickens at lek sites. In support of this idea, raptor kills tended to be farther from turbines during the postconstruction period whereas mammalian kills were closer. Analyses of the major causes of mortality did not support our hypothesis because the odds of raptor predation were greater after development was completed. Most mortality losses of radio-marked females were due to predation, and losses to collision mortality or harvest were rare events. Low rates of natural mortality during fall and winter imply that harvest is likely to be additive mortality in prairie chickens. Wind energy development reduced the residual body mass of male Greater Prairie-Chickens at lek sites near turbines. Low values of residual body mass could have a negative impact on individual survival or fecundity rates, or may be related to predation risk and flight performance of males displaying at open lek sites. 8. We tested for impacts of wind power development on population numbers of prairie chickens with monitoring of male numbers at leks, and with genetic measures of population structure. Lek counts indicated that wind power development did not affect the population size of prairie chickens. Peak counts of males at leks were recorded the first year after construction was completed and the highest rates of population change were observed during the interval when the wind power facility was constructed. Population numbers of prairie chickens near and distant from turbines appeared to covary in parallel, probably because bird numbers were linked by dispersal movements. Estimates of population viability based on genetic diversity, effective population size and rates of population exchange did not show annual changes and were unaffected by wind development during our study. Estimates of relatedness among males at the same and different leks suggested that wind power development has either reduced dispersal rates or changed settlement patterns, leading to higher rates of relatedness among males displaying at the same lek site. 9. Greater Prairie-Chickens were not strongly affected by wind power development in Kansas. Negative impacts of wind power development included a trend for reductions in lek persistence near turbines, behavioral avoidance of turbines by females during their breeding season movements, and changes in the genetic structure of males at leks that were consistent with reduced dispersal or recruitment rates. We found no impacts of wind power development on nest site selection, female reproductive effort or nesting success, or population numbers. Positive impacts of wind power development included an increase in female survival rates. We hypothesized that the unexpected increase in female survival was related to changes in trophic interactions and disruption of the foraging behavior of raptors that kill prairie chickens at lek site. 10. Research funding for this project included a grant from the 20% Wind by 2030 Program of the Department of Energy (this final report), and grants from the Kansas Department of Wildlife, Parks and Tourism, the National Fish and Wildlife Federation, and initial funding from the National Wind Coordinating Collaborative. Research products from data collected during the preconstruction period have included five peer-reviewed research articles and two PhD dissertations at Kansas State University. Additional manuscripts are in review for possible publication in 2013-2014.« less
Wind Power Forecasting Error Distributions: An International Comparison; Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, B. M.; Lew, D.; Milligan, M.
2012-09-01
Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.
Determination of the wind power systems load to achieve operation in the maximum energy area
NASA Astrophysics Data System (ADS)
Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.
2018-01-01
This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.
Evaluating Tilt for Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Scholbrock, Andrew; Churchfield, Matthew
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and threeturbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less
Evaluating Tilt for Wind Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Annoni, Jennifer; Scholbrock, Andrew K.; Churchfield, Matthew J.
The objective of this work is to demonstrate the feasibility of tilt in a wind plant. Tilt control, much like other wind plant control strategies, has the potential to improve the performance of a wind plant. Tilt control uses the tilt angle of the turbine to direct the wake above or below the downstream turbines. This paper presents a study of tilt in two- and three-turbine arrays. Specifically, the authors show that the power production of a two-turbine array can be increased by tilting turbines in a specific orientation. When adding more turbines, as is shown with the three-turbine array,more » the overall percentage of power gain increases. This outcome deviates from some of the results seen in typical wind plant control strategies. Finally, we discuss the impact this type of control strategy has on the aerodynamics in a wind plant. This analysis demonstrates that a good understanding of wake characteristics is necessary to improve the plant's performance. A tilt strategy such as the one presented in this paper may have implications for future control/optimization studies including optimization of hub heights in a wind plant and analysis of deep array effects.« less
Mod-1 Wind Turbine at Boone, North Carolina
1979-06-21
A Mod-1 2000-kilowatt wind turbine designed by National Aeronautics and Space Administration (NASA) Lewis Research Center and constructed in Boone, North Carolina. The wind turbine program was a joint program between NASA and the Energy Research and Development Administration (ERDA) during the 1970s to develop less expensive forms of energy. NASA Lewis was assigned the responsibility of developing large horizontal-axis wind turbines. The program included a series of increasingly powerful wind turbines, designated: Mod-0A, Mod-1, WTS-4, and Mod-5. The program’s first device was a Mod-0 100-kilowatt wind turbine test bed at NASA’s Plum Brook Station. There were four Mod-0A 200-kilowatt turbines built in New Mexico, Hawaii, Puerto Rico, and Rhode Island. The 2000-kilowatt wind turbine in North Carolina, seen here, was the only Mod-1 machine constructed. The two-bladed, 200-foot diameter device was built in May 1979 and began operation that September. The Mod-1 turbine performed exceedingly well and was fully integrated into the local power grid. NASA researchers also used the North Carolina device to study its effect on noise and television transmission.
