Science.gov

Sample records for includes spectral parameters

  1. A new peak shear strength criterion for rock joints which includes spectral parameters as roughness measures

    SciTech Connect

    Kulatilake, P.H.S.W.; Shou, G.; Huang, T.H.

    1996-04-01

    Most of the natural rock joint surface profiles do not belong to the self similar fractal category. In general, roughness profiles of rock joints consist of non-stationary and stationary components. At the simplest level, only one parameter is sufficient to quantify non-stationary joint roughness. The average inclination angle I, along with the direction considered for the joint surface, is suggested to capture the non-stationary roughness. It is shown that even though the fractal dimension D is a useful parameter, it alone is insufficient to quantify the stationary roughness of non-self similar profiles.

  2. Spectral line parameters including line shapes in the 2ν3 Q branch of 12CH4

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2016-07-01

    In this study, we report the first experimental measurements of spectral line shape parameters (self- and air-broadened Lorentz half-widths, pressure-shifts, and line mixing (via off-diagonal relaxation matrix elements) coefficients and their temperature dependences, where appropriate) for transitions in the 2ν3 Q branch manifolds, Q(11)-Q(1) of methane (12CH4), in the 5996.5-6007-cm-1 region. The analysis included 23 high-resolution, high signal-to-noise laboratory absorption spectra recorded with the Bruker IFS-125HR Fourier transform spectrometer (FTS) at JPL. The experimental data were obtained using 12C-enriched 12CH4 and dilute mixtures of 12CH4 in dry air in the 130-296 K range using a room-temperature long path absorption cell and, two custom-built coolable cells. In the analysis, an interactive multispectrum fitting software was employed where all the 23 spectra (11 self-broadened and 12 air-broadened) were fit simultaneously. By carefully applying reasonable constraints to the parameters for severely blended lines, we were able to determine a self-consistent set of broadening, shift and line mixing (relaxation matrix coefficients) parameters for CH4-CH4 and CH4-air collisions. In the majority of cases, a quadratic speed dependence parameter common for all transitions in each Q(J) manifold was determined. However, temperature dependences of the Q branch line mixing parameter could not be determined from the present data. Since no other experimental line shape measurements have been reported for this Q-branch, the present results are compared to available values in the HITRAN2012 database.

  3. Relationship between Cole-Cole model parameters and spectral decomposition parameters derived from SIP data

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Kemna, A.

    2016-06-01

    Spectral induced polarization (SIP) data are commonly analysed using phenomenological models. Among these models the Cole-Cole (CC) model is the most popular choice to describe the strength and frequency dependence of distinct polarization peaks in the data. More flexibility regarding the shape of the spectrum is provided by decomposition schemes. Here the spectral response is decomposed into individual responses of a chosen elementary relaxation model, mathematically acting as kernel in the involved integral, based on a broad range of relaxation times. A frequently used kernel function is the Debye model, but also the CC model with some other a priorly specified frequency dispersion (e.g. Warburg model) has been proposed as kernel in the decomposition. The different decomposition approaches in use, also including conductivity and resistivity formulations, pose the question to which degree the integral spectral parameters typically derived from the obtained relaxation time distribution are biased by the approach itself. Based on synthetic SIP data sampled from an ideal CC response, we here investigate how the two most important integral output parameters deviate from the corresponding CC input parameters. We find that the total chargeability may be underestimated by up to 80 per cent and the mean relaxation time may be off by up to three orders of magnitude relative to the original values, depending on the frequency dispersion of the analysed spectrum and the proximity of its peak to the frequency range limits considered in the decomposition. We conclude that a quantitative comparison of SIP parameters across different studies, or the adoption of parameter relationships from other studies, for example when transferring laboratory results to the field, is only possible on the basis of a consistent spectral analysis procedure. This is particularly important when comparing effective CC parameters with spectral parameters derived from decomposition results.

  4. Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects

    SciTech Connect

    Vargas, Asticio; Mar Sánchez-López, María del; García-Martínez, Pascuala; Arias, Julia; Moreno, Ignacio

    2014-01-21

    Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by means of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.

  5. Spectral vegetation indexes and the remote sensing of biophysical parameters

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.; Goward, Samuel N.

    1992-01-01

    Combinations of remotely sensed data from different spectral bands have been combined into spectral vegetation indexes (SVIs) and used to determine biophysical parameters. The characteristics of two-band SVIs made up of visible and near-infrared reflectances are examined. Two canopy reflectance models, a turbid media model and a geometrical model, are used to study the effects of different canopy structures on the measurement of leaf area index and the fraction of photosynthetically intercepted active radiation.

  6. Estimation of nonlinear pilot model parameters including time delay.

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.; Wells, W. R.

    1972-01-01

    Investigation of the feasibility of using a Kalman filter estimator for the identification of unknown parameters in nonlinear dynamic systems with a time delay. The problem considered is the application of estimation theory to determine the parameters of a family of pilot models containing delayed states. In particular, the pilot-plant dynamics are described by differential-difference equations of the retarded type. The pilot delay, included as one of the unknown parameters to be determined, is kept in pure form as opposed to the Pade approximations generally used for these systems. Problem areas associated with processing real pilot response data are included in the discussion.

  7. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    SciTech Connect

    Núñez, Rubén Antón, Ignacio Askins, Steve Sala, Gabriel

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  8. Optimizing spectral CT parameters for material classification tasks

    NASA Astrophysics Data System (ADS)

    Rigie, D. S.; La Rivière, P. J.

    2016-06-01

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC’s) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC’s predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.

  9. Optimizing spectral CT parameters for material classification tasks.

    PubMed

    Rigie, D S; La Rivière, P J

    2016-06-21

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC's) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC's predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies.

  10. Optimizing spectral CT parameters for material classification tasks.

    PubMed

    Rigie, D S; La Rivière, P J

    2016-06-21

    In this work, we propose a framework for optimizing spectral CT imaging parameters and hardware design with regard to material classification tasks. Compared with conventional CT, many more parameters must be considered when designing spectral CT systems and protocols. These choices will impact material classification performance in a non-obvious, task-dependent way with direct implications for radiation dose reduction. In light of this, we adapt Hotelling Observer formalisms typically applied to signal detection tasks to the spectral CT, material-classification problem. The result is a rapidly computable metric that makes it possible to sweep out many system configurations, generating parameter optimization curves (POC's) that can be used to select optimal settings. The proposed model avoids restrictive assumptions about the basis-material decomposition (e.g. linearity) and incorporates signal uncertainty with a stochastic object model. This technique is demonstrated on dual-kVp and photon-counting systems for two different, clinically motivated material classification tasks (kidney stone classification and plaque removal). We show that the POC's predicted with the proposed analytic model agree well with those derived from computationally intensive numerical simulation studies. PMID:27227430

  11. Augmenting Forest Stand Parameters using Landsat TM Spectral Images

    NASA Astrophysics Data System (ADS)

    Reuveni, Y.; Dahan, E.; Anker, Y.; Sprintsin, M.

    2015-12-01

    Forest stand parameters, such as diameter at breast height (DBH), tree height (H), or volume per hectare (V), are imperative for forest resources assessment. Traditional inventory of forest stand parameters, usually based on fieldwork, is often difficult, time-consuming, and expensive, to conduct in large areas. Therefore, estimating forest stand parameters in large areas using traditional inventory approach augmented by satellites data has a significant implication for sustainable forest management and natural resources efficiency. However, obtaining suitable satellite image data for such purpose is a challenging task mainly because of insignificant knowledge between the forest stand parameters and satellite spectral response relationships. Here, we present the use of Landsat Thematic Mapper (TM) spectral responses data for augmenting forest stand parameter obtained from fieldwork at the Lahav Forest, in the Israeli Northern Negev. A new algorithm was developed in order to use all eight TM band when calculating the linear combination which correlates the most to each one of the forest stand parameters. Each linear combination is obtained first for local area inside the entire studied grid and is then fitted using a simple linear polynomial curve to the known forest stand parameter. Once the relationship between the two is characterized by a linear polynomial equation, the TM linear combination local area data is translated to the same equivalent area of the chosen forest stand parameter. At last, we interpolate the entire TM grid using a higher order polynomial fit applied to all the augmented local area combined together to attain full coverage of the desired forest stand parameter.

  12. Bayesian parameter estimation in spectral quantitative photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Pulkkinen, Aki; Cox, Ben T.; Arridge, Simon R.; Kaipio, Jari P.; Tarvainen, Tanja

    2016-03-01

    Photoacoustic tomography (PAT) is an imaging technique combining strong contrast of optical imaging to high spatial resolution of ultrasound imaging. These strengths are achieved via photoacoustic effect, where a spatial absorption of light pulse is converted into a measurable propagating ultrasound wave. The method is seen as a potential tool for small animal imaging, pre-clinical investigations, study of blood vessels and vasculature, as well as for cancer imaging. The goal in PAT is to form an image of the absorbed optical energy density field via acoustic inverse problem approaches from the measured ultrasound data. Quantitative PAT (QPAT) proceeds from these images and forms quantitative estimates of the optical properties of the target. This optical inverse problem of QPAT is illposed. To alleviate the issue, spectral QPAT (SQPAT) utilizes PAT data formed at multiple optical wavelengths simultaneously with optical parameter models of tissue to form quantitative estimates of the parameters of interest. In this work, the inverse problem of SQPAT is investigated. Light propagation is modelled using the diffusion equation. Optical absorption is described with chromophore concentration weighted sum of known chromophore absorption spectra. Scattering is described by Mie scattering theory with an exponential power law. In the inverse problem, the spatially varying unknown parameters of interest are the chromophore concentrations, the Mie scattering parameters (power law factor and the exponent), and Gruneisen parameter. The inverse problem is approached with a Bayesian method. It is numerically demonstrated, that estimation of all parameters of interest is possible with the approach.

  13. Spectral parameters for a large sample of hydrated asteroids

    NASA Astrophysics Data System (ADS)

    Duffard, R.; de León, J.; Haux, J.; Lin, Z.; Bosch Lacalle, A.

    2014-07-01

    We present a set of spectral parameters for nearly 70 hydrated asteroids. We applied two different techniques and we compare the results. First, we applied a polynomial fitting to obtain the center, depth and width of the absorption band near 0.7 microns. Then, we used the Modified Gaussian Model to fit absorptions in the same region. We applied this last technique to hydrated meteorites, and minerals taken from the RELAB database. Comparing the result obtained with the calibrations using minerals and meteorites, we can make conclusions about the minerals present on the surface of those observed asteroids.

  14. C -parameter distribution at N3LL' including power corrections

    NASA Astrophysics Data System (ADS)

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-01

    We compute the e+e- C -parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O (αs3), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O (ΛQCD) renormalon ambiguity in the soft function, we switch from the MS ¯ to a short distance "Rgap" scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C -parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≃ 2.5 % at Q =mZ.

  15. C -parameter distribution at N 3 LL ' including power corrections

    DOE PAGESBeta

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

  16. Informed spectral analysis: audio signal parameter estimation using side information

    NASA Astrophysics Data System (ADS)

    Fourer, Dominique; Marchand, Sylvain

    2013-12-01

    Parametric models are of great interest for representing and manipulating sounds. However, the quality of the resulting signals depends on the precision of the parameters. When the signals are available, these parameters can be estimated, but the presence of noise decreases the resulting precision of the estimation. Furthermore, the Cramér-Rao bound shows the minimal error reachable with the best estimator, which can be insufficient for demanding applications. These limitations can be overcome by using the coding approach which consists in directly transmitting the parameters with the best precision using the minimal bitrate. However, this approach does not take advantage of the information provided by the estimation from the signal and may require a larger bitrate and a loss of compatibility with existing file formats. The purpose of this article is to propose a compromised approach, called the 'informed approach,' which combines analysis with (coded) side information in order to increase the precision of parameter estimation using a lower bitrate than pure coding approaches, the audio signal being known. Thus, the analysis problem is presented in a coder/decoder configuration where the side information is computed and inaudibly embedded into the mixture signal at the coder. At the decoder, the extra information is extracted and is used to assist the analysis process. This study proposes applying this approach to audio spectral analysis using sinusoidal modeling which is a well-known model with practical applications and where theoretical bounds have been calculated. This work aims at uncovering new approaches for audio quality-based applications. It provides a solution for challenging problems like active listening of music, source separation, and realistic sound transformations.

  17. Investigation into Spectral Parameters as they Impact CPV Module Performance

    SciTech Connect

    Muller, M.; Marion, B.; Kurtz, S.; Rodriguez, J.

    2011-03-01

    The CPV industry is well aware that performance of triple junction cells depends on spectral conditions but there is a lack of data quantifying this spectral dependence at the module level. This paper explores the impact of precipitable water vapor, aerosol optical depth (AOD), and optical air mass on multiple CPV module technologies on-sun in Golden, CO.

  18. Parameter estimation for inspiraling eccentric compact binaries including pericenter precession

    NASA Astrophysics Data System (ADS)

    Mikóczi, Balázs; Kocsis, Bence; Forgács, Péter; Vasúth, Mátyás

    2012-11-01

    Inspiraling supermassive black hole binary systems with high orbital eccentricity are important sources for space-based gravitational wave observatories like the Laser Interferometer Space Antenna. Eccentricity adds orbital harmonics to the Fourier transform of the gravitational wave signal, and relativistic pericenter precession leads to a three-way splitting of each harmonic peak. We study the parameter estimation accuracy for such waveforms with different initial eccentricity, using the Fisher matrix method and a Monte Carlo sampling of the initial binary orientation. The eccentricity improves the parameter estimation by breaking degeneracies between different parameters. In particular, we find that the source localization precision improves significantly for higher-mass binaries due to eccentricity. The typical sky position errors are ˜1deg for a nonspinning, 107M⊙, equal-mass binary at redshift z=1, if the initial eccentricity 1 yr before merger is e0˜0.6. Pericenter precession does not affect the source localization accuracy significantly, but it does further improve the mass and eccentricity estimation accuracy systematically by a factor of 3-10 for masses between 106M⊙ and 107M⊙ for e0˜0.3.

  19. Accuracy of the atmospheric parameters determination in FGK stars based on spectral fitting

    NASA Astrophysics Data System (ADS)

    Mashonkina, Lyudmila

    2015-08-01

    We perform an extensive testing of the accuracy of atmospheric parameters determination in FGK stars based on the spectral fitting procedure SME (Spectroscopy Made Easy). Our set of stars consists of 13 objects, including the Sun, in temperature range 5000-6600 K and metallicity range -1.4 to +0.4. For these stars the parameters derived by means of interferometry are known. For each star we use spectra obtained with different echelle spectrographs (42000 <= R <= 110000) and different signal-to-noise ratios. We also test how the values of the derived parameters depend on the spectral regions used in the fitting procedure. We tested three different constraints on the spectral masks; four regions of 100 A, each, 4485-4590, 5100-5200, 5600-5700, and 6100-6200 A, the same regions plus Halpha and Hbeta, and the mask employed by Valenti & Fischer (2005). We propose a new method for estimating the uncertainties of the free parameters in SME, based on the fit residuals, partial derivatives and data uncertainties. To construct the distribution for a given free parameter (Teff, log g, etc.) we estimate the change required to match the observations in every pixel involved in the fit. The main difficulty in estimating uncertainties is a non-Gaussian shape of the resulting distribution. This difficulty is alleviated by constructing a cumulative distribution. For stars in the 5700-6600 K temperature range the closest agreement with the effective temperatures derived by interferometry is achieved when the spectral fitting includes the Halpha and Hbeta lines, while for cooler stars the choice of the mask does not effect the results. The derived values of atmospheric parameters do not strongly depend on the spectral resolution and S/N ratio, while the uncertainty both in temperature and surface gravity grows with the effective temperature never being smaller than 50 K in Teff and 0.1 in log g, for typical S/N = 150-200. Better accuracy Delta Teff = 20-30 K and Delta log g = 0

  20. Thermodynamic and cloud parameter retrieval using infrared spectral data

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.

    2005-01-01

    High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).

  1. Cool stars: spectral library of high-resolution echelle spectra and database of stellar parameters

    NASA Astrophysics Data System (ADS)

    Montes, D.

    2013-05-01

    During the last years our group have undertake several high resolution spectroscopic surveys of nearby FGKM stars with different spectrographs (FOCES, SARG, SOFIN, FIES, HERMES). A large number of stars have been already observed and we have already determined spectral types, rotational velocities as well as radial velocities, Lithium abundance and several chromospheric activity indicators. We are working now in a homogeneous determination of the fundamental stellar parameters (T_{eff}, log{g}, ξ and [Fe/H]) and chemical abundances of many elements of all these stars. Some fully reduced spectra in FITS format have been available via ftp and in the {http://www.ucm.es/info/Astrof/invest/actividad/spectra.html}{Worl Wide Web} (Montes et al. 1997, A&AS, 123, 473; Montes et al. 1998, A&AS, 128, 485; and Montes et al. 1999, ApJS, 123, 283) and some particular spectral regions of the echelle spectra are available at VizieR by López-Santiago et al. 2010, A&A, 514, A97. We are now working in made accessible all the spectra of our different surveys in a Virtual Observatory ({http://svo.cab.inta-csic.es/}{VO}) compliant library and database accessible using a common web interface following the standards of the International Virtual Observatory Alliance ({http://www.ivoa.net/}{IVOA}). The spectral library includes F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 10000 Å, with spectral resolution ranging from 40000 to 80000. The database will provide in addition the stellar parameters determined for these spectra using {http://cdsads.u-strasbg.fr/abs/2012arXiv1205.4879T}{StePar} (Tabernero et al. 2012, A&A, 547, A13).

  2. Spectral structure of Earth rotation parameter series (SHA).

    NASA Astrophysics Data System (ADS)

    Zhu, Yuanlan; Zhu, Wenyao

    Using the Marple algorithm of AR spectrum, the authors have analysed the spectral structure of ERP(SHA) series. Some main periodical terms of both polar motion and Earth rotation have been derived well from this series. This shows that the ERP(SHA) series can be reliably applied to astronomical and geophysical researches.

  3. Parameters optimization for wavelet denoising based on normalized spectral angle and threshold constraint machine learning

    NASA Astrophysics Data System (ADS)

    Li, Hao; Ma, Yong; Liang, Kun; Tian, Yong; Wang, Rui

    2012-01-01

    Wavelet parameters (e.g., wavelet type, level of decomposition) affect the performance of the wavelet denoising algorithm in hyperspectral applications. Current studies select the best wavelet parameters for a single spectral curve by comparing similarity criteria such as spectral angle (SA). However, the method to find the best parameters for a spectral library that contains multiple spectra has not been studied. In this paper, a criterion named normalized spectral angle (NSA) is proposed. By comparing NSA, the best combination of parameters for a spectral library can be selected. Moreover, a fast algorithm based on threshold constraint and machine learning is developed to reduce the time of a full search. After several iterations of learning, the combination of parameters that constantly surpasses a threshold is selected. The experiments proved that by using the NSA criterion, the SA values decreased significantly, and the fast algorithm could save 80% time consumption, while the denoising performance was not obviously impaired.

  4. Uncertainty of rotating shadowband irradiometers and Si-pyranometers including the spectral irradiance error

    NASA Astrophysics Data System (ADS)

    Wilbert, Stefan; Kleindiek, Stefan; Nouri, Bijan; Geuder, Norbert; Habte, Aron; Schwandt, Marko; Vignola, Frank

    2016-05-01

    Concentrating solar power projects require accurate direct normal irradiance (DNI) data including uncertainty specifications for plant layout and cost calculations. Ground measured data are necessary to obtain the required level of accuracy and are often obtained with Rotating Shadowband Irradiometers (RSI) that use photodiode pyranometers and correction functions to account for systematic effects. The uncertainty of Si-pyranometers has been investigated, but so far basically empirical studies were published or decisive uncertainty influences had to be estimated based on experience in analytical studies. One of the most crucial estimated influences is the spectral irradiance error because Si-photodiode-pyranometers only detect visible and color infrared radiation and have a spectral response that varies strongly within this wavelength interval. Furthermore, analytic studies did not discuss the role of correction functions and the uncertainty introduced by imperfect shading. In order to further improve the bankability of RSI and Si-pyranometer data, a detailed uncertainty analysis following the Guide to the Expression of Uncertainty in Measurement (GUM) has been carried out. The study defines a method for the derivation of the spectral error and spectral uncertainties and presents quantitative values of the spectral and overall uncertainties. Data from the PSA station in southern Spain was selected for the analysis. Average standard uncertainties for corrected 10 min data of 2 % for global horizontal irradiance (GHI), and 2.9 % for DNI (for GHI and DNI over 300 W/m²) were found for the 2012 yearly dataset when separate GHI and DHI calibration constants were used. Also the uncertainty in 1 min resolution was analyzed. The effect of correction functions is significant. The uncertainties found in this study are consistent with results of previous empirical studies.

  5. How Sensitive are Helioseismic Mode Parameters and Subsurface Flows to Choice of the Spectral Line?

    NASA Astrophysics Data System (ADS)

    Hill, Frank; Jain, K.; Gonzalez-Hernandez, I.; Toner, C. G.; Tripathy, S. C.; Armstrong, J. D.; Jefferies, S.; Rhodes, E. J., Jr.; Rose, P. J.

    2006-06-01

    We analyze simultaneous multi-spectral line observations to investigate how the results of helioseismology are affected by the spectral line used to observe the solar oscillations. The data sets include observations obtained with the Ni I 676.8 nm (from Global Oscillation Network Group - GONG), K I 769.9 nm (from Magneto Optical Filters at Two Heights - MOTH experiment) and Na I D2 589.0 nm (from MOTH experiment and Mount Wilson Observatory) lines during the Austral summer of 2002-03. The depth formation of these lines occurs about 200 km, 420 km and 780 km above the base of the photosphere, respectively. The simultaneous observations in several atmospheric layers allow us to determine the propagation behavior of acoustic waves between these layers. We carry out ring-diagram analysis, a local helioseismology technique, to study the relative changes in local mode parameters and subsurface velocity fields inferred from the different data sets. Preliminary analysis of the mode parameters obtained from the Ni I 676.8 nm and K I 769.9 nm spectral lines clearly show a significant increase in mode amplitude with increasing observing height but with no apparent change in the mode width.

  6. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars

    NASA Astrophysics Data System (ADS)

    Viviano-Beck, Christina E.; Seelos, Frank P.; Murchie, Scott L.; Kahn, Eliezer G.; Seelos, Kimberley D.; Taylor, Howard W.; Taylor, Kelly; Ehlmann, Bethany L.; Wisemann, Sandra M.; Mustard, John F.; Morgan, M. Frank

    2014-06-01

    The investigation of hyperspectral data from the Mars Reconnaissance Orbiter Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) and the Observatoire pour la Minéralogie, L'Eau, les Glaces et l'Activitié (OMEGA) on Mars Express has revealed an increasingly diverse suite of minerals present on the Martian surface. A revised set of 60 spectral parameters derived from corrected spectral reflectance at key wavelengths in CRISM targeted observations and designed to capture the known diversity of surface mineralogy on Mars is presented here as "summary products." Some of the summary products have strong heritage to OMEGA spectral parameter calculations; this paper also presents newly derived parameters that highlight locations with more recently discovered spectral signatures. Type locations for the diversity of currently identified mineral spectral signatures have been compiled into a library presented in this work. Our analysis indicates that the revised set of summary products captures the known spectral diversity of the surface, and successfully highlights and differentiates between locations with differing spectral signatures. The revised spectral parameter calculations and related products provide a useful tool for scientific interpretation and for future mission landing site selection and operations.

  7. [Method of Remote Sensing Identification for Mineral Types Based on Multiple Spectral Characteristic Parameters Matching].

    PubMed

    Wei, Jing; Ming, Yan-fang; Han, Liu-sheng; Ren, Zhong-liang; Guo, Ya-min

    2015-10-01

    The traditional mineral mapping methods with remote sensing data, based on spectral reflectance matching techniques, shows low accuracy, for obviously being affected by the image quality, atmospheric and other factors. A new mineral mapping method based on multiple types of spectral characteristic parameters is presented in this paper. Various spectral characteristic parameters are used together to enhanced the stability in the situation of atmosphere and environment background affecting. AVIRIS (Airborne Visible Infrared Imaging Spectrometer) data of Nevada Cuprite are selected to determine the mineral types with this method. Typical mineral spectral data are also obtained from USGS (United States Geological Survey) spectral library to calculate the spectral characteristic parameters. A mineral identification model based on multiple spectral characteristic parameters is built by analyzing the various characteristic parameters, and is applied in the mineral mapping experiment in Cuprite area. The mineral mapping result produced by Clark et al. in 1995 is used to evaluate the effect of this method, results show, that mineral mapping results with this method can obtain a high precision, the overall mineral identification accuracy is 78.96%.

  8. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  9. Stellar parameters of early-M dwarfs from ratios of spectral features at optical wavelengths

    NASA Astrophysics Data System (ADS)

    Maldonado, J.; Affer, L.; Micela, G.; Scandariato, G.; Damasso, M.; Stelzer, B.; Barbieri, M.; Bedin, L. R.; Biazzo, K.; Bignamini, A.; Borsa, F.; Claudi, R. U.; Covino, E.; Desidera, S.; Esposito, M.; Gratton, R.; González Hernández, J. I.; Lanza, A. F.; Maggio, A.; Molinari, E.; Pagano, I.; Perger, M.; Pillitteri, I.; Piotto, G.; Poretti, E.; Prisinzano, L.; Rebolo, R.; Ribas, I.; Shkolnik, E.; Southworth, J.; Sozzetti, A.; Suárez Mascareño, A.

    2015-05-01

    uncertainties of about 70 K. Eighty-two ratios of pseudo-equivalent widths of features were calibrated to derive spectral types within 0.5 subtypes for stars with spectral types between K7V and M4.5V. We calibrated 696 combinations of the pseudo-equivalent widths of individual features and temperature-sensitive ratios for the stellar metallicity over a metallicity range from -0.54 to +0.24 dex, with estimated uncertainties in the range of 0.07-0.10 dex. We provide our own empirical calibrations for stellar mass, radius, and surface gravity. These parameters depend on the stellar metallicity. For a given effective temperature, lower metallicities predict lower masses and radii as well as higher gravities. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programmes ID 072.C-0488(E), 082.C-0718(B), 085.C-0019(A), 180.C-0886(A), 183.C-0437(A), and 191.C-0505(A), as well as data from the Italian Telescopio Nazionale Galileo (TNG) Archive (programmes ID CAT-147, and A27CAT_83).Our computational codes including the full version of Tables 2, 4, and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A132Appendix A is available in electronic form at http://www.aanda.org

  10. Spectral parameters and signal-to-noise ratio requirement for TANSAT hyper spectral remote sensor of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Yang, Zhong-Dong; Bi, Yan-Meng

    2014-11-01

    , the results indicate that sampling ratio should exceed 2 pixels/FWHM to ensure the accuracy of CO2 spectrum. Signal-to-noise ratio is one of the most important parameters of hyper spectral CO2 detectors to ensure the reliability of CO2 signal. SNR requirements of CO2 detector to different detection precisions are explored based on the radiance sensitivity factors. The results show that it is difficult to achieve the SNR to detect 1×10-6-4×10-6 CO2 concentration change in the boundary layer by solar shortwave infrared passive remote sensing, limited by the instrument development at present. However, the instrument SNR to detect 1% change in the CO2 column concentration is attainable. The results of this study are not only conductive to universal applications and guides on developing grating spectrometer, but also helpful to have a better understanding of the complexity of CO2 retrieval.

  11. Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters.

    PubMed

    Breebaart, J; van de Par, S; Kohlrausch, A

    2001-08-01

    This and two accompanying articles [Breebaart et al., J. Acoust. Soc. Am. 110, 1074-1088 (2001); 110, 1105-1117 (2001)] describe a computational model for the signal processing in the binaural auditory system. The model consists of several stages of monaural and binaural preprocessing combined with an optimal detector. In the present article the model is tested and validated by comparing its predictions with experimental data for binaural discrimination and masking conditions as a function of the spectral parameters of both masker and signal. For this purpose, the model is used as an artificial observer in a three-interval, forced-choice adaptive procedure. All model parameters were kept constant for all simulations described in this and the subsequent article. The effects of the following experimental parameters were investigated: center frequency of both masker and target, bandwidth of masker and target, the interaural phase relations of masker and target, and the level of the masker. Several phenomena that occur in binaural listening conditions can be accounted for. These include the wider effective binaural critical bandwidth observed in band-widening NoS(pi) conditions, the different masker-level dependence of binaural detection thresholds for narrow- and for wide-band maskers, the unification of IID and ITD sensitivity with binaural detection data, and the dependence of binaural thresholds on frequency. PMID:11519577

  12. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Astrophysics Data System (ADS)

    Howell, L. W.

    2001-04-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 1013 eV, with a transition at knee energy (Ek) to a steeper spectral index alpha-2 > alpha-1 above Ek. The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  13. Characterizing microstructural changes of skeletal muscle tissues using spectral transformed Mueller matrix polarization parameters

    NASA Astrophysics Data System (ADS)

    He, Chao; He, Honghui; Chang, Jintao; Ma, Hui

    2016-03-01

    Polarization imaging techniques are recognized as potentially powerful tools to detect the structural changes of biological tissues. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information, therefore can be applied in biomedical studies. In this paper, we adopt the polarization reflectance spectral imaging to analyze the microstructural changes of hydrolyzing skeletal muscle tissues. We measure the Mueller matrix, which is a comprehensive description of the polarization properties, of the bovine skeletal muscle samples in different periods of time, and analyze its behavior using the multispectral Mueller matrix transformation (MMT) technique. The experimental results show that for bovine skeletal muscle tissues, the backscattered spectral MMT parameters have different values and variation features at different stages. We can also find the experimental results indicate that the stages of hydrolysis for bovine skeletal muscle samples can be judged by the spectral MMT parameters. The results presented in this work show that combining with the spectral technique, the MMT parameters have the potential to be used as tools for meat quality detection and monitoring.

  14. Maximum Likelihood Estimation of the Broken Power Law Spectral Parameters with Detector Design Applications

    NASA Technical Reports Server (NTRS)

    Howell, Leonard W.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The maximum likelihood procedure is developed for estimating the three spectral parameters of an assumed broken power law energy spectrum from simulated detector responses and their statistical properties investigated. The estimation procedure is then generalized for application to real cosmic-ray data. To illustrate the procedure and its utility, analytical methods were developed in conjunction with a Monte Carlo simulation to explore the combination of the expected cosmic-ray environment with a generic space-based detector and its planned life cycle, allowing us to explore various detector features and their subsequent influence on estimating the spectral parameters. This study permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  15. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    PubMed

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm. PMID:25725879

  16. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection

    SciTech Connect

    Zhang, Jinjing; Zhang, Tao

    2015-02-15

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N{sup 2}) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  17. Parameter-induced stochastic resonance based on spectral entropy and its application to weak signal detection.

    PubMed

    Zhang, Jinjing; Zhang, Tao

    2015-02-01

    The parameter-induced stochastic resonance based on spectral entropy (PSRSE) method is introduced for the detection of a very weak signal in the presence of strong noise. The effect of stochastic resonance on the detection is optimized using parameters obtained in spectral entropy analysis. Upon processing employing the PSRSE method, the amplitude of the weak signal is enhanced and the noise power is reduced, so that the frequency of the signal can be estimated with greater precision through spectral analysis. While the improvement in the signal-to-noise ratio is similar to that obtained using the Duffing oscillator algorithm, the computational cost reduces from O(N(2)) to O(N). The PSRSE approach is applied to the frequency measurement of a weak signal made by a vortex flow meter. The results are compared with those obtained applying the Duffing oscillator algorithm.

  18. Cirrus Parameter Retrieval by Combined Analysis of Spectral Thermal Infrared and Lidar Sensing from Aircraft and Space

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Duda, David; Eloranta, Edward

    2000-01-01

    The distribution, radiative and microphysical parameters of cirrus clouds are an important factor for cloud effects on the global radiation balance and climate. Multispectral thermal infrared observation are the most significant method used to remote sense cirrus parameter from current and planned passive satellite observations. Passive sensing alone has the limitation that both the cloud radiative temperature, or height, and the spectral emissivity must be derived in the analysis. Factors such as multiple cloud laying, which is very common, are known to introduce ambiguities in results. The addition of lidar cloud height structure measurements significantly improves retrievals. Such active/passive observations have been applied from the NASA ER-2 high altitude remote sensing aircraft since 1983. Applications include the study of the effective effective particle size of cirrus and application toward remote sensing of the ice/water content of cirrus clouds in addition to radiative parameters. Limitations, accuracy and examples of retrievals are presented. In 1997 a space shuttle hitch hiker experiment was flown which included a new technology Infrared Spectral Imaging Radiometer and a laser altimeter for direct cloud height measurements. A 30 orbit data set to test global application of combined spectral infrared and laser height measurements were obtained. Initial results for cirrus analysis from the shuttle experiment will also be presented.

  19. Electro-optical parameters in excited states of some spectrally active molecules

    NASA Astrophysics Data System (ADS)

    Benchea, Andreea Celia; Closca, Valentina; Rusu, Cristina Marcela; Morosanu, Cezarina; Dorohoi, Dana Ortansa

    2014-08-01

    The spectral shifts measured in different solvents are expressed as functions of the solvent macroscopic parameters. The value of the correlation coefficient multiplying the functions of electric permittivity was determined by statistical means. The correlation coefficient depends on the electric dipole moment of the spectrally active molecules. The electro-optical parameters in the ground state of the solute molecules can be approximated by molecular modeling. The excited state parameters are usually estimated using the results obtained both by HyperChem Programme and solvatochromic study. The importance of this approximate method is that it offers information about of the excited state of solute molecule for which our measuring possibilities are very restrictive. The information about the excited electronic state is affected by the limits in which the theories of liquid solutions are developed. Our results refer to two molecules of vitamins from B class, namely B3 and B6.

  20. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    NASA Astrophysics Data System (ADS)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  1. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    SciTech Connect

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji; and others

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T {sub eff}, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T {sub eff}, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An

  2. The Atlas of Vesta Spectral Parameters derived from Dawn/VIR data

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M. C.; Ammannito, E.; Tosi, F.; Zambon, F.; Capaccioni, F.; Capria, M. T.; Palomba, E.; Longobardo, A.; Fonte, S.; Giardino, M.; Magni, G.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-09-01

    The Dawn mission mapped Vesta from three different orbital heights during Survey orbit (2700 km altitude), HAMO (High Altitude Mapping Orbit, 700 km altitude), and LAMO (Low Altitude Mapping Orbit, 210 km altitude) [1]. From these orbits the Dawn's Visible and Infrared Mapping Spectrometer (VIR) acquired infrared and visible spectra from 0.2 to 5 microns, sampled in 864 channels with a spatial resolution reaching about 150 m/pixel. Studies of the comparison of spectra from remote sensed data and spectra from laboratory allows to synthesize spectral parameters, which can be combined to identify specific physical and compositional states. VIR spectra of Vesta, stored in about 4300 Planetary Data System (PDS) cubes, have been analyzed to derive spectral parameters, each of which is diagnostic of the associated mineralogy on the surface of the asteroid being observed [2]. Maps of spectral parameters show terrain units compositions in their stratigraphic context. Band centers and band depths are among the most important diagnostic parameters of the mineralogy in a spectrum. In most pyroxenes and in the basaltic achondrites there is a strong correlation between the position of BI center and BII center and the associated mineralogy. For example, orthopyroxene bands shift towards longer wavelengths with increasing amounts of iron, whereas clinopyroxene bands shift towards longer wavelengths with increasing calcium content. Band depth is related to scattering effects, thus can be related to the physical state of the material.

  3. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  4. Basaltic asteroids and HED meteorites: searching for a genetic link using spectral parameters

    NASA Astrophysics Data System (ADS)

    Lazzaro, D.; Duffard, R.; de Leon, J.; Licandro, J.

    2004-11-01

    Basaltic asteroids, classified as V-type in all taxonomies, are quite rare among the asteroid population. They are spectrally similar to 4 Vesta and to the basaltic achondrite meteorites, specifically the Eucrites, the Diogenites and the Howardites, known as HED meteorites. It has been suggested that all these objects, V-type asteroids and HED meteorites, are genetically linked to Vesta. In a previous work we investigated the mineralogy of several V-type asteroids in the neighborhood of Vesta (Duffard et al. 2004) showing that the distribution of their spectral parameters is rather distinct from that of HED meteorites as given by Gaffey et al. (1993). The sample of basaltic asteroids analyzed was then increased with the observation of three V-type Near Earth Asteroids. The reflectance spectra of these objects were obtained at the 3.6m Telescopio Nazionale Galileo (TNG) and at the 2.5m Nordic Optical Telescope (NOT) covering the near-infrared and visible range, respectively. Spectral parameters were then obtained using two methods as described in Gaffey et al. (2002) and Sunshine et al. (1990). We also performed similar analysis on a sample of HED meteorites consisting of 29 Eucrites, 14 Howardites and 10 Diogenites whose spectra were taken from the RELAB public database at Brown University. This resulted in a new definition of the spectral parameter space for the HED meteorites, slightly different from that given by Gaffey et al. (1993). However, when we plot the parameters computed for the sample of V-type asteroids, those near Vesta and those in Near-Earth orbits, we note a greater spread of values, most of them outside the HED region. This result will be discussed on view of its implication on the possible genetic link between V-type asteroids and HED meteorites. This work has been supported by CNPq and FAPERJ.

  5. Estimating Cosmic-Ray Spectral Parameters from Simulated Detector Responses with Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  6. Estimating Cosmic Ray Spectral Parameters From Simulated Detector Responses With Detector Design Implications

    NASA Technical Reports Server (NTRS)

    Howell, L. W.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A simple power law model consisting of a single spectral index alpha (sub 1), is believed to be an adequate description of the galactic cosmic ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy E(sub k) to a steeper spectral index alpha(sub 2) greater than alpha(sub 1) above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  7. FUNDAMENTAL PARAMETERS AND SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG AND FIELD AGE OBJECTS WITH MASSES SPANNING THE STELLAR TO PLANETARY REGIME

    SciTech Connect

    Filippazzo, Joseph C.; Rice, Emily L.; Faherty, Jacqueline; Cruz, Kelle L.; Van Gordon, Mollie M.; Looper, Dagny L.

    2015-09-10

    We combine optical, near-infrared, and mid-infrared spectra and photometry to construct expanded spectral energy distributions for 145 field age (>500 Myr) and 53 young (lower age estimate <500 Myr) ultracool dwarfs (M6-T9). This range of spectral types includes very low mass stars, brown dwarfs, and planetary mass objects, providing fundamental parameters across both the hydrogen and deuterium burning minimum masses for the largest sample assembled to date. A subsample of 29 objects have well constrained ages as probable members of a nearby young moving group. We use 182 parallaxes and 16 kinematic distances to determine precise bolometric luminosities (L{sub bol}) and radius estimates from evolutionary models give semi-empirical effective temperatures (T{sub eff}) for the full range of young and field age late-M, L, and T dwarfs. We construct age-sensitive relationships of luminosity, temperature, and absolute magnitude as functions of spectral type and absolute magnitude to disentangle the effects of degenerate physical parameters such as T{sub eff}, surface gravity, and clouds on spectral morphology. We report bolometric corrections in J for both field age and young objects and find differences of up to a magnitude for late-L dwarfs. Our correction in Ks shows a larger dispersion but not necessarily a different relationship for young and field age sequences. We also characterize the NIR–MIR reddening of low gravity L dwarfs and identify a systematically cooler T{sub eff} of up to 300 K from field age objects of the same spectral type and 400 K cooler from field age objects of the same M{sub H} magnitude.

  8. Speed-dependent collisional width and shift parameters in spectral profiles.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    Derivation of an expression for the spectral profile, termed a speed-dependent Voigt profile (SDVP), taking into account speed-dependent shift and width parameters which are calculated on the basis of an active atom-perturber interaction. It is shown that an analysis of line shapes in terms of simple Voigt profiles (rather than the SDVP) may lead to considerable errors in the determination of characteristic atomic parameters, especially in systems where the perturber to active atom mass ratio is large. It is also noted that the speed-dependent shift leads to an asymmetrical profile, and such a profile is displayed.

  9. Maximum Likelihood Estimation of the Broken Power Law Spectral Parameters with Detector Design Applications

    NASA Technical Reports Server (NTRS)

    Howell, Leonard W.

    2002-01-01

    The method of Maximum Likelihood (ML) is used to estimate the spectral parameters of an assumed broken power law energy spectrum from simulated detector responses. This methodology, which requires the complete specificity of all cosmic-ray detector design parameters, is shown to provide approximately unbiased, minimum variance, and normally distributed spectra information for events detected by an instrument having a wide range of commonly used detector response functions. The ML procedure, coupled with the simulated performance of a proposed space-based detector and its planned life cycle, has proved to be of significant value in the design phase of a new science instrument. The procedure helped make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope. This ML methodology is then generalized to estimate broken power law spectral parameters from real cosmic-ray data sets.

  10. Improving weather predictability by including land-surface model parameter uncertainty

    NASA Astrophysics Data System (ADS)

    Orth, Rene; Dutra, Emanuel; Pappenberger, Florian

    2016-04-01

    The land surface forms an important component of Earth system models and interacts nonlinearly with other parts such as ocean and atmosphere. To capture the complex and heterogenous hydrology of the land surface, land surface models include a large number of parameters impacting the coupling to other components of the Earth system model. Focusing on ECMWF's land-surface model HTESSEL we present in this study a comprehensive parameter sensitivity evaluation using multiple observational datasets in Europe. We select 6 poorly constrained effective parameters (surface runoff effective depth, skin conductivity, minimum stomatal resistance, maximum interception, soil moisture stress function shape, total soil depth) and explore their sensitivity to model outputs such as soil moisture, evapotranspiration and runoff using uncoupled simulations and coupled seasonal forecasts. Additionally we investigate the possibility to construct ensembles from the multiple land surface parameters. In the uncoupled runs we find that minimum stomatal resistance and total soil depth have the most influence on model performance. Forecast skill scores are moreover sensitive to the same parameters as HTESSEL performance in the uncoupled analysis. We demonstrate the robustness of our findings by comparing multiple best performing parameter sets and multiple randomly chosen parameter sets. We find better temperature and precipitation forecast skill with the best-performing parameter perturbations demonstrating representativeness of model performance across uncoupled (and hence less computationally demanding) and coupled settings. Finally, we construct ensemble forecasts from ensemble members derived with different best-performing parameterizations of HTESSEL. This incorporation of parameter uncertainty in the ensemble generation yields an increase in forecast skill, even beyond the skill of the default system. Orth, R., E. Dutra, and F. Pappenberger, 2016: Improving weather predictability by

  11. Planck constant as spectral parameter in integrable systems and KZB equations

    NASA Astrophysics Data System (ADS)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  12. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.

    PubMed

    Mera-Adasme, Raúl; Sadeghian, Keyarash; Sundholm, Dage; Ochsenfeld, Christian

    2014-11-20

    Classical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations. On the basis of the obtained results, we recommend that torsion parameters of the metal site are included when processes at the metal site are investigated or when free-energy calculations are performed. As the torsion parameters mainly affect the structure of the metal site, other kinds of structural studies can be performed without considering the torsional parameters of the metal site.

  13. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.

    PubMed

    Mera-Adasme, Raúl; Sadeghian, Keyarash; Sundholm, Dage; Ochsenfeld, Christian

    2014-11-20

    Classical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations. On the basis of the obtained results, we recommend that torsion parameters of the metal site are included when processes at the metal site are investigated or when free-energy calculations are performed. As the torsion parameters mainly affect the structure of the metal site, other kinds of structural studies can be performed without considering the torsional parameters of the metal site. PMID:25410708

  14. Speed-dependent spectral line profile including line narrowing and mixing

    NASA Astrophysics Data System (ADS)

    Kochanov, Victor P.

    2016-07-01

    A line profile model was developed that accounts for all essential underlying physical mechanisms. The model is based on the quantum-mechanical collision integral kernel calculated for intermolecular interaction potentials ∝r-n with n=3…6 where r is the distance between colliding molecules. It was shown that collisions of molecules with scattering on classical small angles flatten the line profile. The relative flattening reaches 10% for n=3 and has a smaller value, ~2%, for n=6 in conditions of inhomogeneous line broadening. An algebraic expression for the line profile was obtained, which allows processing recorded spectra with preliminary estimation and constraint of some of the profile's parameters.

  15. Determination of the parameters of a holographic layer from its spectral characteristics

    NASA Astrophysics Data System (ADS)

    Kraiskii, A. A.; Kraiskii, A. V.

    2016-06-01

    Methods for estimating the main parameters of holographic sensors (refractive index modulation depth and hologram thickness) from transmission spectra in the absence of absorption and light scattering are discussed. The consideration is performed for layers oriented parallel to the holographic layer surface under normal light incidence. Direct numerical solution of the problem of light propagation in a periodic nonabsorbing medium is used to study the reflection and transmission spectra of the holographic layer in a wide range of variation in its thickness and the refractive index modulation depth. A classification of the reflection regimes from the holographic layer is proposed (from weak reflection to the photonic crystal regime). A comparison with the results obtained by the coupled-wave analysis is performed, and the limitations of this method at a significant spectral detuning from resonance and under conditions of strong reflection are revealed. It is shown that the main hologram parameters can be estimated from the experimental transmission spectrum of the phase hologram (in the case of strong reflection) based on the spectral dip parameters.

  16. Spectral gap optimization of order parameters for sampling complex molecular systems.

    PubMed

    Tiwary, Pratyush; Berne, B J

    2016-03-15

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs.

  17. Spectral gap optimization of order parameters for sampling complex molecular systems

    PubMed Central

    Tiwary, Pratyush; Berne, B. J.

    2016-01-01

    In modern-day simulations of many-body systems, much of the computational complexity is shifted to the identification of slowly changing molecular order parameters called collective variables (CVs) or reaction coordinates. A vast array of enhanced-sampling methods are based on the identification and biasing of these low-dimensional order parameters, whose fluctuations are important in driving rare events of interest. Here, we describe a new algorithm for finding optimal low-dimensional CVs for use in enhanced-sampling biasing methods like umbrella sampling, metadynamics, and related methods, when limited prior static and dynamic information is known about the system, and a much larger set of candidate CVs is specified. The algorithm involves estimating the best combination of these candidate CVs, as quantified by a maximum path entropy estimate of the spectral gap for dynamics viewed as a function of that CV. The algorithm is called spectral gap optimization of order parameters (SGOOP). Through multiple practical examples, we show how this postprocessing procedure can lead to optimization of CV and several orders of magnitude improvement in the convergence of the free energy calculated through metadynamics, essentially giving the ability to extract useful information even from unsuccessful metadynamics runs. PMID:26929365

  18. Simultaneous physical retrieval of surface emissivity spectrum and atmospheric parameters from infrared atmospheric sounder interferometer spectral radiances.

    PubMed

    Masiello, Guido; Serio, Carmine

    2013-04-10

    The problem of simultaneous physical retrieval of surface emissivity, skin temperature, and temperature, water-vapor, and ozone atmospheric profiles from high-spectral-resolution observations in the infrared is formulated according to an inverse problem with multiple regularization parameters. A methodology has been set up, which seeks an effective solution to the inverse problem in a generalized L-curve criterion framework. The a priori information for the surface emissivity is obtained on the basis of laboratory data alone, and that for the atmospheric parameters by climatology or weather forecasts. To ensure that we deal with a problem of fewer unknowns than observations, the dimensionality of the emissivity is reduced through expansion in Fourier series. The main objective of this study is to demonstrate the simultaneous retrieval of emissivity, skin temperature, and atmospheric parameters with a two-dimensional L-curve criterion. The procedure has been demonstrated with spectra observed from the infrared atmospheric sounder interferometer, flying onboard the European Meteorological Operational satellite. To check the quality and reliability of the methodology, we have used spectra recorded over regions characterized by known or stable emissivity. These include sea surface, for which effective emissivity models are known, and arid lands (Sahara and Namib Deserts) that are known to exhibit the characteristic spectral signature of quartz-rich sand.

  19. Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models

    NASA Astrophysics Data System (ADS)

    Chen, Jinsong; Hubbard, Susan S.; Williams, Kenneth H.; Flores Orozco, AdriáN.; Kemna, Andreas

    2012-05-01

    We developed a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado (USA). The SIP data were first inverted for Cole-Cole parameters, including chargeability, time constant, resistivity at the DC frequency, and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g., ferrous iron, sulfate, uranium) were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical submodels: (1) data model, providing links between geochemical and geophysical attributes, (2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and (3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters were estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtained the spatiotemporal distribution of ferrous iron, sulfate, and sulfide, and their associated uncertainty information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.

  20. Influence of grain size on ultrasonic spectral parameters in AISI type 316 stainless steel

    SciTech Connect

    Kumar, A.; Jayakumar, T.; Palanichamy, P.; Raj, B.

    1999-01-08

    The grain size of a material is an important engineering parameter which influences the mechanical properties such as fatigue, creep, yield strength, impact transition temperature, etc. The reliability of the ultrasonic methods for grain size measurement, particularly amplitude based measurements are highly dependent upon the couplant condition. Therefore, application of these methods may be difficult for some practical applications, where uniform couplant condition can not be maintained. Therefore, it would be useful if a simplified method is developed, which could be used on-line and is free from the above mentioned limitations of the other methods. The shift in the spectral peak frequency has been used for microstructural characterization in carbon steel and for evaluation of structural variations induced by tensile deformation in SUS304 stainless steel. The spectral peak frequency in SUS304 steel was found to increase with increase in the tensile elongation. This was attributed to formation and growth of martensite structures due to tensile deformation resulting in smaller crystalline grains, thus reducing the attenuation due to ultrasonic scattering. The peak frequency has also been found to shift with the change in the grain size in Inconel 600 and copper. In the present study, the shift in the spectral peak frequency and the change in full width at half maximum (FWHM) of the autopower spectrum are correlated with the grain size in AISI type 316 austenitic stainless steel, a widely used structural material in nuclear, chemical, fertilizer and many other industries.

  1. Senegalese land surface change analysis and biophysical parameter estimation using NOAA AVHRR spectral data

    NASA Technical Reports Server (NTRS)

    Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.

    1989-01-01

    Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent

  2. A two-parameter model for the infrared/submillimeter/radio spectral energy distributions of galaxies and active galactic nuclei

    SciTech Connect

    Dale, Daniel A.; Helou, George; Magdis, Georgios E.; Armus, Lee; Díaz-Santos, Tanio; Shi, Yong

    2014-03-20

    A two-parameter semi-empirical model is presented for the spectral energy distributions of galaxies with contributions to their infrared-submillimeter-radio emission from both star formation and accretion disk-powered activity. This model builds upon a previous one-parameter family of models for star-forming galaxies, and includes an update to the mid-infrared emission using an average template obtained from Spitzer Space Telescope observations of normal galaxies. Star-forming/active galactic nucleus (AGN) diagnostics based on polycyclic aromatic hydrocarbon equivalent widths and broadband infrared colors are presented, and example mid-infrared AGN fractional contributions are estimated from model fits to the Great Observatories All-Sky LIRG Survey sample of nearby U/LIRGS and the Five mJy Unbiased Spitzer Extragalactic Survey sample of 24 μm selected sources at redshifts 0 ≲ z ≲ 4.

  3. Mapping Site Response Parameters on Cal Poly Pomona Campus Using the Spectral Ratio Method

    NASA Astrophysics Data System (ADS)

    HO, K. Y. K.; Polet, J.

    2014-12-01

    Site characteristics are an important factor in earthquake hazard assessment. To better understand site response differences on a small scale, as well as the seismic hazard of the area, we develop site response parameter maps of Cal Poly Pomona campus. Cal Poly Pomona is located in southern California about 40 km east of Los Angeles, within 50 km of San Andreas Fault. The campus is situated on top of the San Jose Fault. With about twenty two thousand students on campus, it is important to know the site response in this area. To this end, we apply the Horizontal-to-Vertical (H/V) spectral ratio technique, which is an empirical method that can be used in an urban environment with no environmental impact. This well-established method is based on the computation of the ratio of vertical ambient noise ground motion over horizontal ambient noise ground motion as a function of frequency. By applying the spectral ratio method and the criteria from Site Effects Assessment Using Ambient Excitations (SESAME) guidelines, we can determine fundamental frequency and a minimum site amplification factor. We installed broadband seismometers throughout the Cal Poly Pomona campus, with an initial number of about 15 sites. The sites are approximately 50 to 150 meters apart and about two hours of waveforms were recorded at each site. We used the Geopsy software to make measurements of the peak frequency and the amplitude of the main peak from the spectral ratio. These two parameters have been determined to be estimates of fundamental frequency and a minimum site amplification factor, respectively. Based on the geological map from the U.S. Geological Survey (USGS) and our data collected from Cal Poly Pomona campus, our preliminary results suggest that the area of campus that is covered by alluvial fan material tends to have a single significant spectral peak with a fundamental frequency of ~1Hz and a minimum amplification factor of ~3.7. The minimum depth of the surface layer is about 56

  4. The Exponent of High-frequency Source Spectral Falloff and Contribution to Source Parameter Estimates

    NASA Astrophysics Data System (ADS)

    Kiuchi, R.; Mori, J. J.

    2015-12-01

    As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.

  5. 3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea.

    PubMed

    Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph A

    2010-04-26

    Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.

  6. Kinetic and spectral parameters of interaction of Citrobacter freundii methionine γ-lyase with amino acids.

    PubMed

    Morozova, E A; Bazhulina, N P; Anufrieva, N V; Mamaeva, D V; Tkachev, Y V; Streltsov, S A; Timofeev, V P; Faleev, N G; Demidkina, T V

    2010-10-01

    Kinetic parameters of Citrobacter freundii methionine γ-lyase were determined with substrates in γ-elimination reactions as well as the inhibition of the enzyme in the γ-elimination of L-methionine by amino acids with different structure. The data indicate an important contribution of the sulfur atom and methylene groups to the efficiency of binding of substrates and inhibitors. The rate constants of the enzyme-catalyzed exchange of C-α- and C-β-protons with deuterium were determined, as well as the kinetic isotope effect of the deuterium label in the C-α-position of inhibitors on the rate of exchange of their β-protons. Neither stereoselectivity in the β-proton exchange nor noticeable α-isotope effect on the exchange rates of β-protons was found. The ionic and tautomeric composition of the external Schiff base of methionine γ-lyase was determined. Spectral characteristics (absorption and circular dichroism spectra) of complexes with substrates and inhibitors were determined. The spectral and kinetic data indicate that deamination of aminocrotonate should be the rate-determining stage of the enzymatic reaction.

  7. Spectral energy distributions and model atmosphere parameters of the quadruple system ADS11061.

    NASA Astrophysics Data System (ADS)

    Al-Wardat, M. A.

    2002-06-01

    The spectral energy distribution between λ 3700 Å, and λ 8100 Å, of the two subsystems 41Dra and 40Dra of the multiple system ADS11061 has been introduced with a description of methodology of getting the spectra on Carl-Zeiss-Jena 1 m telescope of Special Astrophysical Observatory. The spectral type and luminosity class for each of them have been deduced and compared with earlier investigations, the B,V, and R magnitudes and B-V colour indices have been computed, the interstellar reddening of both subsystems have been calculated and an envelope around 40Dra has been suggested, model atmosphere parameters of the subsystem 40Dra' components have been derived: TeffBa =6100 degr K, TeffBb =6100 degr K, lg gBa=4.03, lg gBb=4.20, RBa=1.82R⊙, RBb=1.44R⊙, and finally the formation and evolution of the system have been discussed depending on the filament fragmentation process.

  8. Spectral parameter estimation of CAT radar echoes in the presence of fading clutter

    NASA Technical Reports Server (NTRS)

    Sato, T.; Woodman, R. F.

    1980-01-01

    The analysis technique and a part of the results obtained from CAT radar echoes from higher troposphere and lower stratosphere are presented. First, the effect of processing distortion caused by the periodogram method using FFT algorithm on the slowly fading ground clutter echo is discussed. It is shown that an extremely narrow clutter spectrum can spill over the entire frequency range if the data are truncated at a tie sorter than their correlation time affecting largely the estimation of the CAT spectrum contribution, especially when the latter is a few tens of dB weaker than the former. A nonlinear least squares fitting procedure is used to parameterize the observed power spectrum in terms of CAT echo power, Doppler shift, spectral width, and the parameters which specify the shape of the clutter component.

  9. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    SciTech Connect

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Alubiady, M.; Tan, Bo

    2010-11-15

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  10. Effect of laser parameters and assist gas on spectral response of silicon fibrous nanostructure

    NASA Astrophysics Data System (ADS)

    Mahmood, Abdul Salam; Venkatakrishnan, Krishnan; Tan, Bo; Alubiady, M.

    2010-11-01

    This article report, for the first time, the influence of laser parameters on the spectral response of weblike silicon fibrous nanostructures. These nanostructures are formed by femtosecond laser irradiation at megahertz pulse frequency under atmosphere and nitrogen ambient. The observed decreasing in reflectance is correlated with the density of fibrous nanostructures and the size of the agglomerated nanoparticles. Compared to bulk silicon, Raman spectra of fibrous nanostructures shows a downward shift and asymmetric broadening at the first order phonon peak. The shift and broadening are attributed to phonon confinement of fibrous nanostructure. Polarization and nitrogen gas modify the morphology of generated nanomaterials but does not have effect on light absorptance. Pulsewidth and pulse frequency do not have significant effect on light absorptance.

  11. Abinitio calculations of the spectral shapes of CO2 isolated lines including non-Voigt effects and comparisons with experiments

    NASA Astrophysics Data System (ADS)

    Hartmann, J.-M.; Tran, H.; Ngo, N. H.; Landsheere, X.; Chelin, P.; Lu, Y.; Liu, A.-W.; Hu, S.-M.; Gianfrani, L.; Casa, G.; Castrillo, A.; Lepère, M.; Delière, Q.; Dhyne, M.; Fissiaux, L.

