Science.gov

Sample records for including attenuation due

  1. ALPHA ATTENUATION DUE TO DUST LOADING

    SciTech Connect

    Dailey, A; Dennis Hadlock, D

    2007-08-09

    Previous studies had been done in order to show the attenuation of alpha particles in filter media. These studies provided an accurate correction for this attenuation, but there had not yet been a study with sufficient results to properly correct for attenuation due to dust loading on the filters. At the Savannah River Site, filter samples are corrected for attenuation due to dust loading at 20%. Depending on the facility the filter comes from and the duration of the sampling period, the proper correction factor may vary. The objective of this study was to determine self-absorption curves for each of three counting instruments. Prior work indicated significant decreases in alpha count rate (as much as 38%) due to dust loading, especially on filters from facilities where sampling takes place over long intervals. The alpha count rate decreased because of a decrease in the energy of the alpha. The study performed resulted in a set of alpha absorption curves for each of three detectors. This study also took into account the affects of the geometry differences in the different counting equipment used.

  2. GPU-based 3D SAFT reconstruction including attenuation correction

    NASA Astrophysics Data System (ADS)

    Kretzek, E.; Hopp, T.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (3D USCT) promises reproducible high-resolution images for early detection of breast tumors. The KIT prototype provides three different modalities: reflectivity, speed of sound, and attenuation. The reflectivity images are reconstructed using a Synthetic Aperture Focusing Technique (SAFT) algorithm. For high-resolution re ectivity images, with spatially homogeneous reflectivity, attenuation correction is necessary. In this paper we present a GPU accelerated attenuation correction for 3D USCT and evaluate the method by means of image quality metrics; i.e. absolute error, contrast and spatially homogeneous reflectivity. A threshold for attenuation correction was introduced to preserve a high contrast. Simulated and in-vivo data were used for analysis of the image quality. Attenuation correction increases the image quality by improving spatially homogeneous reflectivity by 25 %. This leads to a factor 2.8 higher contrast for in-vivo data.

  3. Seismic attenuation due to wave-induced flow

    SciTech Connect

    Pride, S.R.; Berryman, J.G.; Harris, J.M.

    2003-10-09

    Analytical expressions for three P-wave attenuation mechanisms in sedimentary rocks are given a unified theoretical framework. Two of the models concern wave-induced flow due to heterogeneity in the elastic moduli at mesoscopic scales (scales greater than grain sizes but smaller than wavelengths). In the first model, the heterogeneity is due to lithological variations (e.g., mixtures of sands and clays) with a single fluid saturating all the pores. In the second model, a single uniform lithology is saturated in mesoscopic ''patches'' by two immiscible fluids (e.g., air and water). In the third model, the heterogeneity is at ''microscopic'' grain scales (broken grain contacts and/or micro-cracks in the grains) and the associated fluid response corresponds to ''squirt flow''. The model of squirt flow derived here reduces to proper limits as any of the fluid bulk modulus, crack porosity, and/or frequency is reduced to zero. It is shown that squirt flow is incapable of explaining the measured level of loss (10{sup -2} < Q{sup -1} < 10{sup -1}) within the seismic band of frequencies (1 to 10{sup 4} Hz); however, either of the two mesoscopic scale models easily produce enough attenuation to explain the field data.

  4. Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium?

    USGS Publications Warehouse

    Lee, Myung W.

    2006-01-01

    Sonic waveforms acquired in gas-hydrate-bearing sediments indicate strong amplitude loss associated with an increase in sonic velocity. Because the gas hydrate increases sonic velocities, the amplitude loss has been interpreted as due to intrinsic attenuation caused by the gas hydrate in the pore space, which apparently contradicts conventional wave propagation theory. For a sonic source in a fluid-filled borehole, the signal amplitude transmitted into the formation depends on the physical properties of the formation, including any pore contents, in the immediate vicinity of the source. A signal in acoustically fast material, such as gas-hydrate-bearing sediments, has a smaller amplitude than a signal in acoustically slower material. Therefore, it is reasonable to interpret the amplitude loss in the gas-hydrate-bearing sediments in terms of source coupling to the surrounding medium as well as intrinsic attenuation. An analysis of sonic waveforms measured at the Mallik 5L-38 well, Northwest Territories, Canada, indicates that a significant part of the sonic waveform's amplitude loss is due to a source-coupling effect. All amplitude analyses of sonic waveforms should include the effect of source coupling in order to accurately characterize the formation's intrinsic attenuation.

  5. Attenuation of excitation decay rate due to collective effect.

    PubMed

    Tay, B A

    2014-08-01

    We study a series of N oscillators, each coupled to its nearest neighbors, and linearly to a phonon field through the oscillator's number operator. We show that the Hamiltonian of a pair of adjacent oscillators, or a dimer, within the series of oscillators can be transformed into a form in which they are collectively coupled to the phonon field as a composite unit. In the weak coupling and rotating-wave approximation, the system behaves effectively as the trilinear boson model in the one excitation subspace of the dimer subsystem. The reduced dynamics of the one excitation subspace of the dimer subsystem coupled weakly to a phonon bath is similar to that of a two-level system, with a metastable state against the vacuum. The decay constant of the subsystem is proportional to the dephasing rate of the individual oscillator in a phonon bath, attenuated by a factor that depends on site asymmetry, intersite coupling, and the resonance frequency between the transformed oscillator modes, or excitons. As a result of the collective effect, the excitation relaxation lifetime is prolonged over the dephasing lifetime of an individual oscillator coupled to the same bath. PMID:25215723

  6. Growth Attenuation and Due Process: "A Response to Gunther and Diekema (2006)"

    ERIC Educational Resources Information Center

    Turnbull, Rud; Wehmeyer, Michael; Turnbull, Ann; Stowe, Matt

    2006-01-01

    This article presents the authors' response to Gunther and Diekema's argument about growth attenuation and due process. As a case study, growth attenuation raises complicated issues. The authors address some issues that have not been sufficiently addressed. Those involve family support, assistive technology, constitutional rights to "self," the…

  7. Correlation Attenuation Due to Measurement Error: A New Approach Using the Bootstrap Procedure

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2012-01-01

    Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…

  8. On the sound attenuation in fluid due to the thermal diffusion and viscous dissipation

    NASA Astrophysics Data System (ADS)

    Hu, Hanping; Wang, Yandong; Wang, Dongdong

    2015-09-01

    We review the sound attenuation in fluid due to the thermal diffusion and viscous dissipation and derive the formula of the sound attenuation coefficient in fluid by solving a fully thermally-mechanically coupled equation set. Problem occurring in Stokes-Kirchhoff relation, the well-known and widely used classical formula for sound attenuation coefficient, is therefore found and pointed out. The reason for its generation is analyzed and verified. An improved formula to replace Stokes-Kirchhoff relation is suggested and the typical case for the error in calculating sound pressure level (SPL) of attenuated sound wave in fluid between the two formulas is also given.

  9. Time-domain simulation of constitutive relations for nonlinear acoustics including relaxation for frequency power law attenuation media modeling

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.

    2015-10-01

    We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.

  10. Effects of fracture contact areas on seismic attenuation due to wave-induced fluid flow

    NASA Astrophysics Data System (ADS)

    Germán Rubino, J.; Müller, Tobias M.; Milani, Marco; Holliger, Klaus

    2014-05-01

    Wave-induced fluid flow (WIFF) between fractures and the embedding matrix is considered to be a predominant seismic attenuation mechanism in fractured rocks. That is, due to the strong compressibility contrast between fractures and embedding matrix, seismic waves induce strong fluid pressure gradients, followed by local fluid flow between such regions, which in turn produces significant energy dissipation. Natural fractures can be conceptualized as two surfaces in partial contact, containing very soft and highly permeable material in the inner region. It is known that the characteristics of the fracture contact areas control the mechanical properties of the rock sample, since as the contact area increases, the fracture becomes stiffer. Correspondingly, the detailed characteristics of the contact area of fractures are expected to play a major role in WIFF-related attenuation. To study this topic, we consider a simple model consisting of a horizontal fracture located at the center of a porous rock sample and represented by a number of rectangular cracks of constant height separated by contact areas. The cracks are modelled as highly compliant, porous, and permeable heterogeneities, which are hydraulically connected to the background material. We include a number of rectangular regions of background material separating the cracks, which represent the presence of contact areas of the fracture. In order to estimate the WIFF effects, we apply numerical oscillatory relaxation tests based on the quasi-static poro-elastic equations. The equivalent undrained, complex plane-wave modulus, which allows to estimate seismic attenuation and velocity dispersion for the vertical direction of propagation, is expressed in terms of the imposed displacement and the resulting average vertical stress at the top boundary. In order to explore the effects of the presence of fracture contact areas on WIFF effects, we perform an exhaustive sensitivity analysis considering different

  11. An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media

    NASA Astrophysics Data System (ADS)

    Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus

    2016-11-01

    Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically layered media to rocks containing fractures and highly irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall

  12. An energy-based approach to estimate seismic attenuation due to wave-induced fluid flow in heterogeneous poroelastic media

    NASA Astrophysics Data System (ADS)

    Solazzi, Santiago G.; Rubino, J. Germán; Müller, Tobias M.; Milani, Marco; Guarracino, Luis; Holliger, Klaus

    2016-08-01

    Wave-induced fluid flow (WIFF) due to the presence of mesoscopic heterogeneities is considered as one of the main seismic attenuation mechanisms in the shallower parts of the Earth's crust. For this reason, several models have been developed to quantify seismic attenuation in the presence of heterogeneities of varying complexity, ranging from periodically-layered media to rocks containing fractures and highly-irregular distributions of fluid patches. Most of these models are based on Biot's theory of poroelasticity and make use of the assumption that the upscaled counterpart of a heterogeneous poroelastic medium can be represented by a homogeneous viscoelastic solid. Under this dynamic-equivalent viscoelastic medium (DEVM) assumption, attenuation is quantified in terms of the ratio of the imaginary and real parts of a frequency-dependent, complex-valued viscoelastic modulus. Laboratory measurements on fluid-saturated rock samples also rely on this DEVM assumption when inferring attenuation from the phase shift between the applied stress and the resulting strain. However, whether it is correct to use an effective viscoelastic medium to represent the attenuation arising from WIFF at mesoscopic scales in heterogeneous poroelastic media remains largely unexplored. In this work, we present an alternative approach to estimate seismic attenuation due to WIFF. It is fully rooted in the framework of poroelasticity and is based on the quantification of the dissipated power and stored strain energy resulting from numerical oscillatory relaxation tests. We employ this methodology to compare different definitions of the inverse quality factor for a set of pertinent scenarios, including patchy saturation and fractured rocks. This numerical analysis allows us to verify the correctness of the DEVM assumption in the presence of different kinds of heterogeneities. The proposed methodology has the key advantage of providing the local contributions of energy dissipation to the overall

  13. Experimental and Numerical Investigation of Pressure Wave Attenuation due to Bubbly Layers

    NASA Astrophysics Data System (ADS)

    Jayaprakash, Arvind; Fourmeau, Tiffany; Hsiao, Chao-Tsung; Chahine, Georges; Dynaflow Inc. Team

    2013-03-01

    In this work, the effects of dispersed microbubbles on a steep pressure wave and its attenuation are investigated both numerically and experimentally. Numerical simulations were carried out using a compressible Euler equation solver, where the liquid-gas mixture was modeled using direct numerical simulations involving discrete deforming bubbles. To reduce computational costs a 1D configuration is used and the bubbles are assumed distributed in layers and the initial pressure profile is selected similar to that of a one-dimensional shock tube problem. Experimentally, the pressure pulse was generated using a submerged spark electric discharge, which generates a large vapor bubble, while the microbubbles in the bubbly layer are generated using electrolysis. High speed movies were recorded in tandem with high fidelity pressure measurements. The dependence of pressure wave attenuation on the bubble radii, the void fraction, and the bubbly layer thickness were parametrically studied. It has been found that the pressure wave attenuation can be seen as due to waves reflecting and dispersing in the inter-bubble regions, with the energy absorbed by bubble volume oscillations and re-radiation. Layer thickness and small bubble sizes were also seen as having a strong effect on the attenuation with enhanced attenuation as the bubble size is reduced for the same void fraction. This study was supported by the Department of Energy, under SBIR Phase II Contract DE-FG02-07ER84839.

  14. A simple expression for sound attenuation due to surface duct energy leakage in low-latitude oceans.

    PubMed

    Duan, Rui; Yang, Kunde; Ma, Yuanliang; Chapman, N Ross

    2016-05-01

    This paper presents an expression for the attenuation of sound energy in an ocean surface duct due to energy leakage outside the duct. Dominant parameters determining the attenuation are the sound frequency and the surface duct thickness. The attenuation is found to be exponentially dependent on a scaled frequency that combines the two parameters. Data from experiments in low-latitude oceans with three different surface duct thicknesses are used to verify the exponential expression derived for the attenuation.

  15. Quantifying the Attenuation Due to Geometry Interactions in Waveform Lidar Signals

    NASA Astrophysics Data System (ADS)

    Romanczyk, P.; van Aardt, J. A.; Cawse-Nicholson, K.; Kelbe, D.; Strahler, A. H.; Schaaf, C.; Krause, K.; Ramond, T.

    2013-12-01

    As a lidar pulse propagates through a forest canopy, it interacts with various components of the forest e.g., leaves, branches, ground, etc. At each interaction, the number of photons available for subsequent interactions is reduced due to a combination of reflection, transmission, absorption, and scattering events. In addition, the number of photons per unit area decreases with range due to the divergence of the laser pulse. These factors combine to produce a waveform signal with lower amplitude than would be observed for identical structure without the previous canopy structure interactions. Currently, our limited understanding of attenuation means that the inversion of the waveform to biophysical structure becomes difficult in terms of object representation within the canopy. Knowledge of the mechanics of the attenuation may reduce the uncertainty in inferring the structure from a waveform signal, e.g., leaf area index (LAI), sub-canopy gaps, and understory biomass. We present an experiment to quantify this waveform attenuation at various interactions. For this experiment we used two datasets: (i) The Dual Wavelength Echidna Lidar (DWEL) was used to scan tree branches, spaced at measured distances, to simulate a forest canopy. Branches were selectively removed/reordered from this simulated canopy to record waveform lidar signals with and without preceding canopy interactions. (ii) Additionally, the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model was used to simulate the same forest structure at different locations in the canopy. This allowed precise simulation of our experimental setup, with the ability to control forest structure geometry and evaluate the effects on the observed lidar signal. For both data sets, we evaluated the signal attenuation by performing Gaussian decomposition on the waveform signal and comparing the parameters of the resultant Gaussians. This was done for various levels of canopy structure complexity, in terms of LAI

  16. 20 CFR 410.450 - Death due to pneumoconiosis, including statutory presumption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Death due to pneumoconiosis, including... COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.450 Death due to pneumoconiosis, including statutory...

  17. 20 CFR 410.450 - Death due to pneumoconiosis, including statutory presumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Death due to pneumoconiosis, including... COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.450 Death due to pneumoconiosis, including statutory...

  18. An Expanded UV Irradiance Database from TOMS Including the Effects of Ozone, Clouds, and Aerosol Attenuation

    NASA Technical Reports Server (NTRS)

    Herman, J.; Krotkov, N.

    2003-01-01

    The TOMS UV irradiance database (1978 to 2003) has been expanded to include five new products (noon irradiance at 305,310,324, and 380 nm, and noon erythemal-weighted irradiance), in addition to the existing erythemal daily exposure, that permit direct comparisons with ground-based measurements from spectrometers and broadband instruments. The new data are available on http://toms.gsfc.nasa.gov/>http://toms.gsfc.nasa.gov. Comparisons of the TOMS estimated irradiances with ground-based instruments are given along with a review of the sources of known errors, especially the recent improvements in accounting for aerosol attenuation. Trend estimations from the new TOMS irradiances permit the clear separation of changes caused by ozone and those caused by aerosols and clouds. Systematic differences in cloud cover are shown to be the most important factor in determining regional differences in UV radiation reaching the ground for locations at the same latitude (e.g., the summertime differences between Australia and the US southwest).

  19. Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low-angle subduction

    USGS Publications Warehouse

    Spencer, J.E.

    1996-01-01

    The Colorado Plateau is blanketed by Phanerozoic marine and nonmarine strata as young as Cretaceous that are now exposed at elevations of about 2 km. Crustal thickening due to magmatism and horizontal crustal shortening was far less than necessary to cause this uplift, which is commonly attributed to the consequences of mantle lithosphere thinning and heating. The Colorado Plateau and the midcontinent region around Iowa consist of Precambrian bedrock overlain by a similar amount of Paleozoic platformal strata, and thus both regions once had similar lithospheric buoyancy. Mesozoic sedimentation increased the crustal thickness and lithospheric buoyancy of the Colorado Plateau relative to the midcontinent region. Backstripping calculations yield elevation without these sediments and lead to a calculated elevation difference between the two areas of about 1200 m, which represents unexplained plateau uplift. Review of constraints on uplift timing finds little support for a late Cenozoic uplift age and allows early to middle Cenozoic uplift, which is consistent with uplift mechanisms related to low-angle subduction that ended in the middle Cenozoic. Finite element heat flow calculations of low-angle subduction and lithosphere attenuation, using a range of initial lithosphere thicknesses and degree of attenuation, indicate that required uplift can result from tectonic removal of about 120 km of mantle lithosphere from an initially 200-km-thick lithosphere. This allows for partial preservation of North American mantle lithosphere with its distinctive isotopic signature in some late Cenozoic volcanic rocks and is consistent with normal Pn velocities in the uppermost mantle beneath the plateau.

  20. Attenuation due to hysteretic damage in the free vibration of a beam

    SciTech Connect

    Mendelsohn, Daniel A.; Pecorari, Claudio

    2014-02-18

    We present an asymptotic analysis of nonlinear free vibration of a beam with a damage plane represented by nonlinear hysteretic bending and shear springs. The perturbation parameter is the product of the ratio of the nonlinear to linear parts of the stiffness times the amplitude of the free vibration. The loss of energy and ensuing attenuation due to hysteresis is accounted for by reducing the amplitude of vibration after each cycle by an amount such that the loss in total system energy equals the work done to traverse the hysteresis loop. A new Fourier representation for each cycle of the hysteresis and the deflection solution is used for this purpose and leads to higher harmonics, an evolving complex stiffness and corrected natural frequency that are linked to the attenuation. The frequency increases to its linear value from an initially reduced value. The damage parameter, frequency shift and fundamental amplitudes are presented as functions of the initial damage parameter and time (cycles of vibration). The amplitudes of several of the higher harmonics are also presented as functions of time. Many of the results exhibit sufficient sensitivity with respect to the damage parameter that they should be able to be used to characterize the damage.

  1. Attenuation of sound due to bio-encapsulants in an electronic laryngeal prosthesis.

    PubMed

    Young, K A; Bailey, B J; Devanathan, T

    1980-01-01

    Following total laryngectomy, a person is without voice communication. An electronic laryngeal prosthesis, fully implantable in the neck, would be a desirable means of supplying artificial voice. Such a device must provide a powerful acoustic signal of the correct fundamental frequency for males and females and be rich in harmonic energy. Sound energy must be available to permit a listener to pick up intelligible speech. Such a device places severe demands on any bio-encapsulant: these include provision for an 18 mil displacement of a diaphragm moving at 100 to 200 Hz, excellent fatigue characteristics, hydrolytic and thermal stability, and minimum permeation for water and ionic solutions. This paper describes the application of a polyvinylidene chloride, a segmented copolyether polyurethane, a silicone rubber, and a semi-rigid epoxy--by solvent cast methods--to such a prosthesis. The ability of these materials to pass the sound energy with minimal attenuation was evaluated. Results indicated that the polyurethane coating provided the best compromise between minimum water penetration, maximum flexibility at the implant site, and minimum sound attenuation. PMID:7407286

  2. Simulation of stress waves in attenuating drill strings, including piezoelectric sources and sensors

    PubMed

    Carcione; Poletto

    2000-07-01

    A key element in drill steering and prediction of lithology ahead-of-the-bit is the transmission of while-drilling information from the bottom of the well to the rig operator and the geophysicists. Mud-pulse telemetry, based on pressure pulses along the drilling mud and extensional waves through the drill string, is the most used technique. The last method, properly designed, could transmit data rates up to 100 bits per second, against the 1 or 2 bits per second achieved with pressure pulses. In this work, a time-domain algorithm is developed for the propagation of one-dimensional axial, torsional, and flexural stress waves, including transducer sources and sensors. In addition, the equations include relaxation mechanisms simulating the viscoelastic behavior of the steel, dielectric losses, and any other losses, such as those produced by the presence of the drilling mud, the casing, and the formation. Moreover, the algorithm simulates the passbands and stopbands due to the presence of the coupling joints and pulse distortion and delay due to nonuniform cross-section areas. Acoustic and electric pulses, generated at one location in the string, can be propagated and detected at any other location by piezoelectric and acoustic sensors, such as PCB accelerometers, clamp-on ammeters, force, and strain transducers.

  3. 20 CFR 410.410 - Total disability due to pneumoconiosis, including statutory presumption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.410 Total disability due to pneumoconiosis, including statutory... their death. (For benefits to the eligible survivors of miners whose deaths are determined to have...

  4. 20 CFR 410.410 - Total disability due to pneumoconiosis, including statutory presumption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Total Disability or Death Due to Pneumoconiosis § 410.410 Total disability due to pneumoconiosis, including statutory... their death. (For benefits to the eligible survivors of miners whose deaths are determined to have...

  5. 25 CFR 162.517 - What requirements for due diligence must a WEEL include?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What requirements for due diligence must a WEEL include? 162.517 Section 162.517 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Weels § 162.517 What requirements for due...

  6. Microwave Propagation Attenuation due to Earth's Atmosphere and Weather at SHF Band

    NASA Technical Reports Server (NTRS)

    Ho, Christian; Wang, Charles; Gritton, Kelly; Angkasa, Kris

    2004-01-01

    In this study we have estimated radio wave propagation losses at super high frequency (SHF) band by applying available propagation models into several Air Force benchmark scenarios. The study shows that dominantly additional losses over the free space loss are atmospheric absorption, clouds, fog, and precipitation, as well as scintillation /multipath at low elevation angles. The free space loss equation has been modified to include all atmospheric attenuation and fading effects that cannot be neglected over the range of frequency of interest. Terrain profiles along all directions of interest within the coastal areas and inland areas for four benchmark cases have been analyzed in detail. We find that while the atmospheric gaseous absorption plays a significant role under a clear weather, heavy rainfalls can cause several tens of dB loss for a 100- km path through the rain. At very low elevation angles (< 5 deg), atmospheric scintillation/multipath fading becomes a very important factor. There are significant differences in the feature of anomalous mode (ducting) propagation between the east and the west coastal receiving stations.

  7. 25 CFR 162.546 - What requirements for due diligence must a WSR lease include?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What requirements for due diligence must a WSR lease include? 162.546 Section 162.546 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Leases § 162.546 What requirements for...

  8. SU-E-J-215: Onboard Split PET Including the Effects of Attenuation, Scatter, and Random Events

    SciTech Connect

    Darwish, N; Kao, C; Thomadsen, B; Mackie, T

    2014-06-01

    Purpose: Positron emission tomography (PET) using split PET geometry was investigated as an on-board system for functional imaging and PET marker tracking, specifically with tomotherapy. The open dual ring PET would allow measurement of both inter and intra-fractional variation, improving the delineation of tumor volume at any stage in the radiation treatment delivery process. We present results from data obtained using Monte Carlo simulations including the effects of attenuation, random events, and scatter. Methods: PET design was accomplished via Monte Carlo simulations with GATE, the Geant4 Application for Emission Tomography. Images were reconstructed using Software for Image Reconstruction (STIR) with a fully 3D ordered subset expectation maximization (OSEM) image reconstruction technique. Results: Monte Carlo simulations of the split PET geometry indicate that including physical factors that degrade image quality such as attenuation, random events, and scatter still prove the feasibility of near real-time PET for both inter and intra-fractional radiation delivery. The image quality of scan times under 1 minute reveals that it is possible to utilize PET scanning and reconstruction during the treatment session intrafractionally. GATE also simulates the depth information but does not correct obliqueness of the path of line of response so the data is much more realistic than the data obtained with ray tracing. Conclusion: Onboard split PET with TomoTherapy can generate quality images under 1 minute scan times without the need to correct for attenuation, scatter, random events, or depth information of the interaction.

  9. Accurate and efficient modeling of global seismic wave propagation for an attenuative Earth model including the center

    NASA Astrophysics Data System (ADS)

    Toyokuni, Genti; Takenaka, Hiroshi

    2012-06-01

    We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic

  10. Cerebrolysin attenuates cerebral and hepatic injury due to lipopolysaccharide in rats.

    PubMed

    Abdel-Salam, O M E; Omara, E A; Mohammed, N A; Youness, E R; Khadrawy, Y A; Sleem, A A

    2013-12-01

    This study aimed to investigate the effect of cerebrolysin on oxidative stress in the brain and liver during systemic inflammation. Rats were intraperitoneally challenged with a single subseptic dose of lipopolysaccharide (LPS; 300 μg/kg) without or with cerebrolysin at doses of 21.5, 43 or 86 mg/kg. After 4 h, rats were euthanized and the brain and liver tissues were subjected to biochemical and histopathological analyses. Cerebrolysin revealed inhibitory effects on the elevation of lipid peroxidation and nitric oxide induced by LPS. In contrast, the decrease in reduced glutathione level and paraoxonase activity induced by LPS was attenuated by an injection of cerebrolysin in a dose-dependent manner. Moreover, cerebrolysin reduced LPS-induced activation of brain NF-κB and reversed LPS-induced decline of brain butyrylcholinesterase and acetylcholinesterase activities in a dose-dependent manner. Histopathological analyses revealed that neuronal damage and liver necrosis induced by LPS were ameliorated by cerebrolysin dose-dependently. Cerebrolysin treatment dose-dependently attenuated LPS-induced expressions in cyclooxygenase 2, inducible nitric oxide synthase, and caspase-3 in the cortex or striatum as well as the liver. These results suggest that cerebrolysin treatment might have beneficial therapeutic effects in cerebral inflammation. Cerebrolysin might also prove of value in liver disease and this possibility requires further exploration.

  11. Analysis of a generalized model for influenza including differential susceptibility due to immunosuppression

    NASA Astrophysics Data System (ADS)

    Hincapié, Doracelly; Ospina, Juan

    2014-06-01

    Recently, a mathematical model of pandemic influenza was proposed including typical control strategies such as antivirals, vaccination and school closure; and considering explicitly the effects of immunity acquired from the early outbreaks on the ulterior outbreaks of the disease. In such model the algebraic expression for the basic reproduction number (without control strategies) and the effective reproduction number (with control strategies) were derived and numerically estimated. A drawback of this model of pandemic influenza is that it ignores the effects of the differential susceptibility due to immunosuppression and the effects of the complexity of the actual contact networks between individuals. We have developed a generalized model which includes such effects of heterogeneity. Specifically we consider the influence of the air network connectivity in the spread of pandemic influenza and the influence of the immunosuppresion when the population is divided in two immune classes. We use an algebraic expression, namely the Tutte polynomial, to characterize the complexity of the contact network. Until now, The influence of the air network connectivity in the spread of pandemic influenza has been studied numerically, but not algebraic expressions have been used to summarize the level of network complexity. The generalized model proposed here includes the typical control strategies previously mentioned (antivirals, vaccination and school closure) combined with restrictions on travel. For the generalized model the corresponding reproduction numbers will be algebraically computed and the effect of the contact network will be established in terms of the Tutte polynomial of the network.

  12. 25 CFR 162.517 - What requirements for due diligence must a WEEL include?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... LEASES AND PERMITS Wind and Solar Resource Leases Weels § 162.517 What requirements for due diligence....592; and (2) Application of the requirement that the lessee transfer ownership of energy...

  13. 25 CFR 162.546 - What requirements for due diligence must a WSR lease include?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... WATER LEASES AND PERMITS Wind and Solar Resource Leases Wsr Leases § 162.546 What requirements for due... lessee to: (1) Commence installation of energy facilities within 2 years after the effective date of...

  14. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT.

    PubMed

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-21

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  15. A model for filtered backprojection reconstruction artifacts due to time-varying attenuation values in perfusion C-arm CT

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Dennerlein, Frank; Deuerling-Zheng, Yu; Boese, Jan; Fahrig, Rebecca; Hornegger, Joachim

    2011-06-01

    Filtered backprojection is the basis for many CT reconstruction tasks. It assumes constant attenuation values of the object during the acquisition of the projection data. Reconstruction artifacts can arise if this assumption is violated. For example, contrast flow in perfusion imaging with C-arm CT systems, which have acquisition times of several seconds per C-arm rotation, can cause this violation. In this paper, we derived and validated a novel spatio-temporal model to describe these kinds of artifacts. The model separates the temporal dynamics due to contrast flow from the scan and reconstruction parameters. We introduced derivative-weighted point spread functions to describe the spatial spread of the artifacts. The model allows prediction of reconstruction artifacts for given temporal dynamics of the attenuation values. Furthermore, it can be used to systematically investigate the influence of different reconstruction parameters on the artifacts. We have shown that with optimized redundancy weighting function parameters the spatial spread of the artifacts around a typical arterial vessel can be reduced by about 70%. Finally, an inversion of our model could be used as the basis for novel dynamic reconstruction algorithms that further minimize these artifacts.

  16. Twin-arginine translocation system (tat) mutants of Salmonella are attenuated due to envelope defects, not respiratory defects.

    PubMed

    Craig, Maureen; Sadik, Adam Y; Golubeva, Yekaterina A; Tidhar, Avital; Slauch, James M

    2013-09-01

    The twin-arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat-exported protein and determined the virulence phenotype of mutant strains. Although a tat mutant is highly attenuated, no single Tat-exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N-acetylmuramoyl-l-alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments.

  17. Twin-arginine Translocation System (tat) Mutants of Salmonella are Attenuated Due to Envelope Defects, not Respiratory Defects

    PubMed Central

    Craig, Maureen; Sadik, Adam Y.; Golubeva, Yekaterina A.; Tidhar, Avital; Slauch, James M.

    2013-01-01

    Summary The twin-arginine translocation system (Tat) transports folded proteins across the cytoplasmic membrane and is critical to virulence in Salmonella and other pathogens. Experimental and bioinformatic data indicate that 30 proteins are exported via Tat in Salmonella Typhimurium. However, there are no data linking specific Tat substrates with virulence. We inactivated every Tat-exported protein and determined the virulence phenotype of mutant strains. Though a tat mutant is highly attenuated, no single Tat-exported substrate accounts for this virulence phenotype. Rather, the attenuation is due primarily to envelope defects caused by failure to translocate three Tat substrates, the N-acetylmuramoyl-L-alanine amidases, AmiA and AmiC, and the cell division protein, SufI. Strikingly, neither the amiA amiC nor the sufI mutations alone conferred any virulence defect. Although AmiC and SufI have previously been localized to the divisome, the synthetic phenotypes observed are the first to suggest functional overlap. Many Tat substrates are involved in anaerobic respiration, but we show that a mutant completely deficient in anaerobic respiration retains full virulence in both the oral and systemic phases of infection. Similarly, an obligately aerobic mutant is fully virulent. These results suggest that in the classic mouse model of infection, S. Typhimurium is replicating only in aerobic environments. PMID:23822642

  18. Long-Term Change of Sound Wave Propagation Attenuation Due to the Effects of Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Gotoh, S.; Tsuchiya, T.; Hiyoshi, Y.

    2014-12-01

    In recent years, the concentration of carbon dioxide in the atmosphere is increasing due to global warming. And, the ocean acidification advances because this melts into seawater, pH decrease in seawater are concerned. The sound wave to propagate seawater, pH is known to affect absorption loss (α) by chemical buffer effects of the seawater. However, conventionally, α has not been investigated much in the calculation of pH. Therefore, when calculating the propagation distance in the sonar equation, pH =8~8.1 (Weak alkaline) are used empirically. Therefore we used an actual value of pH of 30 years from 1984 in the sea near the Japan, and investigated change over the years of absorption loss (α) at some frequency. As a result, we found that α value decreases gradually in the past 30 years, as high-latitude decreases. Further, the future, assuming that ocean acidification is more advanced, and to simulate a change of the absorption loss and propagation loss in end of this century using the pH value reported from the "Intergovernmental Panel on Climate Change" (IPCC). As a result, it was just suggested that α decreased more in the end of this century and affected the submarine detection. In addition, in recent years, we examined the effects of noise that offshore wind power construction proceeds in each country emits gives to the underwater sound. As a result, in the end of this century, an underwater noise increases about 17%, and underwater sound environmental degradation of the sea is concerned.

  19. A (p)ppGpp-null mutant of Haemophilus ducreyi is partially attenuated in humans due to multiple conflicting phenotypes.

    PubMed

    Holley, Concerta; Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2014-08-01

    (p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA single mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to the mid-log phase, the double mutant was significantly more resistant than its parent to being taken up by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in the stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.

  20. 25 CFR 162.417 - What requirements for due diligence must a business lease include?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... diligence must a business lease include? (a) If permanent improvements are to be constructed, the business... permanent improvements within the schedule specified in the lease or general schedule of construction, and a process for changing the schedule by mutual consent of the parties. If construction does not occur, or...

  1. [Ciprofloxacin and therapy of urinary tract infections, including those due to Staphylococcus saprophyticus].

    PubMed

    Ivanov, D V; Budanov, S V

    2006-01-01

    Staphylococcus saprophyticus is one of the main pathogens of cystitis in young women. The human biotopes are contaminated by the staphylococcus on direct contacts with domestic animals or after using not properly cooked food of animal origin. Young women are more susceptible to colonization of the urinary tract by S. saprophyticus vs. the other contingents. Sexual intercourse is conducive to the colonization and infection. Shifts in the urinary tract microflora due to the use of spermicide, as well as candidiasis promote colonization of the urinary tract by S. saprophyticus. At present fluoroquinolones are considered as a significant independent group of chemotherapeutics within the class of quinolones, inhibitors of DNA gyrase, characterized by high clinical efficacy in the treatment of urinary tract infections. Especially significant clinical experience with ciprofloxacin in the therapy of urinary tract infections is available.

  2. Attenuation of a Stoneley wave and higher Lamb modes due to the scattering by two-dimensional irregularities of the walls of a fluid-filled borehole

    NASA Astrophysics Data System (ADS)

    Maximov, G. A.; Ortega, E.; Pod”Yachev, E. V.

    2007-02-01

    Attenuation of Stoneley waves and higher Lamb modes propagating along an irregular surface of a fluid-filled borehole is investigated. This problem generalizes the problem on the attenuation of Rayleigh waves by an irregular surface of an empty borehole [10]. The technique used to evaluate the attenuation coefficient is based on the perturbation method (surface irregularity heights are considered to be small in comparison with the wavelength) and the mean field method. As a result, an expression is obtained for the partial coefficients of the eigenmode attenuation due to the scattering of eigenmodes by the irregularities of the borehole walls into the same or other eigenmodes, as well as into the bulk longitudinal and transverse waves. The frequency-dependent behavior of the partial attenuation coefficients of both Stoneley waves and higher modes is analyzed against the ratio between the irregularity correlation length and the borehole radius for different correlation functions of irregularities.

  3. Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees

    NASA Astrophysics Data System (ADS)

    Johnson, Mark S.; Lathuillière, Michael J.; Tooke, Thoreau R.; Coops, Nicholas C.

    2015-06-01

    Urban agriculture requires local water to replace ‘hydrologic externalities’ associated with food produced outside of the local area, with an accompanying shift of the water footprint (WF) for agricultural production from rural to urban areas. Water requirements of urban agriculture have been difficult to estimate due to the heterogeneity of shading from trees and buildings within urban areas. We developed CityCrop, a plant growth and evapotranspiration (ET) model that couples a 3D model of tree canopies and buildings derived from LiDAR with a ray-casting approach to estimate spatially-explicit solar inputs in combination with local climate data. Evaluating CityCrop over a 1 km2 mixed use, residential neighborhood of Vancouver Canada, we estimated median light attenuation to result in 12% reductions in both reference ET (ETo) and crop ET (ETc). However, median crop yields were reduced by only 3.5% relative to potential yield modeled without any light attenuation, while the median crop WF was 9% less than the WF for areas unimpeded by shading. Over the 75 day cropping cycle, median crop water requirements as ETc were 17% less than that required for a well-watered grass (as ETo). If all lawns in our modeled area were replaced with crops, we estimate that about 37% of the resident population could obtain the vegetable portion of their diet from within the local area over a 150 day growing season. However doing so would result in augmented water demand if watering restrictions apply to lawns only. The CityCrop model can therefore be useful to evaluate trade-offs related to urban agriculture and to inform municipal water policy development.

  4. Monte Carlo simulation of peak-acceleration attenuation using a finite-fault uniform-patch model including isochrone and extremal characteristics

    USGS Publications Warehouse

    Rogers, A.M.; Perkins, D.M.

    1996-01-01

    A finite-fault statistical model of the earthquake source is used to confirm observed magnitude and distance saturation scaling in a large peak-acceleration data set. This model allows us to determine the form of peak-acceleration attenuation curves without a priori assumptions about their shape or scaling properties. The source is composed of patches having uniform size and statistical properties. The primary source parameters are the patch peak-acceleration distribution mean, the distribution standard deviation, the patch size, and patch-rupture duration. Although our model assumes no scaling of peak acceleration with magnitude at the patch, the peak-acceleration attenuation curves, nevertheless, strongly scale with magnitude (dap/dM) ??? 0, and the scaling is distance dependent (dap/dM) ??? f(r). The distance-dependent magnitude scaling arises from two principal sources in the model. For a propagating rupture, loci exist on the fault from which radiated energy arrives at a particular station at the same time. These loci are referred to as isochrones. As fault size increases, the length of the isochrones and, hence, the number of additive pulses increase. Thus, peak accelerations increase with magnitude. The second effect, which arises in a completely different manner, is due to extreme-value properties. That is, as the fault size increases, the number of patches on the fault and the number of peak values at the station increase. Because these attenuated pulses are produced by a statistical distribution at the patch, the largest value will depend on the total number of peak values available on the seismogram. We refer to this result as the extremal effect, because it is predicted by the theory of extreme values. Both the extremal and isochrone effects are moderated by attenuation and distance to the fault, leading to magnitude- and distance-dependent peak-acceleration scaling. Remarkably, the scaling produced by both effects is very similar, although the

  5. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    PubMed

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data. PMID:25669286

  6. Seismic wave attenuation and dispersion due to wave-induced fluid flow in rocks with strong permeability fluctuations.

    PubMed

    Germán Rubino, J; Monachesi, Leonardo B; Müller, Tobias M; Guarracino, Luis; Holliger, Klaus

    2013-12-01

    Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissipation of wave field energy. The resulting seismic signature depends not only on the rock compressibility distribution, but also on a statistically averaged permeability. This so-called equivalent seismic permeability does not, however, coincide with the respective equivalent flow permeability. While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimensional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is analyzed for 2D random medium realizations having strong permeability fluctuations. With this objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations are performed. Numerical analysis shows that strong permeability fluctuations diminish the magnitude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these effects are significant gets broader. By comparing the acoustic responses obtained using different permeability averages, it is also shown that at very low frequencies the equivalent seismic permeability is similar to the equivalent flow permeability, while for very high frequencies this parameter approaches the arithmetic average of the permeability field. These seemingly generic findings have potentially important implications with regard to the estimation of equivalent flow permeability from seismic data.

  7. [DEVELOPMENT OF THE QUADRIVALENT LIVE ATTENUATED INFLUENZA VACCINE INCLUDING TWO INFLUENZA B LINEAGES--VICTORIA AND YAMAGATA].

    PubMed

    Desheva, Yu A; Smolonogina, T A; Doroshenko, E M; Rudenko, L G

    2016-01-01

    This work is devoted to the research of the live attenuated influenza vaccine (LAIV) comprising two reassortant B/USSR/60/69-based vaccine influenza viruses Victoria and Yamagata. The intranasal immunization of the CBA mice with both Victoria and Yamagata strains induced 100% lung protection against the subsequent infection with the wild-type influenza B viruses of any antigen lineage. The quadrivalent LAIV (qLAIV) comprising both reassortant influenza B viruses Victoria and Yamagata were safe and areactogenic in adult volunteers. Following qLAIV administration the immune response was achieved to both Victoria and Yamagata lineages. PMID:27145595

  8. [DEVELOPMENT OF THE QUADRIVALENT LIVE ATTENUATED INFLUENZA VACCINE INCLUDING TWO INFLUENZA B LINEAGES--VICTORIA AND YAMAGATA].

    PubMed

    Desheva, Yu A; Smolonogina, T A; Doroshenko, E M; Rudenko, L G

    2016-01-01

    This work is devoted to the research of the live attenuated influenza vaccine (LAIV) comprising two reassortant B/USSR/60/69-based vaccine influenza viruses Victoria and Yamagata. The intranasal immunization of the CBA mice with both Victoria and Yamagata strains induced 100% lung protection against the subsequent infection with the wild-type influenza B viruses of any antigen lineage. The quadrivalent LAIV (qLAIV) comprising both reassortant influenza B viruses Victoria and Yamagata were safe and areactogenic in adult volunteers. Following qLAIV administration the immune response was achieved to both Victoria and Yamagata lineages.

  9. Ocean waves across the Arctic: Attenuation due to dissipation dominates over scattering for periods longer than 19 s

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Sutherland, Peter; Doble, Martin; Wadhams, Peter

    2016-06-01

    The poorly understood attenuation of surface waves in sea ice is generally attributed to the combination of scattering and dissipation. Scattering and dissipation have very different effects on the directional and temporal distribution of wave energy, making it possible to better understand their relative importance by analysis of swell directional spreading and arrival times. Here we compare results of a spectral wave model—using adjustable scattering and dissipation attenuation formulations—with wave measurements far inside the ice pack. In this case, scattering plays a negligible role in the attenuation of long swells. Specifically, scattering-dominated attenuation would produce directional wave spectra much broader than the ones recorded, and swell events arriving later and lasting much longer than observed. Details of the dissipation process remain uncertain. Average dissipation rates are consistent with creep effects but are 12 times those expected for a laminar boundary layer under a smooth solid ice plate.

  10. Both enalapril and losartan attenuate sarcolemmal Na+-K+-ATPase remodeling in failing rat heart due to myocardial infarction.

    PubMed

    Guo, Xiaobing; Wang, Jingwei; Elimban, Vijayan; Dhalla, Naranjan S

    2008-04-01

    To investigate the mechanisms underlying the depressed sarcolemmal (SL) Na(+)-K(+)-ATPase activity in congestive heart failure (CHF), different isoforms and gene expression of Na(+)-K(+)-ATPase were examined in the failing left ventricle (LV) at 8 weeks after myocardial infarction (MI). In view of the increased activity of renin-angiotensin system (RAS) in CHF, these parameters were also studied after 5 weeks of treatment with enalapril (10 mg x kg-1 x day-1), an angiotensin-converting enzyme inhibitor, and losartan (20 mg.kg-1.day-1), an angiotensin II type 1 receptor antagonist, starting at 3 weeks after the coronary ligation in rats. The infarcted animals showed LV dysfunction and depressed SL Na(+)-K(+)-ATPase activity. Protein content and mRNA levels for Na(+)-K(+)-ATPase alpha2 isoform were decreased whereas those for Na(+)-K(+)-ATPase alpha3 isoform were increased in the failing LV. On the other hand, no significant changes were observed in protein content or mRNA levels for Na(+)-K(+)-ATPase alpha1 and beta1 isoforms. The treatment of infarcted animals with enalapril or losartan improved LV function and attenuated the depression in Na(+)-K(+)-ATPase alpha2 isoform as well as the increase in alpha3 isoform, at both the protein and mRNA levels; however, combination therapy with enalapril and losartan did not produce any additive effects. These results provide further evidence that CHF due to MI is associated with remodeling of SL membrane and suggest that the blockade of RAS plays an important role in preventing these alterations in the failing heart.

  11. Calculation of the attenuation and phase displacement per unit of length due to rain composed of ellipsoidal drops

    NASA Technical Reports Server (NTRS)

    Maggiori, D.

    1981-01-01

    All of the phenomena which influence the propagation of radiowaves at frequencies above 10 GHz (attenuation, depolarization, scintillation) can by intensified by parameters directly derived from a solution of individual scatter, naturally in addition to be meteorological elements which characterize the physical medium. The diffusion caused by rainy precipitation was studied using Mie's algorithm for rain composed of spherical drops, and Oguchi's algorithm for rain composed of drops in an ellipsoidal form with axes of rotational symmetry arrange along the vertical line of a generic reference point. Specific phase displacement and attenuation along the principal planes, propagation of radiowaves in generic polarization, and propagation with inclined axes are also considered.

  12. Improvement of Surface Functionalities, Including Allergenicity Attenuation, of Whole Buckwheat Protein Fraction by Maillard-Type Glycation with Dextran

    PubMed Central

    Tazawa, Shigeru; Katayama, Shigeru; Hirabayashi, Masahiro; Yamaguchi, Daiki; Nakamura, Soichiro

    2014-01-01

    The purpose of the current study was to determine the effects of the introduction of polysaccharide chains onto the molecular surface of buckwheat proteins on buckwheat protein surface functionality. The whole buckwheat protein fraction (WBP) was prepared using 50 mM phosphate buffer (pH 7.5) containing 0.5 M NaCl and covalently linked with 6 kDa, 17.5 kDa, 40 kDa, 70 kDa, or 200 kDa dextran by Maillard-type glycation through controlled dry-heating at 60°C and 79% relative humidity for two weeks. Conjugation with 40 kDa dextran improved the water solubility and emulsifying properties of WBP without causing a serious loss of available lysine; 84.9% of the free amino groups were conserved. In addition, we found that the introduction of dextran chains onto the molecular surfaces of WBP attenuated the antigenicity of WBP. PMID:25580398

  13. Microwave attenuation and brightness temperature due to the gaseous atmosphere: A comparison of JPL and CCIR values

    NASA Technical Reports Server (NTRS)

    Smith, E. K.; Waters, J. W.

    1981-01-01

    A sophisticated but flexible radiative transfer program designed to assure internal consistency was used to produce brightness temperature (sky noise temperature in a given direction) and gaseous attenuation curves. The curves, derived from atmospheric models, were compared and a new set was derived for a specified frequency range.

  14. Attenuation of Weather Radar Signals Due to Wetting of the Radome by Rainwater or Incomplete Filling of the Beam Volume

    NASA Technical Reports Server (NTRS)

    Merceret, Francis J.; Ward, Jennifer G.

    2000-01-01

    A search of scientific literature, both printed and electronic, was undertaken to provide quantitative estimates of attenuation effects of rainfall on weather radar radomes. The emphasis was on C-band (5 cm) and S-Band (10 cm) wavelengths. An empirical model was developed to estimate two-way wet radome losses as a function of frequency and rainfall rate for both standard and hydrophobic radomes. The model fits most of the published data within +/- 1 dB at both target wavelengths for rain rates from less than ten to more than 200 mm/hr. Rainfall attenuation effects remain under 1 dB at both frequencies regardless of radome type for rainfall rates up to 10 mm/hr. S-Band losses with a hydrophobic radome such as that on the WSR-88D remain under 1 dB up to 100 mm/hr. C-Band losses on standard radomes such as that on the Patrick AFB (Air Force Base) WSR-74C can reach as much as 5 dB at 50 mm/hr. In addition, calculations were performed to determine the reduction in effective reflectivity, Z, when a radar target is smaller than the sampling volume of the radar. Results are presented for both the Patrick Air Force Base WSR-74C and the WSR-88D as a function of target size and range.

  15. Integrated uncertainty assessment of hydrological responses due to land cover change in a large river basin including feedback effects

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Samaniego-Eguiguren, L. E.; Coskun, M.

    2010-12-01

    The quantification of the uncertainty of changes in hydrological variables such as runoff, soil moisture, amongst others, due to future land cover and climate changes has been one of the topical research areas in hydrology. In this study we are concerned only with the consequences of land cover change and its uncertainty, although the climate change has relatively higher impact on hydrological processes is excluded here to better comprehend the effects of land cover change on hydrological process and vice-versa (i.e. the feedback from the local hydrological conditions on land cover change). The effects of land cover change is cumulative and may cause long lasting consequences. Uncertainties in such modeling exercises may arise from various sources including those from the hydrologic model parameterization and from the possible pathways of future change scenarios. In most studies, the latter part of uncertainty is quantified by running a hydrologic model with a few land cover change scenarios obtained independently or in uncoupled way from the hydrological conditions. As a result this framework neither account for the synergy and the feedback effects among subsystems nor allows to assess the full uncertainty. Here, we present a novel approach for an integrated assessment of the effects of land cover change on hydrological fluxes in a mesoscale river basin. An attempt was made to couple a distributed hydrologic model (mHM) with a stochastic land cover change model, which was able to generate a wide range of plausible future land cover change paths based on likely developments of socioeconomic conditions of a region and the feedbacks from the hydrologic model. These feedbacks were formulated as rules taking into account the local hydrologic conditions (e.g. soil moisture dryness index, inundation hazard index, etc.) that effect the transition probabilities of land cover change. The uncertainty due to hydrologic model parameterizations was accounted by several ``good

  16. Time domain contact model for tyre/road interaction including nonlinear contact stiffness due to small-scale roughness

    NASA Astrophysics Data System (ADS)

    Andersson, P. B. U.; Kropp, W.

    2008-11-01

    Rolling resistance, traction, wear, excitation of vibrations, and noise generation are all attributes to consider in optimisation of the interaction between automotive tyres and wearing courses of roads. The key to understand and describe the interaction is to include a wide range of length scales in the description of the contact geometry. This means including scales on the order of micrometres that have been neglected in previous tyre/road interaction models. A time domain contact model for the tyre/road interaction that includes interfacial details is presented. The contact geometry is discretised into multiple elements forming pairs of matching points. The dynamic response of the tyre is calculated by convolving the contact forces with pre-calculated Green's functions. The smaller-length scales are included by using constitutive interfacial relations, i.e. by using nonlinear contact springs, for each pair of contact elements. The method is presented for normal (out-of-plane) contact and a method for assessing the stiffness of the nonlinear springs based on detailed geometry and elastic data of the tread is suggested. The governing equations of the nonlinear contact problem are solved with the Newton-Raphson iterative scheme. Relations between force, indentation, and contact stiffness are calculated for a single tread block in contact with a road surface. The calculated results have the same character as results from measurements found in literature. Comparison to traditional contact formulations shows that the effect of the small-scale roughness is large; the contact stiffness is only up to half of the stiffness that would result if contact is made over the whole element directly to the bulk of the tread. It is concluded that the suggested contact formulation is a suitable model to include more details of the contact interface. Further, the presented result for the tread block in contact with the road is a suitable input for a global tyre/road interaction model

  17. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone

    PubMed Central

    Paulus, Daniel H.; Quick, Harald H.; Geppert, Christian; Fenchel, Matthias; Zhan, Yiqiang; Hermosillo, Gerardo; Faul, David; Boada, Fernando; Friedman, Kent P.; Koesters, Thomas

    2016-01-01

    In routine whole-body PET/MR hybrid imaging, attenuation correction (AC) is usually performed by segmentation methods based on a Dixon MR sequence providing up to 4 different tissue classes. Because of the lack of bone information with the Dixon-based MR sequence, bone is currently considered as soft tissue. Thus, the aim of this study was to evaluate a novel model-based AC method that considers bone in whole-body PET/MR imaging. Methods The new method (“Model”) is based on a regular 4-compartment segmentation from a Dixon sequence (“Dixon”). Bone information is added using a model-based bone segmentation algorithm, which includes a set of prealigned MR image and bone mask pairs for each major body bone individually. Model was quantitatively evaluated on 20 patients who underwent whole-body PET/MR imaging. As a standard of reference, CT-based μ-maps were generated for each patient individually by nonrigid registration to the MR images based on PET/CT data. This step allowed for a quantitative comparison of all μ-maps based on a single PET emission raw dataset of the PET/MR system. Volumes of interest were drawn on normal tissue, soft-tissue lesions, and bone lesions; standardized uptake values were quantitatively compared. Results In soft-tissue regions with background uptake, the average bias of SUVs in background volumes of interest was 2.4% ± 2.5% and 2.7% ± 2.7% for Dixon and Model, respectively, compared with CT-based AC. For bony tissue, the −25.5% ± 7.9% underestimation observed with Dixon was reduced to −4.9% ± 6.7% with Model. In bone lesions, the average underestimation was −7.4% ± 5.3% and −2.9% ± 5.8% for Dixon and Model, respectively. For soft-tissue lesions, the biases were 5.1% ± 5.1% for Dixon and 5.2% ± 5.2% for Model. Conclusion The novel MR-based AC method for whole-body PET/MR imaging, combining Dixon-based soft-tissue segmentation and model-based bone estimation, improves PET quantification in whole-body hybrid PET

  18. Attenuation by alpha,beta-methylenadenosine-5'-triphosphate of periarterial nerve stimulation-induced renal vasoconstriction is not due to desensitization of purinergic receptors.

    PubMed

    Sehic, E; Ruan, Y; Malik, K U

    1994-11-01

    We investigated in the isolated rat kidney the modulation of vasoconstrictor responses to ATP (0.05-0.5 mumol), renal nerve stimulation (RNS) (0.5-10.0 Hz), norepinephrine (NE) (0.15-0.9 nmol), angiotensin II (2 pmol) and arginine vasopressin (3 pmol) by alpha,beta-methylenadenosine-5'-triphosphate (alpha beta mATP) infused at 6 microM (Procedure I) or for short intervals (5 min) at a low concentration (60 nM) gradually increased to 6 microM to reduce the dramatic initial vasoconstriction (Procedure II). Infusion of alpha beta mATP (Procedure I) produced a marked, transient rise in perfusion pressure of 146 to 198 mm Hg that returned to basal level within 10 min and thereafter inhibited the vasoconstrictor response to ATP, RNS (0.5-6.0 Hz), NE, angiotensin II and arginine vasopressin. Infusion of alpha beta mATP by Procedure II produced a smaller maximal transient increase in perfusion pressure (< 100 mm Hg) and reduced the vasoconstrictor responses to RNS at 0.5 to 2.0 Hz and to the lower dose of NE (0.15 nmol) only. ATP infusion reduced the vasoconstrictor response to both RNS and NE. In animals pretreated with reserpine, the effect of RNS to produce vasoconstriction was inhibited. These data suggest that ATP does not contribute to the renal vasoconstrictor response elicited by RNS, and that attenuation of renal vasoconstrictor responses by alpha beta mATP is not due to desensitization of purinergic receptors. PMID:7965821

  19. Controllable attenuators

    NASA Astrophysics Data System (ADS)

    Krylov, G. M.; Khoniak, E. I.; Tynynyka, A. N.; Iliushenko, V. N.; Sikolenko, S. F.

    Methods for the synthesis of controllable attenuators and their implementations are examined. In particular, attention is given to the general properties of controllable attenuators, control elements, types of controllable attenuators and methods of their analysis, and synthesis of the control characteristic of attenuators. The discussion also covers the efficiency of attenuator control, the use of transmission line segments in wide-band controllable attenuators, and attenuators with a discretely controlled transmission coefficient.

  20. Physical and statistical modeling of attenuation due to atmospheric hydrometeors on free-space optical links at 850 and 1550 nm

    NASA Astrophysics Data System (ADS)

    Grabner, Martin; Kvicera, Vaclav

    2012-10-01

    Atmospheric hydrometeors such as rain and fog may cause attenuation of an optical signal and degrade the performance of free-space optical (FSO) systems. For efficient design of the FSO links, attenuation characteristics must be predicted by sufficiently reliable models that have been tested on experimental data. A long term experiment on the FSO links operating at 850 and 1550 nm wavelengths is conducted in Prague. The path lengths are 100 and 853 m. Received power fluctuations on the FSO links and relevant meteorological quantities such as rain intensity and liquid water content of fog are measured simultaneously. The relationships between the physical parameters of hydrometeors and path attenuation are analyzed and compared with theoretical relations derived using the Mie scattering theory together with some natural assumptions about the physical properties of scattering particles such as droplet size distribution of different types of hydrometeors. Long term statistics of attenuation are obtained and availability performance of the experimental FSO links is assessed. The method for predicting attenuation statistics based on physical and statistical models is introduced and the errors of the proposed models with respect to measured data are analyzed. The models are compared with the existing empirical relationships derived from other FSO experiments and differences are discussed.

  1. Hepatic glutathione contributes to attenuation of thioacetamide-induced hepatic necrosis due to suppression of oxidative stress in diet-induced obese mice.

    PubMed

    Shirai, Makoto; Matsuoka, Miho; Makino, Toshihiko; Kai, Kiyonori; Teranishi, Munehiro; Takasaki, Wataru

    2015-08-01

    We previously reported that hepatic necrosis induced by thioacetamide (TA), a hepatotoxicant, was attenuated in mice fed a high-fat diet (HFD mice) in comparison with mice fed a normal rodent diet (ND mice). In this study, we focused on investigation of the mechanism of the attenuation. Hepatic content of thiobarbituric acid reactive substances (TBARS), an oxidative stress marker, significantly increased in ND mice at 24 and 48 hr after TA administration in comparison to that in vehicle-treated ND mice. At these time points, severe hepatic necrosis was observed in ND mice. Treatment with an established antioxidant, butylated hydroxyanisole, attenuated the TA-induced hepatic necrosis in ND mice. In contrast, in HFD mice, hepatic TBARS content did not increase, and hepatic necrosis was attenuated in comparison with ND mice at 24 and 48 hr after TA dosing. Metabolomics analysis regarding hepatic glutathione, a biological antioxidant, revealed decreased glutathione and changes in the amount of glutathione metabolism-related metabolites, such as increased ophtalmate and decreased cysteine, and this indicated activation of glutathione synthesis and usage in HFD mice. Finally, after treatment with L-buthionine-S,R-sulfoxinine, an inhibitor of glutathione synthesis, TA-induced hepatic necrosis was enhanced and hepatic TBARS contents increased after TA dosing in HFD mice. These results suggested that activated synthesis and usage of hepatic GSH, which suppresses hepatic oxidative stress, is one of the factors that attenuate TA-induced hepatic necrosis in HFD mice. PMID:26165648

  2. ATTENUATION OF STATISTICAL RELATIONSHIPS FROM PM COMMUNITY TIME-SERIES EPIDEMIOLOGY DUE TO USE OF COMBINED, RATHER THAN SEPARATE, INDICATORS OF EXPOSURE AND MORTALITY

    EPA Science Inventory

    Attenuation of the statistical relationships between PM and health outcomes may arise from 1) combining exposure indicators, e.g., PM10 instead of PM2.5 and PM10-2.5 or 2) from combining different types of mortality. The Phoenix, AZ data base on air quality offers an opportunity...

  3. Is the Kramers-Kronig relationship between ultrasonic attenuation and dispersion maintained in the presence of apparent losses due to phase cancellation?

    PubMed

    Bauer, Adam Q; Marutyan, Karen R; Holland, Mark R; Miller, James G

    2007-07-01

    Phase cancellation effects can compromise the integrity of ultrasonic measurements performed with phase sensitive receiving apertures. A lack of spatial coherence of the ultrasonic field incident on a phase sensitive receiving array can produce inaccuracies of the measured attenuation coefficient and phase velocity. The causal (Kramers-Kronig) link between these two quantities in the presence of phase distortion is investigated using two plastic polymer materials, Plexiglas and Lexan, that exhibit attenuation coefficients that increase linearly with frequency, in a fashion analogous to that of soft tissue. Flat and parallel plates were machined to have a step of a thickness corresponding to an integer number of half wavelengths within the bandwidth investigated, 3 to 7 MHz. Insonification of the stepped portion of each plate produces phase cancellation artifacts at the receiving aperture and, therefore, in the measured frequency dependent attenuation coefficient. Dispersion predictions using two different forms of the Kramers-Kronig relations were performed for the flat and the stepped regions of each plastic plate. Despite significant phase distortion and a detection system sensitive to these aberrations, the Kramers-Kronig link between the apparent attenuation coefficient and apparent phase velocity dispersion remains intact.