Gradient-Based Optimization of Wind Farms with Different Turbine Heights: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew
Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less
Gradient-Based Optimization of Wind Farms with Different Turbine Heights
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Andrew P. J.; Thomas, Jared; Ning, Andrew
Turbine wakes reduce power production in a wind farm. Current wind farms are generally built with turbines that are all the same height, but if wind farms included turbines with different tower heights, the cost of energy (COE) may be reduced. We used gradient-based optimization to demonstrate a method to optimize wind farms with varied hub heights. Our study includes a modified version of the FLORIS wake model that accommodates three-dimensional wakes integrated with a tower structural model. Our purpose was to design a process to minimize the COE of a wind farm through layout optimization and varying turbine hubmore » heights. Results indicate that when a farm is optimized for layout and height with two separate height groups, COE can be lowered by as much as 5%-9%, compared to a similar layout and height optimization where all the towers are the same. The COE has the best improvement in farms with high turbine density and a low wind shear exponent.« less
NASA Astrophysics Data System (ADS)
Wang, Li; Lee, Dong-Jing; Lee, Wei-Jen; Chen, Zhe
This paper presents both time-domain and frequency-domain simulated results of a novel marine hybrid renewable-energy power generation/energy storage system (PG/ESS) feeding isolated loads through an high-voltage direct current (HVDC) link. The studied marine PG subsystems comprise both offshore wind turbines and Wells turbines to respectively capture wind energy and wave energy from marine wind and ocean wave. In addition to wind-turbine generators (WTGs) and wave-energy turbine generators (WETGs) employed in the studied system, diesel-engine generators (DEGs) and an aqua electrolyzer (AE) absorbing a part of generated energy from WTGs and WETGs to generate available hydrogen for fuel cells (FCs) are also included in the PG subsystems. The ES subsystems consist of a flywheel energy storage system (FESS) and a compressed air energy storage (CAES) system to balance the required energy in the hybrid PG/ESS. It can be concluded from the simulation results that the proposed hybrid marine PG/ESS feeding isolated loads can stably operate to achieve system power-frequency balance condition.
78 FR 42060 - Combined Notice of Filings #2
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-15
... Harbor Water Power Corporation, PECO Energy Company, Michigan Wind 1, LLC, Michigan Wind 2, LLC, Harvest... Clearing, LLC, Cow Branch Wind Power, L.L.C., Constellation Power Source Generation Inc., Constellation New..., Calvert Cliffs Nuclear Power Plant, LLC, Nine Mine Point Nuclear Station, LLC. Description: Revised...
A process for providing positive primary control power by wind turbines
NASA Astrophysics Data System (ADS)
Marschner, V.; Michael, J.; Liersch, J.
2014-12-01
Due to the increasing share of wind energy in electricity generation, wind turbines have to fulfil additional requirements in the context of grid integration. The paper examines to which extent wind turbines can provide positive control power following the related grid code. The additional power has to be obtained from the rotating flywheel mass of the wind turbine's rotor. A simple physical model is developed that allows to draw conclusions about appropriate concepts by means of a dynamic simulation of the variables rotational speed, torque, power output and rotor power. The paper discusses scenarios to provide control power. The supply of control power at partial load is examined in detail using simulations. Under partial load conditions control power can be fed into the grid for a short time. Thereby the rotational speed drops so that aerodynamic efficiency decreases and feed-in power is below the initial value after the control process. In this way an unfavourable situation for the grid control is produced, therefore the paper proposes a modified partial load condition with a higher rotational speed. By providing primary control power the rotor is delayed to the optimum rotational speed so that more rotational energy can be fed in and fed-in power can be increased persistently. However, as the rotor does not operate at optimum speed, a small amount of the energy yield is lost. Finally, the paper shows that a wind farm can combine these two concepts: A part of the wind turbines work under modified partial load conditions can compensate the decrease of power of the wind turbines working under partial load conditions. Therefore the requested control power is provided and afterwards the original value of power is maintained.
Wind-assist irrigation and electrical-power generation
NASA Astrophysics Data System (ADS)
Nelson, V.; Starcher, K.
1982-07-01
A wind turbine is mechanically connected to an existing irrigation well. The system can be operated in three modes: electric motor driving the water turbine pump. Wind assist mode where wind turbine supplements power from the utility line to drive the water turbine pump. At wind speeds of 12 m/s and greater, the wind turbine can pump water (15 kW) and feed power (10 kW) back into the utility grid at the same time. Electrical generation mode where the water pump is disconnected and all power is fed back to the utility grid. The concept is technically viable as the mechanical connection allows for a smooth transfer of power in parallel with an existing power source. Minor problems caused delays and major problems of two rotor failures precluded enough operation time to obtain a good estimation of the economics. Because reliability and maintenance are difficult problems with prototype or limited production wind energy conversion systems, the expense of the demonstration project has exceeded the estimated cost by a large amount.
High Performance Computing for Modeling Wind Farms and Their Impact
NASA Astrophysics Data System (ADS)
Mavriplis, D.; Naughton, J. W.; Stoellinger, M. K.