    2013-01-01

    We present a fully ab initio model and calculations of the spectral shapes of absorption lines in a pure molecular gas under conditions where the influences of collisions and of the Doppler effect are significant. Predictions of the time dependence of dipole autocorrelation functions (DACFs) are made for pure CO2 at room temperature using requantized classical molecular dynamics simulations. These are carried, free of any adjusted parameter, on the basis of an accurate anisotropic intermolecular potential. The Fourier-Laplace transforms of these DACFs then yield calculated spectra which are analyzed, as some measured ones, through fits using Voigt line profiles. Comparisons between theory and various experiments not only show that the main line-shape parameters (Lorentz pressure-broadening coefficients) are accurately predicted, but that subtle observed non-Voigt features are also quantitatively reproduced by the model. These successes open renewed perspectives for the understanding of the mechanisms involved (translational-velocity and rotational-state changes and their dependences on the molecular speed) and the quantification of their respective contributions. The proposed model should also be of great help for the test of widely used empirical line-shape models and, if needed, the construction of more physically based ones.

  12. A HIGH-RESOLUTION, MULTI-EPOCH SPECTRAL ATLAS OF PECULIAR STARS INCLUDING RAVE, GAIA , AND HERMES WAVELENGTH RANGES

    SciTech Connect

    Tomasella, Lina; Munari, Ulisse; Zwitter, Tomaz

    2010-12-15

    We present an Echelle+CCD, high signal-to-noise ratio, high-resolution (R = 20,000) spectroscopic atlas of 108 well-known objects representative of the most common types of peculiar and variable stars. The wavelength interval extends from 4600 to 9400 A and includes the RAVE, Gaia, and HERMES wavelength ranges. Multi-epoch spectra are provided for the majority of the observed stars. A total of 425 spectra of peculiar stars, which were collected during 56 observing nights between 1998 November and 2002 August, are presented. The spectra are given in FITS format and heliocentric wavelengths, with accurate subtraction of both the sky background and the scattered light. Auxiliary material useful for custom applications (telluric dividers, spectrophotometric stars, flat-field tracings) is also provided. The atlas aims to provide a homogeneous database of the spectral appearance of stellar peculiarities, a tool useful both for classification purposes and inter-comparison studies. It could also serve in the planning and development of automated classification algorithms designed for RAVE, Gaia, HERMES, and other large-scale spectral surveys. The spectrum of XX Oph is discussed in some detail as an example of the content of the present atlas.

  13. A Recommended Procedure for Estimating the Cosmic Ray Spectral Parameter of a Simple Power Law

    NASA Technical Reports Server (NTRS)

    Howell, Leonard W.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    A simple power law model consisting of a single spectral index a(f(sub i)) is believed to be an adequate description of the galactic cosmic ray (GQ proton flux at energies below 1013 eV. Two procedures for estimating a(f(sub i)), referred as (1) the method of moments, and (2) maximum likelihood, are developed and their statistical performance compared. I concluded that the maximum likelihood procedure attains the most desirable statistical properties and is hence the recommended statistic estimation procedure for estimating a1. The maximum likelihood procedure is then generalized for application to a set of real cosmic ray data and thereby makes this approach applicable to existing cosmic ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic ray detector because they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose practical limits to the design envelope.

  14. [The spectral characteristic wavelength selection and parameter optimization based on Tikhonov regularization].

    PubMed

    Zhao, An-Xin; Tang, Xiao-Jun; Zhang, Zhong-Hua; Liu, Jun-Hua

    2014-07-01

    In the multicomponent mixture hydrocarbon gases Fourier transform infrared (FTIR) quantitative analysis, especially for light alkane gases, it is not easy to establish the quantitative analysis model because their IR spectra absorption peaks are seriously overlapped. Aiming at this problem, the Tikhonov regularization algorithm was used to select the characteristic wavelengths for seven kinds of light alkane mixture gases FTIR which are composed with methane, ethane, propane, iso-butane, n-butane, iso-pentane and n-pentane. And then the wavelength selection was used to establish the quantitative analysis model. By comparing the analysis characteristics wavelength selection and TR parameters optimization of the mixed gases in the infrared all wave band, the first absorption peak band and the second peak band, the characteristic wavelength of 7 kinds of gases were selected by Tikhonov algorithm. The wavelength selection and Tikhonov regularization parameters were used to test the actual measured methane spectral data, and then we got that with other gas components the max cross sensitivity was 11.153 7%, the minimum cross sensitivity was 1.239 7%, and the root mean square prediction error was 0.004 8. The Tikhonov regularization algorithm effectively enhanced the accuracy in the light alkane mixed gas quantitative analysis. The feasibility of alkane gases mixture Fourier transform infrared spectrum wavelength selection was preliminarily verified by using the Tikhonov regularization algorithm. PMID:25269291

  15. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition.

    PubMed

    Taylor, Brian A; Hwang, Ken-Pin; Hazle, John D; Stafford, R Jason

    2009-03-01

    The authors investigated the performance of the iterative Steiglitz-McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (< or equal 16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer-Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR) > or =5 for echo train lengths (ETLs) > or =4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and/or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with > or =4 echoes and for T2*(<1.0%) with > or =7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire < or =16 echoes for one- and two-peak systems. Preliminary ex vivo

  16. Autoregressive moving average modeling for spectral parameter estimation from a multigradient echo chemical shift acquisition

    PubMed Central

    Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason

    2009-01-01

    The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo

  17. Parameter Estimation of Binary Neutron Stars using an Effective One Body Model including Tidal Interaction

    NASA Astrophysics Data System (ADS)

    Rizzo, Monica; O'Shaughnessy, Richard; Bernuzzi, Sebastiano; Lackey, Benjamin

    2016-03-01

    Ground gravitational wave detectors, built to detect perturbations in spacetime, can pick up signals produced by inspiraling binary neutron stars, the remnants of the core collapse of massive stars. A new EOB model (Bernuzzi et al. 2015) simulates the inspiral and merger of binary neutron star systems, including how they are deformed due to tides. We used a Bayesian parameter estimation algorithm to infer how well a plausible gravitational wave detection would allow us to constrain this tidal deformability. We then compared our results to prior investigations (Wade et al. 2014) which employed a post-Newtonian-based approximation for the inspiral. I would like to thank the RIT Department of Physics and Astronomy, and the RIT Center for Computational Relativity and Gravitation.

  18. Bias and variability of diagnostic spectral parameters extracted from closing sounds produced by bioprosthetic valves implanted in the mitral position.

    PubMed

    Cloutier, G; Durand, L G; Guardo, R; Sabbah, H N; Stein, P D

    1989-08-01

    A method is proposed to estimate the bias and variability of eight diagnostic spectral parameters extracted from mitral closing sounds produced by bioprosthetic heart valves. These spectral parameters are: the frequency of the dominant (F1) and second dominant (F2) spectral peaks, the highest frequency of the spectrum found at -3 dB (F-3), -10 dB (F-10) and -20 dB (F-20) below the highest peak, the relative integrated area above -20 dB of the dominant peak (RIA20), the bandwidth at -3 dB of the dominant spectral peak (BW3), and the ratio of F1 divided by BW3 (Q1). The bias and variability of four spectral techniques were obtained by comparing parameters extracted from each technique with the parameters of a spectral "standard." This "standard" consisted of 19 normal mitral sound spectra computed analytically by evaluating the Z transform of a sum of decaying sinusoids on the unit circle. Truncation of the synthesized mitral signals and addition of random noise were used to simulate the physiological characteristics of the closing sounds. Results show that the fast Fourier transform method with rectangular window provides the best estimates of F1 and Q1, that the Steiglitz-McBride method with maximum entropy (pole-zero modeling with four poles and four zeros) can best evaluate F2, F-20, RIA20 and BW3, and that the all-pole modeling with covariance method (16 poles) is best suited to compute F-3. It was also shown that both the all-pole modeling and the Steiglitz-McBride methods can be used to estimate F-10. It is concluded that a single algorithm would not provide the best estimates of all spectral parameters. PMID:2759640

  19. Estimation of Field-scale Aquifer Hydraulic and Sorption Parameters Based on Borehole Spectral Gamma Methods

    NASA Astrophysics Data System (ADS)

    Ward, A. L.; Draper, K.; Hasan, N.

    2010-12-01

    Knowledge of spatially variable aquifer hydraulic and sorption parameters is a pre-requisite for an improved understanding of the transport and spreading of sorbing solutes and for the development of effective strategies for remediation. Local-scale estimates of these parameters are often derived from core measurements but are typically not representative of field values. Fields-scale estimates are typically derived from pump and tracer tests but often lack the spatial resolution necessary to deconvolve the effects of fine-scale heterogeneities. Geophysical methods have the potential to bridge this gap both in terms of coverage and resolution, provided meaningful petrophysical relationships can be developed. The objective of this study was to develop a petrophysical relationship between soil textural attributes and the gamma-energy response of natural sediments. Measurements from Hanford’s 300 Area show the best model to be a linear relationship between 232Th concentration and clay content (R2 = 94%). This relationship was used to generate a 3-D distribution of clay mass fraction based on borehole spectral gamma logs. The distribution of clay was then used to predict distributions of permeability, porosity, bubbling pressure, and the pore-size distribution index, all of which are required for predicting variably saturated flow, as well as the specific surface area and cation exchange capacity needed for reactive transport predictions. With this approach, it is possible to obtain reliable estimates of hydraulic properties in zones that could not be characterized by field or laboratory measurements. The spatial distribution of flow properties is consistent with lithologic transitions inferred from geologist’s logs. A preferential flow path, identified from solute and heat tracer experiments and attributed to an erosional incision in the low-permeability Ringold Formation, is also evident. The resulting distributions can be used as a starting model for the

  20. Central Corneal Thickness in Spectral-Domain OCT and Associations with Ocular and Systemic Parameters

    PubMed Central

    Fischer, Joachim Ernst; Vossmerbaeumer, Urs

    2016-01-01

    Background. Optical coherence tomography (OCT) allows quantitative analysis of the anterior segment of the eye with a noncontact examination. The aim of this study is to analyze associations of central corneal thickness (CCT) as measured by OCT with ocular and systemic cardiovascular parameters. Methods. A cross-sectional study of 734 persons was performed in a working age population. Only healthy eyes were included. A comprehensive ophthalmological examination including refraction, noncontact tonometry, and imaging of the anterior segment by SD-OCT was performed. In parallel, a broad range of systemic cardiovascular parameters were measured. Associations were analyzed using a generalized estimating equations' model. Results. CCT measurements showed a significant association with corneal curvature and intraocular pressure: a thinner CCT was associated with a flatter cornea and with lower intraocular pressure (p < 0.001). Age was positively associated with CCT (p < 0.001); all other cardiovascular parameters were not associated. Conclusion. A thinner cornea is associated with a flatter surface and with lower intraocular pressure readings, while there are no independent associations with refraction and systemic cardiovascular parameters. Our findings highlight the value of SD-OCT CCT measurements as a standard tool in anterior segment analysis. PMID:27340561

  1. The Atlas of Vesta Spectral Parameters derived from the mapping spectrometer VIR onboard NASA/Dawn

    NASA Astrophysics Data System (ADS)

    Frigeri, A.; De Sanctis, M.; Ammannito, E.; Tosi, F.; Capria, M.; Capaccioni, F.; Zambon, F.; Palomba, E.; Magni, G.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-12-01

    From 2011 to 2012 the Visible and Infrared Mapping Spectrometer (VIR) onboard NASA/Dawn spacecraft has mapped the surface of Vesta from three different orbital heights, acquiring infrared and visible spectra from 0.2 to 5 microns, sampled in 864 channels with a spatial resolution up to about 150 m/pixel. From the large amount of spectra retrieved we have derived spectral parameters which can be combined to identify specific physical and compositional states. To start with, we have computed the band center and depth for band I and band II of pyroxenes. Pyroxene's band center I and II are commonly associated with a compositional variation. For example, orthopyroxene bands shift towards longer wavelengths with increasing amounts of iron, while clinopyroxene bands shift towards longer wavelengths with increasing calcium content. Band depths are related to scattering effects, associated to the abundance and the grain size of the absorber. Mapping these parameters on the surface allow to detect terrain units compositions and physical-state in their stratigraphic context. We have produced an atlas of digital maps, projected following the 15-quadrangle scheme commonly adopted for small sized planetary bodies. The digital maps have geospatial metadata and are available in GIS and other scientific programming language formats. A special imagery product has been produced, where the geomorphologic context from the Framing Camera, and the IAU nomenclature have been added to the mineralogic maps. This way we have both quantitative digital maps and print-ready maps. Digital maps are useful in statistical and geo-processing studies, while print-ready maps represent an easy to be consulted high-level data products. As with the atlas we are combining data acquired at very different observing geometries and in different phases of the mission, filtering has been necessary and an iterative process to project data produces results that are incrementally more consistent as we detect and

  2. Determination of spectral parameters for lines targeted by the Tunable Laser Spectrometer (TLS) on the Mars Curiosity rover

    NASA Astrophysics Data System (ADS)

    Manne, Jagadeeshwari; Webster, Christopher R.

    2016-03-01

    Molecular line parameters of line strengths, self- and foreign-broadening by nitrogen, carbon dioxide and helium gas have been experimentally determined for infrared ro-vibrational spectral lines of water and carbon dioxide at 2.78 μm targeted by the Tunable Laser Spectrometer (TLS) in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity rover. Good agreement is found by comparison with the line parameters reported in the HITRAN-2012 database.

  3. Genetic parameter estimates for carcass traits and visual scores including or not genomic information.

    PubMed

    Gordo, D G M; Espigolan, R; Tonussi, R L; Júnior, G A F; Bresolin, T; Magalhães, A F Braga; Feitosa, F L; Baldi, F; Carvalheiro, R; Tonhati, H; de Oliveira, H N; Chardulo, L A L; de Albuquerque, L G

    2016-05-01

    The objective of this study was to determine whether visual scores used as selection criteria in Nellore breeding programs are effective indicators of carcass traits measured after slaughter. Additionally, this study evaluated the effect of different structures of the relationship matrix ( and ) on the estimation of genetic parameters and on the prediction accuracy of breeding values. There were 13,524 animals for visual scores of conformation (CS), finishing precocity (FP), and muscling (MS) and 1,753, 1,747, and 1,564 for LM area (LMA), backfat thickness (BF), and HCW, respectively. Of these, 1,566 animals were genotyped using a high-density panel containing 777,962 SNP. Six analyses were performed using multitrait animal models, each including the 3 visual scores and 1 carcass trait. For the visual scores, the model included direct additive genetic and residual random effects and the fixed effects of contemporary group (defined by year of birth, management group at yearling, and farm) and the linear effect of age of animal at yearling. The same model was used for the carcass traits, replacing the effect of age of animal at yearling with the linear effect of age of animal at slaughter. The variance and covariance components were estimated by the REML method in analyses using the numerator relationship matrix () or combining the genomic and the numerator relationship matrices (). The heritability estimates for the visual scores obtained with the 2 methods were similar and of moderate magnitude (0.23-0.34), indicating that these traits should response to direct selection. The heritabilities for LMA, BF, and HCW were 0.13, 0.07, and 0.17, respectively, using matrix and 0.29, 0.16, and 0.23, respectively, using matrix . The genetic correlations between the visual scores and carcass traits were positive, and higher correlations were generally obtained when matrix was used. Considering the difficulties and cost of measuring carcass traits postmortem, visual scores of

  4. Zooming of states and parameters using a lumping approach including back-translation

    PubMed Central

    2010-01-01

    Background Systems biology models tend to become large since biological systems often consist of complex networks of interacting components, and since the models usually are developed to reflect various mechanistic assumptions of those networks. Nevertheless, not all aspects of the model are equally interesting in a given setting, and normally there are parts that can be reduced without affecting the relevant model performance. There are many methods for model reduction, but few or none of them allow for a restoration of the details of the original model after the simplified model has been simulated. Results We present a reduction method that allows for such a back-translation from the reduced to the original model. The method is based on lumping of states, and includes a general and formal algorithm for both determining appropriate lumps, and for calculating the analytical back-translation formulas. The lumping makes use of efficient methods from graph-theory and ϵ-decomposition and is derived and exemplified on two published models for fluorescence emission in photosynthesis. The bigger of these models is reduced from 26 to 6 states, with a negligible deviation from the reduced model simulations, both when comparing simulations in the states of the reduced model and when comparing back-translated simulations in the states of the original model. The method is developed in a linear setting, but we exemplify how the same concepts and approaches can be applied to non-linear problems. Importantly, the method automatically provides a reduced model with back-translations. Also, the method is implemented as a part of the systems biology toolbox for matlab, and the matlab scripts for the examples in this paper are available in the supplementary material. Conclusions Our novel lumping methodology allows for both automatic reduction of states using lumping, and for analytical retrieval of the original states and parameters without performing a new simulation. The two

  5. Estimation of site-dependent spectral decay parameter from seismic array data

    NASA Astrophysics Data System (ADS)

    Park, Seon Jeong; Lee, Jung Mo; Baag, Chang-Eob; Choi, Hoseon; Noh, Myunghyun

    2016-04-01

    The kappa (κ), attenuation of acceleration amplitude at high frequencies, is one of the most important parameters in ground motion evaluation and seismic hazard analysis at sites. κ simply indicates the high frequency decay of the acceleration spectrum in log-linear space. The decay trend can be considered as linear for frequencies higher than a specific frequency, fe which is starting point of the linear regression at the acceleration spectrum. The κ has been investigated using the data from seismic arrays in the south-eastern part of Korea in which nuclear facilities such as power plant and radiological waste depository are located. The seismic array consists of 20 seismic stations and it was operated from October in 2010 through March in 2013. A classical method by Anderson and Hough (1984) and a standard procedure recently suggested by Ktenidou et al. (2013) were applied for computation of κ. There have been just a few studies on spectral attenuation characteristics for Korean Peninsula so far and even those studies utilized small amount of earthquake events whose frequency range was lower than 25 Hz. In this study, the available frequency range is up to 60 Hz based on the sampling rate of 200 and instrument response. This allows us to use a large range of frequencies for κ computations. It is outstanding advantage that we couldn't obtain from earlier κ studies in Korea. In addition, we investigate the regional κ characteristics through calculating the κ using data of 20 seismic stations which are highly extensive seismic array. It allows us to find the more specific attenuation characteristics of high frequencies in study area. Distance and magnitude dependence of κ has also been investigated. Before calculating the κ, the corner frequency (f_c) has been checked so that the fe can lie to the right of fc to exclude source effects in the computation. Manually picked fe is generally in the range of 10 to 25 Hz. The resulting κR is 9.2e-06 and κ0 is 0

  6. Measurement of atomic Stark parameters of many Mn I and Fe I spectral lines using GMAW process

    NASA Astrophysics Data System (ADS)

    Zielinska, S.; Pellerin, S.; Dzierzega, K.; Valensi, F.; Musiol, K.; Briand, F.

    2010-11-01

    The particular character of the welding arc working in pure argon, whose emission spectrum consists of many spectral lines strongly broadened by the Stark effect, has allowed measurement, sometimes for the first time, of the Stark parameters of 15 Mn I and 10 Fe I atomic spectral lines, and determination of the dependence on temperature of normalized Stark broadening in Ne = 1023 m-3 of the 542.4 nm atomic iron line. These results show that special properties of the MIG plasma may be useful in this domain because composition of the wire-electrode may be easily adapted to the needs of an experiment.

  7. Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum.

    PubMed

    Chance, K V; Spurr, R J

    1997-07-20

    Improved parameters for the description of Rayleigh scattering in air and for the detailed rotational Raman scattering component for scattering by O(2) and N(2) are presented for the wavelength range 200-1000 nm. These parameters enable more accurate calculations to be made of bulk molecular scattering and of the Ring effect for a variety of atmospheric radiative transfer and constituent retrieval applications. A solar reference spectrum with accurate absolute vacuum wavelength calibration, suitable for convolution with the rotational Raman spectrum for Ring effect calculations, has been produced at 0.01-nm resolution from several sources. It is convolved with the rotational Raman spectra of O(2) and N(2) to produce an atmospheric Ring effect source spectrum.

  8. Verification of scattering parameter measurements in waveguides up to 325 GHz including highly-reflective devices

    NASA Astrophysics Data System (ADS)

    Schrader, T.; Kuhlmann, K.; Dickhoff, R.; Dittmer, J.; Hiebel, M.

    2011-07-01

    Radio-frequency (RF) scattering parameters (S-parameters) play an important role to characterise RF signal transmission and reflection of active and passive devices such as transmission lines, components, and small-signal amplifiers. Vector network analysers (VNAs) are employed as instrumentation for such measurements. During the last years, the upper frequency limit of this instrumentation has been extended up to several hundreds of GHz for waveguide measurements. Calibration and verification procedures are obligatory prior to the VNA measurement to achieve accurate results and/or to obtain traceability to the International System of Units (SI). Usually, verification is performed by measuring well-matched devices with known S-parameters such as attenuators or short precision waveguide sections (shims). In waveguides, especially above 110 GHz, such devices may not exist and/or are not traceably calibrated. In some cases, e.g. filter networks, the devices under test (DUT) are partly highly reflective. This paper describes the dependency of the S-parameters a) on the calibration procedure, b) on the applied torque to the flange screws during the mating process of the single waveguide elements. It describes further c) how highly-reflective devices (HRD) can be used to verify a calibrated VNA, and d) how a measured attenuation at several hundreds of GHz can be substituted by a well-known coaxial attenuation at 279 MHz, the intermediate frequency (IF) of the VNA, to verify the linearity. This work is a contribution towards traceability and to obtain knowledge about the measurement uncertainty of VNA instrumentation in the millimetre-wave range.

  9. The effect of differential growth rates across plants on spectral predictions of physiological parameters.

    PubMed

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic

  10. The Effect of Differential Growth Rates across Plants on Spectral Predictions of Physiological Parameters

    PubMed Central

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and

  11. The physical parameters of the low-mass multiple system LHS1070 from Spectral synthesis analysis

    NASA Astrophysics Data System (ADS)

    Rajpurohit, A. S.; Reylé, C.; Schultheis, M.; Leinert, C.; Allard, F.

    2011-12-01

    LHS1070 is a nearby multiple systems of low mass stars. It is an important source of information for probing the low mass end of the main sequence, down to the hydrogen-burning limit. The primary of the system consist of a mid-M dwarf and two components are late-M to L dwarf, at the star-brown dwarf transition. It makes it even more valuable to understand the formation of dust in cool stellar atmospheres.This work aims to determine the fundamental parameters of LHS1070 and to test recent model atmospheres.We compared the well calibrated data in the optical and infra-red with synthetic spectra computed from recent cool stars atmosphere models. We derived the physical parameters T_{eff}, radius and log g for three components of LHS1070. The models which include the formation and settle of dust are able to reproduce and describe the main features of the visible to IR spectra of the components.

  12. Superplastic Constitutive Equation Including Percentage of High-Angle Grain Boundaries as a Microstructural Parameter

    NASA Astrophysics Data System (ADS)

    Wang, K.; Liu, F. C.; Xue, P.; Wang, D.; Xiao, B. L.; Ma, Z. Y.

    2016-01-01

    Fifteen Al-Mg-Sc samples with subgrain/grain sizes in the range of 1.8 to 4.9 μm were prepared through the processing methods of friction stir processing (FSP), equal-channel-angular pressing (ECAP), rolling, annealing, and combinations of the above. The percentages of high-angle grain boundaries (HAGBs) of these fine-grained alloys were distributed from 39 to 97 pct. The samples processed through FSP had a higher percentage of HAGBs compared to other samples. Superplasticity was achieved in all fifteen samples, but the FSP samples exhibited better superplasticity than other samples because their fine equiaxed grains, which were mostly surrounded by HAGBs, were conducive to the occurrence of grain boundary sliding (GBS) during superplastic deformation. The dominant deformation mechanism was the same for all fifteen samples, i.e., GBS controlled by grain boundary diffusion. However, the subgrains were the GBS units for the rolled or ECAP samples, which contained high percentages of unrecrystallized grains, whereas the fine grains were the GBS units for the FSP samples. Superplastic data analysis revealed that the dimensionless A in the classical constitutive equation for superplasticity of fine-grained Al alloys was not a constant, but increased with an increase in the percentage of HAGBs, demonstrating that the enhanced superplastic deformation kinetics can be ascribed to the high percentage of HAGBs. A modified superplastic constitutive equation with the percentage of HAGBs as a new microstructural parameter was established.

  13. Fundamental Parameters and Spectral Energy Distributions of Young and Field Age Objects with Masses Spanning the Stellar to Planetary Regime

    NASA Astrophysics Data System (ADS)

    Filippazzo, Joe; Rice, Emily L.; Faherty, Jacqueline K.; Cruz, Kelle L.; Godfrey, Paige A.; BDNYC

    2016-01-01

    The physical and atmospheric properties of ultracool dwarfs are deeply entangled due to the degenerate effects of mass, age, metallicity, clouds and dust, activity, rotation, and possibly even formation mechanism on observed spectra. Accurate determination of fundamental parameters for a wide diversity of objects at the low end of the IMF is thus crucial to testing stellar and planetary formation theories. To determine these quantities, we constructed and flux calibrated nearly-complete spectral energy distributions (SEDs) for 221 M, L, T, and Y dwarfs using published parallaxes and 0.3-40 μm spectra and photometry. From these homogeneous SEDs, we calculated bolometric luminosity (Lbol), effective temperature (Teff), mass, surface gravity, radius, spectral indexes, synthetic photometry, and bolometric corrections (BCs) for each object. We used these results to derive Lbol, Teff, and BC polynomial relations across the entire very-low-mass star/brown dwarf/planetary mass regime. We use a subsample of objects with age constraints based on nearby young moving group membership, companionship with a young star, or spectral signatures of low surface gravity to define new age-sensitive diagnostics and characterize the reddening of young substellar atmospheres as a redistribution of flux from the near-infrared into the mid-infrared. Consequently we find the SED flux pivots at Ks band, making BCKs as a function of spectral type a tight and age independent relationship. We find that young L dwarfs are systematically 300 K cooler than field age objects of the same spectral type and up to 600 K cooler than field age objects of the same absolute H magnitude. Finally, we present preliminary comparisons of these empirical results to best fit parameters from four different model atmosphere grids via Markov-Chain Monte Carlo analysis in order to create prescriptions for the reliable and efficient characterization of new ultracool dwarfs.

  14. Spectral Parameters of HRV In Yoga Practitioners, Athletes And Sedentary Males.

    PubMed

    Peter, Rosemary; Sood, Sushma; Dhawan, Ashwani

    2015-01-01

    Physical inactivity is an important risk factor for cardiovascular mortality and morbidity. Exercise is considered an acceptable method for improving and maintaining physical and emotional health. Although yoga is historically a spiritual discipline, a growing body of evidence supports the belief that yoga benefits physical and mental health. The objective of this study was to evaluate heart rate variability which reflects autonomic control of heart among yoga practitioners, athletes and individuals with sedentary lifestyle. The study was carried out in the departments of physiology at MAMC Agroha, Hisar and Pt. BD Sharma PGIMS Rohtak, Haryana. The study group comprised of 1200 healthy male volunteers of 16 to 55 years of age. The study group was divided into four age groups: Group A of age 16 to 25 years; Group B of age 26 to 35 years; Group C of age 36 to 45 years and Group D of age 46 to 55 years. All age groups were further divided into three categories i.e athlete (runner), yoga (yoga practitioners) and sedentary in which individuals with sedentary life style were included. The basal recording of ECG in lead II was done for 5 minutes. The Polyrite-D ECG data was used for analysis of heart rate variability by frequency domain method. Two spectral components were recorded namely high frequency (HF) component (0.15-0.4 Hz), an indicator of vagal efferent activity and low frequency (LF) component (0.04-.15 Hz), replicator of composite sympatho-vagal interplay. HF component in normalized unit was found significantly high in age group B and C in yoga practitioners and athletes as compared to sedentary individuals and in age group D significantly high in yoga practitioners as compared to athletes and sedentary individuals. Significantly decreased LF/HF ratio was found in age group B and C in yoga and athlete subjects as compared to sedentary individuals and in age group D in yoga practitioners as compared to athletes and sedentary individuals. This indicates that

  15. Spectral Parameters of HRV In Yoga Practitioners, Athletes And Sedentary Males.

    PubMed

    Peter, Rosemary; Sood, Sushma; Dhawan, Ashwani

    2015-01-01

    Physical inactivity is an important risk factor for cardiovascular mortality and morbidity. Exercise is considered an acceptable method for improving and maintaining physical and emotional health. Although yoga is historically a spiritual discipline, a growing body of evidence supports the belief that yoga benefits physical and mental health. The objective of this study was to evaluate heart rate variability which reflects autonomic control of heart among yoga practitioners, athletes and individuals with sedentary lifestyle. The study was carried out in the departments of physiology at MAMC Agroha, Hisar and Pt. BD Sharma PGIMS Rohtak, Haryana. The study group comprised of 1200 healthy male volunteers of 16 to 55 years of age. The study group was divided into four age groups: Group A of age 16 to 25 years; Group B of age 26 to 35 years; Group C of age 36 to 45 years and Group D of age 46 to 55 years. All age groups were further divided into three categories i.e athlete (runner), yoga (yoga practitioners) and sedentary in which individuals with sedentary life style were included. The basal recording of ECG in lead II was done for 5 minutes. The Polyrite-D ECG data was used for analysis of heart rate variability by frequency domain method. Two spectral components were recorded namely high frequency (HF) component (0.15-0.4 Hz), an indicator of vagal efferent activity and low frequency (LF) component (0.04-.15 Hz), replicator of composite sympatho-vagal interplay. HF component in normalized unit was found significantly high in age group B and C in yoga practitioners and athletes as compared to sedentary individuals and in age group D significantly high in yoga practitioners as compared to athletes and sedentary individuals. Significantly decreased LF/HF ratio was found in age group B and C in yoga and athlete subjects as compared to sedentary individuals and in age group D in yoga practitioners as compared to athletes and sedentary individuals. This indicates that

  16. Determining the von Mises stress power spectral density for frequency domain fatigue analysis including out-of-phase stress components

    NASA Astrophysics Data System (ADS)

    Bonte, M. H. A.; de Boer, A.; Liebregts, R.

    2007-04-01

    This paper provides a new formula to take into account phase differences in the determination of an equivalent von Mises stress power spectral density (PSD) from multiple random inputs. The obtained von Mises PSD can subsequently be used for fatigue analysis. The formula was derived for use in the commercial vehicle business and was implemented in combination with Finite Element software to predict and analyse fatigue failure in the frequency domain.

  17. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  18. Aluminum-induced changes in properties and fouling propensity of DOM solutions revealed by UV-vis absorbance spectral parameters.

    PubMed

    Zhou, Minghao; Meng, Fangang

    2016-04-15

    The integration of pre-coagulation with ultrafiltration (UF) is expected to not only reduce membrane fouling but also improve natural organic matter (NOM) removal. However, it is difficult to determine the proper coagulant dosage for different water qualities. The objective of this study was to probe the potential of UV-vis spectroscopic analysis to reveal the coagulant-induced changes in the fouling potentials of dissolved organic matter (DOM) and to determine the optimal coagulant dosage. The Zeta potentials (ZPs) and average particle size of the four DOM solutions (Aldrich humic acid (AHA), AHA-sodium alginate (SA), AHA-bovine serum albumin (BSA) and AHA-dextran (DEX)) coagulated with aluminum chloride (AlCl3) were measured. Results showed that increasing the aluminum coagulant dosage induced the aggregation of DOM. Meanwhile, the addition of aluminum coagulant resulted in an increase in DSlope(325-375) (the slope of the log-transformed absorbance spectra from 325 to 375 nm) and a decrease in S(275-295) (the slope of the log-transformed absorption coefficient from 275 to 295 nm) and SR (the ratio of Slope(275-295) and Slope(350-400)). The variations of these spectral parameters (i.e., DSlope(325-375), S(275-295) and SR) correlated well with the aluminum-caused changes in ZPs and average particle size. This implies that spectral parameters have the potential to indicate DOM aggregation. In addition, good correlations of spectral parameters and membrane fouling behaviors (i.e., unified membrane fouling index (UMFI)) suggest that the changes in DSlope(325-375), S(275-295) and SR were indicative of the aluminum-caused alterations of fouling potentials of all DOM solutions. Interestingly, the optimal dosage of aluminum (40 μM for AHA, AHA-BSA, and AHA-DEX) was obtained based on the relation between spectral parameters and fouling behaviors. Overall, the spectroscopic analysis, particularly for the utilization of spectral parameters, provided a convenient approach

  19. Effects of Adiponectin Including Reduction of Androstenedione Secretion and Ovarian Oxidative Stress Parameters In Vivo

    PubMed Central

    Comim, Fabio V.; Gutierrez, Karina; Bridi, Alessandra; Bochi, Guilherme; Chemeris, Raisa; Rigo, Melânia L.; Dau, Andressa Minussi P.; Cezar, Alfredo S.; Moresco, Rafael Noal; Gonçalves, Paulo Bayard Dias

    2016-01-01

    Adiponectin is the most abundantly produced human adipokine with anti-inflammatory, anti-oxidative, and insulin-sensitizing properties. Evidence from in vitro studies has indicated that adiponectin has a potential role in reproduction because it reduces the production of androstenedione in bovine theca cells in vitro. However, this effect on androgen production has not yet been observed in vivo. The current study evaluated the effect of adiponectin on androstenedione secretion and oxidative stress parameters in a rodent model. Seven-week-old female Balb/c mice (n = 33), previously treated with equine gonadotropin chorionic, were assigned to one of four different treatments: Group 1, control (phosphate-buffered saline); Group 2, adiponectin 0.1 μg/mL; Group 3, adiponectin 1.0 μg/mL; Group 4, adiponectin 5.0 μg/mL. After 24 h, all animals were euthanized and androstenedione levels were measured in the serum while oxidative stress markers were quantified in whole ovary tissue. Female mice treated with adiponectin exhibited a significant reduction (about 60%) in serum androstenedione levels in comparison to controls. Androstenedione levels decreased from 0.78 ± 0.4 ng/mL (mean ± SD) in controls to 0.28 ± 0.06 ng/mL after adiponectin (5 μg/mL) treatment (P = 0.01). This change in androgen secretion after 24 hours of treatment was associated with a significant reduction in the expression of CYP11A1 and STAR (but not CYP17A1). In addition, ovarian AOPP product levels, a direct product of protein oxidation, decreased significantly in adiponectin-treated mice (5 μg/mL); AOPP (mean ± SD) decreased to 4.3 ± 2.1 μmol/L in comparison with that of the controls (11.5 ± 1.7 μmol/L; P = 0.0003). Our results demonstrated for the first time that acute treatment with adiponectin reduced the levels of a direct oxidative stress marker in the ovary as well as decreased androstenedione serum levels in vivo after 24 h. PMID:27158926

  20. Information content in spectral dependencies of optical unit volume parameters under action of He-Ne laser on blood

    NASA Astrophysics Data System (ADS)

    Khairullina, Alphiya Y.; Oleinik, Tatiana V.

    1995-01-01

    Our previous works concerned with the development of methods for studying blood and action of low-intensity laser radiation on blood and erythrocyte suspensions had shown the light- scattering methods gave a large body of information on a medium studied due to the methodological relationship between irradiation processes and techniques for investigations. Detail analysis of spectral diffuse reflectivities and transmissivities of optically thick blood layers, spectral absorptivities calculated on this basis over 600 - 900 nm, by using different approximations, for a pathological state owing to hypoxia testifies to the optical significance of not only hemoglobin derivatives but also products of hemoglobin decomposition. Laser action on blood is specific and related to an initial state of blood absorption due to different composition of chromoproteids. This work gives the interpretation of spectral observations. Analysis of spectral dependencies of the exinction coefficient e, mean cosine m of phase function, and parameter Q equals (epsilon) (1-(mu) )H/(lambda) (H - hematocrit) testifies to decreasing the relative index of refraction of erythrocytes and to morphological changes during laser action under pathology owing to hypoxia. The possibility to obtain physical and chemical information on the state of blood under laser action in vivo is shown to be based on the method proposed by us for calculating multilayered structures modeling human organs and on the technical implementation of this method.

  1. Control of plasma parameters and spectral analysis sensitivity under bichromatic laser irradiation of materials in gases

    NASA Astrophysics Data System (ADS)

    Chumakov, A. N.; Bosak, N. A.; Panina, A. V.

    2016-01-01

    Double-pulse nanosecond bichromatic laser irradiation of carbon and brass targets is implemented. The dependence of temperature and density of electrons, as well as the specific recoil momentum of an outflowing plasma jet, on the ordering of laser pulses and the interpulse time delay is found. The results obtained can be used for the development of laser- plasma spacecraft microengines and the enhancement of laser spectral analysis’ sensitivity.

  2. Z' factor including siRNA design quality parameter in RNAi screening experiments.

    PubMed

    Mazur, Sławomir; Kozak, Karol

    2012-05-01

    RNA interference (RNAi) high-content screening (HCS) enables massive parallel gene silencing and is increasingly being used to reveal novel connections between genes and disease-relevant phenotypes. The application of genome-scale RNAi relies on the development of high quality HCS assays. The Z' factor statistic provides a way to evaluate whether or not screening run conditions (reagents, protocols, instrumentation, kinetics, and other conditions not directly related to the test compounds) are optimized. Z' factor, introduced by Zhang et al., ( 1) is a dimensionless value that represents both the variability and the dynamic range between two sets of sample control data. This paper describe a new extension of the Z' factor, which integrates bioinformatics RNAi non-target compounds for screening quality assessment. Currently presented Z' factor is based on positive and negative control, which may not be sufficient for RNAi experiments including oligonucleotides (oligo) with lack of knock-down. This paper proposes an algorithm which extends existing algorithm by using additional controls generetaed from on-target analysis.

  3. Correlation between spectral state and quasi-periodic oscillation parameters in GX 5-1

    NASA Technical Reports Server (NTRS)

    Van Der Klis, M.; Jansen, F.; Van Paradijs, J.; Lewin, W. H. G.; Sztajno, M.

    1987-01-01

    In a series of seven Exosat observations, the bimodal spectral behavior and the quasi-periodic oscillation (QPO)/red noise properties of GX 5-1 show a strict correlation. In one of the two spectral states (characterized by a 'horizontal branch' in the hardness-intensity diagram), strong 20-40 Hz QPO and red noise below about 60 Hz were always present. In the other ('normal branch'), no QPO between 6 and 60 Hz or red noise above 1 Hz were detected, but there was an indication for weak QPO near 5 Hz. In both states 'very low frequency noise' (VLFN) is detected below 0.1 Hz which has a power-law shape and and which extends down to the lowest observed frequencies (0.0001 Hz). The VLFN is probably not directly related to the QPO. The results are compared to those on Sco X-1 and Cyg X-2 and it is concluded that, although all three sources show bimodal spectral and QPO/red noise behavior, there is a qualitative difference between GX 5-1 and Cyg X-2 on one hand and Sco X-1 on the other.

  4. Systems and methods for measuring a parameter of a landfill including a barrier cap and wireless sensor systems and methods

    DOEpatents

    Kunerth, Dennis C.; Svoboda, John M.; Johnson, James T.

    2007-03-06

    A method of measuring a parameter of a landfill including a cap, without passing wires through the cap, includes burying a sensor apparatus in the landfill prior to closing the landfill with the cap; providing a reader capable of communicating with the sensor apparatus via radio frequency (RF); placing an antenna above the barrier, spaced apart from the sensor apparatus; coupling the antenna to the reader either before or after placing the antenna above the barrier; providing power to the sensor apparatus, via the antenna, by generating a field using the reader; accumulating and storing power in the sensor apparatus; sensing a parameter of the landfill using the sensor apparatus while using power; and transmitting the sensed parameter to the reader via a wireless response signal. A system for measuring a parameter of a landfill is also provided.

  5. Line parameters including temperature dependences of air- and self-broadened line shapes of 12C16O2: 2.06-μm region

    NASA Astrophysics Data System (ADS)

    Benner, D. Chris; Devi, V. Malathy; Sung, Keeyoon; Brown, Linda R.; Miller, Charles E.; Payne, Vivienne H.; Drouin, Brian J.; Yu, Shanshan; Crawford, Timothy J.; Mantz, Arlan W.; Smith, Mary Ann H.; Gamache, Robert R.

    2016-08-01

    This study reports the results from analyzing a number of high resolution, high signal-to-noise ratio (S/N) spectra in the 2.06-μm spectral region for pure CO2 and mixtures of CO2 in dry air. A multispectrum nonlinear least squares curve fitting technique has been used to retrieve the various spectral line parameters. The dataset includes 27 spectra: ten pure CO2, two 99% 13C-enriched CO2 and fifteen spectra of mixtures of 12C-enriched CO2 in dry air. The spectra were recorded at various gas sample temperatures between 170 and 297 K. The absorption path lengths range from 0.347 to 49 m. The sample pressures for the pure CO2 spectra varied from 1.1 to 594 Torr; for the two 13CO2 spectra the pressures were ∼10 and 146 Torr. For the air-broadened spectra, the pressures of the gas mixtures varied between 200 and 711 Torr with CO2 volume mixing ratios ranging from 0.014% to 0.203%. The multispectrum fitting technique was applied to fit simultaneously all these spectra to retrieve consistent set of line positions, intensities, and line shape parameters including their temperature dependences; for this, the Voigt line shape was modified to include line mixing (via the relaxation matrix formalism) and quadratic speed dependence. The new results are compared to select published values, including recent ab initio calculations. These results are required to retrieve the column averaged dry air mole fraction (XCO2) from space-based observations, such as the Orbiting Carbon Observatory-2 (OCO-2) satellite mission that NASA launched in July 2014.

  6. Research on the relationship between the fractional coverage of the submerged plant Vallisneria spiralis and observed spectral parameters.

    PubMed

    Cheng, Qian; Wu, Kunqi; Bai, Yan; Hu, Yueming

    2013-07-01

    The present paper discusses the relationship between the coverage fraction of submerged plants and the observed spectral characteristics. The purpose of this paper is to validate a remote sensing technology to monitor the change in the plant composition of a water body. In the current study, the reflectance spectra of the submerged plant Vallisneria spiralis at different fraction coverages of the wetland in Hangzhou Bay were measured. The relationships between the fraction coverage of V. spiralis and simulated Quickbird normalized difference vegetation index (NDVI), red edge, and other spectral characteristic parameters were established. The results showed that the spectral reflectance characteristics of submerged plant V. spiralis were mainly in the visible light (490-650 nm) and near infrared (700-900 nm). The rate of change of the blue band curve and simulated Quickbird NDVI showed a higher correlation with the V. spiralis coverage, so estimation models of the fraction coverage were constructed using these parameters. The estimated fraction coverage of V. spiralis with different models were validated with ground data, and the accuracy of estimation models was assessed. The most suitable estimated fraction coverage of V. spiralis was obtained using the rate of change of the blue band curve and simulated Quickbird NDVI. The present work demonstrated a method to monitor the distribution and dynamical variation of submerged plants at the large scale. PMID:23093368

  7. Effects of spectral parameters on the light properties of red-green-blue white light-emitting diodes.

    PubMed

    Xu, Mingsheng; Zhang, Haoxiang; Zhou, Quanbin; Wang, Hong

    2016-06-01

    Red-green-blue white light-emitting diodes (RGB-WLEDs) have great potential as commercial solid-state lighting devices, as well as visible light communication because of their high color-rendering index (CRI) and high response frequency. The quality of light of an RGB-WLED strongly depends on its spectral parameters. In this study, we fabricated RGB-WLEDs with red, blue, and green LEDs and measured the spectral power distribution (SPD). The experimental SPD is consistent with the calculated spectrum. We also measured the SPDs of LEDs with different peak wavelengths and extracted the spectral parameters, which were then used for modeling. We studied the effect of the wavelength and the full width at half-maximum (FWHM) on both the color rendering index and the luminous efficiency (LE) of the RGB-WLED using simulations. We find that the LE improves as the wavelength of the blue LED increases and the wavelength of the red LED decreases. When the wavelength of the green LED increases, the LE increases first, but later decreases. The CRI of the RGB-WLED increases with the wavelengths of the red, blue, and green LEDs first, but then decreases. The optimal wavelengths and FWHMs for maximum color-rendering and LE of the blue, green, and red LEDs are 466, 536, 606 nm; and 26.0, 34.0, and 19.5 nm, respectively. PMID:27411203

  8. Effects of Salinity on Leaf Spectral Reflectance and Biochemical Parameters of Nitrogen Fixing Soybean Plants (Glycine max L.)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora D.; Kirova, Elisaveta B.; Yanev, Tony K.; Iliev, Ilko Ts.

    2010-01-01

    Measurements of physiology and hyperspectral leaf reflectance were used to detect salinity stress in nitrogen fixing soybean plants. Seedlings were inoculated with suspension of Bradyrhizobium japonicum strain 273. Salinity was performed at the stage of 2nd-4th trifoliate expanded leaves by adding of NaCl in the nutrient solution of Helrigel in concentrations 40 mM and 80 mM. A comparative analysis was performed between the changes in the biochemical parameters - stress markers (phenols, proline, malondialdehyde, thiol groups), chlorophyll a and b, hydrogen peroxide, and leaf spectral reflectance in the spectral range 450-850 nm. The spectral measurements were carried out by an USB2000 spectrometer. The reflectance data of the control and treated plants in the red, green, red-edge and the near infrared ranges of the spectrum were subjected to statistical analysis. Statistically significant differences were found through the Student's t-criterion at the two NaCl concentrations in all of the ranges examined with the exception of the near infrared range at 40 mM NaCl concentration. Similar results were obtained through linear discriminant analysis. The tents of the phenols, malondialdehyde and chlorophyll a and b were found to decrease at both salinity treatments. In the spectral data this effect is manifested by decrease of the reflectance values in the green and red ranges. The contents of proline, hydrogen peroxide and thiol groups rose with the NaCl concentration increase. At 80 mM NaCl concentration the values of these markers showed a considerable increase giving evidence that the soybean plants were stressed in comparison with the control. This finding is in agreement with the results from the spectral reflectance analysis.

  9. Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2015-03-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.

  10. Estimation of Tissue Optical Parameters with Hyperspectral Imaging and Spectral Unmixing

    PubMed Central

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2015-01-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model. PMID:26855467

  11. Photoprotective Response in Plants Impacts Estimation of Biophysical Parameters Using Spectral Reflectance

    NASA Astrophysics Data System (ADS)

    Zygielbaum, A. I.; Arkebauer, T. J.; Walter-Shea, E.

    2014-12-01

    Previously, we reported that reflectance increased across the whole PAR spectrum when plants were subjected to water stress. This effect was shown to exist in maize grown under greenhouse conditions and under field conditions. Greenhouse experiments showed that, in addition to leaf water content, the effect was strongly correlated with incident light intensity. Further, through the use of an integrating sphere, we demonstrated that the change in reflectance was due to a change in absorption rather than in a change scattering or other optical path effect. Time lapse microscopy showed lightening between leaf veins analogous to effects measured by researchers observing cross sections of stressed C4 plants. To further refine our study, additional leaf level and canopy level studies were undertaken. Excised leaf sections were separately exposed to red and white light in the laboratory as the leaf dried. Increasing reflectance and transmittance were observed for the section exposed to white light, while little change was observed under red light. Each of these observations can be explained by chloroplast avoidance movement, a photoprotective response causing chloroplasts to aggregate along cell walls effectively hiding chlorophyll from observation. Chloroplast movement, for example, is driven by blue light; explaining the lack of observed change under red light. Estimation of biophysical parameters, such as chlorophyll content and greenness, are affected by the difference between the "apparent" chlorophyll content and the actual chlorophyll content of leaves and canopies. Up to 30% changes in the VARI remote sensing index have been observed morning to afternoon in field-grown maize. Ten percent changes in chlorophyll estimates have been observed in greenhouse maize. We will report on further research and on the extension of our work to include the impact of chloroplast avoidance on remote sensing of C3 plants, specifically soybean, at leaf and canopy levels.

  12. Spectral and energy parameters of multiband barrier-discharge KrBr excilamps

    SciTech Connect

    Avdeev, S M; Erofeev, M V; Skakun, V S; Sosnin, E A; Suslov, A I; Tarasenko, V F; Schitz, D V

    2008-07-31

    The spectral and energy characteristics of multiband barrier-discharge coaxial KrBr excilamps are studied experimentally at pressures from a few tens of Torr to 0.4 atm. It is shown that an increase in the Br{sub 2} concentration reduces the emission intensity of KrBr* molecules with respect to the emission intensity of Br{sub 2}* molecules and reduces the total emission power of the excilamp. This can be explained by the nonradiative decay of exciplex KrBr* molecules caused by their quenching by molecular bromine. The emission power and efficiency in the Kr:Br{sub 2} = 400:1 mixture at a pressure of {approx}230 Torr and a discharge gap of 8.5 mm were 4.8 W and 2.4%, respectively. (laser applications and other topics in quantum electronics)

  13. Variation in plasmonic (electronic) spectral parameters of Pr (III) and Nd (III) with varied concentration of moderators

    SciTech Connect

    Mishra, Shubha; Limaye, S. N.

    2015-07-31

    It is said that the -4f shells behave as core and are least perturbed by changes around metal ion surrounding. However, there are evidences that-4f shells partially involved in direct moderator interaction. A systematic investigation on the plasmonic (electronic) spectral studies of some Rare Earths[RE(III).Mod] where, RE(III) = Pr(III),Nd(III) and Mod(moderator) = Y(III),La(III),Gd(III) and Lu(III), increased moderator concentration from 0.01 mol dm{sup −3} to 0.025 mol dm{sup −3} keeping the metal ion concentration at 0.01mol dm{sup −3} have been carried out. Variations in oscillator strengths (f), Judd-Ofelt parameters (T{sub λ}),inter-electronic repulsion Racah parameters (δE{sup k}),nephelauxetic ratio (β), radiative parameters (S{sub ED},A{sub T},β{sub R},T{sub R}). The values of oscillator strengths and Judd-Ofelt parameters have been discussed in the light of coordination number of RE(III) metal ions, denticity and basicity of the moderators. The [RE(III).Mod] bonding pattern has been studies in the light of the change in Racah parameters and nephelauxetic ratio.

  14. SDSS/SEGUE spectral feature analysis for stellar atmospheric parameter estimation

    SciTech Connect

    Li, Xiangru; Lu, Yu; Yang, Tan; Wang, Yongjun; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Zuo, Fang

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T{sub eff}, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T{sub eff} (101.609921 K for T{sub eff}), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T{sub eff}, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T{sub eff} (124.545075 K for T{sub eff}), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  15. SDSS/SEGUE Spectral Feature Analysis for Stellar Atmospheric Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Li, Xiangru; Wu, Q. M. Jonathan; Luo, Ali; Zhao, Yongheng; Lu, Yu; Zuo, Fang; Yang, Tan; Wang, Yongjun

    2014-08-01

    Large-scale and deep sky survey missions are rapidly collecting a large amount of stellar spectra, which necessitate the estimation of atmospheric parameters directly from spectra and make it feasible to statistically investigate latent principles in a large data set. We present a technique for estimating parameters T eff, log g, and [Fe/H] from stellar spectra. With this technique, we first extract features from stellar spectra using the LASSO algorithm; then, the parameters are estimated from the extracted features using the support vector regression. On a subsample of 20,000 stellar spectra from the Sloan Digital Sky Survey (SDSS) with reference parameters provided by the SDSS/SEGUE Spectroscopic Parameter Pipeline, estimation consistency are 0.007458 dex for log T eff (101.609921 K for T eff), 0.189557 dex for log g, and 0.182060 for [Fe/H], where the consistency is evaluated by mean absolute error. Prominent characteristics of the proposed scheme are sparseness, locality, and physical interpretability. In this work, each spectrum consists of 3821 fluxes, and 10, 19, and 14 typical wavelength positions are detected, respectively, for estimating T eff, log g, and [Fe/H]. It is shown that the positions are related to typical lines of stellar spectra. This characteristic is important in investigating physical indications from analysis results. Then, stellar spectra can be described by the individual fluxes on the detected positions (PD) or local integration of fluxes near them (LI). The aforementioned consistency is the result based on features described by LI. If features are described by PD, consistency is 0.009092 dex for log T eff (124.545075 K for T eff), 0.198928 dex for log g, and 0.206814 dex for [Fe/H].

  16. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior

    PubMed Central

    2016-01-01

    Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20–30 years) and 18 older (60–85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes. PMID:27610379

  17. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior

    PubMed Central

    2016-01-01

    Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20–30 years) and 18 older (60–85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes.

  18. Age-Associated Changes in the Spectral and Statistical Parameters of Surface Electromyogram of Tibialis Anterior.

    PubMed

    Siddiqi, Ariba; Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant

    2016-01-01

    Age-related neuromuscular change of Tibialis Anterior (TA) is a leading cause of muscle strength decline among the elderly. This study has established the baseline for age-associated changes in sEMG of TA at different levels of voluntary contraction. We have investigated the use of Gaussianity and maximal power of the power spectral density (PSD) as suitable features to identify age-associated changes in the surface electromyogram (sEMG). Eighteen younger (20-30 years) and 18 older (60-85 years) cohorts completed two trials of isometric dorsiflexion at four different force levels between 10% and 50% of the maximal voluntary contraction. Gaussianity and maximal power of the PSD of sEMG were determined. Results show a significant increase in sEMG's maximal power of the PSD and Gaussianity with increase in force for both cohorts. It was also observed that older cohorts had higher maximal power of the PSD and lower Gaussianity. These age-related differences observed in the PSD and Gaussianity could be due to motor unit remodelling. This can be useful for noninvasive tracking of age-associated neuromuscular changes. PMID:27610379

  19. New atmospheric parameters and spectral interpolator for the MILES cool stars

    NASA Astrophysics Data System (ADS)

    Sharma, Kaushal; Prugniel, Philippe; Singh, Harinder P.

    2016-01-01

    Context. The full spectrum fitting of stellar spectra against a library of empirical spectra is a well-established approach to measure the atmospheric parameters of FGK stars with a high internal consistency. Extending it towards cooler stars still remains a challenge. Aims: We address this question by improving the interpolator of the Medium-resolution INT Library of Empirical Spectra (MILES) library in the low effective temperature regime (Teff < 4800 K), and we refine the determination of the parameters of the cool MILES stars. Methods: We use the ULySS package to determine the atmospheric parameters (Teff, log g and [Fe/H]), and measure the biases of the results with respect to our updated compilation of parameters calibrated against theoretical spectra. After correcting some systematic effects, we compute a new interpolator that we finally use to redetermine the atmospheric parameters homogeneously and assess the biases. Results: Based on an updated literature compilation, we determine Teff in a more accurate and unbiased manner compared to those determined with the original interpolator. The validity range is extended downwards to about Teff= 2900 K compared to 3500 K previously. The mean residual biases on Teff, log g, and [Fe/H], with respect to the literature compilation for the coolest stars (Teff ≤ 3800 K) computed using the new interpolator, are -15 K, -0.02 dex, and 0.02 dex respectively. The corresponding estimations of the external precision are 63 K, 0.23 dex, and 0.15 dex respectively. For the stars with Teff in the range 3800-4200 K, the determinations of Teff and [Fe/H] have been slightly improved. At higher temperatures, the new interpolator is comparable to the original one. The new version of the interpolator is publicly available. The model as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A64

  20. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    PubMed Central

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  1. Dependence of the spectral parameters of a Raman fibre laser on the Bragg grating temperature

    SciTech Connect

    Babin, S A; Potapov, V V; Churkin, D V; Kurkov, Andrei S

    2003-12-31

    Changes in the output power and emission spectrum of a two-stage Raman phosphosilicate fibre laser are measured during the temperature tuning of fibre Bragg gratings (FBGs) forming enclosed resonators (1.26/1.52 {mu}m). The output emission spectrum of the dense resonator (1.26 {mu}m) is split into two components, whose relative amplitudes change during the temperature tuning of FBGs. A simple analytic model is constructed which describes the broadening and splitting of the spectrum as well as the appearance of its asymmetry upon the relative detuning of FBGs. It is shown that these effects result in the increase in the effective transmission coefficient of the dense resonator at least by an order of magnitude, which affects the output power of the Raman laser. (control of laser radiation parameters)

  2. Determination of Spectral Line Parameters in Selected Portions of the Infrared Spectrum of Water Vapor

    NASA Technical Reports Server (NTRS)

    Albert, Karen Keppler

    1999-01-01

    Pressure broadening and pressure-induced shift coefficients due to water and nitrogen have been determined for water vapor transitions in the CO2 region of interest to Project HALOE. The temperature dependences of the widths and shifts have also been determined for selected transitions in this region. Results have been compared with values available in the literature. The line parameters have been obtained from the analysis of room temperature recordings of the spectrum of pure water and recordings of the spectra of heated water/nitrogen mixtures. The recordings of the water vapor spectrum were obtained with Fourier Transform Spectrometers at Kitt Peak and at the Justus-Liebig-Universitat Giessen. Up to eighteen spectra have been fitted simultaneously with a multispectrum nonlinear least-squares fitting technique developed by Dr. D. Chris Benner and colleagues.

  3. Vibrational Spectroscopy of Parent Volatiles in Comets: Spectral Frontiers and Critical Needs for Relevant Molecular Parameters

    NASA Astrophysics Data System (ADS)

    Mumma, Michael J.

    2009-05-01

    Today, as many as ten parent volatile species are measured simultaneously in infrared spectra of comets, but their interpretation is sometimes challenged by inaccurate or unavailable molecular parameters. These are essential for identifying a specific molecular emitter and for quantifying its abundance by comparing the observed line intensities with excitation models. This difficulty will become more severe in the near future, as cross-dispersed echelle spectrometers with very high resolving power come on line (e.g., iSHELL at the NASA IRTF). Somewhat farther downstream, future large telescopes (30-meter class) will provide a ten-fold increase in collecting area and the potential for important advances in cometary and planetary science. With such new facilities, major advances are expected in three areas of cometary science: 1. The suite of detected parent volatiles will be extended to less abundant species (e.g., C2H4, the hypothesized intermediate in hydrogenating C2H2 to C2H6). 2. The accuracy of nuclear spin temperatures will be greatly improved, providing a sensitive measure of this cosmogonic parameter for diverse parent volatiles (H2O, NH3, CH4, H2CO, etc.) in many comets, and further constraining the origin and subsequent evolution of these primitive materials. 3. The extension of compositional measurements to isotopologues of the more abundant parent volatiles will provide key insights into their origins by comparing isotopic ratios (D/H, 14N/15N, 12C/13C, etc.) in comets with predictions based on models for interstellar and nebular processing. An expanded and vigorous laboratory program in fundamental molecular spectroscopy and structure is needed, to ensure full exploitation of these new frontiers.