  4. An rfaH mutant of Salmonella enterica serovar typhimurium is attenuated in swine and reduces intestinal colonization, fecal shedding, and disease severity due to virulent Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Swine are often asymptomatic carriers of Salmonella spp., and interventions are needed to limit colonization of swine to enhance food safety and reduce environmental contamination. We evaluated the attenuation and potential vaccine use in pigs of a Salmonella enterica serovar Typhimurium mutant of r...

  5. Valuation of Green Walls and Green Roofs as Soundscape Measures: Including Monetised Amenity Values Together with Noise-attenuation Values in a Cost-benefit Analysis of a Green Wall Affecting Courtyards

    PubMed Central

    Veisten, Knut; Smyrnova, Yuliya; Klæboe, Ronny; Hornikx, Maarten; Mosslemi, Marjan; Kang, Jian

    2012-01-01

    Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall. PMID:23202816

  6. Valuation of green walls and green roofs as soundscape measures: including monetised amenity values together with noise-attenuation values in a cost-benefit analysis of a green wall affecting courtyards.

    PubMed

    Veisten, Knut; Smyrnova, Yuliya; Klæboe, Ronny; Hornikx, Maarten; Mosslemi, Marjan; Kang, Jian

    2012-11-01

    Economic unit values of soundscape/acoustic effects have been based on changes in the number of annoyed persons or on decibel changes. The normal procedure has been the application of these unit values to noise-attenuation measures affecting the noisier façade of a dwelling. Novel modular vegetation-based soundscape measures, so-called green walls, might be relevant for both noisy and quieter areas. Moreover, their benefits will comprise noise attenuation as well as non-acoustic amenity effects. One challenge is to integrate the results of some decades of non-acoustic research on the amenity value of urban greenery into design of the urban sound environment, and incorporate these non-acoustic properties in the overall economic assessment of noise control and overall sound environment improvement measures. Monetised unit values for green walls have been included in two alternative cases, or demonstration projects, of covering the entrances to blocks of flats with a green wall. Since these measures improve the noise environment on the quiet side of the dwellings and courtyards, not the most exposed façade, adjustment factors to the nominal quiet side decibel reductions to arrive at an estimate of the equivalent overall acoustic improvement have been applied. A cost-benefit analysis of the green wall case indicates that this measure is economically promising, when valuing the noise attenuation in the quieter area and adding the amenity/aesthetic value of the green wall.

  7. IDEA Special Education Due Process Complaints/Hearing Requests: Including Expedited Hearing Requests. A Guide for Parents of Children & Youth (Ages 3-21)

    ERIC Educational Resources Information Center

    Center for Appropriate Dispute Resolution in Special Education (CADRE), 2014

    2014-01-01

    A due process complaint is a written document used to request a due process hearing related to the identification, evaluation, or educational placement of a child with a disability, or the provision of a free, appropriate public education (FAPE) to the child. This publication describes Due Process Complaints/Hearing Requests generally for Part B…

  8. An rfaH Mutant of Salmonella enterica Serovar Typhimurium is Attenuated in Swine and Reduces Intestinal Colonization, Fecal Shedding, and Disease Severity Due to Virulent Salmonella Typhimurium

    PubMed Central

    Bearson, Bradley L.; Bearson, Shawn M. D.; Kich, Jalusa D.; Lee, In Soo

    2014-01-01

    Swine are often asymptomatic carriers of Salmonella spp., and interventions are needed to limit colonization of swine to enhance food safety and reduce environmental contamination. We evaluated the attenuation and potential vaccine use in pigs of a Salmonella enterica serovar Typhimurium mutant of rfaH, the gene encoding the RfaH antiterminator that prevents premature termination of long mRNA transcripts. Pigs inoculated with wild-type S. Typhimurium exhibited a significant elevation in average body temperature (fever) at 1 and 2 days post-inoculation; rfaH-inoculated pigs did not (n = 5/group). During the 7-day trial, a significant reduction of Salmonella in the feces, tonsils, and cecum were observed in the rfaH-inoculated pigs compared to wild-type inoculated pigs. To determine whether vaccination with the rfaH mutant could provide protection against wild-type S. Typhimurium challenge, two groups of pigs (n = 14/group) were intranasally inoculated with either the rfaH mutant or a PBS placebo at 6 and 8 weeks of age and challenged with the parental, wild-type S. Typhimurium at 11 weeks of age. The average body temperature was significantly elevated in the mock-vaccinated pigs at 1 and 2 days post-challenge, but not in the rfaH-vaccinated pigs. Fecal shedding at 2 and 3 days post-challenge and colonization of intestinal tract tissues at 7 days post-challenge by wild-type S. Typhimurium was significantly reduced in the rfaH-vaccinated pigs compared to mock-vaccinated pigs. Serological analysis using the IDEXX HerdChek Swine Salmonella Test Kit indicated that vaccination with the rfaH mutant did not stimulate an immune response against LPS. These results indicate that vaccination of swine with the attenuated rfaH mutant confers protection against challenge with virulent S. Typhimurium but does not interfere with herd level monitoring for Salmonella spp., thereby allowing for differentiation of infected from vaccinated animals (DIVA). PMID

  9. A simulation study to determine the attenuation and bias in health risk estimates due to exposure measurement error in bi-pollutant models

    EPA Science Inventory

    To understand the combined health effects of exposure to ambient air pollutant mixtures, it is becoming more common to include multiple pollutants in epidemiologic models. However, the complex spatial and temporal pattern of ambient pollutant concentrations and related exposures ...

  10. Dietary acid reduction with fruits and vegetables or bicarbonate attenuates kidney injury in patients with a moderately reduced glomerular filtration rate due to hypertensive nephropathy.

    PubMed

    Goraya, Nimrit; Simoni, Jan; Jo, Chanhee; Wesson, Donald E

    2012-01-01

    The neutralization of dietary acid with sodium bicarbonate decreases kidney injury and slows the decline of the glomerular filtration rate (GFR) in animals and patients with chronic kidney disease. The sodium intake, however, could be problematic in patients with reduced GFR. As alkali-induced dietary protein decreased kidney injury in animals, we compared the efficacy of alkali-inducing fruits and vegetables with oral sodium bicarbonate to diminish kidney injury in patients with hypertensive nephropathy at stage 1 or 2 estimated GFR. All patients were evaluated 30 days after no intervention; daily oral sodium bicarbonate; or fruits and vegetables in amounts calculated to reduce dietary acid by half. All patients had 6 months of antihypertensive control by angiotensin-converting enzyme inhibition before and during these studies, and otherwise ate ad lib. Indices of kidney injury were not changed in the stage 1 group. By contrast, each treatment of stage 2 patients decreased urinary albumin, N-acetyl β-D-glucosaminidase, and transforming growth factor β from the controls to a similar extent. Thus, a reduction in dietary acid decreased kidney injury in patients with moderately reduced eGFR due to hypertensive nephropathy and that with fruits and vegetables was comparable to sodium bicarbonate. Fruits and vegetables appear to be an effective kidney protective adjunct to blood pressure reduction and angiotensin-converting enzyme inhibition in hypertensive and possibly other nephropathies.

  11. [Evaluation of ten fish species to be included as part of renal diet, due to their protein, phosphorus and fatty acids content].

    PubMed

    Castro-González, Maria Isabel; Maafs-Rodríguez, Ana Gabriela; Pérez-Gil Romo, Fernando

    2012-06-01

    Because renal disease is highly complex, its nutritional treatment is complicated and many foods are restricted, including fish because its phosphorus content. The aim of the present study was to analyze ten fillet fish species, commonly consumed in Mexico (Cyprinus carpio carpio, Ophichthus rex, Symphurus elongatus, Eucinostomus entomelas, Chirostoma patzcuaro, Bairdiella chrysoura, Salmo salar Oreochromis urolepis hornorum, Sphyraena guachancho, Istiophorus albicans), to determine their phosphorus (P), protein (Pr), cholesterol, sodium, potassium, vitamins D3 and E, and n-3 PUFA (EPA+DHA) according to the AOAC techniques, in order to identify which species could be included in renal diet; particularly because of their risk:benefit relations (calculated with those results). Protein values ranged from 16.5 to 33.5g/100 g of fillet; the specie with the highest phosphorus contest was Salmo salar, and with the lowest, Symphurus elongatus. EPA+DHA quantity ranged from 79.64 mg/100 g to 1,381.53 mg/100 g. Considering de P/Pr relation recommended to renal patients, all analyzed species (except Salmo salar, Ophichthus rex and Istiophorus albicans) could be included in their diet. As for the P/EPA+DHA relation, the species most recommended to renal patients are Symphurus elongatus, Bairdiella chrysoura and Sphyraena guachancho. PMID:23610899

  12. Estimation of torque on mechanical heart valves due to magnetic resonance imaging including an estimation of the significance of the Lenz effect using a computational model

    NASA Astrophysics Data System (ADS)

    Robertson, Neil M.; Diaz-Gomez, Manuel; Condon, Barrie

    2000-12-01

    Mitral and aortic valve replacement is a procedure which is common in cardiac surgery. Some of these replacement valves are mechanical and contain moving metal parts. Should the patient in whom such a valve has been implanted be involved in magnetic resonance imaging, there is a possible dangerous interaction between the moving metal parts and the static magnetic field due to the Lenz effect. Mathematical models of two relatively common forms of single-leaflet valves have been derived and the magnitude of the torque which opposes the motion of the valve leaflet has been calculated for a valve disc of solid metal. In addition, a differential model of a ring-strengthener valve type has been considered to determine the likely significance of the Lenz effect in the context of the human heart. For common magnetic field strengths at present, i.e. 1 to 2 T, the effect is not particularly significant. However, there is a marked increase in back pressure as static magnetic field strength increases. There are concerns that, since field strengths in the range 3 to 4 T are increasingly being used, the Lenz effect could become significant. At 5 to 10 T the malfunction of the mechanical heart valve could cause the heart to behave as though it is diseased. For unhealthy or old patients this could possibly prove fatal.

  13. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)

    NASA Astrophysics Data System (ADS)

    Weijermars, Ruud; Schmeling, Harro

    1986-09-01

    Scale model theory for constructing dynamically scaled analogue models of rock flowing in the solid state has until now assumed that the natural and model flows were both viscous. In viscous flows, at the very low Reynolds numbers ( Re ≪ 1) common in solid rocks, geometrical similarity is sufficient to achieve dynamic similarity between a homogeneous material (scale) model and its natural prototype. However, experiments on the rheology of natural rocks suggest that they flow predominantly as non-Newtonian strain rate softening materials at the characteristic geological strain rate 10 -14 s -1. Non-dimensionalisation of both the equation of motion and the constitutive flow law of non-Newtonian flows is carried out to investigate what criteria are required to achieve dynamic similarity. It is shown that dynamic similarity of non-Newtonian flows at low inertia (e.g., a rock with Re ≪ 1 and its model analogue) can only be attained if the steady-state flow curves of the model materials and the various rocks in the prototype have mutually similar shapes and slopes, and if these flows operate on similar parts of their respective flow curves. We term this the requirement of rheological similarity. Dynamic similarity of low inertia flows ( Re ≪ 1) in non-Newtonian continua is achieved if they are rheologically and geometrically similar. Additional criteria for dynamic similarity of low inertia flows in inhomogeneous media (with Newtonian or non-Newtonian subregions, or both) are formulated in section 5. Scaling of thermal properties is not included. Steady-state flow curves of common rocks are compiled in log stress-log strain rate space together with analogue materials suitable for modelling of solid state rock deformation. This compilation aids the selection of model materials with flow curves geometrically similar to those of rocks in the prototype. Laboratory scale models of rock flow should generally be constructed of materials which strain rate soften during

  14. Radiofrequency attenuator and method

    SciTech Connect

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  15. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  16. Amplitude loss of sonic waveform due to source coupling to the medium

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2007-01-01

    In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.

  17. GPR measurements of attenuation in concrete

    SciTech Connect

    Eisenmann, David Margetan, Frank J. Pavel, Brittney

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  18. Monitored natural attenuation.

    PubMed

    Jørgensen, Kirsten S; Salminen, Jani M; Björklöf, Katarina

    2010-01-01

    Monitored natural attenuation (MNA) is an in situ remediation technology that relies on naturally occurring and demonstrable processes in soil and groundwater which reduce the mass and concentration of the contaminants. Natural attenuation (NA) involves both aerobic and anaerobic degradation of the contaminants due to the fact that oxygen is used up near the core of the contaminant plume. The aerobic and anaerobic microbial processes can be assessed by microbial activity measurements and molecular biology methods in combination with chemical analyses. The sampling and knowledge on the site conditions are of major importance for the linkage of the results obtained to the conditions in situ. Rates obtained from activity measurements can, with certain limitations, be used in modeling of the fate of contaminants whereas most molecular methods mainly give qualitative information on the microbial community and gene abundances. However, molecular biology methods are fast and describe the in situ communities and avoid the biases inherent to activity assays requiring laboratory incubations.

  19. Digitally Controlled Beam Attenuator

    NASA Astrophysics Data System (ADS)

    Peppler, W. W.; Kudva, B.; Dobbins, J. T.; Lee, C. S.; Van Lysel, M. S.; Hasegawa, B. H.; Mistretta, C. A.

    1982-12-01

    In digital fluorographic techniques the video camera must accommodate a wide dynamic range due to the large variation in the subject thickness within the field of view. Typically exposure factors and the optical aperture are selected such that the maximum video signal is obtained in the most transmissive region of the subject. Consequently, it has been shown that the signal-to-noise ratio is severely reduced in the dark regions. We have developed a prototype digital beam attenuator (DBA) which will alleviate this and some related problems in digital fluorography. The prototype DBA consists of a 6x6 array of pistons which are individually controlled. A membrane containing an attenuating solu-tion of (CeC13) in water and the piston matrix are placed between the x-ray tube and the subject. Under digital control the pistons are moved into the attenuating material in order to adjust the beam intensity over each of the 36 cells. The DBA control unit which digitizes the image during patient positioning will direct the pistons under hydraulic control to produce a uniform x-ray field exiting the subject. The pistons were designed to produce very little structural background in the image. In subtraction studies any structure would be cancelled. For non-subtraction studies such as cine-cardiology we are considering higher cell densities (eg. 64x64). Due to the narrow range of transmission provided by the DBA, in such studies ultra-high contrast films could be used to produce a high resolution quasi-subtraction display. Additional benefits of the DBA are: 1) reduced dose to the bright image areas when the dark areas are properly exposed. 2) improved scatter and glare to primary ratios, leading to improved contrast in the dark areas.

  20. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  1. Guided wave attenuation in pipes buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Cawley, Peter; Lowe, Michael JS

    2015-03-01

    Long-range ultrasonic guided wave testing of pipelines is used routinely for detection of corrosion defects in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipelines that are buried in soil, test ranges tend to be significantly compromised compared to those achieved for pipelines above ground because of the attenuation of the guided wave, due to energy leaking into the embedding soil. The attenuation characteristics of guided wave propagation in a pipe buried in sand are investigated using a full scale experimental rig. The apparatus consists of an 8"-diameter, 6-meters long steel pipe embedded over 3 meters in a rectangular container filled with sand and fitted with an air-bladder for the application of overburden pressure. Measurements of the attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, water saturated and drained, are presented. Attenuation values are found to be in the range of 1-5.5 dB/m. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. The attenuation decreases in the fully water-saturated sand, while it increases in drained sand to values comparable with those obtained for the compacted sand. The attenuation behavior of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  2. Investigation of guided wave propagation and attenuation in pipe buried in sand

    NASA Astrophysics Data System (ADS)

    Leinov, Eli; Lowe, Michael J. S.; Cawley, Peter

    2015-07-01

    Long-range guided wave testing is a well-established method for detection of corrosion defects in pipelines. The method is currently used routinely for above ground pipelines in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised and unpredictable due to attenuation of the guided wave resulting from energy leakage into the embedding soil. The attenuation characteristics of guided wave propagation in an 8 in. pipe buried in sand are investigated using a laboratory full-scale experimental rig and model predictions. We report measurements of attenuation of the T(0,1) and L(0,2) guided wave modes over a range of sand conditions, including loose, compacted, mechanically compacted, water saturated and drained. Attenuation values are found to be in the range of 1.65-5.5 dB/m and 0.98-3.2 dB/m for the torsional and longitudinal modes, respectively, over the frequency of 11-34 kHz. The application of overburden pressure modifies the compaction of the sand and increases the attenuation. Mechanical compaction of the sand yields similar attenuation values to those obtained with applied overburden pressure. The attenuation decreases in the fully water-saturated sand, and increases in drained sand to values comparable with those obtained for compacted sand. Attenuation measurements are compared with Disperse software model predictions and confirm that the attenuation phenomenon in buried pipes is essentially governed by the bulk shear velocity in the sand. The attenuation behaviour of the torsional guided wave mode is found not to be captured by a uniform soil model; comparison with predictions obtained with the Disperse software suggest that this is likely to be due to a layer of sand adhering to the surface of the pipe.

  3. Imaging Rayleigh wave attenuation with USArray

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang

    2016-07-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave traveltime and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the traveltime field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.

  4. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  5. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  6. Attenuation of seismic waves obtained by coda waves analysis in the West Bohemia earthquake swarm region

    NASA Astrophysics Data System (ADS)

    Bachura, Martin; Fischer, Tomas

    2014-05-01

    Seismic waves are attenuated by number of factors, including geometrical spreading, scattering on heterogeneities and intrinsic loss due the anelasticity of medium. Contribution of the latter two processes can be derived from the tail part of the seismogram - coda (strictly speaking S-wave coda), as these factors influence the shape and amplitudes of coda. Numerous methods have been developed for estimation of attenuation properties from the decay rate of coda amplitudes. Most of them work with the S-wave coda, some are designed for the P-wave coda (only on teleseismic distances) or for the whole waveforms. We used methods to estimate the 1/Qc - attenuation of coda waves, methods to separate scattering and intrinsic loss - 1/Qsc, Qi and methods to estimate attenuation of direct P and S wave - 1/Qp, 1/Qs. In this study, we analyzed the S-wave coda of local earthquake data recorded in the West Bohemia/Vogtland area. This region is well known thanks to the repeated occurrence of earthquake swarms. We worked with data from the 2011 earthquake swarm, which started late August and lasted with decreasing intensity for another 4 months. During the first week of swarm thousands of events were detected with maximum magnitudes ML = 3.6. Amount of high quality data (including continuous datasets and catalogues with an abundance of well-located events) is available due to installation of WEBNET seismic network (13 permanent and 9 temporary stations) monitoring seismic activity in the area. Results of the single-scattering model show seismic attenuations decreasing with frequency, what is in agreement with observations worldwide. We also found decrease of attenuation with increasing hypocentral distance and increasing lapse time, which was interpreted as a decrease of attenuation with depth (coda waves on later lapse times are generated in bigger depths - in our case in upper lithosphere, where attenuations are small). We also noticed a decrease of frequency dependence of 1/Qc

  7. Effect of viscosity and wall heat conduction on shock attenuation in narrow channels

    NASA Astrophysics Data System (ADS)

    Deshpande, A.; Puranik, B.

    2016-07-01

    In the present work, the effects due to viscosity and wall heat conduction on shock propagation and attenuation in narrow channels are numerically investigated. A two-dimensional viscous shock tube configuration is simulated, and heat conduction in the channel walls is explicitly included. The simulation results indicate that the shock attenuation is significantly less in the case of an adiabatic wall, and the use of an isothermal wall model is adequate to take into account the wall heat conduction. A parametric study is performed to characterize the effects of viscous forces and wall heat conduction on shock attenuation, and the behaviour is explained on the basis of boundary layer formation in the post-shock region. A dimensionless parameter that describes the shock attenuation is correlated with the diaphragm pressure ratio and a dimensionless parameter which is expressed using the characteristic Reynolds number and the dimensionless shock travel.

  8. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  9. Flagella Overexpression Attenuates Salmonella Pathogenesis

    PubMed Central

    Yang, Xinghong; Thornburg, Theresa; Suo, Zhiyong; Jun, SangMu; Robison, Amanda; Li, Jinquan; Lim, Timothy; Cao, Ling; Hoyt, Teri; Avci, Recep; Pascual, David W.

    2012-01-01

    Flagella are cell surface appendages involved in a number of bacterial behaviors, such as motility, biofilm formation, and chemotaxis. Despite these important functions, flagella can pose a liability to a bacterium when serving as potent immunogens resulting in the stimulation of the innate and adaptive immune systems. Previous work showing appendage overexpression, referred to as attenuating gene expression (AGE), was found to enfeeble wild-type Salmonella. Thus, this approach was adapted to discern whether flagella overexpression could induce similar attenuation. To test its feasibility, flagellar filament subunit FliC and flagellar regulon master regulator FlhDC were overexpressed in Salmonella enterica serovar Typhimurium wild-type strain H71. The results show that the expression of either FliC or FlhDC alone, and co-expression of the two, significantly attenuates Salmonella. The flagellated bacilli were unable to replicate within macrophages and thus were not lethal to mice. In-depth investigation suggests that flagellum-mediated AGE was due to the disruptive effects of flagella on the bacterial membrane, resulting in heightened susceptibilities to hydrogen peroxide and bile. Furthermore, flagellum-attenuated Salmonella elicited elevated immune responses to Salmonella presumably via FliC’s adjuvant effect and conferred robust protection against wild-type Salmonella challenge. PMID:23056473

  10. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  11. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  12. Evolution of Natural Attenuation Evaluation Protocols

    EPA Science Inventory

    Traditionally the evaluation of the efficacy of natural attenuation was based on changes in contaminant concentrations and mass reduction. Statistical tools and models such as Bioscreen provided evaluation protocols which now are being approached via other vehicles including m...

  13. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  14. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  15. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

    PubMed

    Thornton, S F; Lerner, D N; Tellam, J H

    2001-02-01

    The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills.

  16. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

    PubMed

    Thornton, S F; Lerner, D N; Tellam, J H

    2001-02-01

    The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills. PMID:11525477

  17. Attenuation Tomography of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2014-12-01

    We present a 3-D model of surface wave attenuation in the upper mantle. The model is constrained by a large data set of fundamental and higher Rayleigh mode observations. This data set consists of about 1,800,000 attenuation curves measured in the period range 50-300s by Debayle and Ricard (2012). A careful selection allows us to reject data for which measurements are likely biased by the poor knowledge of the scalar seismic moment or by a ray propagation too close to a node of the source radiation pattern. For each epicenter-station path, elastic focusing effects due to seismic heterogeneities are corrected using DR2012 and the data are turned into log(1/Q). The selected data are then combined in a tomographic inversion using the non-linear least square formalism of Tarantola and Valette (1982). The obtained attenuation maps are in agreement with the surface tectonic for periods and modes sensitive to the top 200km of the upper mantle. Low attenuation regions correlate with continental shields while high attenuation regions are located beneath young oceanic regions. The attenuation pattern becomes more homogeneous at depths greater than 200 km and the maps are dominated by a high quality factor signature beneath slabs. We will discuss the similarities and differences between the tomographies of seismic velocities and of attenuations.

  18. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  19. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  20. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  1. Natural attenuation general data guide. Final report

    SciTech Connect

    Kram, M.L.; Goetz, F.

    1999-02-01

    This guide is a decision-making tool to help remedial project managers (RPMs) determine whether natural attenuation can be used as a remedial option at contaminant release sites. Data requirements and methodology to evaluate the potential for using natural attenuation are presented. For sites where the natural attenuation remedial option is implemented, tables of commonly measured parameters, general data collection rationale, and interpretation guidance are included. This format allows the RPM to recognize data gaps, interpret data, construct a conceptual site model, and develop a sampling and analysis plan for evaluation and monitoring purposes.

  2. Improving the quantitative accuracy of optical-emission computed tomography by incorporating an attenuation correction: application to HIF1 imaging

    NASA Astrophysics Data System (ADS)

    Kim, E.; Bowsher, J.; Thomas, A. S.; Sakhalkar, H.; Dewhirst, M.; Oldham, M.

    2008-10-01

    Optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT) are new techniques for imaging the 3D structure and function (including gene expression) of whole unsectioned tissue samples. This work presents a method of improving the quantitative accuracy of optical-ECT by correcting for the 'self'-attenuation of photons emitted within the sample. The correction is analogous to a method commonly applied in single-photon-emission computed tomography reconstruction. The performance of the correction method was investigated by application to a transparent cylindrical gelatin phantom, containing a known distribution of attenuation (a central ink-doped gelatine core) and a known distribution of fluorescing fibres. Attenuation corrected and uncorrected optical-ECT images were reconstructed on the phantom to enable an evaluation of the effectiveness of the correction. Significant attenuation artefacts were observed in the uncorrected images where the central fibre appeared ~24% less intense due to greater attenuation from the surrounding ink-doped gelatin. This artefact was almost completely removed in the attenuation-corrected image, where the central fibre was within ~4% of the others. The successful phantom test enabled application of attenuation correction to optical-ECT images of an unsectioned human breast xenograft tumour grown subcutaneously on the hind leg of a nude mouse. This tumour cell line had been genetically labelled (pre-implantation) with fluorescent reporter genes such that all viable tumour cells expressed constitutive red fluorescent protein and hypoxia-inducible factor 1 transcription-produced green fluorescent protein. In addition to the fluorescent reporter labelling of gene expression, the tumour microvasculature was labelled by a light-absorbing vasculature contrast agent delivered in vivo by tail-vein injection. Optical-CT transmission images yielded high-resolution 3D images of the absorbing contrast agent, and

  3. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  4. Examination of the Lateral Attenuation of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.

  5. Live attenuated vaccines for invasive Salmonella infections.

    PubMed

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines.

  6. Live attenuated vaccines for invasive Salmonella infections

    PubMed Central

    Tennant, Sharon M.; Levine, Myron M.

    2015-01-01

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed S. Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: S. Typhi, S. Paratyphi A, S. Paratyphi B (currently uncommon but may become dominant again), S. Typhimurium, S. Enteritidis and S. Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines. PMID:25902362

  7. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  8. Planetary Ices Attenuation Properties

    NASA Astrophysics Data System (ADS)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  9. Magnetoelectric Composite Based Microwave Attenuator

    NASA Astrophysics Data System (ADS)

    Tatarenko, A. S.; Srinivasan, G.

    2005-03-01

    Ferrite-ferroelectric composites are magnetoelectric (ME) due to their response to elastic and electromagnetic force fields. The ME composites are characterized by tensor permittivity, permeability and ME susceptibility. The unique combination of magnetic, electrical, and ME interactions, therefore, opens up the possibility of electric field tunable ferromagnetic resonance (FMR) based devices [1]. Here we discuss an ME attenuator operating at 9.3 GHz based on FMR in a layered sample consisting of lead magnesium niobate-lead titanate bonded to yttrium iron garnet (YIG) film on a gadolinium gallium garnet substrate. Electrical tuning is realized with the application of a control voltage due to ME effect; the shift is 0-15 Oe as E is increased from 0 to 3 kV/cm. If the attenuator is operated at FMR, the corresponding insertion loss will range from 25 dB to 2 dB. 1. S. Shastry and G. Srinivasan, M.I. Bichurin, V.M. Petrov, A.S. Tatarenko. Phys. Rev. B, 70 064416 (2004). - supported by grants the grants from the National Science Foundation (DMR-0302254), from Russian Ministry of Education (Å02-3.4-278) and from Universities of Russia Foundation (UNR 01.01.026).

  10. Vortex attenuation flight experiments

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Hastings, E. C., Jr.; Champine, R. A.; Tymczyszyn, J. J.

    1977-01-01

    Flight tests evaluating the effects of altered span loading, turbulence ingestion, combinations of mass and turbulence ingestion, and combinations of altered span loading turbulance ingestion on trailed wake vortex attenuation were conducted. Span loadings were altered in flight by varying the deflections of the inboard and outboard flaps on a B-747 aircraft. Turbulence ingestion was achieved in flight by mounting splines on a C-54G aircraft. Mass and turbulence ingestion was achieved in flight by varying the thrust on the B-747 aircraft. Combinations of altered span loading and turbulence ingestion were achieved in flight by installing a spoiler on a CV-990 aircraft and by deflecting the existing spoilers on a B-747 aircraft. The characteristics of the attenuated and unattenuated vortexes were determined by probing them with smaller aircraft. Acceptable separation distances for encounters with the attenuated and unattenuated vortexes are presented.

  11. Origins of anisotropic seismic attenuation of the inner core - intrinsic anelasticity of hcp iron alloy

    NASA Astrophysics Data System (ADS)

    Redfern, Simon

    2015-04-01

    Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic

  12. Fuselage panel noise attenuation by piezoelectric switching control

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Miyakawa, Takeya; Onoda, Junjiro; Minesugi, Kenji

    2010-08-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments.

  13. [Rubella virus genetic determinant of attenuation].

    PubMed

    Dmitriev, G V; Borisova, T K; Faizuloev, E B; Desiatskova, R G; Zverev, V V

    2014-01-01

    Vaccination is the most effective and available way to prevent Rubella. Presently, 9 vaccine strains were registered. Nevertheless, the molecular mechanisms of the attenuation were poorly elucidated for the rubella virus. However, the study of these mechanisms identifying genotypic and phenotypic markers of attenuation, which together with sequence analysis could be used for the genetic stability control of vaccine strains, is still of current interest. Common trends of genetic changes in the process of adaptation to cold were found due to comparison of nucleic acid and amino acid sequences of the Russian strain C-77 with corresponding positions of the known rubella virus strains and its wild type progenitors, if available.

  14. Postage Due?

    ERIC Educational Resources Information Center

    McNamee, Mike

    1990-01-01

    The Postal Service is auditing and trying to collect back postage from nonprofit organizations, including alumni associations. Although the post office initially accepted the materials in question for mailing, it now says alumni associations illegally loaned their permits to commercial firms such as travel agencies. (MSE)

  15. Tritium Attenuation by Distillation

    SciTech Connect

    Wittman, N.E.

    2001-07-31

    The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

  16. Yellowstone Attenuation Tomography from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Seats, K.; Lawrence, J. F.

    2013-12-01

    The goal of this study is to create a tomographic attenuation image for the Yellowstone region by analyzing ambient seismic noise. An attenuation image generated from ambient noise should provide more information about the structure and properties beneath Yellowstone, especially the caldera, which is known to be active. I applied the method of Lawrence & Prieto [2011] to examine lateral variations in the attenuation structure of Yellowstone. Ambient noise data were collected from broadband seismic stations located around Yellowstone National Park from 1999-2013. Noise correlation functions derived from cross correlations of the ambient noise at two stations were used to calculate a distance dependent decay (an attenuation coefficient) at each period and distance. An inversion was then performed to isolate and localize the spatial attenuation coefficients within the study area. I observe high amplitude decay of the ambient noise at the Yellowstone caldera, most likely due to elevated temperature and crustal melts caused by volcanism, geothermal heat flow, and hydrothermal activity such as geysers.

  17. Is there seismic attenuation in the mantle?

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Durand, S.; Montagner, J.-P.; Chambat, F.

    2014-02-01

    The small scale heterogeneity of the mantle is mostly due to the mixing of petrological heterogeneities by a smooth but chaotic convection and should consist in a laminated structure (marble cake) with a power spectrum S(k) varying as 1/k, where k is the wavenumber of the anomalies. This distribution of heterogeneities during convective stirring with negligible diffusion, called Batchelor regime is documented by fluid dynamic experiments and corresponds to what can be inferred from geochemistry and seismic tomography. This laminated structure imposes density, seismic velocity and potentially, anisotropic heterogeneities with similar 1/k spectra. A seismic wave of wavenumber k0 crossing such a medium is partly reflected by the heterogeneities and we show that the scattered energy is proportional to k0S(2k0). The reduction of energy for the propagating wave appears therefore equivalent to a quality factor 1/Q∝k0S(2k0). With the specific 1/k spectrum of the mantle, the resulting apparent attenuation should therefore be frequency independent. We show that the total contribution of 6-9% RMS density, velocity and anisotropy would explain the observed S and P attenuation of the mantle. Although these values are large, they are not unreasonable and we discuss how they depend on the range of frequencies over which the attenuation is explained. If such a level of heterogeneity were present, most of the attenuation of the Earth would be due to small scale scattering by laminations, not by intrinsic dissipation. Intrinsic dissipation must certainly exist but might correspond to a larger, yet unobserved Q. This provocative result would explain the very weak frequency dependence of the attenuation, and the fact that bulk attenuation seems negligible, two observations that have been difficult to explain for 50 years.

  18. Attenuation tomography beneath the Rocky Mountain front: Implications for the physical state of the upper mantle

    NASA Astrophysics Data System (ADS)

    Boyd, Oliver S.; Sheehan, Anne F.

    Utilizing the Rocky Mountain Front (RMF) broadband seismic dataset acquired in 1992, this study has derived the seismic attenuation structure underlying part of the Southern Rocky Mountains and surrounding areas through measurements of differential t* of S-phase waveforms. Previous studies of the area include P, S and surface wave travel time tomography, and all indicate low upper mantle velocities below the Rocky Mountain region. Calculations of intrinsic attenuation coupled with current velocity models aid in the determination of temperature, partial melt distributions, and compositional variation. A N-S zone of high shear wave attenuation (Qs≃30) is found in the mantle beneath the Rocky Mountains and lies east of the region of lowest shear wave velocity. Relationships between shear wave attenuation and shear wave velocity are consistent with both thermal and compositional variability. Along the eastern Colorado Rockies and due north of the Rio Grande Rift, the relationships are consistent with an interpretation of elevated temperatures by up to 50 K at 125 km depth. West of this region low velocities and low attenuation suggest either unusual composition or very high temperatures. The low density mantle material beneath the Colorado Rocky Mountains in addition to increased crustal thickness and low density crustal intrusions provides a density contrast sufficient to support its overburden.

  19. Arsenic cycling in hydrocarbon plumes: secondary effects of natural attenuation

    USGS Publications Warehouse

    Cozzarelli, Isabelle M.; Schreiber, Madeline E.; Erickson, Melinda L.; Ziegler, Brady A.

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  20. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation.

    PubMed

    Cozzarelli, Isabelle M; Schreiber, Madeline E; Erickson, Melinda L; Ziegler, Brady A

    2016-01-01

    Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe-hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude-oil-contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe-hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe-hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.

  1. Fluid dynamic bowtie attenuators

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.

  2. Wave Attenuation in Partially Saturated Porous Solids.

    NASA Astrophysics Data System (ADS)

    Yin, Chuan-Sheng

    1992-01-01

    This thesis consists of three independent papers. Paper 1 studies effects of pulsating gas pockets on wave propagation in partially saturated porous solids containing both liquid and gas phases. On the basis of Biot theory, an analytic solution for the White model for study of the effects of saturation history on wave attenuation is derived. One of the most significant findings of this work is that when the average spacing among the neighboring gas pockets is of the order of the boundary-layer thickness associated with the slow compressional (or P2) wave, the attenuation of the compressional (or P) wave due to local fluid flow reaches its maximum. Results of Paper 1 bear direct applications to seismic and logging responses of partially saturated rocks in prospecting for petroleum, and monitoring of oil and natural gas reservoirs. Paper 2 presents the results of the experimental studies of the effects of partial liquid/gas saturation on extensional wave attenuation in Berea sandstones. Two experimental methods are used; one is the resonant-bar method and the other the forced-deformation method. It is found that the wave attenuation depends on sample-saturation history (drainage or imbibition), as well as boundary-flow conditions, and the degree of saturation. The attenuation caused by "flowable" liquid is sensitive only in the region of low degree of gas saturation. An open-pore boundary tends to induce higher attenuation. The results obtained by the forced-deformation method show that the magnitude of the attenuation decreases substantially with decreasing frequency to the extent that no attenuation peak was apparent at frequencies below 100 Hz. Paper 3 analyzes extensional wave propagation in a porous fluid-saturated hollow-cylinder of infinite extent. Analytic solutions of complex Young's modulus for the long wavelength limit was obtained for a hollow -cylinder with open-pore inner surface. A simplified formula for estimating the frequency at which the

  3. Control algorithms for dynamic attenuators

    SciTech Connect

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  4. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  5. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes.

  6. Attenuation of sound waves in drill strings

    SciTech Connect

    Drumheller, D.S. )

    1993-10-01

    During drilling of deep wells, digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used, transmission of these data by elastic carrier waves traveling within the drill pipe is possible, but the potential communication range is uncertain. The problem is complicated by the presence of heavy-threaded tool joints every 10 m, which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article, field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes, California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location, width, and attenuation of the passbands. Mode conversion between extensional and bending waves, and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length. 7 refs., 20 figs., 4 tabs.

  7. Seismic attenuation in fractured porous media: insights from a hybrid numerical and analytical model

    NASA Astrophysics Data System (ADS)

    Ekanem, A. M.; Li, X. Y.; Chapman, M.; Main, I. G.

    2015-04-01

    Seismic attenuation in fluid-saturated porous rocks can occur by geometric spreading, wave scattering or the internal dissipation of energy, most likely due to the squirt-flow mechanism. In principle, the pattern of seismic attenuation recorded on an array of sensors contains information about the medium, in terms of material heterogeneity and anisotropy, as well as material properties such as porosity, crack density, and pore-fluid composition and mobility. In practice, this inverse problem is challenging. Here we provide some insights into the effects of internal dissipation by analysing synthetic data produced by a hybrid numerical and analytical model for seismic wave propagation in a fractured medium embedded within a layered geological structure. The model is made up of one anisotropic and three isotropic horizontal layers. The anisotropic layer consists of a porous, fluid-saturated material containing vertically aligned inclusions representing a set of fractures. This combination allows squirt-flow to occur between the pores in the matrix and the model fractures. Our results show that the fluid mobility and the associated relaxation time of the fluid-pressure gradient control the frequency range over which attenuation occurs. This induced attenuation increases with incidence angle and azimuth away from the fracture strike-direction. Azimuthal variations in the induced attenuation are elliptical allowing the fracture orientations to be obtained from the axes of the ellipse. These observations hold out the potential of using seismic attenuation as an additional diagnostic in the characterisation of rock formations for a variety of applications including hydrocarbon exploration and production, subsurface storage of CO2, and geothermal energy extraction.

  8. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  9. Chopping-Wheel Optical Attenuator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1988-01-01

    Star-shaped rotating chopping wheel provides adjustable time-averaged attenuation of narrow beam of light without changing length of optical path or spectral distribution of light. Duty cycle or attenuation factor of chopped beam controlled by adjusting radius at which beam intersects wheel. Attenuation factor independent of wavelength. Useful in systems in which chopping frequency above frequency-response limits of photodetectors receiving chopped light. Used in systems using synchronous detection with lock-in amplifiers.

  10. Imaging Rayleigh Wave Attenuation Beneath North America with USArray

    NASA Astrophysics Data System (ADS)

    Dalton, C. A.; Bao, X.; Jin, G.; Gaherty, J. B.

    2015-12-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity. Surface-wave amplitudes are sensitive to factors in addition to attenuation, including source excitation, focusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave travel time and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique. We consider three different approaches for separating the effects of local site amplification and attenuation on the amplitude measurements. The attenuation values determined with these three approaches contain the same first-order features, which gives us confidence that these features are robust: high attenuation in the western U.S. and low attenuation in the central and eastern U.S., with slightly higher attenuation along the eastern seaboard. However, we also identify several areas where we suspect the imaged attenuation values reflect unmodelled focusing effects rather than anelastic attenuation. We therefore identify attenuation values that are likely contaminated by unmodelled focusing effects using the Laplacian of the phase-velocity map, eliminate those values, and generate 2-D attenuation maps through a regional average of the remaining values. We also investigate the range of intrinsic shear-attenuation values that are suggested by the Rayleigh wave attenuation maps at periods between 40 and 80 s. This preliminary model is the

  11. Natural attenuation of contaminated soils.

    PubMed

    Mulligan, Catherine N; Yong, Raymond N

    2004-06-01

    Natural attenuation is increasing in use as a low cost means of remediating contaminated soil and groundwater. Modelling of contaminant migration plays a key role in evaluating natural attenuation as a remediation option and in ensuring that there will be no adverse impact on humans and the environment. During natural attenuation, the contamination must be characterized thoroughly and monitored through the process. In this paper, attenuation mechanisms for both organic and inorganic contaminants, use of models and protocols, role of monitoring and field case studies will be reviewed.

  12. 34 CFR 303.15 - Include; including.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 2 2010-07-01 2010-07-01 false Include; including. 303.15 Section 303.15 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION EARLY INTERVENTION PROGRAM FOR INFANTS AND TODDLERS...

  13. Growth Attenuation Therapy.

    PubMed

    Kerruish, Nikki

    2016-01-01

    The "Ashley treatment" has provoked much debate and remains ethically controversial. Given that more children are being referred for such treatment, there remains a need to provide advice to clinicians and ethics committees regarding how to respond to such requests. This article contends that there is one particularly important gap in the existing literature about growth attenuation therapy (GAT) (one aspect of the Ashley treatment): the views of parents of children with profound cognitive impairment (PCI) remain significantly underrepresented. The article attempts to redress this balance by analyzing published accounts both from parents of children who have received GAT and from parents who oppose treatment. Using these accounts, important points are illuminated regarding how parents characterize benefits and harms, and their responsibilities as surrogate decisionmakers. This analysis could contribute to decisionmaking about future requests for GAT and might also have wider relevance to healthcare decisionmaking for children with PCI. PMID:26788948

  14. Extraordinary views of ordinary galaxies: Multiwavelength measures of star formation and attenuation

    NASA Astrophysics Data System (ADS)

    Johnson, Benjamin D.

    2008-01-01

    The meaningful comparison of models of galaxy evolution to observations is critically dependent on the accurate treatment of dust attenuation. To investigate dust absorption and emission in galaxies we have assembled a sample of ~1000 galaxies from the ultrviolet (UV) through the Infrared (IR) by the GALEX, SDSS, and Spitzer observatories. The ratio of IR to UV emission (IRX) is used to constrain the dust attenuation in galaxies. We consider this measure in optically red galaxies making several simplfying assumptions we estimate the fraction of IR emission due to the heating of by old stars to be as much as 99%. We use the 4000Å break as a robust and useful, though coarse, indicator of star formation history (SFH). Dust attenuation and star formation history (SFH) are the dominant factors affecting the color of galaxies. We explore the empirical relation between SFH, attenuation, and color (especially the UV color) for a wide range of galaxies, including early types. This relation is compared to models that separately predict the effects of dust and SFH on color. We perform fits to the relation between SFH, attenuation, and color, which links the production of starlight and its absorption by dust to the subsequent reemmision of the absorbed light in the IR. Galaxy models that self-consistently treat dust absorption and emission as well as stellar populations will need to reproduce these fitted relations in the low-redshift universe. We construct estimates of dust attenuation and star formation rate (SFR) from the UV and IR photmetry and compare them to optical indicators, including the SFR b of Brinchmann et al. (2004). We find that there is a significant trend of the ratio of SFR b to the IR+UV luminosity with D n (4000) that cannot be explained as due to the additional IR emission from dust heatred by old stars. We find that the dust attenuation inferred from the ratio of optical emission lines is ~ 2-3 times higher than that inferred from IRX for a wide range

  15. P- and S-wave seismic attenuation for deep natural gas exploration and development

    SciTech Connect

    Walls, Joel; Uden, Richard; Singleton, Scott; Shu, Rone; Mavko, Gary

    2005-04-12

    Using current methods, oil and gas in the subsurface cannot be reliably predicted from seismic data. This causes domestic oil and gas fields to go undiscovered and unexploited, thereby increasing the need to import energy.The general objective of this study was to demonstrate a simple and effective methodology for estimating reservoir properties (gas saturation in particular, but also including lithology, net to gross ratios, and porosity) from seismic attenuation and other attributes using P- and S-waves. Phase I specific technical objectives: Develop Empirical or Theoretical Rock Physics Relations for Qp and Qs; Create P-wave and S-wave Synthetic Seismic Modeling Algorithms with Q; and, Compute P-wave and S-wave Q Attributes from Multi-component Seismic Data. All objectives defined in the Phase I proposal were accomplished. During the course of this project, a new class of seismic analysis was developed based on compressional and shear wave inelastic rock properties (attenuation). This method provides a better link between seismic data and the presence of hydrocarbons. The technique employs both P and S-wave data to better discriminate between attenuation due to hydrocarbons versus energy loss due to other factors such as scattering and geometric spreading. It was demonstrated that P and S attenuation can be computed from well log data and used to generate synthetic seismograms. Rock physics models for P and S attenuation were tested on a well from the Gulf of Mexico. The P- and S-wave Q attributes were computed on multi-component 2D seismic data intersecting this well. These methods generated reasonable results, and most importantly, the Q attributes indicated gas saturation.

  16. Sn Attenuation in the Middle-East

    NASA Astrophysics Data System (ADS)

    Ku, W.; Kaviani, A.; Bao, X.; Sandvol, E. A.

    2015-12-01

    The Turkish-Iranian Plateau and Zagros Mountains, a dominant tectonic feature in the Middle-East, were formed as a result of the continental collision (between Arabian plate and Eurasia plates). In order to better understand the nature of the lithosphere mantle and origin of the measure seismic velocity anomalies we have made detailed measurements of the uppermost mantle attenuation using the high frequency regional phase Sn. In order to measure Sn attenuation. We have collected a large data set consisting of 18 years (1995-2012) of waveforms recorded by 305 permanent and temporary stations. We used a bandpass filter (0.1-0.5Hz) to identify efficient longer period Sn phases. In order to determine Sn Q we applied a Two Station Method (TSM) and Reverse Two Station Method (RTM) to eliminate the source effects. We have used the LSQR algorithm to tomographically map Sn attenuation tomography across the Middle-East. We also determined the Sn propagation efficiencies visually and tomographically map qualitatively assigned Sn propagation efficiencies across the Middle-East. The Sn Attenuation Tomography show moderately low Q values beneath the Turkish-Iranian Plateau (~250) and high Q values beneath the south Caspian sea (~400) and Arabian shield (~400). We also observe high Q values beneath the Zagros mountains (~450) that is consistent with the Arabian plate underthrusting beneath the Eurasia plate. The Sn Efficiency Tomography shows high attenuation within the Turkish-Iranian Plateau and low attenuation in the Arabian Plate and across the Caspian Sea. This is consistent with prior studies that suggest a hot and thin lithosphere beneath the Turkish-Iranian Plateau and it also suggests that intrinsic attenuation is the dominant component in Sn Q across the Turkish-Iranian Plateau. Due to the signal-to-noise criterion to select amplitudes and the efficiency criterion to select two-station and reverse-two-station paths for the inversion, the data are left-censored and the

  17. Semi-empirical inversion technique for retrieval of quantitative attenuation profiles with underwater scanning lidar systems

    NASA Astrophysics Data System (ADS)

    Vuorenkoski, Anni K.; Dalgleish, Fraser R.; Twardowski, Michael S.; Ouyang, Bing; Trees, Charles C.

    2015-05-01

    A fine structure underwater imaging LiDAR (FSUIL) has recently been developed and initial field trials have been conducted. The instrument, which rapidly scans an array of closely spaced, narrow, collimated laser pulses into the water column produces two-dimensional arrays of backscatter profiles, with fine spatial and temporal resolution. In this paper a novel method to derive attenuation profiles is introduced. This approach is particularly attractive in applications where primary on-board processing is required, and other applications where conventional model-based approaches are not feasible due to a limited computational capacity or lack of a priori knowledge of model input parameters. The paper also includes design details regarding the new FSUIL instrument are given, with field results taken in clear to moderately turbid water being presented to illustrate the various effects and considerations in the analysis of the system data. LiDAR waveforms and LiDAR derived attenuation coefficients are analyzed and compared to calibrated beam attenuation, particulate scattering and absorption coefficients. The system was field tested during the NATO Ligurian Sea LIDAR & Optical Measurements Experiment (LLOMEx) cruise in March 2013, during the spring bloom conditions. Throughout a wide range of environmental conditions, the FSUIL was deployed on an in situ profiler obtaining thousands of three-dimensional LiDAR scans from the near surface down to the lower thermocline. Deployed concurrent to the FSUIL was a range of commercially available off-the-shelf instruments providing side-by-side in-situ attenuation measurement.

  18. Regional variations of seismic attenuation of Lg waves in southern Mexico

    NASA Astrophysics Data System (ADS)

    DomíNguez, Tonatiuh; Rebollar, Cecilio J.; Castro, Raúl R.

    1997-12-01

    Attenuation of Lg waves is estimated using 61 events located in the subduction zone of the Middle American trench and recorded by the seismic network of Laguna Verde, Veracruz, Mexico. We estimate the anelastic attenuation coefficient γ of Lg waves or, equivalently, QLg by calculating the rate of acceleration spectra decay with distance. We consider paths from two regions: Guerrero-Veracruz (NE-SW direction) and Oaxaca-Veracruz (North-South direction). Assuming a frequency dependence of γ of the form γ(ƒ) = γ0ƒη, we find that η=0.175±0.05 for both regions and that γ0 was lower for paths from Guerrero to Veracruz (γ0=0.0071±0.002) than for paths from Oaxaca to Veracruz (γ0=0.0161±0.003) in the frequency range from 2 to 7 Hz. In terms of the quality factor QLg, values of QLg= 134±30ƒ0.83±0.2 and QLg=59±10ƒ0.81±0.2 were found for the Guerrero-Veracruz and the Oaxaca-Veracruz paths, respectively. This difference in attenuation may be due to the state of stresses that prevails in both regions including the density and fluid content of fractures, which are attenuation mechanisms also suggested for other regions [Mitchell, 1995].

  19. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  20. A two-component rain model for the prediction of attenuation statistics

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1982-01-01

    A two-component rain model has been developed for calculating attenuation statistics. In contrast to most other attenuation prediction models, the two-component model calculates the occurrence probability for volume cells or debris attenuation events. The model performed significantly better than the International Radio Consultative Committee model when used for predictions on earth-satellite paths. It is expected that the model will have applications in modeling the joint statistics required for space diversity system design, the statistics of interference due to rain scatter at attenuating frequencies, and the duration statistics for attenuation events.

  1. Attenuation of terrestrial solar radiation by the eruption of Mt. St. Helens

    NASA Astrophysics Data System (ADS)

    Howard, R. G.

    1981-02-01

    Incident solar radiation attenuation due to the May 18, 1980 Mt. St. Helens eruption was measured by PSP pyranometers. Graphs are presented on the attenuation due to the ash cloud that passed over Richland, Washington, and over Billings, Montana the same day at different hours.

  2. ROLE OF NATURAL ATTENUATION IN THE LIFE CYCLE OF MTBE PLUMES

    EPA Science Inventory

    The Natural life cycle of a plume of MTBE from a spill of gasoline is controlled by the rate of attenuation of the source (due to partitioning from the residual gasoline to the flow of ground water) and the rate of attenuation in the plume (due to dispersion and natural biodegr...

  3. Attenuation of diacylglycerol second messengers

    SciTech Connect

    Bishop, W.R.; Ganong, B.R.; Bell, R.M.

    1986-05-01

    Diacylglycerol(DAG) derived from phosphatidylinositol activates protein kinase C in agonist-stimulated cells. At least two pathways may contribute to the attenuation of the DAG signal: (1) phosphorylation to phosphatidic acid(PA) by DAG kinase(DGK), and (2) deacylation by DAG and monoacylglycerol lipases. A number of DAG analogs were tested as substrates and inhibitors of partially purified pig brain DGK. Two analogs were potent inhibitors in vitro, 1-monooleoylglycerol(MOG,K/sub I/ = 91 ..mu..M) and diotanoylethyleneglycol (diC/sub 8/EG, K/sub I/ = 58 ..mu..M). These compounds were tested in human platelets. DiC/sub 8/EG inhibited (70 - 100%) (/sup 32/P/sub i/) incorporation into PA in thrombin-stimulated platelets. Under these conditions the DAG signal was somewhat long-lived but was still metabolized, presumably by the lipase pathway. MOG treatment elevated DAG levels up to 4-fold in unstimulated platelets. The DAG formed was in a pool where it did not activate protein kinase C. Thrombin-stimulation of MOG-treated platelets resulted in DAG levels 10-fold higher than control platelets. This appears to be due to the inability of these platelets to metabolize agonist-linked DAG via the lipase pathway. The development of specific inhibitors of DAG kinase and DAG lipase, in conjunction with mass quantification of DAG levels as used here, will provide further insights into the regulation of DAG second messengers.

  4. Agmatine attenuates methamphetamine-induced conditioned place preference in rats.

    PubMed

    Thorn, David A; Winter, Jerrold C; Li, Jun-Xu

    2012-04-01

    The polyamine agmatine modulates a variety of behavioral effects including the abuse-related effects of opioids and has been proposed as a potential medication candidate for the treatment of opioid abuse. However, little is known of the effects of agmatine on the abuse-related effects of other drugs of abuse. This study examined the effects of agmatine on the rewarding effects of methamphetamine in rats using a conditioned place preference paradigm. Methamphetamine (0.1-1.0mg/kg) dose-dependently increased the time spent in methamphetamine-paired side (place preference). Agmatine, at doses that did not produce place preference or aversion (10-32mg/kg), significantly decreased the development of methamphetamine-induced place preference when agmatine was administered in combination with methamphetamine during place conditioning. Agmatine also significantly decreased the expression of methamphetamine-induced place preference when an acute injection of agmatine was given immediately before test session. These doses of agmatine do not alter the motor activity in rats, suggesting that the observed attenuation of methamphetamine-induced place preference was not due to general behavioral disruption. Together, these data suggests that agmatine attenuates the rewarding effects of methamphetamine and may be able to modulate the abuse liability of methamphetamine.

  5. Attenuation reactions in a multiple contaminated aquifer in Bitterfeld (Germany).

    PubMed

    Heidrich, Susanne; Weiss, Holger; Kaschl, Arno

    2004-05-01

    Large-scale contaminated sites with multiple contaminants in the groundwater present a challenge to risk assessment and remediation. Attenuation reactions take place in the subsurface and act to contain contaminants, but must be thoroughly investigated on a site-specific basis. Field data from monitoring wells at a contaminated industrial site in Bitterfeld, Germany, are presented and analyzed for evidence of the prevalent biodegradation reactions. The groundwater in the Tertiary aquifer is contaminated with large quantities of chlorinated aliphatic compounds, in addition to chlorobenzenes and BTEX. In this strictly anaerobic environment, geochemical indications for several microbial processes were found, including methanogenesis, sulfate and iron reduction as well as reductive dechlorination of the chlorinated hydrocarbons. Direct evidence for the latter degradation reaction was observed along the flowpath due to the appearance of intermediates and an increase in the degree of dechlorination.

  6. Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework.

    PubMed

    Verginelli, Iason; Baciocchi, Renato

    2013-01-15

    Natural attenuation (NA) processes occurring in the subsurface can significantly affect the impact on groundwater from contamination sources located in the vadose zone, especially when mobile and readily biodegradable compounds, such as BTEX, are present. Besides, in the last decades several studies have shown natural attenuation to take place also for more persistent compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs). Nevertheless, common risk analysis frameworks, based on the ASTM RBCA (Risk Based Corrective Action) approach, do not include NA pathways in the fate and transport models, thus possibly leading to an overestimation of the calculated risk. The aim of this study was to provide an insight on the relevance of the different key natural attenuation processes usually taking place in the subsurface and to highlight for which contamination scenarios their inclusion in the risk-analysis framework could provide a more realistic risk assessment. To this end, an analytical model accounting for source depletion and biodegradation, dispersion and diffusion during leaching was developed and applied to several contamination scenarios. These scenarios included contamination by BTEX, characterized by relatively high mobility and biodegradation rate, and PAHs, i.e. a more persistent class of compounds. The obtained results showed that BTEX are likely to be attenuated in the source zone due to their mobility and ready biodegradation (assuming biodegradation constant rates in the order of 0.01-1 d(-1)). Instead, attenuation along transport through the vadose zone was found to be less important, as the residence time of the contaminant in the unsaturated zone is often too low with respect to the time required to get a relevant biodegradation of BTEX. On the other hand, heavier compounds such as PAHs, were found to be attenuated during leaching since the residence time in the vadose zone can reach values up to thousands of years. In these cases, even with the

  7. Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework.

    PubMed

    Verginelli, Iason; Baciocchi, Renato

    2013-01-15

    Natural attenuation (NA) processes occurring in the subsurface can significantly affect the impact on groundwater from contamination sources located in the vadose zone, especially when mobile and readily biodegradable compounds, such as BTEX, are present. Besides, in the last decades several studies have shown natural attenuation to take place also for more persistent compounds, such as Polycyclic Aromatic Hydrocarbons (PAHs). Nevertheless, common risk analysis frameworks, based on the ASTM RBCA (Risk Based Corrective Action) approach, do not include NA pathways in the fate and transport models, thus possibly leading to an overestimation of the calculated risk. The aim of this study was to provide an insight on the relevance of the different key natural attenuation processes usually taking place in the subsurface and to highlight for which contamination scenarios their inclusion in the risk-analysis framework could provide a more realistic risk assessment. To this end, an analytical model accounting for source depletion and biodegradation, dispersion and diffusion during leaching was developed and applied to several contamination scenarios. These scenarios included contamination by BTEX, characterized by relatively high mobility and biodegradation rate, and PAHs, i.e. a more persistent class of compounds. The obtained results showed that BTEX are likely to be attenuated in the source zone due to their mobility and ready biodegradation (assuming biodegradation constant rates in the order of 0.01-1 d(-1)). Instead, attenuation along transport through the vadose zone was found to be less important, as the residence time of the contaminant in the unsaturated zone is often too low with respect to the time required to get a relevant biodegradation of BTEX. On the other hand, heavier compounds such as PAHs, were found to be attenuated during leaching since the residence time in the vadose zone can reach values up to thousands of years. In these cases, even with the

  8. Attenuation of Vaccinia Virus.

    PubMed

    Yakubitskiy, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2015-01-01

    Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections. PMID:26798498

  9. Estimation of compressional seismic wave attenuation of carbonate rocks in Abu Dhabi, United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Bouchaala, Fateh; Ali, Mohammed Y.; Farid, Asam

    2014-07-01

    The subsurface geology of Abu Dhabi in the United Arab Emirates is primarily composed of carbonate rocks. Such media are known to be highly heterogeneous. Very few studies have attempted to estimate attenuation in carbonate rocks. In Abu Dhabi no attenuation profile has been published. This study provides the first seismic wave attenuation profiles in Abu Dhabi using dense array of VSP data. We estimated three attenuation profiles: the apparent, the scattering, and the intrinsic attenuations. The apparent attenuation profile was computed using amplitude decay and spectral-ratio methods. The scattering attenuation profile was estimated using a generalized reflection-transmission matrix forward model. It is usually estimated from the sonic log, but to be more consistent with the apparent attenuation, we succeeded in this paper to estimate it from the VSP data. We subtracted the scattering attenuation from the apparent attenuation to deduce the intrinsic attenuation. The results of the study indicate that the scattering attenuation is significant compared to the published studies that are mainly based on clastic rocks. The high scattering attenuation can reach up to 0.02. It can be explained by the strong heterogeneity of the carbonate rocks. This study demonstrates that the Simsima and Rus Formations have considerable scattering and intrinsic attenuations. These formations are considered aquifers in Abu Dhabi; we therefore interpreted this high intrinsic attenuation zones to be due to the heterogeneity and to the fluids contained in these formations. The Umm-Er-Radhuma Formation is a more homogenous formation with limited aquifer potential. Hence, scattering and intrinsic attenuations of the Umm-Er-Radhuma Formation are low.