2016-12-01
As energy generated by wind penetrates further into our electrical system, modeling of power production, power distribution, and the economic impact of wind-generated electricity is growing in importance. The models used for this work can range in fidelity from simple codes that run on a single computer to those that require high performance computing capabilities. Over the past several years, high fidelity models have been developed and deployed on the NCAR-Wyoming Supercomputing Center's Yellowstone machine. One of the primary modeling efforts focuses on developing the capability to compute the behavior of a wind farm in complex terrain under realistic atmospheric conditions. Fully modeling this system requires the simulation of continental flows to modeling the flow over a wind turbine blade, including down to the blade boundary level, fully 10 orders of magnitude in scale. To accomplish this, the simulations are broken up by scale, with information from the larger scales being passed to the lower scale models. In the code being developed, four scale levels are included: the continental weather scale, the local atmospheric flow in complex terrain, the wind plant scale, and the turbine scale. The current state of the models in the latter three scales will be discussed. These simulations are based on a high-order accurate dynamic overset and adaptive mesh approach, which runs at large scale on the NWSC Yellowstone machine. A second effort on modeling the economic impact of new wind development as well as improvement in wind plant performance and enhancements to the transmission infrastructure will also be discussed.
Mousa, Mohamed G; Allam, S M; Rashad, Essam M
2018-01-01
This paper proposes an advanced strategy to synchronize the wind-driven Brushless Doubly-Fed Reluctance Generator (BDFRG) to the grid-side terminals. The proposed strategy depends mainly upon determining the electrical angle of the grid voltage, θ v and using the same transformation matrix of both the power winding and grid sides to ensure that the generated power-winding voltage has the same phase-sequence of the grid-side voltage. On the other hand, the paper proposes a vector-control (power-winding flux orientation) technique for maximum wind-power extraction under two schemes summarized as; unity power-factor operation and minimum converter-current. Moreover, a soft-starting method is suggested to avoid the employed converter over-current. The first control scheme is achieved by adjusting the command power-winding reactive power at zero for a unity power-factor operation. However, the second scheme depends on setting the command d-axis control-winding current at zero to maximize the ratio of the generator electromagnetic-torque per the converter current. This enables the system to get a certain command torque under minimum converter current. A sample of the obtained simulation and experimental results is presented to check the effectiveness of the proposed control strategies. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
A Wind Energy Powered Wireless Temperature Sensor Node
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-01-01
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649
A wind energy powered wireless temperature sensor node.
Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang
2015-02-27
A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.
NASA Astrophysics Data System (ADS)
Tongchitpakdee, Chanin
With the advantage of modern high speed computers, there has been an increased interest in the use of first-principles based computational approaches for the aerodynamic modeling of horizontal axis wind turbine (HAWT). Since these approaches are based on the laws of conservation (mass, momentum, and energy), they can capture much of the physics in great detail. The ability to accurately predict the airloads and power output can greatly aid the designers in tailoring the aerodynamic and aeroelastic features of the configuration. First-principles based analyses are also valuable for developing active means (e.g., circulation control), and passive means (e.g., Gurney flaps) of reducing unsteady blade loads, mitigating stall, and for efficient capture of wind energy leading to more electrical power generation. In this present study, the aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Prior to its use in exploring these concepts, the flow solver is validated with the experimental data for the baseline case under yawed flow conditions. Results presented include radial distribution of normal and tangential forces, shaft torque, root flap moment, surface pressure distributions at selected radial locations, and power output. Results show that good agreement has been for a range of wind speeds and yaw angles, where the flow is attached. At high wind speeds, however, where the flow is fully separated, it was found that the fundamental assumptions behind this present methodology breaks down for the baseline turbulence model (Spalart-Allmaras model), giving less accurate results. With the implementation of advanced turbulence model, Spalart-Allmaras Detached Eddy Simulation (SA-DES), the accuracy of the results at high wind speeds are improved. Results of circulation enhancement concepts show that, at low wind speed (attached flow) conditions, a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients. The effects of jet slot height and pulsed jet are also investigated in this study. A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to the Coanda jet. At high wind speed where the flow is separated, both the Coanda jet and Gurney flap become ineffective. Results of leading edge blowing indicate that a leading edge blowing jet is found to be beneficial in increasing power generation at high wind speeds. The effect of Gurney flap angle is also studied. Gurney flap angle has significant influence in power generation. Higher power output is obtained at higher flap angles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Severe wind and snow storms hit the Pacific Northwest region on December 14 – 15, 2006, following severe flooding during the past few days. The severe weather resulted in major power outages through the region. At peak there were 1.8 million customers without power which included BC Hydro in Canada. Currently, there are over 1.5 million outages in the region as a result of the Pacific Northwest Storms. This represents about 42 percent of customers in affected utility service areas in Oregon and Washington. See table below. Because the current wind and snow storms are coming on the heels ofmore » extensive flooding in the region, electric utilities are experiencing damage. Wind gusts reached close to 100 mph in some areas of the region. The storm is expected to bring its strong winds and heavy snow into Idaho, Montana and Wyoming Friday and into the weekend. There are currently no reported major impacts to the petroleum and natural gas infrastructure.« less
75 FR 45617 - Combined Notice of Filings #1
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... Numbers: ER08-1226-007; ER08-1225-010; ER08-1111-008. Applicants: Cloud County Wind Farm, LLC, Pioneer Prairie Wind Farm I, LLC, Arlington Wind Power Project LLC. Description: Arlington Wind Power Project LLC... Wind Farm, L.P. Description: Waymart Wind Farm, L.P. submits tariff filing per 35.12: Waymart Baseline...