  4. Selective ensemble modeling load parameters of ball mill based on multi-scale frequency spectral features and sphere criterion

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Yu, Wen; Chai, Tianyou; Liu, Zhuo; Zhou, Xiaojie

    2016-01-01

    It is difficult to model multi-frequency signal, such as mechanical vibration and acoustic signals of wet ball mill in the mineral grinding process. In this paper, these signals are decomposed into multi-scale intrinsic mode functions (IMFs) by the empirical mode decomposition (EMD) technique. A new adaptive multi-scale spectral features selection approach based on sphere criterion (SC) is applied to these IMFs frequency spectra. The candidate sub-models are constructed by the partial least squares (PLS) with the selected features. Finally, the branch and bound based selective ensemble (BBSEN) algorithm is applied to select and combine these ensemble sub-models. This method can be easily extended to regression and classification problems with multi-time scale signal. We successfully apply this approach to a laboratory-scale ball mill. The shell vibration and acoustic signals are used to model mill load parameters. The experimental results demonstrate that this novel approach is more effective than the other modeling methods based on multi-scale frequency spectral features.

  5. Demonstration of random projections applied to the retrieval problem of geophysical parameters from hyper-spectral infrared observations.

    PubMed

    Serio, Carmine; Masiello, Guido; Liuzzi, Giuliano

    2016-08-20

    The random projections statistical technique has been used to reduce the dimensionality of the radiance data space generated from high spectral resolution infrared observations. The mathematical inversion of the physical radiative transfer equation for geophysical parameters has been solved in this space of reduced dimensionality. The great advantage of using random projections is that they provide an unified treatment of instrument noise and forward model error, which can be comprehensively modeled with a single variance term. The result is a novel retrieval approach, which combines computational efficiency to possibly improved accuracy of the retrieval products. The novel approach has been demonstrated through application to the Infrared Atmospheric Sounding Interferometer. We have found that state-of-the-art spectroscopy and related line-mixing treatment for the ν2CO2 absorption band, i.e., the fundamental band for temperature retrieval, show an excellent consistency with satellite observations.

  6. Demonstration of random projections applied to the retrieval problem of geophysical parameters from hyper-spectral infrared observations.

    PubMed

    Serio, Carmine; Masiello, Guido; Liuzzi, Giuliano

    2016-08-20

    The random projections statistical technique has been used to reduce the dimensionality of the radiance data space generated from high spectral resolution infrared observations. The mathematical inversion of the physical radiative transfer equation for geophysical parameters has been solved in this space of reduced dimensionality. The great advantage of using random projections is that they provide an unified treatment of instrument noise and forward model error, which can be comprehensively modeled with a single variance term. The result is a novel retrieval approach, which combines computational efficiency to possibly improved accuracy of the retrieval products. The novel approach has been demonstrated through application to the Infrared Atmospheric Sounding Interferometer. We have found that state-of-the-art spectroscopy and related line-mixing treatment for the ν2CO2 absorption band, i.e., the fundamental band for temperature retrieval, show an excellent consistency with satellite observations. PMID:27556974

  7. Cirrus structure and radiative parameters from airborne lidar and spectral radiometer observations - The 28 October 1986 FIRE study

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D.; Hart, William D.

    1990-01-01

    A description is presented of cirrus based on results from a FIRE observation flight in central Wisconsin on October 28, 1986. Cirrus structure and radiative parameters as determined by the ER-2 lidar and imaging spectral radiometers are presented. From the lidar observations a complex structure was shown with differing cloud layers extending over six kilometers of altitude range. Both thin and dense cirrus layers were present and mixed phase clouds were found at lower altitudes. As indicated by the cloud structure, precipitation of crystals from high, but vertically thin, layers produces a significant fraction of the lower cirrus. Multiple layers should be considered as normal for cirrus formations. It is noted that the cloud height is an important factor for satellite cloud retrievals and cloud climatology.

  8. Spectral, mechanical, thermal, optical and solid state parameters, of metal-organic bis(hydrogenmaleate)-CO(II) tetrahydrate crystal

    SciTech Connect

    Chandran, Senthilkumar; Jagan, R.; Paulraj, Rajesh; Ramasamy, P.

    2015-10-15

    Metal-organic bis(hydrogenmaleate)-Co(II) tetrahydrate single crystals have been grown by slow evaporation solution growth technique at room temperature. The crystal structure and the unit cell parameters were analyzed from the X-ray diffraction studies. Single-crystal X-ray diffraction analyses reveal that the grown crystal belongs to triclinic system with the space group P-1. Functional groups in bis(hydrogenmaleate)-Co(II) tetrahydrate were identified by Fourier transform infrared spectral analysis. The peak observed at 663 cm{sup −1} is assigned to the (Co–O) stretching vibrations. The optical transmission of the crystal was studied by UV–vis–NIR spectral analysis. The photoluminescence emission studies were carried out for the title compound in a wide wavelength range between 350 nm and 550 nm at 303 K. Mechanical strength was tested by Vickers microhardness test. The laser damage threshold value has been determined using Nd:YAG laser operating at 1064 nm. At various frequencies and temperatures the dielectric behavior of the material was investigated. Solid state parameters such as plasma energy, Penn gap, Fermi energy and electronic polarizability were evaluated. Photoconductivity measurements were carried out for the grown crystal in the presence of DC electric field at room temperature. Thermal stability and decomposition of the crystal were studied by TG–DTA. The weight loss of the title compound occurs in different steps. - Graphical abstract: Molecular structure of the bis(hydrogenmaleate)-Co(II) tetrahydrate drawn at 40% ellipsoid probability level. - Highlights: • Bis(hydrogenmaleate)-Co(II) tetrahydrate single crystal is grown by slow evaporation method. • Structural and optical properties were discussed. • The title complex crystal is thermally stable up to 91 °C. • Plasma energy, Fermi energy and electronic polarizability are evaluated. • It exhibits positive photoconductivity.

  9. Photometric behavior of spectral parameters in Vesta dark and bright regions as inferred by the Dawn VIR spectrometer

    NASA Astrophysics Data System (ADS)

    Longobardo, Andrea; Palomba, Ernesto; Capaccioni, Fabrizio; De Sanctis, Maria Cristina; Tosi, Federico; Ammannito, Eleonora; Schröder, Stefan E.; Zambon, Francesca; Raymond, Carol A.; Russell, Christopher T.

    2014-09-01

    NASA’s Dawn spacecraft orbited Vesta for approximately one year, collecting thousands of hyperspectral images of its surface. The mission revealed that Vesta’s surface shows the largest variations in surface albedo on asteroids visited thus far, due to the presence of dark and bright materials at the local scale (i.e. 0.1-10 km). The aim of this work is to characterize the photometric properties of bright and dark regions, and thus derive and apply an empirical photometric correction to all the hyperspectral observations of Vesta. The very large dataset (i.e. more than 20 million spectra) provided by the VIR imaging spectrometer onboard Dawn enabled accurate statistical analysis of the spectral dataset, aimed at retrieving empirical relations between several spectral parameters (i.e. visible and infrared reflectance, band depths, band centers, Band Area Ratio) and the illumination/viewing angles. The derived relations made it possible to derive photometrically corrected maps of these spectral parameters and to infer information on the regolith shadowing effect in the Vestan dark and bright regions. As an additional analysis, we also evaluated the correlation between surface temperature and band center position. A general conclusion of this analysis is that, from a photometric point of view, the distinction between bright and dark material units lies mainly in the larger contribution due to multiple scattering in the bright units. We observed reflectance and band depth variations over Vesta’s entire surface, but these variations were much larger in the dark regions than in the bright ones. Band centers have been found to shift to longer wavelengths at increasing temperatures, with a trend that is the same observed for HED meteorites (Reddy et al. [2012]. Icarus 217, 153-158). Finally, the Band Area Ratio (i.e. the ratio between areas of the main pyroxene absorption bands located at 1.9 μm and at 0.9 μm, respectively) did not show any dependence on

  10. Investigations on critical parameters, growth, structural and spectral studies of beta-alaninium picrate (BAP) single crystals

    NASA Astrophysics Data System (ADS)

    Shanthi, D.; Selvarajan, P.; Perumal, S.

    2014-12-01

    Beta-alaninium picrate (BAP) salt has been synthesized and the solubility of the synthesized sample in double distilled water was determined at different temperatures. Solution stability was studied by observing the metastable zone width by employing the polythermal method. Induction period values for different supersaturation ratios at room temperature were determined based on the isothermal method. The nucleation parameters such as critical radius, critical free energy change, interfacial tension, and nucleation rate have been estimated for BAP salt on the basis of the classical nucleation theory. The lattice parameters of the grown BAP crystal were determined using the x-ray diffraction (XRD) technique. The reflection planes of the sample were confirmed by the powder XRD study and diffraction peaks were indexed. Fourier transform infrared spectroscopy and Fourier transform-Raman studies were used to confirm the presence of various functional groups in the BAP crystal. The nonlinear optical property of the grown crystal was studied using the Kurtz-Perry powder technique. UV-visible spectral studies were carried out to understand optical transparency and the type of band gap of the grown BAP crystal.

  11. Uncertainty analysis of sensor performance parameters in the shortwave infrared spectral range based on nightglow as the main lightsource

    NASA Astrophysics Data System (ADS)

    Svensson, Thomas; Bergström, David

    2014-05-01

    Images collected in the shortwave infrared (SWIR) spectral range, 1-2.5 μm, are similar to visual (VIS) images and are easier to interpret for a human operator than images collected in the thermal infrared range, >3 μm. The ability of SWIR radiation to penetrate ordinary glass also means that conventional lens materials can be used. The night vision capability of a SWIR camera is however dependent on external light sources. At moonless conditions the dominant natural light source is nightglow, but the intensity is varying, both locally and temporally. These fluctuations are added to variations in other parameters and therefore the real performance of a SWIR camera at moonless conditions can be quite different compared with the expected performance. Collected measured data from the literature on the temporal and local variations of nightglow are presented and the variations of the nightglow intensity and other measured parameters are quantified by computing standard and combined standard uncertainties. The analysis shows that the uncertainty contributions from the nightglow variations are significant. However, nightglow is also found to be a potentially adequate light source for SWIR applications.

  12. Modeling of the spectral energy distribution of the cataclysmic variable TT Ari and evaluation of the system parameters

    NASA Astrophysics Data System (ADS)

    Belyakov, K. V.; Suleimanov, V. F.; Nikolaeva, E. A.; Borisov, N. V.

    2010-11-01

    The spectral energy distribution (SED) of the TT Ari system, which is well known from published IUE and optical photometric observations, was modeled by a steady-state accretion α-disc around a white dwarf. Parameters of the system were derived from time-resolved optical spectral observations in the bright state that we obtained in Sep. 1998. The radial velocity semiamplitude of the white dwarf (33.8+/-2.5 km s-1) and corresponding mass function (f(M) = 5.5+/-1.2×10-4 Msolar) were derived from the motion of the emission components of Balmer lines. The mass ratio q(~0.315) was evaluated from the fractional period excess of the superhump period over the orbital period ɛ(~0.085), and a secondary mass range (0.18-0.38 Msolar) was estimated from the orbital period. Therefore, the white dwarf mass range is 0.57-1.2 Msolar and the inclination angle of the system to the line of sight is 17-22.5 degrees. The adopted distance to the system is 335+/-50 pc. To fit the observed SED it is necessary to add a thermal spectrum with T~11600 K and luminosity ~0.4 Ld to the accretion disc spectrum. This combined spectrum successfully describes the observed Balmer lines absorption components. Formally the best fit of the HeI 4471 line gives minimum masses of the components (MRD = 0.18 Msolar and (MWD = 0.57 Msolar), with the corresponding inclination angle i = 22.°1 and mass-accretion rate M = 2.6×1017 g s-1.

  13. Line parameters including temperature dependences of self- and air-broadened line shapes of 12C16O2: 1.6-μm region

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Brown, Linda R.; Crawford, Timothy J.; Miller, Charles E.; Drouin, Brian J.; Payne, Vivienne H.; Yu, Shanshan; Smith, Mary Ann H.; Mantz, Arlan W.; Gamache, Robert R.

    2016-07-01

    Pressure-broadened line shapes in the 30013←00001 (ν1+4 ν20 +ν3) band of 12C16O2 at 6228 cm-1 are reanalyzed using new spectra recorded with sample temperatures down to 170 K. High resolution, high signal-to-noise (S/N) laboratory measurements of line shapes (Lorentz air- and self-broadened half-width coefficients, pressure-shift coefficients and off-diagonal relaxation matrix element coefficients) as a function of gas sample temperatures for various pressures and volume mixing ratios are presented. The spectra were recorded using two different Fourier transform spectrometers (FTS): (1) the McMath-Pierce FTS located at the National Solar Observatory on Kitt Peak, Arizona (and reported in Devi et al., J Mol Spectrosc 2007;245:52-80) and, (2) the Bruker IFS-125HR FTS at the Jet Propulsion Laboratory in Pasadena, California. The 19 spectra taken at Kitt Peak were all recorded near room temperature while the 27 Bruker spectra were acquired both at room temperature and colder temperatures (170-296 K). Various spectral resolutions (0.004-0.011 cm-1), absorption path lengths (2.46-121 m) and CO2 samples (natural and 12C-enriched) were included in the dataset. To maximize the accuracies of the various retrieved line parameters, a multispectrum nonlinear least squares spectrum fitting software program was used to adjust the ro-vibrational constants (G,B,D etc.) and intensity parameters (including Herman-Wallis terms) instead of directly measuring the individual line positions and intensities. To minimize systematic residuals, line mixing (via off-diagonal relaxation matrix elements) and quadratic speed dependence parameters were included in the analysis. Contributions from other weakly absorbing bands: the 30013←00001 and 30012←00001 bands of 13C16O2, the 30013←00001 band of 12C16O18O, hot bands 31113←01101 and 32212←02201 of 12C16O2, as well as the 40013←10001 and the 40014←10002 bands of 12C16O2, present within the fitted interval were also measured

  14. Calculating (14)N(16)O2 spectral line parameters in an infrared range: A comparison of "global" and "local" effective operator methods.

    PubMed

    Voitsekhovskaya, O K; Egorov, O V; Kashirskii, D E

    2016-08-01

    Nitrogen dioxide, (14)N(16)O2, line positions and intensities calculated by us based on a "local" effective operator method are compared to the recent results of the "global" calculation. The comparison was made for theoretical absorption coefficients in the spectral range of 600-3700cm(-1) using the measured data taken from the Pacific Northwest National Laboratory. In order to conduct the calculations, empirical parameters of the effective rotational Hamiltonian of the twenty-one vibrational states were applied from the most recent experimental works. The second order parameters of the dipole moment function of (14)N(16)O2 were determined for the first time. The "local" line list in this research consists of one hundred and four bands and includes the line intensities of the v1+v2+v3 band of (14)N(16)O2 that have not yet been investigated in the literature. Among these bands, only eleven bands are included in HITRAN2012. The reasons behind the disagreements between the theoretical and measured absorption coefficients of (14)N(16)O2 are discussed. PMID:27111152

  15. Calculating 14N16O2 spectral line parameters in an infrared range: A comparison of "global" and "local" effective operator methods

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.

    2016-08-01

    Nitrogen dioxide, 14N16O2, line positions and intensities calculated by us based on a "local" effective operator method are compared to the recent results of the "global" calculation. The comparison was made for theoretical absorption coefficients in the spectral range of 600-3700 cm- 1 using the measured data taken from the Pacific Northwest National Laboratory. In order to conduct the calculations, empirical parameters of the effective rotational Hamiltonian of the twenty-one vibrational states were applied from the most recent experimental works. The second order parameters of the dipole moment function of 14N16O2 were determined for the first time. The "local" line list in this research consists of one hundred and four bands and includes the line intensities of the v1 + v2 + v3 band of 14N16O2 that have not yet been investigated in the literature. Among these bands, only eleven bands are included in HITRAN2012. The reasons behind the disagreements between the theoretical and measured absorption coefficients of 14N16O2 are discussed.

  16. Optimization of spectral sensitivities of mosaic five-band camera for estimating chromophore densities from skin images including shading and surface reflections

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Akaho, Rina; Maita, Chikashi; Sugawara, Mai; Tsumura, Norimichi

    2016-06-01

    In this paper, the spectral sensitivities of a mosaic five-band camera were optimized using a numerical skin phantom to perform the separation of chromophore densities, shading and surface reflection. To simulate the numerical skin phantom, the spectral reflectance of skin was first calculated by Monte Carlo simulation of photon migration for different concentrations of melanin, blood and oxygen saturation levels. The melanin and hemoglobin concentration distributions used in the numerical skin phantom were obtained from actual skin images by independent component analysis. The calculated components were assigned as concentration distributions. The spectral sensitivities of the camera were then optimized using a nonlinear technique to estimate the spectral reflectance for skin separation. In this optimization, the spectral sensitivities were assumed to be normally distributed, and the sensor arrangement was identical to that of a conventional mosaic five-band camera. Our findings demonstrated that spectral estimation could be significantly improved by optimizing the spectral sensitivities.

  17. Quantitative laboratory spectra and spectral line parameters for the nu2 and nu4 bands of PH3 applicable to spectral radiative models of the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Cook, G. R.; Bonomo, F. S.

    1980-01-01

    Quantitative laboratory PH3 absorption spectra were obtained in the 800-1350/cm region, at approximately 0.05/cm resolution, with gas amounts corresponding to observed PH3 absorptions in the atmosphere of Jupiter. A compilation of spectral line positions, intensities and ground state energies has been generated for the nu2 and nu4 bands of PH3. Line-by-line calculations have been compared with the experimental spectra.

  18. Spectral Discrimination of Salinity and Fertilizer Stress in Wheat (Triticum Sativa L.) using Photosynthesis Parameters and Hpyerspectral Data

    NASA Astrophysics Data System (ADS)

    Shah, S. H.; Houborg, R.; Tester, M.; McCabe, M. F.

    2014-12-01

    Multidisciplinary research has long sought the ability to estimate the parameters of plant functions such as photosynthetic capacity under stress conditions from remotely sensed data. Yet, the main goal has not been fully elucidated. In this study, we investigated the effects of saline water irrigation and the rate of fertilizer application on the photosynthetic response of wheat in a greenhouse based experiment. After two weeks of germination, the plants were subjected to irrigation with sea water blended with high quality reverse osmosis (RO) water. Three levels of water salinity having electrical conductivities (EC) of 0.3, 7.0, 14.0 dSm-1 were obtained by mixing sea water with RO water and plants were irrigated to approximately 70% of field capacity without excess drainage. Three levels of NPK fertilizer at the rate of null, half and full recommended doses were also employed in the experiment. The two key determinants of photosynthetic capacity, the maximum rates of RuBP carboxylation (Vcmax) and the maximum rate of photosynthetic electron transport based on NADPH requirement (Jmax), were obtained through standard gas exchange technique.CO2 response curves of net CO2 assimilation (An) against variable CO2 concentrations in the intracellular spaces (Ci) at constant environmental conditions were drawn and a Sharkey model was fit to the obtained data. Hyperspectral reflectance (λ = 350-2500 nm) of fresh leaves were obtained and the hyperspectral characteristics and their correlations with the photosynthetic parameters were drawn. Unique contributions from different spectral regions of the hyperspectral data were analyzed. Our results revealed that saline irrigation adversely affects some of the biochemical photosynthetic parameters while favors others and it can be reflected in shifts in patterns at various regions of the hyperspectral data. These results suggest a promising strategy for developing remote sensing methods to characterize photosynthetic activity of

  19. Groundwater Flow Model Including Deeper Part On The Basis Of Field Data - Especially Determination Of Boundary Conditions And Hydraulic Parameters-

    NASA Astrophysics Data System (ADS)

    Machida, I.; Itadera, K.

    2005-12-01

    The final purpose of our study is to clarify the quantitative groundwater flow including deeper part, 500-1000m depth, in the basin in caldera on the mountain. The computer simulation is one the best methods to achieve this purpose. In such a study, however, it is difficult to determine the boundary conditions and hydraulic properties of geology in deeper part, generally. For this reason, we selected Gora basin as a study area, because many hydraulic data have been stored for more than 30 years in this basin. In addition, because the volcanic thermal water is mainly formed by mixing of groundwater and thermal component, the study for deeper groundwater flow can contribute the agenda for the protection of thermal groundwater which is regards as a limited resource. Gora basin, in Hakone area is one of the most famous spa (a resort having thermal groundwater or hot springs) in Japan. The area of the basin is approximately 10 square kilometers and has more than 200 deep wells. In our study, at first, the dataset of hydraulic head was created by using the stored data to construct the conceptual model for groundwater flow. The potential distribution exhibited that the groundwater flowed downward dominant. And the geomorphology can be regarded as hydraulic boundary even in deer part, that is to say, we can regard the ridge as no flow boundary in simulation model. Next, for quantitative understanding of groundwater flow, we need to obtain not only boundary conditions but also hydraulic property of geology, for example, hydraulic conductivity, K, as one of the important parameters. Generally, such a parameter has not been measured in past survey. So, we used the belief method for calculating the hydraulic conductivity by using the data of thermal logging test, which was similar to a slug test. As results of the analysis, the close relationship between K and well depth were obtained. This result implies that the K value depends on the overburden pressure of geology. That is

  20. Evaluation of intensity and energy interaction parameters for the complexation of Pr(III) with selected nucleoside and nucleotide through absorption spectral studies.

    PubMed

    Bendangsenla, N; Moaienla, T; David Singh, Th; Sumitra, Ch; Rajmuhon Singh, N; Indira Devi, M

    2013-02-15

    The interactions of Pr(III) with nucleosides and nucleotides have been studied in different organic solvents employing absorption difference and comparative absorption spectrophotometry. The magnitudes of the variations in both energy and intensity interaction parameters were used to explore the degree of outer and inner sphere co-ordination, incidence of covalency and the extent of metal 4f-orbital involvement in chemical bonding. Various electronic spectral parameters like Slater-Condon (F(k)), Racah (E(k)), Lande parameter (ξ(4f)), Nephelauxatic ratio (β), bonding (b(1/2)), percentage covalency (δ) and intensity parameters like oscillator strength (P) and Judd Ofelt electronic dipole intensity parameter (T(λ), λ=2,4,6) have been evaluated. The variation of these evaluated parameters were employed to interpret the nature of binding of Pr(III) with different ligands i.e. Adenosine/ATP in presence and absence of Ca(2+).

  1. Neutrino masses and cosmological parameters from a Euclid-like survey: Markov Chain Monte Carlo forecasts including theoretical errors

    SciTech Connect

    Audren, Benjamin; Lesgourgues, Julien; Bird, Simeon; Haehnelt, Martin G.; Viel, Matteo E-mail: julien.lesgourgues@cern.ch E-mail: haehnelt@ast.cam.ac.uk

    2013-01-01

    We present forecasts for the accuracy of determining the parameters of a minimal cosmological model and the total neutrino mass based on combined mock data for a future Euclid-like galaxy survey and Planck. We consider two different galaxy surveys: a spectroscopic redshift survey and a cosmic shear survey. We make use of the Monte Carlo Markov Chains (MCMC) technique and assume two sets of theoretical errors. The first error is meant to account for uncertainties in the modelling of the effect of neutrinos on the non-linear galaxy power spectrum and we assume this error to be fully correlated in Fourier space. The second error is meant to parametrize the overall residual uncertainties in modelling the non-linear galaxy power spectrum at small scales, and is conservatively assumed to be uncorrelated and to increase with the ratio of a given scale to the scale of non-linearity. It hence increases with wavenumber and decreases with redshift. With these two assumptions for the errors and assuming further conservatively that the uncorrelated error rises above 2% at k = 0.4 h/Mpc and z = 0.5, we find that a future Euclid-like cosmic shear/galaxy survey achieves a 1-σ error on M{sub ν} close to 32 meV/25 meV, sufficient for detecting the total neutrino mass with good significance. If the residual uncorrelated errors indeed rises rapidly towards smaller scales in the non-linear regime as we have assumed here then the data on non-linear scales does not increase the sensitivity to the total neutrino mass. Assuming instead a ten times smaller theoretical error with the same scale dependence, the error on the total neutrino mass decreases moderately from σ(M{sub ν}) = 18 meV to 14 meV when mildly non-linear scales with 0.1 h/Mpc < k < 0.6 h/Mpc are included in the analysis of the galaxy survey data.

  2. Investigation of optimized experimental parameters including laser wavelength for boron measurement in photovoltaic grade silicon using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Darwiche, S.; Benmansour, M.; Eliezer, N.; Morvan, D.

    2010-08-01

    The quantification of boron and other impurities in photovoltaic grade silicon was investigated using the LIBS technique with attention to the laser wavelength employed, temporal parameters, and the nature of the ambient gas. The laser wavelength was found to have a moderate effect on the performance of the process, while the type of purge gas and temporal parameters had a strong effect on the signal-to-background ratio (SBR) of the boron spectral emission, which was used to determine the boron concentration in silicon. The three parameters are not independent, meaning that for each different purge gas, different optimal temporal parameters are observed. Electron density was also calculated from Stark broadening of the 390.5 nm silicon emission line in order to better understand the different performances observed when using different gases and gating parameters. Calibration curves were made for boron measurement in silicon using certified standards with different purge gases while using the temporal parameters which had been optimized for that gas. By comparing the calibration curves, it was determined that argon is superior to helium or air for use as the analysis chamber purge gas with an UV laser.

  3. Real gas scale effects on hypersonic laminar boundary-layer parameters including effects of entropy-layer swallowing

    NASA Technical Reports Server (NTRS)

    Adams, J. C., Jr.; Martindale, W. R.; Mayne, A. W., Jr.; Marchand, E. O.

    1976-01-01

    Inviscid and viscous (laminar boundary-layer) flow-field calculations under perfect gas hypersonic wind tunnel and equilibrium real gas flight conditions are presented for the windward centerline of the Rockwell International 139 Space Shuttle Orbiter at a 30-deg angle of attack. Correlation parameters for laminar boundary-layer edge quantities and surface heat transfer are developed which properly account for entropy-layer-swallowing effects under both real and perfect gas conditions. Some implications of the proposed correlation parameters on boundary-layer transition are discussed.

  4. Diffuse reflectance of TiO 2 pigmented paints: Spectral dependence of the average pathlength parameter and the forward scattering ratio

    NASA Astrophysics Data System (ADS)

    Vargas, William E.; Amador, Alvaro; Niklasson, Gunnar A.

    2006-05-01

    Diffuse reflectance spectra of paint coatings with different pigment concentrations, normally illuminated with unpolarized radiation, have been measured. A four-flux radiative transfer approach is used to model the diffuse reflectance of TiO2 (rutile) pigmented coatings through the solar spectral range. The spectral dependence of the average pathlength parameter and of the forward scattering ratio for diffuse radiation, are explicitly incorporated into this four-flux model from two novel approximations. The size distribution of the pigments has been taken into account to obtain the averages of the four-flux parameters: scattering and absorption cross sections, forward scattering ratios for collimated and isotropic diffuse radiation, and coefficients involved in the expansion of the single particle phase function in terms of Legendre polynomials.

  5. Should a water colour parameter be included in lake total phosphorus prediction models used for the Water Framework Directive?

    PubMed

    Vinogradoff, Susan I; Oliver, Ian W

    2015-01-01

    Under the Water Framework Directive (WFD) lakes are classified according to a variety of criteria. This classification facilitates state of the environment assessments and helps identify work needed to achieve the objectives of the WFD, which are broadly to maintain and/or restore water quality and ecological status at a level recognised as good or high. To achieve high or good status, lakes must meet a criterion for total phosphorus (TP) that is linked to a predicted reference condition value that is derived by various models. Lakes which fail to meet good status may require expensive remedial actions to be undertaken, thus accurate identification of the reference condition TP concentration is vital for effective environmental management. However, the models currently employed could be improved for some regions, particularly those with carbon rich soils. By examining 19 reference condition lakes (i.e. lakes essentially non-impacted by humans) in peaty areas of Scotland, we found that a simple parameter linked to water colour and humic substances was a better predictor of TP than the currently employed models (R(2) 0.585 vs R(2) < 0.01). Therefore, for Scotland and elsewhere, in regions with carbon rich soils and lakes with humic waters the TP predictive models could be improved by development and incorporation of a parameter related to water colour and humic components.

  6. BISIP I: A program for Bayesian inference of spectral induced polarization parameters, and application to mineral exploration at the Canadian Malartic gold deposit, Québec, CA

    NASA Astrophysics Data System (ADS)

    Lafrenière-Bérubé, Charles; Chouteau, Michel; Shamsipour, Pejman; Olivo, Gema R.

    2016-04-01

    Spectral induced polarization (SIP) parameters can be extracted from field or laboratory complex resistivity measurements, and even airborne or ground frequency domain electromagnetic data. With the growing interest in application of complex resistivity measurements to environmental and mineral exploration problems, there is a need for accurate and easy-to-use inversion tools to estimate SIP parameters. These parameters, which often include chargeability and relaxation time may then be studied and related to other rock attributes such as porosity or metallic grain content, in the case of mineral exploration. We present an open source program, available both as a standalone application or Python module, to estimate SIP parameters using Markov-chain Monte Carlo (MCMC) sampling. The Python language is a high level, open source language that is now widely used in scientific computing. Our program allows the user to choose between the more common Cole-Cole (Pelton), Dias, or Debye decomposition models. Simple circuits composed of resistances and constant phase elements may also be used to represent SIP data. Initial guesses are required when using more classic inversion techniques such as the least-squares formulation, and wrong estimates are often the cause of bad curve fitting. In stochastic optimization using MCMC, the effect of the starting values disappears as the simulation proceeds. Our program is then optimized to do batch inversion over large data sets with as little user-interaction as possible. Additionally, the Bayesian formulation allows the user to do quality control by fully propagating the measurement errors in the inversion process, providing an estimation of the SIP parameters uncertainty. This information is valuable when trying to relate chargeability or relaxation time to other physical properties. We test the inversion program on complex resistivity measurements of 12 core samples from the world-class gold deposit of Canadian Malartic. Results show

  7. Including land use information for the spatial estimation of groundwater quality parameters - 1. Local estimation based on neighbourhood composition

    NASA Astrophysics Data System (ADS)

    Heißerer, T.; Haslauer, C. P.; Bárdossy, A.

    2016-04-01

    Most groundwater recharge comes from the infiltration of water through the land surface. Data analysis shows that solute concentrations at the water table vary between land use categories and depending on the land use composition within a certain neighbourhood. Driven by these observations, the goal of this paper is to estimate the solute distribution at a location depending on the composition of land use in the neighbourhood, even though land use information is categorical. This goal is achieved by mixing pure distributions of homogeneous land use according to their frequency of occurrence in the vicinity of, and their distance from an estimation location. These pure distributions are jointly inverted using a maximum likelihood-based approach. The neighbourhood size is optimized using cross-validation. Measurements below detection limit are included via their probabilities of non-exceedance. A solute-specific, spatially distributed measure of information content of the secondary information is presented. The method is applicable for many types of secondary information and can be used as drift for spatial estimation of the primary variable. This estimation is a local estimation and does not include larger scale spatial information. The information of measurements is included via the optimized concentration distributions for land use groups, not via a model of spatial dependence. The global estimation is described in the companion paper.

  8. Immunological parameters, including CXCL8 (IL-8) characterize cerebro- and cardiovascular events in patients with peripheral artery diseases.

    PubMed

    Szomjak, E; Der, H; Kerekes, G; Veres, K; Csiba, L; Toth, J; Peter, M; Soltesz, P; Szodoray, P

    2010-04-01

    The most commonly occurring atherosclerotic manifestations are peripheral artery diseases (PAD). Immune-mediated processes contribute to the development of atherosclerosis, and affect the diseases outcome. The aim of the present study was to assess various immune-competent cells, cytokines and chemokines in patients with PAD and to evaluate whether the base immunological values reflect the subsequent development of cardio/cerebrovascular symptoms. One hundred sixty patients with PAD were followed-up for 42 months. At the time of enrolment, we determined blood lymphocyte subpopulations, both T-helper (Th)1/Th2-type intracytoplasmic cytokines and soluble cytokines, chemokines. Intracellular cytokines were measured on phorbol-myristate-acetate- and ionomycine- stimulated cells. Lymphocyte subgroups were quantified by flow cytometry, soluble cytokines by ELISA and intracellular cytokine levels were measured by flow cytometry. The ankle-brachial index (ABI), indicator of atherosclerosis, was also evaluated. The clinical results were correlated with the immune-parameters to assess the input of immune-inflammatory events in the propagation of vascular manifestation. CD4(+) T-cell proportions in patients with PAD with cerebro- cardio-vascular manifestations were decreased, which further reduced in patients with fatal outcome. Of circulating chemokines, IL-8 (CXCL-8) was increased in patients with subsequent cerebro- cardio-vascular manifestations, compared to those without the symptoms, and further raised in patients with fatal outcome. The percentage of interferon (IFN)-gamma positive cells showed clear negative correlation with ABI. We conclude that altered peripheral lymphocyte subsets and cytokine/chemokine imbalance play important roles in the proinflammatory cascade and reflect disease severity in patients with PAD.

  9. Temporal-scale spectral variability analysis of water quality parameters to realize seasonal behaviour of a tropical river system--River Cauvery, India.

    PubMed

    Prakash, K L; Raghavendra, K; Somashekar, R K

    2009-03-01

    This paper describes the Time series analysis of river water quality with emphasis on variation in parameters as evidenced by statistical approach and mathematical models. The extensive study enabled to differentiate and realize the behaviour of river and catchment's changes induced by human activities. The Time series analysis evaluation indicated trivial variation and movement in the water quality as reflected by the changes in the catchment characteristics. Although the observed trends showed an insignificant human contribution to basin hydrology and river water chemistry, noticeable human activities and unsustainable practices steadily contributed to change in water quality from the existing long term spectral signatures to short term spectral signatures. It is inferred that short term spectral signature exhibited on temporal scale by a monitoring program of this kind reflects an insalubrious river system and long term gradual changes in spectrum is an indication of healthy system. Monitoring and analyses of these decisive changes in water quality parameters over a period could be a powerful tool for assessing general river water quality and management plan.

  10. Including land use information for the spatial estimation of groundwater quality parameters - 2. Interpolation methods, results, and comparison

    NASA Astrophysics Data System (ADS)

    Haslauer, C. P.; Heißerer, T.; Bárdossy, A.

    2016-04-01

    Two dominant processes determine solute concentration in groundwater: vertical infiltration and horizontal advection. The goal of this paper is to incorporate both processes into a geostatistical model for spatial estimation of solute concentrations in groundwater. A multivariate copula-based methodology is demonstrated that considers infiltration via the marginal distribution and solute transport via the multivariate spatial dependence structure. The novel approach is compared to traditional methods as Ordinary- and External Drift Kriging. Leave-one-out cross-validation demonstrates that the novel approach estimates better both in concentration and in probability space, and improves the quantification and quality of uncertainty. The gain in uncertainty reduction is equivalent to at least a few hundred additional observations when Ordinary Kriging was used. Both censored and not-censored measurements are included. An ideal neighborhood size is estimated via cross-validation. The methodology is general and can incorporate other kinds of secondary information. It can be used to evaluate effects of land use changes.

  11. Differential diagnosis between Crohn’s disease and intestinal tuberculosis using integrated parameters including clinical manifestations, T-SPOT, endoscopy and CT enterography

    PubMed Central

    Zhang, Tianyu; Fan, Rong; Wang, Zhengting; Hu, Shurong; Zhang, Maochen; Lin, Yun; Tang, Yonghua; Zhong, Jie

    2015-01-01

    Background: The aim of the study was to evaluate clinical manifestations, T-SPOT, endoscopy and CT enterography to differentiate Crohn’s disease (CD) from intestinal tuberculosis (ITB). Methods: 128 in patients with suspected CD and ITB were prospectively enrolled in the study. Demographic, clinical, laboratory, endoscopic and CT enterographic data were collected. After treatment for 6 months, when a definite diagnosis was reached, the differential diagnostic value of each parameter was analyzed. Multivariable logistic regression was used to analyze further, parameters of statistical significance to establish a mathematical regression equation. Receiver operating characteristic curves were plotted. Results: Clinical parameters helpful in differentiating CD from ITB included diarrhea, night sweat and perianal disease. Endoscopic parameters were useful in differentiating CD from ITB including transverse ulcers, longitudinal ulcers, rodent-like ulcers and patulous ileocecal valve. CT enterographic parameters aided the identification of the two conditions. The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of a mathematical regression model established for 6 parameters of clinical endoscopy and CT enterography were 97.8%, 96.8%, 97.6%, 98.9% and 93.7% respectively, whereas those for T-SPOT were 96.8%, 91.3%, 92.7%, 78.9% and 98.8% respectively. Conclusions: T-SPOT is useful to exclude a diagnosis of ITB. Differentiating CD from ITB is a difficult clinical problem that requires a consideration of clinical, T-SPOT, endoscopic and CT enterographic parameters for accurate diagnosis. PMID:26770348

  12. The effects of spectral and temporal parameters on perceived confirmation of an auditory non-speech signal.

    PubMed

    Bodendörfer, Xaver; Kortekaas, Reinier; Weingarten, Markus; Schlittmeier, Sabine

    2015-08-01

    In human-machine interactions, the confirmation of an action or input is a very important information for users. A paired comparison experiment explored the effects of four acoustic parameters on the perceived confirmation of auditory non-speech signals. Reducing the frequency-ratio and the pulse-to-pulse time between two successive pulses increased perceived confirmation. The effects of the parameters frequency and number of pulses were not clear-cut. The results provide information for designing auditory confirmation signals. It is shown that findings about the effects of certain parameters on the perceived urgency of warning signals cannot be easily inverted to perceived confirmation. PMID:26328737

  13. [Study on the Effects and Compensation Effect of Recording Parameters Error on Imaging Performance of Holographic Grating in On-Line Spectral Diagnose].

    PubMed

    Jiang, Yan-xiu; Bayanheshig; Yang, Shuo; Zhao, Xu-long; Wu, Na; Li, Wen-hao

    2016-03-01

    To making the high resolution grating, a numerical calculation was used to analyze the effect of recording parameters on groove density, focal curve and imaging performance of the grating and their compensation. Based on Fermat' s principle, light path function and aberration, the effect on imaging performance of the grating was analyzed. In the case of fixed using parameters, the error of the recording angle has a greater influence on imaging performance, therefore the gain of the weight of recording angle can improve the accuracy of the recording angle values in the optimization; recording distance has little influence on imaging performance; the relative errors of recording parameters cause the change of imaging performance of the grating; the results indicate that recording parameter errors can be compensated by adjusting its corresponding parameter. The study can give theoretical guidance to the fabrication for high resolution varied-line-space plane holographic grating in on-line spectral diagnostic and reduce the alignment difficulty by analyze the main error effect the imaging performance and propose the compensation method. PMID:27400538

  14. Effect of head tilt on repeatability of optic nerve head parameters using cirrus spectral-domain optical coherence tomography

    PubMed Central

    Koh, Lilian Hui Li; Ismail, Muhammad Amir; Yap, Sae Cheong; Wong, Elizabeth Poh Ying; Yip, Leonard Wei Leon

    2016-01-01

    AIM To assess the repeatability of measuring optic nerve head (ONH) parameters using the Cirrus optical coherence tomography (OCT), as well as to assess the effect of head tilt on these measurements. METHODS Thirty healthy participants with no evidence of glaucoma were recruited for the study. Visual acuity, intraocular pressure, standard automated perimetry and ocular examination were performed for each participant. One eye was then randomly selected and scanned undilated with the Cirrus OCT in 3 positions (neutral, 30° right tilt and 30° left tilt). RESULTS Data collected from 29 eyes were used for analysis. One patient was omitted due to poor scan quality. The repeatability of the ONH parameters was analyzed using analysis of variance, coefficient of variation (COV) and intraclass correlation coefficient (ICC). Analysis of variance showed no statistically significant difference between 3 scans in a single position. There was good agreement between measurements (ICC 0.919-0.996, COV 1.94%-5.48%). Even with the presence of head tilt, repeated scans in the 3 positions showed good agreement as well (ICC 0.888-0.996, COV 2.04%-5.39%). CONCLUSION Serial measurements of ONH parameters using the Cirrus OCT are found to have good repeatability. The ONH parameters with Cirrus OCT also maintain good repeatability despite head tilt. PMID:27585788

  15. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: II. Control of the H II Region Parameters

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A; Leitherer, C

    2006-03-01

    We examine from a theoretical viewpoint how the physical parameters of H II regions are controlled both in normal galaxies and in starburst environments. These parameters are the H II region luminosity function, the time-dependent size, the covering fraction of molecular clouds, the pressure in the ionized gas and the ionization parameter. The factors which control them are the initial mass function of the exciting stars, the cluster mass function, the metallicity and the mean pressure in the surrounding interstellar medium. We investigate the sensitivity of the H{alpha} luminosity to the IMF, and find that this can translate to about 30% variation in derived star formation rates. The molecular cloud dissipation timescale is estimated from a case study of M17 to be {approx} 1 Myr. Based upon H II luminosity function fitting for nearby galaxies, we propose that the cluster mass function has a log-normal form peaking at {approx} 185M{sub {circle_dot}}. This suggests that the cluster mass function is the continuation of the stellar IMF to higher mass. The pressure in the H II regions is controlled by the mechanical luminosity flux from the central cluster. Since this is closely related to the ionizing photon flux, we show that the ionization parameter is not a free variable, and that the diffuse ionized medium may be composed of many large, faint and old H II regions. Finally, we derive theoretical probability distributions for the ionization parameter as a function of metallicity and compare these to those derived for SDSS galaxies.

  16. Spectral sampling tools for vegetation biophysical parameters and flux measurements in Europe: the European ES0903 COST Action

    NASA Astrophysics Data System (ADS)

    Vescovo, L.

    2010-12-01

    The estimate of carbon sequestration by terrestrial ecosystems and the prediction of the global change impact on the ecosystem carbon balance are becoming urgent needs required by international agreements. To support the development of this knowledge, a deep insight into processes that regulate carbon exchanges between terrestrial ecosystems and the atmosphere is fundamental. Flux towers remain a primary tool for understanding ecosystem carbon fluxes within the global flux networks. International initiatives such as SpecNet are developing to fill the temporal and spatial gap between ecosystem measurements and remote sensing by means of scale-appropriate optical measurements. In this framework, a new EU COST Action project has started in Europe. Up to now, 16 countries are participating to the Action. The COST Action project is open to researchers from European Cost Countries, but also from Near-Neighbour and non-COST countries can participate to the Action and, in some cases, can obtain some specific national funding (e.g. Australia, New Zealand, South Africa, Argentina). According to the highlighted scientific questions, the objectives of ES0903 are i) to analyse the state of the art of the optical sampling research in Europe, ii) to standardize tools and methods in the optical sampling measurements, iii) to focus on the fluxes and biomass estimation problems as an input to the technological world for development of new sensors and iv) to involve the scientific instruments industries in designing and testing a common multi-band reflectance sensor for ground optical measurements in the European flux network. Thanks to the Action, the use of standardised protocols will be encouraged within a spectral measurements network, across site comparisons will be enabled and the use of new instruments and sensors will be promoted and tested. Some of the most common issues of the proximal sampling research, performed at ecosystem level, are: i)methods, protocols and

  17. Variation of Mqw Design Parameters in a GaAs/InP-BASED Lw-Vcsel and its Effects on the Spectral Linewidth

    NASA Astrophysics Data System (ADS)

    Menon, P. Susthitha; Kandiah, Kumarajah; Shaari, Sahbudin

    This paper reports on the simulative and comparative study on the effects of multi quantum well (MQW) design parameters on the spectral linewidth of a wafer-bonded GaAs/InP-based, 1.5 μm long-wavelength vertical-cavity surface-emitting laser (LW-VCSEL). The device employs InGaAsP MQWs sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBR) and utilizes a bottom-emitting, air-post design for current confinement. Among the modeled LW-VCSEL devices, the best linewidth achieved was 41.29 MHz at a peak wavelength of 1.57 μm for 8 MQWs with well thicknesses of 5.5 nm each and barrier thicknesses of 8 nm; equivalent to the experimental device developed in the past. Comparison of linewidth values calculated using developed analytical equations that link the MQW parameters to the spectral linewidth versus the actual linewidth from fabricated devices yields error ratios of ~ 6% proving a robust approximation has been achieved.

  18. Study on spectral parameters and the support vector machine in surface enhanced Raman spectroscopy of serum for the detection of colon cancer

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhou; Yang, Tianyue; Li, Siqi; Yao, Jun; Song, Youtao; Wang, Deli; Ding, Jianhua

    2015-11-01

    Surface enhanced Raman spectroscopy (SERS) has been recognized as an effective tool for the analysis of tissue samples and biofluids. In this work, a total of 27 spectral parameters were chosen and compared using SERS. Four parameters with the highest prediction ability were selected for further support vector machine (SVM) analysis. As a comparison, principal component analysis (PCA) was used on the same dataset for feature extraction. SVM was used with the above two data reduction methods separately to differentiate colon cancer and the control groups. Serum taken from 52 colon cancer patients and 60 healthy volunteers were collected and tested by SERS. The accuracy for Parameter-SVM was 95.0%, the sensitivity was 96.2%, and the specificity was 95.5%, which was much higher than the results using only one parameter, while for PCA-SVM, the results are 93.3%, 92.3%, and 92.9%, respectively. These results demonstrate that the SERS analysis method can be used to identify serum differences between colon cancer patients and normal people.

  19. Spectral line polarization with angle-dependent partial frequency redistribution. I. A Stokes parameters decomposition for Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Frisch, H.

    2010-11-01

    Context. The linear polarization of a strong resonance lines observed near the solar limb is created by a multiple-scattering process. Partial frequency redistribution (PRD) effects must be accounted for to explain the polarization profiles. The redistribution matrix describing the scattering process is a sum of terms, each containing a PRD function multiplied by a Rayleigh type phase matrix. A standard approximation made in calculating the polarization is to average the PRD functions over all the scattering angles, because the numerical work needed to take the angle-dependence of the PRD functions into account is large and not always needed for reasonable evaluations of the polarization. Aims: This paper describes a Stokes parameters decomposition method, that is applicable in plane-parallel cylindrically symmetrical media, which aims at simplifying the numerical work needed to overcome the angle-average approximation. Methods: The decomposition method relies on an azimuthal Fourier expansion of the PRD functions associated to a decomposition of the phase matrices in terms of the Landi Degl'Innocenti irreducible spherical tensors for polarimetry T^K_Q(i, Ω) (i Stokes parameter index, Ω ray direction). The terms that depend on the azimuth of the scattering angle are retained in the phase matrices. Results: It is shown that the Stokes parameters I and Q, which have the same cylindrical symmetry as the medium, can be expressed in terms of four cylindrically symmetrical components I_Q^K (K = Q = 0, K = 2, Q = 0, 1, 2). The components with Q = 1, 2 are created by the angular dependence of the PRD functions. They go to zero at disk center, ensuring that Stokes Q also goes to zero. Each component I_Q^K is a solution to a standard radiative transfer equation. The source term S_Q^K are significantly simpler than the source terms corresponding to I and Q. They satisfy a set of integral equations that can be solved by an accelerated lambda iteration (ALI) method.

  20. Relating Multi-Scale Phenology to Arctic Ecosystem Parameters Using Various High Spatial and Spectral Resolution Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Vargas, S. A.; Melendez, M.; Tweedie, C. E.; Oberbauer, S. F.

    2012-12-01

    The need to improve the spatial and temporal scaling and extrapolation of plot level ecosystem properties and processes to the landscape level remains a persistent research challenge in the Arctic. Plant and landscape phenology is sensitive to a number of variable environmental factors such as soil moisture, temperature, and radiation. Seasonal and inter-annual environmental differences in these factors and phenology can affect surface energy and carbon balance and reflectance. Therefore improved scaling and extrapolation of phenological dynamics from the plot level to the landscape level is key to further understanding the impact of climate and other environmental change in arctic terrestrial ecosystems. This study contributes to the US Arctic Observing Network and focuses on a range of remotely sensed spectral indices derived from ground-based hyperspectral reflectance, time-lapse photography, kite aerial photography (KAP), and satellite imagery during the 2010-2012 snow free periods for the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska. Range of greenness indices have been calculated for different vegetation types (i.e. dry, moist, wet, aquatic) within each site. Preliminary results show that NDVI values acquired from ground based hyperspectral reflectance show similar seasonal and interannual trends as the 2G-RB index values derived for both the KAP and time-lapse time series photography for both study locations. An increase in peak season NDVI and 2G-RB values for dry, moist, and wet vegetation types were seen between the years of 2011 and 2012 for ground reflectance and KAP platforms in Barrow. While peak season 2G-RB values for dry, moist, and wet vegetation types increased using the time-lapse images between the years of 2011 and 2012 in Atqasuk. Intercomparison with high spatial resolution satellite imagery is on going. Plot level measurements have provided detailed insight into a range of ecosystem

  1. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue.

    PubMed

    Wise, Olivia; Coskuner, Orkid

    2014-06-30

    Transition metal ion complexation with proteins is ubiquitous across such diverse fields as neurodegenerative and cardiovascular diseases and cancer. In this study, the structures of divalent copper ion centers including three histidine and one oxygen-ligated amino acid residues and the relative binding affinities of the oxygen-ligated amino acid residues with these metal ion centers, which are debated in the literature, are presented. Furthermore, new force field parameters, which are currently lacking for the full-length metal-ligand moieties, are developed for metalloproteins that have these centers. These new force field parameters enable investigations of metalloproteins possessing these binding sites using molecular simulations. In addition, the impact of using the atom equivalence and inequivalence atomic partial charge calculation procedures on the simulated structures of these metallopeptides, including hydration properties, is described.

  2. Apollo MEED mycology revisited and reviewed, including the Trichophyton terrestre keratinophilic growth at splashdown and 23 years after exposure to space parameters.

    PubMed

    Volz, P A; Long, J D; Veselenak, J M

    1995-01-01

    Keratinophilic Trichophyton terrestre conidia were exposed to selected parameters of space flight including 254, 280 and 300 nm UV light, full light and total darkness of space. Phenotypic isolates were grown on human hair collected from one source at years 1 and 23 after splashdown. The patterns of fungal growth on the hair, and the hair deterioration rates, were noted according to the space exposure. Growth and deterioration were consistent but slightly reduced at year 23.

  3. Apollo MEED mycology revisited and reviewed, including the Trichophyton terrestre keratinophilic growth at splashdown and 23 years after exposure to space parameters.

    PubMed

    Volz, P A; Long, J D; Veselenak, J M

    1995-01-01

    Keratinophilic Trichophyton terrestre conidia were exposed to selected parameters of space flight including 254, 280 and 300 nm UV light, full light and total darkness of space. Phenotypic isolates were grown on human hair collected from one source at years 1 and 23 after splashdown. The patterns of fungal growth on the hair, and the hair deterioration rates, were noted according to the space exposure. Growth and deterioration were consistent but slightly reduced at year 23. PMID:7476563

  4. A parameter-free dynamic alternative to hyper-viscosity for coupled transport equations: Application to the simulation of 3D squall lines using spectral elements

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Giraldo, Francis X.

    2015-02-01

    The stabilization of high order spectral elements to solve the transport equations for tracers in the atmosphere remains an active topic of research among atmospheric modelers. This paper builds on our previous work on variational multiscale stabilization (VMS) and discontinuity capturing (DC) (Marras et al. (2012) [7]) and shows the applicability of VMS+DC to realistic atmospheric problems that involve physics coupling with phase change in the simulation of 3D deep convection. We show that the VMS+DC approach is a robust technique that can damp the high order modes characterizing the spectral element solution of complex coupled transport problems. The method has important properties that techniques of more common use often lack: 1) it is free of a user-defined parameter, 2) it is anisotropic in that it only acts along the flow direction, 3) it is numerically consistent, and 4) it can improve the monotonicity of high-order spectral elements. The proposed method is assessed by comparing the results against those obtained with a fourth-order hyper-viscosity programmed in the same code. The main conclusion that arises is that tuning can be fully avoided without loss of accuracy if the dissipative scheme is properly designed. Finally, the cost of parallel communication is that of a second order operator which means that fewer communications are required by VMS+DC than by a hyper-viscosity method; fewer communications translate into a faster and more scalable code, which is of vital importance as we approach the exascale range of computing.

  5. The pulse-pair algorithm as a robust estimator of turbulent weather spectral parameters using airborne pulse Doppler radar

    NASA Technical Reports Server (NTRS)

    Baxa, Ernest G., Jr.; Lee, Jonggil

    1991-01-01

    The pulse pair method for spectrum parameter estimation is commonly used in pulse Doppler weather radar signal processing since it is economical to implement and can be shown to be a maximum likelihood estimator. With the use of airborne weather radar for windshear detection, the turbulent weather and strong ground clutter return spectrum differs from that assumed in its derivation, so the performance robustness of the pulse pair technique must be understood. Here, the effect of radar system pulse to pulse phase jitter and signal spectrum skew on the pulse pair algorithm performance is discussed. Phase jitter effect may be significant when the weather return signal to clutter ratio is very low and clutter rejection filtering is attempted. The analysis can be used to develop design specifications for airborne radar system phase stability. It is also shown that the weather return spectrum skew can cause a significant bias in the pulse pair mean windspeed estimates, and that the poly pulse pair algorithm can reduce this bias. It is suggested that use of a spectrum mode estimator may be more appropriate in characterizing the windspeed within a radar range resolution cell for detection of hazardous windspeed gradients.

  6. General integrable n-level, many-mode Janes-Cummings-Dicke models and classical r-matrices with spectral parameters

    SciTech Connect

    Skrypnyk, T. E-mail: tskrypnyk@imath.kiev.ua

    2015-02-15

    Using the technique of classical r-matrices and quantum Lax operators, we construct the most general form of the quantum integrable “n-level, many-mode” spin-boson Jaynes-Cummings-Dicke-type hamiltonians describing an interaction of a molecule of N n-level atoms with many modes of electromagnetic field and containing, in general, additional non-linear interaction terms. We explicitly obtain the corresponding quantum Lax operators and spin-boson analogs of the generalized Gaudin hamiltonians and prove their quantum commutativity. We investigate symmetries of the obtained models that are associated with the geometric symmetries of the classical r-matrices and construct the corresponding algebra of quantum integrals. We consider in detail three classes of non-skew-symmetric classical r-matrices with spectral parameters and explicitly obtain the corresponding quantum Lax operators and Jaynes-Cummings-Dicke-type hamiltonians depending on the considered r-matrix.

  7. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  8. A Recommended Procedure for Estimating the Cosmic-Ray Spectral Parameter of a Simple Power Law With Applications to Detector Design

    NASA Technical Reports Server (NTRS)

    Howell, L. W.

    2001-01-01

    A simple power law model consisting of a single spectral index alpha-1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV. Two procedures for estimating alpha-1 the method of moments and maximum likelihood (ML), are developed and their statistical performance compared. It is concluded that the ML procedure attains the most desirable statistical properties and is hence the recommended statistical estimation procedure for estimating alpha-1. The ML procedure is then generalized for application to a set of real cosmic-ray data and thereby makes this approach applicable to existing cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives. This is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.