  10. Seismic attenuation: Laboratory measurements in fluid saturated rocks

    NASA Astrophysics Data System (ADS)

    Subramaniyan, Shankar; Madonna, Claudio; Tisato, Nicola; Saenger, Erik; Quintal, Beatriz

    2014-05-01

    Seismic wave attenuation could be used as an indicator of reservoir fluids due to its dependence on rock and fluid properties. Over the past 30 years, many laboratory methodologies to study attenuation in rocks have been employed, such as ultrasonic (MHz), resonant bar (kHz) and forced oscillation methods in the low frequency range (0.01-100Hz) (Tisato & Madonna 2012; Madonna & Tisato 2013). Forced oscillation methods have gained prominence over time as the frequency range of measurements correspond to that of field seismic data acquired for oil/gas exploration. These experiments measure attenuation as the phase shift between the applied stress (sinusoidal) and measured strain. Since the magnitudes of measured phase shifts are quite low (Q-1 ~0.01-0.1) and the amplitudes of strain applied to the rock samples are of the order ~10-6 (i.e., similar orders of magnitude to seismic waves), it is challenging. A comparison of such forced oscillation setups will be presented to provide an overview of the various possibilities of design and implementation for future setups. In general, there is a lack of laboratory data and most of the published data are for sandstones. Currently, attenuation measurements are being carried out on carbonate and sandstone samples. We employ the Seismic Wave Attenuation Module (SWAM, Madonna & Tisato 2013) to measure seismic attenuation in these samples for different saturation degrees (90% and 100% water) and under three different confining pressures (5, 10 and 15MPa). Preliminary results from these investigations will be discussed. REFERENCES Madonna, C. & Tisato, N. 2013: A new seismic wave attenuation module to experimentally measure low-frequency attenuation in extensional mode. Geophysical Prospecting, doi: 10.1111/1365-2478.12015. Tisato, N. & Madonna, C. 2012: Attenuation at low seismic frequencies in partially saturated rocks: Measurements and description of a new apparatus. Journal of Applied Geophysics, 86, 44-53.

  11. Shear Attenuation and Dispersion in Olivine + Orthopyroxene Aggregates (Synthetic Harzburgite)

    NASA Astrophysics Data System (ADS)

    Sundberg, M. I.; Cooper, R. F.

    2009-12-01

    Low-frequency (10-2.25attenuation in harzburgite, synthesized from natural materials, has been measured in order to characterize the effect of orthopyroxene modal abundance on mechanical dissipation. Experiments were conducted in an ambient pressure, reciprocating torsion apparatus using a maximum shear stress of ~90 kPa on very fine grained (d~5μm) aggregates of olivine (ol) and orthopyroxene (opx). The attenuation spectra reveal “high-temperature background” behavior where attenuation diminishes smoothly and mildly with increasing frequency (QG-1~f -0.3). At higher frequencies (f >10-0.5 Hz), the attenuation spectra reveal the onset of an apparent peak, likely due to elastically-accommodated grain boundary sliding. Most importantly, these experiments reveal a strong dependence of attenuation on the modal abundance of opx for constant frequency, temperature, grain size, and melt fraction: attenuation increases by roughly a factor of two as the modal abundance of opx rises from 6 to 54 vol%. Further addition of opx leads to diminished attenuation. These reciprocating torsion measurements were complemented by a series of unidirectional microcreep tests, which demonstrate that the variation in attenuation is complemented by both a lower shear viscosity and a drop in the activation energy as opx mode increases. The behavior suggests that: (1) phase boundaries are potent absorbers of mechanical energy, and (2) the background attenuation in dry, melt-free upper mantle may be larger than that predicted from experimental studies conducted on single-phase olivine aggregates. The implications of these results for understanding seismic signatures of mid-ocean ridges and subduction zones are discussed.

  12. Natural attenuation of perchlorate in denitrified groundwater.

    PubMed

    Robertson, William D; Roy, James W; Brown, Susan J; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Monitoring of a well-defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4⁻) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4⁻ from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3⁻ -N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4⁻ natural attenuation occurs at the site only when NO3⁻ -N concentrations are <0.3 mg/L, after which ClO4⁻ concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3⁻ -N and ClO4⁻ was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4⁻ may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4⁻ contaminated groundwater. PMID:23448242

  13. Waves in fragmented geomaterials with impact attenuation

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady; Pasternak, Elena

    2016-04-01

    Attenuation of waves in geomaterials, such as seismic waves is usually attributed to energy dissipation due to the presence of viscous fluid and/or viscous cement between the constituents. In fragmented geomaterials such as blocky rock mass there is another possible source of energy dissipation - impacting between the fragments. This can be characterised by the coefficient of restitution, which is the ratio between the rotational velocities after and before the impact. In particular, this manifests itself in the process of mutual rotations of the fragments/blocks, whereby in the process of oscillation different ends of the contacting faces of the fragments are impacting. During the rotational oscillations the energy dissipation is concentrated in the neutral position that is the one in which the relative rotation between two fragments is zero. We show that in a simple system of two fragments this dissipation is equivalent, in a long run, to the presence of viscous damper between the fragments (the Voigt model of visco-elasticity). Generalisation of this concept to the material consisting of many fragments leads to a Voigt model of wave propagation where the attenuation coefficient is proportional to the logarithm of restitution coefficient. The waves in such a medium show slight dispersion caused by damping and strong dependence of the attenuation on the wave frequency.

  14. Natural attenuation of perchlorate in denitrified groundwater.

    PubMed

    Robertson, William D; Roy, James W; Brown, Susan J; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Monitoring of a well-defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4⁻) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4⁻ from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3⁻ -N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4⁻ natural attenuation occurs at the site only when NO3⁻ -N concentrations are <0.3 mg/L, after which ClO4⁻ concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3⁻ -N and ClO4⁻ was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4⁻ may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4⁻ contaminated groundwater.

  15. Effect of Non-Alignment/Alignment of Attenuation Map Without/With Emission Motion Correction in Cardiac SPECT/CT

    PubMed Central

    Dey, Joyoni; Segars, W. Paul; Pretorius, P. Hendrik; King, Michael A.

    2015-01-01

    Purpose We investigate the differences without/with respiratory motion correction in apparent imaging agent localization induced in reconstructed emission images when the attenuation maps used for attenuation correction (from CT) are misaligned with the patient anatomy during emission imaging due to differences in respiratory state. Methods We investigated use of attenuation maps acquired at different states of a 2 cm amplitude respiratory cycle (at end-expiration, at end-inspiration, the center map, the average transmission map, and a large breath-hold beyond range of respiration during emission imaging) to correct for attenuation in MLEM reconstruction for several anatomical variants of the NCAT phantom which included both with and without non-rigid motion between heart and sub-diaphragmatic regions (such as liver, kidneys etc). We tested these cases with and without emission motion correction and attenuation map alignment/non-alignment. Results For the NCAT default male anatomy the false count-reduction due to breathing was largely removed upon emission motion correction for the large majority of the cases. Exceptions (for the default male) were for the cases when using the large-breathhold end-inspiration map (TI_EXT), when we used the end-expiration (TE) map, and to a smaller extent, the end-inspiration map (TI). However moving the attenuation maps rigidly to align the heart region, reduced the remaining count-reduction artifacts. For the female patient count-reduction remained post motion correction using rigid map-alignment due to the breast soft-tissue misalignment. Quantitatively, after the transmission (rigid) alignment correction, the polar-map 17-segment RMS error with respect to the reference (motion-less case) reduced by 46.5% on average for the extreme breathhold case. The reductions were 40.8% for end-expiration map and 31.9% for end-inspiration cases on the average, comparable to the semi-ideal case where each state uses its own attenuation map for

  16. Commonly asked questions regarding the use of natural attenuation for petroleum-contaminated sites at federal facilities

    SciTech Connect

    1996-10-01

    This brochure answers commonly asked questions regarding the use of natural attenuation for petroleum-contaminated sites. It includes a definition of natural attenuation, a discussion of the circumstances under which it may be effective, and the advantages and limitations.

  17. Total Reducing Capacity in Aquifer Minerals and Sediments: Quantifying the Potential to Attenuate Cr(VI) in Groundwater

    SciTech Connect

    Sisman, S. Lara

    2015-07-20

    Hexavalent chromium, Cr(VI), is present in the environment as a byproduct of industrial processes. Due to its mobility and toxicity, it is crucial to attenuate or remove Cr(VI) from the environment. The objective of this investigation was to quantify potential natural attenuation, or reduction capacity, of reactive minerals and aquifer sediments. Samples of reduced-iron containing minerals such as ilmenite, as well as Puye Formation sediments representing a contaminated aquifer in New Mexico, were reacted with chromate. The change in Cr(VI) during the reaction was used to calculate reduction capacity. This study found that minerals that contain reduced iron, such as ilmenite, have high reducing capacities. The data indicated that sample history may impact reduction capacity tests due to surface passivation. Further, this investigation identified areas for future research including: a) refining the relationships between iron content, magnetic susceptibility and reduction capacity, and b) long term kinetic testing using fresh aquifer sediments.

  18. Live-Attenuated Bacterial Vectors: Tools for Vaccine and Therapeutic Agent Delivery

    PubMed Central

    Lin, Ivan Y. C.; Van, Thi Thu Hao; Smooker, Peter M.

    2015-01-01

    Genetically attenuated microorganisms, including pathogenic and commensal bacteria, can be engineered to carry and deliver heterologous antigens to elicit host immunity against both the vector as well as the pathogen from which the donor gene is derived. These live attenuated bacterial vectors have been given much attention due to their capacity to induce a broad range of immune responses including localized mucosal, as well as systemic humoral and/or cell-mediated immunity. In addition, the unique tumor-homing characteristics of these bacterial vectors has also been exploited for alternative anti-tumor vaccines and therapies. In such approach, tumor-associated antigen, immunostimulatory molecules, anti-tumor drugs, or nucleotides (DNA or RNA) are delivered. Different potential vectors are appropriate for specific applications, depending on their pathogenic routes. In this review, we survey and summarize the main features of the different types of live bacterial vectors and discussed the clinical applications in the field of vaccinology. In addition, different approaches for using live attenuated bacterial vectors for anti-cancer therapy is discussed, and some promising pre-clinical and clinical studies in this field are outlined. PMID:26569321

  19. Wave velocity dispersion and attenuation in media exhibiting internal oscillations

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel; Steeb, Holger; Schmalholz, Stefan M.

    2010-05-01

    an arbitrary number of oscillators with different resonance frequencies. Exemplarily, we show a log-normal distribution of resonance frequencies. Such a distribution changes the acoustic properties significantly compared to the case with only one resonance frequency. The dispersion and attenuation resulting from our model agree well with the dispersion and attenuation (1) derived with a more exact mathematical treatment and (2) measured in laboratory experiments. (2) Three-phase model for residually saturated porous media We present a three-phase model describing wave propagation phenomena in residually saturated porous media. The model consists of a continuous non-wetting phase and a discontinuous wetting phase and is an extension of classical biphasic (Biot-type) models. The model includes resonance effects of single liquid bridges or liquid clusters with miscellaneous eigenfrequencies taking into account a visco-elastic restoring force (pinned oscillations and/or sliding motion of the contact line). In the present investigation, our aim is to study attenuation due to fluid oscillations and due to wave-induced flow with a macroscopic three-phase continuum model, i.e. a mixture consisting of one solid constituent building the elastic skeleton and two immiscible fluid constituents. Furthermore, we study monochromatic waves in transversal and longitudinal direction and discuss the resulting dispersion relations for a typical reservoir sandstone equivalent (Berea sandstone).

  20. The Violent Content in Attenuated Psychotic Symptoms.

    PubMed

    Marshall, Catherine; Deighton, Stephanie; Cadenhead, Kristin S; Cannon, Tyrone D; Cornblatt, Barbara A; McGlashan, Thomas H; Perkins, Diana O; Seidman, Larry J; Tsuang, Ming T; Walker, Elaine F; Woods, Scott W; Bearden, Carrie E; Mathalon, Daniel; Addington, Jean

    2016-08-30

    The relationship between psychosis and violence has typically focused on factors likely to predict who will commit violent acts. One unexplored area is violence in the content of subthreshold positive symptoms. The current aim was to conduct an exploratory analysis of violent content in the attenuated psychotic symptoms (APS) of those at clinical high risk of psychosis (CHR) who met criteria for attenuated psychotic symptom syndrome (APSS). The APS of 442 CHR individuals, determined by the Structured Interview for Prodromal Syndromes, were described in comprehensive vignettes. The content of these symptoms were coded using the Content of Attenuated Positive Symptoms Codebook. Other measures included clinical symptoms, functioning, beliefs and trauma. Individuals with violent content had significantly higher APS, greater negative beliefs about the self and others, and increased bullying. The same findings and higher ratings on anxiety symptoms were present when participants with self-directed violence were compared to participants with no violent content. Individuals reporting violent content differ in their clinical presentation compared to those who do not experience violent content. Adverse life events, like bullying, may impact the presence of violent content in APS symptoms. Future studies should explore violent content in relation to actual behavior. PMID:27259137

  1. Modeling future scenarios of light attenuation and potential seagrass success in a eutrophic estuary

    USGS Publications Warehouse

    del Barrio, Pilar; Ganju, Neil K.; Aretxabaleta, Alfredo L.; Hayn, Melanie; García, Andrés; Howarth, Robert W.

    2014-01-01

    Estuarine eutrophication has led to numerous ecological changes, including loss of seagrass beds. One potential cause of these losses is a reduction in light availability due to increased attenuation by phytoplankton. Future sea level rise will also tend to reduce light penetration and modify seagrass habitat. In the present study, we integrate a spectral irradiance model into a biogeochemical model coupled to the Regional Ocean Model System (ROMS). It is linked to a bio-optical seagrass model to assess potential seagrass habitat in a eutrophic estuary under future nitrate loading and sea-level rise scenarios. The model was applied to West Falmouth Harbor, a shallow estuary located on Cape Cod (Massachusetts) where nitrate from groundwater has led to eutrophication and seagrass loss in landward portions of the estuary. Measurements of chlorophyll, turbidity, light attenuation, and seagrass coverage were used to assess the model accuracy. Mean chlorophyll based on uncalibrated in-situ fluorometry varied from 28 μg L−1 at the landward-most site to 6.5 μg L−1 at the seaward site, while light attenuation ranged from 0.86 to 0.45 m-1. The model reproduced the spatial variability in chlorophyll and light attenuation with RMS errors of 3.72 μg L−1 and 0.07 m-1 respectively. Scenarios of future nitrate reduction and sea-level rise suggest an improvement in light climate in the landward basin with a 75% reduction in nitrate loading. This coupled model may be useful to assess habitat availability changes due to eutrophication and sediment resuspension and fully considers spatial variability on the tidal timescale.

  2. Evaluation of natural attenuation rate at a gasoline spill site.

    PubMed

    Kao, C M; Prosser, J

    2001-04-20

    Contamination of groundwater by gasoline and other petroleum-derived hydrocarbons released from underground storage tanks (USTs) is a serious and widespread environmental problem. Natural attenuation is a passive remedial approach that depends upon natural processes to degrade and dissipate contaminants in soil and groundwater. Currently, in situ column technique, microcosm, and computer modeling have been applied for the natural attenuation rate calculation. However, the subsurface heterogeneity reduces the applicability of these techniques. In this study, a mass flux approach was used to calculate the contaminant mass reduction and field-scale decay rate at a gasoline spill site. The mass flux technique is a simplified mass balance procedure, which is accomplished using the differences in total contaminant mass flux across two cross-sections of the contaminant plume. The mass flux calculation shows that up to 87% of the dissolved total benzene, toluene, ethylbenzene, and xylene (BTEX) isomers removal was observed via natural attenuation at this site. The efficiency of natural biodegradation was evaluated by the in situ tracer method, and the first-order decay model was applied for the natural attenuation/biodegradation rate calculation. Results reveal that natural biodegradation was the major cause of the BTEX mass reduction among the natural attenuation processes, and approximately 88% of the BTEX removal was due to the natural biodegradation process. The calculated total BTEX first-order attenuation and biodegradation rates were 0.036 and 0.025% per day, respectively. Results suggest that the natural attenuation mechanisms can effectively contain the plume, and the mass flux method is useful in assessing the occurrence and efficiency of the natural attenuation process.

  3. Frequency-domain ultrasound waveform tomography breast attenuation imaging

    NASA Astrophysics Data System (ADS)

    Sandhu, Gursharan Yash Singh; Li, Cuiping; Roy, Olivier; West, Erik; Montgomery, Katelyn; Boone, Michael; Duric, Neb

    2016-04-01

    Ultrasound waveform tomography techniques have shown promising results for the visualization and characterization of breast disease. By using frequency-domain waveform tomography techniques and a gradient descent algorithm, we have previously reconstructed the sound speed distributions of breasts of varying densities with different types of breast disease including benign and malignant lesions. By allowing the sound speed to have an imaginary component, we can model the intrinsic attenuation of a medium. We can similarly recover the imaginary component of the velocity and thus the attenuation. In this paper, we will briefly review ultrasound waveform tomography techniques, discuss attenuation and its relations to the imaginary component of the sound speed, and provide both numerical and ex vivo examples of waveform tomography attenuation reconstructions.

  4. Inferential Procedures for Correlation Coefficients Corrected for Attenuation.

    ERIC Educational Resources Information Center

    Hakstian, A. Ralph; And Others

    1988-01-01

    A model and computation procedure based on classical test score theory are presented for determination of a correlation coefficient corrected for attenuation due to unreliability. Delta and Monte Carlo method applications are discussed. A power analysis revealed no serious loss in efficiency resulting from correction for attentuation. (TJH)

  5. Sound attenuation in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Resa, P.; Montero de Espinosa, F.

    2013-02-01

    In this work, the attenuation of ultrasonic elastic waves propagating through magnetorheological (MR) fluids is analysed as a function of the particle volume fraction and the magnetic field intensity. Non-commercial MR fluids made with iron ferromagnetic particles and two different solvents (an olive oil based solution and an Araldite-epoxy) were used. Particle volume fractions of up to 0.25 were analysed. It is shown that the attenuation of sound depends strongly on the solvent used and the volume fraction. The influence of a magnetic field up to 212 mT was studied and it was found that the sound attenuation increases with the magnetic intensity until saturation is reached. A hysteretic effect is evident once the magnetic field is removed.

  6. Pump apparatus including deconsolidator

    SciTech Connect

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  8. Different atmospheric effects causing FSO link attenuation: experimental results and modelling in Czech Republic

    NASA Astrophysics Data System (ADS)

    Fiser, Ondrej; Brazda, Vladimir; Wilfert, Otakar

    2015-10-01

    The four year FSO link attenuation measurement concurrently with most important meteorological parameters was performed at our mountain observatory Milesovka. In this contribution we summarize and classify different atmospheric phenomena after the FSO link attenuation quantity. For all particular phenomena the CD curves, typical events and simple dependences on relevant atmospheric parameter(s) are presented. We consider the following phenomena (approximate specific attenuation in dB/km in brackets): 1. Fog and cloud (hundreds dB/km) 2. Rain and snow (tens dB/km) 3. Atmospheric turbulence (unit dB) 4. Clear air attenuation due to water vapour (unit dB or less)

  9. Optical modulator including grapene

    DOEpatents

    Liu, Ming; Yin, Xiaobo; Zhang, Xiang

    2016-06-07

    The present invention provides for a one or more layer graphene optical modulator. In a first exemplary embodiment the optical modulator includes an optical waveguide, a nanoscale oxide spacer adjacent to a working region of the waveguide, and a monolayer graphene sheet adjacent to the spacer. In a second exemplary embodiment, the optical modulator includes at least one pair of active media, where the pair includes an oxide spacer, a first monolayer graphene sheet adjacent to a first side of the spacer, and a second monolayer graphene sheet adjacent to a second side of the spacer, and at least one optical waveguide adjacent to the pair.

  10. Attenuation of Landfill Leachate In Unsaturated Sandstone

    NASA Astrophysics Data System (ADS)

    Butler, A. P.; Brook, C.; Godley, A.; Lewin, K.; Young, C. P.

    Landfill leachate emanating from old "dilute and disperse" sites represents a potential (and in many cases actual) threat to the integrity of groundwater. Indeed, this concern has been included in EU legislation (80/86/EEC), where key contaminants (e.g. ammonia, various toxic organic compounds and heavy metals) are explicitly highlighted in terms of their impact on groundwater. In the UK, whilst there are a substantial number of unlined landfills sited on major aquifers, many of these are in locations where there is a substantial unsaturated zone. Thus, there exists the opportunity for the modification and attenuation of contaminants prior to it encountering the water table. An understanding of likely changes in leachate content and concentrations at such sites will enable a more comprehensive assessment of the potential risks and liabilities posed by such sites to be evaluated. The Burntstump landfill, situated 8 km north of Nottingham (UK), is sited on an outcrop of Sherwood sandstone. The fine friable sand has been quarried since the 1960s and the excavated volume used to store municipal waste. Filling at the site commenced in the mid 1970s and originally was unlined. In 1978 the first of what was to become a series of boreholes was installed within an area of roughly 5 m radius over one of the original waste cells. Cores of the waste and underlying sandstone were extracted and analysed for a range of physical and chemical parameters. The most recent set of analyses were obtained in 2000. The series of investigations therefore provide an important record of leachate migration and modification through the unsaturated zone for over twenty years. The progression of the leachate front is clearly delineated by the chloride concentration profile with an average velocity of around 1.6 m.yr-1. Combining this value with an average (and reasonably uniform) measured moisture content of about 7% gives a mean inter-granular specific discharge of 110 mm.yr-1. An interesting

  11. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  12. Properties of sound attenuation around a two-dimensional underwater vehicle with a large cavitation number

    NASA Astrophysics Data System (ADS)

    Ye, Peng-Cheng; Pan, Guang

    2015-06-01

    Due to the high speed of underwater vehicles, cavitation is generated inevitably along with the sound attenuation when the sound signal traverses through the cavity region around the underwater vehicle. The linear wave propagation is studied to obtain the influence of bubbly liquid on the acoustic wave propagation in the cavity region. The sound attenuation coefficient and the sound speed formula of the bubbly liquid are presented. Based on the sound attenuation coefficients with various vapor volume fractions, the attenuation of sound intensity is calculated under large cavitation number conditions. The result shows that the sound intensity attenuation is fairly small in a certain condition. Consequently, the intensity attenuation can be neglected in engineering. Project supported by the National Natural Science Foundation of China (Grant Nos. 51279165 and 51479170) and the National Defense Basic Scientific Research Program of China (Grant No. B2720133014).

  13. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  14. Prediction of slant path rain attenuation statistics at various locations

    NASA Technical Reports Server (NTRS)

    Goldhirsh, J.

    1977-01-01

    The paper describes a method for predicting slant path attenuation statistics at arbitrary locations for variable frequencies and path elevation angles. The method involves the use of median reflectivity factor-height profiles measured with radar as well as the use of long-term point rain rate data and assumed or measured drop size distributions. The attenuation coefficient due to cloud liquid water in the presence of rain is also considered. Absolute probability fade distributions are compared for eight cases: Maryland (15 GHz), Texas (30 GHz), Slough, England (19 and 37 GHz), Fayetteville, North Carolina (13 and 18 GHz), and Cambridge, Massachusetts (13 and 18 GHz).

  15. Attenuation of near-IR light through dentin at wavelengths from 1300-1650-nm.

    PubMed

    Chan, Andrew C; Darling, Cynthia L; Chan, Kenneth H; Fried, Daniel

    2014-02-18

    Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300-1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm(-1). Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption. PMID:24839373

  16. Attenuation of near-IR light through dentin at wavelengths from 1300-1650-nm

    NASA Astrophysics Data System (ADS)

    Chan, Andrew C.; Darling, Cynthia L.; Chan, Kenneth H.; Fried, Daniel

    2014-02-01

    Light scattering in dental enamel decreases markedly from the UV to the near-IR and recent studies employing near-IR transillumination and reflectance imaging including optical coherence tomography indicate that this wavelength region is ideally suited for imaging dental caries due to the high transparency of enamel. The opacity of dentin is an important factor in optimizing the contrast of demineralization in reflectance measurements. It also influences the contrast of occlusal lesions in transillumination. Light scattering in dentin is an order of magnitude larger than in enamel, it is highly anisotropic and has a different spectral light scattering dependence than enamel. The objective of this study was to measure the optical attenuation of near-IR light through dentin at near-IR wavelengths from 1300-1650-nm. In this study the collimated transmission of near-IR light through polished thin sections of dentin of 0.05 to 0.6 mm thickness was measured. Beer-Lambert plots show that the attenuation coefficients range in magnitude from 20 to 40 cm-1. Attenuation increased significantly with increasing wavelength and the increases were not entirely consistent with increased water absorption.

  17. Significant Attenuation of Lightly Damped Resonances Using Particle Dampers

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Knight, Joseph Brent

    2015-01-01

    When equipment designs must perform in a broad band vibration environment it can be difficult to avoid resonances that affect life and performance. This is especially true when an organization seeks to employ an asset from a heritage design in a new, more demanding vibration environment. Particle dampers may be used to provide significant attenuation of lightly damped resonances to assist with such a deployment of assets by including only a very minor set of modifications. This solution may be easier to implement than more traditional attenuation schemes. Furthermore, the cost in additional weight to the equipment can be very small. Complexity may also be kept to a minimum, because the particle dampers do not require tuning. Attenuating the vibratory response with particle dampers may therefore be simpler (in a set it and forget it kind of way) than tuned mass dampers. The paper will illustrate the use of an "equivalent resonance test jig" that can assist designers in verifying the potential resonance attenuation that may be available to them during the early trade stages of the design. An approach is suggested for transforming observed attenuation in the jig to estimated performance in the actual service design. KEY WORDS: Particle Damper, Performance in Vibration Environment, Damping, Resonance, Attenuation, Mitigation of Vibration Response, Response Estimate, Response Verification.

  18. Rain induced attenuation studies for V-band satellite communication in tropical region

    NASA Astrophysics Data System (ADS)

    Badron, Khairayu; Ismail, Ahmad Fadzil; Din, Jafri; Tharek, Abd. Rahman

    2011-04-01

    Satellite communications operating at 10 GHz and above in the tropics suffer severe signal degradation due to rain. Attenuation due to rain at 38 GHz had been measured for a period of 20 months in Malaysia. Analyses carried out include seasonal variations, diurnal effects and the annual cumulative distributions. Obtained results were compared with several established prediction models including the ITU-R. The rain fade characteristics were also investigated in determining the levels of signal loss and fading. In addition, the studies highlight several potential fade mitigation techniques that can be embarked. These fundamental aprehensions are very critical for future earth space communication link design and can be exploited as preliminary groundwork plan for the researchers as well as engineers.

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  20. Evaluation of Moisture-Related Attenuation Coefficient and Water Diffusion Velocity in Human Skin Using Optical Coherence Tomography

    PubMed Central

    Lee, Cheng-Kuang; Tsai, Meng-Tsan; Chang, Feng-Yu; Yang, Chih-Hsun; Shen, Su-Chin; Yuan, Ouyang; Yang, Chih-He

    2013-01-01

    In this study, time-resolved optical coherence tomography (OCT) scanning images of the process of water diffusion in the skin that illustrate the enhancement in the backscattered intensities due to the increased water concentration are presented. In our experiments, the water concentration in the skin was increased by soaking the hand in water, and the same region of the skin was scanned and measured with the OCT system and a commercial moisture monitor every three minutes. To quantitatively analyze the moisture-related optical properties and the velocity of water diffusion in human skin, the attenuation coefficients of the skin, including the epidermis and dermis layers, were evaluated. Furthermore, the evaluated attenuation coefficients were compared with the measurements made using the commercial moisture monitor. The results demonstrate that the attenuation coefficient increases as the water concentration increases. Furthermore, by evaluating the positions of center-of mass of the backscattered intensities from OCT images, the diffusion velocity can be estimated. In contrast to the commercial moisture monitor, OCT can provide three-dimensional structural images of the skin and characterize its optical property, which together can be used to observe morphological changes and quantitatively evaluate the moisture-related attenuation coefficients in different skin layers. PMID:23529149

  1. Experimental assessment of snow-induced attenuation on an Earth-space link operating at Ka-band

    NASA Astrophysics Data System (ADS)

    Amaya, César; García-Rubia, José-Miguel; Bouchard, Pierre; Nguyen, Tu

    2014-10-01

    This investigation assesses the attenuation induced by snowfall on an experimental slant-path link that monitors the 20.199 GHz beacon signal of the Anik F2 satellite. Beacon data collected at Communications Research Centre Canada (CRC) in Ottawa over 2 years, including the winters of 2010-2011 and 2011-2012, were analyzed as part of this study. The antenna of one of the two receivers used in the propagation campaign with Anik F2 was shielded, the first year under a tent and the second year under the roof of a building, in order to prevent degradations on the measured beacon signal due to snow or ice accumulation on the parabolic reflector surface. One of the main challenges of the study was the unambiguous identification of snow events. Information provided by several weather sensors, a profiling radiometer, and meteorological reports were used to help identify the type of precipitation. Events of wet and dry snow along with freezing rain are presented and discussed. Radiometric measurements of sky noise temperature were particularly useful to detect light snowfall events and to estimate event durations. Statistics of snow attenuation were derived for the winter months of the study. It is found that snow attenuation is modest at 20.2 GHz; however, modest attenuation may be important for small-margin communication systems.

  2. Dose reduction using a dynamic, piecewise-linear attenuator

    SciTech Connect

    Hsieh, Scott S.; Fleischmann, Dominik; Pelc, Norbert J.

    2014-02-15

    Purpose: The authors recently proposed a dynamic, prepatient x-ray attenuator capable of producing a piecewise-linear attenuation profile customized to each patient and viewing angle. This attenuator was intended to reduce scatter-to-primary ratio (SPR), dynamic range, and dose by redistributing flux. In this work the authors tested the ability of the attenuator to reduce dose and SPR in simulations. Methods: The authors selected four clinical applications, including routine full field-of-view scans of the thorax and abdomen, and targeted reconstruction tasks for an abdominal aortic aneurysm and the pancreas. Raw data were estimated by forward projection of the image volume datasets. The dynamic attenuator was controlled to reduce dose while maintaining peak variance by solving a convex optimization problem, assuminga priori knowledge of the patient anatomy. In targeted reconstruction tasks, the noise in specific regions was given increased weighting. A system with a standard attenuator (or “bowtie filter”) was used as a reference, and used either convex optimized tube current modulation (TCM) or a standard TCM heuristic. The noise of the scan was determined analytically while the dose was estimated using Monte Carlo simulations. Scatter was also estimated using Monte Carlo simulations. The sensitivity of the dynamic attenuator to patient centering was also examined by shifting the abdomen in 2 cm intervals. Results: Compared to a reference system with optimized TCM, use of the dynamic attenuator reduced dose by about 30% in routine scans and 50% in targeted scans. Compared to the TCM heuristics which are typically used withouta priori knowledge, the dose reduction is about 50% for routine scans. The dynamic attenuator gives the ability to redistribute noise and variance and produces more uniform noise profiles than systems with a conventional bowtie filter. The SPR was also modestly reduced by 10% in the thorax and 24% in the abdomen. Imaging with the dynamic

  3. Listening to Include

    ERIC Educational Resources Information Center

    Veck, Wayne

    2009-01-01

    This paper attempts to make important connections between listening and inclusive education and the refusal to listen and exclusion. Two lines of argument are advanced. First, if educators and learners are to include each other within their educational institutions as unique individuals, then they will need to listen attentively to each other.…

  4. Attenuation of aqueous benzene in soils under saturated flow conditions.

    PubMed

    Kim, S-B; Kim, D-J; Yun, S-T

    2006-01-01

    The fate of aqueous benzene in subsurface was investigated in this study, focusing on the role of sorption and biodegradation on the benzene attenuation under dynamic flow conditions. Two sets of column tests were conducted in Plexiglass flow cells packed uniformly with sandy aquifer materials. The first set of the experiment was conducted with a step-type injection of benzene with different powder activated carbon (PAC) contents: (1) PAC = 0 %; (2) PAC = 0.5 %; (3) PAC = 2.0%. The second set was performed as a pulse-type with different test conditions: (4) benzene; (5) benzene and bacteria (Pseudomonas aeruginosa); (6) benzene and bacteria (P. aeruginosa) with hydrogen peroxide. In addition, numerical experiments were performed to examine the role of sorption processes on the benzene attenuation. In the step mode experiments, the KCl breakthrough curves (BTCs) reached the input concentration while the benzene BTCs were considerably lower than those of KCl with slight retardation for all cases, indicating that both reversible/retardation and irreversible sorption occurred. The pulse type tests showed that attenuation of benzene increased in the presence of bacteria due to biodegradation. The benzene attenuation by microbial degradation increased furthermore in the presence of hydrogen peroxide owing to sufficient supply of dissolved oxygen in soil column. Numerical experiments demonstrated that retardation could not contribute to the attenuation of benzene in soils but could only extend its breakthrough time. Experimental results indicated that aqueous benzene could be attenuated by irreversible sorption and biodegradation during transport through the subsurface. Additionally, the attenuation of aqueous benzene is closely related to organic carbon content and oxygen level existing in contaminated aquifers.

  5. Attenuation of very virulent infectious bursal disease virus and comparison of full sequences of virulent and attenuated strains.

    PubMed

    Lazarus, D; Pasmanik-Chor, M; Gutter, B; Gallili, G; Barbakov, M; Krispel, S; Pitcovski, J

    2008-04-01

    A very virulent strain of infectious bursal disease virus (IBDVks) was isolated from the bursae of Fabricius of IBDV-affected broiler chickens. Following 43 serial passages in specific pathogen-free embryonated eggs, an attenuated strain was established (IBDVmb). Dosages of IBDVmb in the range 10(2) to 10(4) embryo infective dose of 50% were found to be safe and protective for commercial chicks. Chickens vaccinated with live vaccine containing IBDVmb responded with precipitating and type-specific neutralizing antibodies, and were immune to subsequent challenge with a very virulent IBDV. IBDVmb has been used as an attenuated vaccine throughout the world since 1993. A comparison of the full sequences of the virulent and attenuated strains (IBDVks and IBDVmb, respectively) revealed seven nucleotides that were different, four of them leading to changes in the amino-acid sequence. Comparison of the protein sequence of these strains and published sequences of very virulent and attenuated phenotypes lead us to suggest that the novel difference responsible for virulence of the Israeli strains are: residue 272 (VP2, very conserved site) and residue 527 (VP4), both in segment A, and in segment B (VP1) residues 96 and 161 (both conserved). Our study strengthens the possibility that more than one protein is involved in IBDV attenuation. In all reports, including ours, virulence was reduced without affecting antigenicity of the neutralizing epitopes in VP2. This could have practical implications for attenuated-vaccine development.

  6. Broadband fractal acoustic metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Song, Gang Yong; Cheng, Qiang; Huang, Bei; Dong, Hui Yuan; Cui, Tie Jun

    2016-09-01

    We fabricate and experimentally characterize a broadband fractal acoustic metamaterial that can serve to attenuate the low-frequency sounds at selective frequencies ranging from 225 to 1175 Hz. The proposed metamaterials are constructed by the periodic Hilbert fractal elements made of photosensitive resin via 3D printing. In analogy to electromagnetic fractal structures, it is shown that multiple resonances can also be excited in the acoustic counterpart due to their self-similar properties, which help to attenuate the acoustic energy in a wide spectrum. The confinement of sound waves in such subwavelength element is evidenced by both numerical and experimental results. The proposed metamaterial may provide possible alternative for various applications such as the noise attenuation and the anechoic materials.

  7. Melatonin attenuates Leishmania (L.) amazonensis infection by modulating arginine metabolism.

    PubMed

    Laranjeira-Silva, Maria Fernanda; Zampieri, Ricardo A; Muxel, Sandra M; Floeter-Winter, Lucile Maria; Markus, Regina P

    2015-11-01

    Acute inflammatory responses induced by bacteria or fungi block nocturnal melatonin synthesis by rodent pineal glands. Here, we show Leishmania infection does not impair daily melatonin rhythm in hamsters. Remarkably, the attenuated parasite burden and lesion progression in hamsters infected at nighttime was impaired by blockage of melatonin receptors with luzindole, whereas melatonin treatment during the light phase attenuated Leishmania infection. In vitro studies corroborated in vivo observations. Melatonin treatment reduced macrophage expression of Cat-2b, Cat1, and ArgI, genes involved in arginine uptake and polyamine synthesis. Indeed, melatonin reduced macrophage arginine uptake by 40%. Putrescine supplementation reverted the attenuation of infectivity by melatonin indicating that its effect was due to the arrest of parasite replication. This study shows that the Leishmania/host interaction varies in a circadian manner according to nocturnal melatonin pineal synthesis. Our results provide new data regarding Leishmania infectiveness and show new approaches for applying agonists of melatonin receptors in Leishmaniasis therapy.

  8. Extension of depth-resolved reconstruction of attenuation coefficients in optical coherence tomography for slim samples

    NASA Astrophysics Data System (ADS)

    Hohmann, Martin; Lengenfelder, B.; Kanawade, R.; Klämpfl, F.; Schmidt, Michael

    2015-12-01

    Coherent light propagating through turbid media is attenuated due to scattering and absorption. The decrease of the intensity of the coherent light is described by the attenuation coefficient. The measured decay of the coherent light through turbid media with optical coherence tomography (OCT) can be used to reconstruct the attenuation coefficient. Since most of the OCT systems work in the near-infrared region, they are the optical window from 800-1400 nm in tissue. Hence, the most part of the attenuation coefficient is caused due to the scattering. Therefore, deriving the attenuation coefficient is one way to get an approximation of the scattering coefficient which is difficult to access even up to day. Moreover, OCT measurements are one of the few possibilities to derive physical properties with micrometre resolution of the media under investigation.

  9. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    NASA Astrophysics Data System (ADS)

    Vega-Carrillo, Héctor René; Manzanares-Acuña, Eduardo; Hernández-Dávila, Víctor Martín; Arcos-Pichardo, Areli; Barquero, Raquel; Iñiguez, M. Pilar

    2006-09-01

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  10. Absorbed Dose in the Uterus of a Three Months Pregnant Woman Due to 131I

    SciTech Connect

    Vega-Carrillo, Hector Rene; Manzanares-Acuna, Eduardo; Hernandez-Davila, Victor Martin; Arcos-Pichardo, Areli; Barquero, Raquel; Iniguez, M. Pilar

    2006-09-08

    The use of 131I is widely used in diagnostic and treatment of patients. If the patient is pregnant the 131I presence in the thyroid it becomes a source of constant exposition to other organs and the fetus. In this study the absorbed dose in the uterus of a 3 months pregnant woman with 131I in her thyroid gland has been calculated. The dose was determined using Monte Carlo methods in which a detailed model of the woman has been developed. The dose was also calculated using a simple procedure that was refined including the photons' attenuation in the woman organs and body. To verify these results an experiment was carried out using a neck phantom with 131I. Comparing the results it was found that the simple calculation tend to overestimate the absorbed dose, by doing the corrections due to body and organs photon attenuation the dose is 0.14 times the Monte Carlo estimation.

  11. Principles underlying rational design of live attenuated influenza vaccines

    PubMed Central

    Jang, Yo Han

    2012-01-01

    Despite recent innovative advances in molecular virology and the developments of vaccines, influenza virus remains a serious burden for human health. Vaccination has been considered a primary countermeasure for prevention of influenza infection. Live attenuated influenza vaccines (LAIVs) are particularly attracting attention as an effective strategy due to several advantages over inactivated vaccines. Cold-adaptation, as a classical means for attenuating viral virulence, has been successfully used for generating safe and effective donor strains of LAIVs against seasonal epidemics and occasional pandemics. Recently, the advent of reverse genetics technique expedited a variety of rational strategies to broaden the pool of LAIVs. Considering the breadth of antigenic diversity of influenza virus, the pool of LAIVs is likely to equip us with better options for controlling influenza pandemics. With a brief reflection on classical attenuating strategies used at the initial stage of development of LAIVs, especially on the principles underlying the development of cold-adapted LAIVs, we further discuss and outline other attenuation strategies especially with respect to the rationales for attenuation, and their practicality for mass production. Finally, we propose important considerations for a rational vaccine design, which will provide us with practical guidelines for improving the safety and effectiveness of LAIVs. PMID:23596576

  12. Attenuation of short stress pulses in strongly nonlinear dissipative metamaterial

    NASA Astrophysics Data System (ADS)

    Xu, Yichao; Nesterenko, Vitali F.

    2015-03-01

    Attenuation of short stress pulses under different levels of precompression was investigated in a one-dimensional strongly nonlinear discrete metamaterial assembled using alternating steel disks and toroidal Nitrile O-rings. The results were compared with the numerical modeling. A double power-law is used to describe the nonlinear interaction between the disks due to the compression of rubber O-rings. The dispersion behavior caused by the periodic arrangement of elements is contributing to the attenuation of pulse, but could not explain the experimental observations. It was explained by taking into account the nonlinear viscous behavior of O-rings. The numerical simulations were able to predict the dependence of the signal speed on the precompression force, a significant decrease of the pulse width with the precompression and the attenuation of the leading positive pulse, the latter of major significance in the protection against impact. This strongly nonlinear dissipative metamaterial has a potential for attenuation of dynamic loading and allows an enhanced tunability of signal speed and degree of attenuation.

  13. Mid frequency shallow water fine-grained sediment attenuation measurements.

    PubMed

    Holland, Charles W; Dosso, Stan E

    2013-07-01

    Attenuation is perhaps the most difficult sediment acoustic property to measure, but arguably one of the most important for predicting passive and active sonar performance. Measurement techniques can be separated into "direct" measurements (e.g., via sediment probes, sediment cores, and laboratory studies on "ideal" sediments) which are typically at high frequencies, O(10(4)-10(5)) Hz, and "indirect" measurements where attenuation is inferred from long-range propagation or reflection data, generally O(10(2)-10(3)) Hz. A frequency gap in measurements exists in the 600-4000 Hz band and also a general acknowledgement that much of the historical measurements on fine-grained sediments have been biased due to a non-negligible silt and sand component. A shallow water measurement technique using long range reverberation is critically explored. An approximate solution derived using energy flux theory shows that the reverberation is very sensitive to depth-integrated attenuation in a fine-grained sediment layer and separable from most other unknown geoacoustic parameters. Simulation using Bayesian methods confirms the theory. Reverberation measurements across a 10 m fine-grained sediment layer yield an attenuation of 0.009 dB/m/kHz with 95% confidence bounds of 0.006-0.013 dB/m/kHz. This is among the lowest values for sediment attenuation reported in shallow water.

  14. The Gas Flow from the Gas Attenuator to the Beam Line

    SciTech Connect

    Ryutov, D.D.

    2010-12-03

    The gas leak from the gas attenuator to the main beam line of the Linac Coherent Light Source has been evaluated, with the effect of the Knudsen molecular beam included. It has been found that the gas leak from the gas attenuator of the present design, with nitrogen as a working gas, does not exceed 10{sup -5} torr x l/s even at the highest pressure in the main attenuation cell (20 torr).

  15. Antiaging Gene Klotho Attenuates Pancreatic β-Cell Apoptosis in Type 1 Diabetes.

    PubMed

    Lin, Yi; Sun, Zhongjie

    2015-12-01

    Apoptosis is the major cause of death of insulin-producing β-cells in type 1 diabetes mellitus (T1DM). Klotho is a recently discovered antiaging gene. We found that the Klotho gene is expressed in pancreatic β-cells. Interestingly, halplodeficiency of Klotho (KL(+/-)) exacerbated streptozotocin (STZ)-induced diabetes (a model of T1DM), including hyperglycemia, glucose intolerance, diminished islet insulin storage, and increased apoptotic β-cells. Conversely, in vivo β-cell-specific expression of mouse Klotho gene (mKL) attenuated β-cell apoptosis and prevented STZ-induced diabetes. mKL promoted cell adhesion to collagen IV, increased FAK and Akt phosphorylation, and inhibited caspase 3 cleavage in cultured MIN6 β-cells. mKL abolished STZ- and TNFα-induced inhibition of FAK and Akt phosphorylation, caspase 3 cleavage, and β-cell apoptosis. These promoting effects of Klotho can be abolished by blocking integrin β1. Therefore, these cell-based studies indicated that Klotho protected β-cells by inhibiting β-cell apoptosis through activation of the integrin β1-FAK/Akt pathway, leading to inhibition of caspase 3 cleavage. In an autoimmune T1DM model (NOD), we showed that in vivo β-cell-specific expression of mKL improved glucose tolerance, attenuated β-cell apoptosis, enhanced insulin storage in β-cells, and increased plasma insulin levels. The beneficial effect of Klotho gene delivery is likely due to attenuation of T-cell infiltration in pancreatic islets in NOD mice. Overall, our results demonstrate for the first time that Klotho protected β-cells in T1DM via attenuating apoptosis. PMID:26340932

  16. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design.

    PubMed

    Yamshchikov, Vladimir; Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-01

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E138K and K279M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use.

  17. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    SciTech Connect

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  18. Repetition priming results in sensitivity attenuation

    PubMed Central

    Allenmark, Fredrik; Hsu, Yi-Fang; Roussel, Cedric; Waszak, Florian

    2015-01-01

    Repetition priming refers to the change in the ability to perform a task on a stimulus as a consequence of a former encounter with that very same item. Usually, repetition results in faster and more accurate performance. In the present study, we used a contrast discrimination protocol to assess perceptual sensitivity and response bias of Gabor gratings that are either repeated (same orientation) or alternated (different orientation). We observed that contrast discrimination performance is worse, not better, for repeated than for alternated stimuli. In a second experiment, we varied the probability of stimulus repetition, thus testing whether the repetition effect is due to bottom-up or top-down factors. We found that it is top-down expectation that determines the effect. We discuss the implication of these findings for repetition priming and related phenomena as sensory attenuation. This article is part of a Special Issue entitled SI: Prediction and Attention. PMID:25819554

  19. Effects of elastic focusing on global models of Rayleigh wave attenuation

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Ritsema, Jeroen

    2016-11-01

    Rayleigh wave amplitudes are the primary data set used for imaging shear attenuation in the upper mantle on a global scale. In addition to attenuation, surface-wave amplitudes are influenced by excitation at the earthquake source, focusing and scattering by elastic heterogeneity, and local structure at the receiver and the instrument response. The challenge of isolating the signal of attenuation from these other effects limits both the resolution of global attenuation models and the level of consistency between different global attenuation studies. While the source and receiver terms can be estimated using relatively simple approaches, focusing effects on amplitude are a large component of the amplitude signal and are sensitive to multiscale velocity anomalies. In this study we investigate how different theoretical treatments for focusing effects on Rayleigh wave amplitude influence the retrieved attenuation models. A new data set of fundamental-mode Rayleigh wave phase and amplitude at periods of 50 and 100 sis analysed. The amplitudes due to focusing effects are predicted using the great-circle ray approximation (GCRA), exact ray theory (ERT), and finite-frequency theory (FFT). Phase-velocity maps expanded to spherical-harmonic degree 20 and degree 40 are used for the predictions. After correction for focusing effects, the amplitude data are inverted for global attenuation maps and frequency-dependent source and receiver correction factors. The degree-12 attenuation maps, based on different corrections for focusing effects, all contain the same large-scale features, though the magnitude of the attenuation variations depends on the focusing correction. The variance reduction of the amplitudes strongly depends on the predicted focusing amplitudes, with the highest variance reduction for the ray-based approaches at 50 s and for FFT at 100 s. Although failure to account for focusing effects introduces artefacts into the attenuation models at higher spherical

  20. A rack-mounted precision waveguide-below-cutoff attenuator with an absolute electronic readout

    NASA Technical Reports Server (NTRS)

    Cook, C. C.

    1974-01-01

    A coaxial precision waveguide-below-cutoff attenuator is described which uses an absolute (unambiguous) electronic digital readout of displacement in inches in addition to the usual gear driven mechanical counter-dial readout in decibels. The attenuator is rack-mountable and has the input and output RF connectors in a fixed position. The attenuation rate for 55, 50, and 30 MHz operation is given along with a discussion of sources of errors. In addition, information is included to aid the user in making adjustments on the attenuator should it be damaged or disassembled for any reason.

  1. Gas sensor with attenuated drift characteristic

    DOEpatents

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  2. Measured and calculated acoustic attenuation rates of tuned resonator arrays for two surface impedance distribution models with flow

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Abrahamson, A. Louis; Jones, Michael G.

    1988-01-01

    An experiment was performed to validate two analytical models for predicting low frequency attenuation of duct liner configurations built from an array of seven resonators that could be individually tuned via adjustable cavity depths. These analytical models had previously been developed for high frequency aero-engine inlet duct liner design. In the low frequency application, the liner surface impedance distribution is unavoidably spatially varying by virtue of available fabrication techniques. The characteristic length of this spatial variation may be a significant fraction of the acoustic wavelength. Comparison of measured and predicted attenuation rates and transmission losses for both modal decomposition and finite element propagation models were in good to excellent agreement for a test frequency range that included the first and second cavity resonance frequencies. This was true for either of two surface impedance distribution modeling procedures used to simplify the impedance boundary conditions. In the presence of mean flow, measurements revealed a fine scale structure of acoustic hot spots in the attenuation and phase profiles. These details were accurately predicted by the finite element model. Since no impedance changes due to mean flow were assumed, it is concluded that this fine scale structure was due to convective effects of the mean flow interacting with the surface impedance nonuniformities.

  3. Sensitivity of modeled ocean heat content to errors in short wave radiation and its attenuation with depth

    NASA Astrophysics Data System (ADS)

    Shulman, Igor; Gould, Richard W.; Anderson, Stephanie; Sakalaukus, Peter

    2016-05-01

    Short wave radiation (SWR) and its attenuation with depth have a major impact on the vertical distribution of the oceanic water temperature, dynamical processes, and ocean-atmosphere interactions. In numerical modeling of oceanic processes, the SWR usually comes from the atmospheric model predictions, while the short wave attenuation schemes are internally prescribed (estimated) inside the oceanic dynamical model. It has been reported that atmospheric models show a tendency to overestimate the shortwave radiation due to underestimation of predicted low-level clouds. Most existing schemes to specify the attenuation of SWR with depth in numerical models are based on: the Jerlov (1976) water-types classification; climatological estimates of attenuation coefficients or from the biological model predictions of light-absorbing and scattering water constituents. All of the above attenuation schemes are prone to introducing errors in the attenuation of short wave radiation with depth. As a result, we have to deal with two types of errors in the oceanic modeling: those due to the incorrect specification of the magnitude of SWR at the surface (from the atmospheric model), and those due to inaccurate vertical attenuation of SWR (prescribed in the oceanic model). We have developed an approach for estimating errors in the oceanic model heat budget due to errors in surface values of SWR and in its attenuation with depth. Based on this approach, we present examples illustrating sensitivities of the heat budget of the water column to the changes in specification of surface SWR and its attenuation.

  4. Simulating atmospheric free-space optical propagation: rainfall attenuation

    NASA Astrophysics Data System (ADS)

    Achour, Maha

    2002-04-01

    With recent advances and interest in Free-Space Optics (FSO) for commercial deployments, more attention has been placed on FSO weather effects and the availability of global weather databases. The Meteorological Visual Range (Visibility) is considered one of the main weather parameters necessary to estimate FSO attenuation due to haze, fog and low clouds. Proper understanding of visibility measurements conducted throughout the years is essential. Unfortunately, such information is missing from most of the databases, leaving FSO players no choice but to use the standard visibility equation based on 2% contrast and other assumptions on the source luminance and its background. Another challenge is that visibility is measured using the visual wavelength of 550 nm. Extrapolating the measured attenuations to longer infrared wavelengths is not trivial and involves extensive experimentations. Scattering of electromagnetic waves by spherical droplets of different sizes is considered to simulate FSO scattering effects. This paper serves as an introduction to a series of publications regarding simulation of FSO atmospheric propagation. This first part focuses on attenuation due to rainfall. Additional weather parameters, such as rainfall rate, temperature and relative humidity are considered to effectively build the rain model. Comparison with already published experimental measurement is performed to validate the model. The scattering cross section due to rain is derived from the density of different raindrop sizes and the raindrops fall velocity is derived from the overall rainfall rate. Absorption due the presence of water vapor is computed using the temperature and relative humidity measurements.

  5. [ATTENUATED PSYCHOSIS SYNDROME: A LITERATURE REVIEW].

    PubMed

    Szmulewicz, Alejandro; Smith, José M; Valerio, Marina P

    2015-01-01

    Despite recent findings on the treatment of schizophrenia, it is an illness still associated with high morbidity and incapacity in social and work domains. There is a growing interest in examining the phases prior to the development of the illness so as to make early interventions that would potentially change its devastating course. The attenuated psychosis syndrome was included in the section III of the last version of the Diagnostic and Statistical Manual of Mental Disorders as a condition in which a patient exhibits mild psychotic symptoms, an intact reality testing and certain degree of social or occupational impairment. The present work is a review of the available literature on this subject. The main findings were: the risk of conversion to a psychotic disorder is relatively low and there are some variables (social withdrawal, negative symptoms, neurocognitive impairment, poor global functioning and certain neuroimaging findings) that increase this risk. Those people diagnosed with attenuated psychosis syndrome had one or more other current psychiatric comorbid conditions and these are the main reason to warrant medical attention. Regarding to the treatment of this condition, there are available evidence on atypical antipsychotics, cognitive-behavioral therapy and omega 3 fatty acid. PMID:26650554

  6. Natural attenuation processes during in situ capping.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2007-08-01

    Chlorinated solvents are common groundwater contaminants that threaten surface water quality and benthic health when present in groundwater seeps. Aquatic sediments can act as natural biobarriers to detoxify chlorinated solvent plumes via reductive dechlorination. In situ sediment capping, a remedial technique in which clean material is placed at the sediment-water interface, may alter sedimentary natural attenuation processes. This research explores the potential of Anacostia River sediment to naturally attenuate chlorinated solvents under simulated capping conditions. Results of microcosm studies demonstrated that intrinsic dechlorination of dissolved-phase PCE to ethene was possible, with electron donor availability controlling microbial activity. A diverse microbial community was present in the sediment, including multiple Dehalococcoides strains indicated by the amplification of the reductive dehalogenases tceA, vcrA, and bvcA. An upflow column simulating a capped sediment bed subject to PCE-contaminated groundwater seepage lost dechlorination activity with time and only achieved complete dechlorination when microorganisms present in the sediment were provided electron donor. Increases in effluent chloroethene concentrations during the period of biostimulation were attributed to biologically enhanced desorption and the formation of less sorptive dechlorination products. These findings suggest that in situ caps should be designed to account for reductions in natural biobarrier reactivity and for the potential breakthrough of groundwater contaminants. PMID:17822095

  7. Natural attenuation processes during in situ capping.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2007-08-01

    Chlorinated solvents are common groundwater contaminants that threaten surface water quality and benthic health when present in groundwater seeps. Aquatic sediments can act as natural biobarriers to detoxify chlorinated solvent plumes via reductive dechlorination. In situ sediment capping, a remedial technique in which clean material is placed at the sediment-water interface, may alter sedimentary natural attenuation processes. This research explores the potential of Anacostia River sediment to naturally attenuate chlorinated solvents under simulated capping conditions. Results of microcosm studies demonstrated that intrinsic dechlorination of dissolved-phase PCE to ethene was possible, with electron donor availability controlling microbial activity. A diverse microbial community was present in the sediment, including multiple Dehalococcoides strains indicated by the amplification of the reductive dehalogenases tceA, vcrA, and bvcA. An upflow column simulating a capped sediment bed subject to PCE-contaminated groundwater seepage lost dechlorination activity with time and only achieved complete dechlorination when microorganisms present in the sediment were provided electron donor. Increases in effluent chloroethene concentrations during the period of biostimulation were attributed to biologically enhanced desorption and the formation of less sorptive dechlorination products. These findings suggest that in situ caps should be designed to account for reductions in natural biobarrier reactivity and for the potential breakthrough of groundwater contaminants.

  8. Natural and enhanced attenuation of metals

    SciTech Connect

    Rouse, J.V.; Pyrih, R.Z.

    1996-12-31

    The ability of natural earthen materials to attenuate the movement of contamination can be quantified in relatively simple geochemical experiments. In addition, the ability of subsurface material to attenuate potential contaminants can be enhanced through modifications to geochemical parameters such as pH or redox conditions. Such enhanced geochemical attenuation has been demonstrated at a number of sites to be a cost-effective alternative to conventional pump and treat operations. This paper describes the natural attenuation reactions which occur in the subsurface, and the way to quantify such attenuation. It also introduces the concept of enhanced geochemical attenuation, wherein naturally-occurring geochemical reactions can be used to achieve in situ fixation. The paper presents examples where such natural and enhanced attenuation have been implemented as a part of an overall remedy.

  9. The Impact of Stochastic Attenuation on Photometric Redshift Estimates

    NASA Astrophysics Data System (ADS)

    Tepper-García, Thorsten; Fritze-von Alvensleben, Uta

    2007-05-01

    INTRODUCTION: We model the effect of the stochastic absorption by neutral hydrogen (HI) present in the intergalactic medium (IGM), such as Lyalpha Forest, and associated with galaxies (LLS, DLAs), on the photometric redshifts, and compare these results to the predicted photometric redshifts of models where only a mean attenuation is taken into account. METHODS: We model the attenuation due to HI along a random line of sight (LOS) using differential distribution functions constrained from observations (Kim et al. 97,01) in a Monte Carlo fashion (Bershady et al. 99). We then calculate galaxy model spectra of a given spectral type at different redshifts using our Evolutionary Synthesis Code GALEV (Bicker et al. 04), and apply to each spectrum a different attenuation corresponding to a particular random LOS. We obtain in this way an ensemble of attenuated spectral energy distributiond (SED) in the HST and Johnson systems. Using AnalySED (Anders et al. 06), an analysis tool based on a chi-square test, and our template SEDs with mean attenuation-which span a grid in redshift and spectral type-we determine to which extent the redshifts of our simulated spectra are recovered. RESULTS: We find a substantial underestimate of the photometric redshifts of up to Δz=0.3, especially in the range z > 3.0. DISCUSSION: Based on our results, we emphasise the need for the accurate modelling of the attenuation in order to correctly interpret, using evolutionary synthesis codes such as GALEV, the observations of (high-redshift) galaxies observed in deep surveys, for which only photometric information is available.

  10. Pressure wave attenuation and dispersion in two-phase flow

    SciTech Connect

    Kovarik, F.S.; Bankoff, S.G.

    1987-01-01

    The pressure shock wave propagation behavior in three vapor-liquid systems, steam-water, ethanol-ethanol, and Freon-Freon, has been investigated over a void fraction, ..cap alpha.., range from zero to 30%. Attenuation and dispersion behavior seems relatively insensitive (no order-of-magnitude deviations) to differences in system physical properties. The attenuation coefficient of water, BETA/sub H/2/sub O/ ranged from 0.021 cm/sup -1/ at 5% void to 0.072 cm/sup -1/ at 30% void fraction. BETA/sub F113/ was as much as 40% lower than BETA/sub ETOH/ or BETA/sub H/2/sub O/ for void fractions less than 20% where the initial wave amplitude, ..delta..P/sub o/ was 2.90 bar. Larger amplitude waves (4.14 bar) demonstrated a greater rate of attenuation throughout the void fraction range, more pronounced in the lower regions: 80% greater for 5% steam-water and 120% greater for 5% Freon-113. The attenuation data from the present investigation tend to lie between one- and two-component acoustic attenuation theories and data. However, near the resonant bubble frequency, the two component results approach the one-component region. As the void fraction is decreased, the one- and two-component acoustic theories and data (small and finite amplitude, including the present experimentation) smoothly converge.