Solar and Wind Forecasting | Grid Modernization | NREL
and Wind Forecasting Solar and Wind Forecasting As solar and wind power become more common system operators. An aerial photo of the National Wind Technology Center's PV arrays. Capabilities value of accurate forecasting Wind power visualization to direct questions and feedback during industry
Solid Waste from the Operation and Decommissioning of Power Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Marilyn Ann; D'Arcy, Daniel; Lapsa, Melissa Voss
This baseline report examines the solid waste generated by the U.S. electric power industry, including both waste streams resulting from electricity generation and wastes resulting from the decommissioning of power plants. Coal and nuclear plants produce large volumes of waste during electricity generation, and this report describes the policies and procedures for handling these materials. Natural gas and oil-fired power plants face similar waste challenges. Renewables considered in this baseline report include hydropower, wind and solar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, Jaquelin
This fact sheet overviews the Greening the Grid India grid integration study. The use of renewable energy (RE) sources, primarily wind and solar generation, is poised to grow significantly within the Indian power system. The Government of India has established a target of 175 gigawatts (GW) of installed RE capacity by 2022, including 60 GW of wind and 100 GW of solar, up from 29 GW wind and 9 GW solar at the beginning of 2017. Thanks to advanced weather and power system modeling made for this project, the study team is able to explore operational impacts of meeting India'smore » RE targets and identify actions that may be favorable for integration.« less
A Combined Energy Management Algorithm for Wind Turbine/Battery Hybrid System
NASA Astrophysics Data System (ADS)
Altin, Necmi; Eyimaya, Süleyman Emre
2018-03-01
From an energy management standpoint, natural phenomena such as solar irradiation and wind speed are uncontrolled variables, so the correlation between the energy generated by renewable energy sources and energy demand cannot always be predicted. For this reason, energy storage systems are used to provide more efficient renewable energy systems. In these systems, energy management systems are used to control the energy storage system and establish a balance between the generated power and the power demand. In addition, especially in wind turbines, rapidly varying wind speeds cause wind power fluctuations, which threaten the power system stability, especially at high power levels. Energy storage systems are also used to mitigate the power fluctuations and sustain the power system's stability. In these systems, another controller which controls the energy storage system power to mitigate power fluctuations is required. These two controllers are different from each other. In this study, a combined energy management algorithm is proposed which can perform both as an energy control system and a power fluctuation mitigation system. The proposed controller is tested with wind energy conversion system modeled in MATLAB/Simulink. Simulation results show that the proposed controller acts as an energy management system while, at the same time, mitigating power fluctuations.
NASA Astrophysics Data System (ADS)
Nelson, L. L.
1982-05-01
The Bureau of Reclamation (Bureau) conducted studies for a wind turbine field of 100 MW at a site near Medicine Bow, WY, one of the windiest areas in the United States. The wind turbine system would be electrically interconnected to the existing Federal power grid through the substation at Medicine Bow. Power output from the wind turbines would thus be integrated with the existing hydroelectric system, which serves as the energy storage system. An analysis based on 'willingness to pay' was developed. Based on information from the Department of Energy's Western Area Power Administration (Western), it was assumed that 90 mills per kWh would represent the 'willingness to pay' for onpeak power, and 45 mills per kWh for offpeak power. The report concludes that a 100-MW wind field at Medicine Bow has economic and financial feasibility. The Bureau's construction of the Medicine Bow wind field could demonstrate to the industry the feasibility of wind energy.
Wind power prediction based on genetic neural network
NASA Astrophysics Data System (ADS)
Zhang, Suhan
2017-04-01
The scale of grid connected wind farms keeps increasing. To ensure the stability of power system operation, make a reasonable scheduling scheme and improve the competitiveness of wind farm in the electricity generation market, it's important to accurately forecast the short-term wind power. To reduce the influence of the nonlinear relationship between the disturbance factor and the wind power, the improved prediction model based on genetic algorithm and neural network method is established. To overcome the shortcomings of long training time of BP neural network and easy to fall into local minimum and improve the accuracy of the neural network, genetic algorithm is adopted to optimize the parameters and topology of neural network. The historical data is used as input to predict short-term wind power. The effectiveness and feasibility of the method is verified by the actual data of a certain wind farm as an example.