  9. Spectral P-wave magnitudes, magnitude spectra and other source parameters for the 1990 southern Sudan and the 2005 Lake Tanganyika earthquakes

    NASA Astrophysics Data System (ADS)

    Moussa, Hesham Hussein Mohamed

    2008-10-01

    Teleseismic Broadband seismograms of P-waves from the May 1990 southern Sudan and the December, 2005 Lake Tanganyika earthquakes; the western branch of the East African Rift System at different azimuths have been investigated on the basis of magnitude spectra. The two earthquakes are the largest shocks in the East African Rift System and its extension in southern Sudan. Focal mechanism solutions along with geological evidences suggest that the first event represents a complex style of the deformation at the intersection of the northern branch of the western branch of the East African Rift and Aswa Shear Zone while the second one represents the current tensional stress on the East African Rift. The maximum average spectral magnitude for the first event is determined to be 6.79 at 4 s period compared to 6.33 at 4 s period for the second event. The other source parameters for the two earthquakes were also estimated. The first event had a seismic moment over fourth that of the second one. The two events are radiated from patches of faults having radii of 13.05 and 7.85 km, respectively. The average displacement and stress drop are estimated to be 0.56 m and 1.65 MPa for the first event and 0.43 m and 2.20 MPa for the second one. The source parameters that describe inhomogeneity of the fault are also determined from the magnitude spectra. These additional parameters are complexity, asperity radius, displacements across the asperity and ambient stress drop. Both events produce moderate rupture complexity. Compared to the second event, the first event is characterized by relatively higher complexity, a low average stress drop and a high ambient stress. A reasonable explanation for the variations in these parameters may suggest variation in the strength of the seismogenic fault which provides the relations between the different source parameters. The values of stress drops and the ambient stresses estimated for both events indicate that these earthquakes are of interplate

  10. 3-D magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on SMP computers - Part I: forward problem and parameter Jacobians

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    We have developed an algorithm, which we call HexMT, for 3-D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permit incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used throughout, including the forward solution, parameter Jacobians and model parameter update. In Part I, the forward simulator and Jacobian calculations are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequencies or small material admittivities, the E-field requires divergence correction. With the help of Hodge decomposition, the correction may be applied in one step after the forward solution is calculated. This allows accurate E-field solutions in dielectric air. The system matrix factorization and source vector solutions are computed using the MKL PARDISO library, which shows good scalability through 24 processor cores. The factorized matrix is used to calculate the forward response as well as the Jacobians of electromagnetic (EM) field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure, several synthetic topographic models and the natural topography of Mount Erebus in Antarctica. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of EM waves normal to the slopes at high frequencies. Run-time tests of the parallelized algorithm indicate that for meshes as large as 176 × 176 × 70 elements, MT forward responses and Jacobians can be calculated in ˜1.5 hr per frequency. Together with an efficient inversion parameter step described in Part II, MT inversion problems of 200-300 stations are computable with total run times

  11. X-ray spectral measurement of high-temperature plasma parameters in porous targets irradiated with high-power laser pulses

    SciTech Connect

    Gavrilov, V V; Gol'tsov, A Yu; Koval'skii, N G; Koptyaev, S N; Magunov, A I; Pikuz, T A; Skobelev, I Yu; Faenov, A Ya

    2001-12-31

    The X-ray spectra of multiply charged ions were recorded from planar agar (C{sub 12}H{sub 18}O{sub 9}){sub n} based targets with an average density of 2 mg cm{sup -3} irradiated by high-power laser pulses ({lambda}=1.054 {mu}m, {tau}=2.5 ns, I {approx} 5 x10{sup 13} W cm{sup -2}). The spectra were recorded with a high spectral and spatial resolution employing spherically bent (focusing) crystals of mica and quartz. An analysis of the experimental data obtained by the irradiation of Al{sub 2}O{sub 3}-doped agar samples allowed us to determine the main parameters of the plasma produced inside the targets. The ion temperature of plasma in low-density porous targets was estimated for the first time to be 1.5 - 2 times higher than the electron temperature. (interaction of laser radiation with matter. laser plasma)

  12. Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Han; Danielsson, Mats; Xu, Cheng

    2016-06-01

    We are developing a photon-counting spectral CT detector with a small pixel size of 0.4× 0.5 mm2, offering a potential advantage for better visualization of small structures in pediatric patients. The purpose of this study is to determine the patient size dependent scanning parameters (kVp and mAs) for pediatric CT in two imaging cases: adipose imaging and iodinated blood imaging. Cylindrical soft-tissue phantoms of diameters between 10-25 cm were used to mimic patients of different ages from 0 to 15 y. For adipose imaging, a 5 mm diameter adipose sphere was assumed as an imaging target, while in the case of iodinated imaging, an iodinated blood sphere of 1 mm in diameter was assumed. By applying the geometry of a commercial CT scanner (GE Lightspeed VCT), simulations were carried out to calculate the detectability index, {{d}\\prime 2} , with tube potentials varying from 40 to 140 kVp. The optimal kVp for each phantom in each imaging case was determined such that the dose-normalized detectability index, {{d}\\prime 2}/ dose, is maximized. With the assumption that the detectability index in pediatric imaging is required the same as in typical adult imaging, the value of mAs at optimal kVp for each phantom was selected to achieve a reference detectability index that was obtained by scanning an adult phantom (30 cm in diameter) in a typical adult CT procedure (120 kVp and 200 mAs) using a modeled energy-integrating system. For adipose imaging, the optimal kVps are 50, 60, 80, and 120 kVp, respectively, for phantoms of 10, 15, 20, and 25 cm in diameter. The corresponding mAs values required to achieve the reference detectability index are only 9%, 23%, 24%, and 54% of the mAs that is used for adult patients at 120 kVp, for 10, 15, 20, and 25 cm diameter phantoms, respectively. In the case of iodinated imaging, a tube potential of 60 kVp was found optimal for all phantoms investigated, and the mAs values required to achieve the reference detectability

  13. Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Han; Danielsson, Mats; Xu, Cheng

    2016-06-01

    We are developing a photon-counting spectral CT detector with a small pixel size of 0.4× 0.5 mm2, offering a potential advantage for better visualization of small structures in pediatric patients. The purpose of this study is to determine the patient size dependent scanning parameters (kVp and mAs) for pediatric CT in two imaging cases: adipose imaging and iodinated blood imaging. Cylindrical soft-tissue phantoms of diameters between 10–25 cm were used to mimic patients of different ages from 0 to 15 y. For adipose imaging, a 5 mm diameter adipose sphere was assumed as an imaging target, while in the case of iodinated imaging, an iodinated blood sphere of 1 mm in diameter was assumed. By applying the geometry of a commercial CT scanner (GE Lightspeed VCT), simulations were carried out to calculate the detectability index, {{d}\\prime 2} , with tube potentials varying from 40 to 140 kVp. The optimal kVp for each phantom in each imaging case was determined such that the dose-normalized detectability index, {{d}\\prime 2}/ dose, is maximized. With the assumption that the detectability index in pediatric imaging is required the same as in typical adult imaging, the value of mAs at optimal kVp for each phantom was selected to achieve a reference detectability index that was obtained by scanning an adult phantom (30 cm in diameter) in a typical adult CT procedure (120 kVp and 200 mAs) using a modeled energy-integrating system. For adipose imaging, the optimal kVps are 50, 60, 80, and 120 kVp, respectively, for phantoms of 10, 15, 20, and 25 cm in diameter. The corresponding mAs values required to achieve the reference detectability index are only 9%, 23%, 24%, and 54% of the mAs that is used for adult patients at 120 kVp, for 10, 15, 20, and 25 cm diameter phantoms, respectively. In the case of iodinated imaging, a tube potential of 60 kVp was found optimal for all phantoms investigated, and the mAs values required to achieve the reference detectability

  14. The effect of variations in relative spectral response on the retrieval of land surface parameters from multiple sources of remotely sensed imagery

    USGS Publications Warehouse

    Meyer, D.J.; Chander, G.

    2008-01-01

    Airborne Visible Infrared Imaging Spectrometer (AVIRIS) images , collected over Sioux Falls, South Dakota, were used to quantify the effect of spectral response on different surface materials and to develop spectral "figures-of-merit" for spectral responses covering similar, but not identical spectral bands. In this simulation, AVIRIS images were converted to radiance, then spectrally resampled to six wavelength bands commonly used for terrestrial observation. Preliminary results indicate that differences between the simulations can be attributed to variations in surface reflectance within spectral bands, and suggest influences due to water vapor absorption. Radiance simulated from the spectrally narrow Moderate Resolution Imaging Spectroradiometer (MODIS) Relative Spectral Responses (RSR) was generally higher than that using the broader Enhanced Thematic Mapper Plus (ETM+) RSRs over most targets encountered over the test area. This is consistent with many MODIS bands being biased toward shorter wavelengths compared to corresponding ETM+ bands when viewing targets whose radiance decreases with wavelength. In some cases the higher radiance values appeared to occur where the MODIS RSR is better situated over peak reflected wavelengths. Simulation differences between MODIS & ETM+ bands in the near-infrared indicated higher MODIS radiance values that suggest the influence of water vapor absorption at 820 nanometers. This result agreed with water vapor values retrieved from the AVIRIS images themselves at around 2.7 cm precipitable water, and measurements made at a nearby AERONET node at around 2.8cm during the AVIRIS overflight ?? 2007 IEEE.

  15. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    PubMed

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  16. Determination of Fowler-Nordheim tunneling parameters in Metal-Oxide-Semiconductor structure including oxide field correction using a vertical optimization method

    NASA Astrophysics Data System (ADS)

    Toumi, S.; Ouennoughi, Z.; Strenger, K. C.; Frey, L.

    2016-08-01

    Current conduction mechanisms through a Metal-Oxide-Semiconductor structure are characterized via Fowler-Nordheim (FN) plots. The extraction of the FN parameters like the electron/hole effective mass in oxide mox and in semiconductor msc, the barrier height at the semiconductor-oxide interface ϕB, and the correction oxide voltage Vcorr for a MOS structure is made using a vertical optimization process on the current density without any assumption about ϕB or mox. An excellent agreement is obtained between the FN plots calculated with the FN parameters extracted using a vertical optimization process with the experimental one.

  17. An analysis of the effect of biological and physical parameters of a wetlands grass biome on the spectral modeling of phytomass and primary productivity

    NASA Technical Reports Server (NTRS)

    Butera, M. K.; Frick, A.

    1984-01-01

    Aircraft simulated thematic mapper data and field data were acquired in the fall and spring to analyze the relationship of spectral response and biomass for the marsh grass Spartina patens. Regression results indicate no simple relationship exists for TMS spectral response and biomass with a high R sq. However, results show a consistent relationship between spectral response and the percent live vegetation (by weight) and percent interstitial standing surface water (by area) as independent variables. It is suggested that the reflected energy of a pixel represents a mixture of surface constituents. It is recommended that alternative remote sensors be employed to account for the pixel constituents of live and dead vegetation, litter, and standing water.

  18. Diurnal patterns of wheat spectral reflectances and their importance in the assessment of canopy parameters from remotely sensed observations. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Pinter, P. J.; Jackson, R. D.; Idso, S. B.; Reginato, R. J. (Principal Investigator)

    1982-01-01

    Spectral reflectances of Produra wheat were measured at 13 different times of the day at Phoenix, Arizona, during April 1979 using a nadir-oriented hand-held 4-band radiometer which had bandpass characteristics similar to those on LANDSAT satellites. Different Sun altitude and azimuth angles caused significant diurnal changes in radiant return in both visible and near-IR regions of the spectrum and in several vegetation indices derived from them. The magnitude of these changes were related to different canopy architecture, percent cover and green leaf area conditions. Spectral measurements taken at each time period were well correlated with green leaf area index but the nature of the relationship changed significantly with time of day. Thus, a significant bias in the estimation of the green leaf area index from remotely sensed spectral data could occur if sun angles are not properly accounted for.

  19. Operational real-time modeling with ensemble Kalman filter of variably saturated subsurface flow including stream-aquifer interaction and parameter updating

    NASA Astrophysics Data System (ADS)

    Hendricks Franssen, H. J.; Kaiser, H. P.; Kuhlmann, U.; Bauser, G.; Stauffer, F.; Müller, R.; Kinzelbach, W.

    2011-02-01

    Urban groundwater is frequently contaminated, and the exact location of the pollution spots is often unknown. Intelligent monitoring of the temporal variations in groundwater flow in such an area assists in selectively extracting groundwater of drinking water quality. Here an example from the city of Zurich (Switzerland) is shown. The monitoring strategy consists of using the ensemble Kalman filter (EnKF) for optimally combining online observations and online models for the real-time characterization of groundwater flow. We conducted numerical simulation experiments for the period January 2004 to December 2007 with a 3-D finite element model for variably saturated groundwater flow. It was found that the daily assimilation of piezometric head data with EnKF results in a better characterization of piezometric heads than does a model which is inversely calibrated with historical data but not updated in real time. The positive impact of model updating with observations can still be observed 10 days after the update. These simulations also suggest that parameters (hydraulic conductivity and leakage) are successfully updated: 1 and 10 day piezometric head predictions are better with than without updating of parameters. Additional experiments with a synthetic model for the same site, in which the only difference is that certain parameter values are selected as the unknown "true" conditions, show that EnKF also successfully updates unknown parameters. However, this is only the case if spatially distributed hydraulic conductivities and leakage coefficients are jointly updated and if a damping parameter is used. The mean absolute error of estimated log leakage coefficients decreased by up to 63%; for log hydraulic conductivity a decrease of up to 27% was observed. From January 2009 the method has been operational at the Water Works Zurich and showed a remarkable performance until present (October 2010).

  20. Spectrally resolved modulated infrared radiometry of photothermal, photocarrier, and photoluminescence response of CdSe crystals: Determination of optical, thermal, and electronic transport parameters

    NASA Astrophysics Data System (ADS)

    Pawlak, M.; Chirtoc, M.; Horny, N.; Pelzl, J.

    2016-03-01

    Spectrally resolved modulated infrared radiometry (SR-MIRR) with super-band gap photoexcitation is introduced as a self-consistent method for semiconductor characterization (CdSe crystals grown under different conditions). Starting from a theoretical model combining the contributions of the photothermal (PT) and photocarrier (PC) signal components, an expression is derived for the thermal-to-plasma wave transition frequency ftc which is found to be wavelength-independent. The deviation of the PC component from the model at high frequency is quantitatively explained by a quasi-continuous distribution of carrier recombination lifetimes. The integral, broad frequency band (0.1 Hz-1 MHz) MIRR measurements simultaneously yielded the thermal diffusivity a, the effective IR optical absorption coefficient βeff, and the bulk carrier lifetime τc. Spectrally resolved frequency scans were conducted with interchangeable IR bandpass filters (2.2-11.3 μm) in front of the detector. The perfect spectral match of the PT and PC components is the direct experimental evidence of the key assumption in MIRR that de-exciting carriers are equivalent to blackbody (Planck) radiators. The exploitation of the β spectrum measured by MIRR allowed determining the background (equilibrium) free carrier concentration n0. At the shortest wavelength (3.3 μm), the photoluminescence (PL) component supersedes the PC one and has distinct features. The average sample temperature influences the PC component but not the PT one.

  1. Radio-frequency small-signal model of hetero-gate-dielectric p-n-p-n tunneling field-effect transistor including charge conservation capacitance and substrate parameters

    NASA Astrophysics Data System (ADS)

    Marjani, Saeid; Hosseini, Seyed Ebrahim

    2015-09-01

    This paper presents a radio-frequency (RF) small-signal model for the hetero-gate-dielectric p-n-p-n tunnel field-effect transistor (HG p-n-p-n TFET) that includes the charge conservation capacitance and the substrate parameters. The HG p-n-p-n TFET is evaluated in terms of various RF parameters, including the cut-off frequency, the maximum oscillation frequency, capacitances, resistances, conductances, and transport time delay. The extracted small-signal parameters and RF performance values are compared with those of the low-κ p-n-p-n TFET. A nonquasistatic RF small-signal model has been used along with SPICE simulations and small-signal parameters that were extracted from the simulated device Y-parameters to simulate the HG p-n-p-n TFET. It is confirmed using the Y-parameters and the extracted parameters that this model with the extracted charge conservation capacitance and substrate parameters is valid in the high frequency range up to 100 GHz. In addition, it is shown that a significant circuit performance error may be introduced if the charge conservation capacitance and the substrate parameters are not considered appropriately.

  2. Site Response Spectral Accelerations Based on Site Specific Geologic Control of Randomization Parameters can be Higher Than Spectral Accelerations Derived Using Randomization Models Based on Larger Coefficients of Variation Derived Over Larger Areas

    NASA Astrophysics Data System (ADS)

    Creed, R. J.

    2009-05-01

    The randomization of soil properties for use in seismic site response models is an accepted practice in seismic design. The application of this methodology in the absence of robust geologic control can result in inappropriately low design spectra. Site response spectra computed using data from a broad area and intended for site specific design were derived using randomization procedures that incorporate variability in soil unit thicknesses, depth to basalt and shear wave velocity (Coefficient of Variation = 0.39 to 0.50). The resulting spectral accelerations are 40% lower than the spectral accelerations derived using site specific geologic models based on geologic, cross hole and down hole shear wave velocities and borehole geophysical data over a smaller area (COV = 0.08 to 0.12). In this case a relatively constant depth and soil thickness of 44 feet (Vs approximately 1,300 feet per second) on basalt (Vs approximately 3,500 feet per second) across the site contrasted sharply with the previous randomization assumptions which assumed greater basalt depth variability. Although the lower site specific soil property COVs contributed to a site specific increase in ground motion amplification, the primary factor was likely the relatively flat basalt surface which produced site amplification effects exceededing the previous randomization estimates by 40%. The bias towards higher COVs seems to be driven by a need to account for aleatory uncertainty (especially in soil structure interaction modeling) and the engineering preference for smoother response spectra. Discussion and research may be needed to account for what appears to be an arbitrary increase in aleatory uncertainty to account for a decrease in epistemic uncertainty which occurs as a result of better site characterization methods and models.

  3. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1984-01-01

    This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.

  4. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1981-01-01

    A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.

  5. Spectral Line Shape Parameters for the ν_1, ν_2, and ν_3 Bands of Hdo: Self and CO_2 Broadened

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Gamache, Robert R.; Renaud, Candice L.; Mantz, Arlan; Smith, Mary Ann H.; Villanueva, Geronimo L.

    2016-06-01

    To provide precise information relevant to Martian atmospheric remote sensing, high resolution high signal-to-noise ratio spectra of HDO in mixture with CO_2 were recorded in the ν_1, ν_2, and ν_3 fundamental bands between 2.7 and 7 μm regions. The spectra were obtained with the Bruker IFS-125HR Fourier transform spectrometer at the Jet Propulsion Laboratory along with two specially built coolable absorption cells with path lengths of 0.2038 m and 20.941 m at various sample gas temperatures (˜220 - 296 K), total sample pressures and volume mixing ratios. A multispectrum nonlinear least squares technique was applied to fit simultaneously all the spectra obtained. The measured line parameters include accurate line positions, intensities, self- and CO_2-broadened Lorentz halfwidth and pressure-shift coefficients, and temperature dependences of CO_2 broadened HDO halfwidth and pressure-shift coefficients. Line mixing coefficients using the relaxation matrix formalism and quadratic speed dependence parameters were also measured where appropriate. Example results for select transitions in each band will be presented and comparisons made to other measured/calculated values. K. Sung, A.W. Mantz, M.A.H. Smith, L.R. Brown, T.J. Crawford, V.M. Devi, D.C. Benner. J. Mol. Spectrosc. 162 (2010) 124-134. A.W. Mantz, K. Sung, T.J. Crawford, L.R. Brown, M.A.H. Smith, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 304 (2014) 12-24. D.C. Benner, C.P. Rinsland, V. Malathy Devi, M.A. H. Smith, and D. Atkins. JQSRT 53 (1995) 705-721. Research described in this paper are performed at the College of William and Mary, Jet Propulsion Laboratory, California Institute of Technology, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration. RRG and CLR were supported by the National Science Foundation through Grant # AGS-1156862.

  6. Exploring the full parameter space for an interacting dark energy model with recent observations including redshift-space distortions: Application of the parametrized post-Friedmann approach

    NASA Astrophysics Data System (ADS)

    Li, Yun-He; Zhang, Jing-Fei; Zhang, Xin

    2014-12-01

    Dark energy can modify the dynamics of dark matter if there exists a direct interaction between them. Thus, a measurement of the structure growth, e.g., redshift-space distortions (RSDs), can provide a powerful tool to constrain the interacting dark energy (IDE) models. For the widely studied Q =3 β H ρde model, previous works showed that only a very small coupling [β ˜O (10-3) ] can survive in current RSD data. However, all of these analyses had to assume w >-1 and β >0 due to the existence of the large-scale instability in the IDE scenario. In our recent work [Phys. Rev. D 90, 063005 (2014)], we successfully solved this large-scale instability problem by establishing a parametrized post-Friedmann framework for the IDE scenario. So we, for the first time, have the ability to explore the full parameter space of the IDE models. In this work, we re-examine the observational constraints on the Q =3 β H ρde model within the parametrized post-Friedmann framework. By using the Planck data, the baryon acoustic oscillation data, the JLA sample of supernovae, and the Hubble constant measurement, we get β =-0.01 0-0.033+0.037 (1 σ ). The fit result becomes β =-0.014 8-0.0089+0.0100 (1 σ ) once we further incorporate the RSD data in the analysis. The error of β is substantially reduced with the help of the RSD data. Compared with the previous results, our results show that a negative β is favored by current observations, and a relatively larger interaction rate is permitted by current RSD data.

  7. T Dwarfs Model Fits for Spectral Standards at Low Spectral Resolution

    NASA Astrophysics Data System (ADS)

    Giorla, Paige; Rice, Emily L.; Douglas, Stephanie T.; Mace, Gregory N.; McLean, Ian S.; Martin, Emily C.; Logsdon, Sarah E.

    2015-01-01

    We present model fits to the T dwarf spectral standards which cover spectral types from T0 to T8. For a complete spectral range analysis, we have included a T9 object which is not considered a spectral standard. We have low-resolution (R~120) SpeX Prism spectra and a variety of higher resolution (R~1,000-25,000) spectra for all nine of these objects. The synthetic spectra are from the BT-SETTL 2013 models. We compare the best fit parameters from low resolution spectra to results from the higher resolution fits of prominent spectral type dependent features, where possible. Using the T dwarf standards to calibrate the effective temperature and gravity parameters for each spectral type, we will expand our analysis to a larger, more varied sample, which includes over one hundred field T dwarfs, for which we have a variety of low, medium, and high resolution spectra from the SpeX Prism Library and the NIRSPEC Brown Dwarf Spectroscopic Survey. This sample includes a handful of peculiar and red T dwarfs, for which we explore the causes of their non-normalcy.

  8. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  9. OSSE spectral analysis techniques

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Brown, K. M.; Grabelsky, D. A.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kroeger, R. A.; Kurfess, J. D.; Matz, S. M.; Strickman, M. S.

    1992-01-01

    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies.

  10. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    NASA Astrophysics Data System (ADS)

    Hanna, Pierre; Desainte-Catherine, Myriam

    2005-12-01

    We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  11. A Successful Attempt to Obtain the Linear Dependence Between One-Photon and Two-Photon Spectral Properties and Hammett Parameters of Various Aromatic Substituents in New π-Extended Asymmetric Organic Chromophores.

    PubMed

    Hu, Nvdan; Gong, Yulong; Wang, Xinchao; Lu, Yao; Peng, Guangyue; Yang, Long; Zhang, Shengtao; Luo, Ziping; Li, Hongru; Gao, Fang

    2015-11-01

    A series of new asymmetric chromophores containing aromatic substituents and possessing the excellent π-extension in space were prepared through multi-steps routes. One-photon and two-photon spectral properties of these new chromophores could be tuned by these substituents finely and simultaneously. The linear correlation of the wave numbers of the one-photon absorption and emission maxima to Hammett parameters of these substituents was presented. Near infrared two-photon absorption emission integrated areas of the target chromophores were correlated linearly to Hammett constants of these substituted groups.

  12. An experimental palladium-103 seed (OptiSeed{sup exp}) in a biocompatible polymer without a gold marker: Characterization of dosimetric parameters including the interseed effect

    SciTech Connect

    Abboud, F.; Scalliet, P.; Vynckier, S.

    2008-12-15

    Permanent implantation of {sup 125}I (iodine) or {sup 103}Pd (palladium) sources is a popular treatment option in the management of early stage prostate cancer. New sources are being developed, some of which are being marketed for different clinical applications. A new technique of adjuvant stereotactic permanent seed breast implant, similar to that used in the treatment of prostate cancer, has been proposed by [N. Jansen et al., Int. J. Radiat. Oncol. Biol. Phys. 67, 1052-1058 (2007)] with encouraging results. The presence of artifacts from the metallic seeds, however, can disturb follow-up imaging. The development of plastic seeds has reduced these artifacts. This paper presents a feasibility study of the advantages of palladium-103 seeds, encapsulated with a biocompatible polymer, for future clinical applications, and on the effect of the gold marker on the dosimetric characteristics of such seeds. Experimental palladium seeds, OptiSeed{sup exp}, were manufactured by International Brachytherapy (IBt), Seneffe, Belgium, from a biocompatible polymer, including the marker. Apart from the absence of a gold marker, the studied seed has an identical design to the OptiSeed{sup 103}[Phys. Med. Biol. 50, 1493-1504 (2005)]; [Appl. Radiat. Isot. 63, 311-321 (2005)]. Polymer encapsulation was preferred by IBt in order to reduce the quantity of radioactive material needed for a given dose rate and to reduce the anisotropy of the radiation field around the seed. In addition, this design is intended to decrease the interseed effects that can occur as a result of the marker and the encapsulation. Dosimetric measurements were performed using LiF thermoluminescent dosimeters (1 mm{sup 3}) in solid water phantoms (WT1). Measured data were compared to Monte Carlo simulated data in solid water using the MCNP code, version 4C. Updated cross sections [Med. Phys. 30, 701-711 (2003)] were used. As the measured and calculated data were in agreement, Monte Carlo calculations were then

  13. The effects of spectral power distribution and illuminance levels on key parameters in the male golden hamster and rat with preliminary observations on the effects of pinealectomy.

    PubMed

    Hoffman, R A; Johnson, L B; Corth, R

    1985-01-01

    Three different light sources were used to determine the effects of spectral power distribution (SPD) and illuminance levels on growth and organ weights of male golden hamsters and rats. SPD had little effect on organ weights or measurements of either rats or hamsters. However, responses to illuminance levels were quite apparent, provided they were equalized for the scotopic eye sensitivity curve characteristic of nocturnal animals. Under seven illuminance levels from 0 to 3.9 scotopic fc, hamsters demonstrated graded responses in gonadal weights and presumed function from 0 to 0.02 scotopic fc. Above this level, photopic saturation was apparent. The neuroendocrine system of pinealectomized animals failed to show sensitivity to illuminance levels. The suggestion is made that the pineal gland acts to monitor illuminance levels (below about 0.02 scotopic fc) as well as photic duration. While the latter appears to be an "all or none" effect, the former appears to be graded.

  14. [Review of digital ground object spectral library].

    PubMed

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  15. [Review of digital ground object spectral library].

    PubMed

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems. PMID:19810544

  16. DFT studies of structural and some spectral parameters of copper(II) complexes with N,N,N‧,N″-tetrakis (2-hydroxyethyl/propyl) ethylenediamine and tris(2-hydroxyethyl)amine

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Obrai, Sangeeta; Mitra, Joyee; Sharma, Aparna

    2013-11-01

    The structures and some spectral parameters of three copper(II) complexes; [Cu(THEEN)(H2O)](PIC)2 (1), [Cu(THPEN)] (PIC)2 C3H8O (2) and [Cu(TEAH3)(PIC)] (PIC)ṡ(H2O) (3), previously synthesized and characterized by X-ray diffraction, are here computationally studied by using density functional theory (DFT) in its hybrid form B3LYP. In these complexes, THEEN is N,N,N‧,N″-tetrakis(2-hydroxyethyl) ethylenediamine and THPEN is N,N,N‧,N″-tetrakis(2-hydroxypropyl) ethylenediamine, tetrapodal ligands and TEAH3 is tris(2-hydroxyethyl)amine, a tripodal ligand. The primary coordination sphere of copper(II) ion in complexes (1), (2) and (3) are optimized, structural parameters are calculated, vibrational bands are assigned and energy gaps of frontier orbital (HOMO-LUMO) have been calculated with B3LYP/6-31G/LANL2DZ level of theory using DMSO as solvent. The calculated geometric and spectral results reproduced the experimental data with well agreement. Theoretical calculated molecular orbitals (HOMO-LUMO) and their energies have been calculated that suggest charge transfer occurs within the complexes.

  17. UV and Heating Effects on CR-39 Etch Parameters with Spectral Analysis of CR-39 in the UV-Vis-NIR

    NASA Astrophysics Data System (ADS)

    McLauchlin, Christopher; Dodge, Kenneth; McLean, James; Padalino, Stephen; Burke, Michelle; Sangster, Craig

    2014-03-01

    CR-39 plastic is a common ion detector used in nuclear experiments. High-energy charged particles leave tracks of chemical damage along their path, which form pits when etched with NaOH. It has been found that exposure to UV light after ion exposure enhances the etch rate in both the bulk material as well as along the latent track while maintaining a constant track-to-bulk etch rate ratio. The addition of heat was found to dramatically increase the etch rates by a factor of five, although at higher temperatures pits became irregular in shape. The spectral reflection and transmission of CR-39 for wavelengths between 200 nm and 2500 nm for various thicknesses of plastic were measured. Using an exponential decay model for absorption the decay depth was calculated from the gathered data. CR-39 was found to be nearly transparent for light between 400 nm to 1100 nm while strong absorption was present for UV light shorter than 400 nm. The reflection of CR-39 was found to be relatively constant averaging at 7%. An anomalous dispersion feature was found centered at 290 nm.

  18. Soil spectral characterization

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.

    1981-01-01

    The spectral characterization of soils is discussed with particular reference to the bidirectional reflectance factor as a quantitative measure of soil spectral properties, the role of soil color, soil parameters affecting soil reflectance, and field characteristics of soil reflectance. Comparisons between laboratory-measured soil spectra and Landsat MSS data have shown good agreement, especially in discriminating relative drainage conditions and organic matter levels in unvegetated soils. The capacity to measure both visible and infrared soil reflectance provides information on other soil characteristics and makes it possible to predict soil response to different management conditions. Field and laboratory soil spectral characterization helps define the extent to which intrinsic spectral information is available from soils as a consequence of their composition and field characteristics.

  19. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  20. Quantum graph as a quantum spectral filter

    SciTech Connect

    Turek, Ondrej; Cheon, Taksu

    2013-03-15

    We study the transmission of a quantum particle along a straight input-output line to which a graph {Gamma} is attached at a point. In the point of contact we impose a singularity represented by a certain properly chosen scale-invariant coupling with a coupling parameter {alpha}. We show that the probability of transmission along the line as a function of the particle energy tends to the indicator function of the energy spectrum of {Gamma} as {alpha}{yields}{infinity}. This effect can be used for a spectral analysis of the given graph {Gamma}. Its applications include a control of a transmission along the line and spectral filtering. The result is illustrated with an example where {Gamma} is a loop exposed to a magnetic field. Two more quantum devices are designed using other special scale-invariant vertex couplings. They can serve as a band-stop filter and as a spectral separator, respectively.

  1. Report on the recent advances performed in the determination of radiative parameters for spectral lines of astrophysical interest in heavy elements

    NASA Astrophysics Data System (ADS)

    Quinet, Pascal

    2015-08-01

    Heavy atoms and ions of the periodic table, in particular those with Z > 36, have been rather little investigated up to until very recently, due to the numerous difficulties met both on the theoretical and on the experimental sides. In relation with the recent needs in astrophysics, the situtaion has considerably evolved over the past few years and substantial progress has been reported. This progress has been made easier by the developments of theoretical methods and also by the extensive use of laser spectroscopy.Having in mind the astrophysical context, we have started a systematic investigation of radiative parameters of these ions (neutral, singly and doubly ionized elements) about 15 years ago. As a consequence, a large number of new results have been obtained. About 700 radiative lifetimes have been measured by time-resolved laser-induced fluorescence spectroscopy. The combination of these lifetimes with theoretical (and, when possible, experimental) branching fractions has led to transition probabilities for about 100000 transitions in atoms and ions belonging to the lanthanide group as well as to the fifth and the sixth rows of the periodic table.

  2. Effect of GaAsP barrier layers on the parameters of InGaAs/AlGaAs laser diodes emitting in the 1050-1100-nm spectral range

    SciTech Connect

    Duraev, V P; Marmalyuk, Aleksandr A; Padalitsa, A A; Petrovskii, A V; Ryaboshtan, Yu L; Sumarokov, M A; Sukharev, A V

    2005-10-31

    To improve the parameters of laser diodes emitting in the 1000-1070-nm spectral range and develop highly efficient laser diodes emitting in the 1070-1100-nm range, it is proposed to introduce GaAsP barrier layers into the active region of the quantum-well InGaAs/AlGaAs heterostructure, which compensate for enhanced mechanical stresses. This considerably improves the luminescence characteristics of heterostructures and changes conditions for generating misfit dislocations. The long-wavelength lasing at 1100 nm becomes possible due to an increase in the thickness of quantum wells and in the molar fraction of InAs in them. The manufactured laser diodes emitting in the 1095-1100-nm range have low threshold currents, the high output power and high reliability. (lasers)

  3. [A Terahertz Spectral Database Based on Browser/Server Technique].

    PubMed

    Zhang, Zhuo-yong; Song, Yue

    2015-09-01

    With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to

  4. High-performance lighting evaluated by photobiological parameters.

    PubMed

    Rebec, Katja Malovrh; Gunde, Marta Klanjšek

    2014-08-10

    The human reception of light includes image-forming and non-image-forming effects which are triggered by spectral distribution and intensity of light. Ideal lighting is similar to daylight, which could be evaluated by spectral or chromaticity match. LED-based and CFL-based lighting were analyzed here, proposed according to spectral and chromaticity match, respectively. The photobiological effects were expressed by effectiveness for blue light hazard, cirtopic activity, and photopic vision. Good spectral match provides light with more similar effects to those obtained by the chromaticity match. The new parameters are useful for better evaluation of complex human responses caused by lighting.

  5. Visible and Near Infrared Fluorescence Spectral Flow Cytometry

    PubMed Central

    Nolan, John P.; Condello, Danilo; Duggan, Erika; Naivar, Mark; Novo, David

    2013-01-01

    There is a long standing interest in measuring complete emission spectra from individual cells in flow cytometry. We have developed flow cytometry instruments and analysis approaches to enable this to be done routinely and robustly. Our spectral flow cytometers use a holographic grating to disperse light from single cells onto a CCD for high speed, wavelength-resolved detection. Customized software allows the single cell spectral data to be displayed and analyzed to produce new spectra-derived parameters. We show that familiar reference and calibration beads can be employed to quantitatively assess instrument performance. We use microspheres stained with six different quantum dots to compare a virtual bandpass filter approach with classic least squares (CLS) spectral unmixing, and then use antibody capture beads and CLS unmixing to demonstrate immunophenotyping of peripheral blood mononuclear cells using spectral flow cytometry. Finally, we characterize and evaluate several near infrared (NIR) emitting fluorophores for use in spectral flow cytometry. Spectral flow cytometry offers a number of attractive features for single cell analysis, including a simplified optical path, high spectral resolution, and streamlined approaches to quantitative multiparameter measurements. The availability of robust instrumentation, software, and analysis approaches will facilitate the development of spectral flow cytometry applications. PMID:23225549

  6. Thermophotovoltaic Spectral Control

    SciTech Connect

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  7. Spectrally selective glazings

    SciTech Connect

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  8. Spectral averaging techniques for Jacobi matrices

    SciTech Connect

    Rio, Rafael del; Martinez, Carmen; Schulz-Baldes, Hermann

    2008-02-15

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner-type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  9. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  10. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m). PMID:18345245

  11. Multipurpose spectral imager.

    PubMed

    Sigernes, F; Lorentzen, D A; Heia, K; Svenøe, T

    2000-06-20

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 A. One can achieve the spatial domain by rotating the system's front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).

  12. Spectral studies with coordination behaviour of (NO 3) and (NCS) anions and EPR parameters of chromium(III) complexes which have different chromospheres macrocyclic ligands: Synthesis and electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Kumar, Rajiv

    2007-01-01

    New macrocyclic ligands were prepared and chromium(III) stability in the marcrocyclic cavities are reported. Two of them have four-coordinate [N 2O 2]:[N 4], third one has five-coordinate [N 2O 2S] and the last one has six-coordinate [N 4O 2] donor macrocyclic cavities. These macrocyclic ligands have been synthesized with their chromium(III) complexes which have mononuclear nature and their structural features have been discussed on the basis of: elemental analysis, magnetic moment, electronic, IR, 1H NMR, and EPR spectral studies. All the chromium(III) complexes show magnetic moments in the range of 3.74-3.80 B.M. corresponding to high-spin configuration. However, the interaction of oxygen to the chromium ion in complexes is much weaker than that of other donor atoms. The spin-orbit coupling parameter, z, gives no significance because the splitting of doublet transition lines are too large to be explained by spin-orbit coupling. The β values (0.75-0.79) indicate the covalent character, which is due to the presence of σ bond between the metal/ligand. λ values indicate that the complexes under study have substantial covalent character and their g-values have also been calculated by using spin-orbital coupling constant ( λ).

  13. The analytical design of spectral measurements for multispectral remote sensor systems

    NASA Technical Reports Server (NTRS)

    Wiersma, D. J.; Landgrebe, D. A. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. In order to choose a design which will be optimal for the largest class of remote sensing problems, a method was developed which attempted to represent the spectral response function from a scene as accurately as possible. The performance of the overall recognition system was studied relative to the accuracy of the spectral representation. The spectral representation was only one of a set of five interrelated parameter categories which also included the spatial representation parameter, the signal to noise ratio, ancillary data, and information classes. The spectral response functions observed from a stratum were modeled as a stochastic process with a Gaussian probability measure. The criterion for spectral representation was defined by the minimum expected mean-square error.

  14. Method of multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2004-01-06

    A method of determining the properties of a sample from measured spectral data collected from the sample by performing a multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used to analyze X-ray spectral data generated by operating a Scanning Electron Microscope (SEM) with an attached Energy Dispersive Spectrometer (EDS).

  15. Status of MODIS spatial and spectral characterization and performance

    NASA Astrophysics Data System (ADS)

    Link, Dan; Wang, Zhipeng; Xiong, Xiaoxiong

    2016-05-01

    Since launch, both Terra and Aqua MODIS instruments have continued to operate and make measurements of the earth's top of atmospheric (TOA) radiances and reflectance. MODIS collects data in 36 spectral bands covering wavelengths from 0.41 to 14.4 μm. These spectral bands and detectors are located on four focal plane assemblies (FPAs). MODIS on-board calibrators (OBC) include a spectro-radiometric calibration assembly (SRCA), which was designed to characterize and monitor sensor spatial and spectral performance, such as on-orbit changes in the band-to-band registration (BBR), modulation transfer function (MTF), spectral band center wavelengths (CW) and bandwidths (BW). In this paper, we provide a status update of MODIS spatial and spectral characterization and performance, following a brief description of SRCA functions and on-orbit calibration activities. Sensor spatial and spectral performance parameters derived from SRCA measurements are introduced and discussed. Results show that on-orbit spatial performance has been very stable for both Terra and Aqua MODIS instruments. The large BBR shifts in Aqua MODIS, an issue identified pre-launch, have remained the same over its entire mission. On-orbit changes in CW and BW are less than 0.5 nm and 1 nm, respectively, for most VIS/NIR spectral bands of both instruments.

  16. Spectral Morphology for Feature Extraction from Multi- and Hyper-spectral Imagery.

    SciTech Connect

    Harvey, N. R.; Porter, R. B.

    2005-01-01

    For accurate and robust analysis of remotely-sensed imagery it is necessary to combine the information from both spectral and spatial domains in a meaningful manner. The two domains are intimately linked: objects in a scene are defined in terms of both their composition and their spatial arrangement, and cannot accurately be described by information from either of these two domains on their own. To date there have been relatively few methods for combining spectral and spatial information concurrently. Most techniques involve separate processing for extracting spatial and spectral information. In this paper we will describe several extensions to traditional morphological operators that can treat spectral and spatial domains concurrently and can be used to extract relationships between these domains in a meaningful way. This includes the investgation and development of suitable vector-ordering metrics and machine-learning-based techniques for optimizing the various parameters of the morphological operators, such as morphological operator, structuring element and vector ordering metric. We demonstrate their application to a range of multi- and hyper-spectral image analysis problems.

  17. Importance of including small body spin effects in the modelling of intermediate mass-ratio inspirals. II. Accurate parameter extraction of strong sources using higher-order spin effects

    NASA Astrophysics Data System (ADS)

    Huerta, E. A.; Gair, Jonathan R.; Brown, Duncan A.

    2012-03-01

    We improve the numerical kludge waveform model introduced in Huerta and Gair (2011) [E. A. Huerta and J. R. Gair, Phys. Rev. D 84, 064023 (2011).PRVDAQ1550-799810.1103/PhysRevD.84.064023] in two ways. We extend the equations of motion for spinning black hole binaries derived by Saijo et al. [M. Saijo, K. Maeda, M. Shibata, and Y. Mino, Phys. Rev. D 58, 064005 (1998).PRVDAQ0556-282110.1103/PhysRevD.58.064005] using spin-orbit and spin-spin couplings taken from perturbative and post-Newtonian (PN) calculations at the highest order available. We also include first-order conservative self-force corrections for spin-orbit and spin-spin couplings, which are derived by comparison to PN results. We generate the inspiral evolution using fluxes that include the most recent calculations of small body spin corrections, spin-spin, and spin-orbit couplings and higher-order fits to solutions of the Teukolsky equation. Using a simplified version of this model in [E. A. Huerta and J. R. Gair, Phys. Rev. D 84, 064023 (2011).PRVDAQ1550-799810.1103/PhysRevD.84.064023], we found that small body spin effects could be measured through gravitational-wave observations from intermediate-mass-ratio inspirals (IMRIs) with mass ratio η≳10-3, when both binary components are rapidly rotating. In this paper, we present results of Monte Carlo simulations of parameter-estimation errors to study in detail how the spin of the small/big body affects parameter measurement using a variety of mass and spin combinations for typical IMRI sources. We have found that for IMRI events involving a moderately rotating intermediate-mass black hole (IMBH) of mass 104M⊙ and a rapidly rotating central supermassive black hole (SMBH) of mass 106M⊙, gravitational wave observations made with LISA at a signal-to-noise ratio of 1000 should be able to determine the inspiralling IMBH mass, the central SMBH mass, the SMBH spin magnitude, and the IMBH spin magnitude to within fractional errors of ˜10-3, 10-3, 10

  18. Parameters Describing Earth Observing Remote Sensing Systems

    NASA Technical Reports Server (NTRS)

    Zanoni, Vicki; Ryan, Robert E.; Pagnutti, Mary; Davis, Bruce; Markham, Brian; Storey, Jim

    2003-01-01

    The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the

  19. Evolutionary Computing Methods for Spectral Retrieval

    NASA Technical Reports Server (NTRS)

    Terrile, Richard; Fink, Wolfgang; Huntsberger, Terrance; Lee, Seugwon; Tisdale, Edwin; VonAllmen, Paul; Tinetti, Geivanna

    2009-01-01

    A methodology for processing spectral images to retrieve information on underlying physical, chemical, and/or biological phenomena is based on evolutionary and related computational methods implemented in software. In a typical case, the solution (the information that one seeks to retrieve) consists of parameters of a mathematical model that represents one or more of the phenomena of interest. The methodology was developed for the initial purpose of retrieving the desired information from spectral image data acquired by remote-sensing instruments aimed at planets (including the Earth). Examples of information desired in such applications include trace gas concentrations, temperature profiles, surface types, day/night fractions, cloud/aerosol fractions, seasons, and viewing angles. The methodology is also potentially useful for retrieving information on chemical and/or biological hazards in terrestrial settings. In this methodology, one utilizes an iterative process that minimizes a fitness function indicative of the degree of dissimilarity between observed and synthetic spectral and angular data. The evolutionary computing methods that lie at the heart of this process yield a population of solutions (sets of the desired parameters) within an accuracy represented by a fitness-function value specified by the user. The evolutionary computing methods (ECM) used in this methodology are Genetic Algorithms and Simulated Annealing, both of which are well-established optimization techniques and have also been described in previous NASA Tech Briefs articles. These are embedded in a conceptual framework, represented in the architecture of the implementing software, that enables automatic retrieval of spectral and angular data and analysis of the retrieved solutions for uniqueness.

  20. spectral-cube: Read and analyze astrophysical spectral data cubes

    NASA Astrophysics Data System (ADS)

    Robitaille, Thomas; Ginsburg, Adam; Beaumont, Chris; Leroy, Adam; Rosolowsky, Erik

    2016-09-01

    Spectral-cube provides an easy way to read, manipulate, analyze, and write data cubes with two positional dimensions and one spectral dimension, optionally with Stokes parameters. It is a versatile data container for building custom analysis routines. It provides a uniform interface to spectral cubes, robust to the wide range of conventions of axis order, spatial projections, and spectral units that exist in the wild, and allows easy extraction of cube sub-regions using physical coordinates. It has the ability to create, combine, and apply masks to datasets and is designed to work with datasets too large to load into memory, and provide basic summary statistic methods like moments and array aggregates.

  1. Stark Widths of Spectral Lines of Neutral Neon

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Simić, Zoran; Kovačević, Andjelka; Valjarević, Aleksandar; Sahal-Bréchot, Sylvie

    2015-12-01

    In order to complete Stark broadening data for Ne I spectral lines which are needed for analysis of stellar atmospheres, collisional widths and shifts (the so-called Stark broadening parameters) of 29 isolated spectral lines of neutral neon have been determined within the impact semiclassical perturbation method. Calculations have been performed for the broadening by collisions with electrons, protons and ionized helium for astrophysical applications, and for collisions with ionized neon and argon for laboratory plasma diagnostics. The shifts have been compared with existing experimental values. The obtained data will be included in the STARK-B database, which is a part of the Virtual Atomic and Molecular Data Center - VAMDC.

  2. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  3. Radio-astro-tools and spectral cube

    NASA Astrophysics Data System (ADS)

    Ginsburg, Adam

    2016-03-01

    SpectralCube is a toolkit for efficiently handling and performing simple analysis of spectral data cubes. It was designed for use with ALMA and JVLA data, but is readily and easily applicable to other data cubes including optical and infrared IFUs. This 5-minute "lightning talk" gives a brief overview and update of spectral_cube & the radio-astro-tools packages.

  4. Spectral Analysis

    2001-11-01

    SPEX enables the user to interactively create, display, compare, and analyze spectra (in particular gamma-ray spectra). It includes features from the INEEL GAUSS software series and the ORNL DAMM program. Input data is spectrum histograms, energy calibration, peakwidth calibrationb, and peak energy listgs. Output data includes new spectra created from projections, postscript for printing current view, summary log, gaussian fit log, exported energy calibratgion, exported peak lists and banana gates.

  5. The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Kaneko, Yuki; Preece, Robert D.; Briggs, Michael S.; Paciesas, William S.; Meegan, Charles A.; Band, David L.

    2006-01-01

    We present a systematic spectral analysis of 350 bright Gamma-Ray Bursts (GRBs) observed by the Burst and Transient Source Experiment (BATSE; approx. 30 keV - 2 MeV; including 17 short GRBs) with high energy and time resolution. Our sample was selected from the complete set of 2704 BATSE GRBs based on their energy fluence or peak photon flux values to assure good statistics. To obtain well-constrained, model-unbiased spectral parameters, a set of various photon models is used to fit each spectrum, and internal characteristics of each model are also investigated. A thorough analysis has been performed on 342 time-integrated and 8459 time-resolved burst spectra, and the effects of integration times in determining the spectral parameters are explored. The analysis results presented here provide the most detailed perspective of spectral aspects of the GRB prompt emission to date. Using the results, we study correlations among spectral parameters and spectral evolutions. The results of all spectral fits are available electronically in FITS format, from the High-Energy Astrophysics Science Archive Research Center (HEASARC).

  6. Spectral density of Cooper pairs in two level quantum dot-superconductors Josephson junction

    NASA Astrophysics Data System (ADS)

    Dhyani, A.; Rawat, P. S.; Tewari, B. S.

    2016-09-01

    In the present paper, we report the role of quantum dot energy levels on the electronic spectral density for a two level quantum dot coupled to s-wave superconducting leads. The theoretical arguments in this work are based on the Anderson model so that it necessarily includes dot energies, single particle tunneling and superconducting order parameter for BCS superconductors. The expression for single particle spectral function is obtained by using the Green's function equation of motion technique. On the basis of numerical computation of spectral function of superconducting leads, it has been found that the charge transfer across such junctions can be controlled by the positions and availability of the dot levels.

  7. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  8. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  9. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    SciTech Connect

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  10. Submillimeter, millimeter, and microwave spectral line catalogue, revision 3

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.; Poynter, R. L.; Cohen, E. A.

    1992-01-01

    A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10,000 GHz (i.e., wavelengths longer than 30 micrometers) is described. The catalog can be used as a planning or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. This edition of the catalog has information on 206 atomic and molecular species and includes a total of 630,924 lines. The catalog was constructed by using theoretical least square fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available as a magnetic data tape recorded in card images, with one card image per spectral line, from the National Space Science Data Center, located at Goddard Space Flight Center.

  11. Spectral and spectral-polarization characteristics of potato leaves

    NASA Astrophysics Data System (ADS)

    Belyaev, B. I.; Belyaev, Yu. V.; Chumakov, A. V.; Nekrasov, V. P.; Shuplyak, V. I.

    2000-07-01

    The results of laboratory investigations of the spectral and spectral-polarization characteristics of radiation reflected from the leaves of potato (Solanum tuberosum) of different varieties are discussed. During the vegetation season of 1997, the angular dependence of the degree and azimuth of polarization of radiation reflected from potato leaves as well as the scattering indicatrices in the range 380 1080 nm were determined by a specially developed method with the use of a laboratory goniometric setup. The relationship between the spectral polarization characteristics of radiation and biological parameters of the potato has been obtained with the help of different methods of statistical analysis and explained on the basis of the known physical mechanisms.

  12. Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles.

    PubMed

    Wang, Shaohua; Tao, Chao; Yang, Yiqun; Wang, Xueding; Liu, Xiaojun

    2015-07-01

    Photoacoustic imaging is an emerging technique which inherits the merits of optical imaging and ultrasonic imaging. However, classical photoacoustic imaging mainly makes use of the time-domain parameters of signals. In contrast to previous studies, we theoretically investigate the spectral characteristics of the photoacoustic signal from stochastic distributed particles. The spectral slope is extracted and used for describing the spectral characteristics of the photoacoustic signal. Both Gaussian and spherical distributions of optical absorption in particles are considered. For both situations, the spectral slope is monotonically decreased with the increase of particle size. In addition, the quantitative relationship between the spectral slope and the imaging system factors, including the laser pulse envelope, directivity of ultrasound transducer, and signal bandwidth, are theoretically analyzed. Finally, an idealized phantom experiment is performed to validate the analyses and examine the instrument independent of the spectral slope. This work provides a theoretical framework and new experimental evidence for spectrum analysis of the photoacoustic signal. This could be helpful for quantitative tissue evaluation and imaging based on the spectral parameters of the photoacoustic signal.

  13. Polarized spectral complexes of optical functions of monovalent mercury iodide

    NASA Astrophysics Data System (ADS)

    Sobolev, V. V.; Sobolev, V. Val.; Anisimov, D. V.

    2015-12-01

    Spectral complexes of optical functions of monovalent mercury iodide Hg2I2 were determined for E ⊥ c and E || c polarizations in the range from 2 to 5.5 eV at 4.2 K. The permittivity and characteristic electron energy loss spectra were expanded in simple components with the determination of their main parameters, including the energy of the maximum and the oscillator strength. The calculations were performed based on known reflectance spectra. Computer programs based on Kramers-Kronig relations and the improved parameter-free method of Argand diagrams were used.

  14. The Spectral Shift Function and Spectral Flow

    NASA Astrophysics Data System (ADS)

    Azamov, N. A.; Carey, A. L.; Sukochev, F. A.

    2007-11-01

    At the 1974 International Congress, I. M. Singer proposed that eta invariants and hence spectral flow should be thought of as the integral of a one form. In the intervening years this idea has lead to many interesting developments in the study of both eta invariants and spectral flow. Using ideas of [24] Singer’s proposal was brought to an advanced level in [16] where a very general formula for spectral flow as the integral of a one form was produced in the framework of noncommutative geometry. This formula can be used for computing spectral flow in a general semifinite von Neumann algebra as described and reviewed in [5]. In the present paper we take the analytic approach to spectral flow much further by giving a large family of formulae for spectral flow between a pair of unbounded self-adjoint operators D and D + V with D having compact resolvent belonging to a general semifinite von Neumann algebra {mathcal{N}} and the perturbation V in {mathcal{N}} . In noncommutative geometry terms we remove summability hypotheses. This level of generality is made possible by introducing a new idea from [3]. There it was observed that M. G. Krein’s spectral shift function (in certain restricted cases with V trace class) computes spectral flow. The present paper extends Krein’s theory to the setting of semifinite spectral triples where D has compact resolvent belonging to {mathcal{N}} and V is any bounded self-adjoint operator in {mathcal{N}} . We give a definition of the spectral shift function under these hypotheses and show that it computes spectral flow. This is made possible by the understanding discovered in the present paper of the interplay between spectral shift function theory and the analytic theory of spectral flow. It is this interplay that enables us to take Singer’s idea much further to create a large class of one forms whose integrals calculate spectral flow. These advances depend critically on a new approach to the calculus of functions of non

  15. Spectral lesion characterization on a photon-counting mammography system

    NASA Astrophysics Data System (ADS)

    Erhard, Klaus; Fredenberg, Erik; Homann, Hanno; Roessl, Ewald

    2014-03-01

    Spectral X-ray imaging allows to differentiate between two given tissue types, provided their spectral absorption characteristics differ measurably. In mammography, this method is used clinically to determine a decomposition of the breast into adipose and glandular tissue compartments, from which the glandular tissue fraction and, hence, the volumetric breast density (VBD) can be computed. Another potential application of this technique is the characterization of lesions by spectral mammography. In particular, round lesions are relatively easily detected by experienced radiologists, but are often difficult to characterize. Here, a method is described that aims at discriminating cystic from solid lesions directly on a spectral mammogram, obtained with a calibrated spectral mammography system and using a hypothesis-testing algorithm based on a maximum likelihood approach. The method includes a parametric model describing the lesion shape, compression height variations and breast composition. With the maximum likelihood algorithm, the model parameters are estimated separately under the cyst and solid hypothesis. The resulting ratio of the maximum likelihood values is used for the final tissue characterization. Initial results using simulations and phantom measurements are presented.

  16. Basic elements of power spectral analysis

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1974-01-01

    The basic elements of power spectral analysis with emphasis on the Blackman-Tukey method are presented. Short discussions are included on the topics of pre-whitening, frequency and spectral windows, and statistical reliability. Examples are included whenever possible, and a FORTRAN subroutine for calculating a power spectrum is presented.

  17. Spectral multigrid methods for elliptic equations II

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1984-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  18. Spectral multigrid methods for elliptic equations 2

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Wong, Y. S.; Hussaini, M. Y.

    1983-01-01

    A detailed description of spectral multigrid methods is provided. This includes the interpolation and coarse-grid operators for both periodic and Dirichlet problems. The spectral methods for periodic problems use Fourier series and those for Dirichlet problems are based upon Chebyshev polynomials. An improved preconditioning for Dirichlet problems is given. Numerical examples and practical advice are included.

  19. Stingray: Spectral-timing software

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Bachetti, Matteo; Stevens, Abigail L.; Migliari, Simone; Balm, Paul

    2016-08-01

    Stingray is a spectral-timing software package for astrophysical X-ray (and more) data. The package merges existing efforts for a (spectral-)timing package in Python and is composed of a library of time series methods (including power spectra, cross spectra, covariance spectra, and lags); scripts to load FITS data files from different missions; a simulator of light curves and event lists that includes different kinds of variability and more complicated phenomena based on the impulse response of given physical events (e.g. reverberation); and a GUI to ease the learning curve for new users.

  20. Spectral density method to Anderson-Holstein model

    SciTech Connect

    Chebrolu, Narasimha Raju Chatterjee, Ashok

    2015-06-24

    Two-parameter spectral density function of a magnetic impurity electron in a non-magnetic metal is calculated within the framework of the Anderson-Holstein model using the spectral density approximation method. The effect of electron-phonon interaction on the spectral function is investigated.

  1. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  2. The VITRO Score (Von Willebrand Factor Antigen/Thrombocyte Ratio) as a New Marker for Clinically Significant Portal Hypertension in Comparison to Other Non-Invasive Parameters of Fibrosis Including ELF Test

    PubMed Central

    Hametner, Stephanie; Ferlitsch, Arnulf; Ferlitsch, Monika; Etschmaier, Alexandra; Schöfl, Rainer; Ziachehabi, Alexander; Maieron, Andreas

    2016-01-01

    Background Clinically significant portal hypertension (CSPH), defined as hepatic venous pressure gradient (HVPG) ≥10 mmHg, causes major complications. HVPG is not always available, so a non-invasive tool to diagnose CSPH would be useful. VWF-Ag can be used to diagnose. Using the VITRO score (the VWF-Ag/platelet ratio) instead of VWF-Ag itself improves the diagnostic accuracy of detecting cirrhosis/ fibrosis in HCV patients. Aim This study tested the diagnostic accuracy of VITRO score detecting CSPH compared to HVPG measurement. Methods All patients underwent HVPG testing and were categorised as CSPH or no CSPH. The following patient data were determined: CPS, D’Amico stage, VITRO score, APRI and transient elastography (TE). Results The analysis included 236 patients; 170 (72%) were male, and the median age was 57.9 (35.2–76.3; 95% CI). Disease aetiology included ALD (39.4%), HCV (23.4%), NASH (12.3%), other (8.1%) and unknown (11.9%). The CPS showed 140 patients (59.3%) with CPS A; 56 (23.7%) with CPS B; and 18 (7.6%) with CPS C. 136 patients (57.6%) had compensated and 100 (42.4%) had decompensated cirrhosis; 83.9% had HVPG ≥10 mmHg. The VWF-Ag and the VITRO score increased significantly with worsening HVPG categories (P<0.0001). ROC analysis was performed for the detection of CSPH and showed AUC values of 0.92 for TE, 0.86 for VITRO score, 0.79 for VWF-Ag, 0.68 for ELF and 0.62 for APRI. Conclusion The VITRO score is an easy way to diagnose CSPH independently of CPS in routine clinical work and may improve the management of patients with cirrhosis. PMID:26895398

  3. Open-box spectral clustering: applications to medical image analysis.

    PubMed

    Schultz, Thomas; Kindlmann, Gordon L

    2013-12-01

    Spectral clustering is a powerful and versatile technique, whose broad range of applications includes 3D image analysis. However, its practical use often involves a tedious and time-consuming process of tuning parameters and making application-specific choices. In the absence of training data with labeled clusters, help from a human analyst is required to decide the number of clusters, to determine whether hierarchical clustering is needed, and to define the appropriate distance measures, parameters of the underlying graph, and type of graph Laplacian. We propose to simplify this process via an open-box approach, in which an interactive system visualizes the involved mathematical quantities, suggests parameter values, and provides immediate feedback to support the required decisions. Our framework focuses on applications in 3D image analysis, and links the abstract high-dimensional feature space used in spectral clustering to the three-dimensional data space. This provides a better understanding of the technique, and helps the analyst predict how well specific parameter settings will generalize to similar tasks. In addition, our system supports filtering outliers and labeling the final clusters in such a way that user actions can be recorded and transferred to different data in which the same structures are to be found. Our system supports a wide range of inputs, including triangular meshes, regular grids, and point clouds. We use our system to develop segmentation protocols in chest CT and brain MRI that are then successfully applied to other datasets in an automated manner.

  4. 34 CFR 303.15 - Include; including.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Include; including. 303.15 Section 303.15 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS...

  5. Multi Spectral Imaging System

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor)

    1999-01-01

    An optical imaging system provides automatic co-registration of a plurality of multi spectral images of an object which are generated by a plurality of video cameras or other optical detectors. The imaging system includes a modular assembly of beam splitters, lens tubes, camera lenses and wavelength selective filters which facilitate easy reconfiguration and adjustment of the system for various applications. A primary lens assembly generates a real image of an object to be imaged on a reticle which is positioned at a fixed length from a beam splitter assembly. The beam splitter assembly separates a collimated image beam received from the reticle into multiple image beams, each of which is projected onto a corresponding one of a plurality of video cameras. The lens tubes which connect the beam splitter assembly to the cameras are adjustable in length to provide automatic co-registration of the images generated by each camera.

  6. Solar Spectral Irradiance and Climate

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Woods, T.; Cahalan, R.