  11. Pulse transducer with artifact signal attenuator. [heart rate sensors

    NASA Technical Reports Server (NTRS)

    Cash, W. H., Jr.; Polhemus, J. T. (Inventor)

    1980-01-01

    An artifact signal attenuator for a pulse rate sensor is described. The circuit for attenuating background noise signals is connected with a pulse rate transducer which has a light source and a detector for light reflected from blood vessels of a living body. The heart signal provided consists of a modulated dc signal voltage indicative of pulse rate. The artifact signal resulting from light reflected from the skin of the body comprises both a constant dc signal voltage and a modulated dc signal voltage. The amplitude of the artifact signal is greater and the frequency less than that of the heart signal. The signal attenuator circuit includes an operational amplifier for canceling the artifact signal from the output signal of the transducer and has the capability of meeting packaging requirements for wrist-watch-size packages.

  12. Ulinastatin attenuates brain edema after traumatic brain injury in rats.

    PubMed

    Cui, Tao; Zhu, Gangyi

    2015-03-01

    Traumatic brain injury (TBI) remains the leading cause of injury-related death and disability. Brain edema, one of the most major complications of TBI, contributes to elevated intracranial pressure, and poor prognosis following TBI. The objective of this study was to evaluate whether Ulinastatin (UTI), a serine protease inhibitor, attenuates brain edema following TBI. Our results showed that treatment with UTI at a dose of 50,000 U/kg attenuated the brain edema, as assayed by water content 24 h after TBI induction. This attenuation was associated with a significant decrease of the expression level of aquaporin-4. In addition, we showed that UTI treatment also markedly inhibited the expression of pro-inflammatory cytokines including IL-1β and TNF-α as well as activity of NF-κB. Collectively, our findings suggested that UTI may be a promising strategy to treat brain edema following TBI.

  13. Coriolis attenuation in the A congruent 130--150 region

    SciTech Connect

    Saha, M.; Goswami, A.; Bhattacharya, S.; Sen, S. )

    1990-10-01

    The particle-rotor model has been applied to calculate the band structure in a number of highly neutron deficient odd-{ital A} rare-earth nuclei in the {ital A}{congruent}130--150 region. Several transitional nuclei are also included in the study. The only adjustable parameter, used in the calculation, is the Coriolis attenuation coefficient. However, it is seen that the observed band structures in these nuclei can be reproduced practically without any {ital ad} {ital hoc} reduction of the Coriolis matrix elements. The systematics of the Coriolis attenuation in the neutron-deficient, transitional, and well-deformed rare-earth nuclei are discussed in the light of the present work and several theoretical studies, made earlier. The importance of the pairing interaction in the Coriolis attenuation study is emphasized.

  14. A web-based tutorial for ultrasonic attenuation measurement

    NASA Astrophysics Data System (ADS)

    Margetan, Frank J.; Barnard, Dan; Orman, David; Feygin, Alex; Pavel, Brittney

    2014-02-01

    An ultrasonic attenuation-versus-frequency curve can serve as an "ultrasonic signature" which may be correlated with microstructural properties of interest such as grain size in metals or porosity level in composites. Attenuation also plays a role in ultrasonic inspections and is consequently a key input into many inspection simulation models. A web-based self-tutorial on practical attenuation measurements is under development. The focus is on pulse/echo immersion measurements made using a broadband transducer to deduce attenuation within the transducer's useable bandwidth. Two approaches are considered: one using a calibration specimen having a known attenuation curve, and one without. In the first approach a back-wall (BW) echo in the calibration specimen is compared with a BW echo in the test specimen. In the second approach various BW reverberation echoes in the test specimen are compared with one another or with a front-wall echo. The web-based tutorial incorporates three classes of materials. The first includes written documentation and videos describing the measurement setups, the data-acquisition and analysis procedures, and the underlying models use to analyze the raw UT data. Secondly, general purpose "stand-alone" data-analysis software is supplied that is designed to be used with any ultrasonic inspection system that can output A-scan data as a text file. This includes both FORTRAN software and Excel spreadsheet calculators that accept A-scan text data as inputs. Thirdly, we supply demonstration software where the data acquisition and analysis procedures are integrated with a specific class of commercial ultrasonic test instruments, namely those running UTEX Winpect control software. This paper provides an overview of the measurement methods and tutorial materials. We also present early results from round-robin trials in which selected metal and composite specimens are being sent to participating partners for attenuation measurement.

  15. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  16. A broadband DC to 20 GHz 3-bit MEMS digital attenuator

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Zhu, Jian; Jiang, Lili; Yu, Yuanwei; Li, Zhiqun

    2016-05-01

    A 3-bit microelectromechanical system (MEMS) digital attenuator is designed with 0–20 GHz bandwidth. The attenuation ranges from 0 to 35 dB with 5 dB step. The attenuator, with the coplanar waveguide (CPW), is implemented by surface sacrificial layer technology. The DC-contact MEMS switches with three contact dimples are symmetrically placed around the T type resistor network, making the switches minimum in number and the structure compact. Through the lumped parameter method, the attenuator has good terminal matches in different attenuation states. The test results show that eight different attenuation states are realized within 0–20 GHz. The attenuation deviation is less than  ±5%, the insertion loss is less than 1.7 dB and the voltage standing wave rations is less than 1.4 under most of the attenuation states. With the MEMS switches and CPW being adopted, the attenuator has the advantages of higher linearity, lower insertion loss and power consumption. The chip size is about 3.2 mm2 including the pad. This work was supported by the International Science & Technology Cooperation Program of China (2013DFB10300).

  17. A broadband DC to 20 GHz 3-bit MEMS digital attenuator

    NASA Astrophysics Data System (ADS)

    Sun, Junfeng; Zhu, Jian; Jiang, Lili; Yu, Yuanwei; Li, Zhiqun

    2016-05-01

    A 3-bit microelectromechanical system (MEMS) digital attenuator is designed with 0-20 GHz bandwidth. The attenuation ranges from 0 to 35 dB with 5 dB step. The attenuator, with the coplanar waveguide (CPW), is implemented by surface sacrificial layer technology. The DC-contact MEMS switches with three contact dimples are symmetrically placed around the T type resistor network, making the switches minimum in number and the structure compact. Through the lumped parameter method, the attenuator has good terminal matches in different attenuation states. The test results show that eight different attenuation states are realized within 0-20 GHz. The attenuation deviation is less than  ±5%, the insertion loss is less than 1.7 dB and the voltage standing wave rations is less than 1.4 under most of the attenuation states. With the MEMS switches and CPW being adopted, the attenuator has the advantages of higher linearity, lower insertion loss and power consumption. The chip size is about 3.2 mm2 including the pad. This work was supported by the International Science & Technology Cooperation Program of China (2013DFB10300).

  18. Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-10-15

    Little is known with respect to the attenuation capacity of karst aquifers. Even less is known about the risk posed by emerging micropollutants in these systems. In order to identify the attenuation potential of karst aquifers in-situ and to estimate the risk posed by micropollutants, a dualtracer test was conducted in this study in order to investigate differential transport in the subsurface: The reactive compound caffeine was used as a tracer to indicate the attenuation capacity within the aquifer in-situ. Due to the low limit of quantification, only small amounts of caffeine needed to be injected. To calibrate a model and to visualize the attenuation of caffeine a conservative reference tracer (uranine) is injected simultaneously. The methodology is tested in a well-characterised karst system in southwest Germany. The results indicate a significantly higher attenuation rate than was expected for karst aquifers. The attenuation is decribed as a first-order process. The corresponding half-life is 104 h. This low half-life suggests that a generally assumed low natural attenuation capacity of karst aquifers is unjustified. The observed mass loss of caffeine illustrates the potential of caffeine to be used as reactive tracer for indicating in-situ attenuation capacity within highly hydraulically conductive systems, such as karst aquifers. Due to the high attenuation rate of caffeine it does not pose a threat as a long-time contaminant. In combination with a conservative reference tracer an economical and environmentally benign method is presented in this manuscript for the in-situ determination of the attenuation capacity of highly conductive aquifer systems.

  19. Identification of the attenuation potential of a karst aquifer by an artificial dualtracer experiment with caffeine.

    PubMed

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-10-15

    Little is known with respect to the attenuation capacity of karst aquifers. Even less is known about the risk posed by emerging micropollutants in these systems. In order to identify the attenuation potential of karst aquifers in-situ and to estimate the risk posed by micropollutants, a dualtracer test was conducted in this study in order to investigate differential transport in the subsurface: The reactive compound caffeine was used as a tracer to indicate the attenuation capacity within the aquifer in-situ. Due to the low limit of quantification, only small amounts of caffeine needed to be injected. To calibrate a model and to visualize the attenuation of caffeine a conservative reference tracer (uranine) is injected simultaneously. The methodology is tested in a well-characterised karst system in southwest Germany. The results indicate a significantly higher attenuation rate than was expected for karst aquifers. The attenuation is decribed as a first-order process. The corresponding half-life is 104 h. This low half-life suggests that a generally assumed low natural attenuation capacity of karst aquifers is unjustified. The observed mass loss of caffeine illustrates the potential of caffeine to be used as reactive tracer for indicating in-situ attenuation capacity within highly hydraulically conductive systems, such as karst aquifers. Due to the high attenuation rate of caffeine it does not pose a threat as a long-time contaminant. In combination with a conservative reference tracer an economical and environmentally benign method is presented in this manuscript for the in-situ determination of the attenuation capacity of highly conductive aquifer systems. PMID:22877878

  20. Studies on Shock Attenuation in Plastic Materials and Applications in Detonation Wave Shaping

    NASA Astrophysics Data System (ADS)

    Khurana, Ritu; Gautam, P. C.; Rai, Rajwant; Kumar, Anil; Sharma, A. C.; Singh, Manjit, Dr

    2012-07-01

    Pressure in plastic materials attenuates due to change of impedance, phase change in the medium and plastic deformation. A lot of theoretical and experimental efforts have been devoted to the attenuation of shock wave produced by the impact of explosive driven flyer plate. However comparatively less work has been done on the attenuation of shock waves due to contact explosive detonation. Present studies deal with the attenuation of explosive driven shock waves in various plastic materials and its applications in design of Hybrid Detonation Wave Generator In present work shock attenuating properties of different polymers such as Perspex, Teflon, nylon, polypropylene and viton has been studied experimentally using rotating mirror streak camera and electrical position pins. High explosive RDX/TNT and OCTOL of diameter 75-100mm and thickness 20 to 50mm were detonated to induce shock wave in the test specimens. From experimental determined shock velocity at different locations the attenuation in shock pressure was calculated. The attenuation of shock velocity with thickness in the material indicates exponential decay according to relation US = UOexp(-ax). In few of the experiments manganin gauge of resistance 50 ohms was used to record stress time profile across shock wave. The shock attenuation data of Viton has successfully been used in the design of hybrid detonation wave generator using Octol as high explosive. While selecting a material it was ensured that the attenuated shock remains strong enough to initiate an acceptor explosive. Theoretical calculation were supported by Autodyne 2D hydro-code simulation which were validated with the experiments conducted using high speed streak photography and electrical shock arrival pins. Shock attenuation data of Perspex was used to establishing card gap test and wedge test in which test items is subjected to known pressure pulse by selecting the thickness of the plastic material.

  1. Analysis of multiscale scattering and poroelastic attenuation in a real sedimentary rock sequence

    PubMed

    Hackert; Parra

    2000-06-01

    Compressional waves in heterogeneous permeable media experience attenuation from both scattering and induced pore scale flow of the viscous saturating fluid. For a real, finely sampled sedimentary sequence consisting of 255 layers and covering 30 meters of depth, elastic and poroelastic computer models are applied to investigate the relative importance of scattering and fluid-flow attenuation. The computer models incorporate the known porosity, permeability, and elastic properties of the sand/shale sequence in a binary medium, plane layered structure. The modeled elastic scattering attenuation is well described by stochastic medium theory if two-length scale statistics are applied to reflect the relative thickness of the shale layers when compared to the sand layers. Under the poroelastic Biot/squirt flow model, fluid-flow attenuation from the moderate permeability (10(-14) m2) sands may be separated in the frequency domain from the attenuation due to the low permeability (5 x 10(-17) m2) shale layers. Based on these models, the overall attenuation is well approximated by the sum of the scattering attenuation from stochastic medium theory and the volume weighted average of the attenuations of the sequence member rocks. These results suggest that a high permeability network of sediments or fractures in a lower permeability host rock may have a distinct separable attenuation signature, even if the overall volume of high permeability material is low. Depending on the viscosity of the saturating fluid, the magnitude of the flow-based attenuation can dominate or be dominated by the scattering attenuation at typical sonic logging frequencies (approximately 10 kHz).

  2. Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones.

    PubMed

    Rivett, Michael O; Wealthall, Gary P; Dearden, Rachel A; McAlary, Todd A

    2011-04-25

    Reliable prediction of the unsaturated zone transport and attenuation of dissolved-phase VOC (volatile organic compound) plumes leached from shallow source zones is a complex, multi-process, environmental problem. It is an important problem as sources, which include solid-waste landfills, aqueous-phase liquid discharge lagoons and NAPL releases partially penetrating the unsaturated zone, may persist for decades. Natural attenuation processes operating in the unsaturated zone that, uniquely for VOCs includes volatilisation, may, however, serve to protect underlying groundwater and potentially reduce the need for expensive remedial actions. Review of the literature indicates that only a few studies have focused upon the overall leached VOC source and plume scenario as a whole. These are mostly modelling studies that often involve high strength, non-aqueous phase liquid (NAPL) sources for which density-induced and diffusive vapour transport is significant. Occasional dissolved-phase aromatic hydrocarbon controlled infiltration field studies also exist. Despite this lack of focus on the overall problem, a wide range of process-based unsaturated zone - VOC research has been conducted that may be collated to build good conceptual model understanding of the scenario, particularly for the much studied aromatic hydrocarbons and chlorinated aliphatic hydrocarbons (CAHs). In general, the former group is likely to be attenuated in the unsaturated zone due to their ready aerobic biodegradation, albeit with rate variability across the literature, whereas the fate of the latter is far less likely to be dominated by a single mechanism and dependent upon the relative importance of the various attenuation processes within individual site - VOC scenarios. Analytical and numerical modelling tools permit effective process representation of the whole scenario, albeit with potential for inclusion of additional processes - e.g., multi-mechanistic sorption phase partitioning, and provide

  3. Computing the Seismic Attenuation in Complex Porous Materials

    NASA Astrophysics Data System (ADS)

    Masson, Yder Jean

    The present work analyzes seismic attenuation due to wave-induced flow in complex poroelastic materials containing an arbitrary amount of heterogeneity and fully or partially saturated with a mixture of fluids. In the first part, two distinct finite-difference (FDTD) numerical schemes for solving Biot's poroelastic set of equations are introduced. The first algorithm is designed to be used in the seismic band of frequencies; i.e., when the permeability of the medium doesn't depend on frequency. The second algorithm accounts for viscous boundary layers that appear in the pores at high frequencies (in this case, the permeability depends on frequency) and can be used across the entire band of frequencies. An innovative numerical method is presented in the second part allowing computation of seismic attenuation due to wave-induced flow for any poroelastic material. This method is applied to study the attenuation associated with different classes of materials saturated with a single fluid (water). For a material having a self-affine (fractal) distribution of elastic properties, it is demonstrated that frequency dependence in the attenuation is controlled by a single parameter that is directly related to the fractal dimension of the material. For anisotropic materials, a relation is established between the attenuation levels associated with waves propagating in different directions and the geometrical aspect ratio of the heterogeneities present within the material. The third part concerns the study of attenuation associated with materials having a homogeneous solid skeleton saturated with a mixture of immiscible fluids. The special case where the distribution of fluids is the result of an invasion-percolation process is treated in detail. Finally, the last part presents a novel experimental setup designed to measure fluctuations of the elastic properties in real rock samples. This device performs automated micro-indentation tests at the surface of rock samples and

  4. In vitro measurement of attenuation and nonlinear scattering from Echogenic liposomes

    PubMed Central

    Paul, Shirshendu; Russakow, Daniel; Nahire, Rahul; Nandy, Tapas; Ambre, Avinash H.; Katti, Kalpana; Mallik, Sanku; Sarkar, Kausik

    2013-01-01

    Echogenic liposomes (ELIP) are an excellent candidate for concurrent imaging and drug delivery applications. They combine the advantages of liposomes—biocompatibility and ability to encapsulate both hydrophobic and hydrophilic drugs—with strong reflections of ultrasound. The objective of this study is to perform a detailed in vitro acoustic characterization—including nonlinear scattering that has not been studied before—along with an investigation of the primary mechanism of echogenicity. Both components are critical for developing viable clinical applications of ELIP. Mannitol, a cryoprotectant, added during the preparation of ELIP is commonly believed to be critical in making them echogenic. Accordingly, here ELIP prepared with varying amount of mannitol concentration are investigated for their pressure dependent linear and non-linear scattered responses. The average diameter of these liposomes is measured to be 125–185 nm. But they have a broad size distribution including liposomes with diameters over a micro-meter as observed by TEM and AEM. These larger liposomes are critical for the overall echogenicity. Attenuation through liposomal solution is measured with four different transducers (central frequencies 2.25, 3.5, 5, 10 MHz). Measured attenuation increases linearly with liposome concentration indicating absence of acoustic interactions between liposomes. Due to the broad size distribution, the attenuation shows a flat response without a distinct peak in the range of frequencies (1–12 MHz) investigated. A 15–20 dB enhancement is observed both for the scattered fundamental and the second harmonic responses at 3.5 MHz excitation frequency and 50–800 kPa amplitude. It demonstrates the efficacy of ELIP for fundamental as well as harmonic ultrasound imaging. The scattered response however does not show any distinct subharmonic peak for the acoustic excitation parameters studied. Small amount of mannitol proves critical for echogenicity. However

  5. Body Wave Crustal Attenuation Characteristics in the Garhwal Himalaya, India

    NASA Astrophysics Data System (ADS)

    Negi, Sanjay S.; Paul, Ajay; Joshi, Anand; Kamal

    2015-06-01

    We estimate frequency-dependent attenuation of P and S waves in Garhwal Himalaya using the extended coda normalization method for the central frequencies 1.5, 2, 3, 4, 6, 8, 10, 12, and 16 Hz, with earthquake hypocentral distance ranging from 27 to 200 km. Forty well-located local earthquake waveforms were used to study the seismic attenuation characteristics of the Garhwal Himalaya, India, as recorded by eight stations operated by Wadia Institute of Himalayan Geology, Dehradun, India, from 2007 to 2012. We find frequency-dependent P and S wave quality factors as defined by the relations Q P = 56 ± 8 f 0.91±0.002 and Q S = 151 ± 8 f 0.84±0.002 by fitting a power-law frequency dependence model for the estimated values over the whole region. Both the Q P and Q S values indicate strong attenuation in the crust of Garhwal Himalaya. The ratio of Q S/ Q P > 1 obtained for the entire analyzed frequency range suggests that the scattering loss is due to a random and high degree of heterogeneities in the earth medium, playing an important role in seismic wave attenuation in the Himalayan crust.

  6. Two-dimensional acoustic attenuation mapping of high-temperature interstitial ultrasound lesions

    NASA Astrophysics Data System (ADS)

    Tyréus, Per Daniel; Diederich, Chris

    2004-02-01

    Acoustic attenuation change in biological tissues with temperature and time is a critical parameter for interstitial ultrasound thermal therapy treatment planning and applicator design. Earlier studies have not fully explored the effects on attenuation of temperatures (75-95 °C) and times (5-15 min) common in interstitial ultrasound treatments. A scanning transmission ultrasound attenuation measurement system was devised and used to measure attenuation changes due to these types of thermal exposures. To validate the approach and to loosely define expected values, attenuation changes in degassed ex vivo bovine liver, bovine brain and chicken muscle were measured after 10 min exposures in a water bath to temperatures up to 90 °C. Maximum attenuation increases of approximately seven, four and two times the values at 37 °C were measured for the three tissue models at 5 MHz. By using the system to scan over lesions produced using interstitial ultrasound applicators, 2D contour maps of attenuation were produced. Attenuation profiles measured through the centrelines of lesions showed that attenuation was highest close to the applicator and decreased with radial distance, as expected with decreasing thermal exposure. Attenuation values measured in profiles through lesions were also shown to decrease with reduced power to the applicator. Attenuation increases in 2D maps of interstitial ultrasound lesions in ex vivo chicken breast, bovine liver and bovine brain were correlated with visible tissue coagulation. While regions of visible coagulation corresponded well to contours of attenuation increase in liver and chicken, no lesion was visible under the same experimental conditions in brain, due primarily to the heterogeneity of the tissue. Acoustic and biothermal simulations were employed to show that attenuation models taking into account these attenuation changes at higher temperatures and longer times were better able to fit experimental data than previous models. These

  7. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems.

  8. [Attenuation of photosynthetically available radiation (PAR) in Meiliang Bay under different winds and waves].

    PubMed

    Zhang, Yunlin; Qin, Boqiang; Chen, Weimin; Hu, Weiping; Gao, Guang; Zhu, Guangwei; Luo, Liancong

    2005-06-01

    Based on the successive underwater irradiance measurement in situ from Jul. 12 to 17 in 2003, the attenuation of photosynthetically available radiation (PAR) and euphotic depth in Meiliang Bay were analyzed under different winds and waves. The results showed that the downward PAR attenuation coefficients ranged from 2.63 to 4.7 m(-1), with an average of 3.63 +/- 0.47 x m(-1), and the corresponding euphotic depth ranged from 0.98 to 1.75 m, with an average of 1.29 +/- 0.18 m, which demonstrated that phytoplankton and macrophyte could not grow below 1.5 m due to the lack of adequate solar radiation. The total suspended solids resulted from wind and wave increased the attenuation of light, with the downward attenuation coefficients of PAR being 2.63, 3.72 and 4.37 x m(-1) under small, medium and large wind and wave, respectively. Significant linear correlations were found between transparence, PAR attenuation coefficient, euphotic depth and total suspended solid, especially inorganic suspended solid, while chlorophyll a was the most nonsignificant light attenuator. Multiple stepwise linear regressions showed that inorganic suspended solid was the most important light attenuator dominating the light attenuation in wind-exposed Meiliang Bay.

  9. [Attenuation of photosynthetically available radiation (PAR) in Meiliang Bay under different winds and waves].

    PubMed

    Zhang, Yunlin; Qin, Boqiang; Chen, Weimin; Hu, Weiping; Gao, Guang; Zhu, Guangwei; Luo, Liancong

    2005-06-01

    Based on the successive underwater irradiance measurement in situ from Jul. 12 to 17 in 2003, the attenuation of photosynthetically available radiation (PAR) and euphotic depth in Meiliang Bay were analyzed under different winds and waves. The results showed that the downward PAR attenuation coefficients ranged from 2.63 to 4.7 m(-1), with an average of 3.63 +/- 0.47 x m(-1), and the corresponding euphotic depth ranged from 0.98 to 1.75 m, with an average of 1.29 +/- 0.18 m, which demonstrated that phytoplankton and macrophyte could not grow below 1.5 m due to the lack of adequate solar radiation. The total suspended solids resulted from wind and wave increased the attenuation of light, with the downward attenuation coefficients of PAR being 2.63, 3.72 and 4.37 x m(-1) under small, medium and large wind and wave, respectively. Significant linear correlations were found between transparence, PAR attenuation coefficient, euphotic depth and total suspended solid, especially inorganic suspended solid, while chlorophyll a was the most nonsignificant light attenuator. Multiple stepwise linear regressions showed that inorganic suspended solid was the most important light attenuator dominating the light attenuation in wind-exposed Meiliang Bay. PMID:16180769

  10. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. PMID:24908335

  11. Attenuation of shock waves propagating through nano-structured porous materials

    NASA Astrophysics Data System (ADS)

    Al-Qananwah, Ahmad K.; Koplik, Joel; Andreopoulos, Yiannis

    2013-07-01

    Porous materials have long been known to be effective in energy absorption and shock wave attenuation. These properties make them attractive in blast mitigation strategies. Nano-structured materials have an even greater potential for blast mitigation because of their high surface-to-volume ratio, a geometric parameter which substantially attenuates shock wave propagation. A molecular dynamics approach was used to explore the effects of this remarkable property on the behavior of traveling shocks impacting on solid materials. The computational setup included a moving piston, a gas region and a target solid wall with and without a porous structure. The gas and porous solid were modeled by Lennard-Jones-like and effective atom potentials, respectively. The shock wave is resolved in space and time and its reflection from a solid wall is gradual, due to the wave's finite thickness, and entails a self-interaction as the reflected wave travels through the incoming incident wave. Cases investigated include a free standing porous structure, a porous structure attached to a wall and porous structures with graded porosity. The effects of pore shape and orientation have been also documented. The results indicate that placing a nano-porous material layer in front of the target wall reduced the stress magnitude and the energy deposited inside the solid by about 30 percent, while at the same time substantially decreasing the loading rate.

  12. Global Attenuation Model of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2015-12-01

    We present a three-dimensional shear attenuation model based on a massive surface wave data-set (372,629 Rayleigh waveforms analysed in the period range 50-300s by Debayle and Ricard, 2012). For each seismogram, this approach yields depth-dependent path average models of shear velocity and quality factor, and a set of fundamental and higher-mode dispersion and attenuation curves. We combine these attenuation measurements in a tomographic inversion after a careful rejection of the noisy data. We first remove data likely to be biased by a poor knowledge of the source. Then we assume that waves corresponding to events having close epicenters and recorded at the same station sample the same elastic and anelastic structure, we cluster the corresponding rays and average the attenuation measurements. Logarithms of the attenuations are regionalized using the non-linear east square formalism of Tarantola and Valette (1982), resulting in attenuation tomographic maps between 50s and 300s. After a first inversion, outlyers are rejected and a second inversion yields a moderate variance reduction of about 20%. We correct the attenuation curves for focusing effect using the linearized ray theory of Woodhouse and Wong (1986). Accounting for focussing effects allows building tomographic maps with variance reductions reaching 40%. In the period range 120-200s, the root mean square of the model perturbations increases from about 5% to 20%. Our 3-D attenuation models present strong agreement with surface tectonics at period lower than 200s. Areas of low attenuation are located under continents and areas of high attenuation are associated with oceans. Surprisingly, although mid oceanic ridges are located in attenuating regions, their signature, even if enhanced by focusing corrections, remains weaker than in the shear velocity models. Synthetic tests suggests that regularisation contributes to damp the attenuation signature of ridges, which could therefore be underestimated.

  13. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  14. Gust response of commercial jet aircraft including effects of autopilot operation

    NASA Technical Reports Server (NTRS)

    Goldberg, J. H.

    1982-01-01

    A simplified theory of aircraft vertical acceleration gust response based on a model including pitch, vertical displacement and control motions due to autopilot operation is presented. High-order autopilot transfer functions are utilized for improved accuracy in the determination of the overall response characteristics. Four representative commercial jet aircraft were studied over a wide range of operating conditions and comparisons of individual responses are given. It is shown that autopilot operation relative to the controls fixed case causes response attenuation of from 10 percent to approximately 25 percent depending on flight condition and increases in crossing number up to 30 percent, with variations between aircraft of from 5 percent to 10 percent, in general, reflecting the differences in autopilot design. A detailed computer program description and listing of the calculation procedure suitable for the general application of the theory to any airplane autopilot combination is also included.

  15. Differential dust attenuation in CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Cid Fernandes, R.; Amorim, A. L.; Lacerda, E. A. D.; Schlickmann, M.; Wild, V.; Kennicutt, R. C.

    2016-06-01

    Dust attenuation has long been treated as a simple parameter in SED fitting. Real galaxies are, however, much more complicated: The measured dust attenuation is not a simple function of the dust optical depth, but depends strongly on galaxy inclination and the relative distribution of stars and dust. We study the nebular and stellar dust attenuation in CALIFA galaxies, and propose some empirical recipes to make the dust treatment more realistic in spectral synthesis codes. By adding optical recombination emission lines, we find better constraints for differential attenuation. Those recipes can be applied to unresolved galaxy spectra, and lead to better recovered star formation rates.

  16. Tree attenuation at 869 MHz derived from remotely piloted aircraft measurements

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1986-01-01

    Attenuation due to single trees is experimentally investigated using UHF transmissions at 869 MHz between a remotely piloted aircraft and a ground receiver system located in a stationary vehicle. Single trees of each tree type in full foliage were found to attenuate from 10-20 dB, with an average median value of about 12 dB. Attenuation coefficients associated with path lengths through the foliage may on average be about 1 dB/m, with maximum values closer to 2 dB/m.

  17. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  18. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  19. Effect of alumina composition and surface integrity in alumina/epoxy composites on the ultrasonic attenuation properties.

    PubMed

    Cho, Eikhyun; Park, Gwanwoo; Lee, Jae-Wan; Cho, Sung-Min; Kim, Taekyung; Kim, Joongeok; Choi, Wonjoon; Ohm, Won-Suk; Kang, Shinill

    2016-03-01

    We report a method of fabricating backing blocks for ultrasonic imaging transducers, using alumina/epoxy composites. Backing blocks contain scatterers such as alumina particles interspersed in the epoxy matrix for the effective scattering and attenuation of ultrasound. Here, the surface integrity can be an issue, where the composite material may be damaged during machining because of differences in strength, hardness and brittleness of the hard alumina particles and the soft epoxy matrix. Poor surface integrity results in the formation of air cavities between the backing block and the piezoelectric element upon assembly, hence the increased reflection off the backing block and the eventual degradation in image quality. Furthermore, with an issue of poor surface integrity due to machining, it is difficult to increase alumina as scatterers more than a specific mass fraction ratio. In this study, we increased the portion of alumina within epoxy matrix by obtaining an enhanced surface integrity using a net shape fabrication method, and verified that this method could allow us to achieve higher ultrasonic attenuation. Backing blocks were net-shaped with various mass fractions of alumina to characterize the formability and the mechanical properties, including hardness, surface roughness and the internal micro-structure, which were compared with those of machined backing blocks. The ultrasonic attenuation property of the backing blocks was also measured.

  20. Measurement of rainfall path attenuation near nadir: A comparison of radar and radiometer methods at 13.8 GHz

    NASA Astrophysics Data System (ADS)

    Durden, S. L.; Haddad, Z. S.; Im, E.; Kitiyakara, A.; Li, F. K.; Tanner, A. B.; Wilson, W. J.

    1995-07-01

    Rain profile retrieval from spaceborne radar is difficult because of the presence of attenuation at the higher frequencies planned for these systems. One way to reduce the ambiguity in the retrieved rainfall profile is to use the path-integrated attenuation as a constraint. Two techniques for measuring the path-integrated attenuation have been proposed: the radar surface reference technique and microwave radiometry. We compare these two techniques using data acquired by the Airborne Rain Mapping Radar (ARMAR) 13.8-GHz airborne radar and radiometer during the Tropical Ocean-Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE) in the western Pacific Ocean in early 1993. The two techniques have a mean difference close to zero for both nadir and 10° incidence. The RMS difference is 1.4 dB and is reduced to 1 dB or less if points where the radiometer was likely saturated are excluded. Part of the RMS difference can be attributed to variability in the ocean surface cross section due to wind effects and possibly rain effects. The results presented here are relevant for the Tropical Rainfall Measuring Mission, which will include a 13.8-GHz precipitation radar.

  1. Efficacy and effectiveness of live attenuated influenza vaccine in school-age children.

    PubMed

    Coelingh, Kathleen; Olajide, Ifedapo Rosemary; MacDonald, Peter; Yogev, Ram

    2015-01-01

    Evidence of high efficacy of live attenuated influenza vaccine (LAIV) from randomized controlled trials is strong for children 2-6 years of age, but fewer data exist for older school-age children. We reviewed the published data on efficacy and effectiveness of LAIV in children ≥5 years. QUOSA (Elsevier database) was searched for articles published from January 1990 to June 2014 that included 'FluMist', 'LAIV', 'CAIV', 'cold adapted influenza vaccine', 'live attenuated influenza vaccine', 'live attenuated cold adapted' or 'flu mist'. Studies evaluated included randomized controlled trials, effectiveness and indirect protection studies. This review demonstrates that LAIV has considerable efficacy and effectiveness in school-age children.

  2. Subduction zone guided waves: 3D modelling and attenuation effects

    NASA Astrophysics Data System (ADS)

    Garth, T.; Rietbrock, A.

    2013-12-01

    Waveform modelling is an important tool for understanding complex seismic structures such as subduction zone waveguides. These structures are often simplified to 2D structures for modelling purposes to reduce computational costs. In the case of subduction zone waveguide affects, 2D models have shown that dispersed arrivals are caused by a low velocity waveguide, inferred to be subducted oceanic crust and/or hydrated outer rise normal faults. However, due to the 2D modelling limitations the inferred seismic properties such as velocity contrast and waveguide thickness are still debated. Here we test these limitations with full 3D waveform modelling. For waveguide effects to be observable the waveform must be accurately modelled to relatively high frequencies (> 2 Hz). This requires a small grid spacing due to the high seismic velocities present in subduction zones. A large area must be modelled as well due to the long propagation distances (400 - 600 km) of waves interacting with subduction zone waveguides. The combination of the large model area and small grid spacing required means that these simulations require a large amount of computational resources, only available at high performance computational centres like the UK National super computer HECTOR (used in this study). To minimize the cost of modelling for such a large area, the width of the model area perpendicular to the subduction trench (the y-direction) is made as small as possible. This reduces the overall volume of the 3D model domain. Therefore the wave field is simulated in a model ';corridor' of the subduction zone velocity structure. This introduces new potential sources of error particularly from grazing wave side reflections in the y-direction. Various dampening methods are explored to reduce these grazing side reflections, including perfectly matched layers (PML) and more traditional exponential dampening layers. Defining a corridor model allows waveguide affects to be modelled up to at least 2

  3. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging

    NASA Astrophysics Data System (ADS)

    Eldib, Mootaz; Bini, Jason; Robson, Philip M.; Calcagno, Claudia; Faul, David D.; Tsoumpas, Charalampos; Fayad, Zahi A.

    2015-06-01

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.

  4. Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging.

    PubMed

    Eldib, Mootaz; Bini, Jason; Robson, Philip M; Calcagno, Claudia; Faul, David D; Tsoumpas, Charalampos; Fayad, Zahi A

    2015-06-21

    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated. The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects. Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis. MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use.

  5. Disulfiram Attenuates Osteoclast Differentiation In Vitro: A Potential Antiresorptive Agent

    PubMed Central

    Cheng, Tak S.; Pavlos, Nathan J.; Rea, Sarah; Dai, Kerong; Zheng, Ming H.

    2015-01-01

    Disulfiram (DSF), a cysteine modifying compound, has long been clinically employed for the treatment of alcohol addiction. Mechanistically, DSF acts as a modulator of MAPK and NF-κB pathways signaling pathways. While these pathways are crucial for osteoclast (OC) differentiation, the potential influence of DSF on OC formation and function has not been directly assessed. Here, we explore the pharmacological effects of DSF on OC differentiation, activity and the modulation of osteoclastogenic signaling cascades. We first analyzed cytotoxicity of DSF on bone marrow monocytes isolated from C57BL/6J mice. Upon the establishment of optimal dosage, we conducted osteoclastogenesis and bone resorption assays in the presence or absence of DSF treatment. Luciferase assays in RAW264.7 cells were used to examine the effects of DSF on major transcription factors activation. Western blot, reverse transcription polymerase chain reaction, intracellular acidification and proton influx assays were employed to further dissect the underlying mechanism. DSF treatment dose-dependently inhibited both mouse and human osteoclastogenesis, especially at early stages of differentiation. This inhibition correlated with a decrease in the expression of key osteoclastic marker genes including CtsK, TRAP, DC-STAMP and Atp6v0d2 as well as a reduction in bone resorption in vitro. Suppression of OC differentiation was found to be due, at least in part, to the blockade of several key receptor activators of nuclear factor kappa-B ligand (RANKL)-signaling pathways including ERK, NF-κB and NFATc1. On the other hand, DSF failed to suppress intracellular acidification and proton influx in mouse and human osteoclasts using acridine orange quenching and microsome-based proton transport assays. Our findings indicate that DSF attenuates OC differentiation via the collective suppression of several key RANKL-mediated signaling cascades, thus making it an attractive agent for the treatment of OC

  6. Detailed Study of Seismic Wave Attenuation in Carbonate Rocks: Application on Abu Dhabi Oil Fields

    NASA Astrophysics Data System (ADS)

    Bouchaala, F.; Ali, M. Y.; Matsushima, J.

    2015-12-01

    Seismic wave attenuation is a promising attribute for the petroleum exploration, thanks to its high sensitivity to physical properties of subsurface. It can be used to enhance the seismic imaging and improve the geophysical interpretation which is crucial for reservoir characterization. However getting an accurate attenuation profile is not an easy task, this is due to complex mechanism of this parameter, although that many studies were carried out to understand it. The degree of difficulty increases for the media composed of carbonate rocks, known to be highly heterogeneous and with complex lithology. That is why few attenuation studies were done successfully in carbonate rocks. The main objectives of this study are, Getting an accurate and high resolution attenuation profiles from several oil fields. The resolution is very important target for us, because many reservoirs in Abu Dhabi oil fields are tight.Separation between different modes of wave attenuation (scattering and intrinsic attenuations).Correlation between the attenuation profiles and other logs (Porosity, resistivity, oil saturation…), in order to establish a relationship which can be used to detect the reservoir properties from the attenuation profiles.Comparison of attenuation estimated from VSP and sonic waveforms. Provide spatial distribution of attenuation in Abu Dhabi oil fields.To reach these objectives we implemented a robust processing flow and new methodology to estimate the attenuation from the downgoing waves of the compressional VSP data and waveforms acquired from several wells drilled in Abu Dhabi. The subsurface geology of this area is primarily composed of carbonate rocks and it is known to be highly fractured which complicates more the situation, then we separated successfully the intrinsic attenuation from the scattering. The results show that the scattering is significant and cannot be ignored. We found also a very interesting correlation between the attenuation profiles and the

  7. LONG TERM MONITORING FOR NATURAL ATTENUATION

    EPA Science Inventory

    We have good statistical methods to: (1) determine whether concentrations of a contaminant are attenuating over time, (2) determine the rate of attenuation and confidence interval on the rate, and (3) determine whether concentrations have met a particular clean up goal. We do no...

  8. Low seismic velocities below mid-ocean ridges: Attenuation versus melt retention

    NASA Astrophysics Data System (ADS)

    Goes, Saskia; Armitage, John; Harmon, Nick; Smith, Hannah; Huismans, Ritske

    2012-12-01

    The first comprehensive seismic experiment sampling subridge mantle revealed a pronounced low-velocity zone between 40 and 100 km depth below the East Pacific Rise (EPR) that has been attributed to substantial retained melt fractions of 0.3-2%. Such high melt fractions are at odds with low melt productivity and high melt mobility inferred from petrology and geochemistry. Here, we evaluate whether seismic attenuation can reconcile subridge seismic structure with low melt fractions. We start from a dynamic spreading model which includes melt generation and migration and is converted into seismic structure, accounting for temperature-, pressure-, composition-, phase-, and melt-dependent anharmonicity, and temperature-, pressure-, frequency- and hydration-dependent anelasticity. Our models predict a double low-velocity zone: a shallow—approximately triangular—region due to dry melting, and a low-velocity channel between 60 and 150 km depth dominantly controlled by solid state high-temperature seismic attenuation in a damp mantle, with only a minor contribution of (<0.1%) melt. We test how tomographic inversion influences the imaging of our modeled shear velocity features. The EPR experiment revealed a double low-velocity zone, but most tomographic studies would only resolve the deeper velocity minimum. Experimentally constrained anelasticity formulations produce VSas low as observed and can explain lateral variations in near-ridge asthenospheric VS with ±100 K temperature variations and/or zero to high water content. Furthermore, such QS formulations also reproduce low asthenospheric VS below older oceans and continents from basic lithospheric cooling models. Although these structures are compatible with global QS images, they are more attenuating than permitted by EPR data.

  9. Attenuation of 7 GHz surface acoustic waves on silicon

    NASA Astrophysics Data System (ADS)

    Li, Dongyao; Cahill, David G.

    2016-09-01

    We measured the attenuation of GHz frequency surface acoustic waves (SAWs) on the Si (001) surface using an optical pump-probe technique at temperatures between 300 and 600 K. SAWs are generated and detected by a 700 nm Al grating fabricated by nanoimprint lithography. The grating for SAW generation is separated from the grating for SAW detection by ≈150 μ m . The amplitude of SAWs is attenuated by coupling to bulk waves created by the Al grating, diffraction due to the finite size of the source, and the intrinsic relaxational Akhiezer damping of elastic waves in Si. Thermal phonon relaxation time and Grüneisen parameters are fitted using temperature-dependent measurement. The f Q product of a hypothetical micromechanical oscillator limited by Akhiezer damping at this frequency is ˜3 ×1013 Hz.

  10. Insights into fracture development from microseismic attenuation anisotropy

    NASA Astrophysics Data System (ADS)

    Usher, P. J.; Kendall, J. M.; Kelly, C. M.; Rietbrock, A.

    2013-12-01

    Seismic monitoring is used to investigate hydraulic fracture stimulation and its associated micro-seismicity. Fracture development is expected in the form of fracture sets leading to velocity, permeability and attenuation anisotropy. A temporal variation in these properties is also expected corresponding to the injection of fluids. The velocity anisotropy causes shear wave splitting, creating a fast and a slow S-wave. Here we measure attenuation anisotropy for a dataset from the Cotton Valley formation in east Texas, where a high pressure fluid has been injected at depth to increase the permeability in the formation. The resulting micro-seismicity has been monitored from two borehole arrays of three-component geophones (Rutledge et al., 2004). The log-spectral-ratio method is used to measure attenuation for the fast and the slow S wave. Attenuation is measured as the difference in t* (the accumulated attenuation along a ray path). The events used occur in clusters or multiplets, where the events are co-located in space but not in time. These events show a significant increase in the magnitude of shear wave splitting (Wuestefeld et al., 2011) over a 30 minute time period. An increase in t* is observed for the slow S wave but the fast S wave shows negligible change. This is concurrent with the injection of the high pressure fluid, and the increase in shear wave splitting. It is difficult to explain this observation due to changes in ray path length, or inclination. Using a model of poroelastic flow in fractured media developed by Chapman (2003), we can explain the changes in t* as an increase in fracturing and also a decrease in the aspect ratio of the fractures. Together this work suggests that we have measured temporal changes in attenuation anisotropy and that it is related to the development of fracture networks caused by the hydraulic stimulation. Chapman, M. (2003). Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity

  11. New Results from WOMBAT: Seismic Attenuation Tomography in Southeast Australia

    NASA Astrophysics Data System (ADS)

    Pozgay, S.; Rawlinson, N.; Nayak, A.

    2011-12-01

    New work using data from Australia's WOMBAT array (~600 3-component short-period seismic stations with spacings of 15-50 km) has focused on differential attenuation tomography. We extend prior travel time tomography studies to utilise amplitude data for analysis of the attenuation structure of the lithosphere and upper mantle. We modify the adaptive stacking code of Rawlinson & Kennett (2004) to include frequency-dependent differential δt* attenuation measurements. The method appears to work well with the short-period WOMBAT data, as coherent patterns of δt* are observed for many events. The main advantage of using adaptive stacking is that a large volume of data becomes usable that otherwise has a low signal-to-noise ratio. Analysis of teleseismic P waves recorded mainly from earthquakes in the surrounding subduction zones shows good structural coherency with travel time tomography. We aim to build a comprehensive picture of the attenuation structure of the southeastern portion of Australian continental lithosphere (a region ~1.5x bigger than the area of Texas). Initial results from Southeast Tasmania with high resolution down to >100 km depth clearly delineate the Tamar Fracture System, separating the East and West Tasmanian Terranes. Furthermore, we hope to provide direct comparison and integrative interpretation with travel time anomalies and anisotropy measurements.

  12. Dehydroepiandrosterone Attenuates Cocaine-Seeking Behaviour Independently of Corticosterone Fluctuations.

    PubMed

    Maayan, R; Hirsh, L; Yadid, G; Weizman, A

    2015-11-01

    The neurosteroid dehydroepiandrosterone (DHEA) is involved in the pathophysiology of several psychiatric disorders, including cocaine addiction. We have previously shown that DHEA attenuates cocaine-seeking behaviour, and also that DHEA decreases corticosterone (CORT) levels in plasma and the prefrontal cortex. Previous studies have found that rats demonstrate cocaine-seeking behaviour only when the level of CORT reaches a minimum threshold. In the present study, we investigated whether the attenuating effect of DHEA on cocaine seeking is a result of it reducing CORT levels rather than a result of any unique neurosteroid properties. Rats received either daily DHEA injections (2 mg/kg, i.p.) alone, daily DHEA (2 mg/kg, i.p.) with CORT infusion (to maintain stable basal levels of CORT; 15 mg/kg, s.c.) or vehicle (i.p.) as control, throughout self-administration training and extinction sessions. We found that both DHEA-treated and DHEA + CORT-treated groups showed a significantly lower number of active lever presses compared to controls throughout training and extinction sessions, as well as at cocaine-primed reinstatement. DHEA-treated rats showed lower CORT levels throughout the experimental phases compared to DHEA + CORT-treated and control rats. Additionally, we show that DHEA administered to cocaine-trained rats throughout extinction sessions, or immediately before reinstatement, attenuated cocaine seeking. These findings indicate that DHEA attenuates cocaine-seeking behaviour independently of fluctuations in CORT levels.

  13. Ultrasound attenuation computed tomography assessment of PAGAT gel dose

    NASA Astrophysics Data System (ADS)

    Khoei, S.; Trapp, J. V.; Langton, C. M.

    2014-08-01

    Ultrasound has been previously investigated as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose responses. We extend previous work utilizing a new computed tomography ultrasound scanner comprising of two identical 5 MHz, 128-element linear-array ultrasound transducers, co-axially aligned and submerged in water as a coupling agent, with rotational of the gel dosimeter between the transducers facilitated by a robotic arm. We have investigated the dose-dependence of both ultrasound bulk attenuation and broadband ultrasound attenuation (BUA) for the PAGAT gel dosimeter. The ultrasound bulk attenuation dose sensitivity was found to be 1.46  ±  0.04 dB m -1 Gy -1, being in agreement with previously published results for PAG and MAGIC gels. BUA was also found to be dose dependent and was measured to be 0.024  ±  0.003 dB MHz -1 Gy -1 the advantage of BUA being its insensitivity to frequency-independent attenuation mechanisms including reflection and refraction, thereby minimizing image reconstruction artefacts.

  14. Soil temperature effect in calculating attenuation and retardation factors.

    PubMed

    Paraiba, Lourival Costa; Spadotto, Claudio Aparecido

    2002-09-01

    The effect of annual variation of daily average soil temperature, at different depths, in calculating pesticides ranking indexes retardation factor and attenuation factor is presented. The retardation factor and attenuation factor are two site-specific pesticide numbers, frequently used as screening indicator indexes for pesticide groundwater contamination potential. Generally, in the calculation of these two factors are not included the soil temperature effect on the parameters involved in its calculation. It is well known that the soil temperature affects the pesticide degradation rate, water-air partition coefficient and water-soil partition coefficient. These three parameters are components of the retardation factor and attenuation factor and contribute to determine the pesticide behavior in the environment. The Arrhenius equation, van't Hoff equation and Clausius-Clapeyron equation are used in this work for estimating the soil temperature effect on the pesticide degradation rate, water-air partition coefficient and soil-water partition coefficient, respectively. These dependence relationships, between results of calculating attenuation and retardation factors and the soil temperature at different depths, can aid to understand the potential pesticide groundwater contamination on different weather conditions. Numerical results will be presented with pesticides atrazine and lindane in a soil profile with 20 degrees C constant temperature, minimum and maximum surface temperatures varying and spreading in the soil profile between -5 and 30 degrees C and between 15 and 45 degrees C.

  15. Seismic Attenuation Technology for the Advanced Virgo Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Beker, M. G.; Blom, M.; van den Brand, J. F. J.; Bulten, H. J.; Hennes, E.; Rabeling, D. S.

    The current interferometric gravitational wave detectors are being upgraded to what are termed 'second generation' devices. Sensitivities will be increased by an order of magnitude and these new instruments are expected to uncover the field of gravitational astronomy. A main challenge in this endeavor is the mitigation of noise induced by seismic motion. Detailed studies with Virgo show that seismic noise can be reinjected into the dark fringe signal. For example, laser beam jitter and backscattered light limit the sensitivity of the interferometer. Here, we focus on seismic attenuators based on compact inverted pendulums in combination with geometric anti-prings to obtain 40 dB of attenuation above 4 Hz in six degrees of freedom. Low frequency resonances (< 0.5 Hz) are damped by using a control system based on input from LVDTs and geophones. Such systems are under development for the seismic attenuation of optical benches operated both in air and vacuum. The design and realization of the seismic attenuation system for the Virgo external injection bench, including its control scheme, will be discussed and stand-alone performance presented.

  16. Photoacoustic imaging taking into account thermodynamic attenuation

    NASA Astrophysics Data System (ADS)

    Acosta, Sebastián; Montalto, Carlos

    2016-11-01

    In this paper we consider a mathematical model for photoacoustic imaging which takes into account attenuation due to thermodynamic dissipation. The propagation of acoustic (compressional) waves is governed by a scalar wave equation coupled to the heat equation for the excess temperature. We seek to recover the initial acoustic profile from knowledge of acoustic measurements at the boundary. We recognize that this inverse problem is a special case of boundary observability for a thermoelastic system. This leads to the use of control/observability tools to prove the unique and stable recovery of the initial acoustic profile in the weak thermoelastic coupling regime. This approach is constructive, yielding a solvable equation for the unknown acoustic profile. Moreover, the solution to this reconstruction equation can be approximated numerically using the conjugate gradient method. If certain geometrical conditions for the wave speed are satisfied, this approach is well-suited for variable media and for measurements on a subset of the boundary. We also present a numerical implementation of the proposed reconstruction algorithm.

  17. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Sandvol, E

    2007-07-10

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Crustal and upper mantle velocities show great heterogeneity in this region and regional phases display variations in both amplitudes and travel time. Furthermore, due to a lack of quality data, the region has largely been unexplored in terms of the detailed lithospheric seismic structure. A unified high-resolution 3D velocity and attenuation model of the crust and upper mantle will be developed and calibrated. This model will use new data from 23 new broadband stations in the region analyzed with a comprehensive set of techniques. Velocity models of the crust and upper mantle will be developed using a joint inversion of receiver functions and surface waves. The surface wave modeling will use both event-based methods and ambient noise tomography. Regional phase (Pg, Pn, Sn, and Lg) Q model(s) will be constructed using the new data in combination with existing data sets. The results of the analysis (both attenuation and velocity modeling) will be validated using modeling of regional phases, calibration with selected events, and comparison with previous work. Preliminary analyses of receiver functions show considerable variability across the region. All results will be integrated into the KnowledgeBase.

  18. Simvastatin Attenuates Neuropathic Pain by Inhibiting the RhoA/LIMK/Cofilin Pathway.

    PubMed

    Qiu, Y; Chen, W Y; Wang, Z Y; Liu, F; Wei, M; Ma, C; Huang, Y G

    2016-09-01

    Neuropathic pain occurs due to deleterious changes in the nervous system caused by a lesion or dysfunction. Currently, neuropathic pain management is unsatisfactory and remains a challenge in clinical practice. Studies have suggested that actin cytoskeleton remodeling may be associated with neural plasticity and may involve a nociceptive mechanism. Here, we found that the RhoA/LIM kinase (LIMK)/cofilin pathway, which regulates actin dynamics, was activated after chronic constriction injury (CCI) of the sciatic nerve. Treatments that reduced RhoA/LIMK/cofilin pathway activity, including simvastatin, the Rho kinase inhibitor Y-27632, and the synthetic peptide Tat-S3, attenuated actin filament disruption in the dorsal root ganglion and CCI-induced neuropathic pain. Over-activation of the cytoskeleton caused by RhoA/LIMK/cofilin pathway activation may produce a scaffold for the trafficking of nociceptive signaling factors, leading to chronic neuropathic pain. Here, we found that simvastatin significantly decreased the ratio of membrane/cytosolic RhoA, which was significantly increased after CCI, by inhibiting the RhoA/LIMK/cofilin pathway. This effect was highly dependent on the function of the cytoskeleton as a scaffold for signal trafficking. We conclude that simvastatin attenuated neuropathic pain in rats subjected to CCI by inhibiting actin-mediated intracellular trafficking to suppress RhoA/LIMK/cofilin pathway activity.

  19. Decreased light attenuation in cerebral cortex during cerebral edema detected using optical coherence tomography

    PubMed Central

    Rodriguez, Carissa L. R.; Szu, Jenny I.; Eberle, Melissa M.; Wang, Yan; Hsu, Mike S.; Binder, Devin K.; Park, B. Hyle

    2014-01-01

    Abstract. Cerebral edema develops in response to a variety of conditions, including traumatic brain injury and stroke, and contributes to the poor prognosis associated with these injuries. This study examines the use of optical coherence tomography (OCT) for detecting cerebral edema in vivo. Three-dimensional imaging of an in vivo water intoxication model in mice was performed using a spectral-domain OCT system centered at 1300 nm. The change in attenuation coefficient was calculated and cerebral blood flow was analyzed using Doppler OCT techniques. We found that the average attenuation coefficient in the cerebral cortex decreased over time as edema progressed. The initial decrease began within minutes of inducing cerebral edema and a maximum decrease of 8% was observed by the end of the experiment. Additionally, cerebral blood flow slowed during late-stage edema. Analysis of local regions revealed the same trend at various locations in the brain, consistent with the global nature of the cerebral edema model used in this study. These results demonstrate that OCT is capable of detecting in vivo optical changes occurring due to cerebral edema and highlights the potential of OCT for precise spatiotemporal detection of cerebral edema. PMID:25674578

  20. Calpain inhibition attenuates intracellular changes in muscle cells in response to extracellular inflammatory stimulation

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2010-01-01

    Idiopathic inflammatory myopathies (IIMs), comprising of polymyositis, dermatomyositis, and inclusion-body myositis, are characterized by muscle weakness and various types of inflammatory changes in muscle cells. They also show non-inflammatory changes, including perifascicular atrophy, mitochondrial changes, and amyloid protein accumulation. It is possible that some molecules/mechanisms bridge the extracellular inflammatory stimulation and intracellular non-inflammatory changes. One such mechanism, Ca2+ influx leading to calpain activation has been proposed. In this study, we demonstrated that post-treatment with calpeptin (calpain inhibitor) attenuated intracellular changes to prevent apoptosis (Wright staining) through both mitochondrial pathway (increase in Bax:Bcl-2 ratio) and endoplasmic reticulum stress pathway (activation of caspase-12), which were induced by interferon-gamma (IFN-γ) stimulation in rat L6 myoblast cells. Our results also showed that calpeptin treatment inhibited the expression of calpain, aspartyl protease cathepsin D, and amyloid precursor protein. Thus, our results indicate that calpain inhibition plays a pivotal role in attenuating muscle cell damage from inflammatory stimulation due to IFN-γ, and this may suggest calpain as a possible therapeutic target in IIMs. PMID:20673830

  1. UV Attenuation Near Coral Reefs in the Florida Keys: Light Absorption by CDOM and Particles

    NASA Astrophysics Data System (ADS)

    Shank, G. C.; Zepp, R. G.; Bartels, E.

    2005-12-01

    We have investigated the roles of chromophoric dissolved organic matter (CDOM) and suspended particles in the attenuation of UV radiation in the middle and lower regions of the Florida Keys. Extended exposure to UV radiation, along with elevated sea surface temperatures, impairs physiological processes in corals and contributes to bleaching episodes. Corals in the Florida Keys experience large variations in UV exposure due to several factors including tidal exchange and fluctuating meteorological conditions. CDOM derived from mangroves and seagrass beds is the primary attenuator of UV radiation near coral reefs in our study area. CDOM accounts for more than 90 percent of the absorption of UVB irradiance (305 nm) throughout the region. However, we have determined using the quantitative filter technique that up to 25 percent of the downwelling UVA irradiance at 380 nm may be directly absorbed by suspended particles. Resuspension from within or near the reef structure appears to be the primary particle source as phytoplankton pigments typically comprise less than 20 percent of the particle UV absorption capacity near reef sampling sites. Our research also has implications for remote sensing applications as light absorbed by particles must be considered when modeling optical data from satellites. Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

  2. Bacteremia due to Elizabethkingia meningoseptica

    PubMed Central

    Shinha, Takashi; Ahuja, Rakesh

    2015-01-01

    Elizabethkingia meningoseptica is a nonfermentative gram-negative bacillus that is ubiquitously found in hospital environments and as such, it has been associated with various nosocomial infections. Immunocompromised individuals are particularly at increased risk for developing severe infections due to E. meningoseptica, including bacteremia. E. meningoseptica is resistant to multiple antimicrobials commonly used for gram-negative bacteria and conventional empirical antimicrobials targeting those organisms may result in unfavorable outcome. We report a case of bacteremia due to E. meningoseptica in a patient who necessitated chronic hemodialysis therapy to heighten awareness of this emerging pathogen among patients on hemodialysis. PMID:26793448

  3. Onychomycosis Due to Nondermatophytic Molds

    PubMed Central

    Hwang, Sung Min; Ha, Gyoung Yim

    2012-01-01

    Background Although there have been many studies about onychomycosis due to nondermatophytic molds (NDM), few studies about etiologic agents including NDM in onychomycosis have been reported in Korea. Objective: This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. Objective This study investigated onychomycosis due to NDM in the Gyeongju area of Korea. Methods In the 10-year period from 1999~2009, we reviewed 59 patients with onychomycosis due to NDM. The etiologic agents were identified by cultures on Sabouraud's Dextrose agar with and without cycloheximide. In some cases, internal transcribed spacer sequence analysis was done. NDM isolated considered pathogens when the presence of fungal elements was identified by direct microscopy observation and in follow-up cultures yielding the same fungi. Results Onychomycosis due to NDM comprised 2.3% of all onychomycosis. Of the 59 patients with onychomycosis due to NDM, 84.7% were toenail onychomycosis and 15.3% were fingernail onychomycosis. The incidence rate was highest in the fifth decade (27.1%). The ratio of male to female patients was 1:1.6. The frequency of associated diseases, in descending order, was hypertension, diabetes mellitus, and cerebral hematoma. Distal and lateral subungual onychomycosis (86.4%) was the most common clinical type of onychomycosis. Aspergillus spp. was the most frequently isolated etiologic agent of onychomycosis due to NDM (83.0%). Other causative agents were Scopulariopsis brevicaulis (10.2%), Acremonium spp. (3.4%), Fusarium solani (1.7%), and Chaetomium globosum (1.7%). Conclusion Because of the increase in onychomycosis due to NDM, we suggest the need of a careful mycological examination in patients with onychomycosis. PMID:22577268

  4. Study of Dual-Wavelength PIA Estimates: Ratio of Ka- and Ku-band Attenuations Obtained from Measured DSD Data

    NASA Astrophysics Data System (ADS)

    Liao, L.; Meneghini, R.; Tokay, A.

    2014-12-01

    generate these profiles fully-, partially- and un-correlated DSD data are employed in an attempt to describe wide dynamic range of microphysical structures of hydrometeors. Bright-band model is employed to take into account of mixed-phase region, and additional attenuations due to cloud water are also included in the profiles.