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
NASA Astrophysics Data System (ADS)
Weber, Juliane; Zachow, Christopher; Witthaut, Dirk
2018-03-01
Wind power generation exhibits a strong temporal variability, which is crucial for system integration in highly renewable power systems. Different methods exist to simulate wind power generation but they often cannot represent the crucial temporal fluctuations properly. We apply the concept of additive binary Markov chains to model a wind generation time series consisting of two states: periods of high and low wind generation. The only input parameter for this model is the empirical autocorrelation function. The two-state model is readily extended to stochastically reproduce the actual generation per period. To evaluate the additive binary Markov chain method, we introduce a coarse model of the electric power system to derive backup and storage needs. We find that the temporal correlations of wind power generation, the backup need as a function of the storage capacity, and the resting time distribution of high and low wind events for different shares of wind generation can be reconstructed.
System Identification for the Clipper Liberty C96 Wind Turbine
NASA Astrophysics Data System (ADS)
Showers, Daniel
System identification techniques are powerful tools that help improve modeling capabilities of real world dynamic systems. These techniques are well established and have been successfully used on countless systems in many areas. However, wind turbines provide a unique challenge for system identification because of the difficulty in measuring its primary input: wind. This thesis first motivates the problem by demonstrating the challenges with wind turbine system identification using both simulations and real data. It then suggests techniques toward successfully identifying a dynamic wind turbine model including the notion of an effective wind speed and how it might be measured. Various levels of simulation complexity are explored for insights into calculating an effective wind speed. In addition, measurements taken from the University of Minnesota's Clipper Liberty C96 research wind turbine are used for a preliminary investigation into the effective wind speed calculation and system identification of a real world wind turbine.
Impact of active and break wind spells on the demand-supply balance in wind energy in India
NASA Astrophysics Data System (ADS)
Kulkarni, Sumeet; Deo, M. C.; Ghosh, Subimal
2018-02-01
With an installed capacity of over 19,000 MW, the wind power currently accounts for almost 70% of the total installed capacity among the renewable energy sector in India. The extraction of wind power mainly depends on prevailing meteorology which is strongly influenced by monsoon variability. The monsoon season is characterized by significant fluctuations in between periods of wet and dry spells. During the dry spells, the demand for power from agriculture and cooling equipment increases, whereas during the wet periods, such demand reduces, although, at the same time, the power supply increases because of strong westerly winds contributing to an enhanced production of wind energy. At this backdrop, we aim to assess the impact of intra-seasonal wind variability on the balance of energy supply and demand during monsoon seasons in India. Further, we explore the probable cause of wind variability by relating it to El Nino events. It is observed that the active and break phases in wind significantly impact the overall wind potential output. Although the dry spells are generally found to reduce the overall wind potential, their impact on the potential seems to have declined after the year 2000. The impact of meteorological changes on variations in wind power studied in this work should find applications typically in taking investment decisions on conventional generation facilities, like thermal, which are currently used to maintain the balance of power supply and demand.
Active Power Control of Waked Wind Farms: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, Paul A; van Wingerden, Jan-Willem; Pao, Lucy
Active power control can be used to balance the total power generated by wind farms with the power consumed on the electricity grid. With the increasing penetration levels of wind energy, there is an increasing need for this ancillary service. In this paper, we show that the tracking of a certain power reference signal provided by the transmission system operator can be significantly improved by using feedback control at the wind farm level. We propose a simple feedback control law that significantly improves the tracking behavior of the total power output of the farm, resulting in higher performance scores. Themore » effectiveness of the proposed feedback controller is demonstrated using high-fidelity computational fluid dynamics simulations of a small wind farm.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power and currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) is analytically deduced.more » The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start-time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Probabilistic Wind Power Ramp Forecasting Based on a Scenario Generation Method: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qin; Florita, Anthony R; Krishnan, Venkat K
2017-08-31
Wind power ramps (WPRs) are particularly important in the management and dispatch of wind power, and they are currently drawing the attention of balancing authorities. With the aim to reduce the impact of WPRs for power system operations, this paper develops a probabilistic ramp forecasting method based on a large number of simulated scenarios. An ensemble machine learning technique is first adopted to forecast the basic wind power forecasting scenario and calculate the historical forecasting errors. A continuous Gaussian mixture model (GMM) is used to fit the probability distribution function (PDF) of forecasting errors. The cumulative distribution function (CDF) ismore » analytically deduced. The inverse transform method based on Monte Carlo sampling and the CDF is used to generate a massive number of forecasting error scenarios. An optimized swinging door algorithm is adopted to extract all the WPRs from the complete set of wind power forecasting scenarios. The probabilistic forecasting results of ramp duration and start time are generated based on all scenarios. Numerical simulations on publicly available wind power data show that within a predefined tolerance level, the developed probabilistic wind power ramp forecasting method is able to predict WPRs with a high level of sharpness and accuracy.« less
Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, J.; Hou, Y.; Zhu, Z.
2017-09-01
The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.