    2012-01-01

    Spectrally resolved solar irradiance is recognized as being increasingly important to improving our understanding of the manner in which the Sun influences climate. There is strong empirical evidence linking total solar irradiance to surface temperature trends - even though the Sun has likely made only a small contribution to the last half-century's global temperature anomaly - but the amplitudes cannot be explained by direct solar heating alone. The wavelength and height dependence of solar radiation deposition, for example, ozone absorption in the stratosphere, absorption in the ocean mixed layer, and water vapor absorption in the lower troposphere, contribute to the "top-down" and "bottom-up" mechanisms that have been proposed as possible amplifiers of the solar signal. New observations and models of solar spectral irradiance are needed to study these processes and to quantify their impacts on climate. Some of the most recent observations of solar spectral variability from the mid-ultraviolet to the near-infrared have revealed some unexpected behavior that was not anticipated prior to their measurement, based on an understanding from model reconstructions. The atmospheric response to the observed spectral variability, as quantified in climate model simulations, have revealed similarly surprising and in some cases, conflicting results. This talk will provide an overview on the state of our understanding of the spectrally resolved solar irradiance, its variability over many time scales, potential climate impacts, and finally, a discussion on what is required for improving our understanding of Sun-climate connections, including a look forward to future observations.

  7. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets. PMID:27699101

  8. Multi-spectral photoacoustic elasticity tomography

    PubMed Central

    Liu, Yubin; Yuan, Zhen

    2016-01-01

    The goal of this work was to develop and validate a spectrally resolved photoacoustic imaging method, namely multi-spectral photoacoustic elasticity tomography (PAET) for quantifying the physiological parameters and elastic modulus of biological tissues. We theoretically and experimentally examined the PAET imaging method using simulations and in vitro experimental tests. Our simulation and in vitro experimental results indicated that the reconstructions were quantitatively accurate in terms of sizes, the physiological and elastic properties of the targets.

  9. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2004-03-23

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following prediction or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The hybrid method herein means a combination of an initial calibration step with subsequent analysis by an inverse multivariate analysis method. A spectral shape herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The shape can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  10. Hybrid least squares multivariate spectral analysis methods

    DOEpatents

    Haaland, David M.

    2002-01-01

    A set of hybrid least squares multivariate spectral analysis methods in which spectral shapes of components or effects not present in the original calibration step are added in a following estimation or calibration step to improve the accuracy of the estimation of the amount of the original components in the sampled mixture. The "hybrid" method herein means a combination of an initial classical least squares analysis calibration step with subsequent analysis by an inverse multivariate analysis method. A "spectral shape" herein means normally the spectral shape of a non-calibrated chemical component in the sample mixture but can also mean the spectral shapes of other sources of spectral variation, including temperature drift, shifts between spectrometers, spectrometer drift, etc. The "shape" can be continuous, discontinuous, or even discrete points illustrative of the particular effect.

  11. ATR neutron spectral characterization

    SciTech Connect

    Rogers, J.W.; Anderl, R.A.

    1995-11-01

    The Advanced Test Reactor (ATR) at INEL provides intense neutron fields for irradiation-effects testing of reactor material samples, for production of radionuclides used in industrial and medical applications, and for scientific research. Characterization of the neutron environments in the irradiation locations of the ATR has been done by means of neutronics calculations and by means of neutron dosimetry based on the use of neutron activation monitors that are placed in the various irradiation locations. The primary purpose of this report is to present the results of an extensive characterization of several ATR irradiation locations based on neutron dosimetry measurements and on least-squares-adjustment analyses that utilize both neutron dosimetry measurements and neutronics calculations. This report builds upon the previous publications, especially the reference 4 paper. Section 2 provides a brief description of the ATR and it tabulates neutron spectral information for typical irradiation locations, as derived from the more historical neutron dosimetry measurements. Relevant details that pertain to the multigroup neutron spectral characterization are covered in section 3. This discussion includes a presentation on the dosimeter irradiation and analyses and a development of the least-squares adjustment methodology, along with a summary of the results of these analyses. Spectrum-averaged cross sections for neutron monitoring and for displacement-damage prediction in Fe, Cr, and Ni are given in section 4. In addition, section4 includes estimates of damage generation rates for these materials in selected ATR irradiation locations. In section 5, the authors present a brief discussion of the most significant conclusions of this work and comment on its relevance to the present ATR core configuration. Finally, detailed numerical and graphical results for the spectrum-characterization analyses in each irradiation location are provided in the Appendix.

  12. Spectral density response functions for modulated polarimeters.

    PubMed

    LaCasse, Charles F; Rodríguez-Herrera, Oscar G; Chipman, Russell A; Tyo, J Scott

    2015-11-10

    Conventional imaging devices are often compared using their optical transfer functions (OTFs) in space and their impulse responses in time. Modulated polarimeters cannot be directly compared this way, since they are frequency multiplexed. Here we define a spectral density response function that describes how the spectral density matrix of the Stokes parameters for an object transfers through a modulated polarimeter. This response function facilitates the objective comparison of polarimeters in a way that is analogous to the OTF for conventional imaging systems. The spectral density response is used to calculate a Wiener filter for a rotating analyzer polarimeter as an example of filter optimization for modulated polarimetry. PMID:26560776

  13. Some recent developments in spectral methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.

    1986-01-01

    This paper is solely devoted to spectral iterative methods including spectral multigrid methods. These techniques are explained with reference to simple model problems. Some Navier-Stokes algorithms based on these techniques are mentioned. Results on transition simulation using these algorithms are presented.

  14. Ensemble spectral variability study of Active Galactic Nuclei from the XMM-Newton serendipitous source catalogue

    NASA Astrophysics Data System (ADS)

    Serafinelli, R.; Vagnetti, F.; Middei, R.

    2016-02-01

    The variability of the X-Ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis [1], who found that slope variations are well correlated with flux variations, and that the spectra are typically steeper in the bright phase (softer when brighter behaviour). Not much information is available for the spectral variability of high-luminosity AGNs and quasars. In order to investigate this phenomenon, we use data from the XMM-Newton Serendipitous Source Catalogue, Data Release 5, which contains X- Ray observations for a large number of active galactic nuclei in a wide luminosity and redshift range, for several different epochs. This allows to perform an ensemble analysis of the spectral variability for a large sample of quasars. We quantify the spectral variability through the spectral variability parameter β, defined by Trevese and Vagnetti [2] as the ratio between the change in spectral slope and the corresponding logarithmic flux variation. We find that the spectral variability of quasars has a softer when brighter behaviour, similarly to local AGNs.

  15. Evaluating Spectral Signals to Identify Spectral Error

    PubMed Central

    Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana

    2016-01-01

    Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541

  16. Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion

    DOE PAGESBeta

    Shiklomanov, Alexey N.; Dietze, Michael C.; Viskari, Toni; Townsend, Philip A.; Serbin, Shawn P.

    2016-06-09

    The remote monitoring of plant canopies is critically needed for understanding of terrestrial ecosystem mechanics and biodiversity as well as capturing the short- to long-term responses of vegetation to disturbance and climate change. A variety of orbital, sub-orbital, and field instruments have been used to retrieve optical spectral signals and to study different vegetation properties such as plant biochemistry, nutrient cycling, physiology, water status, and stress. Radiative transfer models (RTMs) provide a mechanistic link between vegetation properties and observed spectral features, and RTM spectral inversion is a useful framework for estimating these properties from spectral data. However, existing approaches tomore » RTM spectral inversion are typically limited by the inability to characterize uncertainty in parameter estimates. Here, we introduce a Bayesian algorithm for the spectral inversion of the PROSPECT 5 leaf RTM that is distinct from past approaches in two important ways: First, the algorithm only uses reflectance and does not require transmittance observations, which have been plagued by a variety of measurement and equipment challenges. Second, the output is not a point estimate for each parameter but rather the joint probability distribution that includes estimates of parameter uncertainties and covariance structure. We validated our inversion approach using a database of leaf spectra together with measurements of equivalent water thickness (EWT) and leaf dry mass per unit area (LMA). The parameters estimated by our inversion were able to accurately reproduce the observed reflectance (RMSEVIS = 0.0063, RMSENIR-SWIR = 0.0098) and transmittance (RMSEVIS = 0.0404, RMSENIR-SWIR = 0.0551) for both broadleaved and conifer species. Inversion estimates of EWT and LMA for broadleaved species agreed well with direct measurements (CVEWT = 18.8%, CVLMA = 24.5%), while estimates for conifer species were less accurate (CVEWT = 53.2%, CVLMA = 63.3%). To

  17. The pulsar spectral index distribution

    NASA Astrophysics Data System (ADS)

    Bates, S. D.; Lorimer, D. R.; Verbiest, J. P. W.

    2013-05-01

    The flux-density spectra of radio pulsars are known to be steep and, to first order, described by a power-law relationship of the form Sν ∝ να, where Sν is the flux density at some frequency ν and α is the spectral index. Although measurements of α have been made over the years for several hundred pulsars, a study of the intrinsic distribution of pulsar spectra has not been carried out. From the result of pulsar surveys carried out at three different radio frequencies, we use population synthesis techniques and a likelihood analysis to deduce what underlying spectral index distribution is required to replicate the results of these surveys. We find that in general the results of the surveys can be modelled by a Gaussian distribution of spectral indices with a mean of -1.4 and unit standard deviation. We also consider the impact of the so-called gigahertz-peaked spectrum pulsars proposed by Kijak et al. The fraction of peaked-spectrum sources in the population with any significant turnover at low frequencies appears to be at most 10 per cent. We demonstrate that high-frequency (>2 GHz) surveys preferentially select flatter spectrum pulsars and the converse is true for lower frequency (<1 GHz) surveys. This implies that any correlations between α and other pulsar parameters (for example age or magnetic field) need to carefully account for selection biases in pulsar surveys. We also expect that many known pulsars which have been detected at high frequencies will have shallow, or positive, spectral indices. The majority of pulsars do not have recorded flux density measurements over a wide frequency range, making it impossible to constrain their spectral shapes. We also suggest that such measurements would allow an improved description of any populations of pulsars with `non-standard' spectra. Further refinements to this picture will soon be possible from the results of surveys with the Green Bank Telescope and LOFAR.

  18. A Tool For Exploring Spectral Energy Distributions in the Classroom

    NASA Astrophysics Data System (ADS)

    Stanford, Darryl; Seebode, S.; Drumheller, D.; Howell, S. B.; Hoard, D. W.

    2011-01-01

    The calculation of spectral type, temperature, radius and distance is often the first step in the study of stars and stellar systems. Spectral energy distributions or SEDs are of paramount importance in the determination of these quantities. We have created an innovative tool that enables high school and college physics and astronomy instructors and their students, to evaluate these parameters. This tool includes templates of main sequence stars with spectral types from O5 to M5 and associated lesson plans. Instructors can use it in a classroom setting and design lab exercises around it. Students can use it for research, determining stellar radii, distances, as well as cluster membership of stellar samples. More complex, multi-component SEDs can be used to investigate stellar systems, with dust disks, as well as, the dusty nuclei of starburst galaxies. The tool is in google documents format, easily downloadable and modifiable by interested parties, and will be accessible on the College of San Mateo astronomy website (http://gocsm.net/astronomy/), Teachers and students can add template data for other spectral types and luminosity classes, for their own projects. This study is part of the NASA/IPAC Teacher Archive Research Project (NITARP).

  19. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  20. Spectral methods for CFD

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Streett, Craig L.; Hussaini, M. Yousuff

    1989-01-01

    One of the objectives of these notes is to provide a basic introduction to spectral methods with a particular emphasis on applications to computational fluid dynamics. Another objective is to summarize some of the most important developments in spectral methods in the last two years. The fundamentals of spectral methods for simple problems will be covered in depth, and the essential elements of several fluid dynamical applications will be sketched.

  1. Parameters characterizing electromagnetic wave polarization

    PubMed

    Carozzi; Karlsson; Bergman

    2000-02-01

    In this paper, generalizations of the Stokes parameters and alternative characterizations of three-dimensional (3D) time-varying electromagnetic fields is introduced. One of these characteristics is the normal of the polarization plane, which, in many cases of interest, is parallel (or antiparallel) to the direction of propagation. Others are the two spectral density Stokes parameters which describe spectral intensity and circular polarization. The analysis is based on the spectral density tensor. This tensor is expanded in a base composed of the generators of the SU(3) symmetry group, as given by Gell-Mann and Y. Ne'eman [The Eight-fold Way (Benjamin, New York, 1964)] and the coefficients of this expansion are identified as generalized spectral density polarization parameters. The generators have the advantage that they obey the same algebra as the Pauli spin matrices, which is the base for expanding the 2D spectral density tensor with the Stokes parameters as coefficients. The polarization parameters introduced are formulated in the frequency domain, thereby further generalizing the theory to allow for wide-band electromagnetic waves in contrast to the traditional quasi-monochromatic formulation.

  2. Spectral properties of the Google matrix of the World Wide Web and other directed networks

    NASA Astrophysics Data System (ADS)

    Georgeot, Bertrand; Giraud, Olivier; Shepelyansky, Dima L.

    2010-05-01

    We study numerically the spectrum and eigenstate properties of the Google matrix of various examples of directed networks such as vocabulary networks of dictionaries and university World Wide Web networks. The spectra have gapless structure in the vicinity of the maximal eigenvalue for Google damping parameter α equal to unity. The vocabulary networks have relatively homogeneous spectral density, while university networks have pronounced spectral structures which change from one university to another, reflecting specific properties of the networks. We also determine specific properties of eigenstates of the Google matrix, including the PageRank. The fidelity of the PageRank is proposed as a characterization of its stability.

  3. Spectral abundance fraction estimation of materials using Kalman filters

    NASA Astrophysics Data System (ADS)

    Wang, Su; Chang, Chein; Jensen, Janet L.; Jensen, James O.

    2004-12-01

    Kalman filter has been widely used in statistical signal processing for parameter estimation. Although a Kalman filter approach has been recently developed for spectral unmixing, referred to as Kalman filter-based linear unmixing (KFLU), its applicability to spectral characterization within a single pixel vector has not been explored. This paper presents a new application of Kalman filtering in spectral estimation and quantification. It develops a Kalman filter-based spectral signature esimator (KFSSE) which is different from the KFLU in the sense that the former performs a Kalman filter wavelength by wavelength across a spectral signature as opposed to the latter which implements a Kalman filter pixel vector by pixel vector in an image cube. The idea of the KFSSE is to implement the state equation to characterize the true spectral signature, while the measurement equation is being used to describe the spectral signature to be processed. Additionally, since a Kalman filter can accurately estimate spectral abundance fraction of a signature, our proposed KFSSE can further used for spectral quantification for subpixel targets and mixed pixel vectors, called Kalman filter-based spectral quantifier (KFSQ). Such spectral quantification is particularly important for chemical/biological defense which requires quantification of detected agents for damage control assessment. Several different types of hyperspectral data are used for experiments to demonstrate the ability of the KFSSE in estimation of spectral signature and the utility of the KFSQ in spectral quantification.

  4. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  5. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  6. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  7. Spectral collocation methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.

    1987-01-01

    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

  8. Spectral compressor vibration analysis techniques

    SciTech Connect

    Hanson, M.L.

    1982-02-01

    Studies at GAT have verified that the spectral distribution of energy in gaseous diffusion compressor vibrations contains information pertinent to the state of the compressor's ''health.'' Based on that conclusion, vibration analysis capabilities were included in the CUP computer data acquisition system. In order for that information to be used for diagnosis of incipient failure mechanisms, however, spectral features must be empirically associated with actual malfunctions and validated statistically as diagnostic symptoms. When the system was acquired, indicators were generally unknown except for those associated with unbalance, misalignment, 00 secondary surge and severe resonant blade vibrations. Others must be developed as in-service malfunctions occur. The power spectral density function (PSDF) has historically been used to compute vibration spectra. Accurate, high-resolution power density spectra require long data-acquisition periods which is inconsistent with frequent examinations of all up-rated compressors. Detection of gross spectral changes indicative of a need for detailed analyses has been accomplished at a rate of less than 1 minute per compressor. An optimum analytical sequence will be based on trade offs. Work is in progress to identify additional malfunction indicators and investigate tools other than the PSDF to provide faster diagnoses. 6 figs.

  9. New procedure for capturing spectral images of human portraiture

    NASA Astrophysics Data System (ADS)

    Sun, Qun; Fairchild, Mark D.

    2002-06-01

    This paper describes a new procedure of capturing spectral images of human portraiture. The designed imaging system was calibrated directly based on real human subjects and has the capability to provide accurate spectral images of human faces, including facial skin as well as the lips, eyes, and hair, from various ethnic races. The facial spectral reflectances obtained were analyzed by principal components analysis (PCA) method. Based on the results of PCA, spectral images using both three and six wide-band spectral sampling were estimated. The reconstructed spectral images for display based on an sRGB display model are evaluated. The results have proved that this new spectral imaging procedure is successful. The results also show that three basis functions are accurate enough to estimate the spectral reflectance of human faces. The derived spectral images can be applied to color-imaging system design and analysis.

  10. Different approaches of spectral analysis

    NASA Technical Reports Server (NTRS)

    Lacoume, J. L.

    1977-01-01

    Several approaches to the problem of the calculation of spectral power density of a random function from an estimate of the autocorrelation function were studied. A comparative study was presented of these different methods. The principles on which they are based and the hypothesis implied were pointed out. Some indications on the optimization of the length of the estimated correlation function was given. An example of application of the different methods discussed in this paper was included.

  11. Spectral polarimetric light-scattering by particulate media: 1. Theory of spectral Vector Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Ceolato, Romain; Riviere, Nicolas

    2016-07-01

    Spectral polarimetric light-scattering by particulate media has recently attracted growing interests for various applications due to the production of directional broadband light sources. Here the spectral polarimetric light-scattering signatures of particulate media are simulated using a numerical model based on the spectral Vector Radiative Transfer Equation (VRTE). A microphysical analysis is conducted to understand the dependence of the light-scattering signatures upon the microphysical parameters of particles. We reveal that depolarization from multiple scattering results in remarkable spectral and directional features, which are simulated by our model over a wide spectral range from visible to near-infrared. We propose to use these features to improve the inversion of the scattering problem in the fields of remote sensing, astrophysics, material science, or biomedical.

  12. Spectral decomposition of black-hole perturbations on hyperboloidal slices

    NASA Astrophysics Data System (ADS)

    Ansorg, Marcus; Macedo, Rodrigo Panosso

    2016-06-01

    In this paper, we present a spectral decomposition of solutions to relativistic wave equations described on horizon-penetrating hyperboloidal slices within a given Schwarzschild-black-hole background. The wave equation in question is Laplace transformed, which leads to a spatial differential equation with a complex parameter. For initial data which are analytic with respect to a compactified spatial coordinate, this equation is treated with the help of the Mathematica package in terms of a sophisticated Taylor series analysis. Thereby, all ingredients of the desired spectral decomposition arise explicitly to arbitrarily prescribed accuracy, including quasinormal modes and quasinormal mode amplitudes as well as the jump of the Laplace transform along the branch cut. Finally, all contributions are put together to obtain, via the inverse Laplace transformation, the spectral decomposition in question. The paper explains extensively this procedure and includes detailed discussions of relevant aspects, such as the definition of quasinormal modes and the question regarding the contribution of infinity frequency modes to the early time response of the black hole.

  13. Spectrally nonselective holographic objective

    NASA Astrophysics Data System (ADS)

    Wardosanidze, Zurab V.

    1991-10-01

    Reflection holograms and holographic optical elements fabricated by the Denisyuk method are spectrally selective. In certain applications there may be a need for the development of holographic structures that are not selective in terms of the spectral composition of the reconstructing light. This paper describes the possibility of creating spectral nonselective optical elements and reflection holograms on a dichromate gelatin layer (DGL). The essential condition for achieving nonselectivity in this case is a strong absorption of actinic radiation in the initial emulsion layer conditioning the strongly damping character of the summary field in thickness.

  14. A practical approach to spectral volume rendering.

    PubMed

    Bergner, Steven; Möller, Torsten; Tory, Melanie; Drew, Mark S

    2005-01-01

    To make a spectral representation of color practicable for volume rendering, a new low-dimensional subspace method is used to act as the carrier of spectral information. With that model, spectral light material interaction can be integrated into existing volume rendering methods at almost no penalty. In addition, slow rendering methods can profit from the new technique of postillumination-generating spectral images in real-time for arbitrary light spectra under a fixed viewpoint. Thus, the capability of spectral rendering to create distinct impressions of a scene under different lighting conditions is established as a method of real-time interaction. Although we use an achromatic opacity in our rendering, we show how spectral rendering permits different data set features to be emphasized or hidden as long as they have not been entirely obscured. The use of postillumination is an order of magnitude faster than changing the transfer function and repeating the projection step. To put the user in control of the spectral visualization, we devise a new widget, a "light-dial," for interactively changing the illumination and include a usability study of this new light space exploration tool. Applied to spectral transfer functions, different lights bring out or hide specific qualities of the data. In conjunction with postillumination, this provides a new means for preparing data for visualization and forms a new degree of freedom for guided exploration of volumetric data sets.

  15. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    NASA Astrophysics Data System (ADS)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  16. Comprehensive view of high-spectral-resolution lidar technique from the perspective of spectral discrimination

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Luo, Jing; Zhang, Yupeng; Zhou, Yudi; Bai, Jian; Liu, Chong; Shen, Yibing

    2016-05-01

    As already known commonly, high-spectral-resolution lidar technique (HSRL) employs a narrowband spectroscopic filter to separate the elastic backscattered aerosol signal from the thermal Doppler broadened molecular backscattered contribution. This paper presents a new and comprehensive view of HSRL technique from the perspective of spectral discrimination, without concretizing the analysis into a specific spectral discrimination filter. Based on a general HSRL layout with three-channel configuration, a theoretical model of retrieval error evaluation is introduced. In this model, we only take the error sources related to the spectral discrimination parameters into account, and ignore other error sources not associated with these focused parameters. This theoretical model is subsequently verified by Monte Carlo (MC) simulations. Both the model and MC simulations demonstrate that a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial to reduce the retrieval error. Moreover, we find that the signal-to-noise ratio (SNR) and SDR of the lidar system are often tradeoffs, and we suggest considering a suitable SDR for higher molecular transmittance (thus higher SNR) instead of using unnecessarily high SDR when designing the spectral discrimination filter. This view interprets the function of the narrowband spectroscopic filter in HSRL system essentially, and will provide some general guidelines for the reasonable design of the spectral discrimination filter for HSRL community.

  17. Stark broadening of B IV spectral lines

    NASA Astrophysics Data System (ADS)

    Dimitrijević, Milan S.; Christova, Magdalena; Simić, Zoran; Kovačević, Andjelka; Sahal-Bréchot, Sylvie

    2016-08-01

    Stark broadening parameters for 157 multiplets of helium-like boron (B IV) have been calculated using the impact semiclassical perturbation formalism. Obtained results have been used to investigate the regularities within spectral series. An example of the influence of Stark broadening on B IV lines in DO white dwarfs is given.

  18. Wide spectral range characterization of antireflective coatings and their optimization

    NASA Astrophysics Data System (ADS)

    Franta, Daniel; Nečas, David; Ohlídal, Ivan; Jankuj, Jiří

    2015-09-01

    Development of antireflective coatings realized by thin film systems requires their characterization and optimization of their properties. Functional properties of such interference devices are determined by optical constants and thicknesses of the individual films and various defects taking place in these systems. In optics industry the characterization of the films is mostly performed in a relatively narrow spectral range using simple dispersion models and, moreover, the defects are not taken into account at all. This manner of characterization fails if applied to real-world non-ideal thin film systems because the measured data do not contain sufficient information about all the parameters describing the system including imperfections. Reliable characterization requires the following changes: extension of spectral range of measurements, combination of spectrophotometry and ellipsometry, utilization of physically correct dispersion models (Kramers-Kronig consistency, sum rules), inclusion of structural defects instrument imperfection into the models and simultaneous processing of all experimental data. This enables us to remove or reduce a correlation among the parameters searched so that correct and sufficiently precise determination of parameter values is achieved. Since the presence and properties of the defects are difficult to control independently by tuning of the deposition conditions, the optimization does not in general involve the elimination of defects. Instead they are taken into account in the design of the film systems. The outlined approach is demonstrated on the characterization and optimization of ultraviolet antireflective coating formed by double layer of Al2O3 and MgF2 deposited on fused silica.

  19. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian

    2015-05-01

    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  20. Apparatus and system for multivariate spectral analysis

    DOEpatents

    Keenan, Michael R.; Kotula, Paul G.

    2003-06-24

    An apparatus and system for determining the properties of a sample from measured spectral data collected from the sample by performing a method of multivariate spectral analysis. The method can include: generating a two-dimensional matrix A containing measured spectral data; providing a weighted spectral data matrix D by performing a weighting operation on matrix A; factoring D into the product of two matrices, C and S.sup.T, by performing a constrained alternating least-squares analysis of D=CS.sup.T, where C is a concentration intensity matrix and S is a spectral shapes matrix; unweighting C and S by applying the inverse of the weighting used previously; and determining the properties of the sample by inspecting C and S. This method can be used by a spectrum analyzer to process X-ray spectral data generated by a spectral analysis system that can include a Scanning Electron Microscope (SEM) with an Energy Dispersive Detector and Pulse Height Analyzer.

  1. The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um)

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Gallagher, Andrea J.; King, Trude V.V.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 498 spectra of 444 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 um . The spectral resolution (Full Width Half Maximum) of the reflectance data is <= 4 nm in the visible (0.2-0.8 um) and <= 10 nm in the NIR (0.8-2.35 um). All spectra were corrected to absolute reflectance using an NIST Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from borate, carbonate, chloride, element, halide, hydroxide, nitrate, oxide, phosphate, sulfate, sulfide, sulfosalt, and the silicate (cyclosilicate, inosilicate, nesosilicate, phyllosilicate, sorosilicate, and tectosilicate) classes are represented. X-Ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses. The library and software are available as a series of U.S.G.S. Open File reports. PC user software is available to convert the binary data to ascii files (a separate U.S.G.S. open file report). Additionally, a binary data files are on line at the U.S.G.S. in Denver for anonymous ftp to users on the Internet. The library search software enables a user to search on documentation parameters as well as spectral features. The

  2. On the Accuracy of Atmospheric Parameter Determination in BAFGK Stars

    NASA Astrophysics Data System (ADS)

    Ryabchikova, T.; Piskunov, N.; Shulyak, D.

    2015-04-01

    During the past few years, many papers determining the atmospheric parameters in FGK stars appeared in the literature where the accuracy of effective temperatures is given as 20-40 K. For main sequence stars within the 5 000-13 000 K temperature range, we have performed a comparative analysis of the parameters derived from the spectra by using the SME (Spectroscopy Made Easy) package and those found in the literature. Our sample includes standard stars Sirius, Procyon, δ Eri, and the Sun. Combining different spectral regions in the fitting procedure, we investigated an effect different atomic species have on the derived atmospheric parameters. The temperature difference may exceed 100 K depending on the spectral regions used in the SME procedure. It is shown that the atmospheric parameters derived with the SME procedure which includes wings of hydrogen lines in fitting agrees better with the results derived by the other methods and tools across a large part of the main sequence. For three stars—π Cet, 21 Peg, and Procyon—the atmospheric parameters were also derived by fitting a calculated energy distribution to the observed one. We found a substantial difference in the parameters inferred from different sets and combinations of spectrophotometric observations. An intercomparison of our results and literature data shows that the average accuracy of effective temperature determination for cool stars and for the early B-stars is 70-85 K and 170-200 K, respectively.

  3. A NEW METHOD OF PULSE-WISE SPECTRAL ANALYSIS OF GAMMA-RAY BURSTS

    SciTech Connect

    Basak, Rupal; Rao, A. R. E-mail: arrao@tifr.res.in

    2013-05-10

    Time-resolved spectral analysis, though a very promising method to understand the emission mechanism of gamma-ray bursts (GRBs), is difficult to implement in practice because of poor statistics. We present a new method for pulse-wise time-resolved spectral study of the individual pulses of GRBs, using the fact that many spectral parameters are either constants or smooth functions of time. We use this method for the two pulses of GRB 081221, the brightest GRB with separable pulses. We choose, from the literature, a set of possible models that includes the Band model, blackbody with a power law (BBPL), and a collection of blackbodies with a smoothly varying temperature profile, along with a power law (mBBPL), and two blackbodies with a power law (2BBPL). First, we perform a time-resolved study to confirm the spectral parameter variations, and then we construct the new model to perform a joint spectral fit. We find that any photospheric emission in terms of blackbodies is required mainly in the rising parts of the pulses and the falling part can be adequately explained in terms of the Band model, with the low-energy photon index within the regime of synchrotron model. Interestingly, we find that 2BBPL is comparable or sometimes even better, though marginally, than the Band model, in all episodes. Consistent results are also obtained for the brightest GRB of Fermi era-GRB 090618. We point out that the method is generic enough to test any spectral model with well-defined parameter variations.

  4. Use of SPECTRAL at LRBA's HWIL facilities

    NASA Astrophysics Data System (ADS)

    Maurel, Frederic; Lesueur, Marc

    2002-07-01

    DGA/DCE/LRBA, the French MoD missiles and navigation evaluation center has developed several HWIL facilities in order to test the IR-autoguidance-loops of tactical missiles. LRBA has initiated the acquisition of SPECTRAL, a dedicated hardware and software configuration. SPECTRAL (Multipurpose System for Laboratory Evaluation of Image Processing Calculators) is a complete system including hardware and software designed for the evaluation of different missile functions or equipment (on-board image processing software, image processing calculators, imagers, terminal guidance and control performances). The main feature of this system is its capability to generate images representative of those elaborated by an infrared missile seeker, in real time. SPECTRAL is designed with an architecture for a multi-user environment including workstations carrying out several operations. Acceptance Test Procedures of SPECTRAL are being discussed and the first results are presented here. As a conclusion, we provide a comparison with existing image generating systems at LRBA's facilities.

  5. Spectral calibration of programmable imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Du, Guojun; Liao, Zhibo; Jiao, Wenchun; Zong, Xiaoying; He, Xuhua; Wang, Haichao

    2015-10-01

    Programmable imager spectrometer can provide flexible data by changing the spectrum section number, central wavelength, spectral width and spatial resolution in orbit. Spectral calibration of imaging spectrometer plays an important role for acquiring accurate spectrum, two spectral calibration types are in essence: wavelength calibration and Full-width-half-maximum (FWHM). Base on the character of programmable imager spectrometer, designed a set of spectral calibration system. Wavelength calibration realized by utilizing the Monochromatic light of high precision monochromator, during the test, changed output parameters of monochromator according to the spectral bandwidth of imager spectrometer. The FWHM is constructed by a set of variable narrow spectrum lines that is output by tunable laser. Gaussian fitting algorithm is used to determine center wavelength and the FWHM of the characteristic spectrum line, Spectral pixels are calibrated by quadratic polynomial, standard spectroscopic lamp is used to verify wavelength calibration result accuracy. The calibration result indicates that FWHM is better than 2nm, the wavelength uncertainty is less than 0.6nm, meet the calibration requirements of programmable imaging spectrometer.

  6. USGS Digital Spectral Library splib05a

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard K.; Livo, Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Steve J.

    2003-01-01

    We have assembled a digital reflectance spectral library of spectra that covers wavelengths from the ultraviolet to near-infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, vegetation, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials.

  7. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  8. CCN Spectral Measurements

    SciTech Connect

    Hudson, James G.

    2009-02-27

    Detailed aircraft measurements were made of cloud condensation nuclei (CCN) spectra associated with extensive cloud systems off the central California coast in the July 2005 MASE project. These measurements include the wide supersaturation (S) range (2-0.01%) that is important for these polluted stratus clouds. Concentrations were usually characteristic of continental/anthropogenic air masses. The most notable feature was the consistently higher concentrations above the clouds than below. CCN measurements are so important because they provide a link between atmospheric chemistry and cloud-climate effects, which are the largest climate uncertainty. Extensive comparisons throughout the eleven flights between two CCN spectrometers operated at different but overlapping S ranges displayed the precision and accuracy of these difficult spectral determinations. There are enough channels of resolution in these instruments to provide differential spectra, which produce more rigorous and precise comparisons than traditional cumulative presentations of CCN concentrations. Differential spectra are also more revealing than cumulative spectra. Only one of the eleven flights exhibited typical maritime concentrations. Average below cloud concentrations over the two hours furthest from the coast for the 8 flights with low polluted stratus was 614?233 at 1% S, 149?60 at 0.1% S and 57?33 at 0.04% S cm-3. Immediately above cloud average concentrations were respectively 74%, 55%, and 18% higher. Concentration variability among those 8 flights was a factor of two. Variability within each flight excluding distances close to the coast ranged from 15-56% at 1% S. However, CN and probably CCN concentrations sometimes varied by less than 1% over distances of more than a km. Volatility and size-critical S measurements indicated that the air masses were very polluted throughout MASE. The aerosol above the clouds was more polluted than the below cloud aerosol. These high CCN concentrations from

  9. [Research on New Type of Spectral Modulation Polarization Measurement Technology].

    PubMed

    Zhao, Jia; Zhou, Feng; Li, Huan; Zhao, Hai-bo

    2015-10-01

    Spectral Modulation Polarization Measurement technology (SMPM) is a new type of polarization modulation technology, with an achromatic /4 retarder, a multiple-order retarder and a polarizer the polarization information of incident light can be encoded into the spectral dimension, sinusoidal which amplitude scales with the degree of the linear polarization and phase scales with the angle of the linear polarization can be acquired directly. With a dedicated algorithm for the modulated spectrum, we can get degree and angle of the linear polarization, spectral information and radiation information of the target. This paper expounds the basic principle of SMPM and concrete implementation scheme is proposed. Demodulation algorithm is designed before experimental platform are set up. Experiment which verified the correctness on the SMPM has carried on. The experimental results show the correctness and feasibility of SMPM. Compared with traditional polarization modulate techniques no moving parts and electronic components are including in this scheme. It's also has the advantages of compact and low mass. We can get all the polarization information through one single measurement rather than get Stokes parameters for further calculations. This study provides a new kind of technological approaches for the development of new space polarization detecting sensor.

  10. Spectral dynamics of a collective free electron maser

    SciTech Connect

    Eecen, P.J.; Schep, T.J.; Tulupov, A.V.

    1995-12-31

    A theoretical and numerical study of the nonlinear spectral dynamics of a Free Electron Maser (FEM) is reported. The electron beam is modulated by a step-tapered undulator consisting of two sections with different strengths and lengths. The sections have equal periodicity and are separated by a field-free gap. The millimeter wave beam is guided through a rectangular corrugated waveguide. The electron energy is rather low and the current density is large, therefore, the FEM operates in the collective (Raman) regime. Results of a computational study on the spectral dynamics of the FEM are presented. The numerical code is based on a multifrequency model in the continuous beam limit with a 3D description of the electron beam. Space-charge forces are included by a Fourier expansion. These forces strongly influence the behaviour of the generated spectrum of the FEM. The linear gain of the FEM is high, therefore, the system quickly reaches the nonlinear regime. In saturation the gain is still relatively high and the spectral signal at the resonant frequency of the second undulator is suppressed. The behaviour of the sidebands is analysed and their dependence on mirror reflectivity and undulator parameters will be discussed.

  11. [Research on New Type of Spectral Modulation Polarization Measurement Technology].

    PubMed

    Zhao, Jia; Zhou, Feng; Li, Huan; Zhao, Hai-bo

    2015-10-01

    Spectral Modulation Polarization Measurement technology (SMPM) is a new type of polarization modulation technology, with an achromatic /4 retarder, a multiple-order retarder and a polarizer the polarization information of incident light can be encoded into the spectral dimension, sinusoidal which amplitude scales with the degree of the linear polarization and phase scales with the angle of the linear polarization can be acquired directly. With a dedicated algorithm for the modulated spectrum, we can get degree and angle of the linear polarization, spectral information and radiation information of the target. This paper expounds the basic principle of SMPM and concrete implementation scheme is proposed. Demodulation algorithm is designed before experimental platform are set up. Experiment which verified the correctness on the SMPM has carried on. The experimental results show the correctness and feasibility of SMPM. Compared with traditional polarization modulate techniques no moving parts and electronic components are including in this scheme. It's also has the advantages of compact and low mass. We can get all the polarization information through one single measurement rather than get Stokes parameters for further calculations. This study provides a new kind of technological approaches for the development of new space polarization detecting sensor. PMID:26904842

  12. Survey of spectral response measurements for photovoltaic devices

    SciTech Connect

    Hartman, J.S.; Lind, M.A.

    1981-11-01

    A survey of the photovoltaic community was conducted to ascertain the present state-of-the-art for PV spectral response measurements. Specific topics explored included measurement system designs, good and bad features of the systems, and problems encountered in the evaluation of specific cell structures and materials. The survey showed that most spectral response data are used in diagnostic analysis for the optimization of developmental solar cells. Measurement systems commonly utilize a chopped narrowband source in conjunction with a constant bias illumination which simulates the ambient end use environment. Researchers emphasized the importance of bias illumination for all types of cells in order to minimize the effects of nonlinearities in cell response. Not surprisingly single crystal silicon cells present the fewest measurement problems to the researcher and have been studied more thoroughly than any other type of solar cell. But, the accurate characterization of silicon cells is still difficult and laboratory intercomparison studies have yielded data scatter ranging from +-5% to +-15%. The measurement experience with other types of cells is less extensive. The development of reliable data bases for some solar cells is complicated by problems of cell nonuniformity, environmental instability, nonlinearity, etc. Cascade cells present new problems associated with their structue (multiple cells in series) which are just beginning to be understood. In addition, the importance of many measurement parameters (spectral content of bias light, bias light intensity, bias voltage, chopping frequency, etc.) are not fully understood for most types of solar cells.

  13. Noncomputable Spectral Sets

    NASA Astrophysics Data System (ADS)

    Teutsch, Jason

    2007-01-01

    It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus a pathological set becomes a bit more friendly. Finally, a number of interesting open problems are left for the inspired reader.

  14. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-01-11

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  15. Augmented Classical Least Squares Multivariate Spectral Analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2005-07-26

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  16. Augmented classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.; Melgaard, David K.

    2004-02-03

    A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.

  17. Spectral topography of histopathological samples

    NASA Astrophysics Data System (ADS)

    Lerner, Jeremy M.; Lu, Thomas T.; Vari, Sandor G.

    1998-06-01

    The goal of imaging spectroscopy is to obtain independent spectra from individual objects in a field-of-view. In the case of biological materials, such as histopathology samples, it has been well established that spectral characteristic can be indicative of specific diseases including cancer. Diagnosis can be enhanced by the use of probes and stains to indicate the presence of individual genome or other biologically active cell components or substances. To assess a specimen through a microscope is directly analogous to serving the Earth from space to assess natural features. This paper describes a simple and inexpensive imaging spectrometer, with an origin in remote sensing, that demonstrates that it is possible to rapidly identify evidence of disease in histopathology samples using spatially resolved spectral data. The PARISS imaging spectrometer enables a researcher to acquire multi-spectral images that yield functional maps, showing what and where biological molecules are located within a structure. It is the powerful combination of imaging and spectroscopy that provides the tools not readily available to the Life Sciences. The PARISS system incorporates a powerful hybrid neural network analysis to break the data logjam that is often associated with the acquisition and processing of multiple spectra.

  18. Spectral Redundancy in Tissue Characterization

    NASA Astrophysics Data System (ADS)

    Varghese, Tomy

    1995-01-01

    Ultrasonic backscattered signals from material comprised of quasi-periodic scatterers exhibit redundancy over both its phase and magnitude spectra. This dissertation addresses the problem of estimating the mean scatterer spacing and scatterer density from the backscattered ultrasound signal using spectral redundancy characterized by the spectral autocorrelation (SAC) function. The SAC function exploits characteristic differences between the phase spectrum of the resolvable quasi-periodic (regular) scatterers and the unresolvable uniformly distributed (diffuse) scatterers to improve estimator performance over other estimators that operate directly on the magnitude spectrum. Analytical, simulation, and experimental results (liver and breast tissue) indicate the potential of utilizing phase information using the SAC function. A closed form analytical expression for the SAC function is derived for gamma distributed scatterer spacings. The theoretical expression for the SAC function demonstrate the increased regular-to-diffuse scatterer signal ratio in the off-diagonal components of the SAC function, since the diffuse component contributes only to the diagonal components (power spectrum). The A-scan is modelled as a cyclostationary signal whose statistical parameters vary in time with single or multiple periodicities. A-scan models consist of a collection of regular scatterers with gamma distributed spacings embedded in diffuse scatterers with uniform distributed spacings. The model accounts for attenuation by convolving the frequency dependent backscatter coefficients of the scatterer centers with a time-varying system response. Simulation results show that SAC-based estimates converge more reliably over smaller amounts of data than previously used cepstrum-based estimates. A major reason for the performance advantage is the use of phase information by the SAC function, while the cepstnun uses a phaseless power spectral density, that is directly affected by the system

  19. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  20. Photovoltaic spectral responsivity measurements

    SciTech Connect

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  1. Spectral derates phenomena of atmospheric components on multi-junction CPV technologies

    NASA Astrophysics Data System (ADS)

    Armijo, Kenneth M.; Harrison, Richard K.; King, Bruce H.; Martin, Jeffrey B.

    2014-09-01

    The solar spectrum varies with atmospheric conditions and composition, and can have significant impacts on the output power performance of each junction in a concentrating solar photovoltaic (CPV) system, with direct implications on the junction that is current-limiting. The effect of changing solar spectrum on CPV module power production has previously been characterized by various spectral performance parameters such as air mass (AM) for both single and multi-junction module technologies. However, examinations of outdoor test results have shown substantial uncertainty contributions by many of these parameters, including air mass, for the determination of projected power and energy production. Using spectral data obtained from outdoor spectrometers, with a spectral range of 336nm-1715nm, this investigation examines precipitable water (PW), aerosol and dust variability effects on incident spectral irradiance. This work then assesses air mass and other spectral performance parameters, including a new atmospheric component spectral factor (ACSF), to investigate iso-cell, stacked multijunction and single-junction c-Si module performance data directly with measured spectrum. This will then be used with MODTRAN5® to determine if spectral composition can account for daily and seasonal variability of the short-circuit current density Jsc and the maximum output power Pmp values. For precipitable water, current results show good correspondence between the modeled atmospheric component spectral factor and measured data with an average rms error of 0.013, for all three iso-cells tested during clear days over a one week time period. Results also suggest average variations in ACSF factors with respect to increasing precipitable water of 8.2%/cmH2O, 1.3%/cmH2O, 0.2%/cmH2O and 1.8%/cmH2O for GaInP, GaAs, Ge and c-Si cells, respectively at solar noon and an AM value of 1.0. For ozone, the GaInP cell had the greatest sensitivity to increasing ozone levels with an ACSF variation of

  2. ADE spectral networks

    NASA Astrophysics Data System (ADS)

    Longhi, Pietro; Park, Chan Y.

    2016-08-01

    We introduce a new perspective and a generalization of spectral networks for 4d {N} = 2 theories of class S associated to Lie algebras {g} = A n , D n , E6, and E7. Spectral networks directly compute the BPS spectra of 2d theories on surface defects coupled to the 4d theories. A Lie algebraic interpretation of these spectra emerges naturally from our construction, leading to a new description of 2d-4d wall-crossing phenomena. Our construction also provides an efficient framework for the study of BPS spectra of the 4d theories. In addition, we consider novel types of surface defects associated with minuscule ccrepresentations of {g}.

  3. Spectral library searching in proteomics.

    PubMed

    Griss, Johannes

    2016-03-01

    Spectral library searching has become a mature method to identify tandem mass spectra in proteomics data analysis. This review provides a comprehensive overview of available spectral library search engines and highlights their distinct features. Additionally, resources providing spectral libraries are summarized and tools presented that extend experimental spectral libraries by simulating spectra. Finally, spectrum clustering algorithms are discussed that utilize the same spectrum-to-spectrum matching algorithms as spectral library search engines and allow novel methods to analyse proteomics data.

  4. Spectral methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Salas, M. D.; Zang, T. A.

    1983-01-01

    Spectral methods for compressible flows are introduced in relation to finite difference and finite element techniques within the framework of the method of weighted residuals. Current spectral collocation methods are put in historical context. The basic concepts of both Fourier and Chebyshev spectral collocation methods are provided. Filtering strategies for both shock-fitting and shock-capturing approaches are also presented. Fourier shock capturing techniques are evaluated using a one-dimensional, periodic astrophysical 'nozzle' problem. Examples of shock-fitting approaches include a shock/acoustic wave interaction, shock/vortex interaction, and the classical blunt body problem. While the shock capturing spectral method does not yet show a clear advantage over second-order finite differences, equivalent accuracy can be obtained using shock fitting with far fewer grid points.

  5. Maximum a posteriori estimation of spectral reflectance from color image and multipoint spectral measurements.

    PubMed

    Murakami, Yuri; Ietomi, Kunihiko; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2007-10-01

    Accurate color image reproduction under arbitrary illumination can be realized if the spectral reflectance functions in a scene are obtained. Although multispectral imaging is one of the promising methods to obtain the reflectance of a scene, it is expected to reduce the number of color channels without significant loss of accuracy. This paper presents what we believe to be a new method for estimating spectral reflectance functions from color image and multipoint spectral measurements based on maximum a posteriori (MAP) estimation. Multipoint spectral measurements are utilized as auxiliary information to improve the accuracy of spectral reflectance estimated from image data. Through simulations, it is confirmed that the proposed method improves the estimation accuracy, particularly when a scene includes subjects that belong to various categories.

  6. Listening to Include

    ERIC Educational Resources Information Center

    Veck, Wayne

    2009-01-01

    This paper attempts to make important connections between listening and inclusive education and the refusal to listen and exclusion. Two lines of argument are advanced. First, if educators and learners are to include each other within their educational institutions as unique individuals, then they will need to listen attentively to each other.…

  7. Radiation-driven winds of hot luminous stars. XVIII. The unreliability of stellar and wind parameter determinations from optical vs. UV spectral analysis of selected central stars of planetary nebulae and the possibility of some CSPNs as single-star supernova Ia progenitors

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Pauldrach, A. W. A.; Kaschinski, C. B.

    2016-08-01

    that of moderate clumping factors. Moderate clumping factors leave the UV spectra mostly unaffected, indicating that the influence on the ionization balance, and thus on the radiative acceleration, is small. Instead of the erratic behavior of the clumping factors claimed from the optical analyses, our analysis based on the velocity field computed from radiative driving yields similar clumping factors for all CSPNs, with a typical value of fcl = 4. With and without clumping, wind strengths and terminal velocities consistent with the stellar parameters from the optical analysis give spectra incompatible with both optical and UV observations, whereas a model that consistently implements the physics of radiation-driven winds achieves a good fit to both the optical and UV observations with a proper choice of stellar parameters. The shock temperatures and the ratios of X-ray to bolometric luminosity required to reproduce the highly ionized O vi line in the FUSE spectral range agree with those known from massive O stars (LX/Lbol ~ 10-7...10-6), again confirming the similarity of O-type CSPN and massive O star atmospheres and further strengthening the claim that both have identical wind driving mechanisms. Conclusions: The similarity of the winds of O-type CSPNs and those of massive O stars justifies using the same methods based on the dynamics of radiation-driven winds in their analysis, thus supporting the earlier result that several of the CSPNs in the sample have near-Chandrasekhar-limit masses and may thus be possible single-star progenitors of type Ia supernovae.

  8. Spectral evolution of galaxies. III - Cosmological predictions for the Space Telescope faint object camera

    NASA Astrophysics Data System (ADS)

    Bruzual A., G.

    1983-10-01

    The galactic spectral evolutionary models of Bruzual A. (1981) are employed to estimate parameters which will be observable by the wide-field camera and faint-object camera of the Space Telescope. The capabilities and bandpasses of the instruments are reviewed, and the results are presented in tables and graphs. Parameters calculated include the amplitude of the Lyman discontinuity at 912 A, stellar and galaxy rest-frame colors, color evolution, two-color diagrams as a function of redshift, luminosity evolution, surface brightness profiles, galaxy counts, and color and redshift distributions. In general, it is predicted that the space measurements will follow the trends noted in round-based observations.

  9. LCLS Spectral Flux Viewer

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  10. Microwave spectral line listing

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.

    1975-01-01

    The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.

  11. Large Spectral Library Problem

    SciTech Connect

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  12. Spectral imaging using forward-viewing spectrally encoded endoscopy.

    PubMed

    Zeidan, Adel; Yelin, Dvir

    2016-02-01

    Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times. PMID:26977348

  13. Spectral imaging using forward-viewing spectrally encoded endoscopy

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2016-01-01

    Spectrally encoded endoscopy (SEE) enables miniature, small-diameter endoscopic probes for minimally invasive imaging; however, using the broadband spectrum to encode space makes color and spectral imaging nontrivial and challenging. By careful registration and analysis of image data acquired by a prototype of a forward-viewing dual channel spectrally encoded rigid probe, we demonstrate spectral and color imaging within a narrow cylindrical lumen. Spectral imaging of calibration cylindrical test targets and an ex-vivo blood vessel demonstrates high-resolution spatial-spectral imaging with short (10 μs/line) exposure times. PMID:26977348

  14. Interactive Spectral Analysis and Computation (ISAAC)

    NASA Technical Reports Server (NTRS)

    Lytle, D. M.

    1992-01-01

    Isaac is a task in the NSO external package for IRAF. A descendant of a FORTRAN program written to analyze data from a Fourier transform spectrometer, the current implementation has been generalized sufficiently to make it useful for general spectral analysis and other one dimensional data analysis tasks. The user interface for Isaac is implemented as an interpreted mini-language containing a powerful, programmable vector calculator. Built-in commands provide much of the functionality needed to produce accurate line lists from input spectra. These built-in functions include automated spectral line finding, least squares fitting of Voigt profiles to spectral lines including equality constraints, various filters including an optimal filter construction tool, continuum fitting, and various I/O functions.

  15. C -parameter distribution at N 3 LL ' including power corrections

    SciTech Connect

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switch from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.

  16. RARE DECAYS INCLUDING PENGUINS

    SciTech Connect

    Eigen, G

    2003-12-04

    The authors present a preliminary measurement of the exclusive charmless semileptonic B decays, B {yields} {rho}{ell}{nu}, and the extraction of the CKM parameters V{sub ub}. IN a data sample of 55 x 10{sup 6} B{bar B} events they measure a branching fraction of {Beta}(B {yields} {rho}{ell}{nu}) = (3.39 {+-} 0.44{sub stat} {+-} 0.52{sub sys} {+-} 0.60{sub th}) x 10{sup -4} yielding |V{sub ub}| = (3.69 {+-} 0.23{sub stat} {+-} 0.27{sub sys -0.59th}{sup +0.40}) x 10{sup -3}. Next, they report on a preliminary study of the radiative penguin modes B {yields} K{ell}{sup +}{ell}{sup -} and B {yields} K*{ell}{sup +}{ell}{sup -}. In a data sample of 84 x 10{sup 6} B{bar B} events they observe a significant signal (4.4{sigma}) in B {yields} K{ell}{sup +}{ell}{sup -}, yielding a branching fraction of {Beta}(B {yields} K{ell}{sup +}{ell}{sup -}) = (0.78{sub -0.20-0.18}{sup +0.24+0.11}) x 10{sup -6}. In B {yields} K*{ell}{sup +}{ell}{sup -} the observed yield is not yet significant (2.8{sigma}), yielding an upper limit of the branching fraction of {Beta}(B {yields} K*{ell}{sup +}{ell}{sup -}) 3.0 x 10{sup -6} {at} 90% confidence level. Finally, they summarize preliminary results of searches for B {yields} {rho}({omega}){gamma}, B{sup +} {yields} K{sup +} {nu}{bar {nu}} and B{sup 0} {yields} {ell}{sup +}{ell}{sup -}.

  17. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  18. Spectral Indices to Monitor Nitrogen-Driven Carbon Uptake in Field Corn

    NASA Technical Reports Server (NTRS)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Peya E.; Huemmrich, K. Fred; Daughtry, Craig S. T.; Russ, Andrew; Cheng, Yen-Ben

    2010-01-01

    Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates (0, 70, 140, 280 kg N/ha). A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D730/D705 and the normalized difference of R750 vs. R705 (ND705), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations to these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems.

  19. X-ray spectral variability of LINERs selected from the Palomar sample

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, L.; González-Martín, O.; Masegosa, J.; Márquez, I.

    2014-07-01

    Variability in active galactic nuclei (AGN) has been discovered at X-ray, UV, and radio frequencies on timescales from hours to years, being one of their most important features. Among the AGN family and according to theoretical studies, low-ionization nuclear emission line region (LINER) nuclei would be variable objects at long timescales because of their large black hole masses and low accretion rates. Our aim is to investigate the spectral X-ray variability in LINERs, leading to an understanding of the nature of this kind of objects, including their accretion mechanism. We selected 18 LINERs from the Palomar sample, and used Chandra and XMM-Newton public archives to analyze their X-ray spectral properties at different epochs with timescales of years. Spectral modeling allowed us to investigate the parameter(s) responsible for the variations. The main result from the analysis is that long term spectral variability is very common, mostly related to the nuclear power at hard (2-10 keV) energies.

  20. Singular value decomposition based regularization prior to spectral mixing improves crosstalk in dynamic imaging using spectral diffuse optical tomography.

    PubMed

    Zhan, Yuxuan; Eggebrecht, Adam T; Culver, Joseph P; Dehghani, Hamid

    2012-09-01

    The spectrally constrained diffuse optical tomography (DOT) method relies on incorporating spectral prior information directly into the image reconstruction algorithm, thereby correlating the underlying optical properties across multiple wavelengths. Although this method has been shown to provide a solution that is stable, the use of conventional Tikhonov-type regularization techniques can lead to additional crosstalk between parameters, particularly in linear, single-step dynamic imaging applications. This is due mainly to the suboptimal regularization of the spectral Jacobian matrix, which smoothes not only the image-data space, but also the spectral mapping space. In this work a novel regularization technique based on the singular value decomposition (SVD) is presented that preserves the spectral prior information while regularizing the Jacobian matrix, leading to dramatically reduced crosstalk between the recovered parameters. Using simulated data, images of changes in oxygenated and deoxygenated hemoglobin concentrations are reconstructed via the SVD-based approach and compared with images reconstructed by using non-spectral and conventional spectral methods. In a 2D, two wavelength example, it is shown that the proposed approach provides a 98% reduction in crosstalk between recovered parameters as compared with conventional spectral reconstruction algorithms, and 60% as compared with non-spectrally constrained algorithms. Using a subject specific multilayered model of the human head, a noiseless dynamic simulation of cortical activation is performed to further demonstrate such improvement in crosstalk. However, with the addition of realistic noise in the data, both non-spectral and proposed algorithms perform similarly, indicating that the use of spectrally constrained reconstruction algorithms in dynamic DOT may be limited by the contrast of the signal as well as the noise characteristics of the system.

  1. The correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    NASA Technical Reports Server (NTRS)

    Seaman, C. H.

    1981-01-01

    A general expression was derived to enable calculation of the calibration error. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  2. The US Geological Survey, digital spectral reflectance library: version 1: 0.2 to 3.0 microns

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; King, Trude V. V.; Gallagher, Andrea J.; Calvin, Wendy M.

    1993-01-01

    We have developed a digital reflectance spectral library, with management and spectral analysis software. The library includes 500 spectra of 447 samples (some samples include a series of grain sizes) measured from approximately 0.2 to 3.0 microns. The spectral resolution (Full Width Half Maximum) of the reflectance data is less than or equal to 4 nm in the visible (0.2-0.8 microns) and less than or equal 10 nm in the NIR (0.8-2.35 microns). All spectra were corrected to absolute reflectance using an NBS Halon standard. Library management software lets users search on parameters (e.g. chemical formulae, chemical analyses, purity of samples, mineral groups, etc.) as well as spectral features. Minerals from sulfide, oxide, hydroxide, halide, carbonate, nitrate, borate, phosphate, and silicate groups are represented. X-ray and chemical analyses are tabulated for many of the entries, and all samples have been evaluated for spectral purity. The library also contains end and intermediate members for the olivine, garnet, scapolite, montmorillonite, muscovite, jarosite, and alunite solid-solution series. We have included representative spectra of H2O ice, kerogen, ammonium-bearing minerals, rare-earth oxides, desert varnish coatings, kaolinite crystallinity series, kaolinite-smectite series, zeolite series, and an extensive evaporite series. Because of the importance of vegetation to climate-change studies we have include 17 spectra of tree leaves, bushes, and grasses.

  3. Spectral analysis of scintillation data taken from an aircraft. Part I. Final report Oct 76-Oct 79

    SciTech Connect

    Barrett, T.B.

    1980-02-01

    This report provides theoretical background material for the development of a thin phase screen model for radio scintillation. This model is then used to derive an expression for the expected amplitude scintillation spectra (spectral density funciton) which might be observed in a geometry which includes a satellite based transmitter, an aircraft based receiver and a 'thin', intermediate scintillation-producing medium. A computer procedure was developed for testing the model under various geometries and for various parameters describing the 'bulk' properties statistical properties of the medium. In addition to the development of a theoretical model, this report includes material on experimental spectral analysis and, in particular, details on a spectral analysis procedure which was used on amplitude scintillation and data gathered from an aircraft in geomagnetic equatorial regions.

  4. Individual Sensitivity to Spectral and Temporal Cues in Listeners with Hearing Impairment

    ERIC Educational Resources Information Center

    Souza, Pamela E.; Wright, Richard A.; Blackburn, Michael C.; Tatman, Rachael; Gallun, Frederick J.

    2015-01-01

    Purpose: The present study was designed to evaluate use of spectral and temporal cues under conditions in which both types of cues were available. Method: Participants included adults with normal hearing and hearing loss. We focused on 3 categories of speech cues: static spectral (spectral shape), dynamic spectral (formant change), and temporal…

  5. SPECTRAL CONFUSION FOR COSMOLOGICAL SURVEYS OF REDSHIFTED C II EMISSION

    SciTech Connect

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-06-20

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencil-beam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150–1300 μm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 μm [C ii] line and other lines. Although the [C ii] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C ii] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20″ and 10′, sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  6. Optimization of Parameter Selection for Partial Least Squares Model Development

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Wu, Zhi-Sheng; Zhang, Qiao; Shi, Xin-Yuan; Ma, Qun; Qiao, Yan-Jiang

    2015-07-01

    In multivariate calibration using a spectral dataset, it is difficult to optimize nonsystematic parameters in a quantitative model, i.e., spectral pretreatment, latent factors and variable selection. In this study, we describe a novel and systematic approach that uses a processing trajectory to select three parameters including different spectral pretreatments, variable importance in the projection (VIP) for variable selection and latent factors in the Partial Least-Square (PLS) model. The root mean square errors of calibration (RMSEC), the root mean square errors of prediction (RMSEP), the ratio of standard error of prediction to standard deviation (RPD), and the determination coefficient of calibration (Rcal2) and validation (Rpre2) were simultaneously assessed to optimize the best modeling path. We used three different near-infrared (NIR) datasets, which illustrated that there was more than one modeling path to ensure good modeling. The PLS model optimizes modeling parameters step-by-step, but the robust model described here demonstrates better efficiency than other published papers.