  5. Microwave Switching and Attenuation with Superconductors.

    NASA Astrophysics Data System (ADS)

    Poulin, Grant Darcy

    1995-01-01

    The discovery of high temperature superconducting (HTS) materials having a critical temperature above the boiling point of liquid nitrogen has generated a large amount of interest in both the basic and applied scientific communities. Considerable research effort has been expended in developing HTS microwave devices, since thin film, passive, microwave components will likely be the first area to be successfully commercialized. This thesis describes a new thin film HTS microwave device that can be operated as a switch or as a continuously variable attenuator. It is well suited for low power analog signal control applications and can easily be integrated with other HTS devices. Due to its small size and mass, the device is expected to find application as a receiver protection switch or as an automatic gain control element, both used in satellite communications receivers. The device has a very low insertion loss, and the isolation in the OFF state is continuously variable to 25 dB. With minor modifications, an isolation exceeding 50 dB is readily achievable. A patent application for the device has been filed, with the patent rights assigned to COM DEV. The device is based on an unusual non-linear response in HTS materials. Under a non-zero DC voltage bias, the current through a superconducting bridge is essentially voltage independent. We have proposed a thermal instability to account for this behaviour. Thermal modelling in conjunction with direct temperature measurements were used to confirm the validity of the model. We have developed a detailed model explaining the microwave response of the device. The model accurately predicts the microwave attenuation as a function of the applied DC control voltage and fully explains the device operation. A key feature is that the device acts as a pure resistive element at microwave frequencies, with no reactance. The resistance is continuously variable, controlled by the DC bias voltage. This distinguishes it from a PIN diode

  6. Live attenuated intranasal influenza vaccine.

    PubMed

    Esposito, Susanna; Montinaro, Valentina; Groppali, Elena; Tenconi, Rossana; Semino, Margherita; Principi, Nicola

    2012-01-01

    Annual vaccination is the most effective means of preventing and controlling influenza epidemics, and the traditional trivalent inactivated vaccine (TIV) is by far the most widely used. Unfortunately, it has a number of limitations, the most important of which is its poor immunogenicity in younger children and the elderly, the populations at greatest risk of severe influenza. Live attenuated influenza vaccine (LAIV) has characteristics that can overcome some of these limitations. It does not have to be injected because it is administered intranasally. It is very effective in children and adolescents, among whom it prevents significantly more cases of influenza than the traditional TIV. However, its efficacy in adults has not been adequately documented, which is why it has not been licensed for use by adults by the European health authorities. LAIV is safe and well tolerated by children aged > 2 y and adults, but some concerns arisen regarding its safety in younger children and subjects with previous asthma or with recurrent wheezing. Further studies are needed to solve these problems and to evaluate the possible role of LAIV in the annual vaccination of the general population.

  7. Acoustic attenuation analysis program for ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Kunze, R. K., Jr.

    1972-01-01

    A computerized acoustic attenuation prediction procedure has been developed to evaluate acoustically lined ducts for various geometric and environmental parameters. The analysis procedure is based on solutions to the acoustic wave equation, assuming uniform airflow on a duct cross section, combined with appropriate mathematical lining impedance models. The impedance models included in the analysis procedure are representative of either perforated sheet or porous polyimide impregnated fiberglass facing sheet coupled with a cellular backing space. Advantages and limitations of the analysis procedure are reviewed.

  8. Estimating contaminant attenuation half-lives in alluvial groundwater systems.

    PubMed

    Tardiff, Mark F; Katzman, Danny

    2007-03-01

    One aspect of describing contamination in an alluvial aquifer is estimating changes in concentrations over time. A variety of statistical methods are available for assessing trends in contaminant concentrations. We present a method that extends trend analysis to include estimating the coefficients for the exponential decay equation and calculating contaminant attenuation half-lives. The conceptual model for this approach assumes that the rate of decline is proportional to the contaminant concentration in an aquifer. Consequently, the amount of time to remove a unit quantity of the contaminant inventory from an aquifer lengthens as the concentration decreases. Support for this conceptual model is demonstrated empirically with log-transformed time series of contaminant data. Equations are provided for calculating system attenuation half-lives for non-radioactive contaminants. For radioactive contaminants, the system attenuation half-life is partitioned into the intrinsic radioactive decay and the concentration reduction caused by aquifer processes. Examples are presented that provide the details of this approach. In addition to gaining an understanding of aquifer characteristics and changes in constituent concentrations, this method can be used to assess compliance with regulatory standards and to estimate the time to compliance when natural attenuation is being considered as a remediation strategy. A special application of this method is also provided that estimates the half-life of the residence time for groundwater in the aquifer by estimating the half life for a conservative contaminant that is no longer being released into the aquifer. Finally, the ratio of the half-life for groundwater residence time to the attenuation half-life for a contaminant is discussed as a system-scale retardation factor which can be used in analytical and numerical modeling.

  9. Modeling transmission and scatter for photon beam attenuators.

    PubMed

    Ahnesjö, A; Weber, L; Nilsson, P

    1995-11-01

    The development of treatment planning methods in radiation therapy requires dose calculation methods that are both accurate and general enough to provide a dose per unit monitor setting for a broad variety of fields and beam modifiers. The purpose of this work was to develop models for calculation of scatter and transmission for photon beam attenuators such as compensating filters, wedges, and block trays. The attenuation of the beam is calculated using a spectrum of the beam, and a correction factor based on attenuation measurements. Small angle coherent scatter and electron binding effects on scattering cross sections are considered by use of a correction factor. Quality changes in beam penetrability and energy fluence to dose conversion are modeled by use of the calculated primary beam spectrum after passage through the attenuator. The beam spectra are derived by the depth dose effective method, i.e., by minimizing the difference between measured and calculated depth dose distributions, where the calculated distributions are derived by superposing data from a database for monoenergetic photons. The attenuator scatter is integrated over the area viewed from the calculation point of view using first scatter theory. Calculations are simplified by replacing the energy and angular-dependent cross-section formulas with the forward scatter constant r2(0) and a set of parametrized correction functions. The set of corrections include functions for the Compton energy loss, scatter attenuation, and secondary bremsstrahlung production. The effect of charged particle contamination is bypassed by avoiding use of dmax for absolute dose calibrations. The results of the model are compared with scatter measurements in air for copper and lead filters and with dose to a water phantom for lead filters for 4 and 18 MV. For attenuated beams, downstream of the buildup region, the calculated results agree with measurements on the 1.5% level. The accuracy was slightly less in situations

  10. Virus Attenuation after Deletion of the Cytomegalovirus Fc Receptor Gene Is Not due to Antibody Control

    PubMed Central

    Crnković-Mertens, Irena; Messerle, Martin; Milotić, Irena; Szepan, Uwe; Kučić, Natalija; Krmpotić, Astrid; Jonjić, Stipan; Koszinowski, Ulrich H.

    1998-01-01

    The murine cytomegalovirus (MCMV) fcr-1 gene codes for a glycoprotein located at the surface of infected cells which strongly binds the Fc fragment of murine immunoglobulin G. To determine the biological significance of the fcr-1 gene during viral infection, we constructed MCMV fcr-1 deletion mutants and revertants. The fcr-1 gene was disrupted by insertion of the Escherichia coli lacZ gene. In another mutant, the marker gene was also deleted, by recombinase cre. As expected for its hypothetical role in immunoevasion, the infection of mice with fcr-1 deletion mutants resulted in significantly restricted replication in comparison with wild-type MCMV and revertant virus. In mutant mice lacking antibodies, however, the fcr-1 deletion mutants also replicated poorly. This demonstrated that the cell surface-expressed viral glycoprotein with FcR activity strongly modulates the virus-host interaction but that this biological function is not caused by the immunoglobulin binding property. PMID:9445038

  11. Study of rain attenuation in Ka band for satellite communication in South Korea

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Choi, Dong-You

    2016-10-01

    The important factor to be considered in the link budget estimation for satellite communication systems, operating at frequencies above 10 GHz is the rain attenuation. Scattering and absorption are the main concern for system designers at these frequency bands. This has resulted in the need for suitable prediction models that can best provide estimates of attenuation due to rain with available information of rain attenuation data. Researchers have developed models that can be used to estimate 1-min rainfall attenuation distribution for earth space link but there is still some confusion with regard to choosing the right model to predict attenuation for the location of interest. In this context, the existing prediction models need to be tested against the measured results. This paper presents studies on rain attenuation at 19.8 GHz, which specifies the performance parameters for Ka-Band under earth space communication system. It presents the experimental result of rain rates and rain-induced attenuation in 19.8 and 20.73 GHz for vertical and circular polarization respectively. The received signal data for rain attenuation and rain rate were collected at 10 s intervals over a three year periods from 2013 to 2015. The data highlights the impact of clear air variation and rain fade loss. Rain rate data was measured through OTT Parsivel. During the observation period, rain rates of about 50 mm/h and attenuation values of 11.6 dB for 0.01% of the time were noted. The experimental link was set up at Korea Radio Promotion Association, Mokdong, Seoul. Out of several models, this paper present discussion and comparison of ITU-R P.618-12, Unified Method, Dissanayake Allnutt and Haidara (DAH), Simple Attenuation (SAM), Crane Global and Ramachandran and Kumar models. The relative error margin of 27.51, 89.84,72.46% and 67.24, 130.84, 166.48% are obtained for 0.1%, 0.01% and 0.001% of the time for 19.8 and 20.73 GHz under vertical and circular polarization respectively from ITU

  12. Natural attenuation software (NAS): Assessing remedial strategies and estimating timeframes

    USGS Publications Warehouse

    Mendez, E.; Widdowson, M.; Chapelle, F.; Casey, C.

    2005-01-01

    Natural Attenuation Software (NAS) is a screening tool to estimate remediation timeframes for monitored natural attenuation (MNA) and to assist in decision-making on the level of source zone treatment in conjunction with MNA using site-specific remediation objectives. Natural attenuation processes that NAS models include are advection, dispersion, sorption, non-aqueous phase liquid (NAPL) dissolution, and biodegradation of either petroleum hydrocarbons or chlorinated ethylenes. Newly-implemented enhancements to NAS designed to maximize the utility of NAS for site managers were observed. NAS has expanded source contaminant specification options to include chlorinated ethanes and chlorinated methanes, and to allow for the analysis of any other user-defined contaminants that may be subject to microbially-mediated transformations (heavy metals, radioisotopes, etc.). Included is the capability to model co-mingled plumes, with constituents from multiple contaminant categories. To enable comparison of remediation timeframe estimates between MNA and specific engineered remedial actions , NAS was modified to incorporate an estimation technique for timeframes associated with pump-and-treat remediation technology for comparison to MNA. This is an abstract of a paper presented at the 8th International In Situ and On-Site Bioremediation Symposium (Baltimore, MD 6/6-9/2005).

  13. An analytical approach to quantitative reconstruction of non-uniform attenuated brain SPECT.

    PubMed

    Liang, Z; Ye, J; Harrington, D P

    1994-11-01

    An analytical approach to quantitative brain SPECT (single-photon-emission computed tomography) with non-uniform attenuation is developed. The approach formulates accurately the projection-transform equation as a summation of primary- and scatter-photon contributions. The scatter contribution can be estimated using the multiple-energy-window samples and removed from the primary-energy-window data by subtraction. The approach models the primary contribution as a convolution of the attenuated source and the detector-response kernel at a constant depth from the detector with the central-ray approximation. The attenuated Radon transform of the source can be efficiently deconvolved using the depth-frequency relation. The approach inverts exactly the attenuated Radon transform by Fourier transforms and series expansions. The performance of the analytical approach was studied for both uniform- and non-uniform-attenuation cases, and compared to the conventional FBP (filtered-backprojection) method by computer simulations. A patient brain X-ray image was acquired by a CT (computed-tomography) scanner and converted to the object-specific attenuation map for 140 keV energy. The mathematical Hoffman brain phantom was used to simulate the emission source and was resized such that it was completely surrounded by the skull of the CT attenuation map. The detector-response kernel was obtained from measurements of a point source at several depths in air from a parallel-hole collimator of a SPECT camera. The projection data were simulated from the object-specific attenuating source including the depth-dependent detector response. Quantitative improvement (>5%) in reconstructing the data was demonstrated with the nonuniform attenuation compensation, as compared to the uniform attenuation correction and the conventional FBP reconstruction. The commuting time was less than 5 min on an HP/730 desktop computer for an image array of 1282*32 from 128 projections of 128*32 size. PMID

  14. Immunization with Eimeria ninakohlyakimovae-live attenuated oocysts protect goat kids from clinical coccidiosis.

    PubMed

    Ruiz, Antonio; Muñoz, María Carmen; Molina, José Manuel; Hermosilla, Carlos; Andrada, Marisa; Lara, Pedro; Bordón, Elisa; Pérez, Davinia; López, Adassa María; Matos, Lorena; Guedes, Aránzazu Carmen; Falcón, Soraya; Falcón, Yaiza; Martín, Sergio; Taubert, Anja

    2014-01-17

    Caprine coccidiosis, affecting mainly young goat kids around the weaning period, is worldwide the most important disease in the goat industry. Control of caprine coccidiosis is increasingly hampered by resistances developed against coccidiostatic drugs leading to an enhanced need for anticoccidial vaccines. In the current study we conducted an oral immunization trial with live attenuated sporulated Eimeria ninakohlyakimovae oocysts. Sporulated E. ninakohlyakimovae oocysts were attenuated by X-irradiation technique. The experimental design included a total of 18 goat kids divided into the following groups: (i) animals immunized with attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-irradiated homologous oocysts (group 1); (ii) animals infected with non-attenuated E. ninakohlyakimovae oocysts at 5 weeks of age and challenged 3 weeks later with non-attenuated homologous oocysts (group 2); (iii) animals primary-infected with untreated E. ninakohlyakimovae oocysts at 8 weeks of age (control of the challenge infection, group 3); (iv) non-infected control animals (group 4). Goat kids immunized with live attenuated E. ninakohlyakimovae oocysts (group 1) excreted significantly less oocysts in the faeces (95.3% reduction) than kids infected with non-attenuated ones (group 2). Furthermore, immunization with live but attenuated oocysts resulted in ameliorated clinical coccidiosis compared to goat kids infected with untreated oocysts (group 2) and resulted in equally reduced signs of coccidiosis after challenge infection compared to acquired immunity driven by non-attenuated oocysts. Overall, the present study demonstrates for the first time that live attenuated E. ninakohlyakimovae oocysts orally administered showed almost no pathogenicity but enough immunogenicity in terms of immunoprotection. Importantly, vaccinated animals still shed low amounts of oocysts, guaranteeing environmental contamination and consecutive booster

  15. Anomalous attenuation of ultrasound in ferrofluids under the influence of a magnetic field

    NASA Technical Reports Server (NTRS)

    Isler, W. E.; Chung, D. Y.

    1978-01-01

    Ultrasonic wave propagation has been studied in a water-base ferrofluid by pulse-echo methods. A commercial box-car integrator was used to measure the change in attenuation due to an external magnetic field applied at various angles relative to the ultrasonic propagation vector. Anomalous results were obtained when the attenuation was plotted as a function of the magnetic field strength. As the field increased, the attenuation reached a maximum and then decreased to a flat minimum before it approached saturation at a field of 2 KG. This variation of attenuation with magnetic field cannot be explained from the simple picture derivable from the work of McTague on the viscosity of ferrofluids. In no case was the viscosity seen to decrease with field, nor was the oscillatory behavior observed. The results of this study were compared with the theory developed by Parsons.

  16. Characterisation of microbial activity in the framework of natural attenuation without groundwater monitoring wells?: a new Direct-Push probe.

    PubMed

    Schurig, Christian; Melo, Vinicio Alejandro; Miltner, Anja; Kaestner, Matthias

    2014-01-01

    At many contaminated field sites in Europe, monitored natural attenuation is a feasible site remediation option. Natural attenuation includes several processes but only the microbial degradation leads to real contaminant removal and very few methods are accepted by the authorities providing real evidence of microbial contaminant degradation activity. One of those methods is the recently developed in situ microcosm approach (BACTRAP®). These in situ microcosms consist of perforated stainless steel cages or PTFE tubes filled with an activated carbon matrix that is amended with 13C-labelled contaminants; the microcosms are then exposed within groundwater monitoring wells. Based on this approach, natural attenuation was accepted by authorities as a site remediation option for the BTEX-polluted site Zeitz in Germany. Currently, the in situ microcosms are restricted to the use inside groundwater monitoring wells at the level of the aquifer. The (classical) system therefore is only applicable on field sites with a network of monitoring wells, and only microbial activity inside the monitoring wells at the level of the aquifer can be assessed. In order to overcome these limitations, a new Direct-Push BACTRAP probe was developed on the basis of the Geoprobe® equipment. With respect to the mechanical boundary conditions of the DP technique, these new probes were constructed in a rugged and segmented manner and are adaptable to various sampling concepts. With this new probe, the approach can be extended to field sites without existing monitoring wells, and microbial activity was demonstrated to be measureable even under very dry conditions inside the vadose zone above the aquifer. In a field test, classical and Direct-Push BACTRAPs were applied in the BTEX-contaminated aquifer at the ModelPROBE reference site Zeitz (Germany). Both types of BACTRAPs were incubated in the centre and at the fringe of the BTEX plume. Analysis of phospholipid fatty acid (PLFA) patterns showed

  17. Thioredoxin Inhibitors Attenuate Platelet Function and Thrombus Formation

    PubMed Central

    Metcalfe, Clive; Ramasubramoni, Anjana; Pula, Giordano; Harper, Matthew T.; Mundell, Stuart J.; Coxon, Carmen H.

    2016-01-01

    Thioredoxin (Trx) is an oxidoreductase with important physiological function. Imbalances in the NADPH/thioredoxin reductase/thioredoxin system are associated with a number of pathologies, particularly cancer, and a number of clinical trials for thioredoxin and thioredoxin reductase inhibitors have been carried out or are underway. Due to the emerging role and importance of oxidoreductases for haemostasis and the current interest in developing inhibitors for clinical use, we thought it pertinent to assess whether inhibition of the NADPH/thioredoxin reductase/thioredoxin system affects platelet function and thrombosis. We used small molecule inhibitors of Trx (PMX 464 and PX-12) to determine whether Trx activity influences platelet function, as well as an unbiased proteomics approach to identify potential Trx substrates on the surface of platelets that might contribute to platelet reactivity and function. Using LC-MS/MS we found that PMX 464 and PX-12 affected the oxidation state of thiols in a number of cell surface proteins. Key surface receptors for platelet adhesion and activation were affected, including the collagen receptor GPVI and the von Willebrand factor receptor, GPIb. To experimentally validate these findings we assessed platelet function in the presence of PMX 464, PX-12, and rutin (a selective inhibitor of the related protein disulphide isomerase). In agreement with the proteomics data, small molecule inhibitors of thioredoxin selectively inhibited GPVI-mediated platelet activation, and attenuated ristocetin-induced GPIb-vWF-mediated platelet agglutination, thus validating the findings of the proteomics study. These data reveal a novel role for thioredoxin in regulating platelet reactivity via proteins required for early platelet responses at sites of vessel injury (GPVI and GPIb). This work also highlights a potential opportunity for repurposing of PMX 464 and PX-12 as antiplatelet agents. PMID:27716777

  18. Human due diligence.

    PubMed

    Harding, David; Rouse, Ted

    2007-04-01

    Most companies do a thorough job of financial due diligence when they acquire other companies. But all too often, deal makers simply ignore or underestimate the significance of people issues in mergers and acquisitions. The consequences are severe. Most obviously, there's a high degree of talent loss after a deal's announcement. To make matters worse, differences in decision-making styles lead to infighting; integration stalls; and productivity declines. The good news is that human due diligence can help companies avoid these problems. Done early enough, it helps acquirers decide whether to embrace or kill a deal and determine the price they are willing to pay. It also lays the groundwork for smooth integration. When acquirers have done their homework, they can uncover capability gaps, points of friction, and differences in decision making. Even more important, they can make the critical "people" decisions-who stays, who goes, who runs the combined business, what to do with the rank and file-at the time the deal is announced or shortly thereafter. Making such decisions within the first 30 days is critical to the success of a deal. Hostile situations clearly make things more difficult, but companies can and must still do a certain amount of human due diligence to reduce the inevitable fallout from the acquisition process and smooth the integration. This article details the steps involved in conducting human due diligence. The approach is structured around answering five basic questions: Who is the cultural acquirer? What kind of organization do you want? Will the two cultures mesh? Who are the people you most want to retain? And how will rank-and-file employees react to the deal? Unless an acquiring company has answered these questions to its satisfaction, the acquisition it is making will be very likely to end badly.

  19. ATTENUATION OF CORONAL MAGNETIC FIELDS IN SOLAR MICROWAVE BURSTS

    SciTech Connect

    Huang, Guangli; Li, Jianping; Song, Qiwu; Huang, Yu; Tan, Baolin; Wu, Zhao E-mail: jpli@pmo.ac.cn E-mail: songqw@pmo.ac.cn E-mail: wuzhao@sdu.edu.cn

    2015-06-10

    Based on the observed data by the Nobeyama Radio Observatory and the nonthermal gyrosynchrotron theory, the calculated magnetic field in a loop-like radio source of the 2001 October 23 flare attenuates from hundreds to tens of Gauss, except in the region with very weak magnetic fields. Meanwhile, the viewing angle between the magnetic field and line of sight has a similar attenuation from tens to around ten degrees, implying that the transverse magnetic component attenuates much faster than the longitudinal one. All of these results can be understood by the magnetic energy release process in solar flares. Moreover, the column density of nonthermal electrons decreases from 10{sup 9−10} to 10{sup 7−8} cm{sup −2} during the flare, except in the region with very weak magnetic fields, where its value is larger than that with strong magnetic fields due to the mirroring effect. The calculated error and harmonic number of gyrofrequency better suit the region with strong magnetic fields.

  20. SU-E-T-233: Modeling Linac Couch Effects On Attenuation and Skin Dose

    SciTech Connect

    Xiong, L; Halvorsen, P

    2014-06-01

    Purpose: Treatment couch tops in medical LINAC rooms lead to attenuation to beams penetrating them, plus higher skin dose which can become a significant concern with the high fraction doses associated with Stereotactic Body Radiation Therapy. This work measures the attenuation and shallow depth dose due to a BrainLab couch, and studies the modeling of the couch top in our treatment planning system (TPS) as a uniform solid material with homogeneous density. Methods: LINAC photon beams of size 10×10 cm and nominal energy 6 MV were irradiated from different gantry angles on a stack of solid water. Depth dose were measured with two types of parallel plate chambers, MPPK and Markus. In the Philips Pinnacle TPS, the couch was modeled as a slab with varying thickness and density. A digital phantom of size 30×30×10 cm with density 1 g/cc was created to simulate the measurement setup. Both the attenuation and skin dose effects due to the couch were studied. Results: An orthogonal attenuation rate of 3.2% was observed with both chamber measurements. The attenuation can be modeled by couch models of varying thicknesses. Once the orthogonal attenuation was modeled well, the oblique beam attenuation in TPS agreed with measurement within 1.5%. The depth dose at shallow depth (0.5 cm) was also shown to be modeled correctly within 1.5% of the measurement using a 12 mm thick couch model with density of 0.9 g/cc. Agreement between calculation and measurement diverges at very shallow depths (≤1 mm) but remains acceptable (<5%) with the aforementioned couch model parameters. Conclusion: Modeling the couch top as a uniform solid in a treatment planning system can predict both the attenuation and surface dose simultaneously well within clinical tolerance in the same model.

  1. Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane.

    PubMed

    Adamson, David T; Anderson, R Hunter; Mahendra, Shaily; Newell, Charles J

    2015-06-01

    There is a critical need to develop appropriate management strategies for 1,4-dioxane (dioxane) due to its widespread occurrence and perceived recalcitrance at groundwater sites where chlorinated solvents are present. A comprehensive evaluation of California state (GeoTracker) and Air Force monitoring records was used to provide significant evidence of dioxane attenuation at field sites. Temporal changes in the site-wide maximum concentrations were used to estimate source attenuation rates at the GeoTracker sites (median length of monitoring period = 6.8 years). While attenuation could not be established at all sites, statistically significant positive attenuation rates were confirmed at 22 sites. At sites where dioxane and chlorinated solvents were present, the median value of all statistically significant dioxane source attenuation rates (equivalent half-life = 31 months; n = 34) was lower than 1,1,1-trichloroethane (TCA) but similar to 1,1-dichloroethene (1,1-DCE) and trichloroethene (TCE). Dioxane attenuation rates were positively correlated with rates for 1,1-DCE and TCE but not TCA. At this set of sites, there was little evidence that chlorinated solvent remedial efforts (e.g., chemical oxidation, enhanced bioremediation) impacted dioxane attenuation. Attenuation rates based on well-specific records from the Air Force data set confirmed significant dioxane attenuation (131 out of 441 wells) at a similar frequency and extent (median equivalent half-life = 48 months) as observed at the California sites. Linear discriminant analysis established a positive correlation between dioxane attenuation and increasing concentrations of dissolved oxygen, while the same analysis found a negative correlation with metals and CVOC concentrations. The magnitude and prevalence of dioxane attenuation documented here suggest that natural attenuation may be used to manage some but not necessarily all dioxane-impacted sites.

  2. UHF Radio Wave Attenuation Factor Database

    NASA Astrophysics Data System (ADS)

    Khomenko, S. I.; Kostina, V. L.; Mytsenko, I. M.; Roenko, A. N.

    2007-07-01

    As is known each sea-going vessel is equipped with navigation, communication and other radio engineering facilities that serve to secure the safety of navigation and are chiefly operated at UHF-wave band. In developing these systems and calculating the energy potential for a necessary coverage range one should be well aware of the radio signal attenuation processes on a propagation path. The key parameter of this path is the (radio) wave attenuation factor V and its distance dependence V(R). A diversity of factors influencing the radio signal attenuation over the oceanic expanses, especially well pronounced and quite stable tropospheric ducts, and the lack of experimental data were the compelling reasons why the researchers of the Institute for Radiophysics and Electronics, NASU, had spent many years on comprehensive radiophysical investigations carried out in different regions of the Atlantic, Indian, Arctic and Pacific Oceans. The experimental data obtained allow creating the database of radio wave attenuation factor V.

  3. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  4. From Sequential Extraction to Transport Modeling, Monitored Natural Attenuation as a Remediation Approach for Inorganic Contaminants

    SciTech Connect

    POWELL, KIMBERLYR.

    2004-05-25

    Implementation of monitored natural attenuation (MNA) as a remediation method requires a mechanistic understanding of the natural attenuation processes occurring at a given site. For inorganic contaminants, natural attenuation typically involves a decrease in metal toxicity and/or mobility. These natural processes include dilution, dispersion, sorption (including adsorption, absorption, and precipitation), and redox processes. In order to better quantify these processes in terms of metal availability, sequential extraction experiments were carried out on subsurface soil samples impacted by a low pH, high sulfate, metals (Be, Ni, U, As) plume associated with the long-term operation of a coal plant at the Savannah River Site. These laboratory scale studies provide mechanistic information regarding the solid phases in the soils associated with natural attenuation of the contaminant metals. This data provides input to be evaluated in the definition of the contaminant source term as well as transport of contaminants for site transport models.

  5. Advanced reconstruction of attenuation maps using SPECT emission data only

    NASA Astrophysics Data System (ADS)

    Salomon, André; Goedicke, Andreas; Aach, Til

    2009-02-01

    Today, attenuation corrected SPECT, typically performed using CT or Gadolinium line source based transmission scans, is more and more becoming standard in many medical applications. Moreover, the information about the material density distribution provided by these scans is key for other artifact compensation approaches in advanced SPECT reconstruction. Major drawbacks of these approaches are the additional patient radiation and hardware/maintenance costs as well as the additional workflow effort, e.g. if the CT scans are not performed on a hybrid scanner. It has been investigated in the past, whether it is possible to recover this structural information solely from the SPECT scan data. However, the investigated methods often result in noticeable image artifacts due to cross-dependences between attenuation and activity distribution estimation. With the simultaneous reconstruction method presented in this paper, we aim to effectively prevent these typical cross-talk artifacts using a-priori known atlas information of a human body. At first, an initial 3D shape model is coarsely registered to the SPECT data using anatomical landmarks and each organ structure within the model is identified with its typical attenuation coefficient. During the iterative reconstruction based on a modified ML-EM scheme, the algorithm simultaneously adapts both, the local activity estimation and the 3D shape model in order to improve the overall consistency between measured and estimated sinogram data. By explicitly avoiding topology modifications resulting in a non-anatomical state, we ensure that the estimated attenuation map remains realistic. Several tests with simulated as well as real patient SPECT data were performed to test the proposed algorithm, which demonstrated reliable convergence behaviour in both cases. Comparing the achieved results with available reference data, an overall good agreement for both cold as well as hot activity regions could be observed (mean deviation: -5.98%).

  6. Lg Attenuation Characteristic of Gujarat Region (Western India)

    NASA Astrophysics Data System (ADS)

    Jaiswal, Namrata; Singh, Chandrani

    2016-04-01

    We estimate the Lg attenuation characteristics of the Gujarat Region in Western India by using a reliable two-station method. This region comes under the V, IV and III seismicity zone. So, in India this is the seismic active region other than Himalayas, which shows high seismicity. Lg is typically the most prominent short-period seismic phase on high frequency seismogram observed over the continental paths from regional to teleseimic distance. We use data from 15 earthquakes with magnitude > 5 mb and focal depth < 30 km collected during 2008-2010 from 41 stations deployed in the study region. We estimate 1-Hz Lg Q (Q0) values between many pairs of stations. Finally, 5 events with 70 high-quality inter-station paths were selected from 117 possible pairs of stations that are (1) aligned approximately with the source and (2) separated enough to permit the use of the standard two-station method for Lg Q measurement. Spatial variations in Q0 have been noticed across the Gujarat region. Low Q0 (< 50) values are observed in the Kutch, Jamnagar and southeast region of Gujarat. The northern region of Saurashtra (Gujarat) shows a high Q0 (> 300) value. These observations are consistent with the results of the body wave attenuation structure reported for the region. The variations in the attenuation characteristics may be caused due to both the intrinsic and scattering contributions caused by thermal effects, sedimentary layer thickness as well as heterogeneities present below the study region. Our results are found to be comparable with the previous studies of the attenuation characteristics of the Gujarat region.

  7. Evaluation of Monitoring Approaches for Natural Attenuation

    NASA Astrophysics Data System (ADS)

    Roll, L. L.; Labolle, E. M.; Fogg, G. E.

    2008-12-01

    Monitored natural attenuation (MNA) can be a useful alternative to active remediation, however, firm conclusions regarding effectiveness of MNA may be elusive because of multiple processes that can produce similar, apparent trends in chemical concentrations in the heterogeneous subsurface. Current monitoring approaches need to be critically evaluated for typical field settings, such as heterogeneous alluvial aquifer systems, because spatially varying aquifer properties create non uniform flow fields that greatly influence transport processes, producing complex plume behavior that may not be adequately depicted by monitoring networks. Highly-resolved simulations of flow and conservative transport in a typical alluvial aquifer system facilitate a critical review of three monitoring approaches including estimation of mass balance from sampling along the plume centerline, estimation of mass balance from fine grid sampling, and estimation of mass flux from sampling along cross sections. The simulation procedure involves generation of unconditional transition-probability fields of hydrofacies distributions, simulation of steady state flow followed by simulation of conservative transport using a highly accurate random walk particle method (RWHET). The results elucidate limitations and potential pitfalls of the monitoring methods and use of simple models in typically heterogeneous systems. For example, simulations show that because of the system complexity, apparent concentration trends in space and time can be falsely attributed to biodegradation when none is occurring if simplistic models are used to interpret the data. Measured concentrations alone are likely insufficient to judge effectiveness of MNA.

  8. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  9. Enhancing the quality of radiographic images acquired with point-like gamma-ray sources through correction of the beam divergence and attenuation

    SciTech Connect

    Silvani, M. I.; Almeida, G. L.; Lopes, R. T.

    2014-11-11

    Radiographic images acquired with point-like gamma-ray sources exhibit a desirable low penumbra effects specially when positioned far away from the set object-detector. Such an arrangement frequently is not affordable due to the limited flux provided by a distant source. A closer source, however, has two main drawbacks, namely the degradation of the spatial resolution - as actual sources are only approximately punctual - and the non-homogeneity of the beam hitting the detector, which creates a false attenuation map of the object being inspected. This non-homogeneity is caused by the beam divergence itself and by the different thicknesses traversed the beam even if the object were an homogeneous flat plate. In this work, radiographic images of objects with different geometries, such as flat plates and pipes have undergone a correction of beam divergence and attenuation addressing the experimental verification of the capability and soundness of an algorithm formerly developed to generate and process synthetic images. The impact of other parameters, including source-detector gap, attenuation coefficient, ratio defective-to-main hull thickness and counting statistics have been assessed for specifically tailored test-objects aiming at the evaluation of the ability of the proposed method to deal with different boundary conditions. All experiments have been carried out with an X-ray sensitive Imaging Plate and reactor-produced {sup 198}Au and {sup 165}Dy sources. The results have been compared with other technique showing a better capability to correct the attenuation map of inspected objects unveiling their inner structure otherwise concealed by the poor contrast caused by the beam divergence and attenuation, in particular for those regions far apart from the vertical of the source.

  10. Enhancing the quality of radiographic images acquired with point-like gamma-ray sources through correction of the beam divergence and attenuation

    NASA Astrophysics Data System (ADS)

    Silvani, M. I.; Almeida, G. L.; Lopes, R. T.

    2014-11-01

    Radiographic images acquired with point-like gamma-ray sources exhibit a desirable low penumbra effects specially when positioned far away from the set object-detector. Such an arrangement frequently is not affordable due to the limited flux provided by a distant source. A closer source, however, has two main drawbacks, namely the degradation of the spatial resolution - as actual sources are only approximately punctual - and the non-homogeneity of the beam hitting the detector, which creates a false attenuation map of the object being inspected. This non-homogeneity is caused by the beam divergence itself and by the different thicknesses traversed the beam even if the object were an homogeneous flat plate. In this work, radiographic images of objects with different geometries, such as flat plates and pipes have undergone a correction of beam divergence and attenuation addressing the experimental verification of the capability and soundness of an algorithm formerly developed to generate and process synthetic images. The impact of other parameters, including source-detector gap, attenuation coefficient, ratio defective-to-main hull thickness and counting statistics have been assessed for specifically tailored test-objects aiming at the evaluation of the ability of the proposed method to deal with different boundary conditions. All experiments have been carried out with an X-ray sensitive Imaging Plate and reactor-produced 198Au and 165Dy sources. The results have been compared with other technique showing a better capability to correct the attenuation map of inspected objects unveiling their inner structure otherwise concealed by the poor contrast caused by the beam divergence and attenuation, in particular for those regions far apart from the vertical of the source.

  11. Attenuation, dispersion and nonlinearity effects in graphene-based waveguides.

    PubMed

    Lima, Almir Wirth; Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra

    2015-01-01

    We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices.

  12. Attenuated oncolytic Measles Virus strains as cancer therapeutics

    PubMed Central

    Msaouel, P.; Iankov, I.D.; Dispenzieri, A.; Galanis, E.

    2011-01-01

    Attenuated measles virus vaccine strains have emerged as a promising oncolytic vector platform, having shown significant anti-tumor activity against a broad range of malignant neoplasms. Measles virus strains derived from the attenuated Edmonston-B (MV-Edm) vaccine lineage have been shown to selectively infect, replicate in and lyse cancer cells while causing minimal cytopathic effect on normal tissues. This review summarizes the preclinical data that led to the rapid clinical translation of oncolytic measles vaccine strains and provides an overview of early clinical data using this oncolytic platform. Furthermore, novel approaches currently under development to further enhance the oncolytic efficacy of MV-Edm strains, including strategies to circumvent immunity or modulate immune system responses, combinatorial approaches with standard treatment modalities, virus retargeting as well as strategies for in vivo monitoring of viral replication are discussed. PMID:21740361

  13. Ultrasonic attenuation - Q measurements on 70215,29. [lunar rock

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Stephens, J.

    1974-01-01

    Ultrasonic attenuation measurements have been made on an aluminum alloy, obsidian, and rock samples including lunar sample 70215,29. The measurement technique is based on a combination of the pulse transmission method and the forced resonance method. The technique is designed to explore the problem of defining experimentally, the Q of a medium or sample in which mode conversion may occur. If modes are coupled, the measured attenuation is strongly dependent on individual modes of vibration, and a range of Q-factors may be measured over various resonances or from various portions of a transient signal. On 70215,29, measurements were made over a period of a month while the sample outgassed in hard varuum. During this period, the highest measured Q of this sample increased from a few hundred into the range of 1000-1300.

  14. Soluble antigens of virulent and attenuated biotypes of Brucella abortus.

    PubMed Central

    Hatten, B A; Brodeur, R D

    1978-01-01

    Several methods were used to characterize three Brucella abortus biotypes (1, 5, and 7), including the attenuated vaccine strain S-19. Chemical analysis did not reveal remarkable differences among these strains, and only minor differences were noted in elution patterns of soluble extracts subjected to column chromatography. Qualitative and quantitative differences in extract components were demonstrated, however, by polyacrylamide gel isoelectric focusing. A distinctive difference was the presence of components in extracts from one or more of the virulent biotypes that were absent in similar preparations from the attenuated strain. In addition, one component common to all virulent strains was absent in strain S-19. Results of immunodiffusion experiments employing adsorbed and unadsorbed antisera also suggested that the quantity, quality, and surface distribution of various cellular antigens differed among the biotypes studied. Images PMID:103842

  15. Attenuation of noise by motorcycle safety helmets.

    PubMed

    Młyński, Rafał; Kozłowski, Emil; Zera, Jan

    2009-01-01

    For workers such as police motorcyclists or couriers, traffic and engine noise reaching the ears is an important factor contributing to the overall condition of their work. This noise can be reduced with motorcycle helmets. In this study, insertion loss of motorcycle helmets was measured with the microphone-in-real-ear technique and sound attenuation with the real-ear-at-threshold method. Results for 3 Nolan helmets show essentially no protection against external noise in the frequency range <250 Hz. In the frequency range >500 Hz, attenuation increases linearly at a rate of 8-9 dB per octave, to ~30 dB at 8 kHz. Lack of attenuation in the low-frequency range may cause annoying effects. In addition, high attenuation in the high-frequency range may decrease intelligibility of speech signals for a rider in a helmet. Attenuation measured in this study does not take into account noise generated by turbulent wind around the helmet. Thus, the measured values of attenuation represent a motorcycle rider's best conditions of hearing. PMID:19744370

  16. Sensory Attenuation for Jointly Produced Action Effects

    PubMed Central

    Loehr, Janeen D.

    2012-01-01

    Successful joint action often requires people to distinguish between their own and others’ contributions to a shared goal. One mechanism that is thought to underlie a self-other distinction is sensory attenuation, whereby the sensory consequences of one’s own actions are reduced compared to other sensory events. Previous research has shown that the auditory N1 event-related potential (ERP) response is reduced for self-generated compared to externally generated tones. The current study examined whether attenuation also occurs for jointly generated tones, which require two people to coordinate their actions to produce a single tone. ERP responses were measured when participants generated tones alone (tone onset immediately followed the participant’s button press) or with a partner (tone onset immediately followed the participant’s or the partner’s button press, whichever occurred second). N1 attenuation was smaller for jointly generated tones compared to self-generated tones. For jointly generated tones, greater delays between the participant’s and the partner’s button presses were associated with reduced attenuation; moreover, only trials in which there was no delay between the participant’s press and tone onset showed attenuation, whereas trials in which there were delays did not show attenuation. These findings indicate that people differentiate between their own and another person’s contributions to a joint action at the sensorimotor level, even when they must act together to produce a single, shared effect. PMID:23596429

  17. Soil and groundwater attenuation factors for nitrogen from septic systems in the Chesapeake Bay TMDL

    NASA Astrophysics Data System (ADS)

    Radcliffe, D. E.; Geza, M.; O'Drisoll, M.; Humphrey, C., Jr.

    2015-12-01

    An expert panel was tasked with estimating the percent of the nitrogen (N) load from septic systems that was lost in the flow path from a typical home to third-order streams as part of the Chesapeake Bay Total Maximum Daily Load (TMDL). These losses were referred to as attenuation factors. We developed values for the soil (unsaturated) zone and for the Piedmont and Coastal Plain groundwater zones. For the soil zone, we used the Soil Treatment Unit MODel (STUMOD) to estimate loses due to denitrification for all 12 soil textural classes and then averaged the results over three textural groups. Assuming hydraulic loading at the design rate and a conventional system, the attenuation factors were 16% for sand, loamy sand, sandy loam, and loam soils; 34% for silt loam, clay loam, sandy clay loam, silty clay loam, and silt soils; and 54% for sandy clay, silty clay, and clay soils. Attenuation factors increased in the more clayey soils due to wetter conditions and more losses due to denitrification. Attenuation factors were also developed for reduced hydraulic loading rates and for systems using advanced N pre-treatment. For the Piedmont groundwater zone, we used data from a recent study in Georgia of small suburban streams with high-density septic systems. Stream base-flow load was estimated using simultaneous measurements of total N concentration and discharge and compared to the estimated groundwater input load, resulting in an attenuation factor of 81%. For the Coastal Plain groundwater zone, literature values of groundwater N concentrations within septic system plumes in Virginia, North Carolina, and Florida were used to estimate an attenuation factor of approximately 60% at 100m downgradient from the drainfield. These attenuation factors will be used to estimate the contribution of N to the Chesapeake Bay in the Phase 6 TMDL models.

  18. Joint reconstruction of activity and attenuation map using LM SPECT emission data

    NASA Astrophysics Data System (ADS)

    Jha, Abhinav K.; Clarkson, Eric; Kupinski, Matthew A.; Barrett, Harrison H.

    2013-03-01

    Attenuation and scatter correction in single photon emission computed tomography (SPECT) imaging often requires a computed tomography (CT) scan to compute the attenuation map of the patient. This results in increased radiation dose for the patient, and also has other disadvantages such as increased costs and hardware complexity. Attenuation in SPECT is a direct consequence of Compton scattering, and therefore, if the scattered photon data can give information about the attenuation map, then the CT scan may not be required. In this paper, we investigate the possibility of joint reconstruction of the activity and attenuation map using list- mode (LM) SPECT emission data, including the scattered-photon data. We propose a path-based formalism to process scattered-photon data. Following this, we derive analytic expressions to compute the Craḿer-Rao bound (CRB) of the activity and attenuation map estimates, using which, we can explore the fundamental limit of information-retrieval capacity from LM SPECT emission data. We then suggest a maximum-likelihood (ML) scheme that uses the LM emission data to jointly reconstruct the activity and attenuation map. We also propose an expectation-maximization (EM) algorithm to compute the ML solution.

  19. Due for Its Turn?

    ERIC Educational Resources Information Center

    Deakin, Michael

    1996-01-01

    Discusses a commonly held misconception that in the throwing of two dice, if a total of seven does not come up for a period of time then its appearance is imminent. Describes an experiment to disprove the misconception and includes a discussion of the theory that frames the results. (DDR)

  20. Severe hypercalcemia due to teriparatide

    PubMed Central

    Karatoprak, Cumali; Kayatas, Kadir; Kilicaslan, Hanifi; Yolbas, Servet; Yazimci, Nurhan Aliye; Gümüskemer, Tolga; Demirtunç, Refik

    2012-01-01

    Osteoporosis that is by far the most common metabolic bone disease, has been defined as a skeletal disorder characterized by compromised bone strength predisposing a person to an increased risk of fracture. Anabolic therapy with teriparatide, recombinant human parathyroid hormone (PTH 1-34), stimulates bone formation and resorption and improves trabecular and cortical microarchitecture. Teriparatide is indicated for the treatment of men and postmenopausal women with osteoporosis who are at high risk for fracture, including those who have failed or are intolerant of previous osteoporosis therapy. In conclusion, although teriparatide seems quite effective in the treatment of osteoporosis, it may cause life-threatening hypercalcemia. Therefore, patients should be closely monitored if symptoms of hypercalcemia are present during teriparatide treatment. Sustained hypercalcemia due to teriparatide treatment can not be seen in literature so we wanted to emphasize that severe hypercalcemia may develop due to teriperatide. PMID:22529492

  1. The ultraviolet attenuation law in backlit spiral galaxies

    SciTech Connect

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.; Lintott, Chris J.; Schawinski, Kevin E-mail: ammanning@bama.ua.edu E-mail: Twitter@BenneHolwerda E-mail: Twitter@chrislintott E-mail: Twitter@kevinschawinski

    2014-02-01

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the target galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread

  2. Assessing aerobic natural attenuation of trichloroethene at four DOE sites

    SciTech Connect

    Koelsch, Michael C.; Starr, Robert C.; Sorenson, Jr., Kent S.

    2005-03-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  3. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.

    PubMed

    Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W

    2016-02-01

    Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.

  4. Dust Attenuation in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.; Witt, A. N.; Gordon, K. D.

    2002-05-01

    In order to determine the star formation history of the universe from deep surveys at UV/optical rest frame wavelengths, one must have a reliable estimate of the attenuation factor for galaxies at high redshifts. That star formation is heavily enshrouded in dust is no longer in doubt. The exact nature, geometry and the amount of this dust/attenuation needs to be known out to high redshifts. We present an analysis of UV attenuation of a large (N=906) sample of Lyman Break Galaxies (LBGs) (data provided by Charles C. Steidel, Caltech) by internal dust. Using spectral energy distributions (SEDs) from the PEGASE stellar evolutionary synthesis model we apply dust corrections to the G - R colours using the Witt & Gordon (2000) dust attenuation models, to arrive at the UV attenuation factors. We show that the dust in the LBG sample exhibits SMC-like characteristics rather than MW type, and that the dust geometry is best represented by a clumpy shell configuration. The dust attenuation in individual LBGs is found to be proportional to their rest frame UV luminosities, i.e. their current star formation rate. We find that the average luminosity-weighted dust attenuation factor at 1600 Å is in the range 10-40 which agrees with the upper limit set by the FIR background. We also find that most of the star formation at 2 < z < 4 occurs in galaxies with luminosity ~ 1011-1012Lsun, equivalent to of the present day Luminous Infra-Red Galaxies and the Ultra Luminous Infra-Red Galaxies. This work has been supported by NASA grants NAG5-9376 and NAG5-9202, which we acknowledge with gratitude.

  5. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  6. Temporal changes in attenuation associated with the 2004 M6.0 Parkfield earthquake

    NASA Astrophysics Data System (ADS)

    Kelly, C. M.; Rietbrock, A.; Faulkner, D. R.; Nadeau, R. M.

    2013-02-01

    Elevated seismic attenuation is often observed in fault zones due to the high degree of fracturing and fluid content. However, temporal changes in attenuation at the time of an earthquake are poorly constrained but can give indications of fracture damage and healing. In this study, spectral ratios between earthquakes within repeating clusters are calculated in an attempt to resolve temporal variations in attenuation at the time of the 2004 M6.0 Parkfield earthquake. A sharp increase in attenuation is observed immediately after the earthquake, which then decays over the next 2 years. Influences of intercluster magnitude variations, time window length and previously reported postseismic velocity changes are investigated. The postseismic decay is fit by a logarithmic function. The timescale of the decay is found to be similar to that in GPS data and ambient seismic noise velocities following the 2004 M6.0 Parkfield earthquake. The amplitude of the attenuation change corresponds to a decrease of approximately 10% in Qp at the time of the earthquake. The greatest changes are recorded on the northeast of the fault trace, consistent with preferential damage in the extensional quadrant behind a north-westerly propagating rupture tip. Our analysis suggests that significant changes in seismic attenuation and hence fracture dilatancy during coseismic rupture are limited to depths of less than about 5 km.

  7. Simultaneous iterative reconstruction of emission and attenuation images in positron emission tomography from emission data only.

    PubMed

    Landmann, M; Reske, S N; Glatting, G

    2002-09-01

    For quantitative image reconstruction in positron emission tomography attenuation correction is mandatory. In case that no data are available for the calculation of the attenuation correction factors one can try to determine them from the emission data alone. However, it is not clear if the information content is sufficient to yield an adequate attenuation correction together with a satisfactory activity distribution. Therefore, we determined the log likelihood distribution for a thorax phantom depending on the choice of attenuation and activity pixel values to measure the crosstalk between both. In addition an iterative image reconstruction (one-dimensional Newton-type algorithm with a maximum likelihood estimator), which simultaneously reconstructs the images of the activity distribution and the attenuation coefficients is used to demonstrate the problems and possibilities of such a reconstruction. As result we show that for a change of the log likelihood in the range of statistical noise, the associated change in the activity value of a structure is between 6% and 263%. In addition, we show that it is not possible to choose the best maximum on the basis of the log likelihood when a regularization is used, because the coupling between different structures mediated by the (smoothing) regularization prevents an adequate solution due to crosstalk. We conclude that taking into account the attenuation information in the emission data improves the performance of image reconstruction with respect to the bias of the activities, however, the reconstruction still is not quantitative.

  8. The vertical attenuation of light in Charlotte Harbor, a shallow, subtropical estuary, south-western Florida

    USGS Publications Warehouse

    McPherson, B.F.; Miller, R.L.

    1987-01-01

    The relative contribution of different components to the attenuation of photosynthetically active radiation was determined in the Charlotte Harbor estuarine system based on laboratory and in situ measurements. Agreement between laboratory and in situ measurements of the attenuation coefficient (kt) was good (r2 = 0??92). For all in situ measurements (n = 100), suspended, non-chlorophyll matter accounted for an average of 72% of kt, dissolved matter accounted for 21%, suspended chlorophyll for 4%, and water for the remaining 3%. For individual determinations, suspended non-chlorophyll matter, dissolved matter, suspended chlorophyll, and water, each accounted for as much as 99%, 79%, 21%, and 18% of kt. Attenuation by suspended matter was greatest near the mouth of the northern tidal rivers and was variable over the rest of the estuarine system. Attenuation by dissolved matter was greatest in the brackish tidal rivers and decreased with increasing salinity. Attenuation due to dissolved matter was positively correlated with water color. The source of the color was basin runoff. Wavelength transmittance changed along the salinity gradient. Maximum transmittance shifted from 500 to 600 nm in gulf waters to 650 to 700 nm in colored, brackish waters. Dissolved matter was primarily responsible for the large attenuation at short wavelengths (400-500 nm). ?? 1987.

  9. Estimation of Transmitting Power to Compensate for Rain Attenuation for a Broadcasting Satellite System in the 21-GHz Band

    NASA Astrophysics Data System (ADS)

    Minematsu, Fumiaki; Tanaka, Shoji; Nakagawa, Hitoshi; Kawaguchi, Yutaka

    2002-01-01

    1. INTRODUCTION Rain attenuation in the 21-GHz band is much larger than that in the conventionally used 12-GHz band and the rain attenuation causes more serious program interruptions compared with that in the 12-GHz band. We are now studying an advanced broadcasting satellite in the 21-GHz band that enables adaptive compensation for heavy rain area by boosted beams using an on-board phased-array-transmitting antenna. To know the scale of this satellite system, it is important to estimate transmitting power needed to compensate for rain attenuation. Rain attenuation has so close association with rainfall that it is possible to estimate rain attenuation by measured rainfall. Japan meteorological agency is measuring 1-hour rainfalls for about 1300 locations in Japan. In this study, 1-hour rainfall data accumulated at more than 1000 locations over a period of 20 years were used statistically to grasp rainfall distribution throughout Japan and the transmitting power for compensation was estimated by use of these data. 2. CALCULATION MODEL FOR TRANSMITTING POWER ESTIMATION Assumed rain attenuation compensation area for Japanese archipelago was divided into 112 square areas. A size of each square was 0.1 degree in terms of azimuth and elevation angle for the beam direction of satellite transmitting antenna. For calculation, the link margin of 3.5 dB for clear sky was given to the area where 1-hour rainfall not larger than 3 mm was detected. For other square areas where 1-hour rainfall larger than 3 mm was detected, the link margin of 12 dB was given. The former link margin corresponds to the service availability of 99 % and the latter does to that of 99.9 % in an average year in Tokyo. A total system efficiency included radiation efficiency of the transmitting antenna of 1.0 was assumed. As modulation scheme, trellis coded 8-PSK (TC8PSK) was assumed. The required reception CN ratio for TC8PSK is 10.7 dB. As to TC8PSK, the baud rate of 57.72 Mbaud gives more than 100 Mbps

  10. Safety of a live attenuated Erysipelothrix rhusiopathiae vaccine for swine.

    PubMed

    Neumann, Eric J; Grinberg, Alex; Bonistalli, Kathryn N; Mack, Hamish J; Lehrbach, Philip R; Gibson, Nicole

    2009-03-30

    Infection with Erysipelothrix rhusiopathiae has a significant economic impact on pig production systems worldwide. Both inactivated and attenuated vaccines are available to prevent development of clinical signs of swine erysipelas. The ability of a live attenuated E. rhusiopathiae strain to become persistently established in pigs after intranasal exposure and its potential to cause clinical signs consistent with swine erysipelas after being administered directly into the nasopharynx of healthy pigs was evaluated. Five, E. rhusiopathiae-negative pigs were vaccinated by deep intranasal inoculation then followed for 14 days. Nasal swabs were collected daily for 5 days and clinical observations were made daily for 14 days post-vaccination. Nasal swabs were cultured for E. rhusiopathiae with the intent of back-passaging any recovered organisms into subsequent replicates. No organism was recovered from nasal swabs in the first vaccination replicate. A second replicate including 10 pigs was initiated and followed in an identical manner to that described above. Again, no E. rhusiopathiae was recovered from any pigs. No pigs in either replicate showed any signs of clinical swine erysipelas. The live attenuated E. rhusiopathiae strain evaluated in this study did not appear to become persistently established in pigs post-vaccination, did not cause any local or systemic signs consistent with swine erysipelas, and was therefore unlikely to revert to a virulent state when used in a field setting.

  11. An investigation of hydraulic-line resonance and its attenuation

    NASA Technical Reports Server (NTRS)

    Sewall, J. L.; Wineman, D. A.; Herr, R. W.

    1973-01-01

    An investigation of fluid resonance in high-pressure hydraulic lines has been made with two types of fluid dampers (or filters) installed in the line. One type involved the use of one or more closed-end tubes branching at right angles from a main line, and the other type was a fluid muffler installed in-line. These devices were evaluated in forced vibration tests with oscillatory disturbances over a 1000-Hz range applied to one end of the line and with oscillatory pressures measured at various stations along the main pipe. Limited applications of acoustic-wave theory to the branched systems are also included. Results show varying attenuations of pressure perturbations, depending on the number and location of branches and the type of muffler. Up to three branches were used in the branch-resonator study, and the largest frequency range with maximum attenuation was obtained for a three-branch configuration. The widest frequency ranges with significant attenuations were obtained with two types of fluid mufflers.

  12. Prediction of spectral acceleration response ordinates based on PGA attenuation

    USGS Publications Warehouse

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  13. Engineering biodegradable polyester elastomers with antioxidant properties to attenuate oxidative stress in tissues

    PubMed Central

    van Lith, R.; Gregory, E.K.; Yang, J.; Kibbe, M.R.; Ameer, G.A.

    2014-01-01

    Oxidative stress plays an important role in the limited biological compatibility of many biomaterials due to inflammation, as well as in various pathologies including atherosclerosis and restenosis as a result of vascular interventions. Engineering antioxidant properties into a material is therefore a potential avenue to improve the biocompatibility of materials, as well as to locally attenuate oxidative stress-related pathologies. Moreover, biodegradable polymers that have antioxidant properties built into their backbone structure have high relative antioxidant content and may provide prolonged, continuous attenuation of oxidative stress while the polymer or its degradation products are present. In this report, we describe the synthesis of poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA), a citric-acid based biodegradable elastomer with native, intrinsic antioxidant properties. The in vitro antioxidant activity of POCA as well as its effects on vascular cells in vitro and in vivo were studied. Antioxidant properties investigated included scavenging of free radicals, iron chelation and the inhibition of lipid peroxidation. POCA reduced reactive oxygen species generation in cells after an oxidative challenge and protected cells from oxidative stress-induced cell death. Importantly, POCA antioxidant properties remained present upon degradation. Vascular cells cultured on POCA showed high viability, and POCA selectively inhibited smooth muscle cell proliferation, while supporting endothelial cell proliferation. Finally, preliminary data on POCA-coated ePTFE grafts showed reduced intimal hyperplasia when compared to standard ePTFE grafts. This biodegradable, intrinsically antioxidant polymer may be useful for tissue engineering application where oxidative stress is a concern. PMID:24976244

  14. Natural Attenuation Software (NAS): A computer program for estimating remediation times of contaminated groundwater

    USGS Publications Warehouse

    Mendez, E.; Widdowson, M.; Brauner, S.; Chapelle, F.; Casey, C.; ,

    2004-01-01

    This paper describes the development and application of a modeling system called Natural Attenuation Software (NAS). NAS was designed as a screening tool to estimate times of remediation (TORs), associated with monitored natural attenuation (MNA), to lower groundwater contaminant concentrations to regulatory limits. Natural attenuation processes that NAS models include advection, dispersion, sorption, biodegradation, and non-aqueous phase liquid (NAPL) dissolution. This paper discusses the three main interactive components of NAS: 1) estimation of the target source concentration required for a plume extent to contract to regulatory limits, 2) estimation of the time required for NAFL contaminants in the source area to attenuate to a predetermined target source concentration, and 3) estimation of the time required for a plume extent to contract to regulatory limits after source reduction. The model's capability is illustrated by results from a case study at a MNA site, where NAS time of remediation estimates compared well with observed monitoring data over multiple years.

  15. Nutrient attenuation by a riparian wetland during natural and artificial runoff events.

    PubMed

    Casey, R E; Klaine, S J

    2001-01-01

    Due to chronic nutrient enrichment of surface water, wetlands adjacent to land managed with fertilizer have been studied to determine their role in nutrient dynamics. We sampled golf course runoff and determined the loads of NO3- and PO4(-3) transported during storms and the attenuation of those loads when runoff passed through a riparian wetland. All sampled storm events contained NO3- (2 to 1470 g NO3-N per event) and PO4(-3) (1 to 4156 g PO4-P per event). Extensive nutrient attenuation occurred when water passed through the riparian wetland. In 11 events, NO3- and PO4(-3) attenuation averaged 80 and 74%, respectively. In subsequent experiments, we created a stream of water flowing into the wetland and amended it with NO3-, PO4(-3) and Br-, creating an artificial runoff event. The experiments were conducted using conditions similar to those of natural runoff events. We observed rapid and complete attenuation of PO4(-3) immediately after runoff water infiltrated into the wetland subsurface. No PO4(-3) was observed in discharge from the wetland. Nitrate attenuation occurred following a lag phase of several hours that was probably due to reactivation of denitrifying enzymes. Nitrate attenuation was initially less than 60% but increased to 100% in all experiments. We observed extensive dilution of runoff water in the wetland subsurface indicating mixing with pre-event ground water in the wetland. The results indicated that intermittent inputs of NO3- and PO4(-3) could be successfully attenuated in the wetland on the time scale of natural storm events.

  16. Analysis of the attenuation of railway squeal noise by preloaded rings inserted in wheels.

    PubMed

    Brunel, J F; Dufrénoy, P; Charley, J; Demilly, F

    2010-03-01

    Squeal from railway wheels occurring in short radius curves produces a very intense and highly annoying noise in the range 400-8000 Hz. When the excitation, due to lateral forces acting on the wheel, cannot be avoided, additional systems can be added on the wheel to limit acoustic emission. A very economical approach is the use of metal rings inserted into grooves machined in the wheels. Unfortunately the effectiveness of these so called damping rings varies from one wheel to another and for different rings. Because the mechanisms of attenuation are not well understood, these variations have not to date been explained. The aim of this paper is to clarify the attenuation mechanisms for damping rings especially for the first three axial wheel modes, which are the predominant sound radiated ones in curve passage and for which the effectiveness of the treatment is lower. It has been generally assumed that friction between the ring and the groove has been the mechanism for squeal noise attenuation. Here it is shown that the vibration attenuation is due to modal coupling between the wheel and the ring. The validity of this proposed mechanism is investigated using experimental measurements and theoretical and numerical models. The results presented here will provide an avenue for optimization of the damping ring noise control treatment to obtain significant levels of squeal noise attenuation notably for the first three axial modes. PMID:20329829

  17. Filtered back-projection reconstruction for attenuation proton CT along most likely paths

    NASA Astrophysics Data System (ADS)

    Quiñones, C. T.; Létang, J. M.; Rit, S.