Control Strategy: Wind Energy Powered Variable Chiller with Thermal Ice Storage
2014-12-01
New York, 2013. [8] A. Togelou et al., “Wind power forecasting in the absence of historical data,” IEEE trans. on sustainable energy, vol. 3, no...WIND ENERGY POWERED VARIABLE CHILLER WITH THERMAL ICE STORAGE by Rex A. Boonyobhas December 2014 Thesis Advisor: Anthony J. Gannon Co...AND DATES COVERED December 20 14 Master ’s Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS CONTROL STRATEGY: WIND ENERGY POWERED VARIABLE CHILLER
Coskun, Aynur Aydin; Türker, Yavuz Özhan
2012-03-01
The global energy requirement for sustaining economic activities, meeting social needs and social development is increasing daily. Environmentally friendly, renewable energy resources are an alternative to the primary non-renewable energy resources, which devastate ecosystems in order to meet increasing demand. Among renewable energy sources such as hydropower, biopower, geothermal power and solar power, wind power offers distinct advantages to Turkey. There is an increasing tendency toward wind globally and the European Union adjusted its legal regulations in this regard. As a potential EU Member state, Turkey is going through a similar process. The number of institutional and legal regulations concerning wind power has increased in recent years; technical infrastructure studies were completed, and some important steps were taken in this regard. This study examines the way in which Turkey has developed support for wind power, presents a SWOT analysis of the wind power sector in Turkey and a projection was made for the concrete success expected to be accomplished in the future.
NASA Astrophysics Data System (ADS)
Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji
This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.
Contribution of strong discontinuities to the power spectrum of the solar wind.
Borovsky, Joseph E
2010-09-10
Eight and a half years of magnetic field measurements (2(22) samples) from the ACE spacecraft in the solar wind at 1 A.U. are analyzed. Strong (large-rotation-angle) discontinuities in the solar wind are collected and measured. An artificial time series is created that preserves the timing and amplitudes of the discontinuities. The power spectral density of the discontinuity series is calculated and compared with the power spectral density of the solar-wind magnetic field. The strong discontinuities produce a power-law spectrum in the "inertial subrange" with a spectral index near the Kolmogorov -5/3 index. The discontinuity spectrum contains about half of the power of the full solar-wind magnetic field over this "inertial subrange." Warnings are issued about the significant contribution of discontinuities to the spectrum of the solar wind, complicating interpretation of spectral power and spectral indices.
Economically Feasible Potentials for Wind Power in China and the US
NASA Astrophysics Data System (ADS)
Lu, X.; McElroy, M. B.; Chris, N. P.; Tchou, J.
2011-12-01
The present study is intended to explore the economic feasible potentials for wind energy in China and the U.S. subject to their policy systems for renewable energy. These two countries were chosen as subject locales for three reasons: first, they are the two largest countries responsible for energy consumption and CO2 emissions; second, these two countries have the largest installed capacities and the fastest annual growth of wind power in the world; third, China and the U.S. have adopted two distinct but representative incentive policies to accelerate exploitation of the renewable energy source from wind. Investments in large-scale wind farms in China gain privileges from the concession policy established under China's Renewable Energy Law. The electricity generated from wind can be sold at a guaranteed price for a concession period (typically the first ten operational years of a wind farm) to ensure the profitability of the wind farm development. The effectiveness of this policy has been evidenced by the swift growth of total installed capacities for wind power over the past five years in China. A spatial financial model was developed to evaluate the bus-bar prices of wind-generated electricity in China following this wind concession policy. The results indicated that wind could accommodate all of the demand for electricity projected for 2030 assuming a guaranteed bus-bar price of 7.6 U.S. Cents per kWh over the concession period. It is noteworthy that the prices of wind-generated electricity could be as cheap as conventional power generation in the years following the concession period. The power market in the U.S. is more deregulated and electricity is normally traded in a bidding process an hour to a day ahead of real time. Accordingly, the market-oriented policy instrument of PTC subsidies was instituted in the U.S. to ensure the competitiveness of wind power compared to the conventional power generation in the regional power markets. The spatial financial model developed for previous analysis of wind energy in China was tailored to simulate the relevant investment environments for U.S. wind projects. A particular problem was investigated as to how the profitability and competitiveness of onshore wind power in the U.S. would be influenced by PTC subsidy levels varying from 0 to 4 cents per kWh. The results suggested that the current PTC level (2.1 cent per kWh) is at a critical point in determining the competitiveness of wind-generated electricity under normal costs. Setting system integration challenges aside, the potential for profitable wind-generated electricity could accommodate more than seven times U.S. electricity demand at the current PTC subsidy. Similar to the concession policy adopted in China, PTC subsidies are only available for the first ten years following the initiation of wind farms; wind power would still offer a renewable energy source for profitable electricity generation during the post-PTC period.
Methods and apparatus for rotor load control in wind turbines
Moroz, Emilian Mieczyslaw
2006-08-22
A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.
NASA Astrophysics Data System (ADS)
Radziukynas, V.; Klementavičius, A.
2016-04-01
The paper analyses the performance results of the recently developed short-term forecasting suit for the Latvian power system. The system load and wind power are forecasted using ANN and ARIMA models, respectively, and the forecasting accuracy is evaluated in terms of errors, mean absolute errors and mean absolute percentage errors. The investigation of influence of additional input variables on load forecasting errors is performed. The interplay of hourly loads and wind power forecasting errors is also evaluated for the Latvian power system with historical loads (the year 2011) and planned wind power capacities (the year 2023).