  7. Infrared adaptive spectral imagers for direct detection of spectral signatures and hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Goldstein, Neil; Fox, Marsha; Adler-Golden, Steven; Gregor, Brian

    2013-03-01

    Field test results are presented for a prototype long-wave adaptive imager that provides both hyperspectral imagery and contrast imagery based on the direct application of hyperspectral detection algorithms in hardware. Programmable spatial light modulators are used to provide both spectral and spatial resolution using a single element detector. Programmable spectral and spatial detection filters can be used to superimpose any possible analog spectral detection filter on the image. In this work, we demonstrate three modes of operation, including hyperspectral imagery, and one and two-dimensional imagery using a generalized matched filter for detection of a specific target gas within the scene.

  8. Spectral homogenization techniques for the hyperspectral image projector

    NASA Astrophysics Data System (ADS)

    Hillberry, Logan E.; Rice, Joseph P.

    2015-05-01

    In an effort to improve technology for performance testing and calibration of multispectral and hyperspectral imagers, the National Institute of Standards and Technology (NIST) has been developing a Hyperspectral Image Projector (HIP) capable of projecting dynamic scenes than include distinct, programmable spectra in each of its 1024x768 spatial pixels. The HIP is comprised of a spectral engine, which is a light source capable generating the spectra in the scene, coupled to a spatial engine, capable of projecting the spectra into the correct locations of the scene. In the prototype HIP, the light exiting the Visible-Near-Infrared (VNIR) / Short-Wavelength Infrared (SWIR) spectral engine is spectrally dispersed and needs to be spectrally homogenized before it enters the spatial engine. In this paper we describe the results from a study of several different techniques for performing this spectral homogenization. These techniques include an integrating sphere, a liquid light guide, a randomized fiber bundle, and an engineered diffuser, in various combinations. The spectral uniformity of projected HIP scenes is measured and analyzed using the spectral angle mapper (SAM) algorithm over the VNIR spectral range. The SAM provides a way to analyze the spectral uniformity independently from the radiometric uniformity. The goal of the homogenizer is a spectrally uniform and bright projected image. An integrating sphere provides the most spectrally uniform image, but at a great loss of light compared with the other methods. The randomized fiber bundle generally outperforms the liquid light guide in both spectral homogenization and brightness. Using an engineered diffuser with the randomized fiber bundle increases the spectral uniformity by a factor of five, with a decrease in brightness by a factor of five, compared with the randomized fiber bundle alone. The combination of an engineered diffuser with a randomized fiber bundle provides comparable spectral uniformity to the

  9. Beyond six parameters: Extending Λ CDM

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph

    2015-12-01

    Cosmological constraints are usually derived under the assumption of a six-parameter Λ CDM theoretical framework or simple one-parameter extensions. In this paper we present, for the first time, cosmological constraints in a significantly extended scenario, varying up to 12 cosmological parameters simultaneously, including the sum of neutrino masses, the neutrino effective number, the dark energy equation of state, the gravitational wave background and the running of the spectral index of primordial perturbations. Using the latest Planck 2015 data release (with polarization), we found no significant indication for extensions to the standard Λ CDM scenario, with the notable exception of the angular power spectrum lensing amplitude, Alens , which is larger than the expected value at more than 2 standard deviations, even when combining the Planck data with BAO and supernovae type Ia external data sets. In our extended cosmological framework, we find that a combined Planck+BAO analysis constrains the value of the rms density fluctuation parameter to σ8=0.781-0.063+0.065 at 95 % C.L., helping to relieve the possible tensions with the CFHTlenS cosmic shear survey. We also find a lower value for the reionization optical depth τ =0.058-0.043+0.040 at 95 % C.L. with respect to the one derived under the assumption of Λ CDM . The scalar spectral index nS is now compatible with a Harrison-Zeldovich spectrum to within 2.5 standard deviations. Combining the Planck data set with the Hubble Space Telescope prior on the Hubble constant provides a value for the equation of state w <-1 at more than 2 standard deviations, while the neutrino effective number is fully compatible with the expectations of the standard three neutrino framework.

  10. DSDEPROJ: Direct Spectral Deprojection

    NASA Astrophysics Data System (ADS)

    Sanders, Jeremy; Russell, Helen

    2016-10-01

    Deprojection of X-ray data by methods such as PROJCT, which are model dependent, can produce large and unphysical oscillating temperature profiles. Direct Spectral Deprojection (DSDEPROJ) solves some of the issues inherent to model-dependent deprojection routines. DSDEPROJ is a model-independent approach, assuming only spherical symmetry, which subtracts projected spectra from each successive annulus to produce a set of deprojected spectra.

  11. [The application of spectral geological profile in the alteration mapping].

    PubMed

    Li, Qing-Ting; Lin, Qi-Zhong; Zhang, Bing; Lu, Lin-Lin

    2012-07-01

    Geological section can help validating and understanding of the alteration information which is extracted from remote sensing images. In the paper, the concept of spectral geological profile was introduced based on the principle of geological section and the method of spectral information extraction. The spectral profile can realize the storage and vision of spectra along the geological profile, but the spectral geological spectral profile includes more information besides the information of spectral profile. The main object of spectral geological spectral profile is to obtain the distribution of alteration types and content of minerals along the profile which can be extracted from spectra measured by field spectrometer, especially for the spatial distribution and mode of alteration association. Technical method and work flow of alteration information extraction was studied for the spectral geological profile. The spectral geological profile was set up using the ground reflectance spectra and the alteration information was extracted from the remote sensing image with the help of typical spectra geological profile. At last the meaning and effect of the spectral geological profile was discussed.

  12. Spectral tailoring device

    DOEpatents

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  13. Spectral reflectance properties of carbonaceous chondrites: 2. CM chondrites

    NASA Astrophysics Data System (ADS)

    Cloutis, E. A.; Hudon, P.; Hiroi, T.; Gaffey, M. J.; Mann, P.

    2011-11-01

    We have examined the spectral reflectance properties and available modal mineralogies of 39 CM carbonaceous chondrites to determine their range of spectral variability and to diagnose their spectral features. We have also reviewed the published literature on CM mineralogy and subclassification, surveyed the published spectral literature and added new measurements of CM chondrites and relevant end members and mineral mixtures, and measured 11 parameters and searched pair-wise for correlations between all quantities. CM spectra are characterized by overall slopes that can range from modestly blue-sloped to red-sloped, with brighter spectra being generally more red-sloped. Spectral slopes, as measured by the 2.4:0.56 μm and 2.4 μm:visible region peak reflectance ratios, range from 0.90 to 2.32, and 0.81 to 2.24, respectively, with values <1 indicating blue-sloped spectra. Matrix-enriched CM spectra can be even more blue-sloped than bulk samples, with ratios as low as 0.85. There is no apparent correlation between spectral slope and grain size for CM chondrite spectra - both fine-grained powders and chips can exhibit blue-sloped spectra. Maximum reflectance across the 0.3-2.5 μm interval ranges from 2.9% to 20.0%, and from 2.8% to 14.0% at 0.56 μm. Matrix-enriched CM spectra can be darker than bulk samples, with maximum reflectance as low as 2.1%. CM spectra exhibit nearly ubiquitous absorption bands near 0.7, 0.9, and 1.1 μm, with depths up to 12%, and, less commonly, absorption bands in other wavelength regions (e.g., 0.4-0.5, 0.65, 2.2 μm). The depths of the 0.7, 0.9, and 1.1 μm absorption features vary largely in tandem, suggesting a single cause, specifically serpentine-group phyllosilicates. The generally high Fe content, high phyllosilicate abundance relative to mafic silicates, and dual Fe valence state in CM phyllosilicates, all suggest that the phyllosilicates will exhibit strong absorption bands in the 0.7 μm region (due to Fe 3+-Fe 2+ charge

  14. Classical least squares multivariate spectral analysis

    DOEpatents

    Haaland, David M.

    2002-01-01

    An improved classical least squares multivariate spectral analysis method that adds spectral shapes describing non-calibrated components and system effects (other than baseline corrections) present in the analyzed mixture to the prediction phase of the method. These improvements decrease or eliminate many of the restrictions to the CLS-type methods and greatly extend their capabilities, accuracy, and precision. One new application of PACLS includes the ability to accurately predict unknown sample concentrations when new unmodeled spectral components are present in the unknown samples. Other applications of PACLS include the incorporation of spectrometer drift into the quantitative multivariate model and the maintenance of a calibration on a drifting spectrometer. Finally, the ability of PACLS to transfer a multivariate model between spectrometers is demonstrated.

  15. Spectral methods for discontinuous problems

    NASA Technical Reports Server (NTRS)

    Abarbanel, S.; Gottlieb, D.; Tadmor, E.

    1985-01-01

    Spectral methods yield high-order accuracy even when applied to problems with discontinuities, though not in the sense of pointwise accuracy. Two different procedures are presented which recover pointwise accurate approximations from the spectral calculations.

  16. Spectral imaging microscopy web sites and data.

    PubMed

    McNamara, George; Gupta, Amit; Reynaert, James; Coates, Thomas D; Boswell, Carl

    2006-08-01

    The Internet is enabling greater access to spectral imaging publications, spectral graphs, and data than that was available a generation ago. The spectral imaging systems discussed in this issue of Cytometry work because reagent and hardware spectra are reproducible, reusable, and provide input to spectral unmixing and spectral components recognition algorithms. These spectra need to be readily available in order to determine what to purchase, how to use it, and what the output means. We refer to several commercially sponsored and academic spectral web sites and discuss our spectral graphing and data sites. Sites include fluorescent dye graph servers from Invitrogen/Molecular Probes, BD Biosciences, Zeiss/Bio-Rad Cell Sciences, and filter set servers from Chroma Technology and Omega Optical. Several of these sites include data download capabilities. Recently, two microscope manufacturers have published on their web sites transmission curves for select objective lenses-crucial data for anyone doing multiphoton excitation microscopy. Notable among the academic sites, PhotoChemCAD 2.0 has over 200 dyes and a downloadable database/graphing program, and the USC-A Chemistry UV-vis Database displays absorption spectra of many dyes and indicators used in clinical histology and pathology. Our Fluorescent Spectra graphing/calculator site presents dyes, filters, and illumination data from many of these and additional sources. PubSpectra is our free download site which uses Microsoft Excel files as standardized human/machine readable format with over 2,000 biomedical spectra. The principle that data is not subject to copyright provides a framework in which all scientific data should be made freely accessible. PMID:16969821

  17. Spectral imaging microscopy web sites and data.

    PubMed

    McNamara, George; Gupta, Amit; Reynaert, James; Coates, Thomas D; Boswell, Carl

    2006-08-01

    The Internet is enabling greater access to spectral imaging publications, spectral graphs, and data than that was available a generation ago. The spectral imaging systems discussed in this issue of Cytometry work because reagent and hardware spectra are reproducible, reusable, and provide input to spectral unmixing and spectral components recognition algorithms. These spectra need to be readily available in order to determine what to purchase, how to use it, and what the output means. We refer to several commercially sponsored and academic spectral web sites and discuss our spectral graphing and data sites. Sites include fluorescent dye graph servers from Invitrogen/Molecular Probes, BD Biosciences, Zeiss/Bio-Rad Cell Sciences, and filter set servers from Chroma Technology and Omega Optical. Several of these sites include data download capabilities. Recently, two microscope manufacturers have published on their web sites transmission curves for select objective lenses-crucial data for anyone doing multiphoton excitation microscopy. Notable among the academic sites, PhotoChemCAD 2.0 has over 200 dyes and a downloadable database/graphing program, and the USC-A Chemistry UV-vis Database displays absorption spectra of many dyes and indicators used in clinical histology and pathology. Our Fluorescent Spectra graphing/calculator site presents dyes, filters, and illumination data from many of these and additional sources. PubSpectra is our free download site which uses Microsoft Excel files as standardized human/machine readable format with over 2,000 biomedical spectra. The principle that data is not subject to copyright provides a framework in which all scientific data should be made freely accessible.

  18. Modern spectral transmissometer

    NASA Astrophysics Data System (ADS)

    Borgerson, Mark J.; Bartz, Robert; Zaneveld, J. Ronald V.; Kitchen, James C.

    1990-09-01

    We have evaluated a number of spectral attenuation meter designs based on constraints related to power consumption, spectral bandwidth, sampling time, accuracy and stability . Our fmal instrument design employs a unique optical bridge deve1oped1r Sea Tech with ONR support, a tungsten light source and a holographic grating monochromatorThe instrument design is summarized as follows: White light from a 10-Watt tungsten lamp with a 1mm2 filament is collected by a condensing lens and then spatially filtered by a 1mm diameter pinhole which is placed at the entrance port of a monochromator. The monochromator has a 45°, 1200 lines/mm, holographic grating 37 mm in diameter with a 91 mm focal length. The grating is rotated about its vertical axis with a sine arm driven by a stepping motor, allowing wavelength to be selected from 400 to 800 nm. At the exit port of the monochromator we use a 1mm diameter pinhole which spectrally filters the output light, resulting in a spectral bandwidth of 9. 1 nm. This nearly monochromatic light is then measured by a unique reference detector with a 0.5mm diameter pinhole at its center, allowing light to be transmitted through the center of the detector. The transmitted light has a bandwidth of 4.5 nm. The monochromatic light is then collimated by a 50mm focal length achromatic lens and stopped down to a beam 1 cm in diameter. This light then enters the sample chamber. After passing through the sample the light is received by a 61mm focal length achromatic lens and is focused onto a signal detector with a diameter of 1.25mm. Digitized ratios ofreference detector to signal detector voltages allow transmission to be measured with an accuracy of 0.05% and a resolution of 0.01%. By monitoring temperature we were able to temperature compensate the instrument to within 0.05% transmission from 00 C to 25° C. Based on these results it is now possible to construct a spectral attenuation meter with the required sensitivity and accuracy to measure

  19. SWOC: Spectral Wavelength Optimization Code

    NASA Astrophysics Data System (ADS)

    Ruchti, G. R.

    2016-06-01

    SWOC (Spectral Wavelength Optimization Code) determines the wavelength ranges that provide the optimal amount of information to achieve the required science goals for a spectroscopic study. It computes a figure-of-merit for different spectral configurations using a user-defined list of spectral features, and, utilizing a set of flux-calibrated spectra, determines the spectral regions showing the largest differences among the spectra.

  20. USGS Digital Spectral Library splib06a

    USGS Publications Warehouse

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    Introduction We have assembled a digital reflectance spectral library that covers the wavelength range from the ultraviolet to far infrared along with sample documentation. The library includes samples of minerals, rocks, soils, physically constructed as well as mathematically computed mixtures, plants, vegetation communities, microorganisms, and man-made materials. The samples and spectra collected were assembled for the purpose of using spectral features for the remote detection of these and similar materials. Analysis of spectroscopic data from laboratory, aircraft, and spacecraft instrumentation requires a knowledge base. The spectral library discussed here forms a knowledge base for the spectroscopy of minerals and related materials of importance to a variety of research programs being conducted at the U.S. Geological Survey. Much of this library grew out of the need for spectra to support imaging spectroscopy studies of the Earth and planets. Imaging spectrometers, such as the National Aeronautics and Space Administration (NASA) Airborne Visible/Infra Red Imaging Spectrometer (AVIRIS) or the NASA Cassini Visual and Infrared Mapping Spectrometer (VIMS) which is currently orbiting Saturn, have narrow bandwidths in many contiguous spectral channels that permit accurate definition of absorption features in spectra from a variety of materials. Identification of materials from such data requires a comprehensive spectral library of minerals, vegetation, man-made materials, and other subjects in the scene. Our research involves the use of the spectral library to identify the components in a spectrum of an unknown. Therefore, the quality of the library must be very good. However, the quality required in a spectral library to successfully perform an investigation depends on the scientific questions to be answered and the type of algorithms to be used. For example, to map a mineral using imaging spectroscopy and the mapping algorithm of Clark and others (1990a, 2003b

  1. Red edge spectral measurements from sugar maple leaves

    NASA Technical Reports Server (NTRS)

    Vogelmann, J. E.; Rock, B. N.; Moss, D. M.

    1993-01-01

    Many sugar maple stands in the northeastern United States experienced extensive insect damage during the 1988 growing season. Chlorophyll data and high spectral resolution spectrometer laboratory reflectance data were acquired for multiple collections of single detached sugar maple leaves variously affected by the insect over the 1988 growing season. Reflectance data indicated consistent and diagnostic differences in the red edge portion (680-750 nm) of the spectrum among the various samples and populations of leaves. These included differences in the red edge inflection point (REIP), a ratio of reflectance at 740-720 nm (RE3/RE2), and a ratio of first derivative values at 715-705 nm (D715/D705). All three red edge parameters were highly correlated with variation in total chlorophyll content. Other spectral measures, including the Normalized Difference Vegetation Index (NDVI) and the Simple Vegetation Index Ratio (VI), also varied among populations and over the growing season, but did not correlate well with total chlorophyll content. Leaf stacking studies on light and dark backgrounds indicated REIP, RE3/RE2 and D715/D705 to be much less influenced by differences in green leaf biomass and background condition than either NDVI or VI.

  2. Spectral theory of extreme statistics in birth-death systems

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2008-03-01

    Statistics of rare events, or large deviations, in chemical reactions and systems of birth-death type have attracted a great deal of interest in many areas of science including cell biochemistry, astrochemistry, epidemiology, population biology, etc. Large deviations become of vital importance when discrete (non-continuum) nature of a population of ``particles'' (molecules, bacteria, cells, animals or even humans) and stochastic character of interactions can drive the population to extinction. I will briefly review the novel spectral method [1-3] for calculating the extreme statistics of a broad class of birth-death processes and reactions involving a single species. The spectral method combines the probability generating function formalism with the Sturm-Liouville theory of linear differential operators. It involves a controlled perturbative treatment based on a natural large parameter of the problem: the average number of particles/individuals in a stationary or metastable state. For extinction (the first passage) problems the method yields accurate results for the extinction statistics and for the quasi-stationary probability distribution, including the tails, of metastable states. I will demonstrate the power of the method on the example of a branching and annihilation reaction, A ->-2.8mm2mm2A,,A ->-2.8mm2mm , representative of a rather general class of processes. *M. Assaf and B. Meerson, Phys. Rev. Lett. 97, 200602 (2006). *M. Assaf and B. Meerson, Phys. Rev. E 74, 041115 (2006). *M. Assaf and B. Meerson, Phys. Rev. E 75, 031122 (2007).

  3. Spectral model of depth-integrated water column photosynthesis and its inhibition by ultraviolet radiation

    NASA Astrophysics Data System (ADS)

    Cullen, John J.; Davis, Richard F.; Huot, Yannick

    2012-03-01

    Depth-integrated models of primary production (DIMs) are used to estimate water column photosynthesis as a function of chlorophyll concentration, irradiance at the surface, the penetration of photosynthetically available radiation (PAR), and parameters of the relationship between photosynthesis and PAR. These models are inherently unable to account for variability in the ratio of photosynthetically utilizable radiation (PUR) to PAR with depth and water type, and they cannot account for the inhibition of photosynthesis by ultraviolet radiation, UVR. These important spectral effects — all sensitive to climate change — are readily described with numerical models that require many computations and are unsuitable for some important applications, including the estimation of aquatic productivity from remote sensing. We present a simple DIM that accounts for the spectral effects of irradiance on photosynthesis, including inhibition by UVR. Water column photosynthesis, normalized to surface chlorophyll and scaled to the maximum rate per unit chlorophyll, is described as a function of four dimensionless derived variables:E*PUR, PUR at the surface scaled to the saturation irradiance for photosynthesis; T*PUR, water transparency, normalized to a depth scale and weighted spectrally for photosynthetic absorption; E*PIR, surface irradiance weighted spectrally for inhibition of photosynthesis; and T*PIR, scaled transparency weighted for photosynthesis-inhibiting radiation. Simple functions of these variables closely approximate (within 6%) the results of a full-spectral numerical model of instantaneous and daily integrated water column photosynthesis with and without UVR for a broad range of water types, solar angles, stratospheric ozone concentrations and biological properties of phytoplankton. The spectral DIM is suitable for examining patterns in global ocean productivity and can be used to assess the biological effects of variations in solar radiation (e.g., ozone

  4. ARE SPECTRAL AND TIMING CORRELATIONS SIMILAR IN DIFFERENT SPECTRAL STATES IN BLACK HOLE X-RAY BINARIES?

    SciTech Connect

    Kalamkar, M.; Klis, M. van der; Reynolds, M. T.; Miller, J. M.; Altamirano, D.

    2015-03-20

    We study the outbursts of the black hole X-ray binaries MAXI J1659-152, SWIFT J1753.5-0127, and GX 339-4 with the Swift X-ray Telescope (XRT). The bandpass of the XRT has access to emission from both components of the accretion flow: the accretion disk and the corona/hot flow. This allows a correlated spectral and variability study, with variability from both components of the accretion flow. We present for the first time a combined study of the evolution of spectral parameters (disk temperature and radius) and timing parameters (frequency and strength) of all power spectral components in different spectral states. Comparison of the correlations in different spectral states shows that the frequency and strength of the power spectral components exhibit dependencies on the disk temperature that are different in the (low-)hard and the hard-intermediate states (HIMSs); most of these correlations that are clearly observed in the HIMS (in MAXI J1659-152 and GX 339-4) are not seen in the (low-)hard state (in GX 339-4 and SWIFT J1753.5-0127). Also, the responses of the individual frequency components to changes in the disk temperature are markedly different from one component to the next. Hence, the spectral-timing evolution cannot be explained by a single correlation that spans both these spectral states. We discuss our findings in the context of the existing models proposed to explain the origin of variability.

  5. Spectral fits with TCAF model : A global understanding of both temporal and spectral properties of black hole sources

    NASA Astrophysics Data System (ADS)

    Debnath, Dipak; Sarathi Pal, Partha; Chakrabarti, Sandip Kumar; Mondal, Santanu; Jana, Arghajit; Chatterjee, Debjit; Molla, Aslam Ali

    2016-07-01

    There are many theoretical and phenomenological models in the literature which explain physics of accretion around black holes (BHs). Some of these models assume ad hoc components to explain different timing and spectral aspects of black hole candidates (BHCs) which no necessarily follow from physical equations. Chakrabarti and his collaborators, on the other hand claim in the last two decades that the spectral and timing properties of BHCs must not be treated separately since variation of these properties happens due to variation of two component (Keplerian and sub-Keplerian) accretion flow rates, and the Compton cloud parameters only. Recently after the inclusion of Two-component advective flow (TCAF) model in to HEASARC's spectral analysis software package XSPEC as an additive local model, we found that TCAF is quite capable to describe the underlying accretion flow dynamics around BHs with spectral fitted physical parameters. Properties of different spectral states and their transitions during an outburst of a transient BHC are more clear. A strong correlation between spectral and timing properties could also be seen in Accretion Rate Ratio Intensity Diagram (ARRID), where transitions between different spectral states are prominent. One can also predict frequency of the dominating quasi-periodic oscillation (QPO) from TCAF model fitted shock parameters and even predict the most probable mass range of an unknown BHC from TCAF fits. This gives us a confidence that the description of accretion process is more clear than ever before.

  6. Constructing Polynomial Spectral Models for Stars

    NASA Astrophysics Data System (ADS)

    Rix, Hans-Walter; Ting, Yuan-Sen; Conroy, Charlie; Hogg, David W.

    2016-08-01

    Stellar spectra depend on the stellar parameters and on dozens of photospheric elemental abundances. Simultaneous fitting of these { N } ˜ 10-40 model labels to observed spectra has been deemed unfeasible because the number of ab initio spectral model grid calculations scales exponentially with { N }. We suggest instead the construction of a polynomial spectral model (PSM) of order { O } for the model flux at each wavelength. Building this approximation requires a minimum of only ≤ft(≥nfrac{}{}{0em}{}{{ N }+{ O }}{{ O }}\\right) calculations: e.g., a quadratic spectral model ({ O }=2) to fit { N }=20 labels simultaneously can be constructed from as few as 231 ab initio spectral model calculations; in practice, a somewhat larger number (˜300-1000) of randomly chosen models lead to a better performing PSM. Such a PSM can be a good approximation only over a portion of label space, which will vary case-by-case. Yet, taking the APOGEE survey as an example, a single quadratic PSM provides a remarkably good approximation to the exact ab initio spectral models across much of this survey: for random labels within that survey the PSM approximates the flux to within 10-3 and recovers the abundances to within ˜0.02 dex rms of the exact models. This enormous speed-up enables the simultaneous many-label fitting of spectra with computationally expensive ab initio models for stellar spectra, such as non-LTE models. A PSM also enables the simultaneous fitting of observational parameters, such as the spectrum’s continuum or line-spread function.

  7. GAVA: Spectral simulation for in vivo MRS applications

    NASA Astrophysics Data System (ADS)

    Soher, Brian J.; Young, Karl; Bernstein, Aaron; Aygula, Zakaria; Maudsley, Andrew A.

    2007-04-01

    An application that provides a flexible and easy to use interface to the GAMMA spectral simulation package is described that is targeted at investigations using in vivo MR spectroscopic methods. The program makes available a number of widely used spatially localized MRS pulse sequences and NMR parameters for commonly observed tissue metabolites, enabling spectra to be simulated for any pulse sequence parameter and viewed in an integrated display. The application is interfaced with a database for storage of all simulation parameters and results of the simulations. This application provides a convenient method for generating a priori spectral information used in parametric spectral analyses and for visual examination of the effects of difference pulse sequences and parameter settings.

  8. Neoclassical Transport Including Collisional Nonlinearity

    SciTech Connect

    Candy, J.; Belli, E. A.

    2011-06-10

    In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  9. [Plant Spectral Discrimination Based on Phenological Features].

    PubMed

    Zhang, Lei; Zhao, Jian-long; Jia, Kun; Li, Xiao-song

    2015-10-01

    Spectral analysis plays a significant role onplant characteristic identification and mechanism recognition, there were many papers published on the aspects of absorption features in the spectra of chlorophyll and moisture, spectral analysis onvegetation red edge effect, spectra profile feature extraction, spectra profile conversion, vegetation leaf structure and chemical composition impacts on the spectra in past years. However, fewer researches issued on spectral changes caused by plant seasonal changes of life form, chlorophyll, leaf area index. This paper studied on spectral observation of 11 plants of various life form, plant leaf structure and its size, phenological characteristics, they include deciduous forest with broad vertical leaf, needle leaf evergreen forest, needle leaf deciduous forest, deciduous forest with broadflat leaf, high shrub with big leaf, high shrub with little leaf, deciduous forest with broad little leaf, short shrub, meadow, steppe and grass. Field spectral data were observed with SVC-HR768 (Spectra Vista company, USA), the band width covers 350-2 500 nm, spectral resolution reaches 1-4 nm. The features of NDVI, spectral maximum absorption depth in green band, and spectral maximum absorption depth in red band were measured after continuum removal processing, the mean, amplitude and gradient of these features on seasonal change profile were analyzed, meanwhile, separability research on plant spectral feature of growth period and maturation period were compared. The paper presents a calculation method of separability of vegetation spectra which consider feature spatial distances. This index is carried on analysis of the vegetation discrimination. The results show that: the spectral features during plant growth period are easier to distinguish than them during maturation period. With the same features comparison, plant separability of growth period is 3 points higher than it during maturation period. The overall separabilityof vegetation

  10. [Plant Spectral Discrimination Based on Phenological Features].

    PubMed

    Zhang, Lei; Zhao, Jian-long; Jia, Kun; Li, Xiao-song

    2015-10-01

    Spectral analysis plays a significant role onplant characteristic identification and mechanism recognition, there were many papers published on the aspects of absorption features in the spectra of chlorophyll and moisture, spectral analysis onvegetation red edge effect, spectra profile feature extraction, spectra profile conversion, vegetation leaf structure and chemical composition impacts on the spectra in past years. However, fewer researches issued on spectral changes caused by plant seasonal changes of life form, chlorophyll, leaf area index. This paper studied on spectral observation of 11 plants of various life form, plant leaf structure and its size, phenological characteristics, they include deciduous forest with broad vertical leaf, needle leaf evergreen forest, needle leaf deciduous forest, deciduous forest with broadflat leaf, high shrub with big leaf, high shrub with little leaf, deciduous forest with broad little leaf, short shrub, meadow, steppe and grass. Field spectral data were observed with SVC-HR768 (Spectra Vista company, USA), the band width covers 350-2 500 nm, spectral resolution reaches 1-4 nm. The features of NDVI, spectral maximum absorption depth in green band, and spectral maximum absorption depth in red band were measured after continuum removal processing, the mean, amplitude and gradient of these features on seasonal change profile were analyzed, meanwhile, separability research on plant spectral feature of growth period and maturation period were compared. The paper presents a calculation method of separability of vegetation spectra which consider feature spatial distances. This index is carried on analysis of the vegetation discrimination. The results show that: the spectral features during plant growth period are easier to distinguish than them during maturation period. With the same features comparison, plant separability of growth period is 3 points higher than it during maturation period. The overall separabilityof vegetation

  11. Quasioptimality of some spectral mixed methods

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Jayadeep; Demkowicz, L. F. Leszek F.

    2004-05-01

    In this paper, we construct a sequence of projectors into certain polynomial spaces satisfying a commuting diagram property with norm bounds independent of the polynomial degree. Using the projectors, we obtain quasioptimality of some spectral mixed methods, including the Raviart-Thomas method and mixed formulations of Maxwell equations. We also prove some discrete Friedrichs type inequalities involving curl.

  12. Spectral variability on Ceres

    NASA Astrophysics Data System (ADS)

    Erard, Stéphane

    2015-04-01

    Older ground-based observations are reprocessed in order to assess the spectral variability of Ceres surface before the beginning of observations by the Dawn spacecraft. Ceres was observed with NACO on the VLT in 2004 and 2005, producing resolved spectra of the disk under different attitudes. The data cover the range from 0.91-3.80 µm (J, H, K, and L bands), except in the telluric regions. They consist in spectral scans of the dayside, typically with 15 lines of 20 samples, an actual resolution of ~ 100 km, and a spectral resolution R~500 to 1500. A specific calibration scheme has been applied to preprocess the data and to evidence small compositional variations at the surface of Ceres. The major signatures observed are two bands centered at 3.06 and 3.30 µm, which exhibit significant spatial variations at this scale (5 to 10%). These features are best fit by ammoniated minerals (phyllosilicates or feldspars), although the lack of secondary hydration bands seems to rule out phyllosilicates. No significant absorption or variation is observed in J, H and K bands, consistently with [1]. No presence of ices (H2O, C02…) is detected, even at the poles. If Ceres was once rich in ices (e.g., [2]), this suggests a global resurfacing with melting of ices in the subsurface, and alteration under the influence of H2O and perhaps NH3, with reduced production of phyllosilicates. References [1] Carry et al (2012) Icarus 217, 20 [2] McCord, T. B. and C. Sotin (2005) JGR 110, 05009.

  13. Solar Spectral Irradiance Changes During Cycle 24

    NASA Technical Reports Server (NTRS)

    Marchenko, Sergey; Deland, Matthew

    2014-01-01

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by approximately 0.6% +/- 0.2% around 265 nm. These changes gradually diminish to 0.15% +/- 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar "continuum." Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar "continuum," the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at lambda approximately or greater than 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  14. Rapid Chemometric Filtering of Spectral Data

    NASA Technical Reports Server (NTRS)

    Beaman, Gregory; Pelletier, Michael; Seshadri, Suresh

    2004-01-01

    A method of rapid, programmable filtering of spectral transmittance, reflectance, or fluorescence data to measure the concentrations of chemical species has been proposed. By programmable is meant that a variety of spectral analyses can readily be performed and modified in software, firmware, and/or electronic hardware, without need to change optical filters or other optical hardware of the associated spectrometers. The method is intended to enable real-time identification of single or multiple target chemical species in applications that involve high-throughput screening of multiple samples. Examples of such applications include (but are not limited to) combinatorial chemistry, flow cytometry, bead assays, testing drugs, remote sensing, and identification of targets. The basic concept of the proposed method is to perform real-time crosscorrelations of a measured spectrum with one or more analytical function(s) of wavelength that could be, for example, the known spectra of target species. Assuming that measured spectral intensities are proportional to concentrations of target species plus background spectral intensities, then after subtraction of background levels, it should be possible to determine target species concentrations from cross-correlation values. Of course, the problem of determining the concentrations is more complex when spectra of different species overlap, but the problem can be solved by use of multiple analytical functions in combination with computational techniques that have been developed previously for analyses of this type. The method is applicable to the design and operation of a spectrometer in which spectrally dispersed light is measured by means of an active-pixel sensor (APS) array. The row or column dimension of such an array is generally chosen to be aligned along the spectral-dispersion dimension, so that each pixel intercepts light in a narrow spectral band centered on a wavelength that is a known function of the pixel position. The

  15. Solar spectral irradiance changes during cycle 24

    SciTech Connect

    Marchenko, S. V.; DeLand, M. T.

    2014-07-10

    We use solar spectra obtained by the Ozone Monitoring Instrument (OMI) on board the Aura satellite to detect and follow long-term (years) and short-term (weeks) changes in the solar spectral irradiance (SSI) in the 265-500 nm spectral range. During solar Cycle 24, in the relatively line-free regions the SSI changed by ∼0.6% ± 0.2% around 265 nm. These changes gradually diminish to 0.15% ± 0.20% at 500 nm. All strong spectral lines and blends, with the notable exception of the upper Balmer lines, vary in unison with the solar 'continuum'. Besides the lines with strong chromospheric components, the most involved species include Fe I blends and all prominent CH, NH, and CN spectral bands. Following the general trend seen in the solar 'continuum', the variability of spectral lines also decreases toward longer wavelengths. The long-term solar cycle SSI changes are closely, to within the quoted 0.1%-0.2% uncertainties, matched by the appropriately adjusted short-term SSI variations derived from the 27 day rotational modulation cycles. This further strengthens and broadens the prevailing notion about the general scalability of the UV SSI variability to the emissivity changes in the Mg II 280 nm doublet on timescales from weeks to years. We also detect subtle deviations from this general rule: the prominent spectral lines and blends at λ ≳ 350 nm show slightly more pronounced 27 day SSI changes when compared to the long-term (years) trends. We merge the solar data from Cycle 21 with the current Cycle 24 OMI and GOME-2 observations and provide normalized SSI variations for the 170-795 nm spectral region.

  16. Solar Confocal Interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines, Terence C.

    2006-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. Methods: We have constructed and tested two confocal interferometers. Conclusions: In this paper we compare the confocal interferometer with other spectral imaging filters, provide initial design parameters, show construction details for two designs, and report on the laboratory test results for these interferometers, and propose a multiple etalon system for future testing of these units and to obtain sub-picometer spectral resolution information on the photosphere in both the visible and near-infrared.

  17. Spectral separation of optical spin based on antisymmetric Fano resonances

    PubMed Central

    Piao, Xianji; Yu, Sunkyu; Hong, Jiho; Park, Namkyoo

    2015-01-01

    We propose a route to the spectral separation of optical spin angular momentum based on spin-dependent Fano resonances with antisymmetric spectral profiles. By developing a spin-form coupled mode theory for chiral materials, the origin of antisymmetric Fano spectra is clarified in terms of the opposite temporal phase shift for each spin, which is the result of counter-rotating spin eigenvectors. An analytical expression of a spin-density Fano parameter is derived to enable quantitative analysis of the Fano-induced spin separation in the spectral domain. As an application, we demonstrate optical spin switching utilizing the extreme spectral sensitivity of the spin-density reversal. Our result paves a path toward the conservative spectral separation of spins without any need of the magneto-optical effect or circular dichroism, achieving excellent purity in spin density superior to conventional approaches based on circular dichroism. PMID:26561372

  18. Spectral detection and monitoring of marine mammals

    NASA Astrophysics Data System (ADS)

    Schoonmaker, Jon; Wells, Tami; Gilbert, Gary; Podobna, Yuliya; Petrosyuk, Irina; Dirbas, Joseph

    2008-04-01

    This note presents an airborne spectral imaging system and methodology used to detect, track and monitor marine mammal populations. The system is a four band multispectral imaging system using spectral bands tailored for maritime imaging. This low cost, low volume, imaging sensor can be deployed on either a small unmanned air vehicle (UAV) or any other cost efficient aircraft. Results of recent multispectral data collects over marine mammals in St. Lawrence Seaway are presented. Species present included beluga whales as well as various species of larger baleen whales.

  19. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    NASA Astrophysics Data System (ADS)

    Skerovic, V.; Zarubica, V.; Zekovic, L.; Belca, I.; Aleksić, M.

    2010-10-01

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  20. LNG pool fire spectral data and calculation of emissive power.

    PubMed

    Raj, Phani K

    2007-04-11

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H2O and CO2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are

  1. Pixel Dynamics Analysis of Photospheric Spectral Data

    NASA Astrophysics Data System (ADS)

    Rasca, Anthony P.; Chen, James; Pevtsov, Alexei A.

    2015-04-01

    Recent advances in solar observations have led to higher-resolution surface (photosphere) images that reveal bipolar magnetic features operating near the resolution limit during emerging flux events. Further improvements in resolution are expected to reveal even smaller dynamic features. Such photospheric features provide observable indications of what is happening before, during, and after flux emergence, eruptions in the corona, and other phenomena. Visible changes in photospheric active regions also play a major role in predicting eruptions that are responsible for geomagnetic plasma disturbances. A new method has been developed to extract physical information from photospheric data (e.g., SOLIS Stokes parameters) based on the statistics of pixel-by-pixel variations in spectral (absorption or emission) line quantities such as line profile Doppler shift, width, asymmetry, and flatness. Such properties are determined by the last interaction between detected photons and optically thick photospheric plasmas, and may contain extractable information on local plasma properties at sub-pixel scales. Applying the method to photospheric data with high spectral resolution, our pixel-by-pixel analysis is performed for various regions on the solar disk, ranging from quiet-Sun regions to active regions exhibiting eruptions, characterizing photospheric dynamics using spectral profiles. In particular, the method quantitatively characterizes the time profile of changes in spectral properties in photospheric features and provides improved physical constraints on observed quantities.

  2. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  3. Spectator field models in light of spectral index after Planck

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide E-mail: fumi@tuhep.phys.tohoku.ac.jp E-mail: gucci@phys.titech.ac.jp

    2013-10-01

    We revisit spectator field models including curvaton and modulated reheating scenarios, specifically focusing on their viability in the new Planck era, based on the derived expression for the spectral index in general spectator field models. Importantly, the recent Planck observations give strong preference to a red-tilted power spectrum, while the spectator field models tend to predict a scale-invariant one. This implies that, during inflation, either (i) the Hubble parameter varies significantly as in chaotic inflation, or (ii) a scalar potential for the spectator field has a relatively large negative curvature. Combined with the tight constraint on the non-Gaussianity, the Planck data provides us with rich implications for various spectator field models.

  4. A Spectral Verification of the HELIOS-2 Lattice Physics Code

    SciTech Connect

    D. S. Crawford; B. D. Ganapol; D. W. Nigg

    2012-11-01

    Core modeling of the Advanced Test Reactor (ATR) at INL is currently undergoing a significant update through the Core Modeling Update Project1. The intent of the project is to bring ATR core modeling in line with today’s standard of computational efficiency and verification and validation practices. The HELIOS-2 lattice physics code2 is the lead code of several reactor physics codes to be dedicated to modernize ATR core analysis. This presentation is concerned with an independent verification of the HELIOS-2 spectral representation including the slowing down and thermalization algorithm and its data dependency. Here, we will describe and demonstrate a recently developed simple cross section generation algorithm based entirely on analytical multigroup parameters for both the slowing down and thermal spectrum. The new capability features fine group detail to assess the flux and multiplication factor dependencies on cross section data sets using the fundamental infinite medium as an example.

  5. Unsupervised Learning of Cone Spectral Classes from Natural Images

    PubMed Central

    Benson, Noah C.; Manning, Jeremy R.; Brainard, David H.

    2014-01-01

    The first step in the evolution of primate trichromatic color vision was the expression of a third cone class not present in ancestral mammals. This observation motivates a fundamental question about the evolution of any sensory system: how is it possible to detect and exploit the presence of a novel sensory class? We explore this question in the context of primate color vision. We present an unsupervised learning algorithm capable of both detecting the number of spectral cone classes in a retinal mosaic and learning the class of each cone using the inter-cone correlations obtained in response to natural image input. The algorithm's ability to classify cones is in broad agreement with experimental evidence about functional color vision for a wide range of mosaic parameters, including those characterizing dichromacy, typical trichromacy, anomalous trichromacy, and possible tetrachromacy. PMID:24967877

  6. Unsupervised learning of cone spectral classes from natural images.

    PubMed

    Benson, Noah C; Manning, Jeremy R; Brainard, David H

    2014-06-01

    The first step in the evolution of primate trichromatic color vision was the expression of a third cone class not present in ancestral mammals. This observation motivates a fundamental question about the evolution of any sensory system: how is it possible to detect and exploit the presence of a novel sensory class? We explore this question in the context of primate color vision. We present an unsupervised learning algorithm capable of both detecting the number of spectral cone classes in a retinal mosaic and learning the class of each cone using the inter-cone correlations obtained in response to natural image input. The algorithm's ability to classify cones is in broad agreement with experimental evidence about functional color vision for a wide range of mosaic parameters, including those characterizing dichromacy, typical trichromacy, anomalous trichromacy, and possible tetrachromacy. PMID:24967877

  7. Unsupervised learning of cone spectral classes from natural images.

    PubMed

    Benson, Noah C; Manning, Jeremy R; Brainard, David H

    2014-06-01

    The first step in the evolution of primate trichromatic color vision was the expression of a third cone class not present in ancestral mammals. This observation motivates a fundamental question about the evolution of any sensory system: how is it possible to detect and exploit the presence of a novel sensory class? We explore this question in the context of primate color vision. We present an unsupervised learning algorithm capable of both detecting the number of spectral cone classes in a retinal mosaic and learning the class of each cone using the inter-cone correlations obtained in response to natural image input. The algorithm's ability to classify cones is in broad agreement with experimental evidence about functional color vision for a wide range of mosaic parameters, including those characterizing dichromacy, typical trichromacy, anomalous trichromacy, and possible tetrachromacy.

  8. Spectral Element Agglomerate AMGe

    SciTech Connect

    Chartier, T; Falgout, R; Henson, V E; Jones, J E; Vassilevski, P S; Manteuffel, T A; McCormick, S F; Ruge, J W

    2005-05-20

    The purpose of this note is to describe an algorithm resulting from the uniting of two ideas introduced and applied elsewhere. For many problems, AMG has always been difficult due to complexities whose natures are difficult to discern from the entries of matrix A alone. Element-based interpolation has been shown to be an effective method for some of these problems, but it requires access to the element matrices on all levels. One way to obtain these has been to perform element agglomeration to form coarse elements, but in complicated situations defining the coarse degrees of freedom (dofs) is not easy. The spectral approach to coarse dof selection is very attractive due to its elegance and simplicity. The algorithm presented here combines the robustness of element interpolation, the ease of coarsening by element agglomeration, and the simplicity of defining coarse dofs through the spectral approach. As demonstrated in the numerical results, the method does yield a reasonable solver for the problems described. It can, however, be an expensive method due to the number and cost of the local, small dense linear algebra problems; making it a generally competitive method remains an area for further research.

  9. Refining spectral library searching.

    PubMed

    Rudnick, Paul A

    2013-11-01

    Spectral library searching has many advantages over sequence database searching, yet it has not been widely adopted. One possible reason for this is that users are unsure exactly how to interpret the similarity scores (e.g., "dot products" are not probability-based scores). Methods to create decoys have been proposed, but, as developers caution, may produce proxies that are not equivalent to reversed sequences. In this issue, Shao et al. (Proteomics 2013, 13, 3273-3283) report advances in spectral library searching where the focus is not on improving the performance of their search engine, SpectraST, but is instead on improving the statistical meaningfulness of its discriminant score and removing the need for decoys. The results in their paper indicate that by "standardizing" the input and library spectra, sensitivity is not lost but is, surprisingly, gained. Their tests also show that false discovery rate (FDR) estimates, derived from their new score, track better with "ground truth" than decoy searching. It is possible that their work strikes a good balance between the theory of library searching and its application. And as such, they hope to have removed a major entrance barrier for some researchers previously unwilling to try library searching.

  10. Spectral reflectance relationships to leaf water stress

    NASA Technical Reports Server (NTRS)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  11. Spectral emissivity of cirrus clouds

    NASA Technical Reports Server (NTRS)

    Beck, Gordon H.; Davis, John M.; Cox, Stephen K.

    1993-01-01

    The inference of cirrus cloud properties has many important applications including global climate studies, radiation budget determination, remote sensing techniques and oceanic studies from satellites. Data taken at the Parsons Kansas site during the FIRE II project are used for this study. On November 26 there were initially clear sky conditions gradually giving way to a progressively thickening cirrus shield over a period of a few hours. Interferometer radiosonde and lidar data were taken throughout this event. Two techniques are used to infer the downward spectral emittance of the observed cirrus layer. One uses only measurements and the other involves measurements and FASCODE III calculations. FASCODE III is a line-by line radiance/transmittance model developed at the Air Force Geophysics Laboratory.

  12. Spectral line polarimetry with a channeled polarimeter.

    PubMed

    van Harten, Gerard; Snik, Frans; Rietjens, Jeroen H H; Martijn Smit, J; Keller, Christoph U

    2014-07-01

    Channeled spectropolarimetry or spectral polarization modulation is an accurate technique for measuring the continuum polarization in one shot with no moving parts. We show how a dual-beam implementation also enables spectral line polarimetry at the intrinsic resolution, as in a classic beam-splitting polarimeter. Recording redundant polarization information in the two spectrally modulated beams of a polarizing beam-splitter even provides the possibility to perform a postfacto differential transmission correction that improves the accuracy of the spectral line polarimetry. We perform an error analysis to compare the accuracy of spectral line polarimetry to continuum polarimetry, degraded by a residual dark signal and differential transmission, as well as to quantify the impact of the transmission correction. We demonstrate the new techniques with a blue sky polarization measurement around the oxygen A absorption band using the groundSPEX instrument, yielding a polarization in the deepest part of the band of 0.160±0.010, significantly different from the polarization in the continuum of 0.2284±0.0004. The presented methods are applicable to any dual-beam channeled polarimeter, including implementations for snapshot imaging polarimetry. PMID:25089978

  13. Medipix-based Spectral Micro-CT

    PubMed Central

    Xu, Qiong; He, Peng; Bennett, James; Amir, Raja; Dobbs, Bruce; Mou, Xuanqin; Wei, Biao; Butler, Anthony; Butler, Phillip; Wang, Ge

    2013-01-01

    Since Hounsfield's Nobel Prize winning breakthrough decades ago, X-ray CT has been widely applied in the clinical and preclinical applications - producing a huge number of tomographic gray-scale images. However, these images are often insufficient to distinguish crucial differences needed for diagnosis. They have poor soft tissue contrast due to inherent photon-count issues, involving high radiation dose. By physics, the X-ray spectrum is polychromatic, and it is now feasible to obtain multi-energy, spectral, or true-color, CT images. Such spectral images promise powerful new diagnostic information. The emerging Medipix technology promises energy-sensitive, high-resolution, accurate and rapid X-ray detection. In this paper, we will review the recent progress of Medipix-based spectral micro-CT with the emphasis on the results obtained by our team. It includes the state- of-the-art Medipix detector, the system and method of a commercial MARS (Medipix All Resolution System) spectral micro-CT, and the design and color diffusion of a hybrid spectral micro-CT. PMID:24194631

  14. [Fast spectral modeling based on Voigt peaks].

    PubMed

    Li, Jin-rong; Dai, Lian-kui

    2012-03-01

    Indirect hard modeling (IHM) is a recently introduced method for quantitative spectral analysis, which was applied to the analysis of nonlinear relation between mixture spectrum and component concentration. In addition, IHM is an effectual technology for the analysis of components of mixture with molecular interactions and strongly overlapping bands. Before the establishment of regression model, IHM needs to model the measured spectrum as a sum of Voigt peaks. The precision of the spectral model has immediate impact on the accuracy of the regression model. A spectrum often includes dozens or even hundreds of Voigt peaks, which mean that spectral modeling is a optimization problem with high dimensionality in fact. So, large operation overhead is needed and the solution would not be numerically unique due to the ill-condition of the optimization problem. An improved spectral modeling method is presented in the present paper, which reduces the dimensionality of optimization problem by determining the overlapped peaks in spectrum. Experimental results show that the spectral modeling based on the new method is more accurate and needs much shorter running time than conventional method. PMID:22582612

  15. Implicit biology in peptide spectral libraries.

    PubMed

    Askenazi, Manor; Linial, Michal

    2012-09-18

    Mass spectral libraries are collections of mass spectra curated specifically to facilitate the identification of small molecules, metabolites, and short peptides. One of the most comprehensive peptide spectral libraries is curated by NIST and contains upward of half a million annotated spectra dominated by human and model organisms including budding yeast and mouse. While motivated primarily by the technological goal of increasing sensitivity and specificity in spectral identification, we have found that the NIST spectral library constitutes a surprisingly rich source of biological knowledge. In this Article, we show that data-mining of these published libraries while applying strict empirical thresholds yields many characteristics of protein biology. In particular, we demonstrate that the size and increasingly comprehensive nature of these libraries, generated from whole-proteome digests, enables inference from the presence but crucially also from the absence of spectra for individual peptides. We illustrate implicit biological trends that lead to significant absence of spectra accounted for by complex post-translational modifications and overlooked proteolytic sites. We conclude that many subtle biological signatures such as genetic variants, regulated proteolysis, and post-translational modifications are exposed through the systematic mining of spectral collections originally compiled as general-purpose, technology-oriented resources.

  16. A method of determining spectral dye densities in color films

    NASA Technical Reports Server (NTRS)

    Friederichs, G. A.; Scarpace, F. L.

    1977-01-01

    A mathematical analysis technique called characteristic vector analysis, reported by Simonds (1963), is used to determine spectral dye densities in multiemulsion film such as color or color-IR imagery. The technique involves examining a number of sets of multivariate data and determining linear transformations of these data to a smaller number of parameters which contain essentially all of the information contained in the original set of data. The steps involved in the actual procedure are outlined. It is shown that integral spectral density measurements of a large number of different color samples can be accurately reconstructed from the calculated spectral dye densities.

  17. A Study of Thermal Infrared Field Spectral Signatures: Implications for Studies of Mars.

    NASA Astrophysics Data System (ADS)

    Keim, E.; Kirkland, L.; Herr, K.; Adams, P.; Hackwell, J.

    2000-10-01

    Hyperspectral data recorded of indurated, weathered carbonates by the airborne imaging spectrometer SEBASS show that some massive carbonates exhibit dramatically reduced spectral contrast for the strong carbonate bands at 6.5 and 11.25 microns. If massive carbonates are present on Mars, this type of reduced spectral contrast could explain why they have not been detected using thermal infrared data sets, including the Global Surveyor Thermal Emission Spectrometer (TES). It could also cause similarly rough carbonates to be missed by the planned 2001 nine-band radiometer THEMIS, and could affect measurements by a landed spectrometer. On the other hand, SEBASS data demonstrate that these deposits can be detected by spectra recorded with sufficient signal-to-noise ratio (SNR). The observed reduction in band contrast is significant, and we conclude it is cause by surface roughness effects [1]. The nature of carbonate and other formations on Mars is uncertain, but a rough surface is certainly a possibility that must be taken into account. These results should be considered in planning for future instruments and when utilizing current data sets to set detection limits. Most spectral studies to determine detection limits rely predominantly on laboratory measurements of well-crystalline, pure end-members, with desirable instrument parameters and detection limits based on those results. However, our results show the importance of extending thermal infrared spectral studies to the field, and the relevance to spectral studies of Mars. This effect was found by drawing on expertise and unique technology most commonly used for the Department of Defense (DoD). The significance of the lessons learned illustrate the importance both of extending spectral studies to the field, and of drawing on non-traditional groups in order to best define what is needed to detect and identify interesting materials on Mars using infrared spectroscopy. [1] Kirkland L. et al. (2000) LPSC abs.1876 and

  18. A parametric estimation approach to instantaneous spectral imaging.

    PubMed

    Oktem, Figen S; Kamalabadi, Farzad; Davila, Joseph M

    2014-12-01

    Spectral imaging, the simultaneous imaging and spectroscopy of a radiating scene, is a fundamental diagnostic technique in the physical sciences with widespread application. Due to the intrinsic limitation of two-dimensional (2D) detectors in capturing inherently three-dimensional (3D) data, spectral imaging techniques conventionally rely on a spatial or spectral scanning process, which renders them unsuitable for dynamic scenes. In this paper, we present a nonscanning (instantaneous) spectral imaging technique that estimates the physical parameters of interest by combining measurements with a parametric model and solving the resultant inverse problem computationally. The associated inverse problem, which can be viewed as a multiframe semiblind deblurring problem (with shift-variant blur), is formulated as a maximum a posteriori (MAP) estimation problem since in many such experiments prior statistical knowledge of the physical parameters can be well estimated. Subsequently, an efficient dynamic programming algorithm is developed to find the global optimum of the nonconvex MAP problem. Finally, the algorithm and the effectiveness of the spectral imaging technique are illustrated for an application in solar spectral imaging. Numerical simulation results indicate that the physical parameters can be estimated with the same order of accuracy as state-of-the-art slit spectroscopy but with the added benefit of an instantaneous, 2D field-of-view. This technique will be particularly useful for studying the spectra of dynamic scenes encountered in space remote sensing. PMID:25347878

  19. The HST/STIS Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Gregg, M. D.; Silva, D.; Rayner, J.; Worthey, G.; Valdes, F.; Pickles, A.; Rose, J.; Carney, B.; Vacca, W.

    2006-01-01

    During Cycles 10, 12, and 13, we obtained STIS G230LB, G430L, and G750L spectra of 378 bright stars covering a wide range in abundance, effective temperature, and luminosity. This HST/STIS Next Generation Spectral Library was scheduled to reach its goal of 600 targets by the end of Cycle 13 when STIS came to an untimely end. Even at 2/3 complete, the library significantly improves the sampling of stellar atmosphere parameter space compared to most other spectral libraries by including the near-UV and significant numbers of metal poor and super-solar abundance stars. Numerous calibration challenges have been encountered, some expected, some not; these arise from the use of the E1 aperture location, non-standard wavelength calibration, and, most significantly, the serious contamination of the near-UV spectra by red light. Maximizing the utility of the library depends directly on overcoming or at least minimizing these problems, especially correcting the UV spectra.

  20. Identification of solid materials using HSI spectral oscillators

    NASA Astrophysics Data System (ADS)

    Lanker, Cory L.; Smith, Milton O.

    2016-05-01

    Our research aims to characterize solid materials through LWIR reflectance spectra in order to improve com-positional exploitation in a hyperspectral imaging (HSI) sensor data cube. Specifically, we aim to reduce false alarm rates when identifying target materials without compromising sensitivity. We employ dispersive analysis to extract the material oscillator resonances from reflectance spectra with a stepwise fitting algorithm to estimate the Lorentz or Gaussian oscillators effectively present in the HSI spectral measurements. The proposed algorithm operates through nonlinear least squares minimization through a grid search over potential oscillator resonance frequencies and widths. Experimental validation of the algorithm is performed with published values of crys-talline and amorphous materials. Our aim is to use the derived oscillator parameters to characterize the materials that are present in an HSI pixel. We demonstrate that there are material-specific properties of oscillators that show subtle variability when considering changes in morphology or measurement conditions. The experimentally verified results include variability in material particle size, measurement angle, and atmospheric conditions for six mineral measurements. Once a target material's oscillators are characterized, we apply statistical learning techniques to form a classifier based on the estimated spectral oscillators of the HSI pixels. We show that this approach has good initial identification results that are extendible across localized experimental conditions.

  1. Species identification from hair by means of spectral library searches.

    PubMed

    Van Steendam, Katleen; De Wulf, Odile; Dhaenens, Maarten; Deforce, Dieter

    2014-09-01

    Species identification from hair has been performed in the past by several techniques, such as scanning electron microscopy and polymerase chain reaction. Despite the great promise of mass spectrometry herein, the repetitive glycine stretches and the evolutionary conserved sequences of keratins make the results from conventional database search algorithms on MSMS fragmentation data very ambiguous. Here, we present a new method based on electron spray quadrupole time-of-flight (ESI-Q-TOF) mass spectrometry and spectral library searching. By comparing different sets of data processing parameters, spectral libraries for human, cat, and dog were constructed with the highest possible specificity and sensitivity. This proof of principle was confirmed by the annotation of blind samples. In addition, by providing a step-by-step roadmap for creating such libraries, more species can be included in the future as demonstrated here by the inclusion of sheep and rabbit. Additionally, we illustrate that this approach allows for species identification of a single hair, making this an interesting approach in a forensic setting.

  2. [Iterated Tikhonov Regularization for Spectral Recovery from Tristimulus].

    PubMed

    Xie, De-hong; Li, Rui; Wan, Xiao-xia; Liu, Qiang; Zhu, Wen-feng

    2016-01-01

    Reflective spectra in a multispectral image can objectively and originally represent color information due to their high dimensionality, illuminant independent and device independent. Aiming to the problem of loss of spectral information when the spectral data reconstructed from three-dimensional colorimetric data in the trichromatic camera-based spectral image acquisition system and its subsequent problem of loss of color information, this work proposes an iterated Tikhonov regularization to reconstruct the reflectance spectra. First of all, according to relationship between the colorimetric value and the reflective spectra in the colorimetric theory, this work constructs a spectral reconstruction equation which can reconstruct high dimensional spectral data from three dimensional colorimetric data acquired by the trichromatic camera. Then, the iterated Tikhonov regularization, inspired by the idea of the pseudo inverse Moore-Penrose, is used to cope with the linear ill-posed inverse problem during solving the equation of reconstructing reflectance spectra. Meanwhile, the work also uses the L-curve method to obtain an optimal regularized parameter of the iterated Tikhonov regularization by training a set of samples. Through these methods, the ill condition of the spectral reconstruction equation can be effectively controlled and improved, and subsequently loss of spectral information of the reconstructed spectral data can be reduced. The verification experiment is performed under another set of training samples. The experimental results show that the proposed method reconstructs the reflective spectra with less spectral information loss in the trichromatic camera-based spectral image acquisition system, which reflects in obvious decreases of spectral errors and colorimetric errors compared with the previous method.