    2016-05-01

    This work investigates the attenuation of a proton beam to reconstruct the map of the linear attenuation coefficient of a material which is mainly caused by the inelastic interactions of protons with matter. Attenuation proton computed tomography (pCT) suffers from a poor spatial resolution due to multiple Coulomb scattering (MCS) of protons in matter, similarly to the conventional energy-loss pCT. We therefore adapted a recent filtered back-projection algorithm along the most likely path (MLP) of protons for energy-loss pCT (Rit et al 2013) to attenuation pCT assuming a pCT scanner that can track the position and the direction of protons before and after the scanned object. Monte Carlo simulations of pCT acquisitions of density and spatial resolution phantoms were performed to characterize the new algorithm using Geant4 (via Gate). Attenuation pCT assumes an energy-independent inelastic cross-section, and the impact of the energy dependence of the inelastic cross-section below 100 MeV showed a capping artifact when the residual energy was below 100 MeV behind the object. The statistical limitation has been determined analytically and it was found that the noise in attenuation pCT images is 411 times and 278 times higher than the noise in energy-loss pCT images for the same imaging dose at 200 MeV and 300 MeV, respectively. Comparison of the spatial resolution of attenuation pCT images with a conventional straight-line path binning showed that incorporating the MLP estimates during reconstruction improves the spatial resolution of attenuation pCT. Moreover, regardless of the significant noise in attenuation pCT images, the spatial resolution of attenuation pCT was better than that of conventional energy-loss pCT in some studied situations thanks to the interplay of MCS and attenuation known as the West-Sherwood effect.

  18. Thermal cracking and amplitude dependent attenuation

    SciTech Connect

    Johnston, D.H.; Toksoez, M.N.

    1980-02-10

    The role of crack and grain boundary contacts in determining seismic wave attenuation in rock is investigated by examining Q as a function of thermal cycling (cracking) and wave strain amplitude. Q values are obtained using a longitudinal resonant bar technique in the 10- to 20-kHz range for maximum strain amplitudes varying from roughly 10/sup -8/ to 10/sup -5/. The samples studied include the Berea and Navajo sandstones, Plexiglas, Westerly granite, Solenhofen limestone, and Frederick diabase, the latter two relatively crack free in their virgin state. Measurements were made at room temperature and pressure in air. Q values for both sandstones are constant at low strains (<10/sup -6/) but decrease rapidly with amplitude at higher strains. There is no hysteresis of Q with amplitude. Q values for Plexiglas show no indication of amplitude dependent behavior. The granite, limestone, and diabase are thermally cycled at both fast and slow heating rates in order to induce cracking. Samples slowly cycled at 400/sup 0/C show a marked increase in Q that cannot be entirely explained by outgassing of volatiles. Cycling may also widen thin cracks and grain boundaries, reducing contact areas. Samples heated beyond 400/sup 0/C, or rapidly heated, result in generally decreasing Q values. The amplitude dependence of Q is found to be coupled to the effects of thermal cycling. For rock slowly cycled 400)C or less, the transition from low-amplitude contant Q to high-amplitude variable Q behavior decreases to lower amplitudes as a function of maximum temperature. Above 400/sup 0/C, and possibly in th rapidly heated samples also, the transition moves to higher amplitudes.

  19. Compressional head waves in attenuative formations

    SciTech Connect

    Liu, Q.H.; Chang, C.

    1994-12-31

    The attenuation of compressional head waves in a fluid-filled borehole is studied with the branch-cut integration method. The borehole fluid and solid formation are both assumed lossy with quality factors Q{sub f}({omega}) for the fluid, and Q{sub c}({omega}) and Q{sub s}({omega}) for the compressional and shear waves in the solid, respectively. The branch-cut integration method used in this work is an extension of that for a lossless medium. With this branch-cut integration method, the authors can isolate the groups of individual arrivals such as the compressional head waves and shear head waves, and study the attenuation of those particular wavefields in lossy media. This study, coupled with experimental work to be performed, may result in an effective way of measuring compressional head wave attenuation in the field.

  20. Graphene-Based Waveguide Terahertz Wave Attenuator

    NASA Astrophysics Data System (ADS)

    Jian-rong, Hu; Jiu-sheng, Li; Guo-hua, Qiu

    2016-07-01

    We design an electrically controllable terahertz wave attenuator by using graphene. We show that terahertz wave can be confined and propagate on S-shaped graphene waveguide with little radiation losses, and the confined terahertz wave is further manipulated and controlled via external applied voltage bias. The simulated results show that, when chemical potential changes from 0.03 into 0.05 eV, the extinction ratio of the terahertz wave attenuator can be tuned from 1.28 to 39.42 dB. Besides the simplicity, this novel terahertz wave attenuator has advantages of small size (24 × 30 μm2), a low insertion loss, and good controllability. It has a potential application for forthcoming planar terahertz wave integrated circuit fields.

  1. Finite Element Analysis of Honeycomb Impact Attenuator

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu

    To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.

  2. Separating Scattering from Intrinsic Attenuation

    NASA Astrophysics Data System (ADS)

    van Wijk, K.; Scales, J. A.

    2003-12-01

    The subsurface appears disordered at all length-scales. Therefore, wave propatation at seismic or ultrasonic frequencies is subject to complicated scatterings. A pulse propagating in the subsurface loses energy at each scattering off an impedance contrast, but also decreases in amplitude as the impulse interacts with fluids in the rock. We call the latter non-elastic effect "intrinsic Q", while the former is "scattering Q". It is often the fluids in the rocks that are of interest, but conventional reflection and transmission of the incident pulse only cannot deceipher the individual components of Q due to scattering and fluid movement in the pore-space. We present an approach that can unravel these two mechanisms, allowing a separate estimate of absorption. This method treats the propagation of the average intensity in the framework of radiative transfer (RT); the arrival of (what is left of) the incident pulse is modeled as the coherent energy, whereas the later arriving multiply scattered events form the incoherent intensity. The coherent pulse decays exponentially due to a combination of scattering and absorption, and so does the incoherent intensity. However, multiple scattering can re-direct energy back to the receiver, supplying a gain-term at later times that makes up the incoherent intensity. Strictly speaking, one can invert for scattering and absorption from the intensity at late times only, often modeled with the late-time equivalent of RT, diffusion. However, we will show that fitting both early- and late-time signal with RT constrains absorption and scattering constants more rigorously. These ideas are illustrated by laboratory and sonic-logging measurements.

  3. Regional Lg attenuation for the continental United States

    USGS Publications Warehouse

    Benz, H.M.; Frankel, A.; Boore, D.M.

    1997-01-01

    Measurements of the Fourier amplitude spectra of Lg phases recorded at high frequency (0.5 to 14.0 Hz) by broadband seismic stations are used to determine regional attenuation relationships for southern California, the Basin and Range Province, the central United States, and the northeastern United States and southeastern Canada. Fourier spectral amplitudes were measured every quarter octave from Lg phases windowed between 3.0 and 3.7 km sec-1 and recorded in the distance range of 150 to 1000 km. Attenuation at each frequency is determined by assuming a geometrical spreading exponent of 0.5 and inverting for Q and source and receiver terms. Both southern California and the Basin and Range Province are well described by low Lg Q and frequency-dependent attenuation. Lg spectral amplitudes in southern California are fit at low frequencies (0.625 to 0.875 Hz) by a constant Lg Q of 224 and by a frequency-dependent Lg Q function Q = 187-7+7 f0.55(??0.03) in the frequency band 1.0 to 7.0 Hz. The Basin and Range Province is characterized by a constant Lg Q of 192 for frequencies of 0.5 to 0.875 Hz and by the frequency-dependent Lg Q function Q = 235-11+11 f0.56(??0.04) in the frequency band 1.0 to 5.0 Hz. A change in frequency dependence above 5.0 Hz is possible due to contamination of the Lg window by Pn and Sn phases. Lg spectral amplitudes in the central United States are fit by a mean frequency-independent Lg Q of 1291 for frequencies of 1.5 to 7.0 Hz, while a frequency-dependent Lg Q of Q = 1052-83+91(f/1.5)0.22(??0.06) fits the Lg spectral amplitudes for the northeastern United States and southeastern Canada over the passband 1.5 to 14.0 Hz. Attenuation measurements for these areas were restricted to frequencies >1.5 Hz due to larger microseismic noise levels at the lower frequencies.

  4. Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Shin, Junseob; Huang, Lianjie

    2016-04-01

    Ultrasound attenuation of breast tumors is related to their types and pathological states, and can be used to detect and characterize breast cancer. Particularly, ultrasound scattering attenuation can infer the margin properties of breast tumors. Ultrasound attenuation tomography quantitatively reconstructs the attenuation properties of the breast. Our synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays records both ultrasound reflection and transmission signals. We develop an ultrasound attenuation tomography method using ultrasound energy-scaled amplitude decays of ultrasound transmission signals and conduct ultrasound attenuation tomography using a known sound-speed model. We apply our ultrasound transmission attenuation tomography method to a breast phantom dataset, and compare the ultrasound attenuation tomography results with conventional beamforming ultrasound images obtained using reflection signals. We show that ultrasound transmission attenuation tomography complements beamforming images in identifying breast lesions.

  5. Characterization of pulsed flow attenuation on a regulated montane river

    NASA Astrophysics Data System (ADS)

    Fong, C. S.; Yarnell, S. M.; Fleenor, W. E.; Viers, J. H.

    2013-12-01

    no operational measures or physical structures existed within the system to counter the adverse effects of pulsed flow events, natural attenuation was the only potential major mitigation agent. However, model results demonstrated a clear durational threshold for representative pulses (~ 3-5 hrs) over which the degree of attenuation of ramping rates and peak discharge approached a limit. These thresholds were unique to the study reach and were dependent upon river morphology, bed characteristics, and flow rates. Increasing baseflows did not necessarily increase attenuation of pulses, most likely due to minimal increases in bed friction forces in this fairly steep and confined channel. Simulations of front and back-step representative pulses showed trade-offs between attenuation of peak magnitudes and steepness of ramping rates. Finally, a range of rising ramping rates were shown to steepen downstream above initial rates due to the study reach's channel morphology. Reshaping pulses to be more ecologically benign at all points downstream was infeasible if the system was required to maintain current electricity production and recreational service levels.

  6. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  7. Forward- vs. Inverse Problems in Modeling Seismic Attenuation

    NASA Astrophysics Data System (ADS)

    Morozov, I. B.

    2015-12-01

    Seismic attenuation is an important property of wave propagation used in numerous applications. However, the attenuation is also a complex phenomenon, and it is important to differentiate between its two typical uses: 1) in forward problems, to model the amplitudes and spectral contents of waves required for hazard assessment and geotechnical engineering, and 2) in inverse problems, to determine the physical properties of the subsurface. In the forward-problem sense, the attenuation is successfully characterized in terms of empirical parameters of geometric spreading, radiation patterns, scattering amplitudes, t-star, alpha, kappa, or Q. Arguably, the predicted energy losses can be correct even if the underlying attenuation model is phenomenological and not sufficiently based on physics. An example of such phenomenological model is the viscoelasticity based on the correspondence principle and the Q-factor assigned to the material. By contrast, when used to invert for in situ material properties, models addressing the specific physics are required. In many studies (including in this session), a Q-factor is interpreted as a property of a point within the subsurface; however this property is only phenomenological and may be physically insufficient or inconsistent. For example, the bulk or shear Q at the same point can be different when evaluated from different wave modes. The cases of frequency-dependent Q are particularly prone of ambiguities such as trade-off with the assumed background geometric spreading. To rigorously characterize the in situ material properties responsible for seismic-wave attenuation, it is insufficient to only focus on the seismic energy loss. Mechanical models of the material need to be considered. Such models can be constructed by using Lagrangian mechanics. These models should likely contain no Q but will be based on parameters of microstructure such as heterogeneity, fractures, or fluids. I illustrate several such models based on viscosity

  8. Comparison of Experimental and Theoretical Determined Terahertz Attenuation in Controlled Rain

    NASA Astrophysics Data System (ADS)

    Ma, Jianjun; Vorrius, Francis; Lamb, Lucas; Moeller, Lothar; Federici, John F.

    2015-12-01

    The effects of rain attenuation on 0.1- to 1-THz frequencies are reported in this paper. The THz pulses propagate through a rain chamber over a 4-m distance and are measured by THz time-domain spectroscopy (THz-TDS). A rain chamber is designed to generate controllable and reproducible rain conditions with different intensities. Image analysis software is employed to characterize the distribution of generated raindrop sizes. Theoretical THz power attenuations due to rain are calculated using Mie scattering theory and are compared with our measurements. Results show that both experimental and theoretical results are in very good agreement with each other.

  9. Lidar Measurements Supporting the Ocular Hazard Distance Calculation Using Atmospheric Attenuation

    NASA Astrophysics Data System (ADS)

    Gustafsson, K. Ove S.; Persson, Rolf; Gustafsson, Frank; Berglund, Folke; Hedborg, Julia; Malmquist, Jonas

    2016-06-01

    A series of lidar measurements has been performed at the Vidsel Test Range, Vidsel, situated in the inland of the very northern part of Sweden, as a part of an assessment of reducing the laser hazard distance using atmospheric attenuation within the calculations of nominal ocular hazard distance (NOHD). The question was "How low is the atmospheric attenuation as function of height in this area, using a wavelength of 1064 nm?" The work included building a ground based backscatter lidar, performing a series of measurements and analyzing the results. The measurements were performed during June to November, 2014, with the objective to measure at clear air and good weather situations. The lidar measurements at 1064 nm showed a very low atmospheric attenuation as a function of height to altitudes of at least 10 km at several occasions. The lowest limit of backscatter coefficient possible to measure with this instrument is 0.3·10-7 m-1 sr-1. Assuming a lidar ratio varying between 30 - 100 sr, this was leading to an extinction coefficient of about 0.9 - 3·10-6 m-1. The atmospheric attenuation reduces the laser hazard distance with about 50 - 56 % depending on the lidar ratio. A recommendation is to monitor the atmospheric attenuation at the occasions when the method to the reduced laser hazard distance using atmospheric attenuation is used.

  10. Lateral Variation of Seismic Attenuation in Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Ajaay, T.; Kumar, Ajay; Mitra, Supriyo

    2016-10-01

    We use data from local earthquakes (mb ≥ 3.0) recorded by the Sikkim broadband seismograph network to study the frequency dependent attenuation of the crust and uppermost mantle. These events have been relocated using body wave phase data from local and regional seismograms. The decay of coda amplitudes at a range of central frequencies (1 to 12 Hz) have been measured for 74 earthquake-receiver pairs. These measurements are combined to estimate the frequency dependent coda Q of the form Q(f) = Q0fη. The estimated Q0 values range from 80-200, with an average of 123±29; and η ranges from 0.92-1.04, with an average of 0.98±0.04. To study the lateral variation of Q0 and η, we regionalized the measured Q values by combining all the earthquake-receiver path measurements through a back projection algorithm. We consider a single back-scatter model for the coda waves with elliptical sampling and parameterize the sampled area using 0.2° square grids. A nine-point spatial smoothening (similar to spatial Gaussian filter) is applied to stabilize the inversion. This is done at every frequency to observe the spatial variation of Q(f) and subsequently combined to obtain η variations. Results of our study reveal that the Sikkim Himalaya is characterized by low Q0 (80-100) compared to the foreland basin to its south (150-200) and the Nepal Himalaya to its west (140-160). The low Q and high η in Sikkim Himalaya is attributed to extrinsic scattering attenuation from structural heterogeneity and active faults within the crust, and intrinsic attenuation due to anelasticity in the hotter lithosphere beneath the actively deforming mountain belt. Similar low Q and high η values had also been observed in North-West and Garhwal-Kumaun Himalaya.

  11. Stacking coda waves to resolve the scattering and attenuation structure of Southern California

    NASA Astrophysics Data System (ADS)

    Wang, W.; Shearer, P. M.

    2015-12-01

    Seismic attenuation is caused by two factors, scattering and intrinsic absorption. Charactering the scattering and attenuation properties and the power spectrum of crustal heterogeneity is a fundamental problem for informing strong ground motion estimates at high frequencies, where scattering and attenuation effects are critical. Determining the relative amount of attenuation caused by scattering and intrinsic absorption has been a long-standing interest of seismologists. The wavetrain following the direct body-wave phases is called the coda and is caused by scattered energy. Many studies have analyzed local-event coda to infer crustal and upper-mantle scattering strength and intrinsic attenuation. Here we describe a comprehensive study of coda behavior in Southern California to resolve scattering and intrinsic attenuation structure. First, we apply an envelope-function stacking method to 287,410 seismograms from 6928 geographically dispersed events of M ≥ 1.8 from 1981-2005. The results are presented as spatial averages as a function of distance, source depth, and frequency. Second, we use a Monte Carlo seismic phonon algorithm to simulate the effects of depth-dependent scattering and intrinsic attenuation, which computes scattering probabilities and scattering angles based on theoretical results for random heterogeneity models. This method has the advantage of including both P- and S-wave scattering and is energy conserving even for multiple scattering models. The input 1-D velocity model can be layered to incorporate reflected phases, such as PmP and SmS, to better fit the observations. We will summarize our results for the average scattering and attenuation properties of the southern California crust and the implications for strong ground motion predictions.

  12. The Physics of the Gas Attenuator for the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Ryutov, D.D.; Bionta, R.M.; Hau-Riege, S.P.; Kishiyama, K.I.; McMahon, D.; Roeben, M.D.; Shen, S.; Stefan, P.M.; /SLAC

    2011-02-07

    A systematic assessment of a variety of physics issues affecting the performance of the LCLS X-ray beam attenuator is presented. Detailed analysis of the gas flow in the gas attenuator and in the apertures is performed. A lot of attention is directed towards the gas ionization and heating by intense X-ray pulses. The role of these phenomena in possible deviations of the attenuation coefficient from its 'dialed in' value is evaluated and found small in most cases. Other sources of systematic and statistical errors are also discussed. The regimes where the errors may reach a few percent correspond to the lower X-ray energies (less than 2 keV) and highest beam intensities. Other effects discussed include chemical interaction of the gas with apertures, shock formation in the transonic flow in the apertures of the attenuator, generation of electromagnetic wakes in the gas, and head-to-tail variation of the attenuation caused by the ionization of gas or solid. Possible experimental tests of the consistency of the physics assumptions used in the concept of the gas attenuator are discussed. Interaction of X-rays with the solid attenuator (that will be used at higher X-ray energies, from 2.5 to 8 keV) is considered and thermo-mechanical effects caused by the beam heating are evaluated. Wave-front distortions induced by non-uniform heating of both the solid and the gas are found to be small. An overall conclusion drawn from the analysis presented is that the attenuator will be a reliable and highly versatile device, provided that some caution is exercised in its use for highest beam intensities at lowest X-ray energies.

  13. Characterizing Ultraviolet and Infrared Observational Properties for Galaxies. II. Features of Attenuation Law

    NASA Astrophysics Data System (ADS)

    Mao, Ye-Wei; Kong, Xu; Lin, Lin

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  14. Measurement of breast-tissue x-ray attenuation by spectral mammography: solid lesions

    NASA Astrophysics Data System (ADS)

    Fredenberg, Erik; Kilburn-Toppin, Fleur; Willsher, Paula; Moa, Elin; Danielsson, Mats; Dance, David R.; Young, Kenneth C.; Wallis, Matthew G.

    2016-04-01

    Knowledge of x-ray attenuation is essential for developing and evaluating x-ray imaging technologies. For instance, techniques to distinguish between cysts and solid tumours at mammography screening would be highly desirable to reduce recalls, but the development requires knowledge of the x-ray attenuation for cysts and tumours. We have previously measured the attenuation of cyst fluid using photon-counting spectral mammography. Data on x-ray attenuation for solid breast lesions are available in the literature, but cover a relatively wide range, likely caused by natural spread between samples, random measurement errors, and different experimental conditions. In this study, we have adapted a previously developed spectral method to measure the linear attenuation of solid breast lesions. A total of 56 malignant and 5 benign lesions were included in the study. The samples were placed in a holder that allowed for thickness measurement. Spectral (energy-resolved) images of the samples were acquired and the image signal was mapped to equivalent thicknesses of two known reference materials, which can be used to derive the x-ray attenuation as a function of energy. The spread in equivalent material thicknesses was relatively large between samples, which is likely to be caused mainly by natural variation and only to a minor extent by random measurement errors and sample inhomogeneity. No significant difference in attenuation was found between benign and malignant solid lesions. The separation between cyst-fluid and tumour attenuation was, however, significant, which suggests it may be possible to distinguish cystic from solid breast lesions, and the results lay the groundwork for a clinical trial. In addition, the study adds a relatively large sample set to the published data and may contribute to a reduction in the overall uncertainty in the literature.

  15. Characterizing ultraviolet and infrared observational properties for galaxies. II. Features of attenuation law

    SciTech Connect

    Mao, Ye-Wei; Kong, Xu; Lin, Lin E-mail: xkong@ustc.edu.cn

    2014-07-01

    Variations in the attenuation law have a significant impact on observed spectral energy distributions for galaxies. As one important observational property for galaxies at ultraviolet and infrared wavelength bands, the correlation between infrared-to-ultraviolet luminosity ratio and ultraviolet color index (or ultraviolet spectral slope), i.e., the IRX-UV relation (or IRX-β relation), offered a widely used formula for correcting dust attenuation in galaxies, but the usability appears to be in doubt now because of considerable dispersion in this relation found by many studies. In this paper, on the basis of spectral synthesis modeling and spatially resolved measurements of four nearby spiral galaxies, we provide an interpretation of the deviation in the IRX-UV relation with variations in the attenuation law. From both theoretical and observational viewpoints, two components in the attenuation curve, the linear background and the 2175 Å bump, are suggested to be the parameters in addition to the stellar population age (addressed in the first paper of this series) in the IRX-UV function; different features in the attenuation curve are diagnosed for the galaxies in our sample. Nevertheless, it is often difficult to ascertain the attenuation law for galaxies in actual observations. Possible reasons for preventing the successful detection of the parameters in the attenuation curve are also discussed in this paper, including the degeneracy of the linear background and the 2175 Å bump in observational channels, the requirement for young and dust-rich systems to study, and the difficulty in accurate estimates of dust attenuations at different wavelength bands.

  16. The Extravehicular Suit Impact Load Attenuation Study for Use in Astronaut Bone Fracture Prediction

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth E.; Gilkey, Kelly M.; Sulkowski, Christina M.; Samorezov, Sergey; Myers, Jerry G.

    2011-01-01

    The NASA Integrated Medical Model (IMM) assesses the risk, including likelihood and impact of occurrence, of all credible in-flight medical conditions. Fracture of the proximal femur is a traumatic injury that would likely result in loss of mission if it were to happen during spaceflight. The low gravity exposure causes decreases in bone mineral density which heightens the concern. Researchers at the NASA Glenn Research Center have quantified bone fracture probability during spaceflight with a probabilistic model. It was assumed that a pressurized extravehicular activity (EVA) suit would attenuate load during a fall, but no supporting data was available. The suit impact load attenuation study was performed to collect analogous data. METHODS: A pressurized EVA suit analog test bed was used to study how the offset, defined as the gap between the suit and the astronaut s body, impact load magnitude and suit operating pressure affects the attenuation of impact load. The attenuation data was incorporated into the probabilistic model of bone fracture as a function of these factors, replacing a load attenuation value based on commercial hip protectors. RESULTS: Load attenuation was more dependent on offset than on pressurization or load magnitude, especially at small offsets. Load attenuation factors for offsets between 0.1 - 1.5 cm were 0.69 +/- 0.15, 0.49 +/- 0.22 and 0.35 +/- 0.18 for mean impact forces of 4827, 6400 and 8467 N, respectively. Load attenuation factors for offsets of 2.8 - 5.3 cm were 0.93 +/- 0.2, 0.94 +/- 0.1 and 0.84 +/- 0.5, for the same mean impact forces. Reductions were observed in the 95th percentile confidence interval of the bone fracture probability predictions. CONCLUSIONS: The reduction in uncertainty and improved confidence in bone fracture predictions increased the fidelity and credibility of the fracture risk model and its benefit to mission design and operational decisions.

  17. Complete Genome Sequences of the Three African Horse Sickness Virus Strains from a Commercial Trivalent Live Attenuated Vaccine

    PubMed Central

    Coetzee, Peter; Martin, Darren P.; Lourens, Carina W.; Venter, Estelle H.; Weyer, Camilla T.; Joone, Christopher; le Grange, Misha; Harper, Cindy K.; Howell, Peter G.; MacLachlan, N. James

    2015-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the three virus strains included in a South African commercial trivalent African horse sickness attenuated live virus vaccine. PMID:26294618

  18. Complete Genome Sequences of Four African Horse Sickness Virus Strains from a Commercial Tetravalent Live Attenuated Vaccine

    PubMed Central

    Coetzee, Peter; Martin, Darren P.; Lourens, Carina W.; Venter, Estelle H.; Weyer, Camilla T.; Joone, Christopher; le Grange, Misha; Harper, Cindy K.; Howell, Peter G.; MacLachlan, N. James

    2015-01-01

    This is a report of the complete genome sequences of plaque-selected isolates of each of the four virus strains included in a South African commercial tetravalent African horse sickness attenuated live virus vaccine. PMID:26607890

  19. Contaminant Attenuation Processes at Mining Sites

    EPA Science Inventory

    Monitored natural attenuation is sometimes used in combination with active treatment technologies to achieve site-specific remediation objectives. The global imprint of acid drainage problems at mining sites, however, is a clear reminder that in most cases natural processes are ...

  20. Attenuation of PRRSV by chimera construction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two genetically distinct infectious recombinant virus clones (pMLV, constructed from Ingelvac® PRRS MLV and pMN184, constructed from virulent strain MN184) were developed to study attenuation of contemporary PRRSV. Two reciprocal chimeric clones (pMLVORF1/MN184 and pMN184ORF1/MLV) were then constru...

  1. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ∼550 K, with the corresponding free-carrier density adjusted between ∼10{sup 11 }cm{sup −3} and ∼10{sup 17 }cm{sup −3}. This “hot-silicon”-based terahertz attenuator works most effectively at 450–550 K (corresponding to a DC voltage variation of only ∼7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1–2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  2. Monitored Natural Attenuation of Chlorinated Solvent Plumes

    EPA Science Inventory

    The chapter provides a synopsis of current applications of monitored natural attenuation (MNA) as a remedy at hazardous waste sites, and reviews the expectations of the U.S. Environmental Protection Agency for MNA as a remedy. It provides a detailed case study of the application...

  3. Touch Attenuates Infants' Physiological Reactivity to Stress

    ERIC Educational Resources Information Center

    Feldman, Ruth; Singer, Magi; Zagoory, Orna

    2010-01-01

    Animal studies demonstrate that maternal touch and contact regulate infant stress, and handling during periods of maternal deprivation attenuates the stress response. To measure the effects of touch on infant stress reactivity during simulated maternal deprivation, 53 dyads were tested in two paradigms: still-face (SF) and still-face with maternal…

  4. Electrically Tunable Hot-Silicon Terahertz Attenuator

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel; Kono, Junichiro

    2015-03-01

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 103. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and 550 K, with the corresponding free-carrier density adjusted between 1011 cm-3 and 1017 cm-3. This `hot-silicon'-based terahertz attenuator works most effectively at 450-550 K (corresponding to a DC voltage variation of only 7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1-2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator, but they exhibited slightly different behaviors before a dramatic transmission drop at 450-550 K: intrinsic silicon wafers showed a monotonic transmission decrease with temperature while doped wafers showed a slight increase in transmission before the drop. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers. This work was supported by the National Science Foundation through Grant No. OISE-0968405.

  5. Infrared Attenuation Of Thallium Bromoiodide Fibers

    NASA Technical Reports Server (NTRS)

    Goebel, John; Magilavy, Beryl

    1988-01-01

    Report presents measurements of attenuation of infrared signals in unclad 381-micrometer-diameter optical fibers of thallium bromoiodide. Measurements of attentuation in TI(Br,I) fibers in wavelength ranges of 1.2 to 3.4 micrometer and 3 to 11 micrometer compare with those of two other groups of researchers.

  6. Monitored Natural Attenuation Case Study Evaluations

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been selected as a component of groundwater remedies at several sites with metals and/or radionuclide contamination. An overview of the site characterization effort and remedy performance will be provided for several sites where MNA was se...

  7. Barrier-controlled monitored natural attenuation.

    PubMed

    Filz, G M; Widdowson, M A; Little, J C

    2001-08-01

    Three existing technologies (source containment, source reduction, and monitored natural attenuation) are integrated in barrier-controlled monitored natural attenuation (BCMNA)--a new approach for managing plumes of contaminated groundwater and remediating contaminated sites. The basic BCMNA concept uses a low-permeability, nonreactive barrier to release contaminants into an aquifer at a rate that optimizes natural attenuation. A simplified, one-dimensional model of the process is developed, and a hypothetical example of BCMNA is presented for a site contaminated with benzene. The analytical solution is used to demonstrate how contaminant concentrations can be controlled at a downgradient point of environmental compliance by manipulating design variables. BCMNA provides a greater degree of process control and risk reduction than monitored natural attenuation alone. BCMNA also holds promise for reducing remediation costs because (1) barriers can be constructed relatively inexpensively and (2) a cost-effective amount of source reduction can be applied inside the contained area with the BCMNA system remaining in place to safely complete the remediation process after source reduction is terminated. Further numerical modeling and a demonstration project are recommended to address important details and prove the concept.

  8. Attenuation correction for small animal PET tomographs

    NASA Astrophysics Data System (ADS)

    Chow, Patrick L.; Rannou, Fernando R.; Chatziioannou, Arion F.

    2005-04-01

    Attenuation correction is one of the important corrections required for quantitative positron emission tomography (PET). This work will compare the quantitative accuracy of attenuation correction using a simple global scale factor with traditional transmission-based methods acquired either with a small animal PET or a small animal x-ray computed tomography (CT) scanner. Two phantoms (one mouse-sized and one rat-sized) and two animal subjects (one mouse and one rat) were scanned in CTI Concorde Microsystem's microPET® Focus™ for emission and transmission data and in ImTek's MicroCAT™ II for transmission data. PET emission image values were calibrated against a scintillation well counter. Results indicate that the scale factor method of attenuation correction places the average measured activity concentration about the expected value, without correcting for the cupping artefact from attenuation. Noise analysis in the phantom studies with the PET-based method shows that noise in the transmission data increases the noise in the corrected emission data. The CT-based method was accurate and delivered low-noise images suitable for both PET data correction and PET tracer localization.

  9. Identification of the pXO1 plasmid in attenuated Bacillus anthracis vaccine strains.

    PubMed

    Liang, Xudong; Zhang, Huijuan; Zhang, Enmin; Wei, Jianchun; Li, Wei; Wang, Bingxiang; Dong, Shulin; Zhu, Jin

    2016-07-01

    Anthrax toxins and capsule are the major virulence factors of Bacillus anthracis. They are encoded by genes located on the plasmids pXO1 and pXO2, respectively. The vaccine strain Pasteur II was produced from high temperature subcultures of B. anthracis, which resulted in virulence attenuation through the loss of the plasmid pXO1. However, it is unclear whether the high temperature culture completely abolishes the plasmid DNA or affects the replication of the plasmid pXO1. In this study, we tested 3 B. anthracis vaccine strains, including Pasteur II from France, Qiankefusiji II from Russia, and Rentian II from Japan, which were all generated from subcultures at high temperatures. Surprisingly, we detected the presence of pXO1 plasmid DNA using overlap PCR in all these vaccine strains. DNA sequencing analysis of overlap PCR products further confirmed the presence of pXO1. Moreover, the expression of the protective antigen (PA) encoded on pXO1 was determined by using SDS-PAGE and western blotting. In addition, we mimicked Pasteur's method and exposed the A16R vaccine strain, which lacks the pXO2 plasmid, to high temperature, and identified the pXO1 plasmid in the subcultures at high temperatures. This indicated that the high temperature treatment at 42.5°C was unable to eliminate pXO1 plasmid DNA from B. anthracis. Our results suggest that the attenuation of the Pasteur II vaccine strain is likely due to the impact of high temperature stress on plasmid replication, which in turn limits the copy number of pXO1. Our data provide new insights into the mechanisms of the remaining immunogenicity and toxicity of the vaccine strains. PMID:27029580

  10. HIGH-RESOLUTION SEISMIC VELOCITY AND ATTENUATION MODELS OF THE CAUCASUS-CASPIAN REGION

    SciTech Connect

    Mellors, R; Gok, R; Pasyanos, M; Skobeltsyn, G; Teoman, U; Godoladze, T; Sandvol, E

    2008-07-01

    The southwest edge of Eurasia is a tectonically and structurally complex region that includes the Caspian and Black Sea basins, the Caucasus Mountains, and the high plateaus south of the Caucasus. Using data from 25 broadband stations located in the region, new estimates of crustal and upper mantle thickness, velocity structure, and attenuation are being developed. Receiver functions have been determined for all stations. Depth to Moho is estimated using slant stacking of the receiver functions, forward modeling, and inversion. Moho depths along the Caspian and in the Kura Depression are in general poorly constrained using only receiver functions due to thick sedimentary basin sediments. The best fitting models suggest a low velocity upper crust with Moho depths ranging from 30 to 40 km. Crustal thicknesses increase in the Greater Caucasus with Moho depths of 40 to 50 km. Pronounced variations with azimuth of source are observed indicating 3D structural complexity and upper crustal velocities are higher than in the Kura Depression to the south. In the Lesser Caucasus, south and west of the Kura Depression, the crust is thicker (40 to 50 km) and upper crustal velocities are higher. Work is underway to refine these models with the event based surface wave dispersion and ambient noise correlation measurements from continuous data. Regional phase (Lg and Pg) attenuation models as well as blockage maps for Pn and Sn are being developed. Two methods are used to estimate Q: the two-station method to estimate inter-station Q and the reversed, two-station, two event method. The results are then inverted to create Lg and Pg Q maps. Initial results suggest substantial variations in both Pg and Lg Q in the region. A zone of higher Pg Q extends west from the Caspian between the Lesser and Greater Caucasus and a narrow area of higher Lg Q is observed.

  11. Vibrational modes of hydraulic fractures: Inference of fracture geometry from resonant frequencies and attenuation

    NASA Astrophysics Data System (ADS)

    Lipovsky, Bradley P.; Dunham, Eric M.

    2015-02-01

    Oscillatory seismic signals arising from resonant vibrations of hydraulic fractures are observed in many geologic systems, including volcanoes, glaciers and ice sheets, and hydrocarbon and geothermal reservoirs. To better quantify the physical dimensions of fluid-filled cracks and properties of the fluids within them, we study wave motion along a thin hydraulic fracture waveguide. We present a linearized analysis, valid at wavelengths greater than the fracture aperture, that accounts for quasi-static elastic deformation of the fracture walls, as well as fluid viscosity, inertia, and compressibility. In the long-wavelength limit, anomalously dispersed guided waves known as crack or Krauklis waves propagate with restoring force from fracture wall elasticity. At shorter wavelengths, the waves become sound waves within the fluid channel. Wave attenuation in our model is due to fluid viscosity, rather than seismic radiation from crack tips or fracture wall roughness. We characterize viscous damping at both low frequencies, where the flow is always fully developed, and at high frequencies, where the flow has a nearly constant velocity profile away from viscous boundary layers near the fracture walls. Most observable seismic signals from resonating fractures likely arise in the boundary layer crack wave limit, where fluid-solid coupling is pronounced and attenuation is minimal. We present a method to estimate the aperture and length of a resonating hydraulic fracture using both the seismically observed quality factor and characteristic frequency. Finally, we develop scaling relations between seismic moment and characteristic frequency that might be useful when interpreting the statistics of hydraulic fracture events.

  12. Dopamine depletion attenuates some behavioral abnormalities in a hyperdopaminergic mouse model of bipolar disorder

    PubMed Central

    van Enkhuizen, Jordy; Geyer, Mark A.; Halberstadt, Adam L.; Zhuang, Xiaoxi; Young, Jared W.

    2014-01-01

    Background Patients with BD suffer from multifaceted symptoms, including hyperactive and psychomotor agitated behaviors. Previously, we quantified hyperactivity, increased exploration, and straighter movements of patients with BD mania in the human Behavioral Pattern Monitor (BPM). A similar BPM profile is observed in mice that are hyperdopaminergic due to reduced dopamine transporter (DAT) functioning. We hypothesized that dopamine depletion through alpha-methyl-p-tyrosine (AMPT) administration would attenuate this mania-like profile. Methods Male and female DAT wild-type (WT; n=26) and knockdown (KD; n=28) mice on a C57BL/6 background were repeatedly tested in the BPM to assess profile robustness and stability. The optimal AMPT dose was identified by treating male C57BL/6 mice (n=39) with vehicle or AMPT (10, 30, or 100 mg/kg) at 24, 20, and 4 h prior to testing in the BPM. Then, male and female DAT WT (n=40) and KD (n=37) mice were tested in the BPM after vehicle or AMPT (30 mg/kg) treatment. Results Compared to WT littermates, KD mice exhibited increased activity, exploration, straighter movement, and disorganized behavior. AMPT-treatment reduced hyperactivity and increased path organization, but potentiated specific exploration in KD mice without affecting WT mice. Limitations AMPT is not specific to dopamine and also depletes norepinephrine. Conclusions KD mice exhibit abnormal exploration in the BPM similar to patients with BD mania. AMPT-induced dopamine depletion attenuated some, but potentiated other, aspects of this mania-like profile in mice. Future studies should extend these findings into other aspects of mania to determine the suitability of AMPT as a treatment for BD mania. PMID:24287168

  13. Methods of Attenuation Correction for Dual-Wavelength and Dual-Polarization Weather Radar Data

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Liao, L.

    2007-01-01

    In writing the integral equations for the median mass diameter and number concentration, or comparable parameters of the raindrop size distribution, it is apparent that the forms of the equations for dual-polarization and dual-wavelength radar data are identical when attenuation effects are included. The differential backscattering and extinction coefficients appear in both sets of equations: for the dual-polarization equations, the differences are taken with respect to polarization at a fixed frequency while for the dual-wavelength equations, the differences are taken with respect to frequency at a fixed polarization. An alternative to the integral equation formulation is that based on the k-Z (attenuation coefficient-radar reflectivity factor) parameterization. This-technique was originally developed for attenuating single-wavelength radars, a variation of which has been applied to the TRMM Precipitation Radar data (PR). Extensions of this method have also been applied to dual-polarization data. In fact, it is not difficult to show that nearly identical equations are applicable as well to dualwavelength radar data. In this case, the equations for median mass diameter and number concentration take the form of coupled, but non-integral equations. Differences between this and the integral equation formulation are a consequence of the different ways in which attenuation correction is performed under the two formulations. For both techniques, the equations can be solved either forward from the radar outward or backward from the final range gate toward the radar. Although the forward-going solutions tend to be unstable as the attenuation out to the range of interest becomes large in some sense, an independent estimate of path attenuation is not required. This is analogous to the case of an attenuating single-wavelength radar where the forward solution to the Hitschfeld-Bordan equation becomes unstable as the attenuation increases. To circumvent this problem, the

  14. Including Conflict in Creative Writing.

    ERIC Educational Resources Information Center

    Litvin, Martin

    Conflict is the basis of all stories and thus should appear in some form in the first sentence. There are three kinds of conflict: people vs. people; people vs. nature; and people vs. themselves. Conflict must be repeated in all the various elements of the story's structure, including the plot, which is the plan of action telling what happens to…

  15. Family Living, Including Sex Education.

    ERIC Educational Resources Information Center

    Forlano, George

    This volume describes and evaluates 21 selected New York City Board of Education Umbrella Programs for the 1974-1975 school year. The programs include: (1) the parent resource center, (2) the teacher self-help program, (3) the East Harlem pre-kindergarten center, (4) the Brooklyn College volunteer tutoring program, (5) the parent education for…

  16. Attenuation Tomography of Body Waves in Thickness-varying Layered Media

    NASA Astrophysics Data System (ADS)

    Cao, H.; Zhou, H.

    2006-12-01

    The intrinsic attenuation of seismic waves, which is quantified as inverse to the quality factor (Q) of a medium, is a well-publicized and yet poorly studied subject. While it is common to deduce Q values from measured dispersion data for surface waves, previous studies on the intrinsic attenuation of body waves have relied on measurements of the waveform of first arrivals or reflections. Better understanding is needed for both solid Earth geophysics and applied seismology to quantify the contributing factors to seismic attenuation and decompose Q from other factors because Q is closely related to rock property and fluid saturation. This study focuses on forward modeling and tomographic inversion for the Q values in thickness-varying layered media. Many of the existing theoretical Q models work in such media. Our work is an extension of the deformable- layer tomography (Zhou, 2004) to dissipative media. In the first phase of this study, we evaluated, through numerical modeling the various factors contributing to the attenuation of body waves. Theoretically, there are intrinsic attenuation, which is related to rock and pore fluid properties, and attenuation due to wave propagation effects, such as geometrical spreading and energy partition across interfaces (transmission and reflection). We made several representative numerical models, and conducted forward modeling using both wave theory and ray theory to quantify the amount of the attenuation of body waves due to different factors. In the second phase, we are integrating the forward modeling with the deformable-layer tomography algorithm to develop means to invert for Q distribution in thickness-varying layer media. While the deformable-layer tomography determines layer velocities and geometry, the current work intends to invert for Q values of the thickness-varying model layers as well as parameters associated with interface energy partition and geometric spreading. In the third phase, we plan to apply the

  17. Study on laser and infrared attenuation performance of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Liu, Qing-hai; Dai, Meng-yan; Cheng, Xiang; Fang, Guo-feng; Zhang, Tong; Liu, Haifeng

    2014-11-01

    In recent years, the weapon systems of laser and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. However, military smoke, a rapid and effective passive jamming method, can effectively counteract the attack of precision-guided weapons by their scattering and absorbing effects. The traditional smoke has good visible light (0.4-0.76μm) obscurant performance, but hardly any effects to other electromagnetic wave bands while the weapon systems of laser and IR imaging guidance usually work in broad band, including the near-infrared (1-3μm), middle-infrared (3-5μm), far-infrared (8-14μm), and so on. Accordingly, exploiting new effective obscurant materials has attracted tremendous interest worldwide nowadays. As is known, the nano-structured materials have lots of unique properties comparing with the traditional materials suggesting that they might be the perfect alternatives to solve the problems above. Carbon nanotubes (CNTs) are well-ordered, all-carbon hollow graphitic nano-structured materials with a high aspect ratio, lengths from several hundred nanometers to several millimeters. CNTs possess many unique intrinsic physical-chemical properties and are investigated in many areas reported by the previous studies. However, no application research about CNTs in smoke technology field is reported yet. In this paper, the attenuation performances of CNTs smoke to laser and IR were assessed in 20m3 smoke chamber. The testing wavebands employed in experiments are 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. The main parameters were obtained included the attenuation rate, transmission rate, mass extinction coefficient, etc. The experimental results suggest that CNTs smoke exhibits excellent attenuation ability to the broadband IR radiation. Their mass extinction coefficients are all above 1m2·g-1. Nevertheless, the mass extinction coefficients vary with the sampling time

  18. The movement of sequestrated CO2 revealed by seismic attenuation spatial and temporal changes in Frio-II site, USA

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ajo Franklin, J. B.; Daley, T. M.

    2015-12-01

    Continuous active source seismic measurements (CASSM) were collected in the crosswell geometry during scCO2 injection at the Frio-II brine pilot (Liberty, TX). Previous studies (Daley et.al. 2007, 2011) have demonstrated that spatial-temporal changes in the picked first arrival time after CO2 injection constrain the movement of the CO2 plume in the storage interval. To improve the quantitative constraints on plume saturation using this dataset, we investigate spatial-temporal changes in the seismic attenuation of the first arrivals. The attenuation changes over the injection period (~60 h) are estimated by the amount of the centroid frequency shift computed by the local time-frequency analysis. Our observations include: at receivers above the packer seismic attenuation does not change in a physical trend; at receivers below the packer attenuation sharply increases as the amount of CO2 plume increase at the first few hours and peaks at specific points varying with distributed receivers, which are consistent with observations from time delays of first arrivals. Then, attenuation decreases over the injection time with increased amount of CO2 plume. This bell-shaped attenuation response as a function of time in the experiment is consistent with White's patchy saturation model which predicts an attenuation peak at intermediate CO2 saturations. Our analysis suggests that spatial-temporal attenuation change is an indicator of the movement/saturation of CO2 plume at high saturations, a system state for which seismic measurements are typically only weakly sensitive to.

  19. Reactive transport modeling of secondary water quality impacts due to anaerobic bioremediation

    NASA Astrophysics Data System (ADS)

    Ng, G. H. C.; Bekins, B. A.; Kent, D. B.; Borden, R. C.; Tillotson, J.

    2014-12-01

    Bioremediation using electron donor addition produces reducing conditions in an aquifer that promote the anaerobic biodegradation of contaminants such as chlorinated solvents. There is growing concern about secondary water quality impacts (SWQIs) triggered by the injection of electron donors, due to redox reactions with electron acceptors other than the target contaminant. Secondary plumes, including those with elevated concentrations of Mn(II), Fe(II), and CH4, may create long-lasting impairment of water quality. Understanding conditions that control the production and attenuation of SWQIs is needed for guiding responsible bioremediation strategies that limit unintended consequences. Using a reactive transport model developed with data from long-term anaerobic biodegradation monitoring sites, we simulate diverse geochemical scenarios to examine the sensitivity of secondary plume extent and persistence to a range of aquifer properties and treatment implementations. Data compiled from anaerobic bioremediation sites, which include variable physical and geochemical relationships, provide the basis for the conditions evaluated. Our simulations show that reduced metal and CH4 plumes may be significantly attenuated due to immobilization (through sorption and/or precipitation) and outgassing, respectively, and that recovery time to background conditions depends strongly on the chemical forms of reduced metals on sediments. Unsurprisingly, scenarios that do not easily allow outgassing (e.g. deeper injections) led to higher CH4 concentrations, and scenarios with higher hydraulic conductivity produced more dilute concentrations of secondary species. Results are sensitive to the assumed capacity for Fe(II) sorption and reductive dissolution rates of Fe(III) oxides, which control Fe(II) concentrations. Simulations also demonstrated the potential importance of chemical reactions between different secondary components. For example, limited CH4 loss from outgassing and Fe

  20. Array-based measurements of surface wave dispersion and attenuation using frequency-wavenumber analysis

    NASA Astrophysics Data System (ADS)

    Yoon, Sungsoo

    2005-07-01

    Surface wave methods have been used to determine dynamic properties of near-surface soils in geotechnical engineering for the past 50 years. Although the capabilities of engineering surface wave methods have improved in recent years due to several advances, several issues including (1) near-field effects, (2) combined active and passive measurements, and (3) accurate measurements of surface wave attenuation still require study to further improve the capabilities of modern surface wave methods. Near-field effects have been studied for traditional surface wave methods with two receivers and several filtering criteria to mitigate the effects have been recommended. However, these filtering criteria are not applicable to surface wave methods with multiple receivers. Moreover, the criteria are not quantitatively based and do not account for different types of soil profiles, which strongly influence near-field effects. A new study of near-field effects on surface wave methods with multiple receivers was conducted with numerical and experimental methods. Two normalized parameters were developed to capture near-field effects. Quantitatively based near-field effect criteria for an ideal homogeneous half-space and three typical soil profiles are presented. Combining active and passive surface wave measurements allows developing a shear wave velocity profile to greater depth without sacrificing the near-surface resolution offered by active measurements. Generally, active and passive measurements overlap in the frequency range from approximately 4 to 10 Hz, and there are often systematic differences between the two measurements. The systematic errors in active and passive surface wave methods were explored to explain and resolve the differences, allowing for a more accurate composite dispersion curve. The accuracy of measured surface wave attenuation is improved by properly accounting for (1) geometric spreading, (2) near-field effects, and (3) ambient noise. In this study, a

  1. Salmonella enterica serovar typhimurium strains with regulated delayed attenuation in vivo.

    PubMed

    Curtiss, Roy; Wanda, Soo-Young; Gunn, Bronwyn M; Zhang, Xin; Tinge, Steven A; Ananthnarayan, Vidya; Mo, Hua; Wang, Shifeng; Kong, Wei

    2009-03-01

    Recombinant bacterial vaccines must be fully attenuated for animal or human hosts to avoid inducing disease symptoms while exhibiting a high degree of immunogenicity. Unfortunately, many well-studied means for attenuating Salmonella render strains more susceptible to host defense stresses encountered following oral vaccination than wild-type virulent strains and/or impair their ability to effectively colonize the gut-associated and internal lymphoid tissues. This thus impairs the ability of recombinant vaccines to serve as factories to produce recombinant antigens to induce the desired protective immunity. To address these problems, we designed strains that display features of wild-type virulent strains of Salmonella at the time of immunization to enable strains first to effectively colonize lymphoid tissues and then to exhibit a regulated delayed attenuation in vivo to preclude inducing disease symptoms. We recently described one means to achieve this based on a reversible smooth-rough synthesis of lipopolysaccharide O antigen. We report here a second means to achieve regulated delayed attenuation in vivo that is based on the substitution of a tightly regulated araC P(BAD) cassette for the promoters of the fur, crp, phoPQ, and rpoS genes such that expression of these genes is dependent on arabinose provided during growth. Thus, following colonization of lymphoid tissues, the Fur, Crp, PhoPQ, and/or RpoS proteins cease to be synthesized due to the absence of arabinose such that attenuation is gradually manifest in vivo to preclude induction of diseases symptoms. Means for achieving regulated delayed attenuation can be combined with other mutations, which together may yield safe efficacious recombinant attenuated Salmonella vaccines.

  2. Attenuation of single-tone ultrasound by an atmospheric glow discharge plasma barrier

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2010-09-15

    Propagation of 143 kHz ultrasound through an atmospheric pressure glow discharge in air was studied experimentally. The plasma was a continuous dc discharge formed by a multipin electrode system. Distributions of the gas temperature were also obtained in and around the plasma using laser-induced Rayleigh scattering technique. Results show significant attenuation of the ultrasound by the glow discharge plasma barrier (up to -24 dB). The results indicate that sound attenuation does not depend on the thickness of the plasma and attenuation is caused primarily by reflection of the sound waves from the plasma due to the sharp gas temperatures gradients that form at the plasma boundary. These gradients can be as high as 80 K/mm.

  3. Semiglobal ISpS disturbance attenuation with output tracking via direct adaptive design.

    PubMed

    Ge, Shuzhi Sam; Han, Thanh-Trung

    2007-07-01

    Direct adaptive partial state feedback control is presented to achieve semiglobally input-to-state practically stable (ISpS) disturbance attenuation with output tracking for a class of uncertain time-varying nonlinear systems in which the unmeasured dynamics do not possess a constant disturbance attenuation level (CDAL). Identifying a necessary condition for the existence of a CDAL, direct adaptive neural networks (NNs) control is developed, where the universal approximation property of NNs and the domination design are employed together to overcome the difficulties due to the lack of state information, unknown system nonlinearities, and unknown state-dependent disturbance attenuation gain. The proposed method is coherent in the sense that it is applicable to the case in which a CDAL exists.

  4. Remote sensing of tree attenuation at 870 MHz along simulated Earth-satellite paths

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Torrence, G. W.; Goldhirsh, J.; Rowland, J. R.

    1986-01-01

    Tree attenuation at 870 MHz was studied using a helicopter as a source platform and a van with receiver and data acquisition instrumentation. Tree attenuation results were obtained with the van stationary and in motion to determine land mobile satellite systems link parameter requirements (expected fading due to roadside trees for mobile and stationary vehicles). Single tree attenuation results give worst case median fades as high as 15 dB although roadside tree values produce fades greater than 20 dB for small percentages of time. The cumulative fade distributions and their relative contributions as a function of path elevation angle, right side versus left side driving, and different road types are derived from the field measurements.

  5. A practical MGA-ARIMA model for forecasting real-time dynamic rain-induced attenuation

    NASA Astrophysics Data System (ADS)

    Gong, Shuhong; Gao, Yifeng; Shi, Houbao; Zhao, Ge

    2013-05-01

    novel and practical modified genetic algorithm (MGA)-autoregressive integrated moving average (ARIMA) model for forecasting real-time dynamic rain-induced attenuation has been established by combining genetic algorithm ideas with the ARIMA model. It is proved that due to the introduction of MGA into the ARIMA(1,1,7) model, the MGA-ARIMA model has the potential to be conveniently applied in every country or area by creating a parameter database used by the ARIMA(1,1,7) model. The parameter database is given in this paper based on attenuation data measured in Xi'an, China. The methods to create the parameter databases in other countries or areas are offered, too. Based on the experimental results, the MGA-ARIMA model has been proved practical for forecasting dynamic rain-induced attenuation in real time. The novel model given in this paper is significant for developing adaptive fade mitigation technologies at millimeter wave bands.

  6. Glucocorticoids induce CCN5/WISP-2 expression and attenuate invasion in oestrogen receptor-negative human breast cancer cells.

    PubMed

    Ferrand, Nathalie; Stragier, Emilien; Redeuilh, Gérard; Sabbah, Michèle

    2012-10-01

    CCN5 (cysteine-rich 61/connective tissue growth factor/nephroblastoma overexpressed 5)/WISP-2 [WNT1 (wingless-type MMTV integration site family, member 1)-inducible signalling pathway protein 2] is an oestrogen-regulated member of the CCN family. CCN5 is a transcriptional repressor of genes associated with the EMT (epithelial-mesenchymal transition) and plays an important role in maintenance of the differentiated phenotype in ER (oestrogen receptor)-positive breast cancer cells. In contrast, CCN5 is undetectable in more aggressive ER-negative breast cancer cells. We now report that CCN5 is induced in ER-negative breast cancer cells such as MDA-MB-231 following glucocorticoid exposure, due to interaction of the endogenous glucocorticoid receptor with a functional glucocorticoid-response element in the CCN5 gene promoter. Glucocorticoid treatment of MDA-MB-231 cells is accompanied by morphological alterations, decreased invasiveness and attenuated expression of mesenchymal markers, including vimentin, cadherin 11 and ZEB1 (zinc finger E-box binding homeobox 1). Interestingly, glucocorticoid exposure did not increase CCN5 expression in ER-positive breast cancer cells, but rather down-regulated ER expression, thereby attenuating oestrogen pathway signalling. Taken together, our results indicate that glucocorticoid treatment of ER-negative breast cancer cells induces high levels of CCN5 expression and is accompanied by the appearance of a more differentiated and less invasive epithelial phenotype. These findings propose a novel therapeutic strategy for high-risk breast cancer patients.

  7. Measurement of carbon nanotube microstructure relative density by optical attenuation and observation of size-dependent variations.

    PubMed

    Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John

    2013-07-21

    Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity. PMID:23748864

  8. PTEN overexpression attenuates angiogenic processes of endothelial cells by blockade of endothelin-1/endothelin B receptor signaling.

    PubMed

    Kuo, Hsiao-Mei; Lin, Chun-Yao; Lam, Hing-Chung; Lin, Pey-Ru; Chan, Hoi-Hung; Tseng, Jui-Cheng; Sun, Cheuk-Kwan; Hsu, Te-Fa; Wu, Chia-Ching; Yang, Chao-Yuh; Hsu, Ching-Mei; Tai, Ming-Hong

    2012-04-01

    Arteriovenous (AV) graft is frequently used as vascular access in hemodialysis patients. However, clotting or thrombosis of AV grafts often occurs and requires surgical removal. At present, the molecular pathogenesis underlying thrombosis of AV graft is not clear. The PTEN/Akt signaling has been implicated in the pathogenesis of vascular diseases. In this study, elevated PTEN expression and concomitant Akt inactivation was observed in endothelium of atherosclerotic brachial arteries from hemodialysis patients. To investigate whether PTEN upregulation affects endothelial function, adenovirus-mediated PTEN (Ad-PTEN) overexpression was performed in aorta rings and cultured endothelial cells. It was found that PTEN overexpression potently inhibited the microvessel sprouting in aorta rings and the angiogenic activities of endothelial cells including migration and tube formation. On the contrary, PTEN knockdown by RNA interference promoted the endothelial migration and reversed the Ad-PTEN-induced inhibition of endothelial migration. Expression analysis showed that PTEN overexpression attenuated the expression of endothelin-1 (ET-1) and endothelin B receptor (ETBR) in endothelial cells at transcriptional levels. However, exogenous ET-1 supply only partially reversed the PTEN-induced inhibition of migration and tube formation. This was delineated due to that PTEN overexpression also perturbed endothelial nitric oxide synthase (eNOS) activation and vascular endothelial growth factor (VEGF) release. In summary, PTEN upregulation induces endothelial dysfunction by attenuating the availability and signaling of multiple angiogenic pathways in endothelial cells, thereby may contribute to thrombosis of AV graft.

  9. Attenuation of cryocooler induced vibration in spaceborne infrared payloads

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Twitto, A.

    2014-01-01

    Recent advancement of operational responsive space programs calls for a development of compact, reliable, low power and vibration free cryogenic cooling for sophisticated infrared payloads. The refrigeration in a typical closed cycle split Stirling linear cryocooler is achieved by a cyclic compression and expansion of a gaseous working agent due to a synchronized reciprocation of electro-dynamically and pneumatically actuated compressor and expander pistons. Attenuation of the cryocooler induced vibration usually relies on the concept of actively assisted momentum cancellation. In a typical dual-piston compressor this objective is achieved by actively synchronizing the motion of oppositely moving piston assemblies; a typical single-piston expander may be counterbalanced by a motorized counter-balancer. The above approach produces complexity, weight, size, high incurred costs and affects reliability. The authors analyze the case of passive attenuation the vibration export induced by the split Stirling linear cryocooler comprised of inline mounted single-piston compressor and expander. Placement of all the moving components onto a common axis results in a single axis consolidation of vibration export and enables use of single tuned dynamic absorber and low frequency vibration mount. From theoretical analysis and full-scale testing, the performance of such vibration protection arrangement is similar to known systems of active vibration cancellation.

  10. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice

    PubMed Central

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-01-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4+CD25+FoxP3+ regulatory T cells, CTLA4+ inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial. PMID:25269445

  11. R-flurbiprofen attenuates experimental autoimmune encephalomyelitis in mice.

    PubMed

    Schmitz, Katja; de Bruin, Natasja; Bishay, Philipp; Männich, Julia; Häussler, Annett; Altmann, Christine; Ferreirós, Nerea; Lötsch, Jörn; Ultsch, Alfred; Parnham, Michael J; Geisslinger, Gerd; Tegeder, Irmgard

    2014-11-01

    R-flurbiprofen is the non-cyclooxygenase inhibiting R-enantiomer of the non-steroidal anti-inflammatory drug flurbiprofen, which was assessed as a remedy for Alzheimer's disease. Because of its anti-inflammatory, endocannabinoid-modulating and antioxidative properties, combined with low toxicity, the present study assessed R-flurbiprofen in experimental autoimmune encephalomyelitis (EAE) models of multiple sclerosis in mice. Oral R-flurbiprofen prevented and attenuated primary progressive EAE in C57BL6/J mice and relapsing-remitting EAE in SJL mice, even if the treatment was initiated on or after the first flare of the disease. R-flurbiprofen reduced immune cell infiltration and microglia activation and inflammation in the spinal cord, brain and optic nerve and attenuated myelin destruction and EAE-evoked hyperalgesia. R-flurbiprofen treatment increased CD4(+)CD25(+)FoxP3(+) regulatory T cells, CTLA4(+) inhibitory T cells and interleukin-10, whereas the EAE-evoked upregulation of pro-inflammatory genes in the spinal cord was strongly reduced. The effects were associated with an increase of plasma and cortical endocannabinoids but decreased spinal prostaglandins, the latter likely due to R to S inversion. The promising results suggest potential efficacy of R-flurbiprofen in human MS, and its low toxicity may justify a clinical trial.