Opportunities for Wind Power In Low- and Mid-Quality Resource Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, Eric; Mai, Trieu; Heimiller, Donna
2016-05-25
In this presentation for American Wind Energy Association (AWEA) WINDPOWER 2016 conference, the authors discuss wind power today in low and mid-quality resource regions, the anticipated role of wind power in the future electric sector, market potential in low and mid-quality resource regions, and anticipated innovations to capture that market potential.
Policies to Support Wind Power Deployment: Key Considerations and Good Practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Sadie; Tegen, Suzanne; Baring-Gould, Ian
2015-05-19
Policies have played an important role in scaling up wind deployment and increasing its economic viability while also supporting country-specific economic, social, and environmental development goals. Although wind power has become cost-competitive in several contexts, challenges to wind power deployment remain. Within the context of country-specific goals and challenges, policymakers are seeking
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-05
...] Commercial Leasing for Wind Power on the Outer Continental Shelf (OCS) Offshore North Carolina--Call for... Commercial Leasing for Wind Power Offshore North Carolina (Call), published on December 13, 2012 (77 FR 7204). DATES: BOEM must receive your nomination describing your interest in obtaining a commercial wind lease...
Army Transitions Hybrid Electric Technology to FCS Manned Ground Vehicles
2007-12-01
completely new way of maneuvering on the battlefield. The system’s advanced energy storage, power generation, regenerative braking and power management... categories , including mixing, coat- ing and winding; electrolyte filling; cir- cuit breaker bussing and closing; electri- cal formation; and battery
Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.
Souza, F L; Llanos, J; Sáez, C; Lanza, M R V; Rodrigo, M A; Cañizares, P
2016-04-15
In this work, it is studied a wind-powered electrokinetic soil flushing process for the removal of pesticides from soil. This approach aims to develop an eco-friendly electrochemical soil treatment technique and to face the in-situ treatment of polluted soils at remote locations. Herbicide 2,4 dichlorophenoxyacetic acid (2,4-D) is selected as a model pollutant for the soil treatment tests. The performance of the wind-powered process throughout a 15 days experiment is compared to the same remediation process powered by a conventional DC power supply. The wind-powered test covered many different wind conditions (from calm to near gale), being performed 20.7% under calm conditions and 17% under moderate or gentle breeze. According to the results obtained, the wind-powered soil treatment is feasible, obtaining a 53.9% removal of 2,4-D after 15 days treatment. Nevertheless, the remediation is more efficient if it is fed by a constant electric input (conventional DC power supply), reaching a 90.2% removal of 2,4-D with a much lower amount of charge supplied (49.2 A h kg(-1) and 4.33 A h kg(-1) for wind-powered and conventional) within the same operation time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
Scaling forecast models for wind turbulence and wind turbine power intermittency
NASA Astrophysics Data System (ADS)
Duran Medina, Olmo; Schmitt, Francois G.; Calif, Rudy
2017-04-01
The intermittency of the wind turbine power remains an important issue for the massive development of this renewable energy. The energy peaks injected in the electric grid produce difficulties in the energy distribution management. Hence, a correct forecast of the wind power in the short and middle term is needed due to the high unpredictability of the intermittency phenomenon. We consider a statistical approach through the analysis and characterization of stochastic fluctuations. The theoretical framework is the multifractal modelisation of wind velocity fluctuations. Here, we consider three wind turbine data where two possess a direct drive technology. Those turbines are producing energy in real exploitation conditions and allow to test our forecast models of power production at a different time horizons. Two forecast models were developed based on two physical principles observed in the wind and the power time series: the scaling properties on the one hand and the intermittency in the wind power increments on the other. The first tool is related to the intermittency through a multifractal lognormal fit of the power fluctuations. The second tool is based on an analogy of the power scaling properties with a fractional brownian motion. Indeed, an inner long-term memory is found in both time series. Both models show encouraging results since a correct tendency of the signal is respected over different time scales. Those tools are first steps to a search of efficient forecasting approaches for grid adaptation facing the wind energy fluctuations.
Investigation of self-excited induction generators for wind turbine applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, E.; Butterfield, C.P.; Sallan, J.
2000-02-28
The use of squirrel-cage induction machines in wind generation is widely accepted as a generator of choice. The squirrel-cage induction machine is simple, reliable, cheap, lightweight, and requires very little maintenance. Generally, the induction generator is connected to the utility at constant frequency. With a constant frequency operation, the induction generator operates at practically constant speed (small range of slip). The wind turbine operates in optimum efficiency only within a small range of wind speed variation. The variable-speed operation allows an increase in energy captured and reduces both the torque peaks in the drive train and the power fluctuations sentmore » to the utility. In variable-speed operation, an induction generator needs an interface to convert the variable frequency output of the generator to the fixed frequency at the utility. This interface can be simplified by using a self-excited generator because a simple diode bridge is required to perform the ac/dc conversion. The subsequent dc/ac conversion can be performed using different techniques. The use of a thyristor bridge is readily available for large power conversion and has a lower cost and higher reliability. The firing angle of the inverter bridge can be controlled to track the optimum power curve of the wind turbine. With only diodes and thyristors used in power conversion, the system can be scaled up to a very high voltage and high power applications. This paper analyzes the operation of such a system applied to a 1/3-hp self-excited induction generator. It includes the simulations and tests performed for the different excitation configurations.« less
An improved AVC strategy applied in distributed wind power system
NASA Astrophysics Data System (ADS)
Zhao, Y. N.; Liu, Q. H.; Song, S. Y.; Mao, W.