  3. A standard for measuring metadata quality in spectral libraries

    NASA Astrophysics Data System (ADS)

    Rasaiah, B.; Jones, S. D.; Bellman, C.

    2013-12-01

    A standard for measuring metadata quality in spectral libraries Barbara Rasaiah, Simon Jones, Chris Bellman RMIT University Melbourne, Australia barbara.rasaiah@rmit.edu.au, simon.jones@rmit.edu.au, chris.bellman@rmit.edu.au ABSTRACT There is an urgent need within the international remote sensing community to establish a metadata standard for field spectroscopy that ensures high quality, interoperable metadata sets that can be archived and shared efficiently within Earth observation data sharing systems. Metadata are an important component in the cataloguing and analysis of in situ spectroscopy datasets because of their central role in identifying and quantifying the quality and reliability of spectral data and the products derived from them. This paper presents approaches to measuring metadata completeness and quality in spectral libraries to determine reliability, interoperability, and re-useability of a dataset. Explored are quality parameters that meet the unique requirements of in situ spectroscopy datasets, across many campaigns. Examined are the challenges presented by ensuring that data creators, owners, and data users ensure a high level of data integrity throughout the lifecycle of a dataset. Issues such as field measurement methods, instrument calibration, and data representativeness are investigated. The proposed metadata standard incorporates expert recommendations that include metadata protocols critical to all campaigns, and those that are restricted to campaigns for specific target measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. Approaches towards an operational and logistically viable implementation of a quality standard are discussed. This paper also proposes a way forward for adapting and enhancing current geospatial metadata standards to the unique requirements of field spectroscopy metadata quality. [0430] BIOGEOSCIENCES / Computational methods and data processing [0480

  4. Curvature of the spectral energy distributions of blazars

    SciTech Connect

    Chen, Liang

    2014-06-20

    In this paper, spectral energy distributions (SED) of both synchrotron and inverse Compton (IC) components of a sample of Fermi bright blazars are fitted by a log-parabolic law. The second-degree term of the log parabola measures the curvature of an SED. We find a statistically significant correlation between the synchrotron peak frequency and its curvature. This result is in agreement with the theoretical prediction and confirms previous studies that dealt with a single source with observations at various epochs or a small sample. If a broken power law is employed to fit the SED, the difference between the two spectral indices (i.e., |α{sub 2} – α{sub 1}|) can be considered a 'surrogate' of the SED curvature. We collect data from the literature and find a correlation between the synchrotron peak frequency and the spectral difference. We do not find a significant correlation between the IC peak frequency and its curvature, which may be caused by a complicated seed photon field. It is also found that the synchrotron curvatures are on average larger than those of IC curvatures, and there is no correlation between these two parameters. As suggested by previous works, both the log-parabolic law of the SED and the above correlation can be explained by statistical and/or stochastic particle accelerations. Based on a comparison of the slops of the correlation, our result seems to favor stochastic acceleration mechanisms and emission processes. Additional evidence, including SED modeling, particle acceleration simulation, and comparisons between some predictions and empirical relations/correlations, also seems to support the idea that the electron energy distribution (and/or synchrotron SED) may be log-parabolic.

  5. Application of the Akinfiev-Diamond equation of state to neutral hydroxides of metalloids (B(OH)3, Si(OH)4, As(OH)3) at infinite dilution in water over a wide range of the state parameters, including steam conditions

    NASA Astrophysics Data System (ADS)

    Akinfiev, Nikolay N.; Plyasunov, Andrey V.

    2014-02-01

    The Akinfiev and Diamond (2003) equation of state (EoS) for aqueous nonelectrolytes was employed to describe hydroxides of metalloids (B(OH)3, Si(OH)4, As(OH)3) over a wide temperature and pressure ranges, including steam conditions. The EoS is based on the accurate knowledge of solvent (H2O) properties and requires only three empirical parameters to be fitted to experimental data, and these are independent of temperature and pressure. For nonvolatile components thermodynamic properties of species in the ideal gas state were evaluated using quantum chemical computations. The proposed approach has been tested to predict the whole set of thermodynamic properties of solutes (the chemical potential, entropy, molar volume, and molar heat capacity) over a wide range of temperatures (273-1200 K) and pressures (0.1-1000 MPa), including the near-critical region and both low and high density regions of the solvent. Thus it can be used for modeling various geochemical processes over a whole range of solvent densities, including processes in boiling fluids and a vapor phase as well. solubility data in a low density aqueous fluid (ρ1∗ < 0.2 g cm-3); data with very high solubility values (mSi(OH)4 > 1 mol kg-1) where polymerization effects may take place (Newton and Manning, 2003); the rest of data, containing the majority of quartz solubility points at 293-1273 K, 0.1-1000 MPa. Only the 3rd part of experimental quartz solubility data has been used in the fitting procedure. Thermodynamic properties of Si(OH)4 in the ideal gas state were recently determined by the analysis of the relevant experimental data in Plyasunov (2011b). The temperature dependence of heat capacity of the molecule was adopted from comprehensive study of Rutz and Bockhorn (2005)where DFT calculations at different levels of theory including CBS-QBS and G3MP2 methods, as well as corrections for hindered rotations and scaling for vibration frequencies were employed. The adopted Cpo (T = 300-1500 K) values

  6. Spectral Investigation of Binary Asteroids

    NASA Astrophysics Data System (ADS)

    Birlan, Mirel; Nedelcu, D.; Descamps, P.; Berthier, J.; Marchis, F.; Merouane, S.

    2008-09-01

    The number of binary asteroids increased in a significant manner during the last years. Multiple types of observations obtained in adaptive optics, photometry, and radar, allow the rethinking not only the dynamics of the asteroids, but also their physics. The spectroscopy of a binary system can play a key role for establish the mineralogical composition of components, and implicitly the range of their density. By the application of these considerations to the physical and dynamical models, the physical parameters such as the macro-porosity or the "rubble pile” structures could be derived. Observations of binary asteroid (854) Frostia, and binary candidates (1333) Cevenola, and (3632) Chaplin were carried out in the 0.8-2.5 µm spectral range using SpeX/IRTF in LowRes mode. The asteroids present features in both 1 and 2 µm regions, suggesting the presence of silicates in the surface composition. The analysis of slopes, band strengths, and the most probable mineralogical models will be presented.

  7. Spectral Domain Phase Microscopy

    NASA Astrophysics Data System (ADS)

    Hendargo, Hansford C.; Ellerbee, Audrey K.; Izatt, Joseph A.

    Spectral domain phase microscopy (SDPM) is a functional extension of optical coherence tomography (OCT) using common-path interferometry to produce phase-referenced images of dynamic samples. Like OCT, axial resolution in SDPM is determined by the source coherence length, while lateral resolution is limited by diffraction in the microscope optics. However, the quantitative phase information SDPM generates is sensitive to nanometer-scale displacements of scattering structures. The use of a common-path optical geometry yields an imaging system with high phase stability. Due to coherence gating, SDPM can achieve full depth discrimination, allowing for independent motion resolution of subcellular structures throughout the sample volume. Here we review the basic theory of OCT and SDPM along with applications of SDPM in cellular imaging to measure topology, Doppler flow in single-celled organisms, time-resolved motions, rheological information of the cytoskeleton, and optical signaling of neural activation. Phase imaging limitations, artifacts, and sensitivity considerations are discussed.

  8. Broadband ringdown spectral photography.

    PubMed

    Scherer, J J; Paul, J B; Jiao, H; O'Keefe, A

    2001-12-20

    A new technique that enables frequency-resolved cavity ringdown absorption spectra to be obtained over a large optical bandwidth by a single laser shot is described. The technique, ringdown spectral photography (RSP), simultaneously employs two key principles to record the time and frequency response of an optical cavity along orthogonal axes of a CCD array detector. Previously, the principles employed in RSP were demonstrated with narrow-band laser light that was scanned in frequency [Chem. Phys. Lett. 292, 143 (1998)]. Here, the RSP method is demonstrated using single pulses of broadband visible laser light. The ability to obtain broad as well as rotationally resolved spectra over a large bandwidth with high sensitivity is demonstrated. PMID:18364983

  9. Miniature spectrally selective dosimeter

    NASA Technical Reports Server (NTRS)

    Adams, R. R.; Macconochie, I. O.; Poole, B. D., Jr. (Inventor)

    1980-01-01

    A miniature spectrally selective dosimeter capable of measuring selected bandwidths of radiation exposure on small mobile areas is described. This is achieved by the combination of photovoltaic detectors, electrochemical integrators (E-cells) and filters in a small compact case which can be easily attached in close proximity to and substantially parallel to the surface being measured. In one embodiment two photovoltaic detectors, two E-cells, and three filters are packaged in a small case with attaching means consisting of a safety pin. In another embodiment, two detectors, one E-cell, three filters are packaged in a small case with attaching means consisting of a clip to clip over a side piece of an eye glass frame.

  10. Spectral tripartitioning of networks

    NASA Astrophysics Data System (ADS)

    Richardson, Thomas; Mucha, Peter J.; Porter, Mason A.

    2009-09-01

    We formulate a spectral graph-partitioning algorithm that uses the two leading eigenvectors of the matrix corresponding to a selected quality function to split a network into three communities in a single step. In so doing, we extend the recursive bipartitioning methods developed by Newman [M. E. J. Newman, Proc. Natl. Acad. Sci. U.S.A. 103, 8577 (2006); Phys. Rev. E 74, 036104 (2006)] to allow one to consider the best available two-way and three-way divisions at each recursive step. We illustrate the method using simple “bucket brigade” examples and then apply the algorithm to examine the community structures of the coauthorship graph of network scientists and of U. S. Congressional networks inferred from roll call voting similarities.

  11. SPECTRAL ANALYSIS OF RADIOXENON

    SciTech Connect

    Cooper, Matthew W.; Bowyer, Ted W.; Hayes, James C.; Heimbigner, Tom R.; Hubbard, Charles W.; McIntyre, Justin I.; Schrom, Brian T.

    2008-09-23

    Monitoring changes in atmospheric radioxenon concentrations is a major tool in the detection of an underground nuclear explosion. Ground based systems like the Automated Radioxenon Sampler /Analyzer (ARSA), the Swedish Unattended Noble gas Analyzer (SAUNA) and the Automatic portable radiometer of isotopes Xe (ARIX), can collect and detect several radioxenon isotopes by processing and transferring samples into a high efficiency beta-gamma coincidence detector. The high efficiency beta-gamma coincidence detector makes these systems highly sensitive to the radioxenon isotopes 133Xe, 131mXe, 133mXe and 135Xe. The standard analysis uses regions of interest (ROI) to determine the amount of a particular radioxenon isotope present. The ROI method relies on the peaks of interest falling within energy limits of the ROI. Some potential problems inherent in this method are the reliance on stable detector gains and a fixed resolution for each energy peak. In addition, when a high activity sample is measured there will be more interference among the ROI, in particular within the 133Xe, 133mXe, and 131mXe regions. A solution to some of these problems can be obtained through spectral fitting of the data. Spectral fitting is simply the fitting of the peaks using known functions to determine the number and relative peak positions and widths. By knowing this information it is possible to determine which isotopes are present. Area under each peak can then be used to determine an overall concentration for each isotope. Using the areas of the peaks several key detector characteristics can be determined: efficiency, energy calibration, energy resolution and ratios between interfering isotopes (Radon daughters).

  12. Spectral Automorphisms in Quantum Logics

    NASA Astrophysics Data System (ADS)

    Ivanov, Alexandru; Caragheorgheopol, Dan

    2010-12-01

    In quantum mechanics, the Hilbert space formalism might be physically justified in terms of some axioms based on the orthomodular lattice (OML) mathematical structure (Piron in Foundations of Quantum Physics, Benjamin, Reading, 1976). We intend to investigate the extent to which some fundamental physical facts can be described in the more general framework of OMLs, without the support of Hilbert space-specific tools. We consider the study of lattice automorphisms properties as a “substitute” for Hilbert space techniques in investigating the spectral properties of observables. This is why we introduce the notion of spectral automorphism of an OML. Properties of spectral automorphisms and of their spectra are studied. We prove that the presence of nontrivial spectral automorphisms allow us to distinguish between classical and nonclassical theories. We also prove, for finite dimensional OMLs, that for every spectral automorphism there is a basis of invariant atoms. This is an analogue of the spectral theorem for unitary operators having purely point spectrum.

  13. Design and modeling of spectral-thermal unmixing targets for airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Clare, Phil

    2006-05-01

    Techniques to determine the proportions of constituent materials within a single pixel spectrum are well documented in the reflective (0.4-2.5μm) domain. The same capability is also desirable for the thermal (7-14μm) domain, but is complicated by the thermal contributions to the measured spectral radiance. Atmospheric compensation schemes for the thermal domain have been described along with methods for estimating the spectral emissivity from a spectral radiance measurement and hence the next stage to be tackled is the unmixing of thermal spectral signatures. In order to pursue this goal it is necessary to collect data of well-calibrated targets which will expose the limits of the available techniques and enable more robust methods to be designed. This paper describes the design of a set of ground targets for an airborne hyperspectral imager, which will test the effectiveness of available methods. The set of targets include panels to explore a number of difficult scenarios such as isothermal (different materials at identical temperature), isochromal (identical materials, but at differing temperatures), thermal adjacency and thermal point sources. Practical fabrication issues for heated targets and selection of appropriate materials are described. Mathematical modelling of the experiments has enabled prediction of at-sensor measured radiances which are used to assess the design parameters. Finally, a number of useful lessons learned during the fielding of these actual targets are presented to assist those planning future trials of thermal hyperspectral sensors.

  14. THE CORRELATION BETWEEN X-RAY LINE IONIZATION AND OPTICAL SPECTRAL TYPES OF THE OB STARS

    SciTech Connect

    Walborn, Nolan R.; Nichols, Joy S.; Waldron, Wayne L. E-mail: jnichols@cfa.harvard.ed

    2009-09-20

    Marked correlations are reported between the ionization of the X-ray line spectra of normal OB stars, as observed by the Chandra X-Ray Observatory, and their optical spectral types. These correlations include the progressive weakening of the higher ionization relative to the lower ionization X-ray lines with advancing spectral type, and the similarly decreasing intensity ratios of the H-like to He-like lines of the alpha ions. These relationships were not predicted by models, nor have they been clearly evident in astrophysical studies of a few objects; rather, they have emerged from morphological analysis of an adequate (albeit still small) sample, from which known peculiar objects such as magnetic stars and very rapid rotators have been isolated to reveal the normal trends. This process is analogous to that which first demonstrated the strong relationships between the UV wind profiles and the optical spectral types of normal OB stars, which likely bear a physical as well as a historical connection to the present X-ray results. Since the optical spectral types are calibrated in terms of fundamental stellar parameters, it follows that the winds and X-ray spectra are determined by the latter. These observations provide strong guidance for further astrophysical modeling of these phenomena.

  15. Noninvasive quantitative documentation of cutaneous inflammation in vivo using spectral imaging

    NASA Astrophysics Data System (ADS)

    Stamatas, Georgios N.; Kollias, Nikiforos

    2006-02-01

    Skin inflammation is often accompanied by edema and erythema. While erythema is the result of capillary dilation and subsequent local increase of oxygenated hemoglobin (oxy-Hb) concentration, edema is characterized by an increase in extracellular fluid in the dermis leading to local tissue swelling. Edema and erythema are typically graded visually. In this work we tested the potential of spectral imaging as a non-invasive method for quantitative documentation of both the erythema and the edema reactions. As examples of dermatological conditions that exhibit skin inflammation we imaged patients suffering from acne, herpes zoster, and poison ivy rashes using a hyperspectral-imaging camera. Spectral images were acquired in the visible and near infrared part of the spectrum, where oxy-Hb and water demonstrate absorption bands. The values of apparent concentrations of oxy-Hb and water were calculated based on an algorithm that takes into account spectral contributions of deoxy-hemoglobin, melanin, and scattering. In each case examined concentration maps of oxy-Hb and water can be constructed that represent quantitative visualizations of the intensity and extent of erythema and edema correspondingly. In summary, we demonstrate that spectral imaging can be used in dermatology to quantitatively document parameters relating to skin inflammation. Applications may include monitoring of disease progression as well as efficacy of treatments.

  16. [Thermal spectral property of prism in hyper spectral imager].

    PubMed

    Liang, Jiu-Sheng; Wu, Qing-Wen; Li, Ze-Xue; Chen, Li-Heng; Guo, Liang

    2010-06-01

    Prism is one of the most key parts in the hyper spectral imager (HSI). Consequently, to set thermal control target and make thermal control design, the thermal spectral property of prism in the HSI was studied. The working principle of the HSI and the definition of its thermal spectral property were introduced. The working environment of prism and its thermal effect were analyzed; also the study contents and technical route of the prism's thermal spectral property were discussed. The effects of different uniform temperature field on deflexion angle and angular dispersion of the prism in the HSI were deduced, and the changes in displacement of the spectra and the spectral bandwidth under different uniform temperature were obtained. For one instance, the thermal spectral property of the K9 prism and the fused silica prism were compared based on FEM and combined experiments, furthermore, its thermal control target was ascertained and a thermal spectral property test was carried out to validate the rationality of the thermal spectral property analysis. The results of analysis indicated that the changes in spectral bandwidth and spectrum resolution brought by thermal distortions can be ignored according to current fixing mode, and the displacement of the spectra is mainly determined by thermal coefficient of material refractive index; because of it's the lower thermal coefficient of material refractive index, the displacement of the spectra of the K9 prism is smaller under the same temperature changes; the material deflexion changes (dn/dlambda) of prism are not sensitive to the temperature, so the changes in spectral bandwidth caused by them are not obvious. And the results of test proved that the studied method of thermal spectral property is reasonable and essential, and the results are authentic and credible. So it can provide some guidance for setting thermal control target and optimizing thermal control design. PMID:20707180

  17. The characteristic analysis of spectral image for cabbage leaves damaged by diamondback moth pests

    NASA Astrophysics Data System (ADS)

    Lin, Li-bo; Li, Hong-ning; Cao, Peng-fei; Qin, Feng; Yang, Shu-ming; Feng, Jie

    2015-02-01

    Cabbage growth and health diagnosis are important parts for cabbage fine planting, spectral imaging technology with the advantages of obtaining spectrum and space information of the target at the same time, which has become a research hotspot at home and abroad. The experiment measures the reflection spectrum at different stages using liquid crystal tunable filter (LCTF) and monochromatic CMOS camera composed of spectral imaging system for cabbage leaves damaged by diamondback moth pests, and analyzes its feature bands and the change of spectral parameters. The study shows that the feature bands of cabbage leaves damaged by diamondback moth pests have a tendency to blue light direction, the red edge towards blue shift, and red valley raising in spectral characteristic parameters, which have a good indication in diagnosing the extent of cabbage damaged by pests. Therefore, it has a unique advantage of monitoring the cabbage leaves damaged by diamondback moth pests by combinating feature bands and spectral characteristic parameters in spectral imaging technology.

  18. Spectral distribution of solar radiation

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.; Richmond, J.

    1980-01-01

    Available quantitative data on solar total and spectral irradiance are examined in the context of utilization of solar irradiance for terrestrial applications of solar energy. The extraterrestrial solar total and spectral irradiance values are also reviewed. Computed values of solar spectral irradiance at ground level for different air mass values and various levels of atmospheric pollution or turbidity are presented. Wavelengths are given for computation of solar, absorptance, transmittance and reflectance by the 100 selected-ordinate method and by the 50 selected-ordinate method for air mass 1.5 and 2 solar spectral irradiance for the four levels of atmospheric pollution.

  19. Spectral Characteristics of Titan's Surface

    NASA Astrophysics Data System (ADS)

    Griffith, Caitlin A.; Turner, Jake D.; Penteado, Paulo; Khamsi, Tymon B.; Soderblom, Jason M.

    2014-11-01

    Cassini/Huygens and ground-based measurements of Titan reveal an eroded surface, with lakes, dunes, and sinuous washes. These features, coupled with measurements of clouds and rain, indicate the transfer of methane between Titan’s surface and atmosphere. The presence of methane-damp lowlands suggests further that the atmospheric methane (which is continually depleted through photolysis) may be supplied by sub-surface reservoirs. The byproducts of methane photolysis condense onto the surface, leaving layers of organic sediments that record Titan’s past atmospheres.Thus knowledge of the source and history of Titan's atmosphere requires measurements of the large scale compositional makeup of Titan's surface, which is shrouded by a thick and hazy atmosphere. Towards this goal, we analyzed roughly 100,000 spectra recorded by Cassini’s Visual and Infrared Mapping Spectrometer (VIMS). Our study is confined to the latitude region (20S—20N) surrounding the landing site of the Huygens probe (at 10S, 192W), which supplied only measurement of the vertical profiles of the methane abundance and haze scattering characteristics. VIMS near-IR spectral images indicate subtle latitudinal and temporal variations in the haze characteristics in the tropics. We constrain these small changes with full radiative transfer analyses of each of the thousands of VIMS spectra, which were recorded of different terrains and at different lighting conditions. The resulting models of Titan’s atmosphere as a function of latitude and year indicate the seasonal migration of Titan’s tropical haze and enable the derivation of Titan’s surface albedo at 8 near-IR wavelength regions where Titan’s atmosphere is transparent enough to allow visibility to the surface. The resultant maps of Titan’s surface indicate a number of terrain types with distinct spectral characteristics that are suggestive of atmospheric and surficial processes, including the deposition of organic material, erosion of

  20. Semi-automatic classification of bird vocalizations using spectral peak tracks.

    PubMed

    Chen, Zhixin; Maher, Robert C

    2006-11-01

    Automatic off-line classification and recognition of bird vocalizations has been a subject of interest to ornithologists and pattern detection researchers for many years. Several new applications, including bird vocalization classification for aircraft bird strike avoidance, will require real time classification in the presence of noise and other disturbances. The vocalizations of many common bird species can be represented using a sum-of-sinusoids model. An experiment using computer software to perform peak tracking of spectral analysis data demonstrates the usefulness of the sum-of-sinusoids model for rapid automatic recognition of isolated bird syllables. The technique derives a set of spectral features by time-variant analysis of the recorded bird vocalizations, then performs a calculation of the degree to which the derived parameters match a set of stored templates that were determined from a set of reference bird vocalizations. The results of this relatively simple technique are favorable for both clean and noisy recordings.

  1. The spectral irradiance traceability chain at PTB

    SciTech Connect

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-10

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Systeme international d'unites, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  2. The spectral irradiance traceability chain at PTB

    NASA Astrophysics Data System (ADS)

    Sperfeld, P.; Pape, S.; Nevas, S.

    2013-05-01

    Spectral irradiance is a fundamental radiometric unit. Its application to measurement results requires qualified traceability to basic units of the international system of units (Système international d'unités, SI). The Physikalisch-Technische Bundesanstalt (PTB) is amongst other national metrological institutes (NMIs) responsible for the realization, maintenance and dissemination of various radiometric and photometric units based on and traceable to national standards. The unit of spectral irradiance is realized and represented by a blackbody-radiator as the national primary standard of the PTB. Based on Planck's radiation law, the irradiance is calculated and realized for any wavelength taking into account the exact knowledge of the radiation temperature and the geometrical parameters. Using a double-monochromator-based spectroradiometer system, secondary standard lamps can be calibrated by direct comparison to the blackbody-radiator (substitution method). These secondary standard lamps are then used at the PTB to calibrate standard lamps of customers. The customers themselves use these so-called transfer standards to calibrate their working standard lamps. These working standards are then used to calibrate own spectroradiometers or sources. This rather complex calibration chain is a common procedural method that for the customers generally leads to satisfying measurement results on site. Nevertheless, the standard lamps in use have to fulfill highest requirements concerning stability and reproducibility. Only this allows achieving comparably low transfer measurement uncertainties, which occur at each calibration step. Thus, the PTB is constantly investigating the improvement and further development of transfer standards and measurement methods for various spectral regions. The realization and dissemination of the spectral irradiance using the blackbody-radiator at the PTB is accomplished with worldwide approved minimized measurement uncertainties confirmed by

  3. Supergranular Parameters

    NASA Astrophysics Data System (ADS)

    Udayashankar, Paniveni

    2016-07-01

    I study the complexity of supergranular cells using intensity patterns from Kodaikanal solar observatory. The chaotic and turbulent aspect of the solar supergranulation can be studied by examining the interrelationships amongst the parameters characterizing supergranular cells namely size, horizontal flow field, lifetime and physical dimensions of the cells and the fractal dimension deduced from the size data. The findings are supportive of Kolmogorov's theory of turbulence. The Data consists of visually identified supergranular cells, from which a fractal dimension 'D' for supergranulation is obtained according to the relation P α AD/2 where 'A' is the area and 'P' is the perimeter of the supergranular cells. I find a fractal dimension close to about 1.3 which is consistent with that for isobars and suggests a possible turbulent origin. The cell circularity shows a dependence on the perimeter with a peak around (1.1-1.2) x 105 m. The findings are supportive of Kolmogorov's theory of turbulence.

  4. Spectral Quantitation Of Hydroponic Nutrients

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle

    1996-01-01

    Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.

  5. Femtosecond soliton source with fast and broad spectral tunability.

    PubMed

    Masip, Martin E; Rieznik, A A; König, Pablo G; Grosz, Diego F; Bragas, Andrea V; Martinez, Oscar E

    2009-03-15

    We present a complete set of measurements and numerical simulations of a femtosecond soliton source with fast and broad spectral tunability and nearly constant pulse width and average power. Solitons generated in a photonic crystal fiber, at the low-power coupling regime, can be tuned in a broad range of wavelengths, from 850 to 1200 nm using the input power as the control parameter. These solitons keep almost constant time duration (approximately 40 fs) and spectral widths (approximately 20 nm) over the entire measured spectra regardless of input power. Our numerical simulations agree well with measurements and predict a wide working wavelength range and robustness to input parameters. PMID:19282951

  6. Applications of spectral inversion to understanding vegetation functional trait relationships

    NASA Astrophysics Data System (ADS)

    Shiklomanov, A. N.; Dietze, M.; Viskari, T.; Townsend, P. A.; Serbin, S.

    2015-12-01

    Spectral data from both field observations and remote sensing platforms are a rich source of information for studying plant traits. Traditional approaches to using spectral data for studying vegetation have proven effective in sensor-, site-, or plant type-specific settings, but differences in model assumptions and failure to account for uncertainties have hindered efforts to synthesize observations from different sources and use spectral data in a predictive capacity. Here we present a novel approach that uses Bayesian inversion of the PROSPECT 5 leaf radiative transfer model (RTM) to investigate the ability of spectral data to inform our understanding of plant functional traits. First, we validated our method by comparing inversion results to independent measurements of relevant leaf structural and biochemical parameters. Second, we tested the accuracy and precision of RTM parameter retrieval as a function of spectral resolution and quality by performing inversions on simulated observations for a variety of common remote sensing platforms. We observed predictable increases in parameter uncertainty and covariance with declining spectral resolution, but we also found that the measurement characteristics of all sensors are capable of providing information about at least some of the parameters of interest. Finally, we applied our inversion to a large database of field spectra and plant traits spanning tropical, temperate, and boreal forests, agricultural plots, arid shrublands, and tundra to identify dominant sources of variability and characterize trade-offs in plant functional traits. We found substantial intraspecific variability in traits and explored the extent to which this variability falls along the same axes as the interspecific leaf economics spectrum. Ultimately, our results show that Bayesian RTM inversion provides a powerful framework for using spectral data to inform our understanding of plant functional traits and how they are linked with ecosystem

  7. Improved technique for retrieval of forest parameters from hyperspectral remote sensing data.

    PubMed

    Kozoderov, Vladimir V; Dmitriev, Egor V; Sokolov, Anton A

    2015-11-30

    This paper describes an approach of machine-learning pattern recognition procedures for the land surface objects using their spectral and textural features on remotely sensed hyperspectral images together with the biological parameters retrieval for the recognized classes of forests. Modified Bayesian classifier is used to improve the related procedures in spatial and spectral domains. Direct and inverse problems of atmospheric optics are solved based on modeling results of the projective cover and density of the forest canopy for the selected classes of forests of different species and ages. Applying the proposed techniques to process images of high spectral and spatial resolution, we have detected object classes including forests within their contours on a particular image and can retrieve the phytomass amount of leaves/needles as well as the relevant total biomass amount for the forest canopy. PMID:26698785

  8. Complete Stellar Models: Spectral and Interior Evolution of Massive Stars

    NASA Astrophysics Data System (ADS)

    Schaerer, Daniel

    1995-08-01

    This thesis work presents the first "complete stellar models" for massive stars, which consistently treat the stellar interior, the atmosphere, and the stellar winds. This approach allows to simultaneously predict basic stellar parameters (luminosity, radii, temperatures), nucleosynthesis (abundances), as well as the detailed emergent spectrum through the relevant evolutionary phases (corresponding to OB, LBV and Wolf--Rayet stars). On the other hand, our modelling including the stellar winds also allows to study the influence of the outer layers on the stellar structure and evolution. Conceptually the thesis is divided in two main parts. In the first part we construct the first non-LTE line blanketed hydrodynamic models of spherically expanding atmospheres of hot stars. The entire domain from the optically thick photosphere out to the terminal velocity of the wind is treated. We discuss in detail the effects of line blanketing on the atmospheric structure and on the predicted spectrum. We study the influence of the hydrodynamic structure on the profiles of both photospheric and wind lines. Our results also show that for precise determinations of stellar parameters and abundances of hot luminous stars, the use of plane parallel models may lead to systematic errors. In the second part we develop the "complete stellar models" (CoStar). As a first application we study the main sequence (MS) interior and spectral evolution of massive stars at solar metallicity. The evolutionary tracks and the interior evolution are found to be basically unchanged by the realistic treatment of the outer layers. The main CoStar predictions presented and discussed for the MS are the following: 1. Ejected mass of the most important elements. Deposition of wind momentum and mechanical energy 2. Estimates of mass loss rates due to radiation pressure including multiple scattering and line overlap 3. Continuous spectral energy distribution (EUV to IR) and ionising fluxes 4. UBVRIJHKLMN

  9. Spectral slopes of the absorption coefficient of colored dissolved and detrital material inverted from UV-visible remote sensing reflectance

    NASA Astrophysics Data System (ADS)

    Wei, Jianwei; Lee, Zhongping; Ondrusek, Michael; Mannino, Antonio; Tzortziou, Maria; Armstrong, Roy

    2016-03-01

    The spectral slope of the absorption coefficient of colored dissolved and detrital material (CDM), Scdm (units: nm-1), is an important optical parameter for characterizing the absorption spectral shape of CDM. Although highly variable in natural waters, in most remote sensing algorithms, this slope is either kept as a constant or empirically modeled with multiband ocean color in the visible domain. In this study, we explore the potential of semianalytically retrieving Scdm with added ocean color information in the ultraviolet (UV) range between 360 and 400 nm. Unique features of hyperspectral remote sensing reflectance in the UV-visible wavelengths (360-500 nm) have been observed in various waters across a range of coastal and open ocean environments. Our data and analyses indicate that ocean color in the UV domain is particularly sensitive to the variation of the CDM spectral slope. Here, we used a synthesized dataset to show that adding UV wavelengths to the ocean color measurements will improve the retrieval of Scdm from remote sensing reflectance considerably, while the spectral band settings of past and current satellite ocean color sensors cannot fully account for the spectral variation of remote sensing reflectance. Results of this effort support the concept to include UV wavelengths in the next generation of satellite ocean color sensors.

  10. Spectral methods on arbitrary grids

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Gottlieb, David

    1995-01-01

    Stable and spectrally accurate numerical methods are constructed on arbitrary grids for partial differential equations. These new methods are equivalent to conventional spectral methods but do not rely on specific grid distributions. Specifically, we show how to implement Legendre Galerkin, Legendre collocation, and Laguerre Galerkin methodology on arbitrary grids.

  11. Spectral entropy in monitoring anesthetic depth.

    PubMed

    Escontrela Rodríguez, B; Gago Martínez, A; Merino Julián, I; Martínez Ruiz, A

    2016-10-01

    Monitoring the brain response to hypnotics in general anesthesia, with the nociceptive and hemodynamic stimulus interaction, has been a subject of intense investigation for many years. Nowadays, monitors of depth of anesthesia are based in processed electroencephalogram by different algorithms, some of them unknown, to obtain a simplified numeric parameter approximate to brain activity state in each moment. In this review we evaluate if spectral entropy suitably reflects the brain electric behavior in response to hypnotics and the different intensity nociceptive stimulus effect during a surgical procedure.

  12. Estimation of agronomic variables using spectral signatures

    NASA Technical Reports Server (NTRS)

    Goel, N. S.; Thompson, R. L.

    1984-01-01

    Techniques for the determination of leaf area index or leaf angle distribution from remote-sensing canopy-reflectance (CR) measurements are developed on the basis of empirical models relating CR to parameters such as soil and vegetation spectral properties, solar flux, and viewing angle. A general procedure for inverting CR models is presented and applied to the models of Suits (1972), Verhoef and Bunnik (1981), and Norman (1979) in the IR range. Numerical results for a soybean canopy are compared in a table, and the error sensitivity of the inverted models is shown to be relatively high, requiring the use of ancillary data such as soil reflectance, leaf reflectance, and leaf transmittance.

  13. Optimized spectral estimation for nonlinear synchronizing systems

    NASA Astrophysics Data System (ADS)

    Sommerlade, Linda; Mader, Malenka; Mader, Wolfgang; Timmer, Jens; Thiel, Marco; Grebogi, Celso; Schelter, Björn

    2014-03-01

    In many fields of research nonlinear dynamical systems are investigated. When more than one process is measured, besides the distinct properties of the individual processes, their interactions are of interest. Often linear methods such as coherence are used for the analysis. The estimation of coherence can lead to false conclusions when applied without fulfilling several key assumptions. We introduce a data driven method to optimize the choice of the parameters for spectral estimation. Its applicability is demonstrated based on analytical calculations and exemplified in a simulation study. We complete our investigation with an application to nonlinear tremor signals in Parkinson's disease. In particular, we analyze electroencephalogram and electromyogram data.

  14. Stark broadening of Kr UV spectral lines

    SciTech Connect

    Cirisan, M.; Djurovic, S.; Pelaez, R. J.; Aparicio, J. A.; Mar, S.

    2011-01-15

    This work reports new data for the Stark parameters of doubly ionized krypton spectral lines. Stark widths and shifts of Kr iii lines belonging to the UV region (245-300 nm) have been measured. A low-pressure pulsed arc, containing a mixture of 8% krypton and 92% helium, was used as a plasma source. Measured electron densities and electron temperatures were in the range (0.7-2.0)x10{sup 23} m{sup -3} and 16 000-20 000 K, respectively. Experimentally obtained data were compared to theoretical results calculated using simplified modified semiempirical formulas.

  15. Spectral emission measurement of igneous rocks using a spectroradiometer

    NASA Technical Reports Server (NTRS)

    Hunton, W. D.

    1970-01-01

    Spectroradiometer is used for either close or remote identification of rocks not heated to high temperatures. Instrument yields reproducible data spectra with excellent signal-to-noise ratios and readily identifiable spectral details, including differences in subclasses.

  16. [Artificial neural network applied for spectral overlap interference correction in ICP-AES].

    PubMed

    Zhang, Z; Liu, S; Zeng, X

    1997-10-01

    A back-propagation artificial neural network (BP-ANN) has been applied to correcting spectral overlap interference in inductively coupled plasma atomic emission spectrometry (ICP-AES). Some network parameters including the range of input values and training sequence for training patterns presented to the network were discussed using simulated Ce 413.380nm and Pr 413.380nm line profiles. Results show that the noise in simulated mixture spectra will slow down the network convergence and has more influence on network prediction. PMID:15810366

  17. Covariance propagation in spectral indices

    DOE PAGESBeta

    Griffin, P. J.

    2015-01-09

    In this study, the dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This study identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, andmore » provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.« less

  18. Covariance propagation in spectral indices

    SciTech Connect

    Griffin, P. J.

    2015-01-09

    In this study, the dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This study identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, and provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.

  19. Covariance Propagation in Spectral Indices

    SciTech Connect

    Griffin, P.J.

    2015-01-15

    The dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This paper identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, and provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.

  20. Adaptable Multivariate Calibration Models for Spectral Applications

    SciTech Connect

    THOMAS,EDWARD V.

    1999-12-20

    Multivariate calibration techniques have been used in a wide variety of spectroscopic situations. In many of these situations spectral variation can be partitioned into meaningful classes. For example, suppose that multiple spectra are obtained from each of a number of different objects wherein the level of the analyte of interest varies within each object over time. In such situations the total spectral variation observed across all measurements has two distinct general sources of variation: intra-object and inter-object. One might want to develop a global multivariate calibration model that predicts the analyte of interest accurately both within and across objects, including new objects not involved in developing the calibration model. However, this goal might be hard to realize if the inter-object spectral variation is complex and difficult to model. If the intra-object spectral variation is consistent across objects, an effective alternative approach might be to develop a generic intra-object model that can be adapted to each object separately. This paper contains recommendations for experimental protocols and data analysis in such situations. The approach is illustrated with an example involving the noninvasive measurement of glucose using near-infrared reflectance spectroscopy. Extensions to calibration maintenance and calibration transfer are discussed.

  1. Spectral filtering for plant production

    NASA Technical Reports Server (NTRS)

    Young, Roy E.; Mcmahon, Margaret J.; Rajapakse, Nihal C.; Decoteau, Dennis R.

    1994-01-01

    Both plants and animals have one general commonality in their perception of light. They both are sensitive primarily to the 400 to 700 nm wavelength portion of the electromagnetic spectrum. This is referred to as the visible spectrum for animals and as the photosynthetically active radiation (PAR) spectrum for plants. Within this portion of the spectrum, animals perceive colors. Relatively recently it has been learned that within this same spectral range plants also demonstrate varying responses at different wavelengths, somewhat analogous to the definition of various colors at specific wavelengths. Although invisible to the human eye, portions of the electromagnetic spectrum on either side of the visible range are relatively inactive photosynthetically but have been found to influence important biological functions. These portions include the ultraviolet (UV approximately equal to 280-400 nm) and the far-red (FR approximately equal to 700-800 nm). The basic photoreceptor of plants for photosynthesis is chlorophyll. It serves to capture radiant energy which combined with carbon dioxide and water produces oxygen and assimulated carbon, used for the synthesis of cell wall polysaccarides, proteins, membrane lipids and other cellular constituents. The energy and carbon building blocks of photosynthesis sustain growth of plants. On the other hand, however, there are other photoreceptors, or pigments, that function as signal transducers to provide information that controls many physiological and morphological responses of how a plant grows. Known photomorphogenic receptors include phytochrome (the red/far-red sensor in the narrow bands of 655-665 nm and 725-735 nm ranges, respectively) and 'cryptochrome' (the hypothetical UV-B sensor in the 280-320 nm range). Since the USDA team of W. L. Butler, S. B. Hendricks, H. A. Borthwick, H. A. Siegleman and K. Norris in Beltsville, MD detected by spectroscopy, extracted and identified phytochrome as a protein in the 1950's, many

  2. Spectral type, temperature, and evolutionary stage in cool supergiants

    NASA Astrophysics Data System (ADS)

    Dorda, Ricardo; Negueruela, Ignacio; González-Fernández, Carlos; Tabernero, Hugo M.

    2016-07-01

    Context. In recent years, our understanding of red supergiants has been questioned by strong disagreements between stellar atmospheric parameters derived with different techniques. Temperature scales have been disputed, and the possibility that spectral types do not depend primarily on temperature has been raised. Aims: We explore the relations between different observed parameters, and we explore the ability to derive accurate intrinsic stellar parameters from these relations through the analysis of the largest spectroscopic sample of red supergiants to date. Methods: We obtained intermediate-resolution spectra of a sample of about 500 red supergiants in the Large and the Small Magellanic Cloud. From these spectra, we derive spectral types and measure a large set of photospheric atomic lines. We explore possible correlations between different observational parameters, also making use of near- and mid-infrared colours and literature on photometric variability. Results: Direct comparison between the behaviour of atomic lines (Fe i, Ti i, and Ca ii) in the observed spectra and a comprehensive set of synthetic atmospheric models provides compelling evidence that effective temperature is the prime underlying variable driving the spectral-type sequence between early G and M2 for supergiants. In spite of this, there is a clear correlation between spectral type and luminosity, with later spectral types tending to correspond to more luminous stars with heavier mass loss. This trend is much more marked in the LMC than in the SMC. The population of red supergiants in the SMC is characterised by a higher degree of spectral variability, early spectral types (centred on type K1) and low mass-loss rates (as measured by dust-sensitive mid-infrared colours). The population in the LMC displays less spectroscopic variability and later spectral types. The distribution of spectral types is not single-peaked. Instead, the brightest supergiants have a significantly different

  3. Maximum spectral demands in the near-fault region

    USGS Publications Warehouse

    Huang, Yin-Nan; Whittaker, Andrew S.; Luco, Nicolas

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed.

  4. Maximum spectral demands in the near-fault region

    USGS Publications Warehouse

    Huang, Y.-N.; Whittaker, A.S.; Luco, N.

    2008-01-01

    The Next Generation Attenuation (NGA) relationships for shallow crustal earthquakes in the western United States predict a rotated geometric mean of horizontal spectral demand, termed GMRotI50, and not maximum spectral demand. Differences between strike-normal, strike-parallel, geometric-mean, and maximum spectral demands in the near-fault region are investigated using 147 pairs of records selected from the NGA strong motion database. The selected records are for earthquakes with moment magnitude greater than 6.5 and for closest site-to-fault distance less than 15 km. Ratios of maximum spectral demand to NGA-predicted GMRotI50 for each pair of ground motions are presented. The ratio shows a clear dependence on period and the Somerville directivity parameters. Maximum demands can substantially exceed NGA-predicted GMRotI50 demands in the near-fault region, which has significant implications for seismic design, seismic performance assessment, and the next-generation seismic design maps. Strike-normal spectral demands are a significantly unconservative surrogate for maximum spectral demands for closest distance greater than 3 to 5 km. Scale factors that transform NGA-predicted GMRotI50 to a maximum spectral demand in the near-fault region are proposed. ?? 2008, Earthquake Engineering Research Institute.

  5. Dual-channel spectrally encoded endoscopic probe

    PubMed Central

    Engel, Guy; Genish, Hadar; Rosenbluh, Michael; Yelin, Dvir

    2012-01-01

    High quality imaging through sub-millimeter endoscopic probes provides clinicians with valuable diagnostics capabilities in hard to reach locations within the body. Spectrally encoded endoscopy (SEE) has been shown promising for such task; however, challenging probe fabrication and high speckle noise had prevented its testing in in vivo studies. Here we demonstrate a novel miniature SEE probe which incorporates some of the recent progress in spectrally encoded technology into a compact and robust endoscopic system. A high-quality miniature diffraction grating was fabricated using automated femtosecond laser cutting from a large bulk grating. Using one spectrally encoded channel for imaging and a separate channel for incoherent illumination, the new system has large depth of field, negligible back reflections and well controlled speckle noise which depends on the core diameter of the illumination fiber. Moreover, by using a larger imaging channel, higher groove density grating, shorter wavelength and broader spectrum, the new endoscopic system now allow significant improvements in almost all imaging parameter compared to previous systems, through an ultra-miniature endoscopic probe. PMID:22876349

  6. The development of a robust, efficient solver for spectral and spectral-element time discretizations

    NASA Astrophysics Data System (ADS)

    Mundis, Nathan L.

    This work examines alternative time discretizations for the Euler equations and methods for the robust and efficient solution of these discretizations. Specifically, the time-spectral method (TS), quasi-periodic time-spectral method (BDFTS), and spectral-element method in time (SEMT) are derived and examined in detail. For the two time-spectral based methods, focus is given to expanding these methods for more complicated problems than have been typically solved by other authors, including problems with spectral content in a large number of harmonics, gust response problems, and aeroelastic problems. To solve these more complicated problems, it was necessary to implement the flexible variant of the Generalized Minimal Residual method (FGMRES), utilizing the full second-order accurate spatial Jacobian, complete temporal coupling of the chosen time discretization, and fully-implicit coupling of the aeroelastic equations in the cases where they are needed. The FGMRES solver developed utilizes a block-colored Gauss-Seidel (BCGS) preconditioner augmented by a defect-correction process to increase its effectiveness. Exploration of more efficient preconditioners for the FGMRES solver is an anticipated topic for future work in this field. It was a logical extension to apply this already developed FGMRES solver to the spectral-element method in time, which has some advantages over the spectral methods already discussed. Unlike purely-spectral methods, SEMT allows for bothh- and p-refinement. This property could allow for element clustering around areas of sharp gradients and discontinuities, which in turn could make SEMT more efficient than TS for periodic problems that contain these sharp gradients and would require many time instances to produce a precise solution using the TS method. As such, a preliminary investigation of the SEMT method applied to the Euler equations is conducted and some areas for needed improvement in future work are identified. In this work, it is

  7. Bibliography for aircraft parameter estimation

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Maine, Richard E.

    1986-01-01

    An extensive bibliography in the field of aircraft parameter estimation has been compiled. This list contains definitive works related to most aircraft parameter estimation approaches. Theoretical studies as well as practical applications are included. Many of these publications are pertinent to subjects peripherally related to parameter estimation, such as aircraft maneuver design or instrumentation considerations.

  8. SPECTRAL PROPERTIES OF QUARKS IN THE QUARK-GLUON PLASMA.

    SciTech Connect

    KARSCH,F.; KITAZAWA, M.

    2007-07-30

    We analyze the spectral properties of the quark propagator above the critical temperature for the deconfinement phase transition in quenched lattice QCD using clover improved Wilson fermions. The bare quark mass dependence of the quark spectral function is analyzed by varying the hopping parameter {kappa} in Landau gauge. We assume a two-pole structure for the quark spectral function, which is numerically found to work quite well for any value of {kappa}. It is shown that in the chiral limit the quark spectral function has two collective modes that correspond to the normal and plasmino excitations, while it is dominated by a single-pole structure when the bare quark mass becomes large.

  9. An online emission spectral tomography system with digital signal processor.

    PubMed

    Wan, Xiong; Xiong, Wenlin; Zhang, Zhimin; Chang, Fangfei

    2009-03-30

    Emission spectral tomography (EST) has been adopted to test the three-dimensional distribution parameters of fluid fields, such as burning gas, flame and plasma etc. In most cases, emission spectral data received by the video cameras are enormous so that the emission spectral tomography calculation is often time-consuming. Hence, accelerating calculation becomes the chief factor that one must consider for the practical application of EST. To solve the problem, a hardware implementation method was proposed in this paper, which adopted a digital signal processor (DSP) DM642 in an emission spectral tomography test system. The EST algorithm was fulfilled in the DSP, then calculation results were transmitted to the main computer via the user datagram protocol. Compared with purely VC++ software implementations, this new approach can decrease the calculation time significantly.

  10. Direct experimental determination of spectral densities of molecular complexes

    NASA Astrophysics Data System (ADS)

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-01

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  11. Preconditioned Mixed Spectral Element Methods for Elasticity and Stokes Problems

    NASA Technical Reports Server (NTRS)

    Pavarino, Luca F.

    1996-01-01

    Preconditioned iterative methods for the indefinite systems obtained by discretizing the linear elasticity and Stokes problems with mixed spectral elements in three dimensions are introduced and analyzed. The resulting stiffness matrices have the structure of saddle point problems with a penalty term, which is associated with the Poisson ratio for elasticity problems or with stabilization techniques for Stokes problems. The main results of this paper show that the convergence rate of the resulting algorithms is independent of the penalty parameter, the number of spectral elements Nu and mildly dependent on the spectral degree eta via the inf-sup constant. The preconditioners proposed for the whole indefinite system are block-diagonal and block-triangular. Numerical experiments presented in the final section show that these algorithms are a practical and efficient strategy for the iterative solution of the indefinite problems arising from mixed spectral element discretizations of elliptic systems.

  12. Direct experimental determination of spectral densities of molecular complexes

    SciTech Connect

    Pachón, Leonardo A.; Brumer, Paul

    2014-11-07

    Determining the spectral density of a molecular system immersed in a proteomic scaffold and in contact to a solvent is a fundamental challenge in the coarse-grained description of, e.g., electron and energy transfer dynamics. Once the spectral density is characterized, all the time scales are captured and no artificial separation between fast and slow processes need to be invoked. Based on the fluorescence Stokes shift function, we utilize a simple and robust strategy to extract the spectral density of a number of molecular complexes from available experimental data. Specifically, we show that experimental data for dye molecules in several solvents, amino acid proteins in water, and some photochemical systems (e.g., rhodopsin and green fluorescence proteins), are well described by a three-parameter family of sub-Ohmic spectral densities that are characterized by a fast initial Gaussian-like decay followed by a slow algebraic-like decay rate at long times.

  13. Spectral Fingerprints of Habitability

    NASA Astrophysics Data System (ADS)

    Kaltenegger, L.; Selsis, F.

    2010-01-01

    The emerging field of extrasolar planet search has shown an extraordinary ability to combine research by astrophysics, chemistry, biology and geophysics into a new and exciting interdisciplinary approach to understand our place in the universe. Are there other worlds like ours? How can we characterize those planets and assess if they are habitable? After a decade rich in giant exoplanet detections, observation techniques have now reached the ability to find planets of less than 10 M_Earth (so called Super-Earths) that may potentially be habitable. The detection and characterization of Earth-like planet is approaching rapidly with dedicated space observatories already in operation (Corot) or in development phase (Kepler, James Webb Space Telescope, Extremely Large Telescope (ELT), Darwin/TPF). Space missions like CoRoT (CNES, Rouan et al. 1998) and Kepler (NASA, Borucki et al. 1997) will give us statistics on the number, size, period and orbital distance of planets, extending to terrestrial planets on the lower mass range end as a first step, while missions like Darwin/TPF are designed to characterize their atmospheres. In this chapter we discuss how we can read a planet's spectral fingerprint and characterize if it is potentially habitable. We discuss the first steps to detect a habitable planet and set biomarker detection in context in Section 1. In Section 2 we focus on biomarkers, their signatures at different wavelengths, abiotic sources and cryptic photosynthesis - using Earth as our primary example - the only habitable planet we know of so far. Section 3 concentrates on planets around different stars, and Section 4 summarizes the chapter.

  14. Shape, Pose, and Material Recovery of Solar-Illuminated Surfaces from Compressive Spectral-Polarimetric Image Data

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Zhang, Q.; Plemmons, R.

    2013-09-01

    of a curved surface that is metallic but whose roughness can be described via a well-studied model based on a statistical distribution of microfacets [2]. We propose a sequential reconstruction strategy in which we first exploit the diffuse scattering part of the spectral-polarimetric BRDF data to recover the spectral material signature, followed by an analysis of the specular glint data, easily separated spatially from the more generalized diffuse data via a difference-polarization map, in order to recover the shape parameters, Euler angles for pose, and the roughness parameter of the surface. We consider the surface shape as belonging to a superquadric family [3,4] of shapes, which can efficiently model a large variety of 3D shapes while only employing a few parameters. The data are generated by simulating the CASSPI compressive measurements in the presence of finite sensor read-out noise. We neglect any image blurs here by assuming, in effect, the availability of an adaptive-optics system that corrects atmospheric perturbations perfectly. The effect of any uncompensated perturbations and a finite aperture size is mitigated by the fact that over regions of uniform brightness, as for the diffusely scattering regions of a pure material, an image blur has little effect on the brightness distribution and on the spectral signature. Future studies will include image blurs as well. 1. T.-H. Tsai and D. Brady, "Coded-Aperture Snapshot Spectral Polarimetric Imager," Appl. Opt., vol. 52, pp. 2153-2161 (2013). 2. Hyde, et al., "Geometrical optics polarimetric BRDF for dielectric and metallic surfaces," Opt. Exp., vol. 17, pp. 22138-22153 (2009). 3. A.H. Barr, "Rigid Physically Based Superquadrics," in Graphic Gems III, pp. 137-159, Academic Press (1992). 4. A. Jakli?, A. Leonardis, F. Solina, "Segmentation and Recovery of Superquadrics," Kluwer Academic Publishers, (2000).

  15. Artifacts Of Spectral Analysis Of Instrument Readings

    NASA Technical Reports Server (NTRS)

    Wise, James H.

    1995-01-01

    Report presents experimental and theoretical study of some of artifacts introduced by processing outputs of two nominally identical low-frequency-reading instruments; high-sensitivity servo-accelerometers mounted together and operating, in conjunction with signal-conditioning circuits, as seismometers. Processing involved analog-to-digital conversion with anti-aliasing filtering, followed by digital processing including frequency weighting and computation of different measures of power spectral density (PSD).

  16. Advanced Spectral Library (ASTRAL): Cool stars edition

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    2013-02-01

    ASTRAL is a project to create high-resolution, high-S/N UV (1150-3200 Å) atlases of bright stars utilizing {HST}/STIS. During Cycle 18 (2010-2011), eight cool star targets were observed, including key objects like Procyon and Betelgeuse, churning through 146 orbits in the process. The new spectral atlases are publically available through the project website. Data were obtained with the Hubble Space Telescope.

  17. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, S.; Young, J.P.

    1998-10-13

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0{degree}, an inverted cone-shaped probe tip, and a lens head. 12 figs.

  18. Fiberoptic probe and system for spectral measurements

    DOEpatents

    Dai, Sheng; Young, Jack P.

    1998-01-01

    A fused fiberoptic probe, a system, method and embodiments thereof for conducting spectral measurements are disclosed. The fused fiberoptic probe comprises a probe tip having a specific geometrical configuration, an exciting optical fiber and at least one collection optical fiber fused within a housing, preferrably silica. The specific geometrical configurations in which the probe tip can be shaped include a slanted probe tip with an angle greater than 0.degree., an inverted cone-shaped probe tip, and a lens head.

  19. Unavoidable CMB Spectral Features and Blackbody Photosphere of Our Universe

    NASA Astrophysics Data System (ADS)

    Sunyaev, Rashid A.; Khatri, Rishi

    2015-01-01

    Spectral features in the CMB energy spectrum contain a wealth of information about the physical processes in the early Universe, z ≲ 2 × 106. The CMB spectral distortions are complementary to all other probes of cosmology. In fact, most of the information contained in the CMB spectrum is inaccessible by any other means. This review outlines the main physics behind the spectral features in the CMB throughout the history of the Universe, concentrating on the distortions which are inevitable and must be present at a level observable by the next generation of proposed CMB experiments. The spectral distortions considered here include spectral features from cosmological recombination, resonant scattering of CMB by metals during reionization which allows us to measure their abundances, y-type distortions during and after reionization and μ-type and i-type (intermediate between μ and y) distortions created at redshifts z ≳ 1.5 × 104.

  20. Quantitative Analysis of Spectral Impacts on Silicon Photodiode Radiometers: Preprint

    SciTech Connect

    Myers, D. R.

    2011-04-01

    Inexpensive broadband pyranometers with silicon photodiode detectors have a non-uniform spectral response over the spectral range of 300-1100 nm. The response region includes only about 70% to 75% of the total energy in the terrestrial solar spectral distribution from 300 nm to 4000 nm. The solar spectrum constantly changes with solar position and atmospheric conditions. Relative spectral distributions of diffuse hemispherical irradiance sky radiation and total global hemispherical irradiance are drastically different. This analysis convolves a typical photodiode response with SMARTS 2.9.5 spectral model spectra for different sites and atmospheric conditions. Differences in solar component spectra lead to differences on the order of 2% in global hemispherical and 5% or more in diffuse hemispherical irradiances from silicon radiometers. The result is that errors of more than 7% can occur in the computation of direct normal irradiance from global hemispherical irradiance and diffuse hemispherical irradiance using these radiometers.

  1. Spectral Measurements of Meteorite Powders: Implications for 433 Eros

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; McCoy, T. J.; Jarosewich, E.; Sunshine, J. M.

    2001-01-01

    One of the goals of the NEAR-Shoemaker mission to 433 Eros was to determine if it has a meteoritic analog. The primary means of making such a link are the X-ray/gamma-ray spectrometers, which measure elemental compositions of the surface, and the multi-spectral imager (MSI) and near-infrared spectrometer (NIS), which measure spectral reflectance. For determining meteoritic analogs using the X-ray/gamma-ray spectrometer data, the primary data used for comparison is the set of bulk chemical analyses of meteorites done by Jarosewich. These bulk chemical analyses were done on samples now found in the Smithsonian's Analyzed Meteorite Powder collection (USNM 7073). For determining meteoritic analogs using MSI/NIS spectral data, the primary data used for comparison is the set of meteoritic spectra compiled by Gaffey. To expand the set of meteoritic spectra available to the scientific community, we have initiated a spectral study of over 70 samples (primarily ordinary chondrites) found in the Smithsonian's Analyzed Meteorite Powder collection and an electron microprobe study of their corresponding thin sections. This set of spectral and compositional data should allow for better constraints on the distribution of meteorites in plots of band area ratios versus Band I centers and the usefulness of equations for deriving mineralogic compositions from band parameters. These spectral data can also be combined with previous spectral studies of other meteorite types such as the primitive achondrites, eucrites, and angrites to determine how useful the derived band parameters are for differentiating between different meteorite classes. These spectral data can also be used for testing the Modified Gaussian Model (MGM) for determining modal abundances and mafic mineral chemistries from reflectance spectra.

  2. Automatic classification of spectral units in the Aristarchus plateau

    NASA Astrophysics Data System (ADS)

    Erard, S.; Le Mouelic, S.; Langevin, Y.