  12. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    PubMed

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. PMID:26403967

  13. Antioxidant enzymes attenuate myocardial stunning in the conscious dog

    SciTech Connect

    Triana, J.F.; Unisa, A.; Bolli, R. )

    1990-02-26

    Several studies have shown that postischemic myocardial dysfunction (myocardial stunning) is attenuated by antioxidants, implying a pathogenetic role of oxy-radicals in this phenomenon. However, since all these studies have been performed in open-chest preparations, artifacts due to anesthesia, trauma, and other nonphysiologic conditions cannot be excluded. Accordingly, chronically instrumented dogs underwent a 15-minute occlusion (o) of the left anterior descending artery followed by reperfusion. Dogs received i.v. either saline or superoxide dismutase (SOD) plus catalase (CAT) (16,000 U/kg and 55,000 U/kg, respectively, over 1 hour starting 15 minutes before O). Regional myocardial function was assessed as systolic wall thickening (WTh) using a pulsed Doppler probe. WTh after reperfusion was significantly greater in treated dogs, and this difference could not be ascribed to differences in collateral flow or hemodynamics. The authors conclude that SOD plus catalase attenuate myocardial stunning in the conscious dog, indicating that oxy-radicals play a pathogenetic role in this phenomenon under physiologic conditions.

  14. Sleipner CCS site: velocity and attenuation model from seismic tomography

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Chadwick, R. A.; Williams, G. A.

    2012-04-01

    The results of the travel-time and frequency shift tomographic inversion of the seismic data from one of the high-resolution lines acquired in 2006 on the Sleipner CO2 geological storage site are here presented. The work has been performed within the European project CO2ReMoVe, to produce an accurate model in-depth, of both seismic velocities and attenuation, to constrain better the quantification studies of the project's partners. Tomographic techniques have the advantage of not assuming horizontal layering or uniform lateral velocities, and of enabling an easy comparison of models, even if resulting from seismic data acquired with different geometries, unavoidable in a time-lapse data set. Through an iterative process, the differences in travel-times between observed direct, reflected or refracted arrivals and the same, calculated on a discrete model, with a ray-tracing based on the Fermat's principle, are minimized. Other minimization procedures provide the reflector/refractor geometries in -depth. Analogously, in attenuation tomography, the minimization process takes into account the observed and calculated spectral-centroid frequency-shift, due to the loss of the highest frequency of the seismic wave, while crossing an attenuating medium. The result is a seismic quality factor (Q) model in-depth, and hence of the attenuation that is known to be more sensitive to subtle changes in physical properties than seismic velocity. The model is across the center of the CO2 plume, on the in-line 1838, and is constituted by nine layers, four resulting by a preliminary analysis of the pre-injection 1994 data set, i.e. seabed, a strong reflection in the overburden and the top and bottom of the Utsira Sand, plus additional five horizons, four of which within Utsira Sands, and one just above the top of it. The layers within the reservoir are very close to each other and in some cases they merge together laterally. The accumulation of CO2 in the uppermost layer of the

  15. Simulating Atmospheric Free-Space Optical Propagation; Part II: Haze, Fog, and Low Clouds Attenuations

    NASA Astrophysics Data System (ADS)

    Achour, Maha

    2002-12-01

    One of the biggest challenges facing Free-Space Optics deployment is proper understanding of optical signal propagation in different atmospheric conditions. In an earlier study by the author (30), attenuation by rain was analyzed and successfully modeled for infrared signal transmission. In this paper, we focus on attenuation due to scattering by haze, fog and low clouds droplets using the original Mie Scattering theory. Relying on published experimental results on infrared propagation, electromagnetic waves scattering by spherical droplet, atmospheric physics and thermodynamics, UlmTech developed a computer-based platform, Simulight, which simulates infrared signal (750 nm-12 μm) propagation in haze, fog, low clouds, rain and clear weather. Optical signals are scattered by fog droplets during transmission in the forward direction preventing the receiver from detecting the minimum required power. Weather databases describe foggy conditions by measuring the visibility parameter, which is, in general, defined as the maximum distance that the visible 550 nm signal can travel while distinguishing between the target object and its background at 2% contrast. Extrapolating optical signal attenuations beyond 550 nm using only visibility is not as straightforward as stated by the Kruse equation which is unfortunately widely used. We conclude that it is essential to understand atmospheric droplet sizes and their distributions based on measured attenuations to effectively estimate infrared attenuation. We focus on three types of popular fogs: Evolving, Stable and Selective.

  16. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  17. General presentation including new structure

    NASA Astrophysics Data System (ADS)

    Soons, A.

    2002-12-01

    Electrical, electronic and electro-mechanical components play an essential role in the functional performance, quality, life cycle and costs of space systems. Their standardisation, product specification, development, evaluation, qualification and procurement must be based on a coherent and efficient approach, paying due attention to present and prospective European space policies and must be commensurate with user needs, market developments and technology trends. The European Space Components Coordination (ESCC) is established with the objective of harmonising the efforts concerning the various aspects of EEE space components by ESA. European national and international public space organisations, the component manufacturers and the user industries. The goal of the ESCC is to improve the availability of strategic EEE space components with the required performance and at affordable costs for institutional and commercial space programmes. It is the objective of ESCC to achieve this goal by harmonising the resources and development efforts for space components in the ESA Member States and by providing a single and unified system for the standardisation, product specification, evaluation, qualification and procurement of European EEE space components and for the certification of components and component manufacturers.

  18. Roadside tree attenuation measurements at UHF for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1987-01-01

    Tree attenuation results at 870 MHz are described for experiments conducted in October 1985 and March 1986 in Central Maryland. These experiments employed a helicopter as a source platform and a van with receiver and data acquisition instrumentation. Tree attenuation results were obtained for the cases in which the van was stationary and in motion. The experiments were performed for the purpose of providing the designers of planned land mobile satellite systems with important elements in the determination of link parameter requirements; namely, the expected fading statistics due to roadside trees for both mobile and stationary vehicles. Single tree attenuation results gave worst case median fades as high as 15 dB although roadside tree values were noted to produce fades in excess of 20 dB for small percentages of time. The cumulative fade distributions and their relative contributions as a function of path elevation angle, right side versus left side driving, and different road types are derived from the field measurements. Upon comparing the attenuations from bare deciduous trees (March 1986) with those due to trees in full foliage (October 1985), the increase in dB attenuations were, in general, less than 25 percent for the dynamic cases, and less than 40 percent for the worst case static configuration. This result demonstrates that the dominant fading is caused by the wooded tree branches as opposed to the leaves on these branches. The tail end of the observed fade distributions was observed to follow lognormal distributions with respect to dB attenuation.

  19. Scatter correction of vessel dropout behind highly attenuating structures in 4D-DSA

    NASA Astrophysics Data System (ADS)

    Hermus, James; Mistretta, Charles; Szczykutowicz, Timothy P.

    2015-03-01

    In Computed Tomographic (CT) image reconstruction for 4 dimensional digital subtraction angiography (4D-DSA), loss of vessel contrast has been observed behind highly attenuating anatomy, such as large contrast filled aneurysms. Although this typically occurs only in a limited range of projection angles, the observed contrast time course can be altered. In this work we propose an algorithm to correct for highly attenuating anatomy within the fill projection data, i.e. aneurysms. The algorithm uses a 3D-SA volume to create a correction volume that is multiplied by the 4D-DSA volume in order to correct for signal dropout within the 4D-DSA volume. The algorithm was designed to correct for highly attenuating material in the fill volume only, however with alterations to a single step of the algorithm, artifacts due to highly attenuating materials in the mask volume (i.e. dental implants) can be mitigated as well. We successfully applied our algorithm to a case of vessel dropout due to the presence of a large attenuating aneurysm. The performance was qualified visually as the affected vessel no longer dropped out on corrected 4D-DSA time frames. The correction was quantified by plotting the signal intensity along the vessel. Our analysis demonstrated our correction does not alter vessel signal values outside of the vessel dropout region but does increase the vessel values within the dropout region as expected. We have demonstrated that this correction algorithm acts to correct vessel dropout in areas with highly attenuating materials.

  20. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  1. METHODS AND ANALYSES FOR IMPLEMENTING NATURAL ATTENUATION PROTOCOLS

    EPA Science Inventory

    Technical protocols for evaluating natural attenuation at petroleum hydrocarbon and chlorinated solvent contaminated sites specify the analysis of electron acceptors and metabolic by-products for identifying and quantifying natural attenuation processes. However, these protocols ...

  2. Monitored natural attenuation forum: MNA of metals and radionuclides

    EPA Science Inventory

    While the natural attenuation of many organic compounds is established and accepted by the regulated and regulatory communities, there is some debate whether monitored natural attenuation (MNA) of metals and radionuclides is a reasonable remedial alternative to consider. Do you...

  3. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  4. Comparative Genomic Analyses of Attenuated Strains of Mycoplasma gallisepticum▿ †

    PubMed Central

    Szczepanek, S. M.; Tulman, E. R.; Gorton, T. S.; Liao, X.; Lu, Z.; Zinski, J.; Aziz, F.; Frasca, S.; Kutish, G. F.; Geary, S. J.

    2010-01-01

    Mycoplasma gallisepticum is a significant respiratory and reproductive pathogen of domestic poultry. While the complete genomic sequence of the virulent, low-passage M. gallisepticum strain R (Rlow) has been reported, genomic determinants responsible for differences in virulence and host range remain to be completely identified. Here, we utilize genome sequencing and microarray-based comparative genomic data to identify these genomic determinants of virulence and to elucidate genomic variability among strains of M. gallisepticum. Analysis of the high-passage, attenuated derivative of Rlow, Rhigh, indicated that relatively few total genomic changes (64 loci) occurred, yet they are potentially responsible for the observed attenuation of this strain. In addition to previously characterized mutations in cytadherence-related proteins, changes included those in coding sequences of genes involved in sugar metabolism. Analyses of the genome of the M. gallisepticum vaccine strain F revealed numerous differences relative to strain R, including a highly divergent complement of vlhA surface lipoprotein genes, and at least 16 genes absent or significantly fragmented relative to strain R. Notably, an Rlow isogenic mutant in one of these genes (MGA_1107) caused significantly fewer severe tracheal lesions in the natural host compared to virulent M. gallisepticum Rlow. Comparative genomic hybridizations indicated few genetic loci commonly affected in F and vaccine strains ts-11 and 6/85, which would correlate with proteins affecting strain R virulence. Together, these data provide novel insights into inter- and intrastrain M. gallisepticum genomic variability and the genetic basis of M. gallisepticum virulence. PMID:20123709

  5. Impact of attenuator models on computed traveling wave tube performances

    NASA Astrophysics Data System (ADS)

    Duan, Zhaoyun; Gong, Yubin; Wei, Yanyu; Wang, Wenxiang

    2007-09-01

    Radio frequency characteristics of helix traveling wave tubes are analyzed with a one-dimensional numerical model that includes a new, more rigorous, self-consistent attenuator model. The nonlinear properties of the beam-wave interaction, including gain, phase distortion, and intermodulation distortion, are analyzed and compared with simulations using a conventional one-dimensional model of the attenuator. The comparative results show that the small signal gain is about 2-5dB smaller with the new model than with the conventional and wave phase has a difference of 2°-6° between the new and conventional models in the intermediate and large signal regions. The amplitude modulation/phase modulation (AM/PM) conversion from the new model shows a slower reach to maximum than that from the conventional, and when the large input signal is applied, the conventional model's AM/PM conversion oscillates more quickly compared to the new. Under two-frequency excitation, the fundamental tones are about 5-7dB smaller with the new model than the conventional, while the intermodulation products are approximately 10dB smaller relative to the conventional model.

  6. Hearing protection: surpassing the limits to attenuation imposed by the bone-conduction pathways.

    PubMed

    Berger, Elliott H; Kieper, Ronald W; Gauger, Dan

    2003-10-01

    With louder and louder weapon systems being developed and military personnel being exposed to steady noise levels approaching and sometimes exceeding 150 dB, a growing interest in greater amounts of hearing protection is evident. When the need for communications is included in the equation, the situation is even more extreme. New initiatives are underway to design improved hearing protection, including active noise reduction (ANR) earplugs and perhaps even active cancellation of head-borne vibration. With that in mind it may be useful to explore the limits to attenuation, and whether they can be approached with existing technology. Data on the noise reduction achievable with high-attenuation foam earplugs, as a function of insertion depth, will be reported. Previous studies will be reviewed that provide indications of the bone-conduction (BC) limits to attenuation that, in terms of mean values, range from 40 to 60 dB across the frequencies from 125 Hz to 8 kHz. Additionally, new research on the effects of a flight helmet on the BC limits, as well as the potential attenuation from deeply inserted passive foam earplugs, worn with passive earmuffs, or with active-noise reduction (ANR) earmuffs, will be examined. The data demonstrate that gains in attenuation exceeding 10 dB above the head-not-covered limits can be achieved if the head is effectively shielded from acoustical stimulation.

  7. Hearing protection: Surpassing the limits to attenuation imposed by the bone-conduction pathways

    NASA Astrophysics Data System (ADS)

    Berger, Elliott H.; Kieper, Ronald W.; Gauger, Dan

    2003-10-01

    With louder and louder weapon systems being developed and military personnel being exposed to steady noise levels approaching and sometimes exceeding 150 dB, a growing interest in greater amounts of hearing protection is evident. When the need for communications is included in the equation, the situation is even more extreme. New initiatives are underway to design improved hearing protection, including active noise reduction (ANR) earplugs and perhaps even active cancellation of head-borne vibration. With that in mind it may be useful to explore the limits to attenuation, and whether they can be approached with existing technology. Data on the noise reduction achievable with high-attenuation foam earplugs, as a function of insertion depth, will be reported. Previous studies will be reviewed that provide indications of the bone-conduction (BC) limits to attenuation that, in terms of mean values, range from 40 to 60 dB across the frequencies from 125 Hz to 8 kHz. Additionally, new research on the effects of a flight helmet on the BC limits, as well as the potential attenuation from deeply inserted passive foam earplugs, worn with passive earmuffs, or with active-noise reduction (ANR) earmuffs, will be examined. The data demonstrate that gains in attenuation exceeding 10 dB above the head-not-covered limits can be achieved if the head is effectively shielded from acoustical stimulation.

  8. Critical point anomalies include expansion shock waves

    SciTech Connect

    Nannan, N. R.; Guardone, A.; Colonna, P.

    2014-02-15

    From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

  9. Neoclassical Transport Including Collisional Nonlinearity

    SciTech Connect

    Candy, J.; Belli, E. A.

    2011-06-10

    In the standard {delta}f theory of neoclassical transport, the zeroth-order (Maxwellian) solution is obtained analytically via the solution of a nonlinear equation. The first-order correction {delta}f is subsequently computed as the solution of a linear, inhomogeneous equation that includes the linearized Fokker-Planck collision operator. This equation admits analytic solutions only in extreme asymptotic limits (banana, plateau, Pfirsch-Schlueter), and so must be solved numerically for realistic plasma parameters. Recently, numerical codes have appeared which attempt to compute the total distribution f more accurately than in the standard ordering by retaining some nonlinear terms related to finite-orbit width, while simultaneously reusing some form of the linearized collision operator. In this work we show that higher-order corrections to the distribution function may be unphysical if collisional nonlinearities are ignored.

  10. Evaluation of attenuation and scatter correction requirements in small animal PET and SPECT imaging

    NASA Astrophysics Data System (ADS)

    Konik, Arda Bekir

    ) digital phantoms. In addition, PET projection files for different sizes of MOBY phantoms were reconstructed in 6 different conditions including attenuation and scatter corrections. Selected regions were analyzed for these different reconstruction conditions and object sizes. Finally, real mouse data from the real version of the same small animal PET scanner we modeled in our simulations were analyzed for similar reconstruction conditions. Both our IDL and GATE simulations showed that, for small animal PET and SPECT, even the smallest size objects (˜2 cm diameter) showed ˜15% error when both attenuation and scatter were not corrected. However, a simple attenuation correction using a uniform attenuation map and object boundary obtained from emission data significantly reduces this error in non-lung regions (˜1% for smallest size and ˜6% for largest size). In lungs, emissions values were overestimated when only attenuation correction was performed. In addition, we did not observe any significant improvement between the uses of uniform or actual attenuation map (e.g., only ˜0.5% for largest size in PET studies). The scatter correction was not significant for smaller size objects, but became increasingly important for larger sizes objects. These results suggest that for all mouse sizes and most rat sizes, uniform attenuation correction can be performed using emission data only. For smaller sizes up to ˜ 4 cm, scatter correction is not required even in lung regions. For larger sizes if accurate quantization needed, additional transmission scan may be required to estimate an accurate attenuation map for both attenuation and scatter corrections.

  11. Nutrient attenuation in rivers and streams, Puget Sound Basin, Washington

    USGS Publications Warehouse

    Sheibley, Rich W.; Konrad, Christopher P.; Black, Robert W.

    2015-01-01

    From a management perspective, preservation and improvement of instream nutrient attenuation should focus on increasing the travel time through a reach and contact time of water sediment (reactive) surfaces and lowering nutrient concentrations (and loads) to avoid saturation of instream attenuation and increase attenuation efficiency. These g

  12. Attenuation of microwaves by poly-disperse small spheroid particles

    NASA Astrophysics Data System (ADS)

    Zhang, Peichang; Wang, Zhenhui

    1998-08-01

    Expressions for calculating the attenuation cross sections of poly-disperse, small spheroids, whose rotatory axes are in specific status, have been derived from a universal formula for calculating the attenuation cross section of a particle of arbitrary shape. Attenuation cross sections of liquid, ice, and spongy spheroidal droplets in different size and eccentricity at different wave lengths have been computed and analyzed.

  13. Attenuation coefficient of single-mode periodic waveguides.

    PubMed

    Baron, A; Mazoyer, S; Smigaj, W; Lalanne, P

    2011-10-01

    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient α=-⟨ln(T)⟩/L. In this Letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result, that contradicts common beliefs and experimental practices aiming at measuring α, is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviors.

  14. Attenuation, dispersion and nonlinearity effects in graphene-based waveguides

    PubMed Central

    Mota, João Cesar Moura; Sombra, Antonio Sergio Bezerra

    2015-01-01

    Summary We simulated and analyzed in detail the behavior of ultrashort optical pulses, which are typically used in telecommunications, propagating through graphene-based nanoribbon waveguides. In this work, we showed the changes that occur in the Gaussian and hyperbolic secant input pulses due to the attenuation, high-order dispersive effects and nonlinear effects. We concluded that it is possible to control the shape of the output pulses with the value of the input signal power and the chemical potential of the graphene nanoribbon. We believe that the obtained results will be highly relevant since they can be applied to other nanophotonic devices, for example, filters, modulators, antennas, switches and other devices. PMID:26171299

  15. Sound attenuation by liners in a blown flap environment

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Vijayaraghavan, A.

    1980-01-01

    Sound propagation through a hot wall-jet flow over an absorbing wall is studied. The radiated sound field subject to the influence of flow convection and refraction is evaluated, and the nature of acoustic attenuation attributable to a sound absorbing liner is determined. Using a two-dimensional model, the noise field under the aircraft is also determined, and a slug-flow model is used to describe the influence of flow, density, and temperature on acoustic sources in jets. Results show significant changes in the radiated source due to the interference phenomenon, and a good absorber has the potential of changing the sound pressure range of variation to unity. A liner is also found to increase or decrease sound pressure, depending on the frequency.

  16. Attenuation of shock waves in copper and stainless steel

    SciTech Connect

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  17. Mars Pathfinder airbag impact attenuation system

    SciTech Connect

    Waye, D.E.; Cole, J.K.; Rivellini, T.P.

    1995-04-01

    The Mars Pathfinder spacecraft, scheduled for launch in November 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia`s High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  18. MIDAZOLAM PREMEDICATION IN ATTENUATING KETAMINE PSYCHIC SEQUELAE

    PubMed Central

    Somashekara, S. C.; Govindadas, D.; Devashankaraiah, G.; Mahato, Rajkishore; Deepalaxmi, S.; Srinivas, V.; Murugesh, J. V.; Devanand

    2010-01-01

    The objective of the study was to evaluate the effectiveness of midazolam premedication in attenuating the psychic sequelae of ketamine dissociative anaesthesia. Sixty patients undergoing various short surgical and urological procedures were taken in the study. All patients were premedicated with midazolam (0.05mg/kg i.v) five minutes before ketamine induction (1mg/kg i.v). The excitatory phenomenon, emergence delirium, occurrence of unpleasant dreams and patient acceptability of ketamine anaesthesia were recorded. Out of 60 patients studied, 15% had excitatory effects, 8% had mild delirium and 3% patients had unpleasant dreams in post operative period. Patient acceptability of ketamine anaesthesia was 100%. Hence from the study it was concluded that, midazolam premedication is effective in attenuating ketamine psychic sequelae PMID:24825990

  19. Midazolam premedication in attenuating ketamine psychic sequelae.

    PubMed

    Somashekara, S C; Govindadas, D; Devashankaraiah, G; Mahato, Rajkishore; Deepalaxmi, S; Srinivas, V; Murugesh, J V; Devanand

    2010-09-01

    The objective of the study was to evaluate the effectiveness of midazolam premedication in attenuating the psychic sequelae of ketamine dissociative anaesthesia. Sixty patients undergoing various short surgical and urological procedures were taken in the study. All patients were premedicated with midazolam (0.05mg/kg i.v) five minutes before ketamine induction (1mg/kg i.v). The excitatory phenomenon, emergence delirium, occurrence of unpleasant dreams and patient acceptability of ketamine anaesthesia were recorded. Out of 60 patients studied, 15% had excitatory effects, 8% had mild delirium and 3% patients had unpleasant dreams in post operative period. Patient acceptability of ketamine anaesthesia was 100%. Hence from the study it was concluded that, midazolam premedication is effective in attenuating ketamine psychic sequelae.

  20. Mars Pathfinder Airbag Impact Attenuation System

    NASA Technical Reports Server (NTRS)

    Waye, Donald; Cole, J. Kenneth; Rivellini, Tommaso P.

    1995-01-01

    The Mars Pathfinder spacecraft, scheduled for launch in December 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia's High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  1. Adjustments to the correction for attenuation.

    PubMed

    Wetcher-Hendricks, Debra

    2006-06-01

    With respect to the often-present covariance between error terms of correlated variables, D. W. Zimmerman and R. H. Williams's (1977) adjusted correction for attenuation estimates the strength of the pairwise correlation between true scores without assuming independence of error scores. This article focuses on the derivation and analysis of formulas that perform the same function for partial and part correlation coefficients. Values produced by these formulas lie closer to the actual true-score coefficient than do the observed-score coefficients or those obtained by using C. Spearman's (1904) correction for attenuation. The new versions of the formulas thus allow analysts to use hypothetical values for error-score correlations to estimate values for the partial and part correlations between true scores while disregarding the independence-of-errors assumption.

  2. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  3. Sound Attenuation by Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Stepaniuk, Vadim; Sheverev, Valery; Otugen, Volkan; Raman, Ganesh; Soukhomlinov, Vladimir

    2003-11-01

    Interaction of sound waves with glow discharge plasma was studied experimentally, as a continuation of the work reported earlier [1]. The main thrust of this investigation was to determine the effectiveness of using glow discharge plasma as a sound barrier in aerospace applications. The present study focused on the determination of the angular dependence of the attenuation of sound passing through a glow discharge. Experiments were conducted in an anechoic chamber where the intensity of a single frequency acoustic wave reflected from a plasma sheet was measured at various angles of incidence. The experiments established the strong influence of the incident angle on the reflected sound intensity, which agrees well with the theoretical estimates. 1 Stepaniuk, V., Tarau, C., Otugen, V., Sheverev V., Soukhomlinov V., Raman G., Sound Attenuation by Glow Discharge Plasma, AIAA Paper 2003-0371.

  4. Highly immunogenic variant of attenuated vaccinia virus.

    PubMed

    Yakubitskyi, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2016-01-01

    The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections. PMID:27025484

  5. Correction of quantification errors in pelvic and spinal lesions caused by ignoring higher photon attenuation of bone in [{sup 18}F]NaF PET/MR

    SciTech Connect

    Schramm, Georg Maus, Jens; Hofheinz, Frank; Petr, Jan; Lougovski, Alexandr; Beuthien-Baumann, Bettina; Oehme, Liane; Platzek, Ivan; Hoff, Jörg van den

    2015-11-15

    Purpose: MR-based attenuation correction (MRAC) in routine clinical whole-body positron emission tomography and magnetic resonance imaging (PET/MRI) is based on tissue type segmentation. Due to lack of MR signal in cortical bone and the varying signal of spongeous bone, standard whole-body segmentation-based MRAC ignores the higher attenuation of bone compared to the one of soft tissue (MRAC{sub nobone}). The authors aim to quantify and reduce the bias introduced by MRAC{sub nobone} in the standard uptake value (SUV) of spinal and pelvic lesions in 20 PET/MRI examinations with [{sup 18}F]NaF. Methods: The authors reconstructed 20 PET/MR [{sup 18}F]NaF patient data sets acquired with a Philips Ingenuity TF PET/MRI. The PET raw data were reconstructed with two different attenuation images. First, the authors used the vendor-provided MRAC algorithm that ignores the higher attenuation of bone to reconstruct PET{sub nobone}. Second, the authors used a threshold-based algorithm developed in their group to automatically segment bone structures in the [{sup 18}F]NaF PET images. Subsequently, an attenuation coefficient of 0.11 cm{sup −1} was assigned to the segmented bone regions in the MRI-based attenuation image (MRAC{sub bone}) which was used to reconstruct PET{sub bone}. The automatic bone segmentation algorithm was validated in six PET/CT [{sup 18}F]NaF examinations. Relative SUV{sub mean} and SUV{sub max} differences between PET{sub bone} and PET{sub nobone} of 8 pelvic and 41 spinal lesions, and of other regions such as lung, liver, and bladder, were calculated. By varying the assigned bone attenuation coefficient from 0.11 to 0.13 cm{sup −1}, the authors investigated its influence on the reconstructed SUVs of the lesions. Results: The comparison of [{sup 18}F]NaF-based and CT-based bone segmentation in the six PET/CT patients showed a Dice similarity of 0.7 with a true positive rate of 0.72 and a false discovery rate of 0.33. The [{sup 18}F]NaF-based bone

  6. Lg Attenuation of the Western United States

    NASA Astrophysics Data System (ADS)

    Gallegos, A. C.; Ranasinghe, N. R.; Ni, J.; Sandvol, E. A.

    2014-12-01

    Lg waveforms recorded by EarthScope's Transportable Array (TA) are used to estimate Lg Q in the Western United States (WUS). Attenuation is calculated based on Lg spectral amplitudes filtered at a narrow band from 0.5 to 1.5 Hz with a central frequency of 1 Hz. The two-station and reverse two-station techniques were used to calculate Qo values. 398 events occurring from 2005 to 2009 and ranging from magnitude 3 to magnitude 6 were used in this study. The geometric spreading term can be determined by using a three-dimensional linear fit of the amplitude ratios versus epicentral distances to two stations. The slope of this line provides the geometric spreading term we use to calculate Lg Qo values of WUS. The results show high Q regions (low attenuation) corresponding to the Colorado Plateau (CP), the Rocky Mountains (RM), the Columbia Plateau (COP), and the Sierra Nevada Mountains (SNM). Regions of low Q (high attenuation) are seen along the Snake River Plain (SRP), the Rio Grande Rift (RGR), the Cascade Mountains (CM), and in east and west of the Basin and Range (BR) where tectonic activity is more active than the central part of the BR. A positive correlation between high heat flow, recent tectonic activity and Q was observed. Areas with low heat flow, thin sediment cover, and no recent tectonic activity were observed to have consistently high Q. These new models use two-station and reversed two-station methods and provide a comparison with previous studies and better constrain regions with high attenuation. This increase in detail can improve high frequency ground motion predictions of future large earthquakes for more accurate hazard assessment and improve overall understanding of the structure and assemblage of the WUS.

  7. Radiation attenuation gauge with magnetically coupled source

    DOEpatents

    Wallace, Steven A.

    1978-01-01

    A radiaton attenuation gauge for measuring thickness and density of a material comprises, in combination, a source of gamma radiation contained within a housing comprising magnetic or ferromagnetic material, and a means for measuring the intensity of gamma radiation. The measuring means has an aperture and magnetic means disposed adjacent to the aperture for attracting and holding the housed source in position before the aperture. The material to be measured is disposed between the source and the measuring means.

  8. Bubbles attenuate elastic waves at seismic frequencies

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Quintal, Beatriz; Chapman, Samuel; Podladchikov, Yury; Burg, Jean-Pierre

    2016-04-01

    The vertical migration of multiphase fluids in the crust can cause hazardous events such as eruptions, explosions, pollution and earthquakes. Although seismic tomography could potentially provide a detailed image of such fluid-saturated regions, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. Seismic tomography should be improved considering seismic wave attenuation (1/Q) and the dispersive elastic moduli which allow accounting for the energy lost by the propagating elastic wave. In particular, in saturated media a significant portion of the energy carried by the propagating wave is dissipated by the wave-induced-fluid-flow and the wave-induced-gas-exsolution-dissolution (WIGED) mechanisms. The WIGED mechanism describes how a propagating wave modifies the thermodynamic equillibrium between different fluid phases causing the exsolution and the dissolution of the gas in the liquid, which in turn causes a significant frequency dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but only recently was extended to bubbly water and experimentally demonstrated. Here we report these theory and laboratory experiments. Specifically, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Finally, we will extend the theory to fluids and to pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we will compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. With the present contribution we extend the knowledge about attenuation in rocks which are saturated with multiphase fluid demonstrating that the WIGED mechanism could be extremely important to image subsurface gas plumes.

  9. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    PubMed

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection.

  10. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  11. Seismic Wave Attenuation Estimated from Tectonic Tremor and Radiated Energy in Tremor for Various Subduction Zones

    NASA Astrophysics Data System (ADS)

    Yabe, S.; Baltay, A.; Ide, S.; Beroza, G. C.

    2013-12-01

    Ground motion prediction is an essential component of earthquake hazard assessment. Seismic wave attenuation with distance is an important, yet difficult to constrain, factor for such estimation. Using the empirical method of ground motion prediction equations (GMPEs), seismic wave attenuation with distance, which includes both the effect of anelastic attenuation and scattering, can be estimated from the distance decay of peak ground velocity (PGV) or peak ground acceleration (PGA) of ordinary earthquakes; however, in some regions where plate-boundary earthquakes are infrequent, such as Cascadia and Nankai, there are fewer data with which to constrain the empirical parameters. In both of those subduction zones, tectonic tremor occurs often. In this study, we use tectonic tremor to estimate the seismic wave attenuation with distance, and in turn use the attenuation results to estimate the radiated seismic energy of tremor. Our primary interest is in the variations among subduction zones. Ground motion attenuation and the distribution of released seismic energy from tremors are two important subduction zone characteristics. Therefore, it is very interesting to see whether there are variations of these parameters in different subduction zones, or regionally within the same subduction zone. It is also useful to estimate how much energy is released by tectonic tremor from accumulated energy to help understand subduction dynamics and the difference between ordinary earthquakes and tremor. We use the tectonic tremor catalog of Ide (2012) in Nankai, Cascadia, Mexico and southern Chile. We measured PGV and PGA of individual tremor bursts at each station. We assume a simple GMPE relationship and estimate seismic attenuation and relative site amplification factors from the data. In the Nankai subduction zone, there are almost no earthquakes on the plate interface, but intra-slab earthquakes occur frequently. Both the seismic wave attenuation with distance and the site

  12. Improving Earthquake-Explosion Discrimination using Attenuation Models of the Crust and Upper Mantle

    SciTech Connect

    Pasyanos, M E; Walter, W R; Matzel, E M; Rodgers, A J; Ford, S R; Gok, R; Sweeney, J J

    2009-07-06

    Sea Rift. Applying this 2-D MDAC methodology with the new attenuation models can significantly improve earthquake-explosion discrimination using regional P/S amplitude ratios. We demonstrate applications of this technique, including a study at station NIL (Nilore, Pakistan) using broad area earthquakes and the 1998 Indian nuclear explosion using a number of regional amplitude ratio discriminants. We are currently applying the technique in the YSKP region as well.

  13. Including Magnetostriction in Micromagnetic Models

    NASA Astrophysics Data System (ADS)

    Conbhuí, Pádraig Ó.; Williams, Wyn; Fabian, Karl; Nagy, Lesleis

    2016-04-01

    The magnetic anomalies that identify crustal spreading are predominantly recorded by basalts formed at the mid-ocean ridges, whose magnetic signals are dominated by iron-titanium-oxides (Fe3-xTixO4), so called "titanomagnetites", of which the Fe2.4Ti0.6O4 (TM60) phase is the most common. With sufficient quantities of titanium present, these minerals exhibit strong magnetostriction. To date, models of these grains in the pseudo-single domain (PSD) range have failed to accurately account for this effect. In particular, a popular analytic treatment provided by Kittel (1949) for describing the magnetostrictive energy as an effective increase of the anisotropy constant can produce unphysical strains for non-uniform magnetizations. I will present a rigorous approach based on work by Brown (1966) and by Kroner (1958) for including magnetostriction in micromagnetic codes which is suitable for modelling hysteresis loops and finding remanent states in the PSD regime. Preliminary results suggest the more rigorously defined micromagnetic models exhibit higher coercivities and extended single domain ranges when compared to more simplistic approaches.

  14. Natural attenuation study at Columbus AFB MS

    SciTech Connect

    Stauffer, T.; Libelo, E.; MacIntyre, W.; Boggs, J.

    1995-12-31

    In order to study the geochemical and biochemical processes which contribute to natural attenuation of hydrocarbons in ground water systems, a subsurface residual NAPL hydrocarbon mixture was emplaced in the well characterized and highly instrumented heterogeneous aquifer at the Columbus AFB, MS groundwater test site. 1,147 kg of NAPL composed of decane, naphthalene, p-xylene, ethylbenzene, toluene, benzene and 2 Kg of KBr tracer was mixed with 30 m{sup 3} of local aquifer material to create a 16% residual phase and emplaced below the water table on November 23rd, 1995. Natural hydraulic gradients are now dissolving the hydrocarbons and transporting the dissolved hydrocarbon and bromide plume. Background sampling of groundwater and aquifer solids was done prior to source emplacement to characterize the site geochemistry and anaerobic and aerobic microbiology. The aquifer was initially oxygenated with DO levels ranging from 0.5 to 6.9 mg/L and generally < 3.5, NO{sub 3}-N ranged from 0.02--0.3 mg/L. Sulfate concentrations ranged from 0.0 to 8.6 mg/L. Dissolved Fe{sup 2+} ranged up to 5.0 mg/L. Observed natural attenuation rates will be correlated with microbial and geochemical changes in the aquifer. These correlations will provide a basis for understanding and implementing natural attenuation as a remedial action for hydrocarbons.

  15. Impact of Trauma on Attenuated Psychotic Symptoms

    PubMed Central

    Falukozi, Erin; Addington, Jean

    2012-01-01

    Evidence that trauma may play a role in the development of a psychotic illness has lead researchers to investigate the relationship between trauma and the content of attenuated psychotic symptoms. Participants in this study were considered to be at clinical high risk for developing psychosis by meeting criteria for attenuated positive symptom syndrome based on the Structured Interview for Prodromal Syndromes. Trained raters used a specifically designed codebook to identify content in the vignettes of 45 participants. Various types of trauma that had occurred before age 16 were assessed, where participants who endorsed more types of trauma were considered to have experienced a greater amount of trauma. Spearman rank correlations revealed significant positive relationships between increased trauma and feeling watched or followed (rho=0.38, p<0.05) and false beliefs of status or power (rho=0.31, p<0.04). Significant negative relationships were observed between increased trauma and hearing nonnegative voices (rho=−0.39, p<0.01) as well as having unusual negative thoughts surrounding the self (rho=−0.31, p<0.05). Although this was a small sample, these findings support the possibility of a meaningful relationship between experiences of trauma and the content of attenuated positive symptoms. PMID:23155365

  16. Sound attenuation of fiberglass lined ventilation ducts

    NASA Astrophysics Data System (ADS)

    Albright, Jacob

    Sound attenuation is a crucial part of designing any HVAC system. Most ventilation systems are designed to be in areas occupied by one or more persons. If these systems do not adequately attenuate the sound of the supply fan, compressor, or any other source of sound, the affected area could be subject to an array of problems ranging from an annoying hum to a deafening howl. The goals of this project are to quantify the sound attenuation properties of fiberglass duct liner and to perform a regression analysis to develop equations to predict insertion loss values for both rectangular and round duct liners. The first goal was accomplished via insertion loss testing. The tests performed conformed to the ASTM E477 standard. Using the insertion loss test data, regression equations were developed to predict insertion loss values for rectangular ducts ranging in size from 12-in x 18-in to 48-in x 48-in in lengths ranging from 3ft to 30ft. Regression equations were also developed to predict insertion loss values for round ducts ranging in diameters from 12-in to 48-in in lengths ranging from 3ft to 30ft.

  17. Scattering attenuation microscopy of oral epithelial dysplasia

    NASA Astrophysics Data System (ADS)

    Tomlins, Pete H.; Adegun, Oluyori; Hagi-Pavli, Eleni; Piper, Kim; Bader, Dan; Fortune, Farida

    2010-11-01

    We present a new method for quantitative visualization of premalignant oral epithelium called scattering attenuation microscopy (SAM). Using low-coherence interferometry, SAM projects measurements of epithelial optical attenuation onto an image of the tissue surface as a color map. The measured attenuation is dominated by optical scattering that provides a metric of the severity of oral epithelial dysplasia (OED). Scattering is sensitive to the changes in size and distribution of nuclear material that are characteristic of OED, a condition recognized by the occurrence of basal-cell-like features throughout the epithelial depth. SAM measures the axial intensity change of light backscattered from epithelial tissue. Scattering measurements are obtained from sequential axial scans of a 3-D tissue volume and displayed as a 2-D SAM image. A novel segmentation method is used to confine scattering measurement to epithelial tissue. This is applied to oral biopsy samples obtained from 19 patients. Our results show that imaging of tissue scattering can be used to discriminate between different dysplastic severities and furthermore presents a powerful tool for identifying the most representative tissue site for biopsy.

  18. Attenuation compensation for optical coherence tomography imaging

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Flueraru, Costel; Mao, Youxin; Sherif, Sherif

    2009-12-01

    Optical coherence tomography (OCT) is a noninvasive technique that provides micrometer-scale imaging of tissue. As most biological tissues are considered turbid, it causes attenuation of the OCT signal and limits the depth penetration. Although a few algorithms had been developed to compensate the attenuation, almost all of them need to extract the scattering parameters before doing the compensation procedure. Because the real biological samples are anisotropic and multilayer-like structure, it is not time-efficient to model and solve these scattering parameters. This paper introduces a new method to compensate the OCT signal attenuation in depth. By analyzing the input signal, a compensation function is adaptively derived for each A-scan line, which can be used effectively to compensate the energy loss in the large sections and enhance the details in the deep, dark-like areas. Three bio-samples, a piece of onion, a Poecilia Wingei fish and a piece of rabbit abdominal aorta, were used to test our method. OCT images obtained by a swept-source OCT system were processed by the proposed method. Results show the visualization of structures in OCT images has been evidently improved, especially in deep region.

  19. [Characteristics of diffuse attenuation coefficient of underwater irradiance in the lakes in the middle and lower reaches of Yangtze river ].

    PubMed

    Shi, Zhi-Qiang; Zhang, Yun-Lin; Wang, Ming-Zhu; Liu, Xiao-Han

    2013-02-01

    Based on the underwater irradiance profile measurement and water samples collection in September, October 2007 in Lake Donghu, Lake Liangzi and Lake Honghu, and in April in 2010 in Lake Kuileihu, the diffuse attenuation coefficient and the dominant attenuation factors were analyzed. The ranges of diffuse attenuation coefficient and total suspended solid (TSS), organic suspended solid (OSS), inorganic suspended solid (ISS), chlorophyll a (Chla), and dissolved organic carbon (DOC) concentration varied less in Lake Donghu and Lake Kuileihu than in Lake liangzi and Lake Honghu. The regression analysis showed that ISS was the dominant affecting factor of transparency in Lake Donghu and Lake Kuileihu, but ISS and OSS jointly controlled the transparency in Lake Liangzi and Lake Honghu. The diffuse attenuation coefficient minimum occurred near 580 nm. At around 675 nm, the diffuse attenuation coefficient peak was due to phytoplankton absorption, especially at sites with high pigment concentration. The euphotic depth was less than the mean water depth in Lake Donghu, suggesting that the submerged aquatic vegetation (SAV) can not grow in the present underwater light climate. However, the euphotic depth was larger than the mean water depth in other three lakes showing that the underwater light climate can meet the light requirements for the growth of SAV. The regression analysis showed that ISS was the dominant affecting factor of PAR attenuation in Lake Donghu and Lake Kuileihu, but ISS, OSS and Chla jointly controlled PAR attenuation in lake Liangzi and lake Honghu. The significant correlation between the beam attenuatin coefficient at 750 nm and PAR difffuse attenuation coefficient showed that the particles scattering significantly contributed to underwater irradiance attenuation.

  20. Monitored Natural Attenuation of ino9rganic Contaminants Treatability Study Final Report

    SciTech Connect

    Crapse, K

    2004-05-19

    The identification and quantification of key natural attenuation processes for inorganic contaminants at D-Area is detailed herein. Two overarching goals of this evaluation of monitored natural attenuation (MNA) as a remediation strategy were (1) to better define the availability of inorganic contaminants as potential sources for transport to groundwater and uptake by environmental receptors and (2) to understand the site-specific mechanisms controlling attenuation of these inorganic contaminants through tandem geochemical and biological characterization. Data collected in this study provides input for more appropriate site groundwater transport models. Significant natural attenuation is occurring at D-Area as evidenced by relatively low aqueous concentrations of constituents of concern (COCs) (Be, Ni, U, and As) at all locations characterized and the decrease in groundwater concentrations with increasing distance from the source. The observed magnitude of decrease in groundwater concentrations of COCs with distance from the D-Area Coal Pile Runoff Basin (DCPRB) could not be accounted for by the modeled physical attenuation processes of dilution/dispersion. This additional attenuation, i.e., the observed difference between the groundwater concentrations of COCs and the modeled physical attenuation, is due to biogeochemical processes occurring at the D-Area. In tandem geochemical and microbiological characterization studies designed to evaluate the mechanisms contributing to natural attenuation, pH was the single parameter found to be most predictive of contaminant attenuation. The increasing pH with distance from the source is likely responsible for increased sorption of COCs to soil surfaces within the aquifer at D-Area. Importantly, because the sediments appear to have a high buffering capacity, the acid emanating from the DCPRB has been neutralized by the soil, and these conditions have led to large Kd values at the site. Two major types of soils are present at

  1. Compact Radar Transceiver with Included Calibration

    NASA Technical Reports Server (NTRS)

    McLinden, Matthew; Rincon, Rafael

    2013-01-01

    The Digital Beamforming Synthetic Aperture Radar (DBSAR) is an eight-channel phased array radar system that employs solid-state radar transceivers, a microstrip patch antenna, and a reconfigurable waveform generator and processor unit. The original DBSAR transceiver design utilizes connectorized electronic components that tend to be physically large and heavy. To achieve increased functionality in a smaller volume, PCB (printed circuit board) transceivers were designed to replace the large connectorized transceivers. One of the most challenging problems designing the transceivers in a PCB format was achieving proper performance in the calibration path. For a radar loop-back calibration path, a portion of the transmit signal is coupled out of the antenna feed and fed back into the receiver. This is achieved using passive components for stability and repeatability. Some signal also leaks through the receive path. As these two signal paths are correlated via an unpredictable phase, the leakage through the receive path during transmit must be 30 dB below the calibration path. For DBSAR s design, this requirement called for a 100-dB isolation in the receiver path during transmit. A total of 16 solid-state L-band transceivers on a PCB format were designed. The transceivers include frequency conversion stages, T/R switching, and a calibration path capable of measuring the transmit power-receiver gain product during transmit for pulse-by-pulse calibration or matched filtering. In particular, this calibration path achieves 100-dB isolation between the transmitted signal and the low-noise amplifier through the use of a switching network and a section of physical walls achieving attenuation of radiated leakage. The transceivers were designed in microstrip PCBs with lumped elements and individually packaged components for compactness. Each transceiver was designed on a single PCB with a custom enclosure providing interior walls and compartments to isolate transceiver

  2. Intensity, magnitude, location and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, Walter; Hough, Susan; Martin, Stacey; Bilham, Roger

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earthquakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental- with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earthquakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  3. Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762

    USGS Publications Warehouse

    Szeliga, W.; Hough, S.; Martin, S.; Bilham, R.

    2010-01-01

    A comprehensive, consistently interpreted new catalog of felt intensities for India (Martin and Szeliga, 2010, this issue) includes intensities for 570 earth-quakes; instrumental magnitudes and locations are available for 100 of these events. We use the intensity values for 29 of the instrumentally recorded events to develop new intensity versus attenuation relations for the Indian subcontinent and the Himalayan region. We then use these relations to determine the locations and magnitudes of 234 historical events, using the method of Bakun and Wentworth (1997). For the remaining 336 events, intensity distributions are too sparse to determine magnitude or location. We evaluate magnitude and location accuracy of newly located events by comparing the instrumental-with the intensity-derived location for 29 calibration events, for which more than 15 intensity observations are available. With few exceptions, most intensity-derived locations lie within a fault length of the instrumentally determined location. For events in which the azimuthal distribution of intensities is limited, we conclude that the formal error bounds from the regression of Bakun and Wentworth (1997) do not reflect the true uncertainties. We also find that the regression underestimates the uncertainties of the location and magnitude of the 1819 Allah Bund earthquake, for which a location has been inferred from mapped surface deformation. Comparing our inferred attenuation relations to those developed for other regions, we find that attenuation for Himalayan events is comparable to intensity attenuation in California (Bakun and Wentworth, 1997), while intensity attenuation for cratonic events is higher than intensity attenuation reported for central/eastern North America (Bakun et al., 2003). Further, we present evidence that intensities of intraplate earth-quakes have a nonlinear dependence on magnitude such that attenuation relations based largely on small-to-moderate earthquakes may significantly

  4. Inherited human sex reversal due to impaired nucleocytoplasmic trafficking of SRY defines a male transcriptional threshold.

    PubMed

    Chen, Yen-Shan; Racca, Joseph D; Phillips, Nelson B; Weiss, Michael A

    2013-09-17

    Human testis determination is initiated by SRY (sex determining region on Y chromosome). Mutations in SRY cause gonadal dysgenesis with female somatic phenotype. Two subtle variants (V60L and I90M in the high-mobility group box) define inherited alleles shared by an XY sterile daughter and fertile father. Whereas specific DNA binding and bending are unaffected in a rat embryonic pre-Sertoli cell line, the variants exhibited selective defects in nucleocytoplasmic shuttling due to impaired nuclear import (V60L; mediated by Exportin-4) or export (I90M; mediated by chromosome region maintenance 1). Decreased shuttling limits nuclear accumulation of phosphorylated (activated) SRY, in turn reducing occupancy of DNA sites regulating Sertoli-cell differentiation [the testis-specific SRY-box 9 (Sox9) enhancer]. Despite distinct patterns of biochemical and cell-biological perturbations, V60L and I90M each attenuated Sox9 expression in transient transfection assays by twofold. Such attenuation was also observed in studies of V60A, a clinical variant associated with ovotestes and hence ambiguity between divergent cell fates. This shared twofold threshold is reminiscent of autosomal syndromes of transcription-factor haploinsufficiency, including XY sex reversal associated with mutations in SOX9. Our results demonstrate that nucleocytoplasmic shuttling of SRY is necessary for robust initiation of testicular development. Although also characteristic of ungulate orthologs, such shuttling is not conserved among rodents wherein impaired nuclear export of the high-mobility group box and import-dependent phosphorylation are compensated by a microsatellite-associated transcriptional activation domain. Human sex reversal due to subtle defects in the nucleocytoplasmic shuttling of SRY suggests that its transcriptional activity lies near the edge of developmental ambiguity. PMID:24003159

  5. Pulmonary Complications due to Esophagectomy

    PubMed Central

    Shirinzadeh, Abulfazl; Talebi, Yashar

    2011-01-01

    Introduction Esophageal carcinoma is the scourge of human beings. Pulmonary complications in patients who have undergone operation are common (20-30% of cases) and there are no suitable tools and ways to predict these complications. Methods During a period of 10 years, from March 1998 to February 2007, 200 patients (150 male and 50 female) underwent Esophagectomy due to esophageal carcinoma in thoracic surgery ward retrospectively. Complications include the length of hospitalization, mechanical ventilation, morbidity and mortality. Patients’ risk factors include age, preoperative chemo-radiotherapy, stage of the disease and preoperative spirometry condition. Results We grouped our patients into three categories: Normal (FEV1 ≥ 80% predicted), mildly impaired (FEV1 65% to 79% predicted), more severely impaired (FEV1 < 65% predicted).Although almost all patients had radiographic pulmonary abnormalities, significant pulmonary complications occurred in 40 patients (20%) which underwent Esophagectomy. Pleural effusion and atelectasia in 160 patients (80%). 24 patients needed chest-tube insertion. 20 patients (10%) developed ARDS. 14 patients (7%) developed chylothorax. 20 patients (10%) of patients died during their postoperative hospital stay. 30 patients (15%) required mechanical ventilation for greater than 48 hours. Conclusion We reviewed a number of preoperative clinical variables to determine whether they contributed to postoperative pulmonary complications as well as other outcomes. In general, age, impaired pulmonary function especially in those patients with FEV1 less than 65% predicted was associated with prolonged hospital length of stay (LOS). In fact pulmonary complications rate after Esophagectomy are high and there was associated mortality and morbidity. PMID:24250962

  6. Intensity attenuation in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Szanyi, Gyöngyvér

    2015-04-01

    Ground motion prediction equations play a key role in seismic hazard assessment. Earthquake hazard has to be expressed in macroseismic intensities in case of seismic risk estimations where a direct relation to the damage associated with ground shaking is needed. It can be also necessary for shake map generation where the map is used for prompt notification to the public, disaster management officers and insurance companies. Although only few instrumental strong motion data are recorded in the Pannonian Basin, there are numerous historical reports of past earthquakes since the 1763 Komárom earthquake. Knowing the intensity attenuation and comparing them with relations of other areas - where instrumental strong motion data also exist - can help us to choose from the existing instrumental ground motion prediction equations. The aim of this work is to determine an intensity attenuation formula for the inner part of the Pannonian Basin, which can be further used to find an adaptable ground motion prediction equation for the area. The crust below the Pannonian Basin is thin and warm and it is overlain by thick sediments. Thus the attenuation of seismic waves here is different from the attenuation in the Alp-Carpathian mountain belt. Therefore we have collected intensity data only from the inner part of the Pannonian Basin and defined the boundaries of the studied area by the crust thickness of 30 km (Windhoffer et al., 2005). 90 earthquakes from 1763 until 2014 have sufficient number of macroseismic data. Magnitude of the events varies from 3.0 to 6.6. We have used individual intensity points to eliminate the subjectivity of drawing isoseismals, the number of available intensity data is more than 3000. Careful quality control has been made on the dataset. The different types of magnitudes of the used earthquake catalogue have been converted to local and momentum magnitudes using relations determined for the Pannonian Basin. We applied the attenuation formula by Sorensen

  7. Northern California Seismic Attenuation: 3-D Qp and Qs models

    NASA Astrophysics Data System (ADS)

    Eberhart-Phillips, D. M.

    2015-12-01

    The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.

  8. Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis.

    PubMed

    Coutermarsh-Ott, Sheryl L; Doran, John T; Campbell, Caroline; Williams, Tere M; Lindsay, David S; Allen, Irving C

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc (-/-) and Casp11 (-/-) mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc (-/-) mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11 (-/-) mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis. PMID:27378827

  9. Caspase-11 Modulates Inflammation and Attenuates Toxoplasma gondii Pathogenesis

    PubMed Central

    Coutermarsh-Ott, Sheryl L.; Doran, John T.; Campbell, Caroline; Williams, Tere M.; Lindsay, David S.; Allen, Irving C.

    2016-01-01

    Toxoplasma gondii is an obligate intracellular parasite that is the etiologic agent responsible for toxoplasmosis. Infection with T. gondii results in activation of nucleotide binding domain and leucine rich repeat containing receptors (NLRs). NLR activation leads to inflammasome formation, the activation of caspase-1, and the subsequent cleavage of IL-1β and IL-18. Recently, a noncanonical inflammasome has been characterized which functions through caspase-11 and appears to augment many biological functions previously considered to be dependent upon the canonical inflammasome. To better elucidate the function of this noncanonical inflammasome in toxoplasmosis, we utilized Asc−/− and Casp11−/− mice and infected these animals with T. gondii. Our data indicates that caspase-11 modulates the innate immune response to T. gondii through a mechanism which is distinct from that currently described for the canonical inflammasome. Asc−/− mice demonstrated increased disease pathogenesis during the acute phase of T. gondii infection, whereas Casp11−/− mice demonstrated significantly attenuated disease pathogenesis and reduced inflammation. This attenuated host response was associated with reduced local and systemic cytokine production, including diminished IL-1β. During the chronic phase of infection, caspase-11 deficiency resulted in increased neuroinflammation and tissue cyst burden in the brain. Together, our data suggest that caspase-11 functions to protect the host by enhancing inflammation during the early phase of infection in an effort to minimize disease pathogenesis during later stages of toxoplasmosis. PMID:27378827

  10. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  11. Calpeptin Attenuated Apoptosis and Intracellular Inflammatory Changes in Muscle Cells

    PubMed Central

    Nozaki, Kenkichi; Das, Arabinda; Ray, Swapan K.; Banik, Naren L.

    2011-01-01

    In idiopathic inflammatory myopathies (IIMs), extracellular inflammatory stimulation is considered to induce secondary intracellular inflammatory changes including expression of major histocompatibility complex class-I (MHC-I) and to produce self-sustaining loop of inflammation. We hypothesize that activation of calpain, a Ca2+-sensitive protease, bridges between these extracellular inflammatory stress and intracellular secondary inflammatory changes in muscle cells. In this study, we demonstrated that treatment of rat L6 myoblast cells with interferon-gamma (IFN-γ) caused expression of MHC-I and inflammation related transcription factors (phosphorylated-extracellular signal-regulated kinase 1/2 and nuclear factor-kappa B). We also demonstrated that treatment with tumor necrosis factor-alpha (TNF-α) induced apoptotic changes and activation of calpain and cyclooxygenase-2. Further, we found that post-treatment with calpeptin attenuated the intracellular changes induced by IFN-γ or TNF-α. Our results indicate that calpain inhibition attenuates apoptosis and secondary inflammatory changes induced by extracellular inflammatory stimulation in the muscle cells. These results suggest calpain as a potential therapeutic target for treatment of IIMs. PMID:21290412

  12. The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

    SciTech Connect

    Ryutov, D D; Bionta, R M; McKernan, M A; Shen, S; Trent, J W

    2005-12-19

    A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen et al [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; the design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10{sup 4}; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius

  13. The Physics Analysis of a Gas Attenuator with Argon as a Working Gas (Rev. 1)

    SciTech Connect

    Ryutov, D D; Bionta, R M; McKernan, M A; Shen, S; Trent, J W

    2006-01-03

    A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; the design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole range of energies of the coherent radiation, from 800 eV to 8000 eV; the maximum attenuation was set at the level of 10{sup 4}; the use of solid attenuators was not allowed, as well as the use of rotating shutters. The need to reach a sufficient absorption at the high-energy end of the spectrum predetermined the choice of Xe as the working gas (in order to have a reasonable absorption at a not-too-high pressure). A sophisticated differential pumping system that included a Penning-type ion pump was suggested in order to minimize the gas leak into the undulator/accelerator part of the facility. A high cost of xenon meant also that an efficient (and expensive) gas-recovery system would have to be installed. The main parameter that determined the high cost and the complexity of the system was a large radius of the

  14. Workshop on Monitored Natural Attenuation for Inorganic Contaminants: 1 – Introduction, MNA Processes and Characterization

    EPA Science Inventory

    The purpose of this training is to present an overview of site characterization approaches to support evaluation of the potential for Monitored Natural Attenuation (MNA) as a remedy for inorganic contaminants in ground water. The training will include discussion of the types of ...

  15. NEUROTROPHIN RECEPTOR BLOCKADE ATTENUATES DIESEL EXHAUST PARTICULATE MATTER (DEP) ENHANCEMENT OF ALLERGIC RESPONSES

    EPA Science Inventory

    ABSTRACT BODY:
    Recent investigations have linked neurotrophins including NGF, NT-3, and BDNF to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance associated with allergic airway responses in mice. Mice administered an antibody against the low aff...

  16. Estimation of the matrix attenuation in heterogeneous radioactive waste drums using dual-energy computed tomography

    NASA Astrophysics Data System (ADS)

    Robert-Coutant, C.; Moulin, V.; Sauze, R.; Rizo, P.; Casagrande, J. M.

    1999-02-01

    Gamma spectroscopy measurements of the activity of radionuclides in nuclear waste drums must be corrected for the attenuation due to the non-homogeneous waste matrix. The attenuation factors depend on the matrix local density and effective atomic number, and on the energy of the gamma rays emitted by the radionuclides. The requirements for the system presented in this paper are to estimate the attenuation in low-density (<0.4 g/cm 3), 120 l drums containing radionuclides emitting in the (59.5 keV, 1.4 MeV) energy range. A series of three-dimensional (3D) attenuation maps of the drum are computed using a dual-energy computerized tomography (DE-CT) system with an external, polychromatic X-ray source. The system successively records low-energy (mean energy about 62 keV) and high-energy (about 300 keV) projections using different tube voltages, anode current, and filtration. Each projection is acquired by 22 BGO scintillators - PM detectors in fan-beam geometry. The drum is rotated and elevated in a helical scan. A DE calibration transforms pairs of DE projections into pairs of "equivalent basis materials (BM)" projections. This non-linear transformation allows to correct for polychromaticity. After reconstruction, the two "equivalent BM" 3D maps are used, together with tabulated attenuation data of the BMs, in order to extrapolate the 3D attenuation map at any energy peak. Maps of the mass density and of the effective atomic number can also be computed. The total examination time is less than 5 min. Experimental images are shown.

  17. Seismic‐wave attenuation determined from tectonic tremor in multiple subduction zones

    USGS Publications Warehouse

    Yabe, Suguru; Baltay, Annemarie S.; Ide, Satoshi; Beroza, Gregory C.

    2014-01-01

    Tectonic tremor provides a new source of observations that can be used to constrain the seismic attenuation parameter for ground‐motion prediction and hazard mapping. Traditionally, recorded earthquakes of magnitude ∼3–8 are used to develop ground‐motion prediction equations; however, typical earthquake records may be sparse in areas of high hazard. In this study, we constrain the distance decay of seismic waves using measurements of the amplitude decay of tectonic tremor, which is plentiful in some regions. Tectonic tremor occurs in the frequency band of interest for ground‐motion prediction (i.e., ∼2–8  Hz) and is located on the subducting plate interface, at the lower boundary of where future large earthquakes are expected. We empirically fit the distance decay of peak ground velocity from tremor to determine the attenuation parameter in four subduction zones: Nankai, Japan; Cascadia, United States–Canada; Jalisco, Mexico; and southern Chile. With the large amount of data available from tremor, we show that in the upper plate, the lower crust is less attenuating than the upper crust. We apply the same analysis to intraslab events in Nankai and show the possibility that waves traveling from deeper intraslab events experience more attenuation than those from the shallower tremor due to ray paths that pass through the subducting and highly attenuating oceanic crust. This suggests that high pore‐fluid pressure is present in the tremor source region. These differences imply that the attenuation parameter determined from intraslab earthquakes may underestimate ground motion for future large earthquakes on the plate interface.

  18. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla P.; Sahajpal, Rahul; Zhong, Lirong; Lawter, Amanda R.; Lee, Brady D.

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  19. An educated guess on the workplace attenuation variability of ear muffs.