2016-08-01
Traditional AVC strategy is mainly used in wind farm and only concerns about grid connection point, which is not suitable for distributed wind power system. Therefore, this paper comes up with an improved AVC strategy applied in distributed wind power system. The strategy takes all nodes of distribution network into consideration and chooses the node having the most serious voltage deviation as control point to calculate the reactive power reference. In addition, distribution principles can be divided into two conditions: when wind generators access to network on single node, the reactive power reference is distributed according to reactive power capacity; when wind generators access to network on multi-node, the reference is distributed according to sensitivity. Simulation results show the correctness and reliability of the strategy. Compared with traditional control strategy, the strategy described in this paper can make full use of generators reactive power output ability according to the distribution network voltage condition and improve the distribution network voltage level effectively.
Experimental verification of a real-time power curve for downregulated offshore wind power plants
NASA Astrophysics Data System (ADS)
Giebel, Gregor; Göcmen Bozkurt, Tuhfe; Sørensen, Poul; Rajczyk Skjelmose, Mads; Runge Kristoffersen, Jesper
2015-04-01
Wind farm scale experiments with wakes under downregulation have been initiated in Horns Rev wind farm in the frame of the PossPOW project (see posspow.dtu.dk). The experiments will be compared with the results of the calibrated GCLarsen wake model for real-time which is used not only to obtain real-time power curve but also to estimate the available power in wind farm level. Available (or Possible) Power is the power that a down-regulated (or curtailed) turbine or a wind power plant would produce if it were to operate in normal operational conditions and it is becoming more of particular interest due to increasing number of curtailment periods. Currently, the Transmission System Operators (TSOs) have no real way to determine exactly the available power of a down-regulated wind farm and the PossPOW project is addressing that need. What makes available power calculation interesting at the wind farm level is the change in the wake characteristics for different operational states. Even though the single turbine level available power is easily estimated, the sum of those signals from all turbines in a wind farm overestimates the power since the wake losses significantly decrease during curtailment. In order to calculate that effect, the turbine wind speed is estimated real-time from the produced power, the pitch angle and the rotor speed using a proximate Cp curve. A real-time wake estimation of normal operation is then performed and advected to the next downstream turbine, and so on until the entire wind farm is calculated. The estimation of the rotor effective wind speed, the parameterization of the GCLarsen wake model for real-time use (i.e., 1-sec data from Horns Rev and Thanet) and the details of the advection are the topic can be found in Göcmen et al. [1] Here we plan to describe the experiments using the Horns Rev wind farm and hopefully present the first validation results. Assuming similarity of the wind speeds between neighbouring rows of turbines, the power produced by the second turbines in the line can be compared when some of the front row turbines are down-regulated. To get a good signal, a trigger mechanism is employed which assures that the experiment is only started if the wind is blowing directly down the line of turbines, and in a strength which is below rated power. The design of the experiments is finalized and the triggers have been introduced to the controller - they will run during the first quarter of 2015. A verified algorithm could be employed by manufacturers and operators world-wide, both for the determination of compensation payments during mandated down-regulation as well as for the exact determination of reserve power for use in ancillary services markets. [1] T. Göcmen Bozkurt, G. Giebel, P. Rethore, M. Mirzaei, N. Poulsen, Effective wind speed estimation and real-time wake model re-calibration for down-regulated turbines, in: Wind Integration Workshop 2014.
Voltage regulation and power losses reduction in a wind farm integrated MV distribution network
NASA Astrophysics Data System (ADS)
Fandi, Ghaeth; Igbinovia, Famous Omar; Tlusty, Josef; Mahmoud, Rateb
2018-01-01
A medium-voltage (MV) wind production system is proposed in this paper. The system applies a medium-voltage permanent magnet synchronous generator (PMSG) as well as MV interconnection and distribution networks. The simulation scheme of an existing commercial electric-power system (Case A) and a proposed wind farm with a gearless PMSG insulated gate bipolar transistor (IGBT) power electronics converter scheme (Case B) is compared. The analyses carried out in MATLAB/Simulink environment shows an enhanced voltage profile and reduced power losses, thus, efficiency in installed IGBT power electronics devices in the wind farm. The resulting wind energy transformation scheme is a simple and controllable medium voltage application since it is not restrained by the IGBT power electronics voltage source converter (VSC) arrangement. Active and reactive power control is made possible with the aid of the gearless PMSG IGBT power converters.