    1999-09-01

    A reduction scheme has been recently proposed for the NIR images of Clementine (Le Mouelic et al, JGR 1999). This reduction has been used to build an integrated UVvis-NIR image cube of the Aristarchus region, from which compositional and maturity variations can be studied (Pinet et al, LPSC 1999). We will present an analysis of this image cube, providing a classification in spectral types and spectral units. The image cube is processed with Gmode analysis using three different data sets: Normalized spectra provide a classification based mainly on spectral slope variations (ie. maturity and volcanic glasses). This analysis discriminates between craters plus ejecta, mare basalts, and DMD. Olivine-rich areas and Aristarchus central peak are also recognized. Continuum-removed spectra provide a classification more related to compositional variations, which correctly identifies olivine and pyroxenes-rich areas (in Aristarchus, Krieger, Schiaparelli\\ldots). A third analysis uses spectral parameters related to maturity and Fe composition (reflectance, 1 mu m band depth, and spectral slope) rather than intensities. It provides the most spatially consistent picture, but fails in detecting Vallis Schroeteri and DMDs. A supplementary unit, younger and rich in pyroxene, is found on Aristarchus south rim. In conclusion, Gmode analysis can discriminate between different spectral types already identified with more classic methods (PCA, linear mixing\\ldots). No previous assumption is made on the data structure, such as endmembers number and nature, or linear relationship between input variables. The variability of the spectral types is intrinsically accounted for, so that the level of analysis is always restricted to meaningful limits. A complete classification should integrate several analyses based on different sets of parameters. Gmode is therefore a powerful light toll to perform first look analysis of spectral imaging data. This research has been partly founded by the French

  3. CMBFIT: Rapid WMAP likelihood calculations with normal parameters

    NASA Astrophysics Data System (ADS)

    Sandvik, Håvard B.; Tegmark, Max; Wang, Xiaomin; Zaldarriaga, Matias

    2004-03-01

    We present a method for ultrafast confrontation of the Wilkinson Microwave Anisotropy Probe (WMAP) cosmic microwave background observations with theoretical models, implemented as a publicly available software package called CMBFIT, useful for anyone wishing to measure cosmological parameters by combining WMAP with other observations. The method takes advantage of the underlying physics by transforming into a set of parameters where the WMAP likelihood surface is accurately fit by the exponential of a quartic or sextic polynomial. Building on previous physics based approximations by Hu et al., Kosowsky et al., and Chu et al., it combines their speed with precision cosmology grade accuracy. A FORTRAN code for computing the WMAP likelihood for a given set of parameters is provided, precalibrated against CMBFAST, accurate to Δ ln L˜0.05 over the entire 2σ region of the parameter space for 6 parameter “vanilla” ΛCDM models. We also provide 7-parameter fits including spatial curvature, gravitational waves and a running spectral index.

  4. Spectral behavior of gravel dunes

    NASA Astrophysics Data System (ADS)

    Qin, Jie; Wu, Teng; Zhong, Deyu

    2015-02-01

    Spectral behavior of gravel dunes formed under different flow discharges is analyzed with an attempt to verify the '- 3' spectral law that has been confirmed extensively for sand dunes. A schematic spectrum of gravel dunes is proposed based on the spectral analysis as well as results from the literature. The results of spectral analysis show a significant deviation from the '- 3' spectral law for gravel dunes, and the magnitude of deviation correlates with flow discharge. Possible explanations for the deviation from the '- 3' spectral law, being associated with kinetic and geometrical characteristics, have been explored. To investigate the kinetic characteristics of gravel dunes, a wavelet-based method that calculates the celerity of dunes based on a pair of elevational time series is quantitatively tested. Our results suggest that (1) the kinetic explanation based on the relationship between dune celerity and dune length cannot fully explain the spectral behavior of gravel dunes; (2) the geometrical explanation based on the self-similarity hypothesis is confirmed by the relationship between dune length and dune height; and (3) the development of gravel sheets accounts for the differences in kinetic and geometrical characteristics between gravel dunes and sand dunes.

  5. Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.

    2016-09-01

    This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.

  6. Spectral shifts and spectral switches of light generated by scattering of arbitrary coherent waves from a quasi-homogeneous media.

    PubMed

    Li, Jia; Chang, Liping

    2015-06-29

    Within the accuracy of the Born approximation, it is shown that the light, which is generated by the scattering of an arbitrary coherent polychromatic wave from a quasi-homogeneous (QH) media can, display both spectral shifts and spectral switches. In our study, a pair of Young's pinholes is utilized to modulate spatial coherence of the incident plane wave before it interacts with the scatterer. The spectral shifts are found to be highly dependent of the scattering angle, the correlation length of scatterer and the Young's configuration parameter. Moreover, the spectral shifts can be converted from the red shift to blue one provided that the correlation length of scatterer is small enough. Derived results are confirmed by numerical simulations where influences of various factors on the spectrum are analyzed in detail.

  7. Communications circuit including a linear quadratic estimator

    DOEpatents

    Ferguson, Dennis D.

    2015-07-07

    A circuit includes a linear quadratic estimator (LQE) configured to receive a plurality of measurements a signal. The LQE is configured to weight the measurements based on their respective uncertainties to produce weighted averages. The circuit further includes a controller coupled to the LQE and configured to selectively adjust at least one data link parameter associated with a communication channel in response to receiving the weighted averages.

  8. Composition, mineralogy, and porosity of multiple asteroid systems from visible and near-infrared spectral data

    NASA Astrophysics Data System (ADS)

    Lindsay, S. S.; Marchis, F.; Emery, J. P.; Enriquez, J. E.; Assafin, M.

    2015-02-01

    We aim to provide a taxonomic and compositional characterization of Multiple Asteroid Systems (MASs) located in the main belt (MB) using visible (0.45-0.85 μm) and near-infrared (0.7-2.5 μm) spectral data of 42 MB MASs. The compositional and mineralogical analysis is applied to determine meteorite analogs for the MASs, which, in turn, are applied to the MAS density measurements of Marchis et al. (Marchis et al. [2012]. Icarus 221, 1130-1161) to estimate the porosity of the systems. The macroporosities are used to evaluate the primary MAS formation hypotheses. Our spectral survey consists of visible and near-infrared spectral data. The visible observing campaign includes 25 MASs obtained using the Southern Astrophysical Research (SOAR) telescope with the Goodman High Throughput Spectrometer. The infrared observing campaign includes 34 MASs obtained using the NASA Infrared Telescope Facility (IRTF) with the SpeX spectragraph. For completeness, both visible and NIR data sets are supplemented with publicly available data, and the data sets are combined where possible. The MASs are classified using the Bus-DeMeo taxonomic system. In order to determine mineralogy and meteorite analog, we perform a NIR spectral band parameter analysis using a new analysis routine, the Spectral Analysis Routine for Asteroids (SARA). The SARA routine determines band centers, areas, and depths by utilizing the diagnostic absorption features near 1- and 2-μm due to Fe2+ crystal field transitions in olivine + pyroxene and pyroxene, respectively. The band parameter analysis provides the Gaffey subtype for the S-complex MASs; the relative abundance olivine-to-pyroxene ratio; and olivine and pyroxene modal abundances for S-complex and V-type MASs. This mineralogical information is then applied to determine meteorite analogs. Through applying calibration studies, we are able to determine the H, L, and LL meteorite analogs for 15 MASs with ordinary chondrite-like (OC) mineralogies. We observe an

  9. The Next Generation Atlas of Quasar Spectral Energy Distributions from Radio to X-Rays

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Brotherton, Michael S.; Wills, Beverley J.; Wills, D.; Cales, Sabrina L.; Dale, Daniel A.; Green, Richard F.; Runnoe, Jessie C.; Nemmen, Rodrigo S.; Gallagher, Sarah C.; Ganguly, Rajib; Hines, Dean C.; Kelly, Benjamin J.; Kriss, Gerard A.; Li, Jun; Tang, Baitian; Xie, Yanxia

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  10. THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS

    SciTech Connect

    Shang Zhaohui; Li Jun; Xie Yanxia; Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J.; Wills, Beverley J.; Wills, D.; Green, Richard F.; Nemmen, Rodrigo S.; Ganguly, Rajib; Hines, Dean C.; Kriss, Gerard A.; Tang, Baitian

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  11. [Development of multi-target multi-spectral high-speed pyrometer].

    PubMed

    Xiao, Peng; Dai, Jing-Min; Wang, Qing-Wei

    2008-11-01

    The plume temperature of a solid propellant rocket engine (SPRE) is a fundamental parameter in denoting combustion status. It is necessary to measure the temperature along both the axis and the radius of the engine. In order to measure the plume temperature distribution of a solid propellant rocket engine, the multi-spectral thermometry has been approved. Previously the pyrometer was developed in the Harbin Institute of Technology of China in 1999, which completed the measurement of SPRE plume temperature and its distribution with multi-spectral technique in aerospace model development for the first time. Following this experience, a new type of multi-target multi-spectral high-speed pyrometer used in the ground experiments of SPRE plume temperature measurement was developed. The main features of the instrument include the use of a dispersing prism and a photo-diode array to cover the entire spectral band of 0.4 to 1.1 microm. The optic fibers are used in order to collect and transmit the thermal radiation fluxes. The instrument can measure simultaneously the temperature and emissivity of eight spectra for six uniformly distributed points on the target surface, which are well defined by the hole on the field stop lens. A specially designed S/H (Sample/Hold) circuit, with 48 sample and hold units that were triggered with a signal, measures the multi-spectral and multi-target outputs. It can sample 48 signals with a less than 10ns time difference which is most important for the temperature calculation. PMID:19271529

  12. Discerning Spectral Features in L Dwarfs

    NASA Astrophysics Data System (ADS)

    Nunez, Alejandro; Cruz, K.; Burgasser, A. J.; Kirkpatrick, J. D.; Reid, I. N.

    2011-01-01

    Brown dwarfs are star-like objects that, due to their very low masses (less than 75 Jupiter masses,) never reach the main sequence, and instead cool with time. This cooling leads to a breakdown of the relationship between temperature and mass that exists for stars. Therefore, brown dwarfs with similar temperatures (as indicated by spectral type) could have very different masses and ages. We are investigating the near-infrared spectra of L dwarfs with the same optically derived spectral types (implying similar effective temperatures) with the goal of distinguishing subtle differences, patterns, and/or correlations among absorption features that could reveal information about their ages and masses. Our sample consists of 43 L0-L8 dwarfs with both optical and near-infrared spectra, thus covering the 0.65 to 2.4-micron range. Our analysis included objects with either "typical” or peculiar spectra. Some of the objects with peculiar spectra are suspected low-gravity/young and blue/low-metallicity dwarfs. For each optical type, we normalized and overplotted the spectra in four bands separately: Optical, J, H, and K band. Each resulting plot was examined by eye to look for subtle differences in spectral absorption features, likely due to age and mass. We present the preliminary results from this detailed spectral analysis. In particular, our analysis reveals the major spectral differences in the near infrared of both "red” and "blue” L dwarfs. This work was funded by the RISE Grant GM R25 6066, and we acknowledge the hospitality of the American Museum of Natural History.

  13. Galileo 243 Ida System Spectral Observations Revisited

    NASA Astrophysics Data System (ADS)

    Granahan, J. C.

    2001-11-01

    On August 28, 1993 the Galileo spacecraft encountered the asteroid 243 Ida and its moon Dactyl. A variety of observations of this asteroid system were collected including visible wavelength (0.4-1.0 microns) imagery with the Solid State Imager (SSI) instrument and infrared wavelength (0.7-5.2 microns) with the Near Infrared Mapping Spectrometer (NIMS). A new analysis of these observations has been conducted using band area analysis, band center measurement, and spectral similarity value measurement using the BAE SYSTEMS Hyperspectral Tool Kit. This abstract reports the initial results of this research effort. These data indicate that 243 Ida has an orthopyroxene/(orthopyroxene + olivine) ratio of about 0.28, a value consistent with that of LL chondrites. The ratio does not vary significantly for the portions of 243 Ida observed by the Galileo NIMS instrument. 243 Ida is a SIV subtype of the S type asteroid population. At least two spectral units were identified in a combined SSI and NIMS spectral data set. The primary difference is the amount of red slope present in the two spectral units. A larger red slope corresponds to regions of 243 Ida where ejecta from the crater Azurra are present. This evidence suggests that impacts enhance the red components of the 243 Ida spectrum, perhaps enhancing the NiFe content. Dactyl has a relatively deep absorption centered approximately at 0.97 microns with no significant two micron absorption features. This is a possible indicator of clinopyroxene and suggests partial melting or fractional crystallization processes occurred on Dactyl. Dactyl appears to be an SII subtype S type asteroid and is spectrally different from 243 Ida. Dactyl may have been produced by partial melting within the Koronis parent body while the 243 Ida region escaped such igneous processing. This study was made possible through support from NASA's Planetary Geology and Geophysics program.

  14. Characterizing Intra-Die Spatial Correlation Using Spectral Density Fitting Method

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Luk, Wai-Shing; Tao, Jun; Yan, Changhao; Zeng, Xuan

    In this paper, a spectral domain method named the SDF (Spectral Density Fitting) method for intra-die spatial correlation function extraction is presented. Based on theoretical analysis of random field, the spectral density, as the spectral domain counterpart of correlation function, is employed to estimate the parameters of the correlation function effectively in the spectral domain. Compared with the existing extraction algorithm in the original spatial domain, the SDF method can obtain the same quality of results in the spectral domain. In actual measurement process, the unavoidable measurement error with arbitrary frequency components would greatly confound the extraction results. A filtering technique is further developed to diminish the high frequency components of the measurement error and recover the data from noise contamination for parameter estimation. Experimental results have shown that the SDF method is practical and stable.

  15. SpecViz: Interactive Spectral Data Analysis

    NASA Astrophysics Data System (ADS)

    Earl, Nicholas Michael; STScI

    2016-06-01

    The astronomical community is about to enter a new generation of scientific enterprise. With next-generation instrumentation and advanced capabilities, the need has arisen to equip astronomers with the necessary tools to deal with large, multi-faceted data. The Space Telescope Science Institute has initiated a data analysis forum for the creation, development, and maintenance of software tools for the interpretation of these new data sets. SpecViz is a spectral 1-D interactive visualization and analysis application built with Python in an open source development environment. A user-friendly GUI allows for a fast, interactive approach to spectral analysis. SpecViz supports handling of unique and instrument-specific data, incorporation of advanced spectral unit handling and conversions in a flexible, high-performance interactive plotting environment. Active spectral feature analysis is possible through interactive measurement and statistical tools. It can be used to build wide-band SEDs, with the capability of combining or overplotting data products from various instruments. SpecViz sports advanced toolsets for filtering and detrending spectral lines; identifying, isolating, and manipulating spectral features; as well as utilizing spectral templates for renormalizing data in an interactive way. SpecViz also includes a flexible model fitting toolset that allows for multi-component models, as well as custom models, to be used with various fitting and decomposition routines. SpecViz also features robust extension via custom data loaders and connection to the central communication system underneath the interface for more advanced control. Incorporation with Jupyter notebooks via connection with the active iPython kernel allows for SpecViz to be used in addition to a user’s normal workflow without demanding the user drastically alter their method of data analysis. In addition, SpecViz allows the interactive analysis of multi-object spectroscopy in the same straight

  16. Spectral Identification of Lighting Type and Character

    PubMed Central

    Elvidge, Christopher D.; Keith, David M.; Tuttle, Benjamin T.; Baugh, Kimberly E.

    2010-01-01

    We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm) for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic”) plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM). The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER), Correlated Color Temperature (CCT) and Color Rendering Index (CRI). Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE) or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or more

  17. A Web Interface for Software of Stochastic Inversion of Spectral Induced Polarization Data

    NASA Astrophysics Data System (ADS)

    Chen, J.; Pullman, S.; Hubbard, S. S.; Peterson, J.

    2009-12-01

    The induced-polarization (IP) method has been used increasingly in environmental investigations because IP measurements are very sensitive to the low frequency capacitive properties of rocks and soils. The Cole-Cole model has been very useful for interpreting spectral IP data in terms of parameters, such as chargeability and time constant, which are used to estimate various subsurface properties. However, conventional methods for estimating Cole-Cole parameters use an iterative Gauss-Newton-based deterministic method, which has been shown that the obtained optimal solution depends on the choice of initial values and the estimated uncertainty information often is inaccurate or insufficient. Chen, Kemna, and Hubbard (2008) developed a Bayesian model for inverting spectral IP data for Cole-Cole parameters based on Markov chain Monte Carlo (MCMC) sampling methods. They have demonstrated that the MCMC-based inversion method provides extensive global information on unknown parameters, such as the marginal probability distribution functions, from which better estimates and tighter uncertainty bounds of the parameters can be obtained. Additionally, the results obtained with the MCMC method are almost independent of the choice of initial values. We have developed a web interface to the stochastic inversion software, which permits easy accessibility to the code. The web interface allows users to upload their own spectral IP data, specify prior ranges of unknown parameters, and remotely run the code in real time. After running the code (a few minutes), the interface provides a data file with all the statistics of each unknown parameter, including the median, mean, standard deviation, and 95% predictive intervals, and provides a data misfit file. The interface also allows users to visualize the histogram and posterior probability density of each unknown parameter as well as data misfits. For advanced users, the interface provides an option of producing time-series plots of all

  18. Infrared spectral normal emittance/emissivity comparison

    NASA Astrophysics Data System (ADS)

    Hanssen, L.; Wilthan, B.; Filtz, J.-R.; Hameury, J.; Girard, F.; Battuello, M.; Ishii, J.; Hollandt, J.; Monte, C.

    2016-01-01

    The National Measurement Institutes (NMIs) of the United States, Germany, France, Italy and Japan, have joined in an inter-laboratory comparison of their infrared spectral emittance scales. This action is part of a series of supplementary inter-laboratory comparisons (including thermal conductivity and thermal diffusivity) sponsored by the Consultative Committee on Thermometry (CCT) Task Group on Thermophysical Quantities (TG-ThQ). The objective of this collaborative work is to strengthen the major operative National Measurement Institutes' infrared spectral emittance scales and consequently the consistency of radiative properties measurements carried out worldwide. The comparison has been performed over a spectral range of 2 μm to 14 μm, and a temperature range from 23 °C to 800 °C. Artefacts included in the comparison are potential standards: oxidized Inconel, boron nitride, and silicon carbide. The measurement instrumentation and techniques used for emittance scales are unique for each NMI, including the temperature ranges covered as well as the artefact sizes required. For example, all three common types of spectral instruments are represented: dispersive grating monochromator, Fourier transform and filter-based spectrometers. More than 2000 data points (combinations of material, wavelength and temperature) were compared. Ninety-eight percent (98%) of the data points were in agreement, with differences to weighted mean values less than the expanded uncertainties calculated from the individual NMI uncertainties and uncertainties related to the comparison process. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCT, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  19. Surface plasmon resonance sensor based on spectral interferometry: numerical analysis.

    PubMed

    Zhang, Yunfang; Li, Hui; Duan, Jingyuan; Shi, Ancun; Liu, Yuliang

    2013-05-10

    In this paper, we introduce a numerical simulation of a phase detecting surface plasmon resonance (SPR) scheme based on spectral interference. Based on the simulation, we propose a method to optimize various aspects of SPR sensors, which enables better performance in both measurement range (MR) and sensitivity. In the simulation, four parameters including the spectrum of the broadband light source, incident angle, Au film thickness, and refractive index of the prism coupler are analyzed. The results show that it is a good solution for better performance to use a warm white broadband (625-800 nm) light source, a divergence angle of the collimated incident light less than 0.02°, and an optimized 48 nm thick Au film when a visible broadband light source is used. If a near-IR light source is used, however, the Au film thickness should be somewhat thinner according the specific spectrum. In addition, a wider MR could be obtained if a prism coupler with higher refractive index is used. With all the parameters appropriately set, the SPR MR could be extended to 0.55 refractive index units while keeping the sensitivity at a level of 10(-8). PMID:23669838

  20. [Full-field and automatic methodology of spectral calibration for PGP imaging spectrometer].

    PubMed

    Sun, Ci; Bayanheshig; Cui, Ji-cheng; Pan, Ming-zhong; Li, Xiao-tian; Tang, Yu-guo

    2014-08-01

    In order to analyze spectral data quantitatively which is obtained by prism-grating-prism imaging spectrometer, spectral calibration is required in order to determine spectral characteristics of PGP imaging spectrometer, such as the center wavelength of every spectral channel, spectral resolution and spectral bending. A spectral calibration system of full field based on collimated monochromatic light method is designed. Spherical mirror is used to provide collimated light, and a freely sliding and rotating folding mirror is adopted to change the angle of incident light in order to realize full field and automatic calibration of imaging spectrometer. Experiments of spectral calibration have been done for PGP imaging spectrometer to obtain parameters of spectral performance, and accuracy analysis combined with the structural features of the entire spectral calibration system have been done. Analysis results indicate that spectral calibration accuracy of the calibration system reaches 0.1 nm, and the bandwidth accuracy reaches 1.3%. The calibration system has merits of small size, better commonality, high precision and so on, and because of adopting the control of automation, the additional errors which are caused by human are avoided. The calibration system can be used for spectral calibration of other imaging spectrometers whose structures are similar to PGP.

  1. Spectral Synthesis via Mean Field approach to Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Hu, Ning; Su, Shan-Shan; Kong, Xu

    2016-03-01

    We apply a new statistical analysis technique, the Mean Field approach to Independent Component Analysis (MF-ICA) in a Bayseian framework, to galaxy spectral analysis. This algorithm can compress a stellar spectral library into a few Independent Components (ICs), and the galaxy spectrum can be reconstructed by these ICs. Compared to other algorithms which decompose a galaxy spectrum into a combination of several simple stellar populations, the MF-ICA approach offers a large improvement in efficiency. To check the reliability of this spectral analysis method, three different methods are used: (1) parameter recovery for simulated galaxies, (2) comparison with parameters estimated by other methods, and (3) consistency test of parameters derived with galaxies from the Sloan Digital Sky Survey. We find that our MF-ICA method can not only fit the observed galaxy spectra efficiently, but can also accurately recover the physical parameters of galaxies. We also apply our spectral analysis method to the DEEP2 spectroscopic data, and find it can provide excellent fitting results for low signal-to-noise spectra.

  2. Spectral variability on primitive asteroids of the Themis and Beagle families: Space weathering effects or parent body heterogeneity?

    NASA Astrophysics Data System (ADS)

    Fornasier, S.; Lantz, C.; Perna, D.; Campins, H.; Barucci, M. A.; Nesvorny, D.

    2016-05-01

    Themis is an old and statistically robust asteroid family populating the outer main belt, and resulting from a catastrophic collision that took place 2.5 ± 1.0 Gyr ago. Within the old Themis family a young sub-family, Beagle, formed less than 10 Myr ago, has been identified. We present the results of a spectroscopic survey in the visible and near infrared range of 22 Themis and 8 Beagle families members. The Themis members investigated exhibit a wide range of spectral behaviors, including asteroids with blue/neutral and moderately red spectra, while the younger Beagle family members look spectrally bluer than the Themis ones and they have a much smaller spectral slope variability. Four Themis members, including (24) Themis, have absorption bands centered at 0.68-0.73 μm indicating the presence of aqueously altered minerals. The best meteorite spectral analogues found for both Themis and Beagle families members are carbonaceous chondrites having experienced different degrees of aqueous alteration, prevalently CM2 but also CV3 and CI, and some of them are chondrite samples being unusual or heated. The presence of aqueous altered materials on the asteroids surfaces and the meteorite matches indicate that the parent body of the Themis family experienced mild thermal metamorphism in the past. We extended the spectral analysis including the data available in the literature on Themis and Beagle families members, and we looked for correlations between spectral behavior and physical parameters using the albedo and size values derived from the WISE data. The analysis of this larger sample confirms the spectral diversity within the Themis family and that Beagle members tend to be bluer and to have an higher albedo. The differences between the two families may be partially explained by space weathering processes, which act on these primitive surfaces in a similar way than on S-type asteroids, i.e. producing reddening and darkening. However we see several Themis members

  3. Spectral Signatures for the Classification of Microbial Species using Raman Spectra

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Bailey, Vanessa L.; Fansler, Sarah J.; Wilkins, Michael J.; Hess, Nancy J.

    2012-06-14

    In general, classification-based methods based on Confocal Raman microscopy are focused on targeted studies under which the spectral libraries are collected under controlled instrument parameters, which facilitate analyses via standard multivariate data analysis methods and cross-validation. We develop and compare approaches to combine spectra collected at different times and varying levels of spectral resolution into a single spectral library. We demonstrate these approaches on a relevant test case; the identification of microbial species from a natural environment.

  4. Spectral bandwidth and ocular accommodation

    NASA Astrophysics Data System (ADS)

    Aggarwala, Karan R.; Kruger, Ekaterina S.; Mathews, Steven; Kruger, Philip B.

    1995-03-01

    Previous studies have suggested that targets illuminated by monochromatic (narrow-band) light are less effective in stimulating the eye to change its focus than are black-white (broadband) targets. The present study investigates the influence of target spectral bandwidth on the dynamic accommodation response in eight subjects. The fixation target was a 3.5-cycle / deg square-wave grating illuminated by midspectral light of various bandwidths [10, 40, and 80 nm and white (CIE Illuminant B)]. The target was moved sinusoidally toward and away from the eye, and accommodation responses were recorded and Fourier analyzed. Accommodative gain increases, and phase lag decreases, with increasing spectral bandwidth. Thus the eye focuses more accurately on targets of wider spectral bandwidth. The visual system appears to have the ability to analyze polychromatic blur to determine the state of focus of the eye for the purpose of guiding the accommodation response. blur, chromatic, focus, retinal image, spectral, wavelength

  5. Bayesian evidence of nonstandard inflation: Isocurvature perturbations and running spectral index

    NASA Astrophysics Data System (ADS)

    Giannantonio, Tommaso; Komatsu, Eiichiro

    2015-01-01

    Bayesian model comparison penalizes models with more free parameters that are allowed to vary over a wide range, and thus offers the most robust method to decide whether some given data require new parameters. In this paper, we ask a simple question: do current cosmological data require extensions of the simplest single-field inflation models? Specifically, we calculate the Bayesian evidence of a totally anticorrelated isocurvature perturbation and a running spectral index of the scalar curvature perturbation. These parameters are motivated by recent claims that the observed temperature anisotropy of the cosmic microwave background on large angular scales is too low to be compatible with the simplest inflation models. Both a subdominant, anticorrelated cold dark matter isocurvature component and a negative running index succeed in lowering the large-scale temperature power spectrum. We show that the introduction of isocurvature perturbations is disfavored, whereas that of the running spectral index is only moderately favored, even when the BICEP2 data are included in the analysis without any foreground subtraction.

  6. Comparison of spectral estimators for characterizing fractionated atrial electrograms

    PubMed Central

    2013-01-01

    Background Complex fractionated atrial electrograms (CFAE) acquired during atrial fibrillation (AF) are commonly assessed using the discrete Fourier transform (DFT), but this can lead to inaccuracy. In this study, spectral estimators derived by averaging the autocorrelation function at lags were compared to the DFT. Method Bipolar CFAE of at least 16 s duration were obtained from pulmonary vein ostia and left atrial free wall sites (9 paroxysmal and 10 persistent AF patients). Power spectra were computed using the DFT and three other methods: 1. a novel spectral estimator based on signal averaging (NSE), 2. the NSE with harmonic removal (NSH), and 3. the autocorrelation function average at lags (AFA). Three spectral parameters were calculated: 1. the largest fundamental spectral peak, known as the dominant frequency (DF), 2. the DF amplitude (DA), and 3. the mean spectral profile (MP), which quantifies noise floor level. For each spectral estimator and parameter, the significance of the difference between paroxysmal and persistent AF was determined. Results For all estimators, mean DA and mean DF values were higher in persistent AF, while the mean MP value was higher in paroxysmal AF. The differences in means between paroxysmals and persistents were highly significant for 3/3 NSE and NSH measurements and for 2/3 DFT and AFA measurements (p<0.001). For all estimators, the standard deviation in DA and MP values were higher in persistent AF, while the standard deviation in DF value was higher in paroxysmal AF. Differences in standard deviations between paroxysmals and persistents were highly significant in 2/3 NSE and NSH measurements, in 1/3 AFA measurements, and in 0/3 DFT measurements. Conclusions Measurements made from all four spectral estimators were in agreement as to whether the means and standard deviations in three spectral parameters were greater in CFAEs acquired from paroxysmal or in persistent AF patients. Since the measurements were consistent, use of

  7. The Advanced Spectral Library (ASTRAL) Project

    NASA Astrophysics Data System (ADS)

    Ayres, Thomas R.; The ASTRAL I & Science Teams, II

    2014-01-01

    The Advanced Spectral Library (ASTRAL) is an HST Treasury Program whose aim is to secure definitive ultraviolet (115-310 nm) spectra of representative bright stars utilizing the venerable -- yet still state-of-the-art -- Space Telescope Imaging Spectrograph (STIS). The initial Cycle 18 installment of the program (146 orbits in 2010-2011) focused on late-type (``cool’’) stars, acquiring high-S/N, high spectral resolution measurements of eight pivotal targets, including iconic objects like Betelgeuse and Procyon. The latest episode, in current Cycle 21 (230 orbits in 2013-2014), is designed to record very high-S/N (>100) STIS echellegrams, at the highest resolution feasible ( 30,000-100,000), of 21 representative bright early-type (``hot’’) stars, including equally iconic objects like Vega, Sirius, Regulus, and Zeta Puppis. The targets span a broad range of spectral types between early-O and early-A, encompassing main sequence and evolved stars, fast and slow rotators, as well as chemically peculiar and magnetic objects. These high-quality STIS UV spectra will be publicly available immediately after observation from the HST archive; and, in post-processed and merged form, at the project website: http://casa.colorado.edu ayres/ASTRAL/. The UV "atlases" produced by the ASTRAL Program will enable investigations of a broad range of astrophysical problems -- stellar, interstellar, and beyond -- for many years to come. Supported by Guest Observer grants from STScI.

  8. Undecidability of the spectral gap

    NASA Astrophysics Data System (ADS)

    Cubitt, Toby S.; Perez-Garcia, David; Wolf, Michael M.

    2015-12-01

    The spectral gap—the energy difference between the ground state and first excited state of a system—is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding ‘halting problem’. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  9. Undecidability of the spectral gap.

    PubMed

    Cubitt, Toby S; Perez-Garcia, David; Wolf, Michael M

    2015-12-10

    The spectral gap--the energy difference between the ground state and first excited state of a system--is central to quantum many-body physics. Many challenging open problems, such as the Haldane conjecture, the question of the existence of gapped topological spin liquid phases, and the Yang-Mills gap conjecture, concern spectral gaps. These and other problems are particular cases of the general spectral gap problem: given the Hamiltonian of a quantum many-body system, is it gapped or gapless? Here we prove that this is an undecidable problem. Specifically, we construct families of quantum spin systems on a two-dimensional lattice with translationally invariant, nearest-neighbour interactions, for which the spectral gap problem is undecidable. This result extends to undecidability of other low-energy properties, such as the existence of algebraically decaying ground-state correlations. The proof combines Hamiltonian complexity techniques with aperiodic tilings, to construct a Hamiltonian whose ground state encodes the evolution of a quantum phase-estimation algorithm followed by a universal Turing machine. The spectral gap depends on the outcome of the corresponding 'halting problem'. Our result implies that there exists no algorithm to determine whether an arbitrary model is gapped or gapless, and that there exist models for which the presence or absence of a spectral gap is independent of the axioms of mathematics.

  10. Methods of Spectral Analysis in C++ (MOSAIC)

    NASA Astrophysics Data System (ADS)

    Engesser, Michael

    2016-06-01

    Stellar spectroscopic classification is most often still done by hand. MOSAIC is a project focused on the collection and classification of astronomical spectra using a computerized algorithm. The code itself attempts to accurately classify stellar spectra according to the broad spectral classes within the Morgan-Keenan system of spectral classification, based on estimated temperature and the relative abundances of certain notable elements (Hydrogen, Helium, etc.) in the stellar atmosphere. The methodology includes calibrating the wavelength for pixels across the image by using the wavelength dispersion of pixels inherent with the spectrograph used. It then calculates the location of the peak in the star's Planck spectrum in order to roughly classify the star. Fitting the graph to a blackbody curve is the final step for a correct classification. Future work will involve taking a closer look at emission lines and luminosity classes.

  11. Laboratory goniometer approach for spectral polarimetric directionality

    NASA Astrophysics Data System (ADS)

    Furey, John; Zahniser, Shellie; Morgan, Cliff

    2016-05-01

    A two meter inner diameter goniometer provides approximately 0.1° angular positioning precision for a series of spectral and polarimetric instruments to enable measurements of the directionality of polarized reflectance from soils in the laboratory, at 10° increments along the azimuth and zenith. Polarimetric imaging instruments to be mounted on the goniometer, with linear polarizers in rotators in front of each instrument, include broadband focal plane array imagers in the Visible band (Vis), Near InfraRed (NIR), Short Wave InfraRed (SWIR), and Long Wave InfraRed (LWIR) spectral bands, as well as a hyperspectral imager in the Vis through NIR. Two additional hyperspectral polarimetric imagers in the Vis through NIR, and SWIR, are to be mounted separately with angles measured by laser on the goniometer frame.

  12. Quality assurance of solar spectral UV-measurements: methods and use of the SHICrivm software tool

    NASA Astrophysics Data System (ADS)

    Williams, J. E.; den Outer, P. N.; Slaper, H.

    2003-04-01

    Ground-based UV-irradiance measurements are crucial for determining the long-term changes and trends in biologically and/or photo-chemically relevant solar UV-radiation reaching the Earth's surface. Such changes in UV-radiation levels have probably occurred and/or are expected due to ozone depletion and climate change. In order to analyse UV-irradiation levels in relation to atmospheric parameters and to facilitate an assessment of the European UV-climate a European database (EUVDatabase) has been set up within the EDUCE-project (EC-contract EVK2-CT-1999-00028). High quality UV-data-sets from across the continent are assessable from the EUVDatabase (http://uv.fmi.fi/uvdb/). An accurate analysis of the UV-climate and long term changes therein requires quality assurance of the spectral data. The SHICrivm software tool (http://www.rivm.nl/shicrivm) is developed to analyse several quality aspects of measured UV-spectra. The SHICrivm tool is applied to over one million spectra from the EUVDatabase and detects for each measured spectrum: the accuracy of the wavelength calibration from 290 up to 500 nm, the lowest detectable irradiance level, the occurrence of non-natural spikes in spectra, deviations in spectral shape, and identifies possible irradiance scale errors in the UV-range. In addition the SHIC-package can be used to correct wavelength scale errors and non-natural spectral spikes. A deconvolution and convolution algorithm is included to improve the comparibility of spectra obtained with different instruments, and to allow a fully comparable analysis of biologically weighted UV-dose for instruments with various spectral characteristics. Within the context of the EDUCE-project data from over 20 UV-monitoring stations are retrieved from the database and a quality assessment is performed using the SHIC-tool. The quality parameters are presented by means of a simple scheme of coloured quality flags. Spectra that meet the WMO-criteria for spectral measurements are

  13. Spectral confocal reflection microscopy using a white light source

    NASA Astrophysics Data System (ADS)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  14. Implementation of optical dynamic RAM using spatially distributed spectral storage

    NASA Astrophysics Data System (ADS)

    Johnson, Alan E.; Maniloff, Eric S.; Mossberg, Thomas W.

    1999-11-01

    Optical Dynamic RAM (ODRAM) is a high capacity, low latency optical memory architecture based on persistent spectral hole burning in frequency selective materials. This paper describes the basic ODRAM architecture and progress towards realization of a high capacity, low latency, tabletop demonstration unit. In particular, a new technique, Spatially Distributed Spectral Storage (SDSS) is introduced and demonstrated to provide over two orders of magnitude improvement in spectral capacity for materials that experience excitation induced frequency shifts. Finally, the relative strengths and weaknesses of ODRAM are emphasized in a competitive analysis that includes currently available memory technologies such as semiconductor DRAM and magnetic disks.

  15. A Wide Spectral Range Reflectance and Luminescence Imaging System

    PubMed Central

    Hirvonen, Tapani; Penttinen, Niko; Hauta–Kasari, Markku; Sorjonen, Mika; Peiponen, Kai–Erik

    2013-01-01

    In this study, we introduce a wide spectral range (200–2500 nm) imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications. PMID:24233075

  16. Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey Michael

    The explosive deaths of stars, known as a supernovae (SNe), have been critical to our understanding of the Universe for centuries. An introduction to SNe, their importance in astronomy, and how we observe them is given in Chapter 1. In the second Chapter, I present the full BSNIP sample which consists of 1298 low-redshift (z ≤ 0.2) optical spectra of 582 SNe Ia observed from 1989 through the end of 2008. I describe our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilizing my newly constructed set of SNID spectral templates. These templates allow me to accurately spectroscopically classify the entire BSNIP dataset, and by doing so I am able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, the BSNIP dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. I also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. I present measurements of spectral features of 432 low-redshift ( z < 0.1) optical spectra within 20 d of maximum brightness of 261 SNe Ia from the BSNIP sample in the third Chapter. I describe in detail my method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, I attempt to measure expansion velocities, (pseudo-)equivalent widths (pEWs), spectral feature depths, and fluxes at the center and endpoints of each of nine major spectral feature complexes. A sanity check of the consistency of the measurements is performed using the BSNIP data (as well as a separate spectral dataset). I investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences among the subclasses are investigated. Several ratios of pEW values are calculated and studied. Furthermore

  17. Biophysical and spectral modeling

    NASA Technical Reports Server (NTRS)

    Goel, N. S. (Principal Investigator)

    1982-01-01

    Activities and results of a project to develop strategies for modeling vegetative canopy reflectance are reported. Specific tasks included the inversion of canopy reflectance models to estimate agronomic variables (particularly leaf area index) from in-situ reflectance measurements, and a study of possible uses of ecological models in analyzing temporal profiles of greenness.

  18. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications.

    PubMed

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-07-01

    Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed with more

  19. Spectral response model for a multibin photon-counting spectral computed tomography detector and its applications

    PubMed Central

    Liu, Xuejin; Persson, Mats; Bornefalk, Hans; Karlsson, Staffan; Xu, Cheng; Danielsson, Mats; Huber, Ben

    2015-01-01

    Abstract. Variations among detector channels in computed tomography can lead to ring artifacts in the reconstructed images and biased estimates in projection-based material decomposition. Typically, the ring artifacts are corrected by compensation methods based on flat fielding, where transmission measurements are required for a number of material-thickness combinations. Phantoms used in these methods can be rather complex and require an extensive number of transmission measurements. Moreover, material decomposition needs knowledge of the individual response of each detector channel to account for the detector inhomogeneities. For this purpose, we have developed a spectral response model that binwise predicts the response of a multibin photon-counting detector individually for each detector channel. The spectral response model is performed in two steps. The first step employs a forward model to predict the expected numbers of photon counts, taking into account parameters such as the incident x-ray spectrum, absorption efficiency, and energy response of the detector. The second step utilizes a limited number of transmission measurements with a set of flat slabs of two absorber materials to fine-tune the model predictions, resulting in a good correspondence with the physical measurements. To verify the response model, we apply the model in two cases. First, the model is used in combination with a compensation method which requires an extensive number of transmission measurements to determine the necessary parameters. Our spectral response model successfully replaces these measurements by simulations, saving a significant amount of measurement time. Second, the spectral response model is used as the basis of the maximum likelihood approach for projection-based material decomposition. The reconstructed basis images show a good separation between the calcium-like material and the contrast agents, iodine and gadolinium. The contrast agent concentrations are reconstructed

  20. Automated eXpert Spectral Image Analysis

    2003-11-25

    AXSIA performs automated factor analysis of hyperspectral images. In such images, a complete spectrum is collected an each point in a 1-, 2- or 3- dimensional spatial array. One of the remaining obstacles to adopting these techniques for routine use is the difficulty of reducing the vast quantities of raw spectral data to meaningful information. Multivariate factor analysis techniques have proven effective for extracting the essential information from high dimensional data sets into a limtedmore » number of factors that describe the spectral characteristics and spatial distributions of the pure components comprising the sample. AXSIA provides tools to estimate different types of factor models including Singular Value Decomposition (SVD), Principal Component Analysis (PCA), PCA with factor rotation, and Alternating Least Squares-based Multivariate Curve Resolution (MCR-ALS). As part of the analysis process, AXSIA can automatically estimate the number of pure components that comprise the data and can scale the data to account for Poisson noise. The data analysis methods are fundamentally based on eigenanalysis of the data crossproduct matrix coupled with orthogonal eigenvector rotation and constrained alternating least squares refinement. A novel method for automatically determining the number of significant components, which is based on the eigenvalues of the crossproduct matrix, has also been devised and implemented. The data can be compressed spectrally via PCA and spatially through wavelet transforms, and algorithms have been developed that perform factor analysis in the transform domain while retaining full spatial and spectral resolution in the final result. These latter innovations enable the analysis of larger-than core-memory spectrum-images. AXSIA was designed to perform automated chemical phase analysis of spectrum-images acquired by a variety of chemical imaging techniques. Successful applications include Energy Dispersive X-ray Spectroscopy, X

  1. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    PubMed

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  2. Dedalus: Flexible framework for spectrally solving differential equations

    NASA Astrophysics Data System (ADS)

    Burns, Keaton; Brown, Ben; Lecoanet, Daniel; Oishi, Jeff; Vasil, Geoff

    2016-03-01

    Dedalus solves differential equations using spectral methods. It is designed to solve initial-value, boundary-value, and eigenvalue problems involving nearly arbitrary equations sets and implements a highly flexible spectral framework that can simulate many domains and custom equations. Its primary features include symbolic equation entry, spectral domain discretization, multidimensional parallelization, implicit-explicit timestepping, and flexible analysis with HDF5. The code is written primarily in Python and features an easy-to-use interface, including text-based equation entry. The numerical algorithm produces highly sparse systems for a wide variety of equations on spectrally-discretized domains; these systems are efficiently solved by Dedalus using compiled libraries and multidimensional parallelization through MPI.

  3. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    SciTech Connect

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  4. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The

  5. [Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method].

    PubMed

    Jiang, Hai-ling; Yang, Hang; Chen, Xiao-ping; Wang, Shu-dong; Li, Xue-ke; Liu, Kai; Cen, Yi

    2015-04-01

    Spectral index method was widely applied to the inversion of crop chlorophyll content. In the present study, PSR3500 spectrometer and SPAD-502 chlorophyll fluorometer were used to acquire the spectrum and relative chlorophyll content (SPAD value) of winter wheat leaves on May 2nd 2013 when it was at the jointing stage of winter wheat. Then the measured spectra were resampled to simulate TM multispectral data and Hyperion hyperspectral data respectively, using the Gaussian spectral response function. We chose four typical spectral indices including normalized difference vegetation index (NDVD, triangle vegetation index (TVI), the ratio of modified transformed chlorophyll absorption ratio index (MCARI) to optimized soil adjusted vegetation index (OSAVI) (MCARI/OSAVI) and vegetation index based on universal pattern decomposition (VIUPD), which were constructed with the feature bands sensitive to the vegetation chlorophyll. After calculating these spectral indices based on the resampling TM and Hyperion data, the regression equation between spectral indices and chlorophyll content was established. For TM, the result indicates that VIUPD has the best correlation with chlorophyll (R2 = 0.819 7) followed by NDVI (R2 = 0.791 8), while MCARI/OSAVI and TVI also show a good correlation with R2 higher than 0.5. For the simulated Hyperion data, VIUPD again ranks first with R2 = 0.817 1, followed by MCARI/OSAVI (R2 = 0.658 6), while NDVI and TVI show very low values with R2 less than 0.2. It was demonstrated that VIUPD has the best accuracy and stability to estimate chlorophyll of winter wheat whether using simulated TM data or Hyperion data, which reaffirms that VIUPD is comparatively sensor independent. The chlorophyll estimation accuracy and stability of MCARI/OSAVI also works well, partly because OSAVI could reduce the influence of backgrounds. Two broadband spectral indices NDVI and TVI are weak for the chlorophyll estimation of simulated Hyperion data mainly because of

  6. SHJAR Jet Noise Data and Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2009-01-01

    High quality jet noise spectral data measured at the Aeroacoustic Propulsion Laboratory at the NASA Glenn Research Center is used to examine a number of jet noise scaling laws. Configurations considered in the present study consist of convergent and convergent-divergent axisymmetric nozzles. The measured spectral data are shown in narrow band and cover 8193 equally spaced points in a typical Strouhal number range of 0.0 to 10.0. The measured data are reported as lossless (i.e., atmospheric attenuation is added to measurements), and at 24 equally spaced angles (50deg to 165deg) on a 100-diameter (200-in.) arc. Following the work of Viswanathan, velocity power factors are evaluated using a least squares fit on spectral power density as a function of jet temperature and observer angle. The goodness of the fit and the confidence margins for the two regression parameters are studied at each angle, and alternative relationships are proposed to improve the spectral collapse when certain conditions are met. As an immediate application of the velocity power laws, spectral density in shockcontaining jets are decomposed into components attributed to jet mixing noise and shock noise. From this analysis, jet noise prediction tools can be developed with different spectral components derived from different physics.

  7. A Parametric Approach to Spectral-Spatial EPR Imaging

    PubMed Central

    Som, Subhojit; Potter, Lee C.; Ahmad, Rizwan; Kuppusamy, Periannan

    2007-01-01

    Continuous wave electron paramagnetic resonance imaging for in vivo mapping of spin distribution and spectral shape requires rapid data acquisition. A spectral-spatial imaging technique is presented that provides an order of magnitude reduction in acquisition time, compared to iterative tomographic reprojection. The proposed approach assumes that spectral shapes in the sample are well-approximated by members from a parametric family of functions. A model is developed for the spectra measured with magnetic field modulation. Parameters defining the spin distribution and spectral shapes are then determined directly from the measurements using maximum a posteriori probability estimation. The approach does not suffer approximation error from limited sweep width of the main magnetic field and explicitly incorporates the variability in signal-to-noise ratio versus strength of magnetic field gradient. The processing technique is experimentally demonstrated on a one- dimensional phantom containing a nitroxide spin label with constant g-factor. Using an L-band EPR spectrometer, spectral shapes and spin distribution are accurately recovered from two projections and a spectral window which is comparable to the maximum linewidth of the sample. PMID:17276111

  8. Infrared atmospheric sounder interferometer radiometric noise assessment from spectral residuals.

    PubMed

    Serio, Carmine; Standfuss, Carsten; Masiello, Guido; Liuzzi, Giuliano; Dufour, Emmanuel; Tournier, Bernard; Stuhlmann, Rolf; Tjemkes, Stephen; Antonelli, Paolo

    2015-07-01

    The problem of characterizing and estimating the radiometric noise of satellite high spectral resolution infrared spectrometers from Earth views is addressed in this paper. A methodology has been devised which is based on the common concept of spectral residuals (Observations-Calculations) obtained after spectral radiance inversion for atmospheric and surface parameters. An in-depth analytical assessment of the statistical covariance matrix of the spectral residuals has been performed which is based on the optimal estimation theory. It has been mathematically demonstrated that the use of spectral residuals to assess instrument noise leads to an effective estimator, which is largely independent of possible departures of the observational covariance matrix from the true covariances. Application to the Infrared Atmospheric Sounder Interferometer has been considered. It is shown that Earth-view-derived observation errors agree with blackbody in-flight calibration. The spectral residuals approach also proved to be effective in characterizing noise features due to mechanical microvibrations of the beam splitter of the IASI instrument.

  9. Characterization of spectral irradiance system based on a filter radiometer

    NASA Astrophysics Data System (ADS)

    Lima, M. S.; Silva, T. F.; Duarte, I.; Correa, J. S.; Viana, D.; Sousa, W. A.; Almeida, G. B.; Couceiro, I. B.

    2016-07-01

    The spectral irradiance scale has been realized recently. It is based on a filter radiometer that was mounted and characterized. The optical system was assembled and the procedures of the methodology were defined, including the mounting of FEL lamp jig, alignment of the optical system, calibration of the instruments and optical devices used on the experimental system. The main uncertainty components were evaluated and the preliminary uncertainty budget of the spectral irradiance system is presented.

  10. Self-phase-modulation induced spectral broadening in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm2 peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  11. Self-phase-modulation induced spectral broadening in silicon waveguides.

    PubMed

    Boyraz, Ozdal; Indukuri, Tejaswi; Jalali, Bahram

    2004-03-01

    The prospect for generating supercontinuum pulses on a silicon chip is studied. Using ~4ps optical pulses with 2.2GW/cm(2) peak power, a 2 fold spectral broadening is obtained. Theoretical calculations, that include the effect of two-photon-absorption, indicate up to 5 times spectral broadening is achievable at 10x higher peak powers. Representing a nonlinear loss mechanism at high intensities, TPA limits the maximum optical bandwidth that can be generated.

  12. Calibration of AIS Data Using Ground-based Spectral Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Present methods of correcting airborne imaging spectrometer (AIS) data for instrumental and atmospheric effects include the flat- or curved-field correction and a deviation-from-the-average adjustment performed on a line-by-line basis throughout the image. Both methods eliminate the atmospheric absorptions, but remove the possibility of studying the atmosphere for its own sake, or of using the atmospheric information present as a possible basis for theoretical modeling. The method discussed here relies on use of ground-based measurements of the surface spectral reflectance in comparison with scanner data to fix in a least-squares sense parameters in a simplified model of the atmosphere on a wavelength-by-wavelength basis. The model parameters (for optically thin conditions) are interpretable in terms of optical depth and scattering phase function, and thus, in principle, provide an approximate description of the atmosphere as a homogeneous body intervening between the sensor and the ground.

  13. Solar Confocal interferometers for Sub-Picometer-Resolution Spectral Filters

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Pietraszewski, Chris; West, Edward A.; Dines. Terence C.

    2007-01-01

    The confocal Fabry-Perot interferometer allows sub-picometer spectral resolution of Fraunhofer line profiles. Such high spectral resolution is needed to keep pace with the higher spatial resolution of the new set of large-aperture solar telescopes. The line-of-sight spatial resolution derived for line profile inversions would then track the improvements of the transverse spatial scale provided by the larger apertures. In particular, profile inversion allows improved velocity and magnetic field gradients to be determined independent of multiple line analysis using different energy levels and ions. The confocal interferometer's unique properties allow a simultaneous increase in both etendue and spectral power. The higher throughput for the interferometer provides significant decrease in the aperture, which is important in spaceflight considerations. We have constructed and tested two confocal interferometers. A slow-response thermal-controlled interferometer provides a stable system for laboratory investigation, while a piezoelectric interferometer provides a rapid response for solar observations. In this paper we provide design parameters, show construction details, and report on the laboratory test for these interferometers. The field of view versus aperture for confocal interferometers is compared with other types of spectral imaging filters. We propose a multiple etalon system for observing with these units using existing planar interferometers as pre-filters. The radiometry for these tests established that high spectral resolution profiles can be obtained with imaging confocal interferometers. These sub-picometer spectral data of the photosphere in both the visible and near-infrared can provide important height variation information. However, at the diffraction-limited spatial resolution of the telescope, the spectral data is photon starved due to the decreased spectral passband.

  14. Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses

    NASA Technical Reports Server (NTRS)

    Boardman, Joseph W.

    1995-01-01

    Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.

  15. Discrimination of weeds in brassica crops using optical spectral reflectance and leaf texture analysis

    NASA Astrophysics Data System (ADS)

    Favier, John F.; Ross, David W.; Tsheko, R.; Kennedy, Duncan D.; Muir, Andrew Y.; Fleming, John

    1999-01-01

    Optical spectral reflectance and image analysis techniques were investigated as possible solutions to discriminate crop and weed plants. The range of pants included two brassica crop species, a cereal crop and eight weed species. Spectral signatures were obtained form optical reflectance measurement taken with a spectrophotometer in reflectance mode in the region between 700 and 1350 nm. Algorithms were developed based on multivariate statistical analysis of the plant reflectance spectra. By minimizing wavebands of interest for certain crop/weed combinations, better than 95 percent discrimination accuracy was obtained for only two or three waveband measures. Using filters at these wavebands it was possible to easily segregate corp from weed plants in images. Discrimination on the basis of leaf texture was investigated using textural signatures for whole leaves derived from a gray level co-occurrence matrix of nearest- neighbor pixel intensity. Textural features of leaves were expressed in the form of feature vectors comprising nine textural parameters extracted from the co-occurrence matrix. A numerical Bayesian classifier was used to classify leaves based on minimum distance between a mean feature vector determined form a training set and the test feature vector. A mean discrimination accuracy of 90 percent was achieved between al plant species and almost 100 percent separation was achieved between the crop and weeds. The results show that a combination of spectral imaging and texture analysis may provide a robust method of discrimination with potential for real time application.

  16. Energetic particle transport in the presence of magnetic turbulence: influence of spectral extension and intermittency

    NASA Astrophysics Data System (ADS)

    Pucci, F.; Malara, F.; Perri, S.; Zimbardo, G.; Sorriso-Valvo, L.; Valentini, F.

    2016-07-01

    The transport of energetic particles in the presence of magnetic turbulence is an important but unsolved problem of space physics and astrophysics. Here, we aim at advancing the understanding of energetic particle transport by means of a new numerical model of synthetic magnetic turbulence. The model builds up a turbulent magnetic field as a superposition of space-localized fluctuations at different spatial scales. The resulting spectrum is isotropic with an adjustable spectral index. The model allows us to reproduce a spectrum broader than four decades, and to regulate the level of intermittency through a technique based on the p-model. Adjusting the simulation parameters close to solar wind conditions at 1 au, we inject ˜1 MeV protons in the turbulence realization and compute the parallel and perpendicular diffusion coefficients as a function of spectral extension, turbulence level, and intermittency. While a number of previous results are recovered in the appropriate limits, including anomalous transport regimes for low turbulence levels, we find that long spectral extensions tend to reduce the diffusion coefficients. Furthermore, we find for the first time that intermittency has an influence on parallel transport but not on perpendicular transport, with the parallel diffusion coefficient increasing with the level of intermittency. We also obtain the distribution of particle inversion times for parallel velocity, a power law for more than one decade, and compare it with the pitch angle scattering times observed in the solar wind. This parametric study can be useful to interpret particle propagation properties in astrophysical systems.

  17. Systematic wavelength selection for improved multivariate spectral analysis

    DOEpatents

    Thomas, Edward V.; Robinson, Mark R.; Haaland, David M.

    1995-01-01

    Methods and apparatus for determining in a biological material one or more unknown values of at least one known characteristic (e.g. the concentration of an analyte such as glucose in blood or the concentration of one or more blood gas parameters) with a model based on a set of samples with known values of the known characteristics and a multivariate algorithm using several wavelength subsets. The method includes selecting multiple wavelength subsets, from the electromagnetic spectral region appropriate for determining the known characteristic, for use by an algorithm wherein the selection of wavelength subsets improves the model's fitness of the determination for the unknown values of the known characteristic. The selection process utilizes multivariate search methods that select both predictive and synergistic wavelengths within the range of wavelengths utilized. The fitness of the wavelength subsets is determined by the fitness function F=.function.(cost, performance). The method includes the steps of: (1) using one or more applications of a genetic algorithm to produce one or more count spectra, with multiple count spectra then combined to produce a combined count spectrum; (2) smoothing the count spectrum; (3) selecting a threshold count from a count spectrum to select these wavelength subsets which optimize the fitness function; and (4) eliminating a portion of the selected wavelength subsets. The determination of the unknown values can be made: (1) noninvasively and in vivo; (2) invasively and in vivo; or (3) in vitro.

  18. Identification of an object by input and output spectral characteristics

    NASA Technical Reports Server (NTRS)

    Redko, S. F.; Ushkalov, V. F.

    1973-01-01

    The problem is discussed of identification of a linear object of known structure, the movement of which is described by a system of differential equations of the type y = Ay + Bu, where y is an n-dimensional output vector, u is an m-dimensional vector of stationary, random disturbances (inputs), A and B are matrices of unknown parameters of the dimension, n x n and n x m, respectively. The spectral and reciprocal spectral densities of the inputs and outputs are used as the initial information on the object.

  19. Quality evaluation of tandem mass spectral libraries.

    PubMed

    Oberacher, Herbert; Weinmann, Wolfgang; Dresen, Sebastian

    2011-06-01

    Tandem mass spectral libraries are gaining more and more importance for the identification of unknowns in different fields of research, including metabolomics, forensics, toxicology, and environmental analysis. Particularly, the recent invention of reliable, robust, and transferable libraries has increased the general acceptance of these tools. Herein, we report on results obtained from thorough evaluation of the match reliabilities of two tandem mass spectral libraries: the MSforID library established by the Oberacher group in Innsbruck and the Weinmann library established by the Weinmann group in Freiburg. Three different experiments were performed: (1) Spectra of the libraries were searched against their corresponding library after excluding either this single compound-specific spectrum or all compound-specific spectra prior to searching; (2) the libraries were searched against each other using either library as reference set or sample set; (3) spectra acquired on different mass spectrometric instruments were matched to both libraries. Almost 13,000 tandem mass spectra were included in this study. The MSforID search algorithm was used for spectral matching. Statistical evaluation of the library search results revealed that principally both libraries enable the sensitive and specific identification of compounds. Due to higher mass accuracy of the QqTOF compared with the QTrap instrument, matches to the MSforID library were more reliable when comparing spectra with both libraries. Furthermore, only the MSforID library was shown to be efficiently transferable to different kinds of tandem mass spectrometers, including "tandem-in-time" instruments; this is due to the coverage of a large range of different collision energy settings-including the very low range-which is an outstanding characteristics of the MSforID library.

  20. Spectral Solar Radiation Data Base at NREL

    DOE Data Explorer

    The Solar Energy Research Institute (SERI)*, Electric Power Research Institute (EPRI), Florida Solar Energy Center (FSEC), and Pacific Gas and Electric Company (PG&E) cooperated to produce a spectral solar radiation data base representing a range of atmospheric conditions (or climates) that is applicable to several different types of solar collectors. Data that are included in the data base were collected at FSEC from October 1986 to April 1988, and at PG&E from April 1987 to April 1988. FSEC operated one EPRI and one SERI spectroradiometer almost daily at Cape Canaveral, which contributed nearly 2800 spectra to the data base. PG&E operated one EPRI spectroradiometer at San Ramon, Calif., as resources permitted, contributing nearly 300 spectra to the data base. SERI collected about 200 spectra in the Denver/Golden, Colo., area form November 1987 to February 1988 as part of a research project to study urban spectral solar radiation, and added these data to the data base. *In September 1991 the Solar Energy Research Institute became the National Renewable Energy Laboratory. [Description taken from http://rredc.nrel.gov/solar/old_data/spectral/