    PubMed

    Lenzuni, Paolo

    2009-01-01

    The attenuation variability of hearing protector devices plays a primary role in determining compliance, or lack of, with occupational noise exposure limits. This study presents an estimate of the ear muff attenuation variability, which includes several factors (biological diversity, positioning, sound field, ageing) for which specific information from laboratory studies is available. A mean value of the attenuation variability for ear muffs sigma(FR) = 4.8 dB is found. This value is about 65% larger than the typical value measured according to existing test standards. Being marginally smaller than the mean variability resulting from field measurements, and certainly within the wide range of fluctuations of the latter, it represents a robust and reliable quantity for application in any workplace environment. PMID:19534853

  20. Acoustic attenuation logging using centroid frequency shift and amplitude ratio methods: A numerical study

    SciTech Connect

    Quan, Y.; Harris, J.M.; Chen, X.

    1994-12-31

    The centroid frequency shift method is proposed to estimate seismic attenuation from full waveform acoustic logs. This approach along with the amplitude ratio method is applied to investigate the attenuation properties of the P head wave in fluid-filled boreholes. The generalized reflection and transmission coefficients method is used to perform forward modeling. The authors suggest an empirical formula to describe the frequency-dependent geometrical spreading of the P-wave in a borehole. They simulate a more realistic borehole by including a mudcake and an invaded zone which are modeled by a large number of radially symmetric thin layers. The numerical tests show that this invaded zone exhibits very strong influence on the attenuation measurement.

  1. The attenuation of gamma-ray emission in strongly-magnetized pulsars

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.; Harding, Alice K.; Gonthier, Peter L.

    1997-01-01

    Gamma rays from pulsars can be efficiently attenuated in their magnetospheres via the mechanism of single photon pair production and the exotic quantum electrodynamics (QED) process of photon splitting. The modeling of strongly magnetized gamma ray pulsars focusing on the escape or attenuation of photons emitted near the pole at the neutron star surface in dipole fields in a Schwarzschild metric is considered. It was found that pair production and splitting totally inhibit emission above a value of between 10 and 30 MeV in PSR 1509-58 whose surface field is inferred as being high. The principle predictions of the attenuation analysis are reviewed and the observational diagnostic capabilities of the model are considered. The diagnostics include the energy of the gamma ray turnover and the spectral polarization, which constrain the estimated polar cap size and field strength and can determine the relative strength of splitting and pair creation.

  2. Deep Sequencing of Distinct Preparations of the Live Attenuated Varicella-Zoster Virus Vaccine Reveals a Conserved Core of Attenuating Single-Nucleotide Polymorphisms

    PubMed Central

    Yamanishi, Koichi; Gomi, Yasuyuki; Gershon, Anne A.; Breuer, Judith

    2016-01-01

    ABSTRACT The continued success of the live attenuated varicella-zoster virus vaccine in preventing varicella-zoster and herpes zoster is well documented, as are many of the mutations that contribute to the attenuation of the vOka virus for replication in skin. At least three different preparations of vOka are marketed. Here, we show using deep sequencing of seven batches of vOka vaccine (including ZostaVax, VariVax, VarilRix, and the Oka/Biken working seed) from three different manufacturers (VariVax, GSK, and Biken) that 137 single-nucleotide polymorphism (SNP) mutations are present in all vaccine batches. This includes six sites at which the vaccine allele is fixed or near fixation, which we speculate are likely to be important for attenuation. We also show that despite differences in the vaccine populations between preparations, batch-to-batch variation is minimal, as is the number and frequency of mutations unique to individual batches. This suggests that the vaccine manufacturing processes are not introducing new mutations and that, notwithstanding the mixture of variants present, VZV live vaccines are extremely stable. IMPORTANCE The continued success of vaccinations to prevent chickenpox and shingles, combined with the extremely low incidence of adverse reactions, indicates the quality of these vaccines. The vaccine itself is comprised of a heterogeneous live attenuated virus population and thus requires deep-sequencing technologies to explore the differences and similarities in the virus populations between different preparations and batches of the vaccines. Our data demonstrate minimal variation between batches, an important safety feature, and provide new insights into the extent of the mutations present in this attenuated virus. PMID:27440875

  3. Limits of Ultra-Low Dose CT Attenuation Correction for PET/CT.

    PubMed

    Xia, Ting; Alessio, Adam M; Kinahan, Paul E

    2010-01-29

    We present an analysis of the effects of ultra-low dose X-ray computerized tomography (CT) based attenuation correction for positron emission tomography (PET). By ultra low dose we mean less than approximately 5 mAs or 0.5 mSv total effective whole body dose. The motivation is the increased interest in using respiratory motion information acquired during the CT scan for both phase-matched CT-based attenuation correction and for motion estimation. Since longer duration CT scans are desired, radiation dose to the patient can be a limiting factor. In this study we evaluate the impact of reducing photon flux rates in the CT data on the reconstructed PET image by using the CATSIM simulation tool for the CT component and the ASIM simulation tool for the PET component. The CT simulation includes effects of the x-ray tube spectra, beam conditioning, bowtie filter, detector noise, and bean hardening correction. The PET simulation includes the effect of attenuation and photon counting. Noise and bias in the PET image were evaluated from multiple realizations of test objects. We show that techniques can be used to significantly reduce the mAs needed for CT based attenuation correction if the CT is not used for diagnostic purposes. The limiting factor, however, is not the noise in the CT image but rather the bias introduced by CT sinogram elements with no detected flux. These results constrain the methods that can be used to lower CT dose in a manner suitable for attenuation correction of PET data. We conclude that ultra-low-dose CT for attenuation correction of PET data is feasible with current PET/CT scanners.

  4. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model

  5. Attenuated Psychosis Syndrome in DSM-5

    PubMed Central

    Tsuang, Ming; Van Os, Jim; Tandon, Rajiv; Barch, Deanna M.; Bustillo, Juan; Gaebel, Wolfgang; Gur, Raquel E.; Heckers, Stephan; Malaspina, Dolores; Owen, Michael J.; Schultz, Susan; Carpenter, William

    2013-01-01

    Despite advances in the treatment of schizophrenia over the past half-century, the illness is frequently associated with a poor outcome. This is principally related to the late identification and intervention in the course of the illness by which time patients have experienced a substantial amount of socio-occupational decline that can be difficult to reverse. The emphasis has therefore shifted to defining psychosis-risk syndromes and evaluating treatments that can prevent transition to psychosis in these ultra-high risk groups. To consider the appropriateness of adding psychosis risk syndrome to our diagnostic nomenclature, the Psychotic Disorders Workgroup extensively reviewed all available data, consulted a range of experts, and carefully considered the variety of expert and public comments on the topic. It was clear that reliable methods were available to define a syndrome characterized by sub-threshold psychotic symptoms (in severity or duration) and which was associated with a very significant increase in the risk of development of a full-fledged psychotic disorder (schizophrenia spectrum, psychotic mood disorder, other psychotic disorder) within the next year. At the same time, the majority of individuals with “attenuated psychotic symptoms” had one or more other current psychiatric comorbid conditions (usually mood or anxiety disorders, substance use disorder; Fusar-Poli 2012) and exhibited a range of psychiatric outcomes other than conversion to psychosis (significant proportions either fully recover or develop some other psychiatric disorder with a minority developing a psychotic disorder). Whereas the reliability of the diagnosis is well established in academic and research settings, it was found to be less so in community and other clinical settings. Furthermore, the nosological relationship of Attenuated Psychosis Syndrome (APS) to schizotypal personality disorder and other psychiatric conditions was unclear. Further study will hopefully resolve

  6. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  7. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting?

    PubMed Central

    Sakkas, Giorgos K.; Schambelan, Morris; Mulligan, Kathleen

    2010-01-01

    Purpose of review Weight loss and low BMI due to an underlying illness have been associated with increased mortality, reduced functional capacity, and diminished quality of life. There is a need for safe, long- term approaches to maintain body weight in patients with cachexia or wasting. The purpose of this review is to highlight the scientific and clinical evidence derived from the recent literature investigating the rationale for and potential medical use of creatine supplementation in patients with cachexia or wasting. Recent findings Some studies have demonstrated that supplementation with creatine can increase creatine reserves in skeletal muscle and increase muscle mass and performance in various disease states that affect muscle size and function. The mechanisms underlying these effects are not clear. It has been suggested that creatine supplementation may increase intramuscular phosphocreatine stores and promote more rapid recovery of adenosine triphosphate levels following exercise, thus allowing users to exercise for longer periods or at higher intensity levels. Other hypothesized mechanisms include attenuation of proinflammatory cytokines, stimulation of satellite cell proliferation, and up-regulation of genes that promote protein synthesis and cell repair. Summary Creatine is a generally safe, low cost, over-the-counter nutritional supplement that shows potential in improving lean body mass and functionality in patients with wasting diseases. However, placebo-controlled studies have shown variable effects, with improvements in some and not in others. Additional studies with longer follow-up are required to identify the populations that might benefit most from creatine supplementation. PMID:19741514

  8. Detecting the Attenuation of Blazar Gamma-ray Emission by Extragalactic Background Light with GLAST

    NASA Technical Reports Server (NTRS)

    Chen, Andrew; Ritz, Steven

    1999-01-01

    Gamma rays with energy above 10 GeV interact with optical-UV photons resulting in pair production. Therefore, a large sample of high redshift sources of these gamma rays can be used to probe the extragalactic background starlight (EBL) by examining the redshift dependence of the attenuation of the flux above 10 GeV. GLAST, the next generation high-energy gamma-ray telescope, will for the first time have the unique capability to detect thousands of gamma-ray blazars up to redshifts of at least z = 4, with enough angular resolution to allow identification of a large fraction of their optical counterparts. By combining recent determinations of the gamma-ray blazar luminosity function, recent calculations of the high energy gamma-ray opacity due to EBL absorption, and the expected GLAST instrument performance to produce simulated samples of blazars that GLAST would detect, including their redshifts and fluxes, we demonstrate that these blazars have the potential to be a highly effective probe of the EBL.

  9. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity.

    PubMed

    Uematsu, Takayuki; Iizasa, Ei'ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance. PMID:26627732

  10. Loss of CARD9-mediated innate activation attenuates severe influenza pneumonia without compromising host viral immunity

    PubMed Central

    Uematsu, Takayuki; Iizasa, Ei’ichi; Kobayashi, Noritada; Yoshida, Hiroki; Hara, Hiromitsu

    2015-01-01

    Influenza virus (IFV) infection is a common cause of severe viral pneumonia associated with acute respiratory distress syndrome (ARDS), which is difficult to control with general immunosuppressive therapy including corticosteroids due to the unfavorable effect on viral replication. Studies have suggested that the excessive activation of the innate immunity by IFV is responsible for severe pathologies. In this study, we focused on CARD9, a signaling adaptor known to regulate innate immune activation through multiple innate sensor proteins, and investigated its role in anti-IFV defense and lung pathogenesis in a mouse model recapitulating severe influenza pneumonia with ARDS. We found that influenza pneumonia was dramatically attenuated in Card9-deficient mice, which showed improved mortality with reduced inflammatory cytokines and chemokines in the infected lungs. However, viral clearance, type-I interferon production, and the development of anti-viral B and T cell immunity were not compromised by CARD9 deficiency. Syk or CARD9-deficient DCs but not macrophages showed impaired cytokine but not type-I interferon production in response to IFV in vitro, indicating a possible role for the Syk-CARD9 pathway in DCs in excessive inflammation of IFV-infected lungs. Therefore, inhibition of this pathway is an ideal therapeutic target for severe influenza pneumonia without affecting viral clearance. PMID:26627732

  11. Gallic acid attenuates dextran sulfate sodium-induced experimental colitis in BALB/c mice

    PubMed Central

    Pandurangan, Ashok Kumar; Mohebali, Nooshin; Norhaizan, Mohd Esa; Looi, Chung Yeng

    2015-01-01

    Gallic acid (GA) is a polyhydroxy phenolic compound that has been detected in various natural products, such as green tea, strawberries, grapes, bananas, and many other fruits. In inflammatory bowel disease, inflammation is promoted by oxidative stress. GA is a strong antioxidant; thus, we evaluated the cytoprotective and anti-inflammatory role of GA in a dextran sulfate sodium (DSS)-induced mouse colitis model. Experimental acute colitis was induced in male BALB/c mice by administering 2.5% DSS in the drinking water for 7 days. The disease activity index; colon weight/length ratio; histopathological analysis; mRNA expressions of IL-21 and IL-23; and protein expression of nuclear erythroid 2-related factor 2 (Nrf2) were compared between the control and experimental mice. The colonic content of malondialdehyde and the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity were examined as parameters of the redox state. We determined that GA significantly attenuated the disease activity index and colon shortening, and reduced the histopathological evidence of injury. GA also significantly (P<0.05) reduced the expressions of IL-21 and IL-23. Furthermore, GA activates/upregulates the expression of Nrf2 and its downstream targets, including UDP-GT and NQO1, in DSS-induced mice. The findings of this study demonstrate the protective effect of GA on experimental colitis, which is probably due to an antioxidant nature of GA. PMID:26251571

  12. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR.

    PubMed

    Huang, C; Ouyang, J; Reese, T G; Wu, Y; El Fakhri, G; Ackerman, J L

    2015-10-21

    Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches.

  13. Continuous MR bone density measurement using water- and fat-suppressed projection imaging (WASPI) for PET attenuation correction in PET-MR

    NASA Astrophysics Data System (ADS)

    Huang, C.; Ouyang, J.; Reese, T. G.; Wu, Y.; El Fakhri, G.; Ackerman, J. L.

    2015-10-01

    Due to the lack of signal from solid bone in normal MR sequences for the purpose of MR-based attenuation correction, investigators have proposed using the ultrashort echo time (UTE) pulse sequence, which yields signal from bone. However, the UTE-based segmentation approach might not fully capture the intra- and inter-subject bone density variation, which will inevitably lead to bias in reconstructed PET images. In this work, we investigated using the water- and fat-suppressed proton projection imaging (WASPI) sequence to obtain accurate and continuous attenuation for bones. This approach is capable of accounting for intra- and inter-subject bone attenuation variations. Using data acquired from a phantom, we have found that that attenuation correction based on the WASPI sequence is more accurate and precise when compared to either conventional MR attenuation correction or UTE-based segmentation approaches.

  14. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    NASA Astrophysics Data System (ADS)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    Like many US industries and businesses, the Department of Energy (DOE) is responsible for remediation and restoration of soils and ground water contaminated with chlorinated ethenes. Monitored Natural Attenuation (MNA) is an attractive remediation approach and is probably the universal end-stage technology for removing such contamination. Since 2003 we have carried out a multifaceted program at the Savannah River Site designed to advance the state of the art for MNA of chlorinated ethenes in soils and groundwater. Three lines of effort were originally planned: 1) Improving the fundamental science for MNA, 2) Promoting better characterization and monitoring (CM) techniques, and 3) Advancing the regulatory aspects of MNA management. A fourth line, developing enhanced attenuation methods based on sustainable natural processes, was added in order to deal with sites where the initial natural attenuation capacity cannot offset contaminant loading rates. These four lines have been pursued in an integrated and mutually supportive fashion. Many DOE site-cleanup program managers view CM as major expenses, especially for natural attenuation where measuring attenuation is complex and the most critical attenuation mechanisms cannot be determined directly. We have reviewed new and developing approaches to CM for potential application in support of natural attenuation of chlorinated hydrocarbons in ground water at DOE sites (Gilmore, Tyler, et al., 2006 WSRC-TR- 2005-00199). Although our project is focused on chlorinated ethenes, many of the concepts and strategies are also applicable to a wider range of contaminants including radionuclides and metals. The greatest savings in CM are likely to come from new management approaches. New approaches can be based, for example, on conceptual models of attenuation capacity, the ability of a formation to reduce risks caused by contaminants. Using the mass balance concept as a guide, the integrated mass flux of contaminant is compared to

  15. Telomere Attrition Due to Infection

    PubMed Central

    Ilmonen, Petteri; Kotrschal, Alexander; Penn, Dustin J.

    2008-01-01

    Background Telomeres–the terminal caps of chromosomes–become shorter as individuals age, and there is much interest in determining what causes telomere attrition since this process may play a role in biological aging. The leading hypothesis is that telomere attrition is due to inflammation, exposure to infectious agents, and other types of oxidative stress, which damage telomeres and impair their repair mechanisms. Several lines of evidence support this hypothesis, including observational findings that people exposed to infectious diseases have shorter telomeres. Experimental tests are still needed, however, to distinguish whether infectious diseases actually cause telomere attrition or whether telomere attrition increases susceptibility to infection. Experiments are also needed to determine whether telomere erosion reduces longevity. Methodology/Principal Findings We experimentally tested whether repeated exposure to an infectious agent, Salmonella enterica, causes telomere attrition in wild-derived house mice (Mus musculus musculus). We repeatedly infected mice with a genetically diverse cocktail of five different S. enterica strains over seven months, and compared changes in telomere length with sham-infected sibling controls. We measured changes in telomere length of white blood cells (WBC) after five infections using a real-time PCR method. Our results show that repeated Salmonella infections cause telomere attrition in WBCs, and particularly for males, which appeared less disease resistant than females. Interestingly, we also found that individuals having long WBC telomeres at early age were relatively disease resistant during later life. Finally, we found evidence that more rapid telomere attrition increases mortality risk, although this trend was not significant. Conclusions/Significance Our results indicate that infectious diseases can cause telomere attrition, and support the idea that telomere length could provide a molecular biomarker for assessing

  16. Comparison of Instantaneous Frequency Scaling from Rain Attenuation and Optical Disdrometer Measurements at K/Q bands

    NASA Technical Reports Server (NTRS)

    Nessel, James; Zemba, Michael; Luini, Lorenzo; Riva, Carlo

    2015-01-01

    Rain attenuation is strongly dependent on the rain rate, but also on the rain drop size distribution (DSD). Typically, models utilize an average drop size distribution, such as those developed by Laws and Parsons, or Marshall and Palmer. However, individual rain events may possess drop size distributions which could be significantly different from the average and will impact, for example, fade mitigation techniques which utilize channel performance estimates from a signal at a different frequency. Therefore, a good understanding of the characteristics and variability of the raindrop size distribution is extremely important in predicting rain attenuation and instantaneous frequency scaling parameters on an event-toevent basis. Since June 2014, NASA Glenn Research Center (GRC) and the Politecnico di Milano (POLIMI) have measured the attenuation due to rain in Milan, Italy, on the 20/40 GHz beacon signal broadcast from the Alphasat TDP#5 Aldo Paraboni Q/V-band Payload. Concomitant with these measurements are the measurements of drop size distribution and rain rate utilizing a Thies Clima laser precipitation monitor (disdrometer). In this paper, we discuss the comparison of the predicted rain attenuation at 20 and 40 GHz derived from the drop size distribution data with the measured rain attenuation. The results are compared on statistical and real-time bases. We will investigate the performance of the rain attenuation model, instantaneous frequency scaling, and the distribution of the scaling factor. Further, seasonal rain characteristics will be analysed.

  17. Attenuation of propranolol-induced bronchoconstriction by frusemide

    PubMed Central

    Myers, J. D.; Higham, M. A.; Shakur, B. H.; Wickremasinghe, M.; Ind, P. W.

    1997-01-01

    BACKGROUND: Inhaled propranolol causes bronchoconstriction in asthmatic subjects by an indirect mechanism which remains unclear. Inhaled frusemide has been shown to attenuate a number of indirectly acting bronchoconstrictor challenges. The aim of this study was to investigate whether frusemide could protect against propranolol-induced bronchoconstriction in patients with stable mild asthma. METHODS: Twelve asthmatic subjects were studied on three separate days. At the first visit subjects inhaled increasing doubling concentrations of propranolol (0.25-32 mg/ml), breathing tidally from a jet nebuliser. The provocative concentration of propranolol causing a 20% reduction in FEV1 (PC20FEV1 propranolol) was determined from the log concentration- response curve for each subject. At the following visits nebulised frusemide (4 ml x 10 mg/ml) or placebo (isotonic saline) was administered in a randomised, double blind, crossover fashion. FEV1 was measured immediately before and five minutes after drug administration. Individual PC20FEV1 propranolol was then administered and FEV1 was recorded at five minute intervals for 15 minutes. Residual bronchoconstriction was reversed with nebulised salbutamol. RESULTS: Frusemide had no acute bronchodilator effect but significantly reduced the maximum fall in FEV1 due to propranolol: mean fall 18.2% after placebo and 11.8% after frusemide. The median difference in maximum % fall in FEV1 within individuals between study days was 3.6% (95% CI 1.2 to 11.7). CONCLUSIONS: Frusemide attenuates propranolol-induced bronchoconstriction, a property shared with sodium cromoglycate. Both drugs block other indirect challenges and the present study lends further support to the suggestion that frusemide and cromoglycate share a similar mechanism of action in the airways. 


 PMID:9404372

  18. Attenuation of high-frequency seismic waves in northeast India

    NASA Astrophysics Data System (ADS)

    Padhy, Simanchal; Subhadra, N.

    2010-04-01

    We studied attenuation of S and coda waves, their frequency and lapse time dependencies in northeast India in the frequency range of 1-24 Hz. We adopted theories of both single and multiple scattering to bandpass-filtered seismograms to fit coda envelopes to estimate Q for coda waves (QC) and Q for S-waves (QS) at five central frequencies of 1.5, 3, 6, 12 and 24 Hz. The selected data set consists of 182 seismograms recorded at ten seismic stations within epicentral distance of 22-300 km in the local magnitude range of 2.5-5.2. We found that with the increase in lapse time window from 40 to 60 s, Q0 (QC at 1 Hz) increases from 213 to 278, while the frequency dependent coefficient n decreases from 0.89 to 0.79. Both QC and QS increase with frequency. The average value of QS obtained by using coda normalization method for NE India has the power law form of (96.8 +/- 21.5)f(1.03+/-0.04) in 1-24 Hz. We adopted energy flux model (EFM) and diffusion model for the multiple scattered wave energy in three-dimensions. The results show that the contribution of multiple scattering dominates for longer lapse time close to or larger than mean free time of about 60 s. The estimates of QC are overestimated at longer lapse time by neglecting the effects of multiple scattering. Some discrepancies have been observed between the theoretical predictions and the observations, the difference could be due to the approximation of the uniform medium especially at large hypocentral distances. Increase in QC with lapse time can be explained as the result of the depth dependent attenuation properties and multiple scattering effect.

  19. Impact attenuation properties of new and used lacrosse helmets.

    PubMed

    Bowman, Thomas G; Breedlove, Katherine M; Breedlove, Evan L; Dodge, Thomas M; Nauman, Eric A

    2015-11-01

    The National Operating Committee on Standards for Athletic Equipment (NOCSAE) has developed impact attenuation thresholds that protective helmets worn in sport must meet to be commercially available in an attempt to prevent injury. It remains unknown how normal helmet use in athletic activity alters the force attenuation ability of lacrosse helmets. We tested 3 new and 3 randomly selected used helmets from 2 popular lacrosse models (Cascade Pro7, Cascade CPXR). All used helmets had been worn for 3 collegiate seasons prior to testing and had never been refurbished. Helmets were drop-tested using 3 prescribed impact velocities at 6 locations according to the NOCSAE lacrosse helmet standard, and we compared the Gadd Severity Index (GSI) scores between new and used helmets using a repeated measure ANOVA with location as the repeated variable and data separated by impact velocity. All 12 helmets passed the NOCSAE GSI threshold for all testing conditions; however 1 used helmet shell cracked resulting in a failed test. We found a significant main effect for helmet age at the low (F5,50=2.98, P=.02), medium (F5,50=3.71, P=.006), and high (F5,50=2.70, P=.03) velocities. We suspect that helmet use can degrade materials under some conditions, but improve performance in others due to changes in helmet composition from use. The clinical implications of the differences in GSI scores noted remain unclear. Because one helmet shell cracked resulting in a failed test, used helmets should be regularly inspected for cracks or other signs of mechanical fatigue that may weaken helmet integrity.

  20. Impact attenuation properties of new and used lacrosse helmets.

    PubMed

    Bowman, Thomas G; Breedlove, Katherine M; Breedlove, Evan L; Dodge, Thomas M; Nauman, Eric A

    2015-11-01

    The National Operating Committee on Standards for Athletic Equipment (NOCSAE) has developed impact attenuation thresholds that protective helmets worn in sport must meet to be commercially available in an attempt to prevent injury. It remains unknown how normal helmet use in athletic activity alters the force attenuation ability of lacrosse helmets. We tested 3 new and 3 randomly selected used helmets from 2 popular lacrosse models (Cascade Pro7, Cascade CPXR). All used helmets had been worn for 3 collegiate seasons prior to testing and had never been refurbished. Helmets were drop-tested using 3 prescribed impact velocities at 6 locations according to the NOCSAE lacrosse helmet standard, and we compared the Gadd Severity Index (GSI) scores between new and used helmets using a repeated measure ANOVA with location as the repeated variable and data separated by impact velocity. All 12 helmets passed the NOCSAE GSI threshold for all testing conditions; however 1 used helmet shell cracked resulting in a failed test. We found a significant main effect for helmet age at the low (F5,50=2.98, P=.02), medium (F5,50=3.71, P=.006), and high (F5,50=2.70, P=.03) velocities. We suspect that helmet use can degrade materials under some conditions, but improve performance in others due to changes in helmet composition from use. The clinical implications of the differences in GSI scores noted remain unclear. Because one helmet shell cracked resulting in a failed test, used helmets should be regularly inspected for cracks or other signs of mechanical fatigue that may weaken helmet integrity. PMID:26429768

  1. Anticipation of Monetary Reward Can Attenuate the Vigilance Decrement

    PubMed Central

    Grosso, Mallory; Liu, Guanyu; Mitko, Alex; Morris, Rachael; DeGutis, Joseph

    2016-01-01

    Motivation and reward can have differential effects on separate aspects of sustained attention. We previously demonstrated that continuous reward/punishment throughout a sustained attention task improves overall performance, but not vigilance decrements. One interpretation of these findings is that vigilance decrements are due to resource depletion, which is not overcome by increasing overall motivation. However, an alternative explanation is that as one performs a continuously rewarded task there are less potential gains/losses as the task progresses, which could decrease motivation over time, producing a vigilance decrement. This would predict that keeping future gains/losses consistent throughout the task would reduce the vigilance decrement. In the current study, we examined this possibility by comparing two versions (continuous-small loss vs. anticipate-large loss) of a 10-minute gradual onset continuous performance task (gradCPT), a challenging go/no-go sustained attention task. Participants began each task with the potential to keep $18. In the continuous-small-loss version, small monetary losses were accrued continuously throughout the task for each error. However, in the anticipate-large-loss version, participants lost all $18 if they erroneously responded to one target that always appeared toward the end of the vigil. Typical vigilance decrements were observed in the continuous-small-loss condition. In the anticipate-large-loss condition, vigilance decrements were reduced, particularly when the anticipate-large loss condition was completed second. This suggests that the looming possibility of a large loss can attenuate the vigilance decrement and that this attenuation may occur most consistently after sufficient task experience. We discuss these results in the context of current theories of sustained attention. PMID:27472785

  2. Mechanisms of nutrient attenuation in a subsurface flow riparian wetland.

    PubMed

    Casey, R E; Taylor, M D; Klaine, S J

    2001-01-01

    Riparian wetlands are transition zones between terrestrial and aquatic environments that have the potential to serve as nutrient filters for surface and ground water due to their topographic location. We investigated a riparian wetland that had been receiving intermittent inputs of NO3- and PO4(3-) during storm runoff events to determine the mechanisms of nutrient attenuation in the wetland soils. Few studies have shown whether infrequent pulses of NO3- are sufficient to maintain substantial denitrifying communities. Denitrification rates were highest at the upstream side of the wetland where nutrient-rich runoff first enters the wetland (17-58 microg N2O-N kg soil(-1) h(-1)) and decreased further into the wetland. Carbon limitation for denitrification was minor in the wetland soils. Samples not amended with dextrose had 75% of the denitrification rate of samples with excess dextrose C. Phosphate sorption isotherms suggested that the wetland soils had a high capacity for P retention. The calculated soil PO4(3-) concentration that would yield an equilibrium aqueous P04(3-) concentration of 0.05 mg P L(-1) was found to be 100 times greater than the soil PO4(3-) concentration at the time of sampling. This indicated that the wetland could retain a large additional mass of PO4(3-) without increasing the dissolved P04(3-) concentrations above USEPA recommended levels for lentic waters. These results demonstrated that denitrification can be substantial in systems receiving pulsed NO3- inputs and that sorption could account for extensive PO4(3-) attenuation observed at this site.

  3. Anticipation of Monetary Reward Can Attenuate the Vigilance Decrement.

    PubMed

    Esterman, Michael; Grosso, Mallory; Liu, Guanyu; Mitko, Alex; Morris, Rachael; DeGutis, Joseph

    2016-01-01

    Motivation and reward can have differential effects on separate aspects of sustained attention. We previously demonstrated that continuous reward/punishment throughout a sustained attention task improves overall performance, but not vigilance decrements. One interpretation of these findings is that vigilance decrements are due to resource depletion, which is not overcome by increasing overall motivation. However, an alternative explanation is that as one performs a continuously rewarded task there are less potential gains/losses as the task progresses, which could decrease motivation over time, producing a vigilance decrement. This would predict that keeping future gains/losses consistent throughout the task would reduce the vigilance decrement. In the current study, we examined this possibility by comparing two versions (continuous-small loss vs. anticipate-large loss) of a 10-minute gradual onset continuous performance task (gradCPT), a challenging go/no-go sustained attention task. Participants began each task with the potential to keep $18. In the continuous-small-loss version, small monetary losses were accrued continuously throughout the task for each error. However, in the anticipate-large-loss version, participants lost all $18 if they erroneously responded to one target that always appeared toward the end of the vigil. Typical vigilance decrements were observed in the continuous-small-loss condition. In the anticipate-large-loss condition, vigilance decrements were reduced, particularly when the anticipate-large loss condition was completed second. This suggests that the looming possibility of a large loss can attenuate the vigilance decrement and that this attenuation may occur most consistently after sufficient task experience. We discuss these results in the context of current theories of sustained attention. PMID:27472785

  4. Dilated cardiomyopathy due to a phospholamban duplication.

    PubMed

    Lee, Teresa M; Addonizio, Linda J; Chung, Wendy K

    2014-10-01

    Dilated cardiomyopathy is characterised by dilation and impaired systolic function. We present the case of a child with dilated cardiomyopathy caused by a 624 kb duplication of 6q22.31, which includes the phospholamban gene. The patient also has failure to thrive and developmental delay due to complex cytogenetic abnormalities including a 5p15 deletion associated with Cri du Chat and an 11p15 duplication associated with Russell-Silver syndrome. PMID:24451198

  5. Modeling of aquifer movement due to seismic and hydraulic forces

    NASA Astrophysics Data System (ADS)

    Xu, Aiguo

    A mathematical description of aquifer movement due to inertial and viscous forces is formulated by applying fundamental physical principles such as mass balance and momentum balance to a saturated aquifer system. An explicit interaction term in the momentum balance equation for the water phase sharing the same mathematical space with the solid phase introduced in the derivation of the governing equation system of aquifer movement distinguishes the development in this study from those of others such as Li's and that of Zienkiewicz and Bettess. The solid matrix is assumed to be a Helm-Li material which deforms as a highly non-linear viscous fluid rather than as the conventional poroelastic material. The finite element method is applied to solve three simplified situations: (a) negligible relative acceleration; (b) negligible acceleration of water; and (c) negligible bulk acceleration. Helm's bulk flux concept is applied in the simplifications. A computer code called Aquivis3d is developed in order to calculate the velocity and displacement of aquifer movement due to both inertial and viscous forces. Evaluation of the numerical model is accomplished by applying the code to different cases which include: standard laboratory consolidation tests; one dimensional radial movement of a Theis-Thiem aquifer; and a disturbance propagation. Simulation results favorably fit laboratory measurements for selected consolidation tests. Simulation results of one dimensional radial movement of a Theis-Thiem aquifer based in this study on poroviscosity are similar in general features to Helm's analytical results based on poroelasticity. Frequency dispersion and intensity attenuation of a disturbance propagation are fully simulated without any additional ad hoc damping assumption for dynamic aquifer movement. Sensitivity analyses are made for the viscous constitutive parameters and the hydraulic parameters in the consolidation and the one dimensional radial movement of a Theis

  6. Live attenuated influenza vaccine--a review.

    PubMed

    Gasparini, R; Amicizia, D; Lai, P L; Panatto, D

    2011-09-01

    Owing to the variability of influenza viruses, vaccine composition needs to be up-dated annually. As many variables can influence their efficacy, vaccines are still considered "sub-optimal". Many studies have been carried out in recent years to improve vaccines. In particular, researchers and vaccine-producing corporations have focused on developing a live vaccine. Among the candidate vaccines, the strain developed by Maassab has recently been licensed in the USA and Europe, after extensive investigation. This vaccine is safe and well tolerated, and has shown very good genetic stability. Although vaccine recipients are able to spread the virus, transmission to close contacts is practically non-existent. Studies on cold-adapted attenuated influenza vaccines have demonstrated that such vaccines are effective, and sometimes more effective than inactivated influenza vaccines. Cold-adapted attenuated influenza vaccines therefore appear to be an important weapon against influenza. However, a more widespread use of these vaccines is to be recommended, especially in children, as the more acceptable way of administration can favour parental compliance.

  7. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth. PMID:25362297

  8. Electron attenuation in free, neutral ethane clusters

    SciTech Connect

    Winkler, M.; Harnes, J.; Børve, K. J.; Myrseth, V.

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ{sup 2}(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100–600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  9. Towards a Global Upper Mantle Attenuation Model

    NASA Astrophysics Data System (ADS)

    Karaoglu, Haydar; Romanowicz, Barbara

    2015-04-01

    Global anelastic tomography is crucial for addressing the nature of heterogeneity in the Earth's interior. The intrinsic attenuation manifests itself through dispersion and amplitude decay. These are contaminated by elastic effects such as (de)focusing and scattering. Therefore, mapping anelasticity accurately requires separation of elastic effects from the anelastic ones. To achieve this, a possible approach is to try and first predict elastic effects through the computation of seismic waveforms in a high resolution 3D elastic model, which can now be achieved accurately using numerical wavefield computations. Building upon the recent construction of such a whole mantle elastic and radially anisotropic shear velocity model (SEMUCB_WM1, French and Romanowicz, 2014), which will be used as starting model, our goal is to develop a higher resolution 3D attenuation model of the upper mantle based on full waveform inversion. As in the development of SEMUCB_WM1, forward modeling will be performed using the spectral element method, while the inverse problem will be treated approximately, using normal mode asymptotics. Both fundamental and overtone time domain long period waveforms (T>60s) will be used from a dataset of over 200 events observed at several hundred stations globally. Here we present preliminary results of synthetic tests, exploring different iterative inversion strategies.

  10. Electron attenuation in free, neutral ethane clusters

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Myrseth, V.; Harnes, J.; Børve, K. J.

    2014-10-01

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ2(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  11. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  12. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    SciTech Connect

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  13. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  14. Demographic correlates of attenuated positive psychotic symptoms

    PubMed Central

    Waford, Rachel N.; MacDonald, Allison; Goines, Katrina; Novacek, Derek M.; Trotman, Hanan D.; Walker, Elaine F.; Addington, Jean; Bearden, Carrie E.; Cadenhead, Kristin S.; Cannon, Tyrone D.; Cornblatt, Barbara A.; Heinssen, Robert; Mathalon, Daniel H.; Tsuang, Ming T.; Perkins, Diana O.; Seidman, Larry J.; Woods, Scott W.; McGlashan, Thomas H.

    2015-01-01

    It is now well established that the utilization of standardized clinical criteria can enhance prediction of psychosis. These criteria are primarily concerned with the presence and severity of attenuated positive symptoms. Because these symptom criteria are used to derive algorithms for designating clinical high risk (CHR) status and for maximizing prediction of psychosis risk, it is important to know whether the symptom ratings vary as a function of demographic factors that have previously been linked with symptoms in diagnosed psychotic patients. Using a sample of 356 CHR individuals from the NAPLS-II multi-site study, we examined the relation of three sex, age, and educational level, with the severity of attenuated positive symptom scores from the Scale of Prodromal Symptoms (SOPS). Demographic factors accounted for little of the variance in symptom ratings (5–6%). Older CHR individuals manifested more severe suspiciousness, and female CHR participants reported more unusual perceptual experiences than male participants. Contrary to prediction, higher educational level was associated with more severe ratings of unusual thought content, but less severe perceptual abnormalities. Overall, sex, age and education were modestly related to unusual thought content and perceptual abnormalities, only, suggesting minimal implication for designating CHR status and predicting psychosis-risk. PMID:25999040

  15. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.

    PubMed

    Karauzum, Hatice; Adhikari, Rajan P; Sarwar, Jawad; Devi, V Sathya; Abaandou, Laura; Haudenschild, Christian; Mahmoudieh, Mahta; Boroun, Atefeh R; Vu, Hong; Nguyen, Tam; Warfield, Kelly L; Shulenin, Sergey; Aman, M Javad

    2013-01-01

    Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL), gamma hemolysins (Hlg), and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens. PMID:23762356

  16. Ultrasonic attenuation anomalies of n-type superconductor Pr2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Chong, Tet Vui; Abd-Shukor, R.

    2016-08-01

    Pr2-xCexCuO4 (x = 0 and 0.15) samples were prepared via solid state reaction. Pr2CuO4 sample is insulating while Pr1.85Ce0.15CuO4 sample exhibited an onset critical temperature, Tc of 21 K. The temperature dependences of ultrasonic attenuation in these polycrystalline n-type superconductor Pr2-xCexCuO4 (x = 0 and 0.15) samples have been measured between 80 K and 300 K using longitudinal and shear waves by pulse-echo-overlap method with frequencies between 5 MHz and 10 MHz. For the longitudinal mode, a pronounced attenuation peak around 200 K was observed in Pr2CuO4, but it is not observed in the superconducting material Pr1.85Ce0.15CuO4. For the shear mode, no pronounced attenuation peaks were observed in the samples. It is suggested that the attenuation peak in the x = 0 sample at 200 K is due to the weak structural distortion induced by the magnetic transition.

  17. A single base deletion in the 5' noncoding region of Theiler's virus attenuates neurovirulence.

    PubMed Central

    Pritchard, A E; Calenoff, M A; Simpson, S; Jensen, K; Lipton, H L

    1992-01-01

    Viral chimeras have been constructed through in vitro manipulations of the infectious cDNA clones of two prototypes of Theiler's murine encephalomyelitis virus: (i) the virulent GDVII strain and (ii) the less virulent BeAn and VL strains. Previous studies have suggested that the phenotypic differences in virulence between the BeAn and GDVII strains map to both the 5' noncoding and the coat protein regions of these viral genomes. It is shown here that attenuation mapped to the 5' noncoding region is due, at least in part, to an inadvertent deletion resulting from a cloning artifact of one C nucleotide out of four between positions 876 and 879 in the BeAn sequences. The in vitro growth characteristics in BHK-21 cells, however, do not reflect the large differences in neurovirulence between chimeras that are identical except for the deleted C. Another chimera with a mutation at position 877 and a deletion at 976 is also attenuated. The wild-type sequences from the less virulent strains BeAn and VL between nucleotides 1 and 933, in an otherwise GDVII chimera, do not attenuate virulence. Sequences of the 500 nucleotides of the 5' noncoding region proximal to the translation initiation codon were obtained for nine additional Theiler's virus strains. The attenuating deletions are discussed in the context of these sequences and the proposed secondary structures for the 5' noncoding region. PMID:1548749

  18. A simple model for deep tissue attenuation correction and large organ analysis of Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Habte, Frezghi; Natarajan, Arutselvan; Paik, David S.; Gambhir, Sanjiv S.

    2014-03-01

    Cerenkov luminescence imaging (CLI) is an emerging cost effective modality that uses conventional small animal optical imaging systems and clinically available radionuclide probes for light emission. CLI has shown good correlation with PET for organs of high uptake such as kidney, spleen, thymus and subcutaneous tumors in mouse models. However, CLI has limitations for deep tissue quantitative imaging since the blue-weighted spectral characteristics of Cerenkov radiation attenuates highly by mammalian tissue. Large organs such as the liver have also shown higher signal due to the contribution of emission of light from a greater thickness of tissue. In this study, we developed a simple model that estimates the effective tissue attenuation coefficient in order to correct the CLI signal intensity with a priori estimated depth and thickness of specific organs. We used several thin slices of ham to build a phantom with realistic attenuation. We placed radionuclide sources inside the phantom at different tissue depths and imaged it using an IVIS Spectrum (Perkin-Elmer, Waltham, MA, USA) and Inveon microPET (Preclinical Solutions Siemens, Knoxville, TN). We also performed CLI and PET of mouse models and applied the proposed attenuation model to correct CLI measurements. Using calibration factors obtained from phantom study that converts the corrected CLI measurements to %ID/g, we obtained an average difference of less that 10% for spleen and less than 35% for liver compared to conventional PET measurements. Hence, the proposed model has a capability of correcting the CLI signal to provide comparable measurements with PET data.

  19. Study of ultrasonic attenuation for the Kondo and magnetic effects in heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Baral, Purna Chandra; Rout, Govind Chandra

    2013-05-01

    The heavy fermion (HF) systems draw considerable attention due to their cooperative phenomena and anomalous properties arising out of the huge effective mass. A heavy fermion system is described by a model Hamiltonian consisting of the Kondo lattice model in addition to the Heisenberg-type spin-spin interaction among the localised electrons. The Hamiltonian is treated in the mean-field approximation to find the Kondo singlet parameter λ and the short-ranged f-electron correlation parameter Γ. In order to investigate ultrasonic absorption in the system, we consider the phonon interaction with the bare f-electrons, and the phonon coupling to the Kondo singlets. Further, the phonon Hamiltonian is considered in the harmonic approximation. The phonon Green's function is calculated in closed form. The imaginary part of the phonon self-energy describes the ultrasonic attenuation for the HF systems. The calculated ultrasonic attenuation clearly displays the f-electron correlation region separated by the Kondo singlet state at low temperatures. The correlation transition temperature and the Kondo temperature are located at dips in the temperature-dependent ultrasonic attenuation. The parameter dependence of the attenuation is investigated by varying the physical parameters of the HF systems and the wave frequency, and the experimental observations are explained on the basis of the model calculations.

  20. Attenuated MP2 with a Long-Range Dispersion Correction for Treating Nonbonded Interactions.

    PubMed

    Goldey, Matthew B; Belzunces, Bastien; Head-Gordon, Martin

    2015-09-01

    Attenuated second order Møller-Plesset theory (MP2) captures intermolecular binding energies at equilibrium geometries with high fidelity with respect to reference methods, yet must fail to reproduce dispersion energies at stretched geometries due to the removal of fully long-range dispersion. For this problem to be ameliorated, long-range correction using the VV10 van der Waals density functional is added to attenuated MP2, capturing short-range correlation with attenuated MP2 and long-range dispersion with VV10. Attenuated MP2 with long-range VV10 dispersion in the aug-cc-pVTZ (aTZ) basis set, MP2-V(terfc, aTZ), is parametrized for noncovalent interactions using the S66 database and tested on a variety of noncovalent databases, describing potential energy surfaces and equilibrium binding energies equally well. Further, a spin-component scaled (SCS) version, SCS-MP2-V(2terfc, aTZ), is produced using the W4-11 database as a supplemental thermochemistry training set, and the resulting method reproduces the quality of MP2-V(terfc, aTZ) for noncovalent interactions and exceeds the performance of SCS-MP2/aTZ for thermochemistry. PMID:26575911

  1. Estimation of the intrinsic absorption and scattering attenuation in Northeastern Venezuela (Southeastern Caribbean) using coda waves

    USGS Publications Warehouse

    Ugalde, A.; Pujades, L.G.; Canas, J.A.; Villasenor, A.

    1998-01-01

    Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q-1 (Q(c)-1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q(i)-1) and scattering (Q(s)-1) to total attenuation (Q(t)-1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation: the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.

  2. A quasi two-dimensional model for sound attenuation by the sonic crystals.

    PubMed

    Gupta, A; Lim, K M; Chew, C H

    2012-10-01

    Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pressure profiles from the quasi 2D model are compared with the finite element simulation and the 1D model. The result shows significant improvement over the 1D model and is in good agreement with the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on the quasi 2D model and is found to be in good agreement with the finite element simulation. The quasi 2D model provides an improved method to calculate sound attenuation through the SC.

  3. Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study.

    PubMed

    Naidu, Ravi; Nandy, Subhas; Megharaj, Mallavarapu; Kumar, R P; Chadalavada, Sreenivasulu; Chen, Zuliang; Bowman, Mark

    2012-11-01

    This study evaluated the potential of monitored natural attenuation (MNA) as a remedial option for groundwater at a long-term petroleum hydrocarbon contaminated site in Australia. Source characterization revealed that total petroleum hydrocarbons (TPH) as the major contaminant of concern in the smear zone and groundwater. Multiple lines of evidence involving the geochemical parameters, microbiological analysis, data modelling and compound-specific stable carbon isotope analysis all demonstrated natural attenuation of hydrocarbons occurring in the groundwater via intrinsic biodegradation. Groundwater monitoring data by Mann-Kendall trend analysis using properly designed and installed groundwater monitoring wells shows the plume is stable and neither expanding nor shrinking. The reason for stable plume is due to the presence of both active source and natural attenuation on the edge of the plume. Assuming no retardation and no degradation the contaminated plume would have travelled a distance of 1,096 m (best case) to 11,496 m (worst case) in 30 years. However, the plume was extended only up to about 170 m from its source. The results of these investigations provide strong scientific evidence for natural attenuation of TPH in this contaminated aquifer. Therefore, MNA can be applied as a defensible management option for this site following significant reduction of TPH in the source zone.

  4. [Variations in the optical absorption and attenuation properties of cultured phytoplankton and their relationships with cell size].

    PubMed

    Zhou, Wen; Sun, Zhao-Hua; Cao, Wen-Xi; Wang, Gui-Fen

    2012-12-01

    The spectral absorption and attenuation coefficients of 16 phytoplankton species were measured in the laboratory using acs instrument. Ancillary measurements included particle size distribution and chlorophyll a concentration (Chl a). The results indicated that both algal cell size and Chl a were the two major factors dominating the magnitudes of the spectral absorption and attenuation coefficients. The spectral behaviors of attenuation spectra were dominated by algal cell size, the relationship of them didn't follow the monotonic function. Both the ratio of absorption in blue and red waveband and the spectral slope of absorption coefficient were influenced by the product of algal cell density and squares of cell size rather than algal cell size alone. The relationship between algal cell size and both absorption and attenuation spectra would be interpreted by Mie theory for homogenous sphere, which imply that the heterogeneity and non-spherical shape in algal cell morphology and internal structure have little effect on the inherent association among them.

  5. What to Expect After Your Due Date

    MedlinePlus

    ... baby is not born by the due date, tests can help the health care provider check on the baby’s health. Some tests, ... your baby move. Others are done in the health care provider’s office or in the hospital. These tests involve electronic fetal monitoring and include the nonstress ...

  6. Modeling of polychromatic attenuation using computed tomography reconstructed images

    NASA Technical Reports Server (NTRS)

    Yan, C. H.; Whalen, R. T.; Beaupre, G. S.; Yen, S. Y.; Napel, S.

    1999-01-01

    This paper presents a procedure for estimating an accurate model of the CT imaging process including spectral effects. As raw projection data are typically unavailable to the end-user, we adopt a post-processing approach that utilizes the reconstructed images themselves. This approach includes errors from x-ray scatter and the nonidealities of the built-in soft tissue correction into the beam characteristics, which is crucial to beam hardening correction algorithms that are designed to be applied directly to CT reconstructed images. We formulate this approach as a quadratic programming problem and propose two different methods, dimension reduction and regularization, to overcome ill conditioning in the model. For the regularization method we use a statistical procedure, Cross Validation, to select the regularization parameter. We have constructed step-wedge phantoms to estimate the effective beam spectrum of a GE CT-I scanner. Using the derived spectrum, we computed the attenuation ratios for the wedge phantoms and found that the worst case modeling error is less than 3% of the corresponding attenuation ratio. We have also built two test (hybrid) phantoms to evaluate the effective spectrum. Based on these test phantoms, we have shown that the effective beam spectrum provides an accurate model for the CT imaging process. Last, we used a simple beam hardening correction experiment to demonstrate the effectiveness of the estimated beam profile for removing beam hardening artifacts. We hope that this estimation procedure will encourage more independent research on beam hardening corrections and will lead to the development of application-specific beam hardening correction algorithms.

  7. Attenuation of Selected Emerging Contaminants During River Transport

    NASA Astrophysics Data System (ADS)

    Reinhard, M.; Gross, B.; Hadeler, A.

    2002-12-01

    The ubiquitous occurrence of emerging (non-regulated) contaminants in the aquatic environment is of concern because some of these chemicals are biologically active at low concentrations and a potential threat to wildlife and human health.. Emerging contaminants include a diverse range of chemicals, including pharmaceuticals, natural and synthetic hormones and industrial surfactants, such as alkylphenol ethoxylates (APEO) and their metabolites. To address the ecotoxicological impact of these chemicals, it is necessary to know their sources, removal efficiencies during wastewater treatment, and their behavior in the environment. In this study, the fate of selected emerging contaminants in the Santa Ana River (SAR) in Southern California was investigated. The SAR originates in the San Bernardino Mountains and flows 80 miles into the Pacific Ocean. The SAR flow stems mainly from storm runoff, wastewater treatment effluents and several other minor sources. During the dry season, SAR flow is dominated by effluent from public wastewater treatment plants. Input into the SAR was studied by analyzing samples from four major treatment plants that employ different tertiary treatment processes. To assess the fate during river water transport and during wetland treatment, samples from six sites along the river were analyzed. Effluent samples were analyzed every two months, river water every four months. River samples were taken considering the flow velocity, which is approximately 1 mile per hour. The analytical method involves solid-phase extraction using C-18 cartridges and extraction of three fractions. Samples were analyzed with and without further derivatization using GC/MS and GC/MS/MS. Results indicate significant contaminant removal during river transport, presumably by photochemical oxidation. Within a distance of nine miles, pharmaceuticals, plasticizers, flame retardants, APEOs and metabolites were attenuated with removal rates ranging from 76% for a flame retardant

  8. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  9. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  10. Lidar measurement as support to the ocular hazard distance calculation using atmospheric attenuation

    NASA Astrophysics Data System (ADS)

    Gustafsson, K. Ove S.; Persson, Rolf; Gustafsson, Frank; Berglund, Folke; Malmquist, Jonas

    2015-10-01

    The reduction of the laser hazard distance range using atmospheric attenuation has been tested with series of lidar measurements accomplished at the Vidsel Test Range, Vidsel, Sweden. The objective was to find situations with low level of aerosol backscatter during this campaign, with the implications of low extinction coefficient, since the lowest atmospheric attenuation gives the highest ocular hazards. The work included building a ground based backscatter lidar, performing a series of measurements and analyzing the results. The measurements were performed during the period June to November, 2014. The results of lidar measurements showed at several occasions' very low atmospheric attenuation as a function of height to an altitude of at least 10 km. The lowest limit of aerosol backscatter coefficient possible to measure with this instrument is less than 0.3•10-7 m-1 sr-1. Assuming an aerosol lidar ratio between 30 - 100 sr this leads to an aerosol extinction coefficient of about 0.9 - 3•10-6 m-1. Using a designator laser as an example with wavelength 1064 nm, power 0.180 W, pulse length 15 ns, PRF 11.5 Hz, exposure time of 10 sec and beam divergence of 0.08 mrad, it will have a NOHD of 48 km. With the measured aerosol attenuation and by assuming a molecule extinction coefficient to be 5•10-6 m-1 (calculated using MODTRAN (Ontar Corp.) assuming no aerosol) the laser hazard distance will be reduced with 51 - 58 %, depending on the lidar ratio assumption. The conclusion from the work is; reducing of the laser hazard distance using atmospheric attenuation within the NOHD calculations is possible but should be combined with measurements of the attenuation.

  11. An empirical model of diagnostic x-ray attenuation under narrow-beam geometry

    SciTech Connect

    Mathieu, Kelsey B.; Kappadath, S. Cheenu; White, R. Allen; Atkinson, E. Neely; Cody, Dianna D.

    2011-08-15

    Purpose: The purpose of this study was to develop and validate a mathematical model to describe narrow-beam attenuation of kilovoltage x-ray beams for the intended applications of half-value layer (HVL) and quarter-value layer (QVL) estimations, patient organ shielding, and computer modeling. Methods: An empirical model, which uses the Lambert W function and represents a generalized Lambert-Beer law, was developed. To validate this model, transmission of diagnostic energy x-ray beams was measured over a wide range of attenuator thicknesses [0.49-33.03 mm Al on a computed tomography (CT) scanner, 0.09-1.93 mm Al on two mammography systems, and 0.1-0.45 mm Cu and 0.49-14.87 mm Al using general radiography]. Exposure measurements were acquired under narrow-beam geometry using standard methods, including the appropriate ionization chamber, for each radiographic system. Nonlinear regression was used to find the best-fit curve of the proposed Lambert W model to each measured transmission versus attenuator thickness data set. In addition to validating the Lambert W model, we also assessed the performance of two-point Lambert W interpolation compared to traditional methods for estimating the HVL and QVL [i.e., semilogarithmic (exponential) and linear interpolation]. Results: The Lambert W model was validated for modeling attenuation versus attenuator thickness with respect to the data collected in this study (R{sup 2} > 0.99). Furthermore, Lambert W interpolation was more accurate and less sensitive to the choice of interpolation points used to estimate the HVL and/or QVL than the traditional methods of semilogarithmic and linear interpolation. Conclusions: The proposed Lambert W model accurately describes attenuation of both monoenergetic radiation and (kilovoltage) polyenergetic beams (under narrow-beam geometry).

  12. Excitation of plasmonic terahertz photovoltaic effects in a periodic two-dimensional electron system by the attenuated total reflection method

    SciTech Connect

    Fateev, D. V. Mashinsky, K. V.; Bagaeva, T. Yu.; Popov, V. V.

    2015-01-15

    The problem of the rectification of terahertz radiation due to plasmonic nonlinearities in a periodic two-dimensional electron system upon the excitation of plasma oscillations by the attenuated total reflection method is solved. This model allows the independent study of different plasmonic rectification mechanisms, i.e., plasmonic electron drag and plasmonic ratchet effects.

  13. Galantamine Attenuates Type 1 Diabetes and Inhibits Anti-Insulin Antibodies in Nonobese Diabetic Mice

    PubMed Central

    Hanes, William M; Olofsson, Peder S; Kwan, Kevin; Hudson, LaQueta K; Chavan, Sangeeta S; Pavlov, Valentin A; Tracey, Kevin J

    2015-01-01

    Type 1 diabetes in mice is characterized by autoimmune destruction of insulin-producing pancreatic β-cells. Disease pathogenesis involves invasion of pancreatic islets by immune cells, including macrophages and T cells, and production of antibodies to self-antigens, including insulin. Activation of the inflammatory reflex, the neural circuit that inhibits inflammation, culminates on cholinergic receptor signals on immune cells to attenuate cytokine release and inhibit B-cell antibody production. Here, we show that galantamine, a centrally acting acetylcholinesterase inhibitor and an activator of the inflammatory reflex, attenuates murine experimental type 1 diabetes. Administration of galantamine to animals immunized with keyhole limpet hemocyanin (KLH) significantly suppressed splenocyte release of immunoglobulin G (IgG) and interleukin (IL)-4 and IL-6 during KLH challenge ex vivo. Administration of galantamine beginning at 1 month of age in nonobese diabetic (NOD) mice significantly delayed the onset of hyperglycemia, attenuated immune cell infiltration in pancreatic islets and decreased anti-insulin antibodies in serum. These observations indicate that galantamine attenuates experimental type 1 diabetes in mice and suggest that activation of the inflammatory reflex should be further studied as a potential therapeutic approach. PMID:26322849

  14. Ultrasonic Attenuation Measurements in Thermally Degraded 2205 Duplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Ortiz, N.; Carreón, H.; Sánchez, A.

    2009-03-01

    Ultrasonic attenuation plays an important role in materials characterization of metal components. This paper present data and discuss ultrasonic attenuation variations in a 2205 duplex stainless steel aged isothermally at 700° C and 900° C for different time intervals. Attenuation measurements as function of frequency where performed using pulse-echo immersion method and broad band planar transducers. Evidence is found of changes in the attenuation coefficient as aging time increases. The corresponding microstructure of aged specimens was observed and impact toughness was measured. Comparison is made with measurements of ferrite content for the two temperatures and different aging times.

  15. Rain Attenuation Analysis using Synthetic Storm Technique in Malaysia

    NASA Astrophysics Data System (ADS)

    Lwas, A. K.; Islam, Md R.; Chebil, J.; Habaebi, M. H.; Ismail, A. F.; Zyoud, A.; Dao, H.

    2013-12-01

    Generated rain attenuation time series plays an important role for investigating the rain fade characteristics in the lack of real fade measurements. A suitable conversion technique can be applied to measured rain rate time series to produce rain attenuation data and be utilized to understand the rain fade characteristics. This paper focuses on applicability of synthetic storm technique (SST) to convert measured rain rate data to rain attenuation time series. Its performance is assessed for time series generation over a tropical location Kuala Lumpur, in Malaysia. From preliminary analysis, it is found that SST gives satisfactory results to estimate the rain attenuation time series from the rain rate measurements over this region.

  16. Time domain attenuation estimation method from ultrasonic backscattered signals

    PubMed Central

    Ghoshal, Goutam; Oelze, Michael L.

    2012-01-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements. PMID:22779499

  17. Effect of attenuation models on communication system design

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Fred I.

    1995-01-01

    The atmosphere has a significant impact on the design of a global communication system operating at 20 GHz. The system under consideration has a total atmospheric link attenuation budget that is less than 6 dB. For this relatively small link margin, rain, cloud, and molecular attenuation have to be taken into account. For an assessment of system performance on a global basis, attenuation models are utilized. There is concern whether current models can adequately describe the atmospheric effects such that a system planner can properly allocate his resources for superior overall system performance. The atmospheric attenuation as predicted by models will be examined.

  18. Attention Wins over Sensory Attenuation in a Sound Detection Task

    PubMed Central

    Cao, Liyu; Gross, Joachim

    2015-01-01

    ‘Sensory attenuation’, i.e., reduced neural responses to self-induced compared to externally generated stimuli, is a well-established phenomenon. However, very few studies directly compared sensory attenuation with attention effect, which leads to increased neural responses. In this study, we brought sensory attenuation and attention together in a behavioural auditory detection task, where both effects were quantitatively measured and compared. The classic auditory attention effect of facilitating detection performance was replicated. When attention and sensory attenuation were both present, attentional facilitation decreased but remained significant. The results are discussed in the light of current theories of sensory attenuation. PMID:26302246

  19. [Usefulness of attenuation correction with transmission source in myocardial SPECT].

    PubMed

    Murakawa, Keizo; Katafuchi, Tetsuro; Nishimura, Yoshihiro; Enomoto, Naoyuki; Sago, Masayoshi; Oka, Hisashi

    2006-01-20

    Attenuation correction in SPECT has been used for uniformly absorptive objects like the head. On the other hand, it has seldom been applied to nonuniform absorptive objects like the heart and surrounding lungs because of the difficulty and inaccuracy of data processing. However, since attenuation correction using a transmission source recently became practical, we were able to apply this method to a nonuniform absorptive object. Therefore, we evaluated the usefulness of this attenuation correction system with a transmission source in myocardial SPECT. The dose linearity, defect/normal ratio using a myocardial phantom, and myocardial count distribution in clinical cases was examined with and without the attenuation correction system. We found that all data processed with attenuation correction were better than those without attenuation correction. For example, in myocardial count distribution, while there was a difference between men and